
Executive Summary of the Thesis

On Kolmogorov-Fokker-Planck operators with linear drift and time
dependent measurable coefficients

Laurea Magistrale in Mathematical Engineering - Ingegneria Matematica

Author: Tommaso Barbieri

Advisor: Prof. Marco Bramanti

Co-advisor: Dott. Stefano Biagi

Academic year: 2021-2022

1. Introduction
In this thesis we study a class of degener-
ate parabolic operators called of Kolmogorov-
Fokker-Planck type. The operators we study
are given by:

L =

q∑
i,j=1

aij(t)∂ij +

N∑
i,j=1

bijxj∂i − ∂t (1)

where q is a positive integer strictly less than
N . We assume that the coefficients {aij}qi,j=1

and {bij}Ni,j=1 satisfy the following conditions:
• There exists ν > 0 such that for almost every
t and every ξ ∈ Rq:

ν|ξ|2 ≤
q∑

i,j=1

aij(t)ξiξj ≤
1

ν
|ξ|2

• The matrix of coefficients B = {bij}Ni,j=1 as-
sumes the following form:

B =


O O . . . O O
B1 O . . . O O
O B2 . . . O O
...

...
. . .

...
...

O O . . . Bκ O

 (2)

where there exists a sequence of integers q =
m0 ≥ · · · ≥ mj ≥ · · · ≥ mκ ≥ 1 with sum equal
to N and such that Bj is an mj ×mj−1 matrix
of maximal rank.

1.1. The operator with constant coef-
ficient

The starting point for our research is the arti-
cle by Lanconelli and Polidoro [4] in which the
case of constant coefficients {aij}qi,j=1 has been
studied. Actually, in [4] the matrix B satisfies
the more general assumption:

B =


∗ ∗ . . . ∗ ∗
B1 ∗ . . . ∗ ∗
O B2 . . . ∗ ∗
...

...
. . .

...
...

O O . . . Bκ ∗

 (3)

where the ∗-blocks are arbitrary while Bj are as
before.

1.2. The homogeneous group struc-
ture

Here we list some notions concerning the homo-
geneous group structure related to the operator
(1):
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• The group law ◦ ([4]) on RN+1:

(x, t) ◦ (y, s) = (y + E(s)x, t+ s)

where E(s) = exp(−sB).
• The family of automorphisms {D(λ)}λ>0 ([4]):

D(λ) = diag(λq1 , . . . , λqN , λ2)

where the constants qi are defined as

(q1, . . . , qN ) := (1, . . . , 1︸ ︷︷ ︸
m0

, . . . ,

. . . 2i+ 1, . . . , 2i+ 1︸ ︷︷ ︸
mi

, . . . ,

2κ+ 1, . . . , 2κ+ 1︸ ︷︷ ︸
mκ

) .

• The homogeneous norm (see [1]):

ρ((x, t)) =

N∑
i=1

|xi|
1
qi +

√
|t|

• The homogeneous dimension:

Q =
κ∑
i=0

mi(2i+ 1) .

With these definitions we can remark (follow-
ing [4]) that, in the case of constant coefficients
{aij}Ni,j=1 , the operator is invariant with respect
to left translations in (Rn+1, ◦):
∀ζ ∈ RN+1, ∀u ∈ C∞c (RN+1), ∀ξ ∈ RN+1

Lξu(ζ ◦ ξ) = (Lu)(ζ ◦ ξ)

(Lξ means that the operator is evaluated with
respect to the ξ variable). Moreover, the condi-
tion (2) is equivalent to:
∀λ > 0, ∀u ∈ C∞c (RN+1), ∀ξ ∈ RN+1

L(u(D(λ)ξ)) = λ2(Lu)(D(λ)ξ) .

1.3. The case of varying coefficients
As said at the beginning our goal is to proceed
further with the case of coefficients depending
on time in a nonsmooth way. Actually, there
are many papers (see [2] section 5.1) dealing
with Hölder continuous coefficients depending
on (x, t). But, the Hölder continuity is assumed
with respect to a quasi-distance d defined by:

d(ξ, ζ) := ρ(ζ−1 ◦ ξ) ξ, ζ ∈ RN+1

and a global Hölder continuity with respect to d
turns out to be a quite restrictive condition (as
shown in [5] Example 1.3).

2. Some results for the opera-
tor

Here we mention two papers which are the
basis for our results. The first paper is [3]
by Bramanti and Polidoro. It contains a
construction of the fundamental solution for
the operator (1) together with some estimates
on the constructed fundamental solution,
uniqueness for the Cauchy problem and exis-
tence in the homogeneous case. We remark
that these results are proved under (3) in-
stead of the more restrictive (2). In our case
the fundamental solution given in [3] reduces to:

Γ(x, t; y, s) =

=
e−

1
4

(x−E(t−s)y)TC(t,s)−1(x−E(t−s)y)√
(4π)Ndet(C(t, s))

)

where (x, t) ∈ RN+1 and (y, s) ∈ RN+1 are such
that t > s while the matrix C(s, t) is defined as
follows:

C(t, s) :=

∫ t

s
E(t− σ)A(σ)E(t− σ)Tdσ .

Actually, for every fixed (y, s) ∈ RN+1, function
Γ(·; y, s) is a solution of Lu = 0 indeed, by [The-
orem 4.4 [3]]), we have:
for almost every t > s and every x ∈ RN

L(x,t)Γ(x, t; y, s) = 0 .

Moreover, it satisfies also the following condition
(see [Theorem 4.11 [3], point iii)]):
if φ ∈ Cc(RN ) then the function

u(x, t) =

∫
RN

Γ(x, t; y, s)φ(y)dy (x, t) ∈ RN+1

satisfies:

u(·, t)→ φ uniformly as t→ 0+ .

The second paper is [1] by Bramanti and Bi-
agi. This paper contains many results concern-
ing the operator we study, for instance it con-
tains some sharp estimates on the fundamen-
tal solution, representation formulas and global
Schauders estimates. Actually, the Schauder es-
timates are proved in the more general case of
coefficients which vary also in space and satisfy
a Hölder condition only with respect the x vari-
able (see Definition 2.1 below). We remark that
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this paper constitutes the starting point for the
definition of solution given in the thesis. Ac-
tually, we exploit also the functional spaces de-
fined there.

Definition 2.1 (See Definition 1.2 [1]). Let Ω =
D × I where I is an open interval and D is an
open subset of RN moreover, let f : Ω :→ R and
α ∈ (0, 1). We define:

|f |Cα(Ω) := sup
ξ,η∈Ω
ξ 6=η

|f(ξ)− f(η)|
d(ξ, η)α

,

||f ||Cα(Ω) := |f |Cα(Ω) + ||f ||L∞(Ω)

|f |Cαx (Ω) := ess sup
t∈I

sup
x 6=y

|f(x, t)− f(y, t)|
d((x, t), (y, t))α

,

||f ||Cαx (Ω) := |f |Cαx (Ω) + ||f ||L∞(Ω)

and

Cα(Ω) :=
{
f ∈ C(Ω) : ||f ||Cα(Ω) < +∞

}
Cαx (Ω) :=

{
f ∈ L∞(Ω) : ||f ||Cαx (Ω) < +∞

}
.

Then, given ST := RN × (−∞, T ) we recall the
definition of the spaces S0(ST ) and Sα(ST ):

Definition 2.2 (see Definition 1.4 [1]).

S0(ST ) := {u ∈ C(ST )∩L∞(ST ) :

∀i, j ∈ {1, . . . , q} ∂iju ∈ L∞(ST ),

Y u ∈ L∞(ST )}

and if α ∈ (0, 1) then

Sα(ST ) := {u ∈ S0(ST ) : ∀i, j ∈ {1, . . . , q}
∂iju ∈ Cαx (ST ), Y u ∈ Cαx (ST )} .

Now we recall the Schauder estimates (in a sim-
plified form) since they let us understand from
where the definition 3.2 comes (see section 3).
Theorem 2.1 (Global Schauder Estimates (see
Theorem 4.7 [1])). Let T > τ > −∞ and α ∈
(0, 1). Then, there exists c > 0, only depending
on (T − τ), α, ν, B, such that ∀u ∈ Sα(ST )

q∑
h,k=1

||∂2
i,ju||Cαx (ST ) + ||Y u||Cαx (ST )+

+

q∑
k=1

||∂2
ku||Cα(ST ) + ||u||Cα(ST )

≤ c
{
||Lu||Cαx (ST ) + ||u||L∞(ST )

}
.

3. Original contributions
The thesis contains three main results, the first
is the well-posedness of the Cauchy problem:{

Lu = f RN × (0, T )
u(·, 0) = g RN .

The other two results consists in a regularity
result for solutions and some local estimates.

3.1. Existence of a solutions - prelim-
inary results

Our initial goal was to prove the well-posedness
of the following Cauchy problem:{

Lu = f RN × (−∞, T )
u(·, t) = 0 ∀t ≤ 0

. (4)

The first difficulty is the definition of solution
since due to the low regularity of the coefficients
it is not straightforward. The definition of solu-
tion exploits the spaces defined in [1].

Definition 3.1. We say that u ∈ S0(ST ) is a
solution of (4) if u ≡ 0 when t ≤ 0 and for
almost every (x, t) ∈ ST :

q∑
i,j=1

aij(t)∂iju(x, t) + Y u(x, t) = f(x, t) . (5)

We stress that in (5) the derivatives are consid-
ered in a weak sense. For instance the term Y u
represents the L∞ function such that for any
φ ∈ D(RN+1):∫

RN+1

Y u φ =

∫
RN+1

u Y ∗φ .

This definition seemed more natural in order
to solve the nonhomogeneous Cauchy problem,
however, we cannot exploit the uniqueness re-
sult of [3].
The next theorem gives the well-posedness of
(4).
Theorem 3.1. Let f ∈ Cαx (ST ) be such that
supp(f) ⊂ RN × [0, T ].
Then, there exists a unique u ∈ S0(ST ) solu-
tion of (4) (in the sense of 3.1). Moreover,
u ∈ Sα(ST ) and there exists a constant c de-
pending only on ν, T and α such that the fol-
lowing stability estimate holds:

q∑
i,j=1

||∂iju||Cαx (ST ) + ||Y u||Cαx (ST )+

+

q∑
i=1

||∂iu||Cα(ST ) + ||u||Cα(ST ) ≤c||f ||Cαx (ST ) .
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The main point in the proof of this theorem is
to construct a solution since the stability and
the uniqueness follow by the Schauder estimates
(Theorem 4.7, [1]) and the representation for-
mula (Theorem 3.11, [1]). The first step is to
approximate the solution when the datum is
C∞c (RN+1), to this aim we have the following
lemma:

Lemma 3.1. Let f ∈ C∞c (ST ) and let ε > 0.
Moreover, let uε : ST → R be defined by:

uε(x, t) = −
∫ t−ε

−∞

∫
RN

Γ(x, t; y, s)f(y, s)dyds .

Then, for any α ∈ (0, 1), uε ∈ Sα(ST ) and

Luε(x, t) =

∫
RN

Γ(x, t; y, t− ε)f(y, t− ε)dy .

Thanks to the estimates on Γ [Theorem 3.5 [1]]
it is proved that if f is C∞c (RN+1) the function
uε converges, in a suitable sense, to a solution u.
Hence, we obtain existence for f ∈ C∞c (RN+1).
The next step is to consider f ∈ Cαx whit com-
pact support. Thanks to the regularizing prop-
erties of the convolution, we can approximate
f with C∞c functions and then, by using some
compactness properties, we can obtain that the
sequence of solutions, obtained for the regular-
ized datum, converges (up to a subsequence) to
a solution for our problem.
Theorem 3.2. If f ∈ Cαx (ST ) and is compactly
supported, then, the function u : ST → R defined
by

u(x, t) = −
∫ t

−∞

∫
RN

Γ(x, t; y, s)f(y, s)dyds

is such that u ∈ Sα(ST ) and Lu = f .
We remark that the compactness properties are
obtained thanks to the Banach Alaoglu Bour-
baki Theorem and the Schauder estimates (The-
orem 4.7, [1])). Finally, we obtain the existence
of a solution when the datum is not compactly
supported by exploiting the same machinery
with a different approximation: a partition of
unity.

3.2. Local estimates and Regularity
The last chapter of the thesis is devoted to the
extension of the previous results. More precisely
it contains some local estimates, a regularity re-
sult and the well-posedness for the nonhomoge-
neous Cauchy problem with nontrivial data. We

shall start describing the local estimates and the
regularity result, but before we need to intro-
duce some notation. In this section the sets D,
D′ are open bounded sets of RN while I and I ′

are open bounded intervals of R.

Definition 3.2. Let α ∈ (0, 1) then define:

Cαloc(D
′ × I ′) :=

{
f ∈ C(D′ × I ′) :

||f ||Cα(D×I) < +∞∀D × I ⊂⊂ D′ × I ′
}

Cαx,loc(D
′ × I ′) :=

{
f ∈ L∞loc(D′ × I ′) :

||f ||Cαx (D×I) < +∞∀D × I ⊂⊂ D′ × I ′
}

where the norms are the same of Definition 2.1.

We need also the following definition.

Definition 3.3. Let α ∈ (0, 1), then consider
the following spaces:

Xα(D′ × I ′) := {u ∈ Cα(D′ × I ′) : ∀i, j ≤ q
∂iu ∈ Cα(D′ × I ′), ∂iju ∈ Cαx (D′ × I ′),

Y u ∈ Cαx (D′ × I ′)}

Xα
loc(D

′ × I ′) := {u ∈ Cαloc(D′ × I ′) : ∀i, j ≤ q
∂iu ∈ Cαloc(D′ × I ′), ∂iju ∈ Cαx,loc(D′ × I ′),

Y u ∈ Cαx,loc(D′ × I ′)}

Sαloc(D
′ × I ′) := {u ∈ C(D′ × I ′) : ∀i, j ≤ q
∂iju ∈ Cαx,loc(D′ × I ′), Y u ∈ Cαx,loc(D′ × I ′)} .

Moreover, we define the following norm:

||u||Xα(D×I) :=
q∑

i,j=1

||∂iju||Cαx (D×I) +

q∑
i,j=1

||∂iu||Cα(D×I)+

||Y u||Cαx (D×I) + ||u||Cα(D×I) .

We remark that the space Xα(D′ × I ′) with
the norm || · ||Xα(D′×I′) is a Banach space while
Xα
loc(D

′ × I ′) when endowed with the family
of seminorms {|| · ||Xα(D×I)}D×I⊂⊂D′×I′ is a
Fréchet space. Moreover, it is easily seen that
by the Schauder estimates (Theorem 2.1) we ob-
tain:

Xα(RN+1) = Sα(RN+1) . (6)

Now we can state the Local estimates:
Theorem 3.3. For every D × I and D′ × I ′

nonempty open sets satisfying D × I ⊂⊂ D′ ×
I ′ ⊂⊂ RN+1, there exists c > 0, depending only
on L, D × I and D′ × I ′, such that:
∀u ∈ Xα

loc(Rn+1)

||u||Xα(D×I) ≤ c(||u||L∞(D′×I′)+||Lu||Cαx (D′×I′)) .
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This theorem is proved through the open map-
ping theorem and the results contained in [1].
The other result is the following.
Theorem 3.4. Let a∗ > 1 + Q

2 and let Ω be
a nonempty open set. Moreover, let u be such
that:
1) u ∈ L1

loc(Ω) ;
2) ∂iju ∈ La

∗
loc(Ω) for any i, j ∈ {1, . . . , q} ;

3) Y u ∈ La∗loc(Ω).
If Lu ∈ Cαx,loc(Ω) for some α ∈ (0, 1) then u ∈
Xα
loc(Ω).

This theorem is proved by a representation for-
mula obtained from to the one given in [1] (The-
orem 3.11) together with the Schauder estimates
(Theorem 4.7 [1]). As an immediate conse-
quence we have the following remarkable fact:

Sαloc(RN+1) = Xα
loc(RN+1) .

Notice that thanks to this result if u ∈
Sαloc(RN+1) then for any φ ∈ D(RN+1), φu ∈
Sα(RN ). This was not clear before since the
first derivatives of u enter the expression for the
second order x-derivatives of φu.

3.3. Well posedness
Thanks to the same representation formulas
used to prove Theorem 3.4 we obtain also the
following theorem.
Theorem 3.5 (Uniqueness). Let a∗ > 1+ Q

2 . If
u is a function such that:
1) u ∈ C(RN × (0, T )) ;
2) ∂iju ∈ La∗loc(RN × (0, T )) for any i, j ≤ q ;
3) Y u ∈ La∗loc(RN × (0, T ));
4) Lu = 0 in RN × (0, T );
5) For any φ ∈ Cc(RN )∫

RN
u(x, t)φ(x)dx −−−→

t→0+
0

(i.e. in the sense of zero order distributions);
5) There exists c > 0 such that:∫ T

0

∫
RN
|u(x, t)|e−c|x|2dxdt < +∞ . (7)

Then u ≡ 0.
This result gives a definition of solution for the
nonhomogeneous Cauchy problem.

Definition 3.4. Let f ∈ L∞loc(RN×(0, T )), let g
be a zero order distribution. Then, a function u

is said to be a solution to the Cauchy Problem:{
Lu = f RN × (0, T )
u(·, 0) = g RN (8)

if:
1) u ∈ C(RN × (0, T ));
2) Y u, ∂iju ∈ L∞loc(RN × (0, T )) for any i, j ∈
{1, . . . , q} ;
3) Lu = f in RN × (0, T );
4) u(·, t) −−−→

t→0+
g(·) in the sense f zero order

distributions.

Notice that any Lploc function is a zero order
measure and if the initial datum is achieved in
Lploc sense then it is achieved also in the sense
of zero order distributions, actually, the conver-
gence in the sense of zero order distributions still
holds when the datum is achieved almost ev-
erywhere and the solution is locally bounded in
RN × [0, T ) (thanks to dominated convergence
theorem). Concerning the existence of a solu-
tion, thanks to the local estimates (Theorem
3.3), in order to construct a solution we only
need to approximate the datum and then pro-
ceed exploiting some compactness properties as
in Theorem 3.1. We remark that the idea of ap-
proximating the datum is employed also for the
initial datum g indeed, we can think (at least
formally) that the solution of the homogeneous
problem with initial datum g is the solution of
a nonhomogeneous problem with datum which
is concentrated at t = 0. In other words we are
thinking to solve Lu = −g ⊗ δ. This approach
exploits the local estimates (Theorem 3.3) and
therefore it does not care about how good is g
since in order to have Lu = 0 in RN × (0, T ) we
are only interested in the regularity for positive
times. Moreover, the function g ⊗ δ is approxi-
mated by a convolution hence it is considered as
a whole. All these remarks let us think that it
is worth paying for some little additional tech-
nicalities and assume the datum to be satisfied
as in definition 3.4. Now we state the last main
result:
Theorem 3.6. Let g be a zero order distribution
in RN and let f ∈ Cαx,loc(RN×(0,+∞)). If there
exists c > 0 such that:

sup
ϕ∈Cc(RN )

||ϕ||∞≤1

〈g(x), ϕ(x)e−c|x|
2〉 < +∞

ess sup
t>0

sup
x∈RN

|f(x, t)|e−c|x|2 < +∞
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then, there exists T > 0 and a unique solution
of (8) satisfying∫ T

0

∫
RN
|u(x, t)|e−c′|x|2dxdt

for some c′ > 0. The unique solution u belongs
to Sαloc(RN × (0, T )) and assumes the form:

u(x, t) = −
∫ t

0

∫
RN

Γ(x, t; y, s)f(y, s)dyds+∫
RN

Γ(x, t; y, 0)g(dy)

Moreover, for any D × I and D′ × I ′ satisfying
D × I ⊂⊂ D′ × I ′ ⊂⊂ RN × (0, T ) there exist a
constant C > 0, depending only on c, L, D × I
and D′ × I ′, such that:

q∑
i,j=1

||∂iju||Cαx (D×I) +

q∑
i,j=1

||∂iu||Cα(D×I)+

||Y u||Cαx (D×I) + ||u||Cα(D×I) ≤
≤ C

(
||f ||Cαx (D′×I′)+

+ ess sup
t>0

sup
x∈RN

|f(x, t)|e−c|x|2+

+ sup
ϕ∈Cc(RN )

||ϕ||∞≤1

〈g(x), ϕ(x)e−c|x|
2〉
)
.

4. Conclusions
In this thesis we give a definition of solution to
(8) and we prove existence, uniqueness and some
stability estimates. Moreover, two additional re-
sults of independent interest are proved, namely
the local estimates and the regularity result.

5. Acknowledgements
My sincere thanks go to Professor Marco Bra-
manti and Doctor Stefano Biagi for introduc-
ing me to these very interesting topics, for the
valuable ideas and suggestions and for the time
dedicated to me during the development of the
thesis.

References
[1] Stefano Biagi and Marco Bramanti.

Schauder estimates for Kolmogorov-
Fokker-Planck operators with coefficients
measurable in time and Hölder continuous
in space. arXiv, 2022.

[2] Marco Bramanti. An Invitation to Hy-
poelliptic Operators and Hörmander’s Vec-
tor Fields. SprngerBriefs in Mathematics.
Springer Cham, 01 2014.

[3] Marco Bramanti and Sergio Polidoro. Fun-
damental solutions for Kolmogorov-Fokker-
Planck operators with time-depending mea-
surable coefficients. Mathematics in Engi-
neering, 2(4):734–771, 2020.

[4] Ermanno Lanconelli and Sergio Polidoro.
On a class of hypoelliptic evolution opera-
tors. Rend. Sem. Mat. Univ. Politec. Torino,
52(1):29–63, 1994.

[5] Andrea Pascucci and Antonello Pesce.
On stochastic Langevin and Fokker-Planck
equations: the two-dimensional case. arXiv,
2019.

6


	Introduction
	The operator with constant coefficient
	The homogeneous group structure
	The case of varying coefficients

	Some results for the operator
	Original contributions
	Existence of a solutions - preliminary results
	Local estimates and Regularity
	Well posedness

	Conclusions
	Acknowledgements

