
i
i

“output” — 2020/11/24 — 17:00 — page 1 — #1 i
i

i
i

i
i

SCUOLA DI INGEGNERIA INDUSTRIALE E DELL’INFORMAZIONE
DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

CORSO DI LAUREA MAGISTRALE IN COMPUTER SCIENCE AND ENGINEERING

LEGIO: FAULT RESILIENCY FOR EMBARRASSINGLY

PARALLEL MPI APPLICATIONS

M.Sc Thesis of:
Roberto Rocco

Supervisor:
Prof. Gianluca Palermo

Co-supervisor:
Ph.D. Davide Gadioli

Academic year 2020/2021

i
i

“output” — 2020/11/24 — 17:00 — page 2 — #2 i
i

i
i

i
i

i
i

“output” — 2020/11/24 — 17:00 — page I — #3 i
i

i
i

i
i

Abstract

DUE to the increasing size of HPC machines, the fault presence is becoming an
eventuality that applications must face. MPI provides no support for the exe-
cution past the detection of a fault, and this is becoming more and more con-

straining. With the introduction of the User-Level Fault Mitigation library (ULFM), it
is now possible to repair the execution, but it needs changes in the applications’ code.
Moreover, ULFM isn’t easy to introduce in a generic MPI application as it needs deep
knowledge of the problem it’s trying to solve. That is the reason why ULFM has been
integrated into many frameworks that encapsulate the repair path and provide an easier
to use API.

Our effort proposes the Legio library, a system to easily introduce fault resiliency
in an embarrassingly parallel MPI application. The focus was towards a transparent
approach: the application needs almost no code changes to support Legio. The repair
solution was also different from most of the already developed frameworks: while their
focus is towards the recreation of the failed nodes and the restoration of a correct status,
Legio bases on a shrinking approach that discards the failed nodes and lets the others
proceed. This solution is expected to provide better performance in the recovery phase
but will affect the accuracy of the result: a trade-off that many embarrassingly parallel
applications are willing to do, like for example Monte Carlo approximators. We also
the first evolution of the Legio library which includes a new communication structure
that transparently reduces the size of the communicators used by the application.

We tested our solutions on the Marconi100 cluster at CINECA, showing that the
overhead introduced with the library is negligible and it doesn’t limit the scalability
properties of MPI. We also tested the library on real applications by injecting faults, to
further prove the robustness of the solution. Finally, we discussed a further evolution,
which can include C/R and achieve local recovery for a complete framework.

I

i
i

“output” — 2020/11/24 — 17:00 — page II — #4 i
i

i
i

i
i

i
i

“output” — 2020/11/24 — 17:00 — page III — #5 i
i

i
i

i
i

Sommario

DATO l’aumento delle dimensioni dei cluster HPC, l’insorgere di guasti sta diven-
tando un evento da considerare. Lo standard MPI non gestisce il comportamen-
to dell’applicazione dopo l’insorgere di un guasto, e questo sta cominciando ad

essere un forte limite agli sviluppi di architetture più potenti. Con l’introduzione della
libreria ULFM è possibile gestire la presenza di guasti, riparando le strutture coinvolte e
tornando ad uno stato corretto. Purtroppo, la maggior parte delle applicazioni MPI non
è stata progettata considerando ULFM e adattare il codice non è un compito semplice.
Queste difficoltà hanno dato alla luce dei framework che racchiudono le funzionalità
proposte da ULFM ma espongono una semplice interfaccia per l’utente.

Il nostro lavoro ha portato alla creazione di Legio, una libreria in grado di introdurre
resilienza ai guasti in applicazioni MPI imbarazzantemente parallele. Uno degli obiet-
tivi principali era la trasparenza: l’integrazione con l’applicazione MPI deve avvenire
senza cambiamenti nel codice. Abbiamo adottato anche un approccio alternativo per la
modalità di riparazione: se la maggior parte dei framework presenti si concentra sul-
la rigenerazione dei processi guasti, in Legio abbiamo optato per la riparazione senza
sostituzioni. Questa soluzione riduce il tempo di riparazione ma danneggia anche la
correttezza dell’applicazione, che produrrà un risultato meno accurato: questo com-
promesso è comunque accettabile in alcune applicazioni supportate, come ad esempio
nelle approssimazioni Monte Carlo. Abbiamo prodotto anche una seconda versione che
ridefinisce in modo trasparente la struttura della comunicazione in MPI, per ridurre la
dimensione dei comunicatori.

Abbiamo eseguito dei test sul cluster Marconi100 gestito da CINECA, mostrando
come il costo di utilizzo di Legio sia trascurabile. Abbiamo inoltre testato la robustezza
di applicazioni reali usanti la nostra libreria iniettando dei guasti nel sistema: queste
sono state in grado di risolvere i problemi e continuare la propria esecuzione. Abbiamo
infine teorizzato l’introduzione di un sistema di checkpoint orientato al recupero loca-
le dell’esecuzione. Abbiamo identificato nel plug-in MANA di DMTCP un possibile
candidato per questa integrazione, e abbiamo considerato i vari passi da eseguire per
riuscirci.

III

i
i

“output” — 2020/11/24 — 17:00 — page IV — #6 i
i

i
i

i
i

i
i

“output” — 2020/11/24 — 17:00 — page V — #7 i
i

i
i

i
i

Contents

1 Introduction 1

2 Background 5
2.1 MPI Background . 5

2.1.1 General setup and point-to-point communication 6
2.1.2 Collective communication . 6
2.1.3 Groups management . 7
2.1.4 Communicator management . 8
2.1.5 File operations . 10
2.1.6 Remote Memory Access . 11
2.1.7 Error handling . 13

2.2 Fault Tolerance Background . 13
2.2.1 Faults, Errors and Failures . 13
2.2.2 Dependability analysis . 14
2.2.3 Reliability Block Diagrams . 15
2.2.4 HPC use case analysis . 16
2.2.5 Dependability solutions for HPC 17

2.3 ULFM Background . 18
2.3.1 ULFM standard . 18

2.4 State of The Art . 19
2.4.1 Classification . 20
2.4.2 Most relevant efforts . 20
2.4.3 Pure C/R solutions . 21

3 The Legio framework design and architecture 23
3.1 Requirements . 23
3.2 Preliminary analyses . 24
3.3 The barrier and Broadcast support . 25
3.4 Point-to-point operations and other collectives 28
3.5 The scatter and gather support . 29
3.6 One-Sided Communication . 30

V

i
i

“output” — 2020/11/24 — 17:00 — page VI — #8 i
i

i
i

i
i

Contents

3.6.1 The ComplexComm class . 31
3.6.2 One-Sided Communication functions 32

3.7 File operations . 32
3.8 Multiple communicators support . 34

3.8.1 ComplexComm evolution . 34
3.8.2 The Multicomm class . 35
3.8.3 Communicator management operations 36

4 The Hierarchical Extension 39
4.1 Analysis of the problem . 39
4.2 Our hierarchical solution . 40

4.2.1 one-to-one operations . 41
4.2.2 one-to-all operations . 41
4.2.3 all-to-one operations . 42
4.2.4 all-to-all operations . 42
4.2.5 File operations . 43
4.2.6 Window operations and collective-window operations 43
4.2.7 comm-creator and local-only operations 43
4.2.8 Positional calls . 43

4.3 Reparation procedure . 43
4.3.1 Conventions and concepts . 44
4.3.2 Reparation procedure . 45

4.4 Preliminary refactoring steps . 48
4.5 The HierarComm implementation . 49
4.6 Complexity analysis . 52

4.6.1 Linear-complexity case . 53
4.6.2 Quadratic-complexity case . 54
4.6.3 Conclusions . 55

5 Experimental evaluation 57
5.1 Experimental setup . 57
5.2 mpiBench experiments . 58
5.3 Overhead measurement . 58
5.4 Embarrassingly Parallel Applications 61

6 Future work 63
6.1 Legio evolutions . 63
6.2 Legio with backline . 64

7 Conclusion 67

Bibliography 73

VI

i
i

“output” — 2020/11/24 — 17:00 — page 1 — #9 i
i

i
i

i
i

CHAPTER1
Introduction

HIGH-PERFORMANCE COMPUTING (HPC) is the field of computer science
aimed at reaching the highest computation capabilities. The field is very het-
erogeneous since it covers both the development of powerful hardware and

efficient software. During the years it evolved a lot to exploit all the innovations com-
ing from other fields. HPC plays an important role in many scientific applications,
which need computational power to complete difficult operations.

The high demands of computational science applications are leading the evolution of
the current high-performance systems. This increased the complexity of HPC systems
to satisfy the need for more performance. As a result, the computation capabilities
are growing and will reach the exascale performances (1018 FLOPS) in the next years
[7, 13]. This evolution is introducing new challenges in the field since problems that
were overlooked before are now limiting the performance of the systems. Among these
problems, there is system reliability.

The presence of faults in an HPC system may cause errors in the application, and
those can stop the execution without obtaining any result. This last consequence limits
the efficiency of the system since all the energy spent on the computation is lost without
producing anything and the time needed to obtain a meaningful result is increased. The
probability of a fault increases with the complexity of the system: while in the past
the error frequency was negligible, it is getting so high that applications must account
for the presence of errors. And this may pose some problems, since an application
may have to be restarted several times before being capable to reach the end of the
computation correctly.

The de-facto standard for intra-process communication is the Message Passing In-
terface (MPI). This standard was formalized in 1994 and received updates since then.
As of now, the fourth main version of the standard is under development, and there are

1

i
i

“output” — 2020/11/24 — 17:00 — page 2 — #10 i
i

i
i

i
i

Chapter 1. Introduction

various developed implementations such as MPICH, OpenMPI, and Intel MPI. Many
HPC applications leverage MPI since it is the main way to exploit resources scattered
through multiple nodes connected in a network. The success of MPI is partially due
to its simplicity, which introduces a low communication cost: a desirable feature for
HPC applications. While the simplicity made it successful, it is now becoming a con-
striction: the first version of MPI lacked many important features that were introduced
in the next versions. Among those introduced features it is possible to find file opera-
tions, remote memory access, dynamic process management, and many more. The next
version of MPI will introduce a system for better fault management.

Up to the latest version of MPI, the occurrence of an error causes problems in an
MPI program since the status of the execution is undefined. This choice has been made
to allow a simpler implementation (which can assume the absence of faults and give no
grants in their presence), but it is now beginning to limit the applicability of MPI due
to the increasing size of HPC systems. While the new versions of MPI will integrate
the missing feature, all the applications that are leveraging the current standard will not
see the changes and must receive some adaptation.

The development of fault management features in MPI originated a few years ago
but is culminating recently with the creation of the User Level Fault Mitigation (ULFM)
[10] library. It is one of the most important new introductions in the field and will be
probably integrated into the MPI standard in the future versions. It defines new methods
that can be used to recover from faults and lead back the computation to a consistent
state. While introducing just a handful of new functions, it requires proper knowledge
of the problem to be able to mitigate faults effectively and does not specify a way
to recover the execution. This led to the development of all-in-one frameworks that
combine ULFM with a method to restore the execution, to simplify the introduction of
fault tolerance within an application (like Fenix [16], CPPC [25], LFLR [31]).

While these frameworks enhanced the reliability of an MPI application, their usage
is not transparent and the application code has to be adapted accordingly. This solu-
tion is acceptable when designing a new application, but becomes problematic when
targeting an already developed one.

This aspect is limiting the impact of those frameworks and led us towards the devel-
opment of a solution that does not need changes in the application code. In this work,
we limit our attention to embarrassingly parallel MPI applications, a very common and
scalable type of parallel program that reduces to the minimum the interactions between
the processes, and they are envisioned to be among the first ones capable to fully exploit
the performance of future systems.

In this thesis we present Legio, a framework that introduces fault resiliency in em-
barrassingly parallel MPI applications. It shares many aspects with the previous frame-
works ([16, 17, 25, 29, 31]), such as the usage of ULFM, but focuses more on the
transparency of the integration. Since embarrassingly parallel applications can con-
tinue their execution even if some processes do not provide any result, we opted for
fault resiliency. Upon noticing an error, the failed processes are discarded and the exe-
cution continues only with the non-failed ones. This approach is also faster compared
to the standard C/R proposed in the other frameworks, but impacts the correctness of
the application result: an acceptable trade-off in applications producing an approximate
result, like for example Monte Carlo solvers [27], or high-throughput in-silico virtual

2

i
i

“output” — 2020/11/24 — 17:00 — page 3 — #11 i
i

i
i

i
i

screening applications [1].
Legio supports most used MPI calls in embarrassingly parallel applications and

many other advanced features. We also provide an alternative solution, capable of
constructing a networking layer transparent to the application to reduce the impact of a
fault to a few processes. We evaluate Legio on the Marconi100 cluster at CINECA [2]
to measure the introduced overhead. Those analyses demonstrated that the proposed
framework introduces fault resiliency with only a very limited impact on the perfor-
mance of the application.

To summarize, the contributions of this thesis are the following:

• We propose the Legio framework able to transparently introduce fault resiliency
in embarrassingly parallel applications;

• We implemented an alternative organization of MPI communicators to improve
scalability;

• We experimentally evaluate the overheads and performance impact of the pro-
posed solutions considering both the single MPI calls and full applications;

This thesis is structured as follows: Chapter 2 will be devoted to the analysis of
background knowledge needed for a complete understanding of the problem and its
solution; it will also contain a classification and an analysis of the state of the art of fault
handling frameworks. Chapter 3 will cover the design and implementation of the Legio
framework, and Chapter 4 will do the same on its hierarchical alternative, explaining its
algorithms and its theoretical effectiveness. Chapter 5 goes through the experimental
evaluation of our work by showing the overhead at the MPI call and application-level.
Chapter 6 will show the possible future evolution of this effort. Finally, Chapter 7 will
wrap-up the thesis.

3

i
i

“output” — 2020/11/24 — 17:00 — page 4 — #12 i
i

i
i

i
i

i
i

“output” — 2020/11/24 — 17:00 — page 5 — #13 i
i

i
i

i
i

CHAPTER2
Background

THIS chapter is devoted to the analysis of all the preliminary concepts that serve
as base for the rest of the thesis. Section 2.1 will present the Message Passing
Interface (MPI) basics, Section 2.2 will cover some dependability systems fun-

damentals, Section 2.3 will focus on the new features introduced with ULFM. Lastly,
Section 2.4 will consider all the efforts present in the field, comparing their results with
the approach of this thesis.

2.1 MPI Background

It is very important to understand a few core concepts about MPI before proceeding
since the whole thesis uses them widely. The standard supports both point-to-point and
collective communications and defines the syntax and semantics of a core of library
routines useful for writing portable message-passing programs. It is designed over a
few concepts that can abstract the various concepts involved in communication. The
first and most important is the communicator, which represents the connections be-
tween a group of processes in the session. Each process within a communicator will
receive a rank, a unique identifier within it. Ranks start always at 0 and will go on until
reaching the number of processes within the communicator (size) minus one. Upon ini-
tialization, MPI creates two communicators per process: MPI_COMM_WORLD, which
will contain all the processes, and MPI_COMM_SELF, containing only a single process.
All the details about the standard can be found on related documents [3, 11].

This section is structured as follows: subsection 2.1.1 will cover the calls that can
be used to realize point-to-point communication and general setup, subsection 2.1.2
will deal with collective communication and synchronization, subsection 2.1.3 will go
through group management operations, subsection 2.1.4 will analyse communicators

5

i
i

“output” — 2020/11/24 — 17:00 — page 6 — #14 i
i

i
i

i
i

Chapter 2. Background

management functions, and the following two subsections will cover file operations
and remote memory access respectively. The last subsection will analyse the error
handling capabilities of the MPI standard.

2.1.1 General setup and point-to-point communication

To properly use MPI there is a function call that must be issued before any other: that is
MPI_Init (or its multithreading version MPI_Init_thread). It takes as argument
the ones passed to the main function and will setup the environment. The symmetric of
MPI_Init is MPI_Finalize, which terminates the execution environment.

Some of the most used calls after the MPI_Init are MPI_Comm_rank and
MPI_Comm_size: these are functions that return the rank and the dimension of the
communicator passed as parameter. They are usually used on MPI_COMM_WORLD to
define the roles of each process involved in the communication.

Point-to-point communication is mainly realized using a pair of functions called
MPI_Send and MPI_Recv. The first takes as argument a pointer to the data to
be sent, its count (number of elements to be sent), its type, the rank of the receiv-
ing process, a tag, and the communicator that will host the communication. The
MPI_Recv takes similar parameters but with opposite meaning: the pointer will re-
fer to the buffer that will get the data, the rank will be the one of the sending process
(or MPI_ANY_SOURCE) and there is also an additional parameter that will store the
status of the operation.

The point-to-point operation will match only if the communicator is the same, the
tags correspond (or the receiver specifies MPI_ANY_TAG) and the ranks of the destina-
tion/source are correct. These are synchronous operations, and will not return until the
communication is completed (or an error occurred). There are other variants of point-
to-point calls that further specify how the operation is executed and also that perform
the calls asynchronously but they were not used in the effort. Additional information
about point-to-point operations can be found in chapter 3 of the MPI standard [3].

2.1.2 Collective communication

Collective operations involve all the processes within a communicator. Various types
of collective perform different data movements. All these calls will need as a parame-
ter at least the communicator that will be used and must be issued by all the processes
within it to complete. The most simple collective is the MPI_Barrier, which just
synchronizes all the processes in the communicator provided. Another important col-
lective call is the MPI_Bcast, in which a single process (its rank has to be provided
as the parameter root) sends the same data to all the others. All the processes within the
same communicator have to call it with the same root. It has also similar parameters to
the MPI_Send operation for what concerns the pointer to the data to be sent, its count,
and its type.

Another important function is the MPI_Reduce function call, which can combine
data from different processes into a single result. Aside from the pointer to the data to be
combined, its number and its type, the function requires a root (rank of the process that
will hold the result), a pointer to the buffer that will receive the result, and the operation
that will be performed to combine the data. This operation can be specified by the

6

i
i

“output” — 2020/11/24 — 17:00 — page 7 — #15 i
i

i
i

i
i

2.1. MPI Background

user or can be one of the predefined ones (like MPI_SUM, MPI_MAX, MPI_PROD, and
many others).

Similar to the above function is the MPI_AllReduce, which takes the same pa-
rameters except for the root, which is missing. The function operates like the
MPI_Reduce, but its result is given to all the processes within the communicator.

There is another function that combines values and it is called MPI_Scan: it com-
bines the values of all the processes whose rank is minor or equal to the one of the
process, so it behaves like an MPI_Reduce but provides also all the partial results to
all the processes. Its parameters are the same as an MPI_Allreduce.

The last two functions that will be analysed are MPI_Scatter and MPI_Gather,
which have a specular functionality: the first is used to split a chunk of data across all
the processes within a communicator, the second will put together pieces from all the
processes in a single block. Both operations will use the ranks of the processes to
determine the order of the parts: for example, in the MPI_Scatter the process with
rank 0 will receive the first part, the one with rank 1 will receive the second, and so
on. They will take similar parameters: a pointer to the data to be sent, together to its
number and type; the root (the rank of the process that distributes or collects the data),
and a pointer to the data to be received by the root with its number and type. Figure 2.1
shows the functioning of these operations and can be used to better understand what
they achieve. Additional information about collective communication can be found in
chapter 5 of the MPI standard [11].

2.1.3 Groups management

MPI_Group is a structure of MPI that represents a collection of processes. It is very
similar to a communicator but cannot be used to perform message passing operations.
Groups are important since it is possible to manipulate them more freely than commu-
nicators and all the operations that involve them are not collective. Usually, groups are
created from communicators with the function MPI_Comm_group, which will return
the group of processes within the communicator provided as parameter. It is possible
to obtain the rank of the process within the group and its size with functions similar
to the ones used for communicators: MPI_Group_rank and MPI_Group_size
respectively.

Operations used to manipulate groups are inspired by the algebra of sets: there are
functions to create groups from the intersection or union of other groups. An operation
used in the effort is MPI_Group_difference which creates a group of all the pro-
cesses present in the group passed as the first parameter but not in the one passed as the
second parameter.

Another important function for the effort is MPI_Group_translate_ranks. It
takes as parameter two groups, two arrays of integers and an integer n representing the
size of the two arrays. The function translates the ranks contained in the first array and
referring to the first group into ranks referring to the second group and will store them
in the second array. This function is usually used putting n to 1, so it just translates the
rank of a single process from a group to another. If the process is not present in the
second group, the rank produced will be MPI_UNDEFINED, a special macro defined
in the standard.

When groups are not needed anymore, it is possible to delete them with the

7

i
i

“output” — 2020/11/24 — 17:00 — page 8 — #16 i
i

i
i

i
i

Chapter 2. Background

Figure 2.1: Patterns of the MPI collective calls.

MPI_Group_free call. Additional information about groups and their management
can be found in sections 6.2.1 and 6.3 of the MPI standard [3].

2.1.4 Communicator management

MPI provides functions to create new communicators from existing ones and groups.
All the functions that will be discussed in this section are collective. Among the most
used functions, there is MPI_Comm_dup, which creates a duplicate of an existing
communicator. MPI_Comm_create will instead create a communicator based on a
communicator and an MPI_Group passed as parameters. The MPI_Group parameter
must be a subset of the group of the communicator. The newly created communicator
will have inside only the processes part of the group.

Another important function for communicator management is MPI_Comm_split:
it creates a group of disjoint communicators and it is useful to reorder ranks. It takes as a
parameter a communicator to split, an integer called colour, and another integer called
key. The function will create a set of communicators in which all the participating

8

i
i

“output” — 2020/11/24 — 17:00 — page 9 — #17 i
i

i
i

i
i

2.1. MPI Background

Figure 2.2: Behaviour of the MPI_Comm_split call.

processes used the same color parameter. Among the created communicators, ranks are
ordered following the values of the key parameter, with ties broken according to the
rank in the starting communicator.

MPI_Comm_split can be used to obtain a communicator with the same processes
but with different ranks by calling it with a unique color and keys accordingly to the
desired order. This technique will be used extensively in the thesis since it is the
main way to reorder ranks in communicators. To create communicators from bigger
ones is not the only way to proceed: the standard provides functions to create inter-
communicators, born from the connection of disjoint communicators. When discussing
inter-communicators it is best to refer to the standard ones as intra-communicators to
avoid confusion, since they both use MPI_Comm objects.

Being the connection of two disjoint groups of processes, inter-communicators have
a different structure compared to intra-communicators. During their use, one of the
groups plays the role of the local one while the other will be the remote one depending
on who initiated the communication. Inter-communicators can be used for point-to-
point operations but a process can communicate only with processes of the group it is
not part of.

Inter-communicators are obtained using intra-communicator creating routines on
inter-communicators (like MPI_Comm_split or MPI_Comm_dup) or with the func-
tion MPI_Intercomm_create. This last function allows the user to connect two
split intra-communicators in a single inter-communicator. Each process that wants to
be part of the inter-communicator must provide a communicator (will be used as a lo-
cal group) and a rank that will work as leader of its local group. Leaders have also to
specify a communicator used to coordinate with the other group leader and the rank of
the other leader within it.

It is possible to convert an inter-communicator into an intra-communicator with the
function MPI_Intercomm_merge, which is collective across all the processes of the
inter-communicator. Other than the inter-communicator, it requires as a parameter an
integer that must be equal for all the processes within the same local group and is used
to determine the ranks of the new communicator. In particular, the group that sets the
variable to non-zero will have higher ranks and the rank order within a group will be

9

i
i

“output” — 2020/11/24 — 17:00 — page 10 — #18 i
i

i
i

i
i

Chapter 2. Background

Figure 2.3: Inter-communicators behaviour. The orange and blue rectangles represent the local groups
and the green one connects the two leaders.

kept in the new communicator.
Similarly with groups, it is possible to delete communicators that are not needed

with the MPI_Comm_free call. Additional information about communicators and
their management can be found in sections 6.2.3, 6.2.4, 6.4, and 6.6 of the MPI standard
[3].

2.1.5 File operations

During the years MPI evolved and, with its second version, it started supporting reads
and writes to file. It introduces its file handler, called MPI_File, which is used by its
calls. To create a file handler the function MPI_File_open must be used: it takes
as a parameter a communicator, the name of the file, and an integer representing the
access mode. This function is a collective operation and so requires the collaboration
of all the processes within the communicator.

After opening a file, it is possible to read and write it in different ways. The most
simple way to operate on it is by direct access: the functions MPI_File_read_at
and MPI_File_write_at provide this functionality. They require the user to spec-
ify an offset from the beginning of the file and will operate only on the data that is
present after the offset. Other than the file handler, they require a pointer to the buffer
that will be filled or written respectively, and also its type and quantity. There ex-
ist also collective variants of these functions, called MPI_File_read_at_all and
MPI_File_write_at_all respectively. They perform the same operation but all
the processes do it at the same time.

Another way to access files is through individual file pointers: each file handler pro-
vides one and can be considered like a cursor in the file. It is possible to move the indi-
vidual file pointer with the function MPI_File_seek, which needs, besides the file
handler, an offset and a whence that specifies the starting point of the offset. It is possi-
ble to retrieve the position of the individual file pointer with the
MPI_File_get_poistion function, that, given a file handler, will show the offset
from the beginning of the file.

Individual file pointers can be used for reading and writing with the functions

10

i
i

“output” — 2020/11/24 — 17:00 — page 11 — #19 i
i

i
i

i
i

2.1. MPI Background

MPI_File_read and MPI_File_write respectively. Those functions are simi-
lar to the ones specified for direct access but they do not need any offset since they
start operating from the individual file pointer. After the operation, the individual file
pointer will be moved forward by the quantity of data read/written. Like for direct
access, there are the collective versions of those calls, called MPI_File_read_all
and MPI_File_write_all respectively.

A third way to access files is through the shared file pointer, which is similar to the
individual one but is the same across all the processes within the communicator. Analo-
gously, it is possible to move the shared file pointer with the function
MPI_File_seek_shared, which has the same parameters as MPI_File_seek
but is also collective. The function MPI_File_get_position_shared can be
used to obtain the offset of the shared file pointer from the beginning of the file and
works similarly with its individual file pointer counterpart.

Shared file pointers are used by the MPI_File_read_shared and
MPI_File_write_shared functions, that behave similarly to the individual file
pointers versions. It shall be noted that more care should be used when dealing with
shared file pointers since they are single across all the processes in the communicator
and access should be managed properly not to fall into race conditions. A solution to
this problem can be the use of their collective versions, MPI_File_read_ordered
and MPI_File_write_ordered respectively, that operate following the rank or-
der.

Another important function is MPI_File_sync, which takes only a file handler
and flushes all the pending operations to disk. It is used to ensure consistency between
the various operations.

The standard MPI allows also the creation of views, that are the set of data vis-
ible and accessible from an opened file. By default, the view is set such that all
the bytes are accessible by all. It is possible to manipulate this with the function
MPI_File_set_view, which takes various parameters and among those a file han-
dler, an offset, two types called etype and filetype respectively. The offset represents
the start of the view: all the data before it will not be seen by the process. Etype will
become the unit of data accessing and positioning and filetype will define what portions
can be accessed and what cannot. Views are very important since it is possible to assign
them differently among processes and obtain a transparent scatter/gather approach on
the information stored in the disk.

File handlers, like groups and communicators, can be deleted when no more needed
with the function MPI_File_free. Additional information about file access can be
found in chapter 13 of the MPI standard [3].

2.1.6 Remote Memory Access

The MPI standard has not supported remote memory operations until the third version
when the concept of window was introduced. MPI_Win is a structure that corresponds
to portions of memory shared across a communicator. The creation of an MPI_Win
object can be done with different functions: the most used are MPI_Win_create
and MPI_Win_allocate. The first one will make accessible a part of memory spec-
ified by the user, while the second will create the area and then share it. They both
need parameters that specify the size of the memory region, its displacement unit, a

11

i
i

“output” — 2020/11/24 — 17:00 — page 12 — #20 i
i

i
i

i
i

Chapter 2. Background

Figure 2.4: The image shows the way MPI_Get and MPI_Put operate.

communicator, and some other information and will produce an MPI_Win object. The
only difference in the parameter list resides in a pointer: in the first function it is used as
input and will specify the location of the memory area, in the second it is used as output
and will point to the area allocated. It shall be noted that these functions are collective:
an MPI_Win object will not just refer to the shared memory area created locally, but
also to the ones present in the other processes created at the same time. Each process
can specify different values for size and displacement to best fit their need.

Access to the memory areas referenced by an MPI_Win object can be performed
with MPI_Get and MPI_Put operations: the first will retrieve data, the second will
write in there. Both need the same parameters: the address of the buffer locally with
its dimension and type, the displacement in the remote memory area with the number
of elements to be accessed, the of the process whose area has to be accessed, and
the MPI_Win object. A key feature of these calls is that, differently from point-to-
point operations, they do not need a counterpart in the remote process: this is why
remote memory operations are also called One-Sided Communication (OSC) within
the standard.

These functions will not assure that the actual data movement will be performed
within the duration of the call, so this could lead to coherency problems. To synchro-
nize the operations, the function MPI_Win_fence is used: it divides the time into
epochs such that all MPI_Put and MPI_Get operations can be sure to see the effect
of all the calls happened up to the last completed epoch. MPI_Win_fence is a col-
lective operation and will take as arguments a window object and an integer used for
optimization.

Also, MPI_Win objects can be deleted when no more needed with the function
MPI_Win_free. Additional information about remote memory access can be found
in chapter 11 of the MPI standard [3].

12

i
i

“output” — 2020/11/24 — 17:00 — page 13 — #21 i
i

i
i

i
i

2.2. Fault Tolerance Background

2.1.7 Error handling

The standard MPI provides a structure that helps to deal with errors: it is called
MPI_Errhandler and it contains a function that describes what to do.
MPI_Errhandler objects must be linked to structures that may rise errors, which
are communicators, windows, and files. Upon encountering an error, the execution will
pass to the function within the error handler. The MPI standard specifies two predefined
error handlers but the user can define new ones. The two predefined error handlers are:

• MPI_ERRORS_ARE_FATAL, which will cause the program to abort on all exe-
cuting processes and it is the default for every structure;

• MPI_ERRORS_RETURN, which does nothing but the error is returned to the user.

The following statements, quoted directly from the standard, should be remarked since
they are core for the problem faced by this thesis:

After an error is detected, the state of MPI is undefined. That is, using a
user-defined error handler, or MPI_ERRORS_RETURN, does not necessar-
ily allow the user to continue to use MPI after an error is detected. The
purpose of these error handlers is to allow a user to issue user-defined error
messages and to take actions unrelated to MPI (such as flushing I/O buffers)
before a program exits. An MPI implementation is free to allow MPI to con-
tinue after an error but is not required to do so.

This subsection will not focus on user-defined error handlers since they will not be
used in the rest of the thesis, which exploits mainly MPI_ERRORS_RETURN. Addi-
tional information about error handlers can be found in section 8.3 of the MPI stan-
dard [3].

2.2 Fault Tolerance Background

The analysis of faults and the methods able to tackle them comes from the dependable
systems field. The field plays a key role especially in others where the effect of faults
cannot be mitigated or it may introduce high risks.

This section is structured as follows: subsection 2.2.1 will define how faults evolve
in the environment, introducing important definitions; subsection 2.2.2 will define de-
pendability and will go deeper considering all the different characteristics that may
make a system dependable; subsection 2.2.3 will introduce a way to evaluate the de-
pendability of a complex system. Subsection 2.2.4 will cover a dependability analysis
applied to an HPC environment. Lastly, subsection 2.2.5 will analyse conceptual solu-
tions used to introduce dependability in the HPC environment.

2.2.1 Faults, Errors and Failures

Usually, the terms fault, error, and failure are used as synonyms, but their meaning is
slightly different. Distinguishing them is mandatory in a dependability analysis since
their differences reflect the escalation phases that will occur in absence of countermea-
sures.

13

i
i

“output” — 2020/11/24 — 17:00 — page 14 — #22 i
i

i
i

i
i

Chapter 2. Background

The term fault represents a non-correct functioning of a system (or one of its com-
ponents) that turns the execution into an invalid state. Faults may arise from different
reasons: from production defects to electromagnetic effects, from a human error to
wear-out-related ones. Also, faults may arise at different levels, ranging from hardware
to software. We will not discuss in detail all the possible faults that may happen in a
system, because our analysis is focused on the software level and it would be difficult
to distinguish them from there.

The term error indicates an observable effect of a fault in a system. The error notifies
the presence of a fault, but may not be able to identify it. It shall be remarked that errors
are not detected straight away, but it may require some time to identify them. Upon
noticing an error, one of these two things will happen:

• The system can be repaired and continue the execution. This solution removes the
fault and stops its escalation;

• The error may lead to failure, which is the impossibility of the system to complete
a certain given task. This failure can be seen as a fault from components that
encapsulate the failed one, so the initial fault is escalating.

The escalation may become dangerous when it reaches its top-most level since it
may introduce hazards for the safety of the people using the system. Luckily for us,
HPC systems tend not to have this problem, but the escalation will lead to an unsuc-
cessful execution.

2.2.2 Dependability analysis

The escalation of faults shows the importance of having ways to reduce or even remove
the impact of faults on a system. To measure how effective are those solutions it is
better to introduce some useful metrics, the first of which is reliability.

Reliability is defined as the ability of a system or component to perform its required
functions under stated conditions for a specified period. Reliability can also be defined
as a function of time that represents the probability that the system will operate correctly
in a specified operating environment up until the given time, or mathematically:

R(t) = P (not failed during [0, t]) (2.1)

Reliability is also strictly related to the measure of the Mean Time To Failure
(MTTF), which is often used as an alternative and can be defined as:

MTTF =

∫ ∞
0

R(t) dt (2.2)

Reliability is particularly important in systems in which even momentary periods
of incorrect behaviour are unacceptable: these include the ones with strict performance
requirements, timing requirements and which are impossible to repair. The typical HPC
environment tends to have those characteristics.

Another important metric in the dependability analysis is availability, that is the
degree to which a system or component is operational and accessible when required for
use. It can be seen as the probability that the system will be operational at a given time,
or mathematically:

14

i
i

“output” — 2020/11/24 — 17:00 — page 15 — #23 i
i

i
i

i
i

2.2. Fault Tolerance Background

Figure 2.5: On the left, two component in series. On the right, two components in parallel.

A(t) = P (not failed at time t) (2.3)

Availability represents the readiness of the service provided by the system and it
is best suited for the ones that can be repaired and can accept a brief interruption of
functionalities. Availability will not be analysed further since HPC systems tend not to
be repairable and, even if they do, they are focused on performance.

Aside from these two main dimensions, different metrics evaluate other aspects of
the system, like maintainability, safety, integrity, security, survivability, and testability.
These will not be introduced since are far from the HPC case study, but more informa-
tion about them can be found in [22].

An important metric for our analysis is performability, that is the probability that the
system performance will be at least at some given level at a given time. The concept
of performability introduces the one of Graceful Degradation, which is the ability of a
system to automatically decrease its level of performance to compensate for hardware
and software failures. Since the HPC environment is strictly connected to the concept
of performance, those definitions will be useful in our next analyses.

2.2.3 Reliability Block Diagrams

While dealing with reliability, it is often useful to have ways to combine components’
reliability to evaluate the metric of the whole system. There are various ways to do this
but we will focus on Reliability Block Diagrams (RBD).

RBD is an inductive model in which a system is divided into blocks that represent
the distinct components or subsystems it is made of. These blocks will be connected
according to system-success pathways: a system will work only if there exists a path
from start to finish that crosses only non-faulty components. After creating the diagram,
it is possible to combine the metrics of the various components to obtain the ones of
the whole system.

Metrics are combined analysing series and parallels of components: the first is a
group of subsystems that will work only if all the parts are healthy, while the second
is a group that will stop working only if all the parts are faulty. In RBD, series are
represented as chains of components, while parallels are a list of components sharing
the same entry-point and the same end-point.

From those definitions it is possible to compute the aggregate reliability:

15

i
i

“output” — 2020/11/24 — 17:00 — page 16 — #24 i
i

i
i

i
i

Chapter 2. Background

Rseries(t) = P (noone failed in interval [0, t]) =

= P (
⋂
i

(component i not failed in interval [0, t])) =

=
∏
i

P (component i not failed in interval [0, t]) =
∏
i

Ri(t) (2.4)

Rparallel(t) = 1− P (all failed in interval [0, t]) =

= 1− P (
⋂
i

(component i failed in interval [0, t])) =

= 1− P (
⋂
i

¬(component i not failed in interval [0, t])) =

= 1−
∏
i

(1− P (component i not failed in interval [0, t])) = 1−
∏
i

(1−Ri(t))

(2.5)

Given those formulas, it is possible to compute the reliability of most complex sys-
tems given the metrics of the parts. We will use these notions in the next subsection,
focusing on a use case related to the rest of the thesis.

2.2.4 HPC use case analysis

To use RBD in the HPC use case it is better to first define which are the components that
are involved in the analysis. For this analysis, we will assume that faults may happen
in each core involved in the computation and we will consider only them as a possible
source of faults. The system will consist of a distributed application that will run in
parallel on a high number of cores (one process per core) for a given amount of time.

Let’s assume that each core has an exponentially distributed reliability function,
with MTTF equal to one century: this is a big over-approximation but is useful to
further remark the analysis.

Let’s assume that the application uses MPI to realize communication between the
computing processes. As stated in Section 2.1.7, the state of an MPI application after
an error is undefined, so it is not possible to continue the execution or to repair the
system. A single fault will escalate making the execution on the whole system stop,
so all the cores must show non-faulty behaviour to obtain the desired result. This last
statement is helpful to realise the RBD analysis since it suggests that all the cores can
be viewed as in series for what concerns reliability study. Given that, it is possible to
compute the reliability of a system of n cores as:

R_sys(t) = [R(t)]n = e(−n/(MTTFt)) = e

−1

(MTTF
n)t (2.6)

The most important remark from the above formula is the evolution of the MTTF,
which is divided by the number of cores in the system. And if we consider one of the
biggest clusters in the world, the IBM developed Summit with 2,397,824 cores [5], the
MTTF of the system comes down to about 21 minutes.

16

i
i

“output” — 2020/11/24 — 17:00 — page 17 — #25 i
i

i
i

i
i

2.2. Fault Tolerance Background

Given the MTTF of the system, it is possible to evaluate how much time is needed on
average to complete an execution that would require a certain time in absence of errors.
We can view the reliability of the system also as the probability that the execution
requiring t time will finish before the insurgence of a fault. Upon fault, the execution
must start from the beginning, so we can view the execution as a series of tries, each
with probability R(t) to succeed. The average amount of tries to get a positive result is
1/R(t), which shows an exponential growth with time.

As it is, the situation is not acceptable: the time needed to complete execution for
an HPC application is very long, in the order of hours if not days. The waste of time
due to faults is becoming the bottleneck of these applications and it is mandatory to
evaluate some strategies to solve the problem.

2.2.5 Dependability solutions for HPC

In the previous subsection, we discussed the reliability absence problem in the HPC
environment. The causes of the problem can be found in the impossibility to repair
and the need to restart computation from the beginning every time. The easiest way to
reduce the impact is to approach it from the second cause, introducing some ways of
storing redundant information that can be used upon restart. Checkpoint and Restart
(C/R) solutions follow exactly this path [8, 16, 17, 20, 25, 26, 29, 29, 31].

The C/R approach consists of the periodical saves by the application of its status.
Upon fault, the execution is stopped and restarted but it will happen from the point
saved rather than the beginning of the application. This approach reduces the losses
in case of faults but introduces also a loss of performance (called overhead from now
on) due to the saving operations. The overhead is important since is a net loss: the
status saved is not useful if there is no fault, so the application is losing efficiency. The
overhead containment is especially critical in the HPC environment since performance
should never be sacrificed in vain.

There are various ways to realise C/R, the differences come from the coordination
patterns used, the level of abstraction, the position of the stored data (disk or memory),
and so on. The main distinction comes from the level of abstraction: some solutions are
defined as system-level since they work on a lower level than the executing application
[8,20], others are user-level since they require the programmer to directly specify some
information to be used during the saving process [16,17,25,26,29,29,31]. Application-
level C/R is usually preferred in the HPC environment due to its higher configurability,
which usually leads to better performance.

The type of coordination is a core problem in C/R. Coordination requires commu-
nication, which leads to a bigger overhead. On the other hand, uncoordinated C/R may
incur in the Domino effect, which greatly increases the distance from the last valid
state [28].

Aside from C/R, other solutions try to reduce the amount of work lost upon fault:
Algorithm-Based Fault Tolerance (ABFT) [14] bases on the possibility to re-compute
lost data exploiting the characteristics of the application. This approach has a lower
overhead impact compared to standard C/R, but lacks generality and cannot be viewed
as a unique solution.

Another approach seldom used is the log-based one [24]: it consists of saving all
the messages that processes exchange to be able to repeat them in case of failure. The

17

i
i

“output” — 2020/11/24 — 17:00 — page 18 — #26 i
i

i
i

i
i

Chapter 2. Background

main issue of this solution is that the overhead is very big and it is better used in other
fields (like database management).

2.3 ULFM Background

Many efforts in the past tried to create a fault-tolerant MPI implementation in various
ways: some focused on C/R within MPI, others on process replication, others on mi-
gration. These efforts received some citations but did not reach out enough to justify
long-term support: most of them have not received an update for the last ten years. This
is contradictory if compared to the attention rise that happened on the field in the last
years, but can be explained by the presence of the User-Level Fault Mitigation (ULFM)
effort.

ULFM was born as an evolution of FT-MPI, an effort that introduced the ability
to repair communicators in MPI. Among the weak points of FT-MPI, the absence of
support for communicators different from MPI_COMM_WORLD stopped its widespread
adoption.

The main goal of ULFM is to define a minimal set of functions that can introduce
fault tolerance in an MPI application. It should pose no constraints on the programmer
but should only enable new functionalities. It reused the work of FT-MPI concerning
communicator reparation, but does not specify a way to recover the execution: it just
provides methods for handling the fault and repair the involved structures. This flex-
ibility and transparency made ULFM very appealing among the programmers dealing
with fault tolerance problems, and it quickly received a lot of attention. The attention
led to more development and, as of now, ULFM is in synchrony with the evolution of
the MPI implementation it is based on, OpenMPI.

Currently, ULFM is one of the main focuses of the MPI Forum’s Fault Tolerance
Working Group, a development team that aims at introducing fault tolerance in the
MPI standard. Many applications started using it and obtained fault tolerance with
negligible overhead.

2.3.1 ULFM standard

ULFM bases on the principle that no MPI call can block indefinitely after a fault, but
must either succeed or raise an MPI error. The ULFM standard introduces three supple-
mentary errors which are missing in the MPI standard that can represent the occurrence
of a fault in the communication. Those errors are:

• MPIX_ERR_PROC_FAILED, raised when a process fault prevents the comple-
tion of an MPI operation;

• MPIX_ERR_PROC_FAILED_PENDING, raised when a process performs a wild-
card receive but another process in the network has failed;

• MPIX_ERR_REVOKED, raised when performing operations on a revoked com-
municator.

These three errors help MPI to understand the status of the execution, enabling the
user to use the newly added functions properly. The ULFM standard introduces 5 new

18

i
i

“output” — 2020/11/24 — 17:00 — page 19 — #27 i
i

i
i

i
i

2.4. State of The Art

functions that cover not only the error propagation and notification parts but also the
communicator repair phase. Those functions are:

• MPIX_Comm_revoke, which takes as a parameter a communicator and inter-
rupts any communication pending on it at all ranks. It is the function that realizes
error propagation. The communicator will be revoked and will return
MPIX_ERR_REVOKED each time a process tries to use it. The function
MPIX_Comm_is_revoked is also present in the latest version and it simply
checks if the communicator passed as a parameter has been revoked;

• MPIX_Comm_shrink, which takes a communicator as a parameter and will cre-
ate a new one with only the non-failed processes. It is the most important function
for what concerns communication repair;

• MPIX_Comm_agree, which performs a consensus on a parameter over a com-
municator. The function will perform a bitwise or reduction of all the values, and
the result will be available by all the processes;

• MPIX_Comm_failure_get_acked, which obtains the group of currently
known failed processes;

• MPIX_Comm_failure_ack, which notifies the presence of faults in the com-
municator to let processes which issued a wildcard receive raise
MPI_ERR_PROC_FAILED_PENDING.

To detect an error, ULFM needs a timer that will measure the maximum amount
of time an MPI call can take. If the call is still waiting after the timer expires, the
MPIX_ERR_PROC_FAILED error is raised and the repair phase can begin. This ap-
proach poses some problems due to the insurgence of spurious errors, especially in the
case of programs where communication plays only a side role. ULFM provides also
other ways to detect failures, which consists of an internal thread that will check the
liveliness of all the processes. This solution introduces a slightly bigger overhead, but
it is usually an acceptable trade-off.

Many other efforts inspired or even used ULFM to provide libraries and frameworks
able to introduce fault tolerance in generic MPI applications. These efforts try to inte-
grate the recovery policy with ULFM, creating an all-in-one solution for the introduc-
tion of fault tolerance. We will explore these solutions together with other approaches
in the next section.

2.4 State of The Art

In this section, we will analyse the solutions adopted up to now, starting with a brief
classification of the most important efforts. This classification is based on a few metrics
that help to define similar characteristics. It also helps us defining areas not completely
covered by the efforts, and that may require some further work. This classification will
be covered in the first subsection, while the next one will focus more on the efforts that
propose a similar solution to the one in this thesis.

19

i
i

“output” — 2020/11/24 — 17:00 — page 20 — #28 i
i

i
i

i
i

Chapter 2. Background

Recovery policy
Local recovery Global recovery None

Integration
approach

Extension [23] [24] [17] [31] [25] [16] [30] [21]
Change [6] [15]
None [12] [19]

Table 2.1: Classification of the main related works. In italics efforts using ULFM.

2.4.1 Classification

The first metrics to be analysed is the way the framework is introduced within the MPI
standard: some approaches prefer not to modify it, creating an extension, others opt
for changing it. Other efforts are more towards a single application and prefer not to
integrate their approach with the MPI standard but directly change the code of their
application.

Another metric defines what happens in case of failure: if all the processes have to
restart it is possible to talk about global recovery, otherwise the analysed framework
introduces local recovery. Other efforts tend to avoid recovering the execution, either
by not restoring the failed process or solving the failure without rolling back.

Following these two metrics, it is possible to summarize all the efforts in a single
table like the one that follows:

The distribution of the efforts in the table is not uniform: this is due to the different
difficulty of the various approaches. In particular, extending the MPI standard is easier
than modifying it since it must not face compatibility issues that may arise when in-
troducing changing the standard. Additionally, it shall be remarked that local recovery
solutions are developed usually from global ones since some parts can be reused.

2.4.2 Most relevant efforts

Many efforts have been built on top of ULFM functionalities by adding different recov-
ery strategies. In particular, the integration of a C/R framework with ULFM provides
an all-in-one framework to manage the insurgence of faults in a generic MPI applica-
tion [16, 17, 25, 29, 31]. These solutions opted for the recovery of a consistent state:
by loading a previous checkpoint, the execution restarts from a valid point. They usu-
ally provide a simple interface to the user but require changes in the application code.
While obtaining a similar result to our proposed solutions, these frameworks do not
pursue transparency and, rather than opting for fault resiliency, they recreate the failed
processes. These characteristics provide the possibility to create a more flexible so-
lution, working with any MPI application, at the cost of application intrusiveness and
performance penalty in case of a fault.

A completely different perspective is the one presented when applying algorithm-
based fault tolerance [14], which exploits the possibility to re-compute the data of a
failed process using the information of the others. This solution is very application-
specific since it leverages data redundancy to implement a resilient method with re-
duced overhead. Examples are shown in the context of matrix-multiplication and LU
factorization kernels, but cannot be taken into consideration for a generic MPI program.
In particular, ABFT should not be exploitable in embarrassingly parallel applications,
like the one we are targeting with Legio, due to the high data independence across the

20

i
i

“output” — 2020/11/24 — 17:00 — page 21 — #29 i
i

i
i

i
i

2.4. State of The Art

processes.
A method tackling transient fault has been presented in SLIM (session layer inter-

mediary) [21]. The solution reduces the impact of transient faults by repeating the
operations. Despite SLIM works for any MPI application, it cannot be considered a
valid solution in case of permanent faults.

An effort that shares many concepts with the approach we are proposing has been
presented in [27]. It uses the functionalities introduced by ULFM to manage the pres-
ence of faults in a Monte Carlo application, a typical embarrassingly parallel MPI appli-
cation. The authors implemented the resiliency by removing the faulty processes from
the execution and continuing only with the non-failed ones. The concept behind this
solution is similar to the one proposed in this paper. However, it has been achieved by
directly modifying the application code since the focus of the authors was on a specific
application. With Legio, we are proposing to generalize this approach by implementing
a transparent framework capable to tackle all the embarrassingly parallel applications.

A lot of efforts tried to solve the fault-tolerance problem with purely C/R. We will
analyse those efforts in the following subsection.

2.4.3 Pure C/R solutions

During the years a lot of efforts tried to solve the problem by using pure C/R solutions:
upon fault, the execution is stopped and will restart from the last saved point. It is
important to analyze these solutions since they can be the base for a more complex
approach, similar to what has been done in Fenix [16] and CPPC [25]. Before analyzing
the efforts, it is better to define some characteristics we can use to better describe the
solution produced.

The first distinction we are going to analyze is between application-level and system-
level C/R: the first provides a service to the application, which can interact with it and
choose what to save and when; the second acts from a lower level and the applica-
tion does not recognise its presence. The distinction between application-level and
system-level is the basis of the trade-off these solutions have to face: approaches that
are more towards the application-level can produce smaller checkpoints at the cost of
transparency; system-level solutions tend to be less efficient and may face consistency
problems since they lack the information the other level can leverage.

Other classification criteria involve the eventual presence of coordination in the C/R
routine: while the communication needed for coordination constitutes a cost in terms
of performance, its absence may it make more difficult to find a correct spot to restart
from. This difficulty comes from the presence of messages that may disrupt the status
upon restart, leading to what is called the domino effect. The insurgence of the domino
effect led to the preference towards coordinated C/R, a trend that can easily be seen in
the literature by the disparity of the efforts number in the two fields.

Given these classification criteria, it is possible to effectively analyze the efforts
present in literature. The first one that we are going to consider is Simple Check-
point/Restart (SCR) [26], developed by a working group at the Lawrence Livermore
National Library. The produced solution implements coordinated application-level C/R
by providing a simple interface for the application. The interface defines functions that
the application can call to start, coordinate, and write checkpoints. The application can
choose what and where to save, giving maximum freedom to the user.

21

i
i

“output” — 2020/11/24 — 17:00 — page 22 — #30 i
i

i
i

i
i

Chapter 2. Background

CRAFT [29] is another effort that develops the trend of application-level C/R. The
usage is very similar to SRC, but it includes support for dynamic process recovery capa-
bilities using ULFM. The two approaches provided can be used separately or combined,
but both need changes in the application to be fully operative.

On the side of system-level C/R, Berkeley Lab Checkpoint/Restart (BLCR) [20] is
one of the most remarkable efforts. It is completely transparent to the application since
it works at the kernel level and its support requires only a recompilation. It is supported
by many job schedulers, like SLURM, which interact directly with it and can fully
benefit from the features it introduces. BLCR has been widely used in HPC, primarily
due to the transparency of its introduction.

Another remarkable effort on the side of system-level C/R is the Distributed Multi-
Threaded CheckPointing facility (DMTCP) [8], which achieves a similar result without
needing access to the kernel level. The framework is designed to support feature inte-
gration with the use of plug-ins: among those, we can find one that allows the appli-
cation to control the frequency of checkpoints. Its expandability and adaptability make
it one of the most developed solutions up to now and its latest evolution, MANA [18],
introduces further functionalities for MPI applications.

22

i
i

“output” — 2020/11/24 — 17:00 — page 23 — #31 i
i

i
i

i
i

CHAPTER3
The Legio framework design and architecture

THIS chapter will focus on Legio, the proposed solution that introduces fault re-
siliency in an embarrassingly parallel MPI application. The key features of the
framework are the transparency towards the application and the focus towards

fault resiliency. These concepts will make the framework more usable and less impact-
ful than the others present in literature [16,17,25,29,31]. We will follow this structure:
Section 3.1 will deeply analyse the requirements of the project, pointing out needed
functionalities and desirable properties. The analysis will proceed in Section 3.2 with
some preliminary analyses that will be the basis for the rest of the project. From Sec-
tion 3.3 we will analyse all the implementing details of the project, pointing out the
main problems and alternative solutions.

3.1 Requirements

It is possible to briefly summarize the key requirements of the Legio framework in the
following list:

• The library should introduce fault resiliency in an MPI application;

• The library must need no code changes in the application to work properly (some
changes may be optional to better understand the status of the communication or
to allow additional configurability/tuning);

• The library must introduce a negligible overhead into the application;

• The library must keep the scalability properties of the application;

• The library should expose no against-standard behaviour in absence of faults;

23

i
i

“output” — 2020/11/24 — 17:00 — page 24 — #32 i
i

i
i

i
i

Chapter 3. The Legio framework design and architecture

• The library should be based on well-supported libraries (like ULFM);

• The library should support a reasonable set of MPI functions.

The name Legio comes from a Latin word that represents a military unit of the
Roman army. The name was inspired by the fact that soldiers will keep fighting even
after some of their fellows perish: analogously, the library aims to make MPI processes
continue their execution, despite the failures of some of them.

3.2 Preliminary analyses

In this section, we will discuss some issues of the ULFM implementation of the MPI
standard in presence of faults [17, 32]. The considerations taken in this section will be
the basis for the design process done in the next chapters.

Before proceeding with the analysis, we want to provide some definitions of key
terms for the remaining part of the paper:

• A process notices a fault when it receives the error code
MPIX_ERR_PROC_FAILED after an MPI call;

• A faulty communicator is a communicator in which at least a participating process
is failed, but no process noticed it yet;

• A failed communicator is a communicator in which (at least) a participating pro-
cess noticed the fault;

• A revoked communicator is a communicator in which a process called
MPIX_Comm_revoke.

All the operations not working on a faulty communicator will not work on a failed
one. All the operations working on a failed communicator will work on a faulty one.
No operation will work on a revoked communicator, except for all the ULFM calls.

Using these definitions, we sum up our considerations on the MPI standard in points
to better refer to them in the next sections.

P.1 Some MPI functions work in faulty and failed communicators. Some remarkable
functions that expose this behaviour are MPI_Comm_rank and
MPI_Comm_size, but also many operations that deal with MPI_Groups. These
operations are labelled as local in the MPI standard and do not require communi-
cation to complete successfully.

P.2 Point-to-point communication works in a faulty communicator, as long as the pro-
cesses involved in it are not failed. They will not work in a failed communicator.

P.3 Collective communications will not work in a failed communicator but may ex-
pose strange behaviour in a faulty communicator. This behaviour comes from the
fact that not all the processes may notice the fault. The MPI_Bcast operation ex-
poses this strange behaviour, while others like MPI_Reduce, MPI_Barrier,
and MPI_AllReduce do not. This behaviour will be called the "Broadcast No-
tification Problem" (BNP) from now on.

24

i
i

“output” — 2020/11/24 — 17:00 — page 25 — #33 i
i

i
i

i
i

3.3. The barrier and Broadcast support

P.4 File and remote memory access operations are not supported by ULFM and are
likely to fail in a faulty environment (rather than raising an error, they throw a
segmentation fault making the execution impossible to recover).

P.5 Communicator management functions like MPI_Comm_dup or
MPI_Comm_split will not work in a faulty communicator. This includes also
all the Inter-communicator related ones.

P.6 The MPIX_Comm_revoke function introduced by ULFM has no instant effect
and cannot be used to fix the BNP. The effect will be seen by all the processes, but
some of them may see it after the next MPI operation.

P.7 The MPIX_Comm_shrink function will keep the processes ranks in the same
order as in the original communicator.

P.8 The MPIX_Comm_agree function will work on faulty and failed communicators
and can be used to solve the BNP.

An additional explanation should be provided for the BNP. Collective operations
can be realized following a virtual topology, causing a loss of symmetry between the
processes. The broadcast operation, for example, follows a tree topology in the ULFM
implementation: the root sends the information to another process, then the two forward
to the other two, then the four to the other four, and so on. If the root is failed, all the
processes will notice the fault, but this is not true for a process that does not forward:
only the process that would have sent it the data recognises the error, creating the BNP.

The revoke operation is useful to propagate the fault to all the processes communi-
cating directly with the caller but won’t stop the communication entirely since it needs
to be propagated. Eventually, all the processes will notice the error, but at the end of
the operation causing the BNP only a subset of those will. Having some processes that
stop before a collective and others after can create problems when resuming the exe-
cution: after the reparation of the communicators, some processes will have to repeat
the failed collective, but cannot do so since other completed it and are proceeding with
their execution.

The agree operation behaves differently and allows us to avoid the problem: it is a
collective call, so it can be used to check the result of the problematic operations and
perform the reparation even if it is completed without problems. The agree operation
is a bit more costly than the revoke one and ULFM standard suggests to reduce its use
and prefer the revoke, but it is the only way to solve the BNP effectively.

3.3 The barrier and Broadcast support

The proposed solution consists of the substitution of the MPI structures used (and cre-
ated) by the application with others managed by Legio. This way, when a fault happens,
it affects only the Legio structures, making the repair process easier and controllable
by the framework. The MPI structures that are involved in the Legio repair process are
communicators, windows, and files.

To achieve our purpose, we designed a library that behaves like an intermediary
between the application and the MPI implementation. To achieve that position we
exploit the profiling interface provided by the MPI standard (PMPI), which allows us to

25

i
i

“output” — 2020/11/24 — 17:00 — page 26 — #34 i
i

i
i

i
i

Chapter 3. The Legio framework design and architecture

redefine most of the MPI calls without affecting the application. In the MPI standard,
PMPI is the profiling interface that allows intercepting every MPI call made in the
parallel program. Originally thought for profiling, it can be used to inject code of
different types around the target MPI call. In our work, we used PMPI to introduce
fault resiliency using ad-hoc code and ULFM methods.

Implementation started considering a single operation and only the
MPI_COMM_WORLD communicator. The first operation considered was the
MPI_Barrier, due to its simplicity. The key idea was to control if the used com-
municator was MPI_COMM_WORLD and if so, substitute it with a duplicate created
within the MPI_Init. If the operation on the substitute raises an error, it is possible to
perform an MPIX_Comm_shrink on the duplicate to obtain a new one with only the
survivor processes. After shrinking, the operation is repeated: the execution will exit
the MPI_Barrier only upon complete and correct execution.

The following code block contains the implementation described above. It received
changes with the introduction of other features, but we will discuss them later.

1 int MPI_Barrier(MPI_Comm comm) {
2 while(1) {
3 int rc;
4 if(comm == MPI_COMM_WORLD)
5 rc = PMPI_Barrier(cur_comm);
6 else
7 rc = PMPI_Barrier(comm);
8 //...
9 if(rc == MPI_SUCCESS || comm != MPI_COMM_WORLD)

10 return rc;
11 else
12 replace_comm(&cur_comm);
13 }
14 }

The replace_comm function is used to call the MPIX_Comm_shrink and after
that change the error handler of the newly created communicator to
MPI_ERRORS_RETURN. The variable cur_comm is a global MPI_Comm that con-
tains the current duplicate of MPI_COMM_WORLD. This first code shows some patterns
that will be reused for the rest of the code. In this case, the substitution happens only
if the communicator used for the operation is MPI_COMM_WORLD, if not the operation
will complete without changes. The MPI_Barrier implementation is certainly use-
ful to show the basics of how Legio works, but it is not enough representative of the
other function complexity. From now on, we will call the communicator used for actual
communication instead of MPI_COMM_WORLD as the substitute.

The MPI_Bcast requires four parameters more, so it is natural to expect it to be
more complex. Analysing them more, it is possible to see that three of them do not
require changes: the buffer address, its dimension and it is type shall not be touched by
the library, since they will not cause any communication error. Legio will solve only
errors raised due to faults and cannot deal with bugs, so we are expecting not to receive
problems from those three parameters. The root parameter is a bit more tricky since it
is a rank.

The problem with the ranks is that the substitution made may associate differ-
ent ranks for each process. While this is not true in absence of faults (the duplica-
tion with MPI_Comm_dup preserves the ranks), it happens after any fault since the
MPIX_Comm_shrink creates a smaller communicator. So, for example, if the node

26

i
i

“output” — 2020/11/24 — 17:00 — page 27 — #35 i
i

i
i

i
i

3.3. The barrier and Broadcast support

Figure 3.1: The figure shows the evolution of ranks in the substitute communicator with the insurgence
of faults. The X represents the MPI_UNDEFINED value.

with rank 0 fails, all the nodes will have the rank in the substitute equal to the one in
alias minus one because of property P.7. It is mandatory to perform some operation to
translate the ranks from the alias communicator to the substitute. This functionality is
performed by the translate_ranks operation.

This operation takes as a parameter the rank in alias and the substitute communicator
and will perform the translation. The function is a wrapper of the
MPI_Group_translate_ranks function which extracts the groups from the com-
municators and performs the translation. One of the problems of the translation is that
it can produce MPI_UNDEFINED when a failed process is part of the alias communi-
cator but is not in the substitute communicator. This occurrence has a different meaning
in each function and will be considered singularly.

The MPI_Bcast support works as follows: firstly, the communicator is compared
to MPI_COMM_WORLD to see if the function shall or should not be modified; if it is
equal, then the root is translated and it is possible to perform the call with the substitute
communicator and the translated rank. Special care must be given when the translation
returns MPI_UNDEFINED: it happens when the process that would have to share the
information with all the others is failed. During the development of Legio, we decided
to leave some choices to the user, enabling some compile-time configuration that allows
to stop the execution completely or ignore the operation. In this case, we are expecting
that the application needs the information shared in the broadcast operation and will not
be able to produce a useful result without it, so we opted for the termination of the pro-
gram as a default option. The user may decide to switch to ignoring the operation and
continuing the execution, but this may make the code use some uninitialized variables
(the receive buffer), so additional care must be taken.

After the execution of the call with the substitute and the translated rank, the sys-
tem checks the presence of errors. Due to property P.3, we have to consider the BNP
eventuality: the MPIX_Comm_shrink is a collective operation and will be called
only if an error is present, so it is necessary to provide some way to have a unique
view on the status of the execution. Property P.8 suggests the use of the function
MPIX_Comm_agree, and that is exactly the solution we chose. After the agreement,
it is possible to check the presence of errors and eventually replace the communicator
like in the MPI_Bcast. The following code summarizes all the concepts described
above:

1 int MPI_Bcast(void* buffer, int count, MPI_Datatype datatype, int root, MPI_Comm comm)
{

2 while(1) {

27

i
i

“output” — 2020/11/24 — 17:00 — page 28 — #36 i
i

i
i

i
i

Chapter 3. The Legio framework design and architecture

3 int rc;
4 if(comm == MPI_COMM_WORLD) {
5 int root_rank;
6 translate_ranks(root, cur_comm, &root_rank);
7 if(root_rank == MPI_UNDEFINED) {
8 //handle missing root, user configured
9 }

10 rc = PMPI_Bcast(buffer, count, datatype, root_rank, cur_comm);
11 }
12 else
13 rc = PMPI_Bcast(buffer, count, datatype, root, comm);
14 //...
15 if(comm == MPI_COMM_WORLD) {
16 int flag = (MPI_SUCCESS==rc);
17 MPIX_Comm_agree(cur_comm, &flag);
18 if(!flag && rc == MPI_SUCCESS)
19 rc = MPIX_ERR_PROC_FAILED;
20 if(rc == MPI_SUCCESS)
21 return rc;
22 else
23 replace_comm(&cur_comm);
24 }
25 else
26 return rc;
27 }
28 }

These were the first functions supported by Legio and show some other important re-
marks:

• Execution of an MPI function on MPI_COMM_WORLD is repeated until it is cor-
rect.

• MPIX_Comm_revoke is a powerful function to propagate the errors within a
communicator eventually, but cannot be used reliably to propagate before the end
of the call that generated the error. This is why it is not used and the function
MPIX_Comm_agree is used instead.

• These two functions have a rather similar pattern that will be shared with many
other functions: in particular, they consist of

– an outer loop;

– the control over the communicator to check if it is MPI_COMM_WORLD;

– the eventual translation of the ranks specified in the function;

– the execution of the operation;

– the error checking part, with the eventual agreement phase and culminating
with the call to replace_comm in case of faults.

These points will help us define other functions faster since we will base on the
presence/absence of these procedures.

3.4 Point-to-point operations and other collectives

As stated in properties P.2 and P.3, the main difference for what regards error no-
tification between point-to-point operations and collective ones is their behaviour in

28

i
i

“output” — 2020/11/24 — 17:00 — page 29 — #37 i
i

i
i

i
i

3.5. The scatter and gather support

a faulty communicator: the first will not notice the error if it is outside from the in-
volved processes, while the second will notice it (after solving the Broadcast Notifica-
tion Problem). Also, point-to-point operations do not involve all the processes within
a communicator, so detecting an error cannot cause a replace_comm call since the
shrink operation is collective. Because of this, point-to-point operation should not per-
form the error checking part and, as a consequence, do not need a loop to keep trying
until successful execution. Both the MPI_Send and the MPI_Recv have to translate
the ranks and may have to deal with the MPI_UNDEFINED value: in the sending op-
eration, the default reaction is to ignore the call, while in the receive the execution is
stopped. Analogously with the broadcast operation (and in all other operations from
now on that have to deal with the MPI_UNDEFINED problem), the user can change
those values in the pre-compilation phase.

There are a few other notes on the structure of point-to-point operations that should
be considered. Send operations, while not having a loop that iterates until the execution
encounters no problems, have a cycle that will repeat the execution for a limited number
of tries. This solution tries to limit the impact of transient faults, which are the ones
that rise but then vanish a few instants later. By repeating the execution a few times, it
is possible to go further than the length of the fault and achieve communication despite
the problems. Another remark involves the receive operation, which has been modified
to check if the rank passed as the source parameter is MPI_ANY_SOURCE: in that
case, the procedure for fault management must be slightly different, since it involves
the function MPIX_Comm_failure_ack.

Aside from MPI_Bcast and MPI_Barrier, it is possible to easily add the sup-
port for many other MPI collective calls. The MPI_Allreduce operation, for exam-
ple, is implemented very similarly to the MPI_Barrier since it requires no agreement
and no rank manipulation. The MPI_Reduce function, on the other hand, behaves
very similarly to the MPI_Bcast, needing both the agreement and the rank transla-
tion. In the MPI_Reduce, upon failed translation of the root rank, the default option
is to ignore the operation and proceed with the execution. The MPI_Scan operation is
supported similarly: it needs no rank translation but requires the agreement.

The case of the MPI_Scan operation is simpler than it could have been. The main
difference between all of the operations above and the MPI_Scan is that in the latter
the rank of all the processes heavily influences the output produced, while in the firsts
it does not. The point is, if we run the same MPI_Scan operation over two commu-
nicators having the same processes in different rank order, we get results that are very
different. On the other hand, if we shuffle the ranks in any of the operations above, the
result will not change (as long as we translate eventual root ranks correctly). This would
have raised a lot of problems if it was not for property P.7: by keeping the order, we are
sure that each process will have as its predecessors only non-failed predecessors from
the pre-shrink communicator. So the operation completes without further problems.

3.5 The scatter and gather support

The functions MPI_Scatter and MPI_Gather proved non-trivial to support since
they use not only the rank order but also the rank number. The value of each process
rank specifies the part of the buffer assigned to each process, in terms of offset from the

29

i
i

“output” — 2020/11/24 — 17:00 — page 30 — #38 i
i

i
i

i
i

Chapter 3. The Legio framework design and architecture

Figure 3.2: The figure shows that may rise with the function MPI_Scatter in presence of faults.

beginning of the buffer. Working on a shrank communicator means having fewer ranks,
so the last position in the buffer cannot be accessible. To keep output consistency, these
functions have to be realized as combinations of others.

This is the first time we had to realize a function that is not based on its standard
implementation but follows a new structure. In this case, we noted that point-to-point
operations, while managing to put the data in the correct position, do not scale well with
the communicator dimension since the root of the operation has to perform one send
(or receive in case of MPI_Gather) for each process in the communicator. Those
operations cannot be performed in parallel, so the serialization would worsen the per-
formance too much. On the other hand, basing on one-sided communications would
have solved the problem since every process would have to perform a single operation.

Converting the scatter operation in a set of one-sided communication operations has
not been so difficult. It was possible to define the relationships between the various pa-
rameters between MPI_Scatter, MPI_Win_create, and MPI_Get: each process
computes the offset in the buffer that should be distributed with the MPI_Scatter
and obtains the data it needs with the MPI_Get operation. The buffer is visible to
all the processes within the communicator thanks to the MPI_Win_create function,
removing the need for other calls. The MPI_Gather is realized analogously, with the
function MPI_Put instead of the MPI_Get.

In conclusion, the structure of the functions is similar to an MPI_Bcast since both
the rank translation and the agreement at the end are needed, but the operations are
different from the MPI standard ones. Both the MPI_Gather and the MPI_Scatter
have to deal with the eventuality of the failed root and solve it by ignoring and aborting
by default respectively.

3.6 One-Sided Communication

The functions MPI_Scatter and MPI_Gather required the support for one-sided
communication. This functionality needs dedicated management of the MPI_Win
object since the simple management of MPI_Comm is not enough for functions like
MPI_Get and MPI_Put. It is mandatory to keep track of the processes that have ac-
cess to the window since a fault among them may make the execution stop as stated in
property P.4.

The solution we followed was the creation of a collection of objects that contains
each window created using MPI_COMM_WORLD. This collection is stored within the
ComplexComm class, that will be used to keep the substitute communicator and all

30

i
i

“output” — 2020/11/24 — 17:00 — page 31 — #39 i
i

i
i

i
i

3.6. One-Sided Communication

the windows created from MPI_COMM_WORLD. The first subsection will cover that
class, while the second will focus on the support for the various functions.

3.6.1 The ComplexComm class

The code snippet that follows contains the structure of the first version of the
ComplexComm class:

1 class ComplexComm {
2 public:
3 void replace_comm(MPI_Comm);
4 MPI_Comm get_comm();
5

6 void add_window(void*, MPI_Aint, int, MPI_Info, MPI_Win);
7 void remove_window(MPI_Win);
8 MPI_Win translate_win(MPI_Win);
9 void check_global(MPI_Win, int*);

10

11 ComplexComm(MPI_Comm);
12

13 private:
14 MPI_Comm cur_comm;
15 std::unordered_map<int, FullWindow> opened_windows;
16

17 //...
18 };

From the declaration, it is possible to split the functions into two groups: on one side
we have operations that deal with communicators (replace_comm and get_comm)
and on the other the ones working with windows (add_window, remove_window,
translate_win, check_global). The first versions are very similar to some
functionalities already introduced before (functions replace_comm and the
cur_comm global variable): the fact that windows are very related to communica-
tors made them move into the class. While the substitute communicator was a global
variable before, with the introduction of this class it becomes a private member of a
global ComplexComm object. All the operations that dealt with it previously (access
and replacement) have to be done through methods provided by the class (get_comm
and replace_comm respectively).

Window operations need to work on non-faulty structures, so all the processes in-
volved must be correctly running. Since the replace_comm operation is called only
in case of a fault, it is possible to use it as a way to know that some windows may
contain failed processes. Those windows have to be recreated on the new substitute
communicator so that no failed process is involved. To enable the recreation, the sys-
tem must be able to repeat the call that generated the window, so it is mandatory to keep
track of all the parameters used to create it.

During the execution, a program is not restricted to the usage of a single MPI_Win:
it may create many of them, so we have to keep track and distinguish them all. The
class contains an unordered_map that serves this purpose and associates with each
window created a unique identifier, used to characterize the element within the col-
lection. These identifiers are connected to MPI_Win structures with the functions
MPI_Win_set_attr and MPI_Win_get_attr, taken directly from the MPI stan-
dard.

Using the functions add_window and remove_window, it is possible to in-
troduce and remove respectively a window from the map. The first function will

31

i
i

“output” — 2020/11/24 — 17:00 — page 32 — #40 i
i

i
i

i
i

Chapter 3. The Legio framework design and architecture

also deal with the identifier management, assigning to each window a unique one
that will be shared only with its substitutes. The functions check_global and
translate_win leverage the existence of those identifiers, using them to check if
the window has been created with MPI_COMM_WORLD and, eventually, returning its
substitute. These functions will be the core of the one-sided communication functions
that will be explored in the next subsection.

3.6.2 One-Sided Communication functions

The first function we are going to analyse is the MPI_Win_create: the function
creates a window handler. It needs to be modified to notify the window creation to
our ComplexComm class. The structure of the implemented function is similar to the
others discussed in the previous sections: it contains a loop, the conversion of the com-
municator, the execution of the actual operation, and ends with the error checking and
the eventual substitute replacement. The only difference is that, in case of correct ex-
ecution, a call to the add_window function within the ComplexComm global object
is performed, and this notifies the creation of the new MPI_Win.

It shall be noted also that the MPI_Win_create calls the MPI_Barrier before
executing the standard MPI call: this is done to remove faults from the network and
avoid problems (recall property P.4). By calling an MPI_Barrier, all the faults that
happened before are solved since the operation would perform a replace_comm call
if it finds any error. The replace_comm call also fixes the windows since it will
recreate them all. This way we can perform calls safely, circumventing the problems
shown by property P.4. The MPI_Barrier call will be present in all the collective
one-sided communication functions.

The functions MPI_Get and MPI_Put are very similar: the first step is check-
ing if the window has a substitute with the function check_global. If the an-
swer is affirmative, it is possible to proceed with the substitution (calling the function
translate_win), the translation of the target rank and the operation using these
new values. All the error detection is missing since those functions are treated analo-
gously to point-to-point calls: the MPI_UNDEFINED problem is also handled similarly
to point-to-point operations.

The last two functions supported are the MPI_Win_free and the
MPI_Win_fence: the first is simple and needs only to call the remove_window
function from the ComplexComm global object before destroying the window, while
the second works like an MPI_Get or MPI_Put without the rank translation part and
with the use of the MPI_Barrier.

3.7 File operations

The introduction of one-sided communication support shares many concepts with the
one of files, so the first step we followed was the refactoring of the code to intro-
duce some generalizations that could help us to reduce the duplicate code. In par-
ticular, the part of ComplexComm that deals with windows would have been dupli-
cated for files, so it got moved in a template class called StructureHandler. The
StructureHandler class contains five public functions that are similar to all the
functions that were present in ComplexComm (the only exception is get_comm). The

32

i
i

“output” — 2020/11/24 — 17:00 — page 33 — #41 i
i

i
i

i
i

3.7. File operations

main difference with the ComplexComm version is the extensive use of functional pro-
gramming: rather than saving the parameters for the recreation, it stores a function that
serves the same purpose. This approach allows for the support of multiple ways to
create structures. Also, the operations that deal with identifiers are turned into lambda
functions since they are strictly related to the structure.

With the introduction of the StructureHandler, the job of the class
ComplexComm becomes simpler: it will have to deal with the communicator man-
agement mainly. It will contain two StructureHandler objects, one for files and
the other for windows: ComplexComm will have to forward all the MPI_Win and
MPI_File calls to their respective StructureHandler.

While files and windows share a lot of underlying concepts, there is a remarkable
difference: while in MPI_Win there are caching functions like MPI_Win_set_attr,
those are not present in files. We had to use a different approach for identifiers man-
agement and, after a few tries, we opted for f2c and c2f operations. Those calls
are not intended for this purpose since they are designed to allow inter-operability be-
tween handles designed for c and Fortran. Luckily for us, Fortran handles structures
like communicators, windows, files, etc. differently: rather than having a type, it refers
to them with an integer. This integer is unique and associated with each object: two
communicators will not have the same integer, even if they are duplicate.

The functions MPI_File_c2f will return the integer given the MPI_File, while
MPI_File_f2c will do the other way around. The main difference in using this
method compared to the one used for files is that the second allowed to choose the
value of the identifier, while in this case is given by default. Nonetheless, this is the
way we used to solve the problem and could prove useful eventually also for windows
and communicators.

We decided to support a lot of file operations to give the user more flexibility in its
choices. We will not go through all the calls, but we will describe the common structure
and we will focus more on the functions that feature important differences.

The first function we are going to analyse is MPI_File_read_at since its struc-
ture is very basic and can be seen as a starting point for the others. The first step is
to translate the MPI_File passed as a parameter and, after that, perform the opera-
tion on the translated structure. No error management is needed since the operation
involves a single process. Most non-collective functions work analogously, repeating
the same steps. Collective calls like MPI_File_read_at_all require the use of
the MPI_Barrier before the operation, similar to one-sided communication collec-
tives. They also have the section for error management that will perform the agreement
and eventually replace the substitute communicator. These patterns are shared by most
of the calls supported, with few exceptions that we will cover in the following lines.

The first function that differs from the pattern is MPI_File_open. It behaves
like a normal collective operation (it needs the MPI_Barrier and error management
parts), but has to do more: its amode parameter must be changed to remove some flags
that could block some important operations introduced for fault tolerance. In particular,
files should never be deleted upon close since we may close them earlier than necessary
due to the presence of a fault. Moreover, the access should not be exclusive since the
system may introduce substitutes for filehandles. Besides modifications to the parame-
ters, the function must add the newly created file to the StructureHandler within

33

i
i

“output” — 2020/11/24 — 17:00 — page 34 — #42 i
i

i
i

i
i

Chapter 3. The Legio framework design and architecture

the shared ComplexComm object if the creation is successful and the communicator
used was MPI_COMM_WORLD. Also, the MPI_File_close is different since it has
to remove the file from the StructureHandler.

The MPI_File_seek_shared adds to the collective pattern exposed above an-
other security measure: the seek operation may not be idempotent, so repeating it twice
may give a different result from executing it only once. To make it idempotent, the
status of the shared file pointer is saved before the execution and is restored in presence
of faults before the next iteration of the loop.

The MPI_File_set_view function is handled like a normal collective file op-
eration, but its support forces us to handle file views. The user can set a file view and
expects it to stay the same until further changes. In presence of faults, file handlers are
recreated, and the new ones do not directly feature the characteristics of the old ones.
A solution consists of the extraction of valuable information from files before they get
closed: that information includes file views, pointer positions, and other values that
will be set on the new file after creation. This ensures a seamless substitution and will
provide no inconsistency to the user.

3.8 Multiple communicators support

Up to now, all the calls supported introduced fault tolerance in calls based on
MPI_COMM_WORLD. MPI applications usually create and use other communicators
a lot, so it is mandatory to include the support for all of them. An important remark
is that new communicators are created from existing ones, so by supporting the calls
that generate them it is possible to intercept all the new MPI_Comm structures. Before
doing so, it is better to define the classes that will help us by storing all the informa-
tion related to the created communicators, and how those changes affected the already
supported calls.

This Section is defined as follows: subsection 3.8.1 will analyse the current status
of the class ComplexComm, pointing out how it could be generalized to be useful for
any communicator; Subsection 3.8.2 will focus on the Multicomm class that deals
with the presence of multiple ComplexComm objects and will show the changes that
are needed on the already supported function calls; Subsection 3.8.3 will cover the
communicator management MPI calls supported.

3.8.1 ComplexComm evolution

Up to the point described in section 3.7, the ComplexComm class has been designed
to have a single instance that would have been globally accessible. To add the sup-
port for multiple communicators, it should handle the fact that it could not be the
substitute of MPI_COMM_WORLD only, but of any other communicator as well. Each
ComplexComm object should keep track of the communicator it is providing a substi-
tute to, and should expose a function to make it accessible from the outside: this last
functionality resides in the get_alias function introduced within the class. We will
call the original communicator alias from now on.

Another function introduced is get_group, which returns the MPI_Group of the
alias: this information is particularly important during rank translations, and used to be
defined globally as the group of MPI_COMM_WORLD. With the presence of multiple

34

i
i

“output” — 2020/11/24 — 17:00 — page 35 — #43 i
i

i
i

i
i

3.8. Multiple communicators support

communicators with ComplexComm, having groups defined globally is not a good
choice anymore.

The last change is just the rename of a function: the check_global function
name was a reference to the fact that the ComplexComm alias was MPI_COMM_WORLD
and it included all the processes. Removing the reference implies changing the name,
to avoid confusion: the new name of the function will be check_served.

3.8.2 The Multicomm class

The problem of having more than one communicator supported is similar to the one
faced when introducing one-sided communication support: for each structure gener-
ated, we have to find a way to link it to an object that contains its substitute. In one-
sided communication, the linking was performed using identifiers set with the caching
functions provided by MPI: these functions are available also for communicators, but
we opted for f2c functions like for file handlers.

The key idea is to put ComplexComm objects within an unordered_map and
use the integer associated with the alias as an identifier. We will provide methods to
translate a communicator into its related ComplexComm object so that the functions
can use it like they are already doing with the one of MPI_COMM_WORLD.

The structure of the class reflects this core idea but adds many functions that are
needed to fully realise it. In the code block that follows it is possible to see its definition.

1 class Multicomm {
2 public:
3 bool add_comm(MPI_Comm);
4 ComplexComm* translate_into_complex(MPI_Comm);
5 void remove(MPI_Comm, std::function<int(MPI_Comm*)>);
6 void part_of(MPI_Comm, int*);
7 void change_comm(ComplexComm*, MPI_Comm);
8

9 Multicomm();
10

11 bool add_file(ComplexComm*, MPI_File, std::function<int(MPI_Comm, MPI_File *)>);
12 bool add_window(ComplexComm*, MPI_Win, std::function<int(MPI_Comm, MPI_Win *)>);
13 void remove_window(MPI_Win*);
14 void remove_file(MPI_File*);
15 ComplexComm* get_complex_from_win(MPI_Win);
16 ComplexComm* get_complex_from_file(MPI_File);
17 private:
18 std::unordered_map<int, ComplexComm> comms;
19 std::unordered_map<int, int> window_map;
20 std::unordered_map<int, int> file_map;
21 };

The definition shows the presence of an unordered_map containing
ComplexComm objects (comms) and functions used to insert, remove, and check the
presence of communicators within it (add_comm, remove, and part_of respec-
tively). The function change_comm is just a wrapper of the replace_comm func-
tion present in the ComplexComm class. The function translate_into_complex
can be used to get the ComplexComm object connected to the MPI_Comm passed as
a parameter. The other functions are needed to manage the correct translation of files
and windows since it gets more complicated than previously.

To translate a window or a file it is necessary to know the ComplexComm that was
used to generate it. This is mandatory since the StructureHandlers objects are
contained within ComplexComms ones. The main problem of this approach is that,

35

i
i

“output” — 2020/11/24 — 17:00 — page 36 — #44 i
i

i
i

i
i

Chapter 3. The Legio framework design and architecture

Figure 3.3: The figure shows the chages to be introduced to support multiple communicators. Changes
with the window operations are omitted since they are analogous to the file ones.

while before there was a single ComplexComm object only and it was possible to check
the presence of the window (or file) directly, now there are multiple ComplexComm
and we need a way to find the correct one. To achieve this, we need to obtain informa-
tion about all the calls that create a window or file and use them to create an association
between the ComplexComm object used and the structure to be created.

The functions add_file and add_window serve this purpose: they act as wrap-
pers of the calls in ComplexComm that perform the insertion of files and windows
respectively. While forwarding the call, they keep track of the association between the
structure and the communicator: these associations are stored in the window_map and
file_map structures. After saving the association, it is possible to go from a window
(or file) to the ComplexComm that generated it with the function
get_complex_from_window (or get_complex_from_file respectively).
Association will be removed when windows (or files) are destroyed with the functions
remove_window (or remove_file respectively).

Figure 3.3 summarizes the procedure needed to obtain the conversion of the three
main structures considered: MPI_Comm, MPI_File, and MPI_Win. From those
procedures, it is possible to proceed with adapting all the already supported calls to
the newly added class.

All the added calls are needed to retrieve the correct ComplexComm to operate on.
All the functions follow the patterns in the figure 3.3, without remarkable differences.

All the functions that operated directly on ComplexComm functions have to change
their calls and use the Multicomm wrappers instead. The MPI_Init needs some
changes too since the creation of the ComplexComm of MPI_COMM_WORLD must
be done within the Multicomm class. The MPI_Init function will also create the
ComplexComm of the MPI_COMM_SELF communicator, to ensure that all the possi-
ble sources of new communicators are served.

3.8.3 Communicator management operations

Besides supporting the communicators created within the MPI_Init, our solution
must provide support also for any communicator created starting from a supported one.
As a conclusion, we must include support for many operations that produce new com-

36

i
i

“output” — 2020/11/24 — 17:00 — page 37 — #45 i
i

i
i

i
i

3.8. Multiple communicators support

municators. The first one that we are going to analyse is the MPI_Comm_dup, which
produces a duplicate of the given communicator.

Property P.5 exposes one of the problems we are going to face when dealing with
communicator management operations: it is impossible to create a communicator start-
ing from a faulty one. In the MPI_Comm_dup, we have two options: either we use
the communicator provided as a parameter (which is the alias of its ComplexComm)
or we use its substitute. Property P.5 forces us to take the second option since the pa-
rameter may provide a faulty communicator, but this means that we may be creating
a duplicate of a different communicator (since the substitute does not contain all the
failed processes). This is reflected in the assignment of ranks, so the rank in the dupli-
cate communicator may be different from the one in the starting one (also the size may
differ).

Aside from the coherency problems, the support is implemented similarly to all the
other functions: the first step is obtaining the ComplexComm of the communicator
passed as a parameter with the function translate_into_complex, then we ob-
tain the substitute with the function get_comm and we perform the PMPI_Comm_dup
on it. After that we manage the errors that may arise and, if there are none, we add
the newly created communicator to the ones supported with the call add_comm: the
Multicomm object will take care of the creation of its ComplexComm and its storage.

The MPI_Comm_split will behave analogously to MPI_Comm_dup, while the
MPI_Comm_group created a few more problems, so we decided to base its implemen-
tation on MPI_Comm_split. We also had to introduce support for the
MPI_Comm_free and MPI_Comm_disconnect functions, that will have to re-
move the communicator from the Multicomm object.

37

i
i

“output” — 2020/11/24 — 17:00 — page 38 — #46 i
i

i
i

i
i

i
i

“output” — 2020/11/24 — 17:00 — page 39 — #47 i
i

i
i

i
i

CHAPTER4
The Hierarchical Extension

THIS chapter explores the first evolution of the Legio library, which introduces a
new network layout to reduce the time needed to repair the communicators. We
will proceed as follows: Section 4.1 will analyse the reasons that caused this

evolution and the previous solutions evaluated; Section 4.2 will make an overview of
our solution, pointing out how it affects the execution of all the functions supported;
Section 4.3 will cover the reparation procedure; Section 4.4 will expose the prelimi-
nary code refactoring steps needed before the integration; Section 4.5 will discuss the
actual implementation, focusing a lot on the steps used to repair; lastly, Section 4.6 will
perform a computational complexity analysis, proving the theoretical efficiency of the
solution.

4.1 Analysis of the problem

The version of our Legio library shown in the previous chapter was useful to show the
capabilities of ULFM and to prove that our fault resiliency approach is viable. The
use of ULFM proved to be easier than expected, mainly due to the reduced number of
functions it introduces. The choice of ULFM was based on the support it is receiving
and the extensive usage by many similar applications. Other applications, however,
decided to move away from ULFM, pointing out some scalability issues. One of the
efforts that deeply analyzed these issues is [17], which clearly defined two weak points
of ULFM: the first one is that all the processes within a communicator have to collabo-
rate to repair it; the second one concerns the scalability of the MPIX_Comm_shrink
operation. Quoting their work:

In our experimentation, we found that the cost of ULFM’s communicator
shrink increased worse than linearly with the system size, and took a non

39

i
i

“output” — 2020/11/24 — 17:00 — page 40 — #48 i
i

i
i

i
i

Chapter 4. The Hierarchical Extension

trivial amount of time to complete. As a result we explored two options to
avoid using it.

Their effort analysed two possible solutions to the scalability problem issued above.
The first idea they tried to pursuit was to avoid repairing communicators and continue
working with failed ones. Our tests proved that execution can get problematic without
repairing communicators since the status becomes undefined. After a few tries, the
effort came to the same conclusion:

We found out that MPI operations on a non-repaired failed communicator
were unpredictable.

The other approach they tried to pursuit was to reduce the communicator to a set
of smaller ones with size equal to two. This reduces the dimension of communicators
but greatly increases their number. The problem with this approach is the handling
of collective operations, which have to be split across the communicators. Also, the
recovery of the execution is difficult to properly synchronize. The effort commented on
their results with the following words:

The main problem with this design is that the application has to understand
the specific details of the recovery procedure, and all possibilities in terms of
the order of execution upon failure have to be covered.

While they managed to obtain some results with this second approach for 1d sten-
cil applications, they decided to move away from ULFM since the difficulty of their
approach was rapidly escalating. The idea of moving away from ULFM, while it may
simplify the achievement of non-collective repair, was not adopted by us since we think
that the effort of the MPI Forum’s Fault Tolerance Working Group can lead to its inte-
gration within the MPI standard.

4.2 Our hierarchical solution

In this thesis, we decided adopt the communicator size reduction proposed in [17],
but with a smaller number of communicators. Our idea bases on splitting the starting
communicator into a set of smaller disjoint sub-communicators (we will call them lo-
cal_comm from now on). Each process will be part of a local_comm and cannot be
part of another for the rest of the execution. Within each local_comm, one process will
be elected master: all the masters are part of a communicator, called global_comm.
Figure 4.1 shows the structure of these communicators.

It shall be noted that there always exists a path from a process to any other: if they
are not in the same local_comm, the path will go through the global_comm with the
help of the masters of the involved processes. This remark shows the changes that
will have to be made within the library: data may need to be forwarded, introducing a
new level of complexity. Our solution aims as always to the transparency of the result,
making the challenge even harder.

To better analyze the calls supported up to now, we divided them into 9 groups based
on their structure. We will cover those types, their meaning, and the algorithm needed
to support them in the next subsections.

40

i
i

“output” — 2020/11/24 — 17:00 — page 41 — #49 i
i

i
i

i
i

4.2. Our hierarchical solution

Figure 4.1: The figure shows the structure of our hierarchical solution. Processes are depicted as
small circles containing their rank in the entire communicator. Each rounded square represents a
communicator. The black one is the entire communicator. The orange ones are the local_comms,
while the green one is the global_comm.

4.2.1 one-to-one operations

We define one-to-one operations as the functions that move data from a single process
to another without the use of any structure besides communicators. In this group, there
are mainly point-to-point operations. The algorithm followed to support them leverages
property P.2 to work on a communicator that is not split (the entire communicator in
figure 4.1): upon fault, the communicator is not repaired. This solution avoids us to
deal with the forwarding of the messages, which could have introduced unnecessary
overheads.

4.2.2 one-to-all operations

We define one-to-all operations as those collectives that move data from a process to
all of them within a communicator: an example of those is the MPI_Bcast function.
These operations are more difficult to integrate than one-to-one since we cannot lever-
age property P.2 anymore. Any call issued in a local_comm would not reach all the
processes within a communicator, and it is better not to use the entire communicator
since repair operations may be needed.

The solution can be seen if we analyze the paths that go from the root node to all the
others: some of them will only go through the local_comm of the root, others will cross
the global_comm and end up in all the other local_comms. We can see that many paths
share some parts and the patterns in each communicator can be seen as a one-to-all:
all the masters in global_comm need to receive the data from the master of the root’s
local_comm, and all the processes part of a local_comm different from the root’s one
must receive the data from their master. Using these considerations, it is possible to
define an algorithm that emulates the behaviour of one-to-all functions on our network
structure:

1. The first step is the recognition of its role in the communication, made by iden-

41

i
i

“output” — 2020/11/24 — 17:00 — page 42 — #50 i
i

i
i

i
i

Chapter 4. The Hierarchical Extension

tifying the position of the root within the network. The roles from which each
process has to choose are:

• Non-master member of root’s local_comm (role 1);
• Masters of root’s local_comm (role 2);
• Non-master member of another local_comm (role 3);
• Master of another local_comm (role 4).

2. All the processes must act according to their role:

• The processes with role 1 have to perform the one-to-all call within their
local_comm, with the real root acting as root;

• The process with role 2 has to behave like the processes with role 1 at first,
but it has also to perform the one-to-all call within the global_comm, with
itself acting as root;

• The processes with role 3 have to perform the one-to-all call within their
local_comm, with their master acting as root;

• The processes with role 4 have to perform the one-to-all call within
global_comm, with the master of root’s group acting as root, then they be-
have like processes with role 3.

The key idea is that the root will propagate the data to the other processes in its lo-
cal_comm, then the master of that local_comm will propagate the data using
global_comm, then all the other masters will spread the information to all the other
nodes using the other local_comms.

This solution allows us to avoid using the entire communicator, which needs a theo-
retically costly reparation in case of a fault, in favor of local_comms and global_comm.
This comes at the cost of having to perform many calls for each one done by the appli-
cation: this fact may affect greatly the overheads, so we will deeply analyze its impact
later.

4.2.3 all-to-one operations

We define all-to-one operations as those collectives that move data from all the pro-
cesses within a communicator to a single one: an example of those is the MPI_Reduce
function. all-to-one operations are very related to one-to-all since the paths are the same
but in the inverse direction. The algorithm is analogous and keeps the same roles but
changes the second point for processes of role 2 and 4: they will have to perform the
two calls in the reverse order.

4.2.4 all-to-all operations

We define all-to-all operations as those collectives that move data from all the processes
within a communicator back to all after performing modifications: an example of those
is the MPI_Allreduce function. Our approach towards all-to-all operations is to
split them into all-to-one and one-to-all and perform the two operations in succession.
For each all-to-all operation, we have to find the two operations that, once combined,
output the desired result.

42

i
i

“output” — 2020/11/24 — 17:00 — page 43 — #51 i
i

i
i

i
i

4.3. Reparation procedure

4.2.5 File operations

File operations have their type, but they do not introduce communication between the
processes that should be handled directly. So it is not necessary any forward mecha-
nism, and all the processes can use their local_comm to open files. The problem with
this solution is that the number of file handles per file is bigger and that can lead to
overheads: we will have to check this solution in the performance evaluation part.

4.2.6 Window operations and collective-window operations

Window communication introduces communication between processes. There are two
solutions to support them: either we make them work on the entire communicator, los-
ing all the gains obtained by splitting the communicator, or we forward the calls through
our network configuration. The latter proved to be very difficult without introducing
a big overhead, so we opted not to support them for now, since their support is not
mandatory for the applications we plan for our experimental evaluations.

4.2.7 comm-creator and local-only operations

All the operations that create communicators are within the comm-creator type. These
operations need the entire communicator to work properly since they need to operate
with all the processes within it at the same time. This means that we cannot exploit the
features introduced with the hierarchical approach in this case.

local-only operations are the ones that do not involve direct communication between
the nodes. Since no communication is needed, we decided to use local_comm for them
since the eventual repair would be smaller than in the entire communicator.

4.2.8 Positional calls

In section 3.5 we analyzed the support of MPI_Scatter and MPI_Gather, point-
ing out that the value of each process rank is meaningful for the correct execution
of these operations. While the MPI_Scatter follows a one-to-all pattern and the
MPI_Gather an all-to-one, executing them like an MPI_Bcast and MPI_Reduce
respectively would produce the wrong result due to the differences in the ranks between
the entire communicator and the local_comms. These calls will be referred to with the
positional attribute. We decided not to support all these since it would need the use of
the entire communicator, reducing the effectiveness of the features introduced.

4.3 Reparation procedure

The network structure described in Section 4.2 allows us to reduce the dimension of
communicators used for most MPI calls, at the cost of having more of them. If we
assume that the considerations taken from section 4.1 are correct, repairing smaller
communicators will be more efficient than fixing the entire one.

To analyze the reparation procedure, we must first consider the communicators used
by the operations. local_comms and the global_comm will need a new algorithm for
the reparation since we must keep the network structure, while the entire communicator
can follow a similar pattern as the one proposed in the last chapter. We will not discuss

43

i
i

“output” — 2020/11/24 — 17:00 — page 44 — #52 i
i

i
i

i
i

Chapter 4. The Hierarchical Extension

the reparation of the entire communicator further since it does not introduce anything
new.

If we consider our network structure, it is possible to define two semantically differ-
ent faults that can happen: either a non-master node fails or a master one. These faults
affect the network in different ways: non-master nodes faults will be noticed only by
the processes within the same local_comm, while master faults will influence both the
global_comm and the local_comm of the failed process. In both cases, some processes
will not notice the error and do not have to participate in the recovery part, so they may
be able to proceed with their execution.

Faults of non-master nodes are easy to resolve since the only thing needed is to
repair the local_comm and all the processes within it notice the fault, so no special
solution is needed. When a master node fails, however, the recovery becomes much
more difficult since we must elect a new master and put it in the place of the failed
one. This substitution proved difficult to realize and we will discuss it in the next
subsections.

This section is structured as follows: Subsection 4.3.1 will introduce some concepts,
conventions, and conclusions useful for the rest of the analysis while Subsection 4.3.2
will explain the steps each process will have to complete to repair the structure.

4.3.1 Conventions and concepts

The repair procedure leverages a lot of concepts that are not already explained before.
In this Subsection, we will cover them to provide a better understanding of the follow-
ing analysis.

The first assumption is linked to the master election: the process should be very
simple and all the processes should agree on the same master. We implemented this
solution by making that the process with rank 0 in the local_comm is the master: if
it fails, the local_comm is shrunk and a new process will cover rank 0. This simple
implementation removes the need for a complex leader election algorithm.

Another assumption is that the subdivision of processes across local_comms is not
done at random, but each process can know which group any process is part of. This
assumption is core also for the realization of the function calls exposed in Section 4.2
since all the processes must define their role but can do so only knowing the position
of the root. Another important remark is that processes cannot change local_comm
during the execution: the shrinking operation just removes failed processes from the
local_comm, no process movement is allowed.

local_comms have a fixed maximum dimension (called K from now on), which is
specified in the code and can be tuned by the user at the pre-compile time. This is
very useful in our implementation because it helps us define the local_comm of each
process. To obtain the local_comm of a process, it is possible to compute r/K, where
r is its rank in the entire communicator: this way we know that processes with ranks
from 0 to K-1 will be in the first local_comm, from K to 2K-1 in the second, and so on.
This value helps us also to distinguish between local_comms: we can refer to the one
containing processes with ranks from 0 to K-1 with the name local_comm_0, from K
to 2K-1 with local_comm_1, and so on. These names allow us to define the concepts of
next and previous: those are the local_comm_x where x is equal to the value of the own
local_comm plus one or minus one respectively. To this definition, it should be included

44

i
i

“output” — 2020/11/24 — 17:00 — page 45 — #53 i
i

i
i

i
i

4.3. Reparation procedure

the circularity of the concept: local_comm_0 is the next of local_comm_(s/K+1), where
s is the size of the entire communicator; moreover, local_comm_(s/K+1) is the previous
of local_comm_0.

Another remark defines the ranks of the processes within local_comms and the
global_comm: they follow the same order as the entire communicator. This property
must be enforced since it is very useful for many operations done in the reparation
phase (but also in the implementation of the operation as described in section 4.2).

4.3.2 Reparation procedure

The reparation phase begins when a process calls the replace_comm function: this
happens after the agreement when needed, so we can assume that the BNP is solved.
The absence of the BNP allows us to affirm that all the processes within the communi-
cator used for the operation are in the same situation, ready to repair the structure. As
stated before, the procedure depends on the role of the communicator.

In case of a fault during an operation in a local_comm, all the processes call the
MPIX_Comm_shrink routine and produce a repaired communicator. Each process
will also check if it has become the new master (if its previous rank was different
from 0 but the new one is 0): if so, it will have to be introduced in the global_comm,
otherwise the repair procedure is complete.

In case of a fault during an operation in global_comm, all the processes call the
MPIX_Comm_shrink routine and obtain a repaired but smaller communicator. The
processes within the group must identify the failed process to determine which lo-
cal_comm has to produce a new master. All the operations described up to now are easy
to obtain, but then we face a complex problem: the insertion of the new master within
the repaired global_comm is impossible with the only structures defined up to now. The
point is, to introduce a process within an already defined communicator we must use
inter-communicator functions, in particular MPI_Intercomm_create. The func-
tion requires the presence of two groups of processes (all the ones within the repaired
communicator and the new master) each containing a leader and a communicator that
contains the two leaders (we will refer to this as the medium). If those were the only
constraints, then there would be no problem since we can use the entire communicator
as the medium. Property P.5, however, forces us to use a non-faulty communicator, and
the entire communicator certainly is not non-faulty. We can try to use it anyway after
shrinking it, but we face two other problems:

• The fault is not detected by all the processes within the entire communicator, so
the shrink is not possible without some form of error propagation;

• Shrinking the entire communicator is exactly the operation we want to avoid with
this approach because of the poor scalability of the MPIX_Comm_shrink oper-
ation stated in Section 4.1.

Solving the problem without using the entire communicator is impossible with the
structures defined up to now because there is not another communicator containing the
new master and at least a single process already part of the global_comm. We need to
define a new communicator within the network structure that solves the problem.

45

i
i

“output” — 2020/11/24 — 17:00 — page 46 — #54 i
i

i
i

i
i

Chapter 4. The Hierarchical Extension

Figure 4.2: Structure of the hierarchical solution with the addition of POV communicators, represented
as the red dashed hexagons. For simplicity only the POV containing the process with rank 3 are
displayed.

Our solution proposed the introduction of POV (short for Partially OVerlapped)
communicators, which contain all the processes within a local_comm plus the mas-
ter of its next. All the non-master processes will be part of a POV communicator,
while the master ones will be part of two: their own and the one of the previous lo-
cal_comm. We can refer to POV communicators similarly to what we have done with
local_comms: POV_i will contain all the processes within local_comm_i and the mas-
ter from local_comm_(i+1). POV communicators solve the problem of the absence of
a medium communicator since it always contains the new master and at least a pro-
cess from the global_comm. The fault of the i-th master process, however, affects now
four communicators: aside from local_comm_i and global_comm, now also POV_i and
POV_i-1 contain the failed process and must be fixed.

The reparation process with the addition of POV communicators proceeds like de-
scribed up to now, with an exception: processes within the local_comm of the failed
master will call the MPIX_Comm_shrink also on the POV associated with the lo-
cal_comm. The processes within the global_comm will be divided into three roles,
depending on their position:

• Role 1: the failed master was in the previous local_comm;

• Role 2: the failed master was in the next local_comm;

• Role 3: the failed master was neither in the previous local_comm nor in the next.

There is always at maximum one process of role 1 and one of role 2. We will deal
later with the case of a process being both roles 1 and 2 since it is a corner case.

The role 1 process is part of the failed master local_comm’s POV, so it proceeds with
the shrink of that communicator. It checks the existence of another process within the
shrank POV: if this condition does not apply, then all the processes within local_comm
failed and there is no new master. It communicates the result of this control to all the
processes within the global_comm, to have a unified view on whether to perform an

46

i
i

“output” — 2020/11/24 — 17:00 — page 47 — #55 i
i

i
i

i
i

4.3. Reparation procedure

MPI_Intercomm_create and introduce a new process in the global_comm or just
leave it shrank. The case when no master has to join is simpler, so we will discuss it
later.

After communicating the presence of a new master, the process creates the inter-
communicator using the POV as a medium. This procedure must be done by all the pro-
cesses within global_comm and the new master: the process with role 1 is the only one
able to directly communicate with the new master, so it will be the leader of its group
(the new master will be the other leader). After the call to MPI_Intercomm_create,
it is possible to obtain a communicator with all the needed processes with the function
MPI_Intercomm_merge, called by all the participants in the inter-communicator.
After that, the only thing left to do is to reorder the ranks in the communicator to keep
the order property discussed in subsection 4.3.1: after a MPI_Comm_shrink call, the
result is the new global_comm, repaired and working.

The only communicator left to fix is the POV of the local_comm previous of the
new master one. That POV must include the new master, which will substitute the old
failed one. The problem with this substitution is that only the process with role 2 will
notice the fault among the ones in POV, all the other processes are not master and do
not communicate with the failed process. To be able to operate on communicators, all
the processes involved must collaborate, so we have to design some way to propagate
the fault notification to all the non-master ones. This notification must be transparent to
the processes involved, so we will use a daemon thread: its job will be to periodically
check the presence of such notification and, if present, collaborate with the process with
role 2. The process with role 2 will free its own POV communicator and it will call an
MPI_Intercomm_create: the two groups will be its local (with itself as leader)
and the new master (also leader). The medium communicator used for the operation
will be the newly repaired global_comm, which is non-faulty and contains both the
leaders. After the calls to MPI_Intercomm_merge, the new POV is created: here
no rank reordering is needed because the merge function allows putting the new master
at the end of the POV, in its expected position.

In case of the absence of a new leader, the same procedure applies but this time the
process with role 1 must act as if it was the new leader.

The last part of this subsection is devoted to the analysis of some corner cases. The
first one we are going to analyze is the presence of just a single local_comm: in this
case, the global_comm will be a duplicate of the master’s MPI_COMM_SELF and the
POV will be a duplicate of the local_comm. Upon recognising this structure, the new
master will create the global_comm duplicating its MPI_COMM_SELF, simplifying
the procedure a lot. The case in which there are two local_comms is a bit trickier: if
a master fails, the one of the other local_comm must play accordingly to both roles 1
and 2. So it must behave accordingly to role 2 until the new global_comm is spawned,
then it should switch to role 1 to fix its own POV communicator. All the other cases are
already described in the procedure above.

One last remark must be given on the weak points of this algorithm: it is considering
only single faults up to now, while in reality many of them may happen at the same time.
The algorithm is robust if we consider at most a single master fault at a time, while it
can be empowered to support non-contiguous master faults. Up to now, the current
implementation does not support this last evolution.

47

i
i

“output” — 2020/11/24 — 17:00 — page 48 — #56 i
i

i
i

i
i

Chapter 4. The Hierarchical Extension

Figure 4.3: Overview of the repair procedure when a master fails. The communicators and processes
follows the notation rules of the previous images. The red cross highlights the failed node. The
exclamation marks highlight the nodes that notice the failure. The arrows that originate from a
process represent the inclusion of the process in a communicator. The arrow color represents the
target communicator. The arrow border color represents the communicator used to perform the
operation. The slim black arrow represents the propagation of the failure notification.

4.4 Preliminary refactoring steps

All the steps of the algorithms explored in the last two sections need many changes
in the structure of the library, thus requiring some refactoring. The first step in the
refactoring process was the creation of the abstract class AdvComm, which substi-
tutes ComplexComm as the class containing the substitute of a communicator. The
AdvComm class will provide almost the same methods as the previous ComplexComm
class, but will not specify them. It serves as an interface from which it is possible to de-
fine new ways to handle the communication. The old ComplexComm class is renamed
to SingleComm and it is now an heir of AdvComm: most of the functionality of it will
be the same, with some addictions due to other changes. The other heirs of AdvComm
are NoComm and HierarComm: the last of those will be discussed in the next section.
NoComm represents a communicator that is not mapped in the Multicomm class: an
object of that type will be returned when looking for a non-present AdvComm. All the
operations regarding NoComm will be done on the alias, so it is like that there is no
substitution.

The structure of all the functions must change, because they must expose the data
movement pattern: rather than extracting the communicator from an AdvComm object,
they give to it an object containing the call to be performed and the parameters that
can change. The function perform_operation of AdvComm is the one that allows
the supported functions to provide the call to be performed: it is an overloaded call
that supports many configurations, depending on the Operation object passed as the
first parameter. The class Operation (in particular its heirs) specifies the dataflow
and contains a lambda used to move the call to be performed. An AdvComm object,
upon receiving an Operation object with the perform_operation function, will
launch it according to the implemented network structure: for SingleComm it will

48

i
i

“output” — 2020/11/24 — 17:00 — page 49 — #57 i
i

i
i

i
i

4.5. The HierarComm implementation

just call it on the substitute communicator, for HierarComm it will follow the paterns
discussed above.

This refactoring part, while seeming useless since it does not introduce new features,
defines precious structures that will be the core for the development of the
HierarComm class, the one that implements the network structure illustrated in sec-
tion 4.2. The distinction between the Operations heirs allows us to define different
execution methods, that can vary from call to call: this allows us to run all the supported
calls as planned in section 4.2 while keeping a layer of encapsulation.

4.5 The HierarComm implementation

To introduce the network structure discussed in the previous sections and all the al-
gorithms involved we implemented the HierarComm class. Its usage is very similar
to the one of a generic AdvComm object since it is an heir of that class. We will not
explore in detail the implementation of the class since many details are present in the
previous sections, but we will focus on some aspects that were not the core of the pre-
vious analysis.

Before digging into the implementation, it is useful to point out some differences in
the nomenclature between the code and the thesis: local_comms are called local in
the code, global_comm is called global, the entire communicator substitute is called
full_network, POV communicators are called partially_overlapped_own
and partially_overlapped_other depending if the POV is associated to the
own local_comm or the previous one. The maximum size of a local_comm is provided
by the macro DIMENSION.

The first analysis will cover the constructor of the class, which has to create the en-
tire network infrastructure and initialize the objects contained within the HierarComm
instances. The following code snippet explains its functioning.

1 HierarComm::HierarComm(MPI_Comm comm): AdvComm(comm) {
2 int rank; //Rank in alias
3 int group; //Group of which the process is part
4 int local_rank; //Rank in local
5 int size; //Size of alias
6

7 MPI_Comm_rank(comm, &rank);
8 group = extract_group(rank);
9 local_rank = rank\%DIMENSION;

10 MPI_Comm_size(comm, &size);
11

12 //Construction of the needed communicators
13

14 PMPI_Comm_dup(comm, &full_network); //Creation of full_network
15 PMPI_Comm_split(comm, group, local_rank, &local); //Creation of local
16 PMPI_Comm_split(comm, local_rank == 0, rank, &global); //Creation of global
17 if(local_rank != 0)
18 PMPI_Comm_free(&global);
19

20 if(rank == 0) {
21 //Creation of partially overlapped other, then own
22 //...
23 }
24 else {
25 //Creation of partially overlapped own, then other
26 }
27

28 //Creation of notifier thread

49

i
i

“output” — 2020/11/24 — 17:00 — page 50 — #58 i
i

i
i

i
i

Chapter 4. The Hierarchical Extension

29 shrink_check = new std::thread(&HierarComm::change_even_if_unnotified, this, group);
30

31 //Creation of other structures, like StructureHandlers
32 //...
33 }

From the code, it is possible to see the initialization phases: at first, all the commu-
nicators used are created, followed by the POV. Here we need a special way to obtain
the communicator since they are partially overlapped: all the processes will do the
creation of their own POV first and eventually will create the POV of the previous lo-
cal_comm later. If all the processes would do the same we would get a deadlock since
all of them would be waiting for the master of the next local_comm to participate. By
making the process with rank 0 (master of local_comm_0) do the creations in reverse
order, it is possible to solve the deadlock and complete the creation. After the creation
of POV comes the creation of the notification thread that we will discuss next and the
initialization of the other structures that were part also of ComplexComm.

The notification thread solves the need expressed in section 4.3, where we exposed
the need for asynchronous fault propagation across the local_comm that is previous to
the one containing the failed master. Using this thread, the processes could perform
the needed operations to repair their POV communicator and keep the status consistent
without affecting the execution directly. The function ran by the thread is the following:

1 void HierarComm::change_even_if_unnotified(int rank_group) {
2 int rank;
3 MPI_Comm_rank(get_alias(), &rank);
4 while(1) {
5 std::unique_lock<std::mutex> lock(mtx);
6 bool timeout = false;
7 const auto res = kill_condition.wait_for(lock, std::chrono::seconds(PERIOD));
8 timeout = res == std::cv_status::timeout;
9

10 if(timeout) {
11 int flag = 0, flag_self = 0, buf;
12 if(local != MPI_COMM_NULL) {
13 int local_rank;
14 MPI_Comm_rank(local, &local_rank);
15 MPI_Iprobe(0, 77, local, &flag, MPI_STATUS_IGNORE);
16 }
17 if(flag) {
18 PMPI_Recv(&buf, 1, MPI_INT, 0, 77, local, MPI_STATUS_IGNORE);
19 MPI_Comm icomm, temp;
20 MPIX_Comm_shrink(partially_overlapped_own, &temp);
21 PMPI_Comm_free(&partially_overlapped_own);
22 MPI_Intercomm_create(temp, 0, MPI_COMM_NULL, 0, 50 + rank_group, &icomm);
23 MPI_Intercomm_merge(icomm, 0, &partially_overlapped_own);
24 PMPI_Comm_free(&icomm);
25 PMPI_Comm_free(&temp);
26 }
27 }
28 else return;
29 }
30 }

The main part of the code snippet above can be addressed within the MPI_Iprobe
function, which checks the presence of messages that are not received yet. If the pres-
ence of un-received messages is confirmed, the execution proceeds with the shrink of
the POV communicator and the creation of its substitute. The algorithm followed is
slightly different from the one exposed in section 4.3 because this one needs to shrink
the POV, while the other would base the creation of the new POV on local_comm. This

50

i
i

“output” — 2020/11/24 — 17:00 — page 51 — #59 i
i

i
i

i
i

4.5. The HierarComm implementation

design choice introduces a new shrink operation but solves problems arising from the
unnoticed presence of faults within local_comm. Another note can be made on the pa-
rameters of the MPI_Intercomm_create operation: the first two define the local
group and the leader and are correctly set to point to the master of local_comm; the
following two have wrong values, but it is acceptable since the master will perform a
different call and will provide correct values.

Among all the algorithms discussed before, the only one that received some changes
is the realization of the all-to-all operations, which encountered a problem that was not
addressed before. The code snippet below follows its functioning:

1 int HierarComm::perform_operation(AllToAll op) {
2 OneToAll half_barrier([] (int root, MPI_Comm comm_t, AdvComm* adv) -> int {
3 int rc;
4 rc = PMPI_Barrier(comm_t);
5 if(rc != MPI_SUCCESS)
6 replace_comm(adv, comm_t);
7 return rc;
8 }, false);
9

10 perform_operation(half_barrier, 0);
11

12 int local_rank; //Rank in local
13 MPI_Group global_group; //MPI_Group of global
14 int pivot_rank; //Lowest rank alive
15

16 MPI_Comm_rank(local, &local_rank);
17 if(local_rank == 0) {
18 int source = 0; //Lowest rank alive
19 MPI_Comm_group(global, &global_group);
20 MPI_Group_translate_ranks(global_group, 1, &source, get_group(), &pivot_rank);
21 PMPI_Bcast(&pivot_rank, 1, MPI_INT, 0, local);
22 }
23 else
24 PMPI_Bcast(&pivot_rank, 1, MPI_INT, 0, local);
25

26 int rc = perform_operation(op.decomp().first, pivot_rank);
27 rc |= perform_operation(op.decomp().second, pivot_rank);
28 return rc;
29 }

The algorithm discussed in section 4.2.4 is used to perform the operation, but with
a difference: the algorithm proposed to split the operation in an all-to-one plus a one-
to-all but did not specify the way to choose the root of the two parts. The choice of
the root is a very important point since providing a failed node may result in the im-
possibility to complete the execution (MPI_UNDEFINED problem). To be sure that the
choice is well made, we decided to introduce a half barrier that would fix the commu-
nicator before the execution of the choice, so that it is impossible to choose a failed
node. The difference between a half barrier and an MPI_Barrier is the constraints
it introduces: the first one ensures that all the processes entered the function, the second
adds also that no process may exit from the call before all entered. The choice towards
a half barrier is for simplicity and avoid a circular reference (the MPI_Barrier is
implemented as an all-to-all operation).

After the execution of the half barrier operation, there is the choice of the root pro-
cess. We decided to choose the lowest rank alive since this way we would need no
leader election protocol. The lowest rank alive will always be the process with rank
0 within the global_comm: this can be deduced from the considerations that the low-
est rank in each local_comm will be part of global_comm and that the ranks within

51

i
i

“output” — 2020/11/24 — 17:00 — page 52 — #60 i
i

i
i

i
i

Chapter 4. The Hierarchical Extension

global_comm are ordered like in the original communicator. After that, the operation
MPI_Group_translate_ranks finds which is the rank the application would pro-
vide if it was using that process as root, and that value is sent to all the processes within
each local_comm. After these last calls, all the processes in the network have all the in-
formation to perform the all-to-one and one-to-all calls, so they are performed with the
next two functions. The return values of the two parts will be combined and provided
as output.

The instances of the class HierarComm are created in another place, where there is
the function that has to decide how to support a newly created communicator. The func-
tion is called add_comm and is overloaded to support the various heirs of AdvComm.
The code snippet below shows the three versions:

1 bool add_comm(MPI_Comm comm, NoComm* source) {
2 MPI_Comm alias = source->get_alias();
3 int size;
4 MPI_Comm_size(alias, &size);
5 if(size > BORDER_SIZE)
6 return cur_comms->add_comm<HierarComm>(comm);
7 else
8 return cur_comms->add_comm<SingleComm>(comm);
9 }

10

11 bool add_comm(MPI_Comm comm, SingleComm* source) {
12 return cur_comms->add_comm<SingleComm>(comm);
13 }
14

15 bool add_comm(MPI_Comm comm, HierarComm* source) {
16 return cur_comms->add_comm<HierarComm>(comm);
17 }

The ending goal of these functions is to add a communicator in the global
Multicomm object (cur_comms): the function add_comm of cur_comms called
at the end of all the functions achieves exactly this purpose. add_comm is a template
function since it accepts the type of AdvComm to add within the Multicomm object.
The add_comm implemented in the code snippet shows how the decision is made:
if the communicator that originated the new one is part of a SingleComm, then the
new one will be a SingleComm and analogously for HierarComm. In the case of
NoComms, however, a different decision must be taken since NoComm does not support
fault tolerance: we decided to opt for HierarComm if the size of the new communica-
tor is above a certain threshold specified in the BORDER_SIZE macro. This decision
comes from the fact that HierarComm has been designed to tackle the poor scalability
of the shrink operation as described in section 4.1, so it does its best with big communi-
cators. Smaller communicators would suffer from the complexity of the operations and
do not gain much from the shrinking of smaller communicators, so it is better to opt for
SingleComm for them. The user is free to configure the BORDER_SIZE macro to fit
the configuration used.

4.6 Complexity analysis

In this section, we will cover the theoretical evaluation of our approach, showing how
the computational complexity of the algorithm followed during the repair is better than
the reparation of the entire communicator. In our analysis we will use the notation
S(x) to express the computational cost of the shrinking operation over x nodes: from

52

i
i

“output” — 2020/11/24 — 17:00 — page 53 — #61 i
i

i
i

i
i

4.6. Complexity analysis

section 4.1, we can assume that this function scales worse than linearly, but we do
not know how effectively it scales. We will also refer to N as the size of the entire
communicator andK as the maximum dimension of the local_comms. We also suppose
for simplicity that N is a multiple of K so that all the local_comms will have the same
dimension on creation.

This analysis will focus mainly on the impact of the shrink operation, and so it will
ignore the cost due to other calls: since those are taken directly from the MPI standard,
we can expect their impact to be optimized and, as a consequence, negligible.

The first version of the Legio library needed the whole communicator to shrink upon
failure. We can express the cost of the repair operation as S(N). On the hierarchical
version of Legio, however, things are different: the complexity changes depending
on whether the faulty process was a master or not. In the first case, as discussed in
section 4.3, we will have to shrink a local_comm (size K), two POV comms (size K +
1), and the global_comm (size N/K). In the second case, a shrink of the local_comm
is enough. We can summarize this analysis in the following formula:

RH(N,K) =

{
S(K) + 2S(K + 1) + S(N/K) if failed node is master

S(K) otherwise
(4.1)

The hierarchical approach is viable if the following statement is valid:

∃N0(∀N > N0(∃K|RH(N,K) < S(N))) (4.2)

To go further in the analysis, we need a way to combine the two cases discussed
above. If we state that faults have the same probability to happen in all the processes
involved then it is easy to obtain the combination: if there is a fault, the probability that
the failed node will be a master is (N/K)/N = 1/K, so we can assume that the other
case has probability (K − 1)/K. This way it is possible to combine the two values in
a single expression:

RH(N,K) =
1

K
(S(K) + 2S(K + 1) + S(

N

K
)) +

K − 1

K
S(K) =

= S(K) +
2

K
S(K + 1) +

S(N/K)

K
(4.3)

This analysis cannot go further without posing some hypotheses for the complexity
of the shrink operation. In the next two subsections, we will cover two hypotheses, and
results will be summarized in the third subsection

4.6.1 Linear-complexity case

This section will cover the case in which S(x) = cx for some c. The idea is to find
the value of K that minimizes the function as a function of N , and then check the
trend of the function analyzed where K is optimal. To obtain the optimal K value in
this configuration, we have to derive the function over the variable K and obtain when
the derivate is equal to 0. The result is obtained with the following steps (with the
assumptions that N and K are strictly positive):

53

i
i

“output” — 2020/11/24 — 17:00 — page 54 — #62 i
i

i
i

i
i

Chapter 4. The Hierarchical Extension

2 4 6 8 10

0

100

200

300

400

500

K

N

Figure 4.4: The plot represents the relation between N and K under the linear hypothesis.

δRH(N,K)

δK
= 0→

δ(S(K) + 2
K
S(k + 1) + S(N/K)

K

δK
= 0→

→
δ(cK + 2c(K+1)

K
+ cN

K2)

δK
= 0→

→ c(1− 2

K2
− 2

N

K3
) = 0→ 2

N

K3
=
K2 − 2

K2
→ N =

K(K2 − 2)

2
(4.4)

The result represents the relation between N and K in the optimal case, while it
expresses it the other way around. To obtain K as a function of N it is sufficient to
extract the inverse of that function (in the first quarter only), but this relation is enough
for us. If we substitute it in the original formula we can check if exists a K that makes
the assumption valid:

cK +
2c(K + 1)

K
+
cK(K2 − 2)

2K2
< c

K(K2 − 2)

2
→

→ 2K2 + 4K + 4 +K2 − 2 < K4 − 2K2 →
→ K4 − 5K2 − 4K − 2 > 0 (4.5)

Which is true for K > 3. So by this computation, we can say that the optimal
solution will lead to an improvement in the cost of repair if the optimal solution is
greater than 3 which happens when N is greater than about 11.

4.6.2 Quadratic-complexity case

This subsection will assume that S(x) = cx2 for some c. The procedure is the same
as in the previous subsection, but the results are slightly different. The result of the
derivation shows the following relation between N and K:

54

i
i

“output” — 2020/11/24 — 17:00 — page 55 — #63 i
i

i
i

i
i

4.6. Complexity analysis

2 4 6 8 10

0

20

40

60

80

100

120

K

N

Figure 4.5: The plot represents the relation between N and K under the quadratic hypothesis.

N =

√
2K2(2K2 − 1)

3
(4.6)

After the substitution it is possible to check the statement:

cK2 +
2

K
c(K + 1)2 +

c

K
(

√
2K2(2K2−1)

3

K
)2 < c

2K2(2K2 − 1)

3
→

→ K2 + 2K +
2

K
+ 4 +

2(2K2 − 1)

3K
<

2K2(2K2 − 1)

3
→

→ 3K3 + 6K2 + 6 + 12K + 4K2 − 2 <
4

3
K5 − 2

3
K3 →

→ 4

3
K5 − 11

3
K3 − 10K2 − 12K − 4 > 0 (4.7)

Which is true forK > 3. Analogously with the computation of the previous subsection,
we can state that the optimal solution will lead to an improvement in the cost of repair
if the optimal solution is greater than 3, which happens when N is greater than about
11 also in this case.

4.6.3 Conclusions

The two subsections above showed the complexity effectiveness of the hierarchical
approach developed in this chapter. We tested only those cases because we expect the
behaviour of the real shrink operation to be somewhere in the middle of the two cases,
but we cannot obtain it without further experiments.

It shall be remarked that this complexity analysis covers only the repair phase: the
normal operations will take probably more time in the hierarchical approach than in
the other one because of the needed propagation. Nonetheless, the reduction of the
repair time may make the hierarchical approach viable, and as a consequence, it may
be considered by the user when configuring Legio for its execution environment.

55

i
i

“output” — 2020/11/24 — 17:00 — page 56 — #64 i
i

i
i

i
i

i
i

“output” — 2020/11/24 — 17:00 — page 57 — #65 i
i

i
i

i
i

CHAPTER5
Experimental evaluation

This chapter contains the explanation of all the experiments done to validate our so-
lution. The chapter is structured as follows: Section 5.1 will show the purpose of the
experiments, illustrating them and describing the HPC system that will host them. From
Section 5.2 the results of the experiments will be shown.

5.1 Experimental setup

Solutions for the HPC field must be not only functionally working but also efficient.
This is because the dimension of the systems will greatly increase the effect of ineffi-
ciencies. While the functional properties has been checked during the implementation
of the libraries, the efficiency cannot be evaluated before the development is complete.

To check the efficiency of our solution we evaluated the increase of execution times
when using our libraries. To better visualize these increases, we measured also the
overhead per MPI-call under various execution configurations. Given the requirements
of the Legio library presented in section 3.1, we want these overheads to be as much
contained as possible, ideally negligible.

We conducted these experiments on the Marconi100 cluster at CINECA, featur-
ing nodes with 2 x IBM POWER9 AC922 16 cores 3.1 GHz processors and 256 GB
of RAM. In all the experiments done we adopted an MPI configuration featuring 32
processes per node, 1 process per physical core, to better exploit the features of the
hardware but leaving space for the presence of additional threads spawned by the ap-
plications.

All the configuration parameters of the Legio prototypes were left to their default
values, except for the maximum size of the local_comms: we set it to the closest opti-
mal value following the relation obtained with the linear complexity hypothesis (Equa-

57

i
i

“output” — 2020/11/24 — 17:00 — page 58 — #66 i
i

i
i

i
i

Chapter 5. Experimental evaluation

1k 2k 4k 8k16
k
32

k
64

k
12

8k
25

6k
51

2k 1M 2M 4M 8M16
M

102

103

104

Packet size [B]

Ti
m

e
[µ
s]

Legio
Legio H

ULFM only

Figure 5.1: Execution time to complete a MPI_Bcast by varying the message size. Each line represents
a different MPI implementation.

tion 4.4).
The experiments can be divided into two groups, different for their purpose and the

information they produce: the first ones involve the per-operation measurement of the
overhead introduced, while the second group consists of more general applications in
which we will analyze the overall impact of the library. For the first group, we used
mpiBench [4] to measure the overhead of the library when increasing the communica-
tion load and we used an ad-hoc code to evaluate the same parameters when increasing
the network size. We will explore them in the next two Sections.

5.2 mpiBench experiments

mpiBench [4] is a program developed at the Lawrence Livermore National Library that
measures the time needed to complete various MPI calls when increasing the dimension
of the data exchanged. To do so it measures the time needed to complete a single call
and collects the measurements done on each process, computing average, minimum
and maximum. We used it to evaluate the impact of our libraries on the MPI_Bcast
and MPI_Reduce operations. The experiments were run on a 32 processes network
and in three configurations: 1) the Legio implementation, 2) the hierarchical solution,
3) the application compiled with ULFM without additional libraries.

The results shown in Figures 5.1 and 5.2 display the evolution of the execution times
while increasing the packet size. Aside from some noise present in the tests with small
packet size, it’s possible to see the same behaviour in the late ones: this implies that
our solutions do not damage the scalability of the MPI library with the increase of the
message size.

5.3 Overhead measurement

To measure the overhead introduced by our solution in the MPI implementation we
used some ad-hoc code. The following code snippet contains a part of that code, which

58

i
i

“output” — 2020/11/24 — 17:00 — page 59 — #67 i
i

i
i

i
i

5.3. Overhead measurement

1k 2k 4k 8k16
k
32

k
64

k
12

8k
25

6k
51

2k 1M 2M 4M 8M16
M

101

102

103

104

105

Packet size [B]

Ti
m

e
[µ
s]

Legio
Legio H

ULFM only

Figure 5.2: Execution time to complete a MPI_Reduce by varying the message size. Each line represents
a different MPI implementation.

evaluates the overhead of the MPI_Bcast operation.
1 int value = rank;
2 double start = MPI_Wtime();
3 for(int i = 0; i < MULT; i++)
4 MPI_Bcast(&value, 1, MPI_INT, 0, MPI_COMM_WORLD);
5 double end = MPI_Wtime();
6

7 print_to_file(end-start, rank, size, file_p, "bcast");
8

9 value = rank;
10 start = MPI_Wtime();
11 for(int i = 0; i < MULT; i++)
12 PMPI_Bcast(&value, 1, MPI_INT, 0, MPI_COMM_WORLD);
13 end = MPI_Wtime();
14

15 print_to_file(end-start, rank, size, file_p, "bcast original");

From the code snippet, it is possible to see that the structure of the code is simple:
an MPI operation is repeated many times, and then results are extracted. The extraction
is done in the print_to_file function, that will compute the average of the results
and will write it into a csv file. The same operation is then repeated again with the same
parameters: the only difference is the use of the PMPI function, which circumvents all
the code added by the library. By comparing the two times, it is possible to quantify
the overhead introduced by our solution. We used this experiment also to measure the
repair time in case of fault. The following code snippet shows the part that measures
the repair time.

1 //...
2 PMPI_Barrier(MPI_COMM_WORLD);
3

4 if(rank == 0)
5 raise(SIGINT);
6

7 start = MPI_Wtime();
8 MPI_Barrier(MPI_COMM_WORLD);
9 end = MPI_Wtime();

10

11 print_to_file(end-start, rank, size-1, file_p, "repair");

59

i
i

“output” — 2020/11/24 — 17:00 — page 60 — #68 i
i

i
i

i
i

Chapter 5. Experimental evaluation

32 64 128 256

0

0.1

0.2

Network Size [processes]

O
ve

rh
ea

d[
s]

Legio Legio H

Figure 5.3: MPI_Bcast overhead by varying the network size. Each measure accumulate 100 repeti-
tions of the operation.

32 64 128 256
0.4

0.6

0.8

1

1.2

·10−2

Network Size [processes]

O
ve

rh
ea

d[
s]

Legio Legio H

Figure 5.4: MPI_Reduce overhead by varying the network size. Each measure accumulate 100 repe-
titions of the operation.

12

13 if(rank == 2)
14 raise(SIGINT);
15

16 start = MPI_Wtime();
17 MPI_Barrier(MPI_COMM_WORLD);
18 end = MPI_Wtime();
19

20 print_to_file(end-start, rank, size-2, file_p, "repair again");

The SIGINT allows us to inject a fault in the execution: by not defining a signal
handler, the execution just stops. The following MPI_Barrierwill find a faulty com-
municator and will repair it. By measuring the time needed to complete the operation
we can quantify the time needed to repair the communicator. The whole measurement
is repeated: this way it is possible to measure both a master and non-master fail in the
hierarchical configuration.

Figures 5.3, 5.4, and 5.5 show the results obtained with these experiments, showing
that the overheads are limited (values refer to 100 calls). Figure 5.6 shows the results
of the repair time analysis: from that, it’s possible to see that the non-linearity of the
shrink theorized by [17] is not present in our tests, and this limits the testability of
the hierarchical approach. Nonetheless, the repair times are in the order of seconds,
making them acceptable. We checked also the overhead for file operations: those are
more influenced by the load of the file-system rather than other aspects, so we omit
those results for simplicity.

60

i
i

“output” — 2020/11/24 — 17:00 — page 61 — #69 i
i

i
i

i
i

5.4. Embarrassingly Parallel Applications

32 64 128 256

0.5

1

1.5

2
·10−2

Network Size [processes]

O
ve

rh
ea

d[
s]

Legio Legio H

Figure 5.5: MPI_Barrier overhead by varying the network size. Each measure accumulate 100
repetitions of the operation.

32 64 128 256

2

4

Network Size [processes]

O
ve

rh
ea

d[
s]

Legio Legio H master fault Legio H non-master fault

Figure 5.6: Communicator repair time by varying the number of processes involved in the operation.

5.4 Embarrassingly Parallel Applications

The second group contains experiments run on two embarrassingly parallel applica-
tions: EP from NAS parallel benchmarks [9] and a Molecular Docking miniapp [1].

The first experiment generates independent Gaussian random variates using the
Marsaglia polar method. We measured the time needed to complete 40 consecutive
executions with the “C” size workload. The second experiment has been executed on
the skeleton of a molecular docking application [1], which estimates the strength of the
interaction between two molecules. In this context, we have a target molecule and a
database of 113K smaller molecules that we need to evaluate to find the most promis-
ing ones. Measurements are repeated 10 times and compared with the result obtained
using only ULFM. The experiments were done on networks of different sizes, featur-
ing 32, 64, 128, and 256 processes. The results of these executions can be seen in
Figures 5.7 for the first experiment: the distributions displayed in the box-plots show
that the overhead introduced by the library is negligible.

The second experiment has been run in the same configurations. The results can be
seen in Figure 5.8, confirming that the impact of our solution is acceptable.

61

i
i

“output” — 2020/11/24 — 17:00 — page 62 — #70 i
i

i
i

i
i

Chapter 5. Experimental evaluation

32 64 128 256

50

100

Network size [processes]

Ti
m

e
(s

)

Figure 5.7: Execution time distribution of the EP benchmark by varying the number of processes in-
volved and the MPI implementation.

32 64 128 256

0.5

1

·104

Network size [processes]

Ti
m

e
(s

)

Figure 5.8: Execution time distribution of the molecular docking application by varying the number of
processes involved and the MPI implementation.

62

i
i

“output” — 2020/11/24 — 17:00 — page 63 — #71 i
i

i
i

i
i

CHAPTER6
Future work

THIS chapter will discuss all the planned evolutions of the Legio library. Sec-
tion 6.1 will cover the changes that are planned on the first two versions already
developed, while section 6.2 will cover the study for a new evolution of the

framework that will introduce C/R.

6.1 Legio evolutions

The effort we made on the first two solutions was meant to introduce some fundamental
concepts that could be testable and show the potential of this solution. We did not
focus on the support of all the MPI calls, but we limited our effort to the most used
ones. We have also performed a study on all the functions left to be supported: some of
them do not need any change and can be viewed as already supported, some require a
new solution (like a way to handle MPI_Request structures for asynchronous calls),
others are very complex to support. A future effort can introduce the support for those
calls to make the framework compatible with even more applications.

Another effort could develop the interface exposed to the application: up to now it is
very simple and contains only two functions that can tell to the application the number
of failed processes and their rank in MPI_COMM_WORLD, but it could include more
functions. The idea behind this interface is to allow new applications to provide and
gather valuable information to and from the Legio framework: while the application
is not forced to do so, it can gain a lot in terms of performance and knowledge of the
status of the network. Among the possible introductions within the interface, we think
that execution blocks are good features: they allow the user to specify a set of functions
to be called as single, and error checking is performed only after the end of those.
This way we avoid performing error checking too many times, obtaining an execution

63

i
i

“output” — 2020/11/24 — 17:00 — page 64 — #72 i
i

i
i

i
i

Chapter 6. Future work

speedup.

6.2 Legio with backline

This section discusses a bigger development planned for the library that would intro-
duce C/R. The purpose of this evolution is to give the user the possibility to choose
whether to perform fault resiliency or fault recovery: in some embarrassingly parallel
applications, an approximate result is not enough so we need to recover from faults and
ensure always correct completion.

In section 2.4.3 we discussed the main efforts that tried to introduce C/R in an MPI
application. The distinction between application-level and system-level is very easy to
spot and characterizes the efforts produced. While system-level C/R has been preferred
during the years due to its simplicity and easy integration with the workload managers
present, the rise of ULFM and the creation of all the frameworks that base on it shifted
back the attention towards application-level C/R, due to its better efficiency. The main
distinction between application-level and system-level C/R resides in the need for in-
structions: the first cannot obtain what to save and when on its own and must rely on the
user to call its functions, the second can obtain the information by inferring them from
the executing environment and, as a consequence, can work without big modifications
in the source code.

Since all this thesis followed the transparency constraint, it is easy to see the direc-
tion we were planning to adopt: system-level C/R, a different approach from all the
already developed frameworks. In theory, adapting our code to the C/R framework
seems easy: the Legio library can already detect the presence of a fault and repair the
communication, it just has to introduce a function to recreate the failed process from
the last checkpoint. The only steps left are the choice of the C/R framework and its
integration.

Before doing so, it is better to formalize the needed requirements of the C/R frame-
work we will need, to be able to identify the perfect solution more easily. The first
requirement is that it should operate at the system-level, as we discussed earlier. A sec-
ond constraint is that it should save the data of each process separately: if this condition
applies, then it is possible to continue the execution on all the non-faulty processes and
restart only the failed one, achieving local recovery. Moreover, global recovery with
C/R would not innovate since a solution with pure system-level C/R can obtain the
same result: upon fault, the framework recognises the problem and restarts the execu-
tion, and the application does not need to do anything. To introduce innovation, the
constraint on the separation of the processes data must be met.

Other constraints are less strict, such as the ability to initiate a checkpoint within
the application and the avoidance of frameworks based on kernel-level code. These
constraints are desirable but their absence can be accepted by adapting our solution.

After pointing out all these concepts, it is easy to see that there are not many frame-
works that fit our constraints. The one that comes the closest is DMTCP [8], which
introduces system-level C/R without the need for kernel-level code. It also supports
a plug-in to perform checkpoint creation calls from the code of the application. The
problem with DMTCP is the absence of support for the separation of the checkpoint
data: the C/R framework is designed for various distributed applications, not only the

64

i
i

“output” — 2020/11/24 — 17:00 — page 65 — #73 i
i

i
i

i
i

6.2. Legio with backline

MPI-based ones. The way the framework supports distributed application is by keep-
ing track of all the processes and threads generated by the starting program: to say
that with the terms used by DMTCP developers, "DMTCP is contagious". This means
that, rather than introducing support from MPI digging deep into its implementation,
DMTCP can just checkpoint the mpirun application, which will create the processes
that will become the MPI ones. DMTCP does not care about the division between the
processes since it handles the execution as a unique homogeneous entity. This approach
is problematic for us.

One of the latest evolution of the DMTCP framework is MANA, short for MPI
Agnostic Network Agnostic [18]. The idea behind MANA is to improve DMTCP,
especially for MPI-based applications, allowing them to be restarted using a different
version of MPI and a different network topology. This new feature is very desirable
since it allows us to stop the execution on a cluster and resume it on another, without
compatibility problems.

Another interesting point of MANA is the way they achieve MPI agnosticism since
interoperability across MPI implementations is an unexplored field. The lack of atten-
tion towards that comes from the fact that so many MPI implementations exist, and
it would be hard to support them all. The solution MANA adopted is simple and yet
very interesting: the framework does not save details about the MPI implementation
but limits itself to keeping track of all the produced MPI structures (like MPI_Comm,
MPI_Group, etc.). So they split the process space into two halves, where the topmost
will contain the application and will be saved to the disk, while the second will hold the
libraries and the frameworks needed and will be discarded. Upon restart, the second
part is reconstructed and the first half is loaded, so the execution can proceed even with
another MPI implementation.

To be able to migrate the processes from a network configuration to another, check-
points are saved split: there will be one file per process. This is exactly the feature we
need for our solution, and it is also the only effort based on system-level C/R to have it.
Moreover, MANA has been developed as a DMTCP plug-in, so it will contain all the
other features of that C/R framework.

We contacted the researchers that produced the MANA framework, and we dis-
cussed our idea of integration within Legio. From our conversation we could take some
conclusions:

• MANA has been designed and tested for the Cori supercomputer at the National
Energy Research Scientific Computing Center (NERSC). They worked mainly
with two implementations of MPI, Intel MPI, and Cray MPICH. Our attempts to
make it work with ULFM (based on OpenMPI) were not successful due to some
compatibility problems. MANA is still relatively new and it is far from being
production-ready, it will need some more development;

• The integration of MANA within our Legio framework is not seamless: MANA
expects all the processes to restart in presence of faults, while our solution was
planning to achieve local recovery, removing the need for all the processes to
restart.

• Legio does not need all the features introduced by MANA, but just a subset of
them: one of the biggest difficulties of the MANA implementation is being able

65

i
i

“output” — 2020/11/24 — 17:00 — page 66 — #74 i
i

i
i

i
i

Chapter 6. Future work

to recreate the process after a restart in a way that by loading the checkpoint the
execution can continue. Legio does not need that part since the failed process
checkpoint will be loaded on a node created with the MPI_Comm_spawn func-
tion.

• The development of our solution is feasible, but takes more time than expected
since we will have to deal with low-level code: MANA digs deep into memory
to obtain the data it needs to run (like the position of the blocks in memory, their
access privileges, open files, etc.).

The innovations introduced with this last evolution could improve the scope of the
Legio framework: it will be possible to support applications more complex than em-
barrassingly parallel ones since the errors will not cause other nodes to fail. This adap-
tation, however, increases the complexity of the evolution because it introduces more
communication that must be handled at restart time.

66

i
i

“output” — 2020/11/24 — 17:00 — page 67 — #75 i
i

i
i

i
i

CHAPTER7
Conclusion

This thesis presents Legio, a framework designed to offer resiliency to embarrassing
parallel MPI applications. The work makes the absence of intrusiveness in the target
application one of the key elements. Indeed, the library makes use of the PMPI inter-
face to wrap the MPI call and to implement all the required actions to manage failed
processes. ULFM has been used as a base for the implementation of Legio.

In the thesis, an extension towards a hierarchical implementation has been done to
reduce the overhead of the repair process in case of a large number of nodes involved.
Within the document, also a theoretical analysis of when to apply the hierarchical ver-
sion has been discussed.

The experimental evaluations considering both per-MPI-call and application-level
evaluations demonstrate the efficiency of the implemented framework, proving how
the solution can be used in embarrassingly parallel applications without affecting the
overall performance.

Overall, the problem of dealing with faults in an MPI application is still complex
and needs additional efforts. The proposed solution is very specific both in the target
application and the recovery policy (fault resiliency), and it does not apply to a generic
MPI application. Nonetheless, embarrassingly parallel applications are intrinsically
scalable and are compatible with the future exascale architectures, and in those systems,
fault tolerance will be even more important.

67

i
i

“output” — 2020/11/24 — 17:00 — page 68 — #76 i
i

i
i

i
i

i
i

“output” — 2020/11/24 — 17:00 — page 69 — #77 i
i

i
i

i
i

List of Figures

2.1 Patterns of the MPI collective calls. 8
2.2 Behaviour of the MPI_Comm_split call. 9
2.3 Inter-communicators behaviour. The orange and blue rectangles repre-

sent the local groups and the green one connects the two leaders. 10
2.4 The image shows the way MPI_Get and MPI_Put operate. 12
2.5 On the left, two component in series. On the right, two components in

parallel. 15

3.1 The figure shows the evolution of ranks in the substitute communicator
with the insurgence of faults. The X represents the MPI_UNDEFINED
value. 27

3.2 The figure shows that may rise with the function MPI_Scatter in
presence of faults. 30

3.3 The figure shows the chages to be introduced to support multiple com-
municators. Changes with the window operations are omitted since they
are analogous to the file ones. 36

4.1 The figure shows the structure of our hierarchical solution. Processes
are depicted as small circles containing their rank in the entire commu-
nicator. Each rounded square represents a communicator. The black one
is the entire communicator. The orange ones are the local_comms, while
the green one is the global_comm. 41

4.2 Structure of the hierarchical solution with the addition of POV commu-
nicators, represented as the red dashed hexagons. For simplicity only
the POV containing the process with rank 3 are displayed. 46

69

i
i

“output” — 2020/11/24 — 17:00 — page 70 — #78 i
i

i
i

i
i

List of Figures

4.3 Overview of the repair procedure when a master fails. The communi-
cators and processes follows the notation rules of the previous images.
The red cross highlights the failed node. The exclamation marks high-
light the nodes that notice the failure. The arrows that originate from a
process represent the inclusion of the process in a communicator. The
arrow color represents the target communicator. The arrow border color
represents the communicator used to perform the operation. The slim
black arrow represents the propagation of the failure notification. 48

4.4 The plot represents the relation between N and K under the linear hy-
pothesis. 54

4.5 The plot represents the relation between N and K under the quadratic
hypothesis. 55

5.1 Execution time to complete a MPI_Bcast by varying the message size.
Each line represents a different MPI implementation. 58

5.2 Execution time to complete a MPI_Reduce by varying the message size.
Each line represents a different MPI implementation. 59

5.3 MPI_Bcast overhead by varying the network size. Each measure ac-
cumulate 100 repetitions of the operation. 60

5.4 MPI_Reduce overhead by varying the network size. Each measure
accumulate 100 repetitions of the operation. 60

5.5 MPI_Barrier overhead by varying the network size. Each measure
accumulate 100 repetitions of the operation. 61

5.6 Communicator repair time by varying the number of processes involved
in the operation. 61

5.7 Execution time distribution of the EP benchmark by varying the number
of processes involved and the MPI implementation. 62

5.8 Execution time distribution of the molecular docking application by vary-
ing the number of processes involved and the MPI implementation. . . 62

70

i
i

“output” — 2020/11/24 — 17:00 — page 71 — #79 i
i

i
i

i
i

List of Tables

2.1 Classification of the main related works. In italics efforts using ULFM. 20

71

i
i

“output” — 2020/11/24 — 17:00 — page 72 — #80 i
i

i
i

i
i

i
i

“output” — 2020/11/24 — 17:00 — page 73 — #81 i
i

i
i

i
i

Bibliography

[1] Exscalate4cov - exascale smart platform against pathogens. http://www.exscalate4cov.eu/.

[2] Marconi100, the new accelerated system. https://www.hpc.cineca.it/hardware/marconi100.

[3] Mpi: A message-passing interface standard, version 3.1. https://www.mpi-forum.org/docs/mpi-3.1/mpi31-
report.pdf.

[4] mpibench: Mpi benchmark to test and measure collective performance. https://github.com/LLNL/mpiBench.

[5] Summit, oak ridge national laboratory’s 200 petaflop supercomputer. https://www.olcf.ornl.gov/olcf-
resources/compute-systems/summit/.

[6] Julien Adam, Jean-Baptiste Besnard, Allen D Malony, Sameer Shende, Marc Pérache, Patrick Carribault, and
Julien Jaeger. Transparent high-speed network checkpoint/restart in mpi. In Proceedings of the 25th European
MPI Users’ Group Meeting, pages 1–11, 2018.

[7] Saman Amarasinghe, Dan Campbell, William Carlson, Andrew Chien, William Dally, Elmootazbellah El-
nohazy, Mary Hall, Robert Harrison, William Harrod, Kerry Hill, et al. Exascale software study: Software
challenges in extreme scale systems. DARPA IPTO, Air Force Research Labs, Tech. Rep, pages 1–153, 2009.

[8] Jason Ansel, Kapil Arya, and Gene Cooperman. Dmtcp: Transparent checkpointing for cluster computations
and the desktop. In 2009 IEEE International Symposium on Parallel & Distributed Processing, pages 1–12.
IEEE, 2009.

[9] David Bailey, Tim Harris, William Saphir, Rob Van Der Wijngaart, Alex Woo, and Maurice Yarrow. The
nas parallel benchmarks 2.0. Technical report, Technical Report NAS-95-020, NASA Ames Research Center,
1995.

[10] Wesley Bland, Aurelien Bouteiller, Thomas Herault, George Bosilca, and Jack Dongarra. Post-failure recovery
of mpi communication capability: Design and rationale. The International Journal of High Performance
Computing Applications, 27(3):244–254, 2013.

[11] Lyndon Clarke, Ian Glendinning, and Rolf Hempel. The mpi message passing interface standard. In Program-
ming environments for massively parallel distributed systems, pages 213–218. Springer, 1994.

[12] Kiril Dichev, Kirk Cameron, and Dimitrios S Nikolopoulos. Energy-efficient localised rollback via data flow
analysis and frequency scaling. In Proceedings of the 25th European MPI Users’ Group Meeting, pages 1–11,
2018.

[13] Jack Dongarra, Pete Beckman, Patrick Aerts, Frank Cappello, Thomas Lippert, Satoshi Matsuoka, Paul
Messina, Terry Moore, Rick Stevens, Anne Trefethen, et al. The international exascale software project: a
call to cooperative action by the global high-performance community. The International Journal of High
Performance Computing Applications, 23(4):309–322, 2009.

[14] Peng Du, Aurelien Bouteiller, George Bosilca, Thomas Herault, and Jack Dongarra. Algorithm-based fault
tolerance for dense matrix factorizations. Acm sigplan notices, 47(8):225–234, 2012.

[15] Graham E Fagg, Antonin Bukovsky, and Jack J Dongarra. Harness and fault tolerant mpi. Parallel Computing,
27(11):1479–1495, 2001.

73

i
i

“output” — 2020/11/24 — 17:00 — page 74 — #82 i
i

i
i

i
i

Bibliography

[16] Marc Gamell, Daniel S Katz, Hemanth Kolla, Jacqueline Chen, Scott Klasky, and Manish Parashar. Exploring
automatic, online failure recovery for scientific applications at extreme scales. In SC’14: Proceedings of the
International Conference for High Performance Computing, Networking, Storage and Analysis, pages 895–
906. IEEE, 2014.

[17] Marc Gamell, Keita Teranishi, Michael A Heroux, Jackson Mayo, Hemanth Kolla, Jacqueline Chen, and
Manish Parashar. Local recovery and failure masking for stencil-based applications at extreme scales. In
SC’15: Proceedings of the International Conference for High Performance Computing, Networking, Storage
and Analysis, pages 1–12. IEEE, 2015.

[18] Rohan Garg, Gregory Price, and Gene Cooperman. Mana for mpi: Mpi-agnostic network-agnostic transpar-
ent checkpointing. In Proceedings of the 28th International Symposium on High-Performance Parallel and
Distributed Computing, pages 49–60, 2019.

[19] William Gropp and Ewing Lusk. Fault tolerance in message passing interface programs. The International
Journal of High Performance Computing Applications, 18(3):363–372, 2004.

[20] Paul H Hargrove and Jason C Duell. Berkeley lab checkpoint/restart (blcr) for linux clusters. In Journal of
Physics: Conference Series, volume 46, page 494, 2006.

[21] Umar Kalim, Mark K Gardner, and Wu Feng. A non-invasive approach for realizing resilience in mpi. In
Proceedings of the 2017 Workshop on Fault-Tolerance for HPC at Extreme Scale, pages 1–8, 2017.

[22] M Farrukh Khan and Raymond A Paul. Pragmatic directions in engineering secure dependable systems. In
Advances in Computers, volume 84, pages 141–167. Elsevier, 2012.

[23] Nuria Losada, Leonardo Bautista-Gomez, Kai Keller, and Osman Unsal. Towards ad hoc recovery for soft
errors. In 2018 IEEE/ACM 8th Workshop on Fault Tolerance for HPC at eXtreme Scale (FTXS), pages 1–10.
IEEE, 2018.

[24] Nuria Losada, George Bosilca, Aurélien Bouteiller, Patricia González, and María J Martín. Local rollback
for resilient mpi applications with application-level checkpointing and message logging. Future Generation
Computer Systems, 91:450–464, 2019.

[25] Nuria Losada, Iván Cores, María J Martín, and Patricia González. Resilient mpi applications using an
application-level checkpointing framework and ulfm. The Journal of Supercomputing, 73(1):100–113, 2017.

[26] Adam Moody, Greg Bronevetsky, Kathryn Mohror, and Bronis R De Supinski. Design, modeling, and eval-
uation of a scalable multi-level checkpointing system. In SC’10: Proceedings of the 2010 ACM/IEEE Inter-
national Conference for High Performance Computing, Networking, Storage and Analysis, pages 1–11. IEEE,
2010.

[27] Stefan Pauli, Peter Arbenz, and Christoph Schwab. Intrinsic fault tolerance of multilevel monte carlo methods.
Journal of Parallel and Distributed Computing, 84:24–36, 2015.

[28] Rodrigo Schmidt, Islene C Garcia, Fernando Pedone, and Luiz Eduardo Buzato. Optimal asynchronous
garbage collection for rdt checkpointing protocols. In 25th IEEE International Conference on Distributed
Computing Systems (ICDCS’05), pages 167–176. IEEE, 2005.

[29] Faisal Shahzad, Jonas Thies, Moritz Kreutzer, Thomas Zeiser, Georg Hager, and Gerhard Wellein. Craft:
A library for easier application-level checkpoint/restart and automatic fault tolerance. IEEE Transactions on
Parallel and Distributed Systems, 30(3):501–514, 2018.

[30] Nawrin Sultana, Anthony Skjellum, Ignacio Laguna, Matthew Shane Farmer, Kathryn Mohror, and Murali
Emani. Mpi stages: Checkpointing mpi state for bulk synchronous applications. In Proceedings of the 25th
European MPI Users’ Group Meeting, pages 1–11, 2018.

[31] Keita Teranishi and Michael A Heroux. Toward local failure local recovery resilience model using mpi-ulfm.
In Proceedings of the 21st european mpi users’ group meeting, pages 51–56, 2014.

[32] Rajeev Thakur and William Gropp. Open issues in mpi implementation. In Asia-Pacific Conference on Ad-
vances in Computer Systems Architecture, pages 327–338. Springer, 2007.

74

	Introduction
	Background
	MPI Background
	General setup and point-to-point communication
	Collective communication
	Groups management
	Communicator management
	File operations
	Remote Memory Access
	Error handling

	Fault Tolerance Background
	Faults, Errors and Failures
	Dependability analysis
	Reliability Block Diagrams
	HPC use case analysis
	Dependability solutions for HPC

	ULFM Background
	ULFM standard

	State of The Art
	Classification
	Most relevant efforts
	Pure C/R solutions

	The Legio framework design and architecture
	Requirements
	Preliminary analyses
	The barrier and Broadcast support
	Point-to-point operations and other collectives
	The scatter and gather support
	One-Sided Communication
	The ComplexComm class
	One-Sided Communication functions

	File operations
	Multiple communicators support
	ComplexComm evolution
	The Multicomm class
	Communicator management operations

	The Hierarchical Extension
	Analysis of the problem
	Our hierarchical solution
	one-to-one operations
	one-to-all operations
	all-to-one operations
	all-to-all operations
	File operations
	Window operations and collective-window operations
	comm-creator and local-only operations
	Positional calls

	Reparation procedure
	Conventions and concepts
	Reparation procedure

	Preliminary refactoring steps
	The HierarComm implementation
	Complexity analysis
	Linear-complexity case
	Quadratic-complexity case
	Conclusions

	Experimental evaluation
	Experimental setup
	mpiBench experiments
	Overhead measurement
	Embarrassingly Parallel Applications

	Future work
	Legio evolutions
	Legio with backline

	Conclusion
	Bibliography

