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Abstract

Coherent anti-Stokes Raman Scattering (CARS) microscopy is a label-free vibrational
imaging technique delivering chemical maps of cells and tissues. With respect to Spon-
taneous Raman (SR), CARS provides several orders of magnitude higher speed by
exploiting third-order nonlinear optical processes occurring between the sample and
the impinging electric fields. The simplest CARS implementation employs two nar-
rowband picosecond pulses (pump and Stokes) that are spatiotemporally superimposed
at the sample plane to probe a single vibrational mode. Broadband CARS (BCARS)
combines narrowband pump pulses with broadband Stokes pulses to record broad vi-
brational spectra, thus combining the high acquisition speed of single-frequency CARS
with the chemical specificity of SR. Despite many improvements in the last decade,
BCARS microscopes struggle to work in the so-called “fingerprint” spectral region
(400-1800 cm−1), because it features a weaker Raman response than the high-frequency
CH-stretching region (2800-3100 cm−1).

Here, we demonstrate a novel approach to BCARS to collect the full Raman spec-
trum (400-3100 cm−1). The experimental setup starts with a 2-MHz repetition rate
femtosecond fiber laser centered at 1035 nm. The system delivers high energy (≈ 2µJ)
pulses used for generating sub-20 fs broadband Stokes pulses (1050-1600 nm) by
white-light continuum in a bulk YAG crystal, a compact and alignment-insensitive
technique. Combining them with 3.7 ps narrowband pump pulses, we can generate
CARS signal with high spectral resolution (< 10 cm−1) in the entire Raman window
exploiting both two-color and three-color excitation mechanisms. The reduced repeti-
tion rate unlocks two other key advantages of the system. On the one hand, it entails
a longer delay (0.5 µs) between two consecutive pulses, enabling thermal energy dis-
sipation; on the other hand, for a given average power limited by sample degradation,
higher pulse energies results in higher peak intensities, generating a stronger CARS
signal thus increasing the signal-to-noise ratio and/or the acquisition speed. The sys-
tem is equipped with a homemade transmission microscope to image cells and tissues
at high-speed (<3 ms) with a large field of view (>800×800 µm2). Using a novel post-
processing pipeline, we deliver high-quality chemical maps, distinguishing the main
chemical compounds in cancer cells and identifying cancer in liver slices of mouse
models, unveiling the path for applications in histopathological settings.
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Summary

This thesis reports the main achievements in the experimental Ph.D. research activity
I carried out from 2019 to 2022 in the VIBRA lab of Politecnico di Milano, led by
professor Dario Polli.

In these years, I contributed to the advances in BCARS microscopy by designing
and constructing a BCARS microscopy system and by developing a post-processing
pipeline for the analysis of the collected hyperspectral data.

Chapter 1 provides an overview of the theory behind coherent Raman scattering
processes, reviewing the main BCARS implementations. Chapter 2 reports the tools
needed for white-light continuum generation in bulk media, describing the nonlinear
processes involved. Chapter 3 illustrates the architecture of the BCARS experimental
setup and points out the advantages of the system with respect to other setups described
in the literature. This chapter continues with: a full characterization of the pump and
Stokes optical sources; a detailed description of the home-made microscopy unit; a
description of the detection system.

Chapter 4 deals with the acquisition and post-processing methods employed for
CARS spectroscopy and imaging. After a discussion about the design of the experi-
ments, the chapter focuses on the post-processing pipeline needed for the analysis of
the BCARS hyperspectral data. This part establishes a strong link between CRS appli-
cations and deep learning-based solutions. Indeed, it reports two novel convolutional
neural networks used for the denoising of the CARS spectra and for the non-resonant
background removal. The chapter also describes the main numerical algorithms com-
monly used for CARS data post-processing that I adapted from the literature. Eventu-
ally, it concludes with the main spectral unmixing methods employed in the thesis for
delivering chemical maps of heterogeneous biological samples.

Chapter 5 reports the main results obtained with the BCARS experimental setup,
showing BCARS spectra of solvents and chemical maps of plastic beads and biological
samples, such as cells and tissues.

I believe this work constitutes a novel, compact, and robust methodology for BCARS
imaging delivering high-chemically informative maps of cells and tissues in a label-free
and non-destructive way. I envisage the BCARS microscopy platform will be used for
biomedical applications, especially in the field of cancer research.
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CHAPTER1
Coherent raman scattering microscopy

1.1 Introduction

Optical microscopy [1] is a powerful tool for life sciences, thanks to its capability of
imaging cells and tissues at the micrometer scale. Among the optical microscopy tech-
niques, the most common ones to study biological samples are fluorescence microscopy
and vibrational microscopy.

Fluorescence microscopy is well known for its superb sensitivity guaranteed by the
use of fluorescence markers, which may be endogenous (e.g. fluorescent proteins) [2]
or exogenous (e.g. dyes or semiconductor quantum dots) [3], that are added to cells
or tissues. However, the use of external tags may lead to sample perturbation and may
alter the biological functions of the investigated specimen. Moreover, photobleach-
ing is a phenomenon that must be taken into account when dealing with fluorescent
markers, since it prevents the possibility of imaging many times the same portion of
the sample. Eventually, fluorescence microscopy provides little information especially
when the goal is to distinguish many biomolecules in the sample. Indeed, fluorescence
microscopy is impeded by the "color barrier," which limits the number of distinguish-
able structures to a maximum of approximately five since the employed fluorescent
proteins feature broad emission bandwidths that overlap among them [4–6]. These are
the reasons why many problems in life sciences call for label-free techniques that do
not require the use of fluorescent markers, preventing sample perturbation and/or al-
teration, enabling signal stability, and distinguishing a larger number of structures in
highly heterogeneous biological samples.

Vibrational microscopy [7] overcomes these hurdles by delivering chemical maps
of cells and tissues in a label-free and non-invasive manner. It employs spectroscopic
techniques that enable the visualization of different biomolecules analyzing their char-
acteristic vibrational spectrum [8]. Indeed, every structure in a biological sample fea-

1
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Chapter 1. Coherent raman scattering microscopy

tures a vibrational spectrum that constitutes a signature for the identification of its main
constituents, providing higher specificity than fluorescent techniques. The spectrum
may be divided into three main spectral windows [9](Fig. 1.1). The first region spans
from 400 to 1800 cm−1 and is known as the fingerprint region. It corresponds to the
low energy vibrational modes of the sample and contains many sharp and congested
peaks that carry information about lipids, proteins, and nucleic acids. The peaks asso-
ciated with proteins are those of amino acids (such as phenylalanine at ≈ 1000 cm−1,
tyrosine, and tryptophan), those of amide-I groups of secondary protein structures (in
1500–1700 cm−1 region), and the stretching or deformation of carbon atoms bonded
with nitrogen (C-N stretch), hydrogen (C-H rock, bend, or scissoring), or other carbon
atoms (C-C stretch). The peaks of lipids are mainly the ones at 1300 cm−1 associated
with CH2 bonds and around the 1440-1450 cm−1 region correspondent to the CH and
CH2 modes. Eventually, the nucleic acids may be identified through the peaks of DNA,
RNA, and nitrogenous bases. The second region of the vibrational spectrum spans from
1800 to 2700 cm−1. It is known as the Raman-biological silent region of the spectrum
since in general no peaks are present in this spectral window. This region is particularly
exploited when using Raman-tag molecules which provide specific signals with char-
acteristic peaks in the silent region that do not interfere with the ones of the biological
constituents [10,11]. The last region corresponds to the high-energy vibrational modes
and goes from 2700 to 3100 cm−1. This region displays broad peaks associated with
the CH, CH2, and CH3 symmetric and antisymmetric stretching through which one
can discern lipids, proteins, and DNA. Moreover, this region features a signal which is
stronger than the one of the fingerprint region, since the biological samples have many
more oscillators with CH bonds. Beyond 3100 cm−1, the spectrum of water-containing
samples presents the very broad and intense Raman peak of water.

Among the vibrational techniques, vibrational absorption microscopy resonantly
probes the vibrational modes of the sample using mid-infrared (MIR) light (λ ≈ 3-10
µm) to shine it. However, vibrational microscopy is not so suitable for imaging small
structures in biological specimens because of the use of very long wavelengths that
prevents depth penetration due to water absorption and high spatial resolution because
of the diffraction limit. Raman microscopy solves this issue, by employing visible or
near-infrared (NIR) light to illuminate the sample, providing higher penetration depth
and spatial resolution than its MIR counterpart. For these reasons, Raman techniques
are particularly adequate to image biological samples, such as tissues and cells [13,14].
The simplest and most employed approach for Raman techniques is known as Spon-
taneous Raman (SR) [15]. SR employs a quasi-monochromatic visible or NIR pump
laser beam, at frequency ωp. The vibrational information is encoded in the sponta-
neously emitted inelastically scattered Stokes or anti-Stokes components, at frequency
ωS = ωp−Ω and ωaS = ωp+Ω, respectively, with Ω being the vibrational resonance of
the sample. These components arise in the red-shifted (for the Stokes) and blue-shifted
(for the anti-Stokes) spectral region and can be easily collected using a spectrome-
ter after properly filtering out the pump radiation. When dealing with applications in
life sciences, SR techniques typically acquire the Stokes component which is more
intense than the anti-Stokes one at room temperature. Indeed, the probed molecules
obey a Boltzmann distribution, so that the molecules mostly remain in their lowest en-
ergy levels at thermal equilibrium, thus preventing the possibility to populate the vibra-

2
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1.1. Introduction

Figure 1.1: Raman spectrum of a cell in the entire Raman-active region and in the corresponding finger-
print region. The peak assignments refer to the most abundant chemical bonds in biological samples,
belonging to the four major biological molecules: lipids (black), protein (green), carbohydrates (yel-
low), and nucleic acids (blue). Adapted from [12].

3
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Chapter 1. Coherent raman scattering microscopy

tional levels where the anti-Stokes component generates from. Thanks to its chemical
specificity, SR has already been used in the biomedical field, especially for cancer di-
agnosis [16–21]. Despite providing high chemical information from the investigated
sample, SR suffers from low scattering cross-sections, requiring long integration time
(from ≈ 100ms to ≈ 1s) for the acquisition of a single-pixel vibrational spectrum,
thus precluding the possibility of fast imaging. Eventually, in SR the Stokes compo-
nent sits on top of a background coming from the sample autofluorescence, requiring
post-processing methods to subtract it.

Coherent Raman scattering (CRS) techniques [22, 23] exploit third-order nonlinear
optical processes occurring between the interacting electric fields and the specimens
and provide higher imaging speed than SR thanks to coherent excitation of the vibra-
tional modes at the focal spot. In its simplest implementation, CRS employs narrow-
band picosecond pulses, namely the pump at frequency ωp and the Stokes at frequency
ωS , whose frequency shift Ω = ωp − ωS is resonant with a specific vibrational mode
of the sample ΩR. When the two trains of pulses simultaneously arrive at the sample
plane, a collective molecular oscillation is induced in the focal volume. Unlike in the
SR process, the molecules, in this case, vibrate coherently, and the signal originates
only in the focal spot, since high power densities are required to trigger the nonlinear
signal, which propagates along a phase-matched direction. Because of the non linear
nature, CRS implementations provide intrinsic 3D-sectioning capabilities without the
need for any confocal aperture.

We can summarize the main advantages of CRS techniques in the following list:

• CRS produces a significantly stronger signal than SR microscopy due to a coher-
ent superposition of the vibrational responses from the excited oscillators, which
enables substantially faster imaging speeds;

• Unlike fluorescence microscopy, which uses fluorophores and stainings, CRS is a
non-invasive and label-free technique that prevents sample perturbation.

• It normally operates without population transfer far from the molecules electronic
excited states, limiting the photobleaching of biological substances; Indeed, in
comparison to the visible range, excitation in the NIR (700-1200 nm) has the ben-
efit of having relatively low light absorption by tissues in vivo and reduced light
scattering by turbid media, making it possible to investigate thick tissues at higher
penetration depths (typically in the 0.1-1 mm range) [24]. Reduced phototoxic-
ity and tissue damage are also other advantages of shifting the wavelength of the
beams toward the infrared.

• Similar to multi-photon fluorescence microscopy [25], CRS is a nonlinear mi-
croscopy technique and the signal is only generated in the focal volume, enabling
3D imaging without the requirement for any physical confocal apertures [26];

It is evident that despite boosting the image acquisition speed (down to hundreds
of nanoseconds or tens of microseconds per pixel) [27, 28], narrowband or "single fre-
quency" CRS techniques do not offer the same wealth of information provided by SR
since they only probe a single vibrational mode at a time. Broadband CRS techniques
combine the high acquisition speed of narrowband CRS techniques with the high infor-
mation content of SR implementations, giving access to the whole vibrational spectrum

4
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1.2. Historical introduction

of the scrutinized specimen. Their implementations call for broadband sources to match
the vibrational coherences of the investigated sample occurring at many different fre-
quencies. Broadband CRS is technically demanding and it is not yet established in
clinics as narrowband CRS. According to the way the signal is collected, we may refer
to it as hyperspectral CRS and multiplex CRS.

In hyperspectral CRS, either the pump or the Stokes is rapidly tuned to match dif-
ferent vibrational modes of the samples and the signal is sequentially acquired, thus
reconstructing the spectrum pixel by pixel. In multiplex approaches, a narrowband
beam is combined with a broadband beam to generate a signal that carries the infor-
mation on a relatively large spectral region (depending on the frequency shifts covered
by their combination) of the spectrum that is acquired in parallel thus providing the
vibrational spectrum in a single shot.

The two most commonly employed CRS implementations are stimulated Raman
scattering (SRS) [29–31] and coherent anti-Stokes Raman scattering (CARS) [32–34].
SRS measures the intensity gain of the Stokes beam (stimulated Raman gain) or the
intensity loss of the pump beam (stimulated Raman loss), while CARS detects the
background-free signal at the anti-Stokes frequency ωaS = ωp + Ω. The details and
the theoretical background for a comprehensive understanding of these two techniques
will be discussed in the following sections of the chapter.

1.2 Historical introduction

In 1928, Chandrasekhara Venkata Raman, together with his student K.S. Krishnan, re-
ported for the first time that when light passes through transparent media, the deflected
light presents changes in frequency. The same effect was observed independently by
Grigory Landsberg and Leonid Mandelstam, in Moscow on 21 February 1928 (one
week earlier than Raman and Krishnan) [35]. This phenomenon is referred to as the
inelastic scattering of an electromagnetic field and was named the Raman effect by the
name of its discoverer, who received the Nobel Prize in physics in 1930 [36]. Even
though the potential application for molecular spectroscopy was clear from the begin-
ning, it was not until the invention of the first working ruby laser by Theodore Harold
Maiman in 1960 that its technical implementation became possible. After that, the
Raman effect became one of the most popular ways to perform molecular analysis.
However, the slowness of data acquisition, due to its incoherent nature, prevents fast
imaging. The first evidence of the stimulated Raman effect dates back to 1962. The
effect was discovered accidentally by Eckhardt after the discovery of the laser since
the process requires a laser power density of the order of 108W/cm2 only achievable
through stimulated emission of radiation. The first demonstration of CARS have been
done in 1964 by Yajima and Takatsuji and later in 1965 by Maker and Terhune, who
discovered that a four-wave-mixing process can be resonant with the vibrational modes
of a sample. Since then, both SRS and CARS implementations have been widely used
for spectroscopic applications. In 1982, Duncan [37] reported the first work of CARS
imaging using gas lasers, while in 1999 Zumbush [34] realized CARS imaging using
solid-state lasers. In the same year, Xie’s group developed a novel CARS microscope
characterized by a collinear geometry of two laser beams and raster scanning using
near-infrared wavelengths, demonstrating the first biological applications with coher-

5
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Chapter 1. Coherent raman scattering microscopy

ent Raman [38]. The use of collinear geometry and near-infrared wavelengths greatly
simplified the instrumentation and biocompatibility, triggering many applications and
innovations. While CARS microscopes were invented in the early 1980s, it was only
in 2007 that the first SRS microscope was developed [30]. Indeed, only after the use of
modulation of the laser beams at MHz rate and phase-sensitive lock-in amplifier detec-
tion schemes, it was possible to measure SRS signals at reasonable pixel dwell times. In
2008, Xie’s group reported a high-speed SRS microscope for biological imaging [29].
Nowadays, Coherent Raman scattering microscopy is a potent method for revealing the
chemical mechanisms within living cells and functional materials.

1.3 Light-matter interaction

The following subsections will introduce the fundamental basics for a comprehensive
understanding of the processes involved in Coherent Raman scattering. This theoretical
introduction starts with the description of a simple yet effective model to study the
interaction between electromagnetic waves and continues with the main concepts of
spontaneous Raman and coherent Raman processes, such as CARS and SRS.

1.3.1 Harmonic oscillator

The simplest way to describe a molecule interacting with an electromagnetic field is to
start by modeling the molecule as a mass attached to a spring characterized by stiffness
k, as depicted in Fig. 1.2. Through this picture, it is possible to give an intuitive
explanation of Raman scattering [39].

Figure 1.2: Mass-spring system. x0 is the equilibrium position, while x is the relative displacement.
Adapted from [39]

The system described is a harmonic oscillator, an ideal object whose temporal os-
cillation is a sine or cosine wave with constant amplitude and with a frequency that is

6
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solely dependent on the system parameters (in this case, the mass m and the spring con-
stant k). Consider a mass attached to a spring and set vertically, subjected to gravity.
At equilibrium, we can write the equation describing its center of mass as:

mg − kx0 = 0, (1.1)

where x0 represents the equilibrium position. Using the second dynamics law, it is
possible to study the displacement x of the center of mass with respect to x0, which
reads:

d2x

dt2
+ ω2

0x = 0, (1.2)

where we defined ω0 =
k
m

as the system resonant frequency. Consider now a damping
force experienced by the mass, directly proportional to its velocity and to a damping
coefficient γ. We can add this term to eq. (1.2) and we find:

d2x

dt2
+ 2γ

dx

dt
+ ω2

0x = 0, (1.3)

Since we would like to model the interaction with the electromagnetic field, we
need to take into account a periodically oscillating excitation force. Hence we define
F (t) = F0 cos(ωt), where F0 represents the amplitude, while ω is the angular fre-
quency. Introducing this driving force F (t), eq.(1.3) becomes:

d2x

dt2
+ 2γ

dx

dt
+ ω2

0x =
F (t)

m
, (1.4)

To solve this equation, it is more convenient to introduce the complex exponential
notation, where F (t) = F0e

−iωt. Therefore, we can look for a solution of the form
x(ω, t) = x(ω)e−iωt, that simplifies the calculus of the temporal derivatives. Plugging
these expressions in eq.(1.4) we find:

(−ω2 − 2iγω + ω2
0)x(ω)e

−iωt =
F0e

−iωt

m
, (1.5)

From eq.(1.5), we can find the solution x(ω):

x(ω) =
F0/m

ω2
0 − ω2 − 2iγω

, (1.6)

Close to the resonance (ω ≈ ω0) and for small damping coefficient (γ ≪ ω0), the
solution of eq.(1.6) can be approximated by a complex Lorentzian function [39]:

x(ω) =
−F0/(2mω0)

(ω − ω0) + iγ
, (1.7)

1.3.2 Vibrational modes

In the previous section, we modeled a molecule as a single mass attached to a spring.
This led to eq.(1.6), which describes the movement of the mass varying the frequency
of the driving force. Let us now generalize the model to describe the vibrational modes
of a molecule. A vibrational mode is a periodic motion of the atoms of a molecule

7
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Chapter 1. Coherent raman scattering microscopy

relative to each other, such that the center of mass remains still. Every vibrational mode
is associated with a resonance frequency ΩR, dictated by the atomic mass, the atomic
species, the number of involved chemical bonds, the molecule geometry and symmetry,
and the presence of possible hydrogen bonds. Typically, the resonance frequency of
roto-vibrational modes is in the range from 1 to 4000 cm−1 and it can be probed by
absorption spectroscopy using mid-infrared light (Fig.1.3.(b)).

A molecule with n atoms with a non-linear geometry presents 3n − 6 vibrational
modes. For example, water molecules (H2O) has three vibrational modes (Fig.1.3.(a)).
For a linear molecule, the number of vibrational modes is 3n− 5, therefore, a diatomic
molecule (n=2) has just one vibrational mode, which is the stretching mode. Let us
now model a diatomic molecule as a system constituted by two point masses, respec-
tively m1 and m2, connected by a spring. We will assume that the equilibrium distance
between the point masses is x0 and the resonant frequency is ΩR. We will also assume
that the diatomic molecule taken into account is polar and presents an asymmetric dis-
tribution of charges, in particular, the atom m1 will have a charge +q, while the atom
m2 will have a charge −q. The model is shown in Fig.1.3.(c).

Figure 1.3: (a) Vibrational modes of H2O. (b) Absorption diagram. (c)Model of a diatomic molecule
and light-matter interaction model. Adapted from [39]

Let us consider the interaction with an electric field E⃗(t) with angular frequency ω
and linearly polarized along the molecule axis. The field will generate a Lorentz force
FLorentz = qE0e

−iωt acting on the atoms of the molecule. We can write a formula
analogous to eq. (1.4):

d2x

dt2
+ 2γ

dx

dt
+ Ω2

Rx =
FLorentz(t)

µ
, (1.8)

where µ is the reduced mass: µ = m1m2/(m1+m2),and the damping term γ represents
the radiation loss of the oscillating dipole. Eq.(1.8) can be solved (as we solved eq.

8
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1.3. Light-matter interaction

(1.4)), finding the approximated solution:

x(ω) =
−FLorentz/(2µΩR)

(ω − ΩR) + iγ
, (1.9)

The presence of an asymmetric distribution of charges in the molecule induces a
dipole moment p⃗, which can be expressed as p⃗ = qd⃗, where d⃗ is the vector displacement
between the atoms, directed from the negative to the positive charge. If we consider a
macroscopic medium, constituted by an ensemble of N diatomic molecules modeled
as above, all subjected to the same electric field E⃗(t), the charge displacement of every
molecule will contribute to the total polarization of the medium, which can be calcu-
lated as the sum of all the single dipole moments:

P (ω) = Nqx(ω), (1.10)

We can now define the linear electronic susceptibility as:

P (ω) = ϵ0χ
(1)(ω)E(ω), (1.11)

Comparing the eq.(1.10) with eq.(1.11), and plugging in eq.(1.9), we find the ex-
pression of the linear susceptibility χ(1)(ω):

χ(1)(ω) =
− Nq2

(2ϵ0µΩR)

(ω − ΩR) + iγ
, (1.12)

Expression (1.12) describes the vibrational contribution from the molecule to the sus-
ceptibility of the medium. The real part is related to the medium dispersion and it has
an antisymmetric shape with respect to the resonance frequency, while the imaginary
part is related to the medium absorption and is characterized by a Lorentzian shape,
centered in ΩR. The width of the Lorentzian peak of ℑ{χ(1)} is directly proportional
to the damping constant γ. The real and imaginary parts are schematically depicted in
Fig.1.4.

Figure 1.4: Graph of the real and imaginary parts of the linear susceptibility.

For diluted media, the refractive index is related to ℜ{χ(1)} as:

9
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Chapter 1. Coherent raman scattering microscopy

n(ω) = n0 −
ℜ{χ(1)}
2n0

, (1.13)

in which n0 is the mean refractive index of the medium. Moreover, the absorption
coefficient α(ω), can be calculated from ℑ{χ(1)} as:

α(ω) =
2π

λ0n0

ℑ{χ(1)}], (1.14)

where α(ω) is expressed in cm−1 and can be found in the Lambert-Beer law, describing
the reduction of light intensity in a medium due to absorption of light, as:

I(L) = I0 exp(−αL), (1.15)

It is possible to exploit this feature of media in order to measure the resonance fre-
quencies of the vibrational modes, performing spectroscopy of the analyzed medium.
This technique is called IR absorption spectroscopy and allows one to identify and
quantify absorption bands corresponding to different molecular species in a sample.
However, IR spectroscopy suffers from low penetration depth and low spatial resolu-
tion since it requires the use of light with long wavelengths (in the MIR) to probe the
vibrational modes.

1.3.3 Spontaneous Raman

To circumvent the IR absorption spectroscopy limitations mentioned in the previous
section, SR can be used to reveal the vibrational modes of the samples providing higher
penetration depth and spatial resolution, thanks to the use of visible or NIR quasi-
monochromatic laser light. At thermodynamic equilibrium, the light-matter interaction
is dominated by absorption (the light is retained by the molecules) and elastic scattering
processes or Rayleigh scattering (the light deviates keeping the same frequency in a
direction that is different from the incident one). Nevertheless, a smaller fraction of the
incident light may be inelastically scattered, which means that it may be scattered at
frequencies different from the incident one. This phenomenon is known as the "Raman
effect".

In order to understand the Raman effect, let us consider again the diatomic molecule
described in the previous section. Before we assumed that the molecule was polar, that
is with an asymmetric charge distribution on the two atoms. In this part, we will drop
this assumption. However, even though a molecule is not polar, it will have a polar-
izability α that depends on the intramolecular distance x. Let us assume the molecule
is vibrating at the resonance frequency ΩR. The fluctuations of the interatomic dis-
tance with respect to the equilibrium position can be described as: x(t) = xf cos(ΩRt),
where xf is the amplitude fluctuation. Assuming the displacement amplitude is small,
we can perform a Taylor expansion of the polarizability with respect to the equilibrium
position:

α(t) = α0 +

(
∂α

∂x

)
0

x(t), (1.16)

10
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The dipole moment induced by an electric field oscillating at ωp, E(t) = E0cos(ωpt),
can be calculated as:

p⃗ = ϵ0α(t)E⃗(t), (1.17)

Let us now plug the expression of the polarizability eq.(1.16) in eq.(1.17):

p = ϵ0

[
α0 +

(
∂α

∂x

)
0

xf cos(ΩRt)

]
E0 cos(ωpt), (1.18)

Using the Werner formula, the eq.(1.18) reads:

p = ϵ0α0E0cos(ωpt)+
ϵ0
(
∂α
∂x

)
0
E0xf

2
cos[(ωp−ΩR)t]+

ϵ0
(
∂α
∂x

)
0
E0xf

2
cos[(ωp+ΩR)t],

(1.19)
The first term, oscillating at the same frequency as the incoming field corresponds to

the Rayleigh scattering. In this case, the photons are simply scattered by the molecule
without any exchange of energy. The second term is oscillating at angular frequency
ωS = ωp−ΩR and describes a red-shifted scattering known as Raman Stokes scattering.
In this case, the molecule absorbs part of the energy of the light and is promoted from
a ground state to a vibrationally excited state. Consequently, the outgoing photons
present a lower energy with respect to the incoming ones. The third term represents
the Raman anti-Stokes scattering and oscillates at ωAS = ωp + ΩR. In this case, the
molecule goes from the excited state to the ground one, releasing energy. The outgoing
photons have higher energy with respect to the incoming ones, therefore they are blue-
shifted in frequency. The different types of scattering are schematically depicted in Fig.
1.5 making use of Jablonsky diagrams.

Figure 1.5: Jablonsky diagrams of (a) Rayleigh scattering, (b) Stokes Raman scattering, (c) anti-Stokes
Raman scattering. The solid lines represent the fundamental or ground state |g⟩, the vibrational state
|v⟩, and the excited state |e⟩, while the dashed line is a virtual state. |g⟩ and |v⟩ are separated by the
resonance frequency ΩR.

However, the majority of SR spectroscopy experimental setups detect the Raman
Stokes component. The main reason is why at thermal equilibrium, atomic level popu-
lations are described by the Boltzmann distribution (1.20), which gives the probability

11
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Chapter 1. Coherent raman scattering microscopy

that a system will be in the i-th state depending on the energy of the level ϵi and on the
temperature:

pi ∝ e−ϵi/kT , (1.20)
Therefore, the population of the excited level is lower than the one at the ground

state, and they become equal at infinite temperatures. Thus, since to observe anti-Stokes
scattering we need the molecule to be in the excited state, we expect a lower signal with
respect to the Stokes scattering, unless the temperature is really high. From eq. (1.19),
it is evident that a vibrational mode is Raman active if it satisfies the following selection
rule:

(
∂α
∂x

)
0
̸= 0. Similarly to IR absorption spectroscopy, Raman spectroscopy enables

the identification of the vibrational levels of a substance by measuring the spectral
distance of the Raman peaks with respect to the Rayleigh scattering peak (see Fig.
1.6).

Figure 1.6: Scattered light from a molecule with a single vibrational mode at frequency ΩR.

If a molecule presents inversion symmetry, its modes can be either Raman active and
not IR active or vice-versa. In particular, symmetric modes with respect to the inversion
symmetry are only Raman active, while anti-symmetric ones are only IR active. Despite
SR provides several advantages with respect to MIR absorption spectroscopy, the cross-
section of Raman scattering is rather poor: the order of magnitude is around 10−30

cm2 (while the cross-section of single photon absorption fluorescence can reach 10−16

cm2). It implies that it takes from 100 ms to 1 s for collecting a vibrational spectrum
from biological samples with a sufficiently good signal-to-noise ratio, preventing the
possibility of fast imaging.

1.3.4 Coherent Raman Scattering

CRS provides higher imaging speed than SR thanks to the nonlinear nature of the pro-
cesses involved during the interaction of the electric fields and the sample. In this

12
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section, we will describe the physics behind CRS processes and then we will focus on
CARS and SRS processes.

Let us consider an incoming electric field, constituted by two waves, denominated
pump and Stokes, respectively with frequency ωP and ωS:

E(z, t) = AP e
i(ωP t−kP z) + ASe

i(ωSt−ksz) + c.c., (1.21)

The interference between the two fields generates a beating with frequency Ω = ωP −
ωS . If the beating frequency Ω matches the frequency of a vibrational mode, ΩR = Ω,
then the normal mode enters in resonance with the wave beating.

Let us consider again the diatomic molecule modeled as a harmonic oscillator, de-
scribed by the eq.(1.4). Let us find the expression of the force F⃗ (t) evaluating the
derivative of the energy W necessary to create a dipolar moment p⃗(t) = ϵ0α(t)E⃗(t).
The energy of a dipole in an electric field is:

W =
1

2

〈
p⃗(z, t) · E⃗(t)

〉
=

1

2
ϵ0α(t)

〈
E2(z, t)

〉
, (1.22)

using the expression (1.21) in the term ⟨E2(z, t)⟩:〈
E2(z, t)

〉
= APA

∗
Se

i(Ωt−Kz) + c.c., (1.23)

The brackets ⟨. . . ⟩ represent the time average over one optical period.
We can now insert eq.(1.23) in eq.(1.22) and perform the derivative with respect to

the intermolecular distance obtaining:

F (t) =
dW

dx
= ϵ0

(
∂α

∂x

)
0

[
APA

∗
Se

i(Ωt−Kz) + c.c.
]
, (1.24)

Eq. (1.24) is the expression of the driving force due to the presence of the two
electric fields, namely pump and Stokes, that can be now plugged in eq.(1.4). Looking
for a solution in the form:

x(z, t) = x(Ω)ei(Ωt−Kz) + c.c., (1.25)

we find that near the resonance, the molecular vibration amplitude is:

x(Ω) =
−
(

ϵ0
2µΩR

) (
∂α
∂x

)
0
APA

∗
S

(Ω− ΩR) + iγ
, (1.26)

Therefore, if the beating frequency Ω gets close to the resonance frequency ΩR,
the vibration amplitude of the molecule x(Ω) becomes larger and induces a nonlinear
polarization.

The induced nonlinear polarization can be calculated by summing up the induced
dipole moments of the medium:

P (z, t) = Np(z, t) = Nϵ0

[
α0 +

(
∂α

∂x

)
0

x(z, t)

]
E(z, t), (1.27)

We can now distinguish two terms from eq. (1.27):
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1. the linear polarization P (L), directly proportional to the electric field and oscillat-
ing at the same frequency: P (L) = Nϵ0α0E(z, t)

2. The non-linear polarization P (NL):

P (NL) = Nϵ0

(
∂α

∂x

)
0

[
x(Ω)ei(Ωt−Kz) + c.c.

] [
AP e

i(ωP t−kP z) + ASe
i(ωSt−kSz) + c.c.

]
,

(1.28)

From eq. (1.28), we find four terms radiating at different frequencies:

1. A term oscillating at frequency ωAS = 2ωP − ωS:

P (ωAS) = Nϵ0

(
∂α

∂x

)
0

x(Ω)AP e
−i(2kP−kS)z, (1.29)

2. A term oscillating at frequency ωCS = 2ωS − ωP :

P (ωCS) = Nϵ0

(
∂α

∂x

)
0

x∗(Ω)ASe
−i(2kS−kP )z, (1.30)

3. A term oscillating at frequency ωP :

P (ωP ) = Nϵ0

(
∂α

∂x

)
0

x(Ω)ASe
−ikP z, (1.31)

4. A term oscillating at frequency ωS:

P (ωS) = Nϵ0

(
∂α

∂x

)
0

x∗(Ω)AP e
−ikSz, (1.32)

These terms oscillating at different frequencies act as the sources of different non-
linear processes (Fig. 1.7). P (ωAS) gives rise to the Coherent anti-Stokes Raman
scattering (CARS), P (ωCS) to the Coherent Stokes Raman scattering (CSRS), while
P (ωP ) and P (ωS) are the sources of Stimulated Raman scattering. CSRS is not con-
sidered when dealing with CRS techniques since ωCS is in the IR where most of the
detectors are noisy and with lower quantum efficiency.
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Figure 1.7: (a) Input Stokes and pump pulses in CRS processes. Jablonsky diagrams of (b) Coherent
anti-Stokes Raman scattering (CARS), (c) Coherent Stokes Raman scattering (CSRS), (d) Stimulated
Raman Gain (SRG). (e) Stimulated Raman Loss (SRL). (f) Output fields and generated signals (not
in scale).

These expressions of the polarization suggest that CRS processes arise from the
third-order nonlinear optical interaction since the interaction among three electric fields
is required to give rise to the nonlinear signal. Therefore, CRS processes are four-wave
mixing phenomena mediated by the third-order nonlinear susceptibility of the medium
χ(3).

1.3.5 Third order non-linear processes

In order to describe third-order nonlinear optical phenomena, third-order polarization
should be taken into account. It can be written as:

P
(3)
i (t) = ϵo

∫ +∞

−∞
dt′
∫ +∞

−∞
dt′′
∫ +∞

−∞
dt′′′χ

(3)
ijkl(t

′, t′′, t′′′)

Ej(t− t′)Ek(t− t′ − t′′)El(t− t′ − t′′ − t′′′)

(1.33)

Applying some approximations, we can simplify eq. (1.33) as:

P (3) = ϵ0χ
(3)E3(t), (1.34)

Let us now introduce an incoming electric field defined as:

E(t) = A1 cos(ω1t+ ϕ1) + A2 cos(ω2t+ ϕ2) + A3 cos(ω3t+ ϕ3), (1.35)

The third order non-linear polarization could be calculated substituting (1.35) in (1.34),
finding:

P (3) = ϵ0χ
(3) [A1 cos(ω1t+ ϕ1) + A2 cos(ω2t+ ϕ2) + A3 cos(ω3t+ ϕ3)]

3 , (1.36)
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Performing the calculations, we find 22 different terms oscillating at different fre-
quencies. These polarization terms act as new sources giving rise to radiation at the
same frequency. The 22 terms can be classified in the following way:

• 3 terms at the original frequencies ω1, ω2 and ω3, which give rise to the Optical
Kerr effect,

• 3 terms at the third harmonics 3ω1, 3ω2 and 3ω3, which is called Third Harmonic
Generation (THG),

• 6 terms at 2ωi + ωj , with i ̸= j,

• 6 terms at 2ωi − ωj , with i ̸= j,

• 1 term at ω1 + ω2 + ω3,

• 3 terms at ωi + ωj − ωk, with i ̸= j ̸= k,

Therefore, a wave at a different frequency is obtained as an output. The whole
process could be seen as an interaction among four waves (Fig. 1.8). For this reason,
third-order phenomena are also called Four Wave Mixing (FWM) processes [40].

1.3.6 Propagation equation in Four-Wave Mixing processes

Starting from Maxwell equations and considering the propagation in nonlinear optical
media, it is possible to derive, under the slowly varying envelope approximation and
the plane wave approximation, the envelope propagation equation for short laser pulses
in nonlinear media that, if we neglect the dispersions, reads:

∂A

∂z
+

1

vg(ω0)

∂A

∂t
= − iµ0ω0c

2n(ω0)
e−i∆kzB (1.37)

where A e B are the envelopes of the electric field and of the nonlinear polarization
(E(z, t) = ℜ

{
A(z, t)ei(ω0t−k0z)

}
and P (NL)(z, t) = ℜ

{
B(z, t)ei(ω0t−kpz)

}
), vg is the

group velocity and ∆k is the wavevector mismatch. We would like to use this equation
for the FWM phenomena.

Let us define the incoming electric field in the exponential form:

E(t, z) =
1

2

{
A1(t, z)e

i(ω1t−k1z) + A2(t, z)e
i(ω2t−k2z)+

+A3(t, z)e
i(ω3t−k3z) + A4(t, z)e

i(ω4t−k4z) + c.c.
} (1.38)

where the expression c.c. stands for complex conjugate.

Figure 1.8: Conceptual scheme of the interaction between light and matter considering third order
nonlinear optical processes in the FWM frame.
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Let us now assume ω1 + ω3 = ω2 + ω4, and let us focus on the terms oscillating
at the same frequencies as the incoming waves. Substituting (1.38) in (1.37) we find,
after some calculations, that the third order polarization term oscillating at frequency
ω1, namely P

(3)
ω1 reads:

P (3)
ω1

(t, z) =
ϵ0χ

(3)

4
3A2(t, z)A4(t, z)A

∗
3(t, z)e

i[(ω2−ω3+ω4)t−(k2+k4−k3)z + c.c., (1.39)

The same reasoning could be applied to all the other terms oscillating at the original
frequencies, obtaining:


P

(3)
ω1 (t, z) =

3ϵ0χ(3)

4
A2(t, z)A4(t, z)A

∗
3(t, z)e

i[ω1t−(k2+k4−k3)z] + c.c.

P
(3)
ω2 (t, z) =

3ϵ0χ(3)

4
A1(t, z)A3(t, z)A

∗
4(t, z)e

i[ω2t−(k1+k3−k4)z] + c.c.

P
(3)
ω3 (t, z) =

3ϵ0χ(3)

4
A2(t, z)A4(t, z)A

∗
1(t, z)e

i[ω3t−(k2+k4−k1)z] + c.c.

P
(3)
ω4 (t, z) =

3ϵ0χ(3)

4
A1(t, z)A3(t, z)A

∗
2(t, z)e

i[ω4t−(k1+k3−k2)z] + c.c.,

(1.40)

From (1.39), we found that the envelope of P (3)
ω1 can be written as:

B(t, z) =
3ϵ0χ

(3)

4
A2(t, z)A4(t, z)A

∗
3(t, z), (1.41)

We can now plug (1.41) in (1.37) and develop the calculation for the wave at fre-
quency ω1. Therefore, the propagation equation becomes:

∂A1

∂z
+

1

vg(ω1)

∂A1

∂t
= − iµ0ω1c

2n(ω1)

3ϵ0χ
(3)

4
A2A4A

∗
3e

−i(k2+k4−k3−k1)z, (1.42)

Let us define kp ≡ k2+k4−k3, and ∆k = k1−kp. We can proceed rewriting (1.42)
as:

∂A1

∂z
+

1

vg(ω1)

∂A1

∂t
= −i3ω1χ

(3)

8cn(ω1)
A2A4A

∗
3e

i∆kz, (1.43)

where we exploited the relation ϵ0µ0 = 1
c2

. Plugging the envelope of the polarization
written in (1.40) and proceeding with analogous calculation we find:

∂A1

∂z
+ 1

vg(ω1)
∂A1

∂t
= −if1A2A4A

∗
3e

i∆kz

∂A2

∂z
+ 1

vg(ω2)
∂A2

∂t
= −if2A1A3A

∗
4e

−i∆kz

∂A3

∂z
+ 1

vg(ω3)
∂A3

∂t
= −if3A2A4A

∗
1e

i∆kz

∂A4

∂z
+ 1

vg(ω4)
∂A4

∂t
= −if4A1A3A

∗
2e

−i∆kz,

(1.44)

where we made use of fi, defined as fi ≡ 3ωiχ
(3)

8cn(ωi)
. It is possible to observe that the set of

equations (1.44) represents the propagation equation for four-wave mixing phenomena
(neglecting dispersion for simplicity), which are characterized by the direct dependence
on the term χ(3), which will be analyzed in details in the following.
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Chapter 1. Coherent raman scattering microscopy

1.4 The CARS process

Coherent Anti-Stokes Raman scattering (CARS) can be generated by exploiting two
pulses centered at different frequencies, namely the pump pulse at frequency ωP and
the Stokes pulse at frequency ωS . When the frequency mismatch Ω = ωP −ωS matches
a resonance frequency ΩR of the scrutinized sample, all the molecules in the focal spot
are resonantly excited. The vibrational mode is read by means of the interaction with a
third beam, called probe beam at frequency ωpr. In this configuration, the CARS signal
will be emitted at the anti-Stokes frequency ωaS = ωP − ωS + ωpr. Typically, one
chooses to work with ωpr = ωP , thus working in the degenerate CARS configuration,
where ωaS = 2ωP − ωS .

To derive the expression of the intensity of the CARS signal, we will start from
the expression of the envelope of the third-order nonlinear polarization oscillating at
frequency ωAS . Being a four-wave mixing process, we can write it referring to the eq.
(1.41) and taking also into account the tensorial nature of the third-order susceptibility:

P
(3)
i (r⃗, ωaS) =

3ϵ0
4

∑
j,k,l

χ
(3)
ijklEPj

(r⃗)EPk
(r⃗)E∗

Sl
(r⃗) (1.45)

in which i, j, k, l = {x, y, z}. Since the Raman scattered light can be depolarized with
respect to the incident one, we can define the Raman depolarization ratio ρR as:

ρR =
IR(⊥)

IR(∥)
, (1.46)

where IR(∥) is the Raman intensity polarized as the pump, while IR(⊥) is perpendicular
to it. The Raman depolarization ratio is a number between 0 and 3

4
, depending on the

vibrational mode stimulated. Considering isotropic media where one-photon transitions
at ωP or ωS are not occurring, it can be proved [39] that P⃗ (r⃗) can be expressed in terms
of the tensor element χ(3)

xxyy and the Raman depolarization ratio as:

P⃗ (3)(r⃗, ρR;ωaS) =
3ϵ0
2
χ(3)
xxyy

{ [
E⃗P (r⃗) · E⃗∗

S(r⃗)
]
E⃗P (r⃗)+

ρR
1− ρR

[
E2

Px
(r⃗) + E2

Py
(r⃗) + E2

Pz
(r⃗)
]
E⃗∗

S(r⃗)
}
,

(1.47)

Several considerations could be pointed out:

• if the pump and Stokes beams are linearly polarized in the same direction, the
nonlinear polarization is collinear with them;

• on the other hand, if the pump and Stokes fields are linearly polarized in mutually
perpendicular directions (thus, E⃗P (r⃗) · E⃗∗

S(r⃗) = 0), the induced polarization is
aligned with the Stokes beam and the totally polarized Raman bands, character-
ized by ρR = 0, can not be stimulated,

• If ρR = 0, the polarization is collinear with the pump field, and maximized for
E⃗P (r⃗) ∥ E⃗∗

S(r⃗),
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1.4. The CARS process

• The bigger ρR, the bigger the second term of eq. (1.47), resulting in a larger
contribution of the anti-Stokes field along the Stokes direction.

For simplicity, in the following, we will assume that ρR = 0 and that the pump and
Stokes fields are linearly polarized in the same direction. Under these assumptions and
under the following conditions:

ω1 = ω3 = ωP , ω2 = ωS, ω4 = 2ωP − ωS = ωaS, (1.48)

the induced non-linear polarization giving rise to the CARS signal reads as the expres-
sion (1.40), that is:

P (3)
ωaS

=
3ϵ0χ

(3)(ωaS)

4
A2

PA
∗
Se

i[ωaSt−(2kP−kS)z] + c.c., (1.49)

where we discarded the vectorial nature since we will consider collinear geometry in
the following. We can now substitute the expression of the polarization of eq. (1.49) in
the propagation equation (1.37) and move to the local time frame finding the following
propagation equation:

dAaS

dz
= − 3iωaS

8cn(ωaS)
χ(3)(ωaS)A

2
PA

∗
Se

−i∆kz, (1.50)

where ∆k = 2kP − kS − kaS . Let us now evaluate the CARS signal amplitude, after
propagating over a distance L in a medium, integrating (1.78):

AaS(L) =

∫ L

0

dAaS

dz
dz = − 3iωaS

8cn(ωAS)
χ(3)(ωaS)A

2
PA

∗
SLsinc

(
∆kL

2

)
ei

∆kL
2 , (1.51)

where the function sinc(x) = sin(x)/x. From eq. (1.51), we can derive the expression
of the intensity of the CARS signal, IaS , knowing that I ∝ |A|2:

IaS(L) ∝ |χ(3)(ωaS)|2L2sinc2
(
∆kL

2

)
I2P IS, (1.52)

Eq. (1.52) represents the expression of the CARS signal coming out of a medium with
length L. From this expression, we can point out that:

1. The signal scales quadratically on the pump intensity and linearly on the Stokes
one. Therefore, increasing the pump intensity is more beneficial to enhance the
signal.

2. The signal scales quadratically on the width of the medium L. Thus, it is hard to
extract signals from thin samples.

3. In order to get a high intensity, the phase matching condition ∆kL ≃ 0 should
be fulfilled. This condition can be satisfied either for ∆k ≃ 0 or for L ≃ 0. The
former expression means that:

∆k = 2kP − kS − kaS ≃ 0, (1.53)

where the wave vectors can be written as:

kP =
nPωP

c
, kS =

nSωS

c
, kaS =

naSωaS

c
, (1.54)
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Chapter 1. Coherent raman scattering microscopy

and ni = n(ωi). Due to the material dispersion, nP ̸= nS ̸= naS , that implies
that the phase matching condition is not satisfied. However, under tight-focusing
conditions, which are valid in microscopy where high numerical aperture objec-
tives are used, ∆k is approximately equal to zero. The second case in which the
phase matching condition can be fulfilled is for small and thin scatterers, in which
L < λp. This is particularly exploited in epi-detection CARS where the anti-
Stokes component is collected in reflection and for which ∆k = 2kp−kS+kaS =
2kaS ̸= 0 so that only small scatterers can contribute to the signal generation.
When phase matching condition is satisfied, since limx→0sinc(x) = 1, we can
simplify the expression of CARS intensity as:

IaS(L) ∝ |χ(3)|2L2I2P IS. (1.55)

4. The CARS intensity also depends on |χ(3)|2. We will see in the following section
that χ(3) is related to the concentration of scatterers. It implies that if the con-
centration is close to zero, dilute samples are hardly detected due to the square
dependence on it. Other important considerations may be done starting from this
dependence, as it will be extensively discussed in the following section.

1.4.1 Resonant and non-resonant contribution to CARS

In the previous section, the CARS process has been described analyzing the four-wave
mixing propagation equation generating a signal oscillating at ωaS . When dealing with
the detection of the anti-Stokes component, one realizes that it is always present, even
at frequency differences that are out of any vibrational resonance of the investigated
specimen. To understand this phenomenon, we can consider the generation of the anti-
Stokes component through the Jablonsky diagrams reported in Fig.1.9.

Figure 1.9: Jablonsky diagrams of (a) Resonant Coherent anti-Stokes Raman scattering (Resonant
CARS), (b) Non-resonant Coherent anti-Stokes Raman scattering (Non-resonant CARS).

As we can see, starting from a pump beam and a Stokes beam, two different pro-
cesses give rise to a signal at frequency ωaS = 2ωp − ωS . In the first case, a molecule
is excited to a virtual level by the pump electric field. Then, stimulated by the Stokes
field, it relaxes to a vibrational level. Subsequently, it is again excited by the pump
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1.4. The CARS process

field, reaching a new virtual state. Eventually, it relaxes to the ground state emitting an
electromagnetic wave at frequency ωaS . This contribution is called Resonant CARS,
and it carries information about the energy of the vibrational state, which can be calcu-
lated as E|v⟩ = ℏΩR = ℏωAS − ℏωP . In the second case, after the molecule is excited
by the pump field, reaching an intermediate virtual state, it interacts with the pump field
again, reaching a new virtual state. Then, stimulated by the Stokes field, it relaxes to
the ground state emitting two fields, namely the Stokes and the anti-Stokes component.
This anti-Stokes component is called Non-Resonant CARS, since it is not related to any
vibrational mode of the sample, indeed, it originates from the instantaneous electronic
response of the medium.

Both contributions appear in the expression of the third-order susceptibility, which
can be written as:

χ
(3)
V IB = χ

(3)
R + χ

(3)
NR, (1.56)

The resonant part χ(3)
R is characterized by a real and an imaginary part and is re-

lated to the vibrational modes. While, far from electronic resonances, the non-resonant
susceptibility χ

(3)
NR is real and constant.

We can derive the expression of the resonant term by comparing the eq. (1.29) of
the polarization with the eq. (1.49) that reads:

χ
(3)
R =

4

3APA∗
S

N

(
∂α

∂x

)
0

x(Ω) (1.57)

We can plug in (1.57) the expression of x(Ω) found in (1.26) obtaining:

χ
(3)
R =

aV IB

(Ω− ΩR) + iγ
, (1.58)

with aV IB = − 2Nϵ0
3µΩR

(
∂α
∂x

)2
0

a negative number which represents the oscillator strength
of the molecular vibration. So far, we assumed only one vibrational mode, however,
expression (1.58) can be easily generalized to a vibrational spectrum with M different
modes writing the third-order susceptibility as:

χ
(3)
V IB =

M∑
i=1

aV IB,i

(Ω− ΩRi
) + iγi

+ χ
(3)
NR (1.59)

where χ
(3)
R =

∑M
i=1

aV IB,i

(Ω−ΩRi
)+iγi

represents the resonant part in (1.59). For simplicity,
from now on we will consider just one vibrational mode.

Let us now consider the CARS signal intensity and its dependence on the square
modulus of χ(3)

V IBR:

IAS ∝
∣∣χ(3)

∣∣2 ∝ ∣∣∣χ(3)
R + χ

(3)
NR

∣∣∣2 (1.60a)

∝
∣∣∣χ(3)

R

∣∣∣2 + ∣∣∣χ(3)
NR

∣∣∣2 + 2Re{χ(3)
R χ

(3)∗
NR} (1.60b)

∝
∣∣∣χ(3)

R

∣∣∣2 + ∣∣∣χ(3)
NR

∣∣∣2 + 2χ
(3)
NRRe{χ(3)

R } (1.60c)
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Chapter 1. Coherent raman scattering microscopy

where we considered that χ(3)
NR is real. Analyzing eq. (1.60c), it is possible to observe

that the CARS intensity is the sum of three different contributions:

1. A resonant contribution represented by the term
∣∣∣χ(3)

R

∣∣∣2. This term carries vibra-
tional information.

2. A non-resonant contribution represented by the term
∣∣∣χ(3)

NR

∣∣∣2. This term is almost
constant in the spectral domain if far from electronic resonances.

3. The last term, 2χ(3)
NRRe{χ(3)

R }, is mixing the resonant and non-resonant parts giv-
ing rise to a heterodyne contribution.

Because of the interference term between the resonant and the non-resonant com-
ponent, the CARS spectrum appears distorted with respect to the Spontaneous Raman
spectrum. Indeed, the second and third terms of the equation give rise to the so-called
non-resonant background (NRB). On the one hand, the NRB acts as a signal ampli-
fier since the peaks sit on top of an almost flat signal (the second term); on the other
hand, it distorts the typical Lorentzian peaks that assume a dispersive lineshape (due
to Re{χ(3)

R } in the third term), red-shifting the maximum of the peaks and making a
minimum appear in the blue-shifted portion of the Raman peak. A representation of
the different contributions to the CARS signal is reported in Fig. 1.10.

Figure 1.10: Anti-Stokes signal (blue line) in the spectral domain: the contributions from the resonant
(orange line), non-resonant (yellow line), and heterodyne terms (purple line) are highlighted.

Decreasing the ratio between the resonant and the non-resonant part of the third-
order susceptibility, the CARS signal is progressively more distorted but more amplified
(Fig. 1.11).
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1.4. The CARS process

Figure 1.11: CARS signal varying the ratio between the resonant and the non-resonant contributions,

respectively with (a) |χ(3)
R |

|χ(3)
NR|

= 2, (b) |χ(3)
R |

|χ(3)
NR|

= 1, (c) |χ(3)
R |

|χ(3)
NR|

= 0.5.

The NRB signal shows some differences with respect to the resonant one.

1. At resonance, the NRB is dephased with respect to the resonant contribution.

2. The resonant contribution carries information on the population of a vibrational
level, it will have a coherence time typically in the order of a few picoseconds.
On the other hand, the NRB arises from instantaneous electronic response of the
medium [41], in which only virtual levels are populated, therefore it exists only
close to time zero, with the largest contribution lasting on the order of the excita-
tion pulse duration.

Since only the resonant term carries information regarding the vibrational modes and
therefore is the only meaningful part for spectroscopic applications, it is generally de-
sired to remove the NRB from the CARS signal. Different approaches may be adopted
to get rid of the NRB: one can either optically remove it via polarization CARS [42],
time-resolved CARS [43, 44], and Fourier-transform CARS [32, 45] or remove it in
post-processing using either numerical methods (Time-domain Kramers Kronig [46]
and Maximum-Entropy-Method [47]) or deep learning based methods [48–50]. We
will extensively discuss these methods in the following sections.

1.4.2 Broadband CARS

In the previous sections, we described the so-called single-frequency regime for CARS
that enables the user to reach extremely high acquisition speeds, up to the video rate
[27,51]. However, the information content is strongly reduced with respect to SR, since
narrowband pulses allow one to probe a single vibrational transition. Broadband CARS
(BCARS) overcomes these hurdles by combining the high information content of SR
spectroscopy with the high acquisition speed of CRS processes, as shown in Fig. 1.12.
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Chapter 1. Coherent raman scattering microscopy

Figure 1.12: Comparison between SR and CARS techniques in terms of imaging speed and information
content. Adapted from [24].

BCARS is more challenging than narrowband CARS microscopy since it requires
more sophisticated technical implementations both for the handling and generation of
the optical sources and for the detection of the signal. According to the way, the anti-
Stokes spectrum is generated, we can distinguish two BCARS categories: hyperspectral
CARS and multiplex CARS (see Fig. 1.13).

Hyperspectral CARS implementations employ two narrowband picosecond beams,
the pump, and the Stokes, which are rapidly detuned to match the different Raman shifts
in the sample. One usually tunes the Stokes beam to sequentially generate different anti-
Stokes components. The spectrum is reconstructed by acquiring subsequent anti-Stokes
signals. One method that allows us to rapidly tune the frequency shift between the pump
and Stokes pulses has been pioneered by Hellerer and coworkers [52] and is known as
the spectral focusing (SF) technique. The SF technique couples temporally chirped
broadband femtosecond pump and Stokes pulses obtained by letting transform-limited
pulses propagate into any dispersive medium so that the frequencies are distributed over
time and the pulse length reaches a duration of several picoseconds. If the pump and
Stokes pulses are both equally chirped, it turns out that their instantaneous frequency
difference is constant, and can be varied by adjusting the delay between the two trains
of pulses. In this way, a single mode at a time is probed despite using broadband
pulses. The SF technique has been used for CARS microscopy and spectroscopy [52–
57]. An important advancement to the technique has been introduced by Langbein et al.
[58] who first realized spectral focusing using a single broadband sub-10-fs Ti:sapphire
oscillator. This configuration was adopted then in many works [59–62].

On the other hand, multiplex CARS [63–75] combines a narrowband pump beam
with a broadband Stokes beam generating a broadband anti-Stokes component, thus
probing in parallel different Raman modes that may be acquired in the frequency do-
main using a spectrometer or in the time domain using a Fourier Transform approach.

Several implementations have been proposed for multiplex CARS. Some of them
employ a single ultra-broadband laser providing both pump and Stokes frequencies
[76, 77], while others combine narrowband pump pulses with broadband Stokes pulses
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1.4. The CARS process

obtained by supercontinuum generation in a tapered fiber [78] or a photonic crystal
fiber (PCF) [79–81]. Some methods are based on a time-domain Fourier transform
approach [32,45,82–87] or use frequency combs [88–93], while others detect the CARS
signal using a simple spectrometer.

We can summarize the state-of-the-art of BCARS applications by citing three main
works. Hashimoto et al. [32] demonstrated broadband (spectral coverage: 200 – 1500
cm−1) CARS spectroscopy at a record scan rate of 24,000 spectra/s using a time-domain
Fourier-transform approach, while Camp et al. [94] reported ultra-broadband (spectral
coverage: 500 – 3500 cm−1) multiplex CARS microspectroscopy at 3.5-ms pixel ex-
posure time when imaging biological tissues. More recently, Yoneyama et al. [67]
proposed a multiplex CARS microscope (spectral coverage: 600 – 3600 cm−1) with
exposure time down to 0.8 ms, using a high-peak-power supercontinuum generated
in a PCF pumped by a Q-switched microchip Nd: YVO4 laser oscillator generating
sub-100-ps laser pulses at a 0.82-MHz repetition rate.

Figure 1.13: Jablonski diagrams of the two categories of BCARS: hyperspectral CARS and Multiplex
CARS.

One of the main advantages of using BCARS rather than its narrowband counterpart
is the role played by the NRB. As anticipated in the sections above, the NRB distorts
and shifts the vibrational line shapes, limiting the sensitivity of the CARS apparatus.
However, it can also act as a phase-coherent local oscillator, allowing heterodyne am-
plification of the weak resonant Raman response [95]. In a narrowband configuration,
such amplification is of little help, since one acquires a single point and not the spec-
trum, in BCARS the NRB can be exploited to enhance the signal-to-noise ratio (SNR)
of the measured spectra [94]. In this case, in order to extrapolate the pure vibrational
information, the line shape distortions can be removed by exploiting numerical meth-
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Chapter 1. Coherent raman scattering microscopy

ods [46, 47, 96, 97] or deep-learning approaches [48–50].
Despite many technical advancements in the detection systems, leading to higher

speed and broader spectral coverage, many B-CARS systems are designed to collect
Raman spectra only in the CH-stretching region [98] (2800 - 3100 cm−1), a spectral
range that features a high density of oscillators. The spectral information in this region
is rather unspecific, since it features a small number of broad Raman peaks, preventing
accurate identification of different biological compounds within chemically heteroge-
neous biological samples. On the contrary, the low-wavenumber spectral region (400-
1800 cm−1), also known as “fingerprint”, presents sharp and distinct peaks providing
high biochemical specificity. However, the fingerprint region features weaker Raman
signals requiring either longer integration times or higher average power of the pump
and Stokes beams to obtain sufficiently high SNR. These requirements could damage
the imaged biological samples. Moreover, the Raman peaks in the fingerprint region
present a narrow linewidth and are spectrally congested, demanding a combination of
high spectral resolution (down to 10 cm−1) and broad spectral coverage, which are
technically challenging to achieve.

Figure 1.14: Comparison of different BCARS systems in literature in terms of speed and spectral cover-
age. For the comparison, we referred to the following works [32, 67, 76, 78, 83, 88, 94, 99, 100].

In the following chapters, we will describe a novel method for BCARS based on an
amplified femtosecond ytterbium laser system operating at a 2-MHz repetition rate to
generate pulses at 1035 nm with significantly more energy (at the µJ level) than con-
ventional systems, typically operating at 40 or 80 MHz. This unlocks two important ad-
vantages. The first one is the possibility to produce ultra-broadband red-shifted Stokes
pulses covering the entire Raman-active region (500-3100 cm−1) exploiting white light
continuum (WLC) generation [101] in a bulk crystal rather than PCFs, as previously
reported in the literature. WLC in bulk media represents a more compact, reliable, easy-
to-use, and alignment-insensitive approach. It features long-term stability, comparable
with that of the pump laser source itself, significant mutual correlations between the
intensities of its spectral components, and low pulse-to-pulse variations [102].

The second advantage relates to the employment of a lowered repetition rate source.
On the one hand, a repetition rate of 2 MHz determines a 0.5-µs temporal delay between
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1.4. The CARS process

two consecutive pulses, giving the system more time to dissipate thermal energy and
lessening photothermal damage [103]. On the other hand, for a given average power
at the focus, constrained by sample degradation, more pulse energy leads to higher
peak intensity, providing a stronger B-CARS signal thanks to the nonlinearity of the
involved optical processes. Therefore, higher SNR and/or acquisition speed can be
reached, without compromising the sample integrity.

In our setup, we use a multiplex CARS configuration. The signal is generated by
overlapping narrowband pump pulses with broadband Stokes pulses, obtained through
WLC generation in a 10 mm YAG crystal. The resolution of the system is provided
by the narrowband pump beam, obtained by narrowing the spectral linewidth of the
driving laser pulses(< 10cm−1) via an etalon. The comparison of the performance of
our experimental setup with the one in the literature mentioned above can be summa-
rized in a graph that plots the spectral coverage in cm−1 versus the speed measured as
spectra/sec (see Fig.1.14). This plot clearly demonstrates that our setup is at the state of
the art in terms of spectral coverage enabling us to measure of full spectrum and it also
features high acquisition speed, if we do not consider the work of Hashimoto et al. [32]
that demonstrates very high-speed CARS spectroscopy, but not microscopy. Further
details on the experimental BCARS setup will be discussed in chapter 3.

1.4.3 Two-color and three-color CARS

In section 1.4.1, we described the CARS process through the Jablonsky diagram in
Fig. 1.9, where the generation of the anti-Stokes component is possible thanks two a
double interaction with the pump beam and a single interaction with the Stokes beam.
However, in the BCARS frame, two different excitation methods can be exploited to
generate the anti-Stokes component. The interplay between these two processes de-
pends on the order of interactions between the pump and Stokes pulses and on the
properties (pulse duration and spectral bandwidth) of the employed optical sources.
These two processes are the two-color and three-color mechanisms and act in parallel
thus enabling us to collect signals in two different spectral regions simultaneously. To
understand their differences, we may start with the expression of the CARS intensity.
We previously demonstrated (in Eq. (1.52)) that the CARS intensity scales quadrati-
cally with the third-order nonlinear polarization P (3)(ωaS), generated in the scrutinized
sample as a result of the interaction of the pump E⃗P and Stokes E⃗S electric fields and
the sample itself. Considering the nonlinear third-order susceptibility χ

(3)
V IB of the in-

vestigated specimen, the CARS intensity expression reads as follows [94]:

ICARS ∝ |P (3)(ωaS)|2 ∝
∣∣∣{χ(3)

V IB(ω) [ES(ω)⊗ EP (ω)]
}
∗ EP (ω)

∣∣∣2 , (1.61)

Where, in (1.61), ⊗ and ∗ represent the cross-correlation operation and the convo-
lution operation, respectively. This equation states that the cross-correlation term is
responsible for the vibrational modes excited by the combination of pump and Stokes
beams, while the convolution operation with the narrowband pump field, assumed that
the cross-correlation is broad enough, defines the spectral resolution of our system. Eq.
(1.61) describes the two-color CARS mechanism (in Fig. 1.15.(a)), where the narrow-
band pump beam interacts with the broadband Stokes beam to stimulate the vibrations
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Chapter 1. Coherent raman scattering microscopy

of the scrutinized samples, and then a second interaction with the narrowband pump
beam probes the vibrational modes, provoking the emission of the anti-Stokes compo-
nents. In this case, the modes excited derive from the inter-pulse interaction between
the pump and Stokes beam, hence, they are determined by the differences in their fre-
quencies.

Nevertheless, if the broadband Stokes beam is short enough (shorter than the vi-
brational oscillation period), an intra-pulse excitation mechanism occurs at the sample
plane. This excitation mechanism is known as impulsive CARS or three-color mecha-
nism (in Fig. 1.15.(b)). The vibrational coherence is directly generated by the broad-
band Stokes pulse, according to the so-called “impulsive stimulated Raman scattering”
(ISRS) mechanism [104, 105]. The ISRS process creates a vibrational coherence in
all modes with frequencies falling within the excitation Stokes bandwidth, provided
that the pulse has a temporal duration close to the transform-limited value, so that all
frequencies interact nearly simultaneously with the sample. After the excitation, the
narrowband pump beam acts as a probe thus determining the final emission at the anti-
Stokes frequencies. The three-color mechanism thus emphasizes the lower frequencies,
in particular the so-called fingerprint region (400-1800 cm−1). In the three-color mech-
anism, eq. (1.61) may be modified in:

ICARS ∝
∣∣∣{χ(3)

V IB(ω) [ES(ω)⊗ ES(ω)]
}
∗ EP (ω)

∣∣∣2 (1.62)

The excitation profile in the three-color CARS mechanism depends on the number
of permutations of each frequency shift within the Stokes bandwidth. Since the high-
est number of permutations corresponds to close frequencies, the three-color excitation
profile vanishes by increasing the wavenumber [94]. This makes three-color CARS
particularly suitable for stimulating Raman transitions at very small Raman shifts(see
Fig.1.15.(b)) and in the entire fingerprint region, also exploiting the heterodyne ampli-
fication given by the NRB contribution to enhance their intrinsic weak signal.

Figure 1.15: Jablonsky diagram for (a) Two-color and (b) Three-color CARS mechanisms.

We can summarize the main characteristics of the CARS signal generated by com-
bining the two processes in the following points:

• an increase in the Stokes bandwidth, under the hypothesis of compressed pulses
at the samples, determines a higher intensity and a larger bandwidth of the CARS
signal generated through the three-color mechanism, but diminishes the intensity
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of the signal generated by the two-color mechanism under constant average power
at the sample;

• the spectral resolution of the probed vibrational modes depend only on the spectral
bandwidth of the probe beam;

• the generation of the CARS signal by means of the three-color mechanism is
strictly related to the pulse duration of the broadband beam. A shorter duration of
the beam allows us to probe vibrational modes with higher frequency. This means
that impulsive CARS is achievable only if the Stokes pulses are compressed so
that its duration is shorter than the oscillation period of the vibrational modes.
E.g. for the vibrational frequency at ν=1400 cm−1, the last mode we can detect
with the BCARS system through three-color CARS, the oscillation period T in fs
is:

T [fs] =
1015

100cν[cm−1]
≈ 23.8fs. (1.63)

This implies that the Stokes pulse duration should be shorter than this value, hence
a sub-20 fs pulse.

• it is important to spectrally separate the contributions of the two processes to
the anti-Stokes component. Indeed, the two excitation methods feature different
phases, thus leading to distortion of the spectrum and signal instability.

We can better understand the role of each mechanism in the generation of the CARS
signal, by assuming Gaussian pulses and looking at how the excitation profiles change,
varying the parameters of each beam.

Assuming that the pump and Stokes pulses have Gaussian spectral profiles and real
envelopes, which means they are temporally centered and transform-limited, we can
write the cross-correlation term for the two color mechanism as:

ES(ω)⊗ EP (ω) =

∫
E∗

S(ω
′)E∗

P (ω + ω′)dω′ =
ES0Ep0σPσS

√
2π√

σ2
P + σ2

S

e
− (ω−ωP0+ωS0)

2

2(σ2
P

+σ2
S
) ,

(1.64)
where ES0 and EP0 are the amplitude of the pump and Stokes beam, σP and σS are

the standard deviation of the gaussian profiles related to the bandwidth of the two beams
centered at ωP0 and ωS0. In the case of the three-color process, the cross-correlation
term becomes an autocorrelation term of the Stokes beam, that reads:

ES(ω)⊗ ES(ω) = |ES0|2σS

√
πe

− ω2

4σ2
S , (1.65)

Eq.(1.65) shows that in the three-color mechanism the broadband Stokes pulse acts
both as pump and Stokes beam. Since when we consider experimentally the pulses,
we deal with their average power, rather than their amplitude, we may introduce in
the previous expression the Power of each beam. For a Gaussian pulse of the form
A0e

−ω2/2σ2 , the average power PA can be written as PA ∝ |A0|2σ
√
π. Introducing

in eq.(1.64) and eq.(1.65) the pump, PP , and Stokes, PS , average powers, the two
expressions become:
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Chapter 1. Coherent raman scattering microscopy

Figure 1.16: Mathematical simulation of the two excitation mechanisms for broadband CARS generation
keeping fixed the average power of the pump and Stokes beam, the pump pulse bandwidth, and the
nonlinear third-order susceptibility and varying the bandwidth of the broadband Stokes.
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ES(ω)⊗ EP (ω) ∝
√

PPPS

√
2σPσS√
σ2
P + σ2

S

e
− (ω−ωP0+ωS0)

2

2(σ2
P

+σ2
S
) , (1.66)

ES(ω)⊗ ES(ω) ∝ PSe
− ω2

4σ2
S , (1.67)

From eq.(1.67), it is evident that the excitation profile for three-color CARS is cen-
tered at ω = 0 and its maximum does not depend on the bandwidth of the Stokes beam
(no dependence on σS), but just on its average power. The material response increases
with increasing the Stokes bandwidth. In the case of two-color CARS, eq.(1.66) shows
that the maximum of the signal is centered at ω = ωP0 −ωS0 and the material response
decreases with increasing the Stokes bandwidth. Indeed in the case, where σS >> σP ,
eq.(1.66) becomes:

ES(ω)⊗ EP (ω) ∝
√

PPPS

√
2σP

σS

e
− (ω−ωP0+ωS0)

2

2(σ2
P

+σ2
S
) , (1.68)

that states that the material response scales as ∝ 1/
√
σS .

If we want to evaluate it in the overall CARS expression, we need to consider the
convolution of these two terms (the cross-correlation between pump and Stokes and
the auto-correlation of the Stokes beam) with the third beam, which acts as a probe.
Experimentally, the third beam is the narrowband pump beam that can be assumed as
a beam with a Gaussian profile centered at ωp. The resulting expressions for the CARS
intensity in the two-color and three-color mechanisms are [94]:

I2C(ω) ∝

∣∣∣∣∣2πχ(3)
V IBE

∗
S0E

2
P0σ

2
PσS√

2σ2
P + σ2

S

e
− (ω−2ωP0+ωS0)

2

2(2σ2
P

+σ2
S
)

∣∣∣∣∣
2

= (1.69)

=
4π2|χ(3)

V IB|2|ES0|2|EP0|4σ4
Pσ

2
S

2σ2
P + σ2

S

e
− (ω−2ωP0+ωS0)

2

(2σ2
P

+σ2
S
) = (1.70)

∝ 4
√
π|χ(3)

V IB|2PSP
2
Pσ

2
PσS

2σ2
P + σ2

S

e
− (ω−2ωP0+ωS0)

2

(2σ2
P

+σ2
S
) , (1.71)

I3C(ω) ∝

∣∣∣∣∣∣2πχ
(3)
V IBE

2
S0Ep0σpσ

2
S√

σ2
p + 2σ2

S

e
−

(ω−ωp0)
2

2(σ2
p+2σ2

S
)

∣∣∣∣∣∣
2

= (1.72)

=
4π2|χ(3)

V IB|2|ES0|4|Ep0|2σ2
pσ

4
S

σ2
p + 2σ2

S

e
−

(ω−ωp0)
2

(σ2
p+2σ2

S
) = (1.73)

∝ 4
√
π|χ(3)

V IB|2P 2
SPpσpσ

2
S

σ2
p + 2σ2

S

e
−

(ω−ωp0)
2

(σ2
p+2σ2

S
) , (1.74)

From these equations, we can say that the two-color CARS mechanism, in the case
of Stokes bandwidth larger than the Pump bandwidth, scales as 1/σS and it is centered in
ω = 2ωP −ωS . On the other hand, for the three-color mechanism, the maximum signal
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Chapter 1. Coherent raman scattering microscopy

is centered at ω = ωp, and in the case of a broad Stokes beam (σS >> σp), the max-
imum intensity depends only on the average power of the input beams. Moving away
from the maximum, the three-color CARS intensity scales with e−(ω−ωp0)2/(σ2

p+2σ2
S), i.e.

it becomes larger increasing the bandwidth σS .
The dependence of the CARS signal profile with the Stokes bandwidth can be clearer

with a simulation of the two processes (see Fig. 1.16). Starting from the expression of
the two-color and three-color CARS mechanism in eq. (1.71) and eq. (1.74), we can
consider third-order nonlinear vibrational susceptibility χ

(3)
V IB constituted by a resonant

and a non-resonant term. The resonant term features two peaks with unitary ampli-
tude centered at 400 −1 and at 2800 −1 and with FWHM equal to ≈ 36 cm−1. The
non-resonant term has been set so that the resonant to non-resonant ratio is 0.1. We
considered a pump beam centered at 1034 nm with 1.1 nm FWHM and 80 mW average
power and a Stokes beam centered at 1320 nm and 5 mW average Power. The FWHM
of the Stokes beam has been set to four different values equal to 50, 100, 150, and 200
nm that in wavenumber correspond to ≈ 290, 570, 860, 1140 cm−1. Inserting these
numbers in the simulation, we can clearly see that for the three-color mechanism an
increasing Stokes bandwidth determines a greater spectral coverage and a higher signal
intensity away from the maximum. The maximum amplitude does not vary with the
Stokes bandwidth but depends only on the input average powers of the two beams. On
the other hand, the two-color mechanism at fixed average power (i.e. PS and Pp are
constant) features lower intensity while increasing the Stokes bandwidth, but, as for
the three-color mechanism, a broader spectrum of the Stokes beam results in a broader
spectral coverage.

In light of the previous discussion, we designed our BCARS experimental setup
by combining both mechanisms. To cover the whole vibrational spectrum with no
distortion, we carefully tuned the pulse duration of the broadband beam and its spectral
coverage. We first adjusted the pulse duration at the sample plane, carefully adjusting
the prism compressor stage, so to maximize the bandwidth (400-1400 cm−1) and the
intensity of the three-color mechanism in the first portion of the spectrum. Then, we
also inserted a mask after the second prism of the pulse compressor to carefully adjust
the spectral bandwidth, so that the two-color mechanism starts precisely (1400 cm−1 )
where the three-color mechanism vanishes, thus avoiding fluctuations on the spectrum
due to the interference between the two processes.

All the details of the experimental design will be discussed in chapter 3.

1.4.4 Time-delayed CARS

The difference in origin between resonant and non-resonant signals in CARS suggests
a straightforward method for discriminating between the two contributions. The inter-
action of the first two fields in vibrationally resonant CARS produces coherence in the
medium. In the condensed phase, this coherence often lasts for picoseconds. Contrar-
ily, the NRB is extremely short-lived, with the biggest contribution lasting only as long
as the excitation pulse [41].

Since the non-resonant contribution survives for a time much shorter than the reso-
nant one [106], it is possible to isolate the resonant contribution by adjusting the arrival
time of the third field, which acts as a probe field. This technique is called Time-delayed
CARS (TD-CARS) [43, 107–113] (Fig.1.17).
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1.4. The CARS process

Figure 1.17: Scheme for TD-CARS. After the arrival of two synchronized beams,namely pump and Stokes
beam, a third beam, the probe beam, arrives with a delay τ waiting for the decay of the NRB. If τ
is sufficiently large (longer than one pulse duration) to suppress the NRB contribution, the measured
anti-Stokes component will just contain the resonant contribution.

Referring to the description of the two mechanisms considering just two beams,
i.e. the narrowband pump and the broadband Stokes beam, it is clear that in order to
generate CARS with the two-color mechanism, there must be two interactions with the
pump beam, where the first one excites the vibrational modes, while the second one
probes them. Therefore, it is not possible to introduce a delay between the pump and
the Stokes pulses, since no modes would be excited. On the other hand, the three-color
CARS is particularly suitable for T-CARS. Indeed, in this mechanism, the Stokes beam
excites the vibrational modes acting both as pump and Stokes beam, while the pump
pulse acts simply as a probe. Hence, it is possible to delay the pump, suppressing the
NRB contribution.

The main advantage of using T-CARS is that it is an optical solution for NRB re-
moval. Therefore, the obtained spectra are comparable to the SR ones without the
need for post-processing. However, as it has been extensively discussed in previous
sections, the NRB also allows us to amplify the CARS signal. Removing it leads to
lower sensitivity and a lower signal-to-noise ratio of the acquired spectra, calling for
a longer integration time to acquire good-quality spectra. For these reasons, T-CARS
is particularly useful for spectroscopic applications, where a longer acquisition time is
still acceptable. While for microscopic applications [110], T-CARS is not the primary
choice, since one looks for shorter pixel dwell time to image large field of views and
not damage the biological samples.

1.4.5 Epi-detected CARS

In eq. (1.55), we found that the CARS signal scales quadratically with the thickness L
of the scrutinized specimen. We derived the simple expression for the CARS intensity
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assuming that the phase matching condition is accomplished, namely ∆k⃗L = 0, in
which ∆k⃗ = 2k⃗P − k⃗S − ⃗kAS . This approximation is generally valid in microscopy
under tight focusing conditions. However, till now we implicitly considered the forward
propagating signal (F-CARS). If we took into account the backward propagating signal,
even under tight focusing conditions, the phase matching approximation is no more
valid [114, 115].

Figure 1.18: Scheme of E-CARS and F-CARS experimental set-up.

For backward propagating CARS, also called epi-detected CARS (E-CARS) [114],
the intensity can be calculated as [116]:

IAS(L) ∝ |χ(3)|2L2sinc2

(
|∆k⃗|L

2

)
I2P IS, (1.75)

In this case, the only way to get |∆⃗k|L ≃ 0 is through L ≃ 0. To understand
the advantage of using E-CARS rather than F-CARS, we can consider a thin sample
immersed in a solvent. Since the F-CARS signal is proportional to L2, the solvent
signal will be stronger than the one of the thin sample, due to Lsample ≪ Lsolvent.
On the other hand, the E-CARS signal of the solvent will be strongly reduced since
the phase matching condition is not satisfied, while the signal coming from the thin
sample will be comparable with the F-CARS signal, since |∆k⃗|Lsample ≃ 0 is valid in
both directions. Therefore, epi-detected CARS enhances the signal-to-background ratio
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1.5. The SRS process

of small scatterers, being beneficial for their identification in heterogeneous samples
[116, 117].

If the dispersion of the refractive index is negligible (nS ≃ nP ≃ nAS ≃ n), it is
possible to provide an estimate of the critical thickness Lcrit over which the E-CARS
signal drops. Considering that the first zero of sinc(x) is for x = π, the required
condition to have a relevant E-CARS signal is: |∆k⃗|L ≪ π. For epi-detected CARS,
assuming a collinear geometry:

|∆⃗k| = 2kaS =
4nπ

λaS

, (1.76)

Hence, applying the condition |∆⃗k|L ≪ π to (1.76), we obtain E-CARS signal if:

L ≪ λaS

4n
. (1.77)

Therefore for biological samples, that have refractive index n ≈ 1.3 and considering
that we measure signals with λaS ≈900 nm, L ≪167 nm. It means signal mainly comes
from very small scatterers of the heterogeneous biological specimens. A scheme of a
microscope able to detect both F-CARS and E-CARS is depicted in 1.18.

1.5 The SRS process

The SRS process belongs to the class of coherent Raman scattering processes. While
CARS probes the vibrational coherences in the Raman-active medium by means of
a narrowband beam, SRS monitors directly the vibrational population states, detect-
ing either a frequency-dependent Stokes amplification (SRG) or a frequency-dependent
pump attenuation (SRL) (Fig. 1.7.(d-e)). In its simplest implementation, SRS utilizes
the same excitation scheme as CARS with two narrowband input fields interacting with
the Raman-active sample. Quantum mechanically, the picture of the process is the fol-
lowing: the interaction with the Raman active material leads to the absorption of a
pump photon at frequency ωp (that is annihilated) and the emission of a Stokes photon
at frequency ωs (that is created), while the energy difference between the two pho-
tons ℏ(ωp − ωs) is absorbed by the material for energy conservation. Since energy
is deposited in the material after the interaction, SRS belongs to the so-called nonlin-
ear dissipation processes where, after the nonlinear interaction, an exchange of energy
between the laser fields and the medium takes place. CARS, on the other hand, is a
parametric generation process because only the fields involved in the nonlinear inter-
action exchange energy, while the medium, at the end of the interaction, remains in the
ground state.

The mathematical expression for the amplitude of SRG and SRL can be obtained
using a four-wave mixing approach. Considering the degenerate case where ω1 = ω2 =
ωP and ω3 = ω4 = ωS , the stimulated Raman gain (SRG) process can be derived from
the propagation equation for the Stokes field. From eq. (1.37), inserting the expression
of the envelope of the third-order nonlinear polarization oscillating at frequency ωs,
P

(3)
ωS = 3ϵ0

4
χ(3)(ωS)|AP |2ASexp(i(ωSt− kSz), the propagation equation becomes:

dAS

dz
= − 3iωS

8cn(ωS)
χ(3)(ωS)|AP |2ASe

−i∆kz, (1.78)
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where ∆k = −kp+ks+kp−ks = 0, which means that the SRS process is intrinsically
phase-matched. From this equation, the amplitude of the Stokes field after propagation
on a sample of length L is:

AS = AS(0)e
− 3iωS

8cn(ωS)
χ(3)(ωS)|AP (0)|2L (1.79)

By performing the first-order development, we obtain

AS = AS(0)−
3iωS

8cn(ωS)
χ(3)(ωS)|AP (0)|2AS(0)L (1.80)

= AS(0) + ∆AS (1.81)

Since the signal ∆AS sits on top of the original Stokes beam, to detect it one needs
high-frequency modulation transfer techniques. Assuming that |∆AS| << AS(0), the
field intensity becomes:

IS ∝ |AS(0) + ∆AS|2 = |AS(0)|2 + |∆AS|2 + 2ℜ{AS(0)
∗∆AS} (1.82)

≃ |AS(0)|2 +
3ωS

4cn(ωS)
ℑ{χ(3)

R (Ω)}|AP (0)|2|AS(0)|2L (1.83)

The first term on the right-hand side is the intensity of the Stokes beam, which we
assumed remains virtually unattenuated during the nonlinear process. The second term
is the interference between the incident Stokes field and the stimulated Raman field at
the detector. Note that if χ(3)

V IB is purely real, the interference term disappears, however
close to resonance ℑ{χ(3)

R } ̸= 0 and the interference term is non-vanishing. Using
modulation transfer techniques, this interference term can be electronically isolated
from the other terms. Indeed, one beam is modulated at high frequency (>1 MHz,
where the laser noise reaches its minimum values), and the modulation transfer on
the other beam is detected using a lock-in amplifier that basically demodulates the
signal acquired with a photodiode. The quantity which is physically detected in an
SRG experiment is the change in intensity of the Stokes beam when the pump beam is
modulated:

∆IS =
3ωS

4cn(ωS)
ℑ{χ(3)

R (Ω)}IP ISL (1.84)

where IP ∝ |AP (0)|2 and IS ∝ |AS(0)|2. From Eq. 1.84, we see that the plane wave
model predicts that the SRG signal is proportional to the length L at the interaction
volume, as well as, it has a linear dependence on the pump and on the Stokes beams
(IP and IS). Moreover, since it is proportional to the imaginary part of the third-order
nonlinear susceptibility χ

(3)
R , the signal is directly comparable to the SR one. SRG is

typically defined as:

SRG =
∆IS
IS(0)

=
3ωS

4cn(ωS)
ℑ{χ(3)

R (Ω)}IPL (1.85)

The analogous equation describing the forward-detected stimulated Raman loss (SRL)
signal is obtained by exchanging the subscript S and P and by inverting the sign of the
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imaginary part of the third-order nonlinear susceptibility. The quantity physically de-
tected in an SRL process is the change in intensity of the pump beam when the Stokes
beam is modulated:

SRL =
∆IP
IP (0)

= − 3ωP

4cn(ωP )
ℑ{χ(3)

R (Ω)}ISL (1.86)

For the same consideration we have done for the SRG case, the SRL signal represents a
loss in intensity in the ωP channel and it derives from destructive interference between
the pump field and the induced field at ωP .

Note that SRG signal is proportional to the pump intensity while the SRL signal
is proportional to the Stokes intensity. It implies that in an SRG (SRL) experiment
the pump (Stokes) intensity should be high to have a stronger signal, while the Stokes
(pump) intensity should be sufficient to be revealed by the detector.

So far, we have discussed the case of forward-detected SRS signal. While the
forward-propagating stimulated Raman field is always phase-matched with the incident
field, in the epi-detected SRS [28] there is a non-zero wave vector phase match. Indeed
it results in |∆k| = 2 |ks| for SRG signal and |∆k| = 2 |kp| for SRL signal. Conse-
quently, the backward-propagation-induced phase mismatch will determine an effective
coherence length Lc which is very small in water (0.3 or 0.4 µm for light beams in the
NIR) and so it is only relavant in microscopy applications where a nanoscopic object is
being studied whose geometry does not exceed the coherence length.

1.5.1 SRS vs CARS

SRS and CARS are two techniques that allow the user to probe the vibrational modes
of the sample. They both are based on the illumination of the sample with two beams
(the pump and the Stokes beam). The main difference between the two is how the
information is translated in terms of the amplitude and phase of the emitted electric
fields. As we have seen in previous sections, in SRS the information sits on top of
the pump and Stokes fields and can be read as a loss of the pump (SRL) or a gain
of the Stokes signal (SRG), while in CARS the information is encoded in the field
oscillating at the anti-Stokes frequency. From an experimental point of view, it implies
the use of two different approaches to extract from the measured signal the given Raman
vibrational information.
The most relevant SRS advantages over CARS are:

• SRS signal scales linearly with the concentration of molecules inside the sam-
ple, thus one can retrieve also quantitative information about the target molecules,
without any problem about the fact that they are present in high or low concen-
tration. In CARS, there is a quadratic dependence on the concentration of target
molecules, which means that in case of low concentration, it is difficult to distin-
guish the signal from the NRB.

• SRS signal is free from NRB and directly proportional to the Raman cross-section
σRaman, thus one can directly compare the SRG/SRL signal with the data already
known in the literature from SR. On the other hand, CARS is affected by NRB
and it is difficult to perform a direct comparison of the spectra.
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• Two-photon excited fluorescence overlaps the spectral region of the CARS signal,
limiting its interpretation. Conversely SRS, being on top of the original beams, is
not distorted by this process.

• SRS is intrinsically phase-matched, while CARS depends on phase-matching con-
dition fulfillment that makes the applicability of deconvolution methods very hard.

Also CARS has some advantages with respect to SRS:

• CARS signal is easier to detect with respect to SRS since it is nearly a background-
free process spectrally separated from the two input fields. Instead, in SRS you
must detect a small variation in the number of photons on a large background
(pump and Stokes) and so more sophisticated techniques are needed to detect
them.

• CARS can be straightforwardly implemented in the broadband modality, enabling
the detection of more chemical species at once. Indeed, in CARS a spectrometer is
enough to measure the anti-Stokes component. Contrarily in SRS, the broadband
modality requires a particular technological design to detect the full vibrational
spectrum of the specimen based on a multi-channel lock-in technology.

• In CARS, one can exploit the presence of the NRB to amplify the weak Raman
modes in the fingerprint region, whose detection in SRS is very challenging. The
user can get rid of the NRB contribution either in post-processing analysis with
numerical or deep-learning approaches or with optical techniques (e.g. TD-CARS
or polarization CARS).

1.5.2 Broadband SRS

Also for SRS, it is possible to talk about broadband SRS techniques. We may distin-
guish also in this case the hyperspectral and the multiplex SRS. First SRS measures
were acquired while working at single frequency using a picosecond OPO [51] The
first attempts to enhance the chemical specificity through a parallel or sequential acqui-
sition of several vibration modes were based on the tunability of the OPO themselves.
However, since the OPOs have intrinsically a limited tuning speed, the acquisition of
SRS images is time consuming [118] [119]. A possible solution to this problem is the
so-called spectrally tailored excitation SRS [120], which is based on a tailored multi-
plex excitation of the vibrational modes of the investigated sample. Ozeki et al. [121]
further boosted the imaging speed of hyperspectral SRS by using an approach based on
a very low noise detection chain and on the possibility to scan the frequency detuning
between pump and Stokes beams with a millisecond time response. In recent years a
number of hyperspectral SRS setups have been developed based on the SF approach,
where the scanning speed has been increased to a point to be able to interrogate each
pixel at variable frequency detuning, typically within 30− 60 µs. [122, 123].

In multiplex SRS, a narrowband pump and a broadband Stokes are synchronized and
collinearly combined and sent to the sample (into the microscope). The pump pulse,
after the sample, is removed with a short-pass wavelength filter, while the broadband
Stokes is sent to a multichannel detector, which can be either digital (spectrograph +
CCD) or analog (diffraction grating+ photodiode array+ multichannel lock-in ampli-
fier). Each photodiode array, like in a commercial spectrometer, records the intensity

38



i
i

“output” — 2023/2/8 — 13:32 — page 39 — #51 i
i

i
i

i
i

1.5. The SRS process

of a different spectral portion of the incoming pulse. In order to measure this signal
is, therefore, necessary that each photodiode is connected to a lock-in amplifier, hence,
a multi-channel lock-in amplifier is required to perform the measurement. A similar
approach for multiplex SRS has been recently developed in our laboratories [124,125].
We realized a broadband SRS microscope equipped with a home-built multichannel
lock-in amplifier capable of simultaneously measuring the SRS signal at 32 frequen-
cies with integration time down to 44 µs. The system has been used to measure the
vibrational modes in the CH-stretching region of biological samples. In particular, it
differentiates the chemical constituents of heterogeneous samples by measuring the rel-
ative concentrations of different fatty acids in cultured hepatocytes at the single lipid
droplet level and identifies tumors from peritumoral tissue in a mouse model of fibrosar-
coma.

An alternative approach to multiplex SRS is known as the photonic time stretch ap-
proach [126,127]. It consists in temporally chirping the pulse to be measured, typically
by a long optical fiber, to a duration of a few nanoseconds, so that it can be accurately
sampled by a high-frequency analog-to-digital converter (ADC). The SRG spectra are
retrieved by numeric demodulation of the collected spectra by a single photo-detector
instead of a lock-in amplifier.

Another approach for broadband SRS is based on FT detection of the SRG/SRL
spectrum and is referred to as Fourier Transform-SRS (FT-SRS) [128]. The FT ap-
proach uses a single photodetector for measuring the interferogram of the broadband
Stokes beam after filtering the modulated narrowband pump beam.

A complete overview of all the multiplex implementations for SRS is out of the
scope of this thesis work which is mainly focused on multiplex CARS. The reader may
refer to [24].
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Figure 2.1: Picture of the supercontinuum generation in a 10-mm YAG crystal from the VIBRA labora-
tory of Politecnico di Milano. 42
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2.1. Introduction

This chapter deals with the theoretical description of the processes leading to white light
continuum (WLC) generation that is used in the BCARS experimental setup to produce
the broadband source. WLC is a complex mechanism that involves many nonlinear
optical processes coming into play in a material when the impinging light intensity
overcomes a threshold. Despite its theoretical complexity, it is quite simple to produce
a WLC with long-term stability and a sufficiently broad spectrum thus managing to
generate all the colors needed for exciting the vibrational modes in biological samples.

2.1 Introduction

WLC generation is one of the most spectacular and visually perceptible effects pro-
duced by the nonlinear propagation of intense ultrashort laser pulse in a transparent
medium (Fig. 2.1).

From the practical point of view, to switch on the supercontinuum, one has to play
on three main parameters: the average power of the femtosecond pulses impinging onto
the crystal, the divergence of the beam at the focal spot, and the position of the crys-
tal with respect to the focal plane. Femtosecond WLC generation constitutes a more
compact, robust, efficient, low-cost, and alignment-insensitive technique rather than
using Photonic crystal fiber (PCF). Moreover, it guarantees long-term stability of the
broadband source, which can be even higher with respect to that of the fundamental
beam that induces the process, thanks to the intrinsic nature of the filamentation pro-
cess [102,129]. It also features high spatial and temporal coherence. On the one hand,
spatial coherence leads to an improvement in the quality of the spatial mode, a universal
feature of the filamentation process [130]. On the other hand, the temporal coherence
implies that the colors during the propagation acquire a regular chirp, thus guaranteeing
the compressibility of the broadband source [131]. Eventually, the generated supercon-
tinuum features the same polarization properties as the fundamental beam [132] and
has a spectral density of the order of ≈10 pJ/nm [133] exhibiting mutual correlations
between the intensities of the spectral components and low pulse-to-pulse fluctuations.

From a theoretical perspective, the physical process leading to the SC generation in
transparent bulk media can be understood in the framework of femtosecond filamen-
tation [102]. This process is the result of an intricate coupling between spatial and
temporal effects such as diffraction, self-focusing, self-phase modulation, group veloc-
ity dispersion, multiphoton absorption, and ionization.

In the space domain, the interplay of these effects leads to the formation of a narrow
light channel, termed light filament which propagates over extended distances much
larger than the typical diffraction length and which leaves a narrow luminous plasma
trail in its wake. In the time domain, the pulse undergoes dramatic transformations:
pulse splitting or compression, pulse front steepening, and generation of optical shocks.
These transformations altogether produce a broadband, spatially, and temporally co-
herent emission with a low angular divergence (supercontinuum), accompanied by the
generation of colored conical emission.

When the filament forms in the air, the conical emission is typically longer than a
meter and requires an energy of the order of several millijoules. In solids or liquids,
using ultrashort laser pulses, its generation derives from nonlinear optical processes
that require energies of the order of several microjoules, resulting in a conical emission
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Chapter 2. Supercontinuum generation in bulk media

length of a few mm or cm.

2.2 Self-focusing of Laser Beams

When shining materials with a very intense pulse, their response to the electric field
depends on the nonlinear terms of the dielectric polarization, which can be written as:

P⃗ (z, t) = ϵ0

[
χ(1)E⃗(z, t) + χ(2)E⃗2(z, t) + χ(3)E⃗3(z, t) + ...

]
= P⃗ (1)(z, t) + P⃗ (2)(z, t) + P⃗ (3)(z, t) + . . .

(2.1)

where χ(n) is the n-th order susceptibility and P⃗ (n) is the n-th order contribution to the
polarization.

In centrosymmetric materials (such as bulk glasses) χ(2) = 0, therefore the main
term among the nonlinear polarization terms is the third-order one. Therefore, neglect-
ing higher-order terms, we may write the polarization as:

P⃗ (z, t) = ϵ0

(
χ(1)E⃗(z, t) + χ(3)E⃗3(z, t)

)
(2.2)

Recalling that the third-order nonlinear polarization in a four-wave mixing process has
the form of eq. (1.39), in the degenerate case, where A1 = A2 = A3 = A4 = A and
ω1 = ω2 = ω3 = ω4 = ω0, it reads:

P (3)
ω0

(z, t) =
3ϵ0χ

(3)

4
|A|2Aei(ω0t−k0z) + c.c., (2.3)

The expression (2.2) can be rewritten as:

P⃗ω0(z, t) = ϵ0

[
χ(1) +

3ϵ0χ
(3)

4
|A|2

]
E⃗(z, t) = ϵ0χE⃗(z, t), (2.4)

where

χ = χ(1) +
3χ(3)

4
|A|2, (2.5)

Since the refractive index of the medium is n =
√
1 + χ, defining n0 as the unperturbed

refractive index such that n2
0 = 1 + χ(1), we find:

n =

√
1 + χ(1) +

3χ(3)

4
|A|2 = n0

√
1 +

3χ(3)

4n2
0

|A|2, (2.6)

Under the assumption 3χ(3)

4n2
0
|A|2 ≪ 1, implying that the nonlinear term introduces a

small correction with respect to n0, eq. (2.6) can be approximated to:

n ≃ n0 +
3χ(3)

8n0

|A|2, (2.7)

Taking into account the expression of the intensity as I(z, t) = 1
2
cϵ0n0|A|2, we find:

|A|2 = 2I

cϵ0n0

, (2.8)
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2.2. Self-focusing of Laser Beams

We can now plug (2.8) in (2.7) finding:

n ≃ n0 +
3χ(3)I

4cϵ0n2
0

= n0 + n2I, (2.9)

where n2 is the nonlinear refractive index coefficient, related to χ(3) by the relation:

n2 =
3χ(3)

4ϵ0cn2
0

(2.10)

Figure 2.2: Schematic representation of Self-focusing. From the left, refractive index behavior variation
in function of the radial coordinate; χ(3) material with propagation along the z-axis highlighting the
focusing of the beam.

The coefficient n2 is positive for most of the dielectric media, determining that dur-
ing the propagation a laser beam induces an increase of the refractive index of the
medium proportional to the intensity. Hence, for a Gaussian beam with an intensity
peak in the center, the beam is exposed to a higher index at the center and a lower in-
dex at the edges. Since the effect on the beam is similar to that of a lens, it is called
Kerr-induced self-focusing effect (see Fig. 2.2). The self-focusing effect is a cumulative
effect along the propagation as it makes the beam more intense in the center, enhancing
the refractive index and in the absence of any saturation effect, self-focusing would end
up in a catastrophic collapse at a finite propagation distance.

However, self-focusing always competes with diffraction [134]. Indeed, the intensity-
dependent refractive index modifies the phase of the propagating beam but it is the
action of diffraction which conveys the changes in the phase induced by nonlinearity
and ultimately leads to self-focusing. In the case of a cylindrically symmetric Gaussian
beam, the competition between diffraction and self-focusing is determined by the beam
power. There is a critical value, called critical power Pcr at which diffraction and self-
focusing nonlinearities are balanced. In this case, the beam shape remains fixed and
the pulse is called soliton or Townes mode. The value of the critical power, derived us-
ing a model which takes into account only these two processes during the light-matter
interaction, is [134]:

Pcr =
3.72λ2

8πn0n2

(2.11)
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Chapter 2. Supercontinuum generation in bulk media

The physical meaning of this power is that above Pcr, the Kerr nonlinearity overcomes
diffraction and the beam shrinks upon itself and undergoes a collapsing singularity at
a finite propagation distance, while below Pcr, diffraction overcomes self-focusing and
the beam will spread.

2.3 Self-phase Modulation of Laser Pulses

Considering a time-dependent intensity profile, the refractive index varies also over
time. The time dependence of the refractive index is responsible for a nonlinear change
in the phase of the pulse which can be written as [102]:

Φnl(t) = −ωo

c
n2

∫ L

0

I(t, z)dz (2.12)

where L is the propagation distance inside the medium. If the medium is short enough
for the intensity variation along z to be negligible, the nonlinear phase becomes Φnl(t) =
−ωo

c
n2I(t)L. It means that a nonlinear phase shift is accumulated during the pulse

propagation. This is the reason why this effect is called self-phase modulation. It will
result in a time-varying instantaneous frequency:

ω(t) = ω0 + δω(t) (2.13)

where δω(t) = − (ω0L/c)n2∂I/∂t.

Figure 2.3: Self-phase modulation of a Gaussian pulse which produces a variation of the instantaneous
frequency with time.

For a Gaussian laser pulse with intensity I = I0exp (−2t2/τ 2), where τ is related to
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2.4. Nonlinear Absorption and Ionization

the pulse duration, the variation of the instantaneous frequency is:

∂ω(t) = 4
ω0L

ct2p
n2I0te

(
− 2t2

τ2

)
(2.14)

The effect leads to the generation of new frequencies, leading to a negative shift of
the instantaneous frequency at the leading edge of the pulse and a positive shift of the
instantaneous frequency at the trailing edge of the pulse. So there will be a red-shifted
spectral component at the pulse leading edge and a blue-shifted spectral component at
the pulse trailing edge (see Fig. 2.3). Considering pure self-phase modulation, one
notices that the same frequencies are generated at different times, so each color could
give interference leading to modulation of the spectrum.

2.4 Nonlinear Absorption and Ionization

As reported in Section 2.2, as the beam self-focuses, its intensity increases and so
does the nonlinear refractive index, resulting in an enhancement of the effect of self-
focusing. If this process continued, it would result in a collapse of the beam. Never-
theless, this effect does not actually take place thanks to saturation processes such as
multiphoton absorption and ionization, responsible for energy loss and generation of a
free electron plasma, which further absorbs and defocuses the beam. The combination
of self-focusing and saturation processes leads the intensity to a certain level called the
clamping intensity. This quantity depends on the order of multiphoton absorption that
is characteristic in each material and can be written as K = 1 + ⟨ Ug

ℏω0
⟩, where Ug is

the bandgap and ℏω0 is the photon energy. The higher the order of multiphoton ab-
sorption, the higher the clamping intensity, thus leading to a wider spectral broadening.
Hence, the broadest supercontinuum spectrum can be obtained for dielectrics with a
wide bandgap [135,136]. The typical values of clamping intensity in condensed media
are of the order of a few TW/cm2.

2.5 Plasma Effects

In presence of ionization of a dielectric medium, electrons are promoted from the va-
lence band to the conduction band and this corresponds to the absorption of K photons
with an energy larger than the bandgap. This process results in conduction electrons
whose density transition rate varies in time proportionally to the K-th power of the laser
intensity I [102]:

∂ρ

∂t
=

βK

Kℏω0

IK (2.15)

where βK is the multiphoton absorption coefficient. The conduction electrons deter-
mine the variation of the refractive index of the material, according to the following
relationship:

n = n0 −
ρ

2n0ρc
(2.16)

where ρc = ϵ0meω
2
0/e

2 is the critical plasma density beyond which the plasma becomes
opaque to an electromagnetic density at ω0. Considering a Gaussian beam, the plasma
density is typically larger in the center of the beam compared to the tail. Therefore,
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Chapter 2. Supercontinuum generation in bulk media

from Eq.2.16, it follows that there is a bigger reduction of the refractive index in the
center of the beam. This means that the electrons in the conduction band will induce a
phase curvature similar to that of a beam passing a defocusing lens. The overall effect
is that the beam intensity decreases and its diameter increases leading to a so-called
plasma defocusing.
Another effect, associated with plasma defocusing is the self-phase modulation induced
by the plasma. Indeed, the nonlinear phase change is:

ϕnl(t) = −ω0L

c

ρ(t)

2n0ρc
(2.17)

Similar to the effect due to third-order nonlinearity, this nonlinear phase shift leads to a
variation in time of the instantaneous frequency, that for a Gaussian beam is:

δω(t) =
ω0L

c

βKI
K
0

Kℏω02n0ρc
e−

2Kt
τ2 (2.18)

This effect is called plasma-induced phase modulation which gives rise to frequency
changes that are all positive, so to a blueshift of the spectrum.
For the sake of completeness, we can provide a mathematical formula to express the
clamping intensity. Combining the two expressions that determine variation in the re-
fractive index because of self-focusing and saturation effects, we may write:

n2Icl =
ρcl

2n0ρc
(2.19)

Assuming for simplicity a constant pulse with duration τ , the plasma density can be
roughly written as ρ = βK (Kℏω0)

−1 IKtp, therefore the clamping intensity becomes:

Icl =

(
2n0n2ρcKℏω0

βKtp

) 1
K−1

(2.20)

From Eq. 2.20, it is easy to understand that the clamping intensity depends on the
material properties through the nonlinear index coefficient n2, on the multiphoton ab-
sorption coefficient βK and on the number of photons absorbed K.The higher is the
order of multiphoton absorption K the higher is the clamping intensity.

2.6 Chromatic dispersion

Another relevant phenomenon that comes into play when dealing with white-light gen-
eration is chromatic dispersion, which is due to the fact that waves of different fre-
quencies travel at different velocities in a dielectric medium, resulting in the temporal
spreading of the light pulse. Considering a medium with positive group delay disper-
sion, the fastest frequencies (low frequencies) will propagate in the leading edge of
the pulse, while the slowest frequencies (high frequencies) in the trailing edge. In this
case, the pulse is said to be positively chirped. Chromatic dispersion can also lead
to a compression of the pulse if the pulse entering the medium is initially negatively
chirped.
Chromatic dispersion is due to the dependence of the refractive index of the material n
on the frequency ω. To quantify the chromatic dispersion, one can start by fitting the
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2.7. Self-steepening and Space-Time Focusing

refractive index curve in the transparency region with the Sellmeier relations, which
express the refractive index as a function of the wavelength:

n2(λ) = a0 +
∑
j=0

N
ajλ

2

λ2
j − λ2

. (2.21)

Chromatic dispersion can be classified as normal and anomalous dispersion. In order
to distinguish them, the propagation constant of the pulse can be expressed as:

k(ω) = n(ω)
ω

c
(2.22)

By expanding it around the central frequency of the laser pulse ω0, one can write:

k(ω) = k(ω0) + k′
0(ω − ω0) +

k′′
0

2
(ω − ω0)

2 (2.23)

where k′
0 = ∂k/∂(ω)|ω0 is the inverse of the group velocity vg and k′′

0 = ∂2k/∂(ω)2|ω0

is the group velocity dispersion coefficient or GVD. For a given material, the region of
normal dispersion corresponds to the positive value of GVD, where the red colors travel
faster than the blue ones. Conversely, the region of anomalous dispersion corresponds
to the negative value of GVD, where the blue components travel faster than the red ones.
Chromatic dispersion has an important role in determining the spectrum of the super-
continuum, indeed the lower the chromatic dispersion the better the phase-matching
condition for a broader range of spectral components, thus enabling the generation of
light at many different colors.

2.7 Self-steepening and Space-Time Focusing

The combination of the nonlinear effects and chromatic dispersion gives rise to self-
steepening. Indeed, the Kerr nonlinearity modifies not only the refractive index of the
medium but also the group index, via the interplay with dispersion:

n(g) = n
(g)
0 + n

(g)
2 (2.24)

where n
(g)
0 = n(ω0) + ω0dn/dω|ω0 and n

(g)
2 is proportional to n2 and positive. As

a result, the intense part of the pulse travels at a smaller velocity with respect to the
low-intensity tail, resulting in a steepening of the trailing edge of the pulse.

Figure 2.4: Schematic illustration of the filamentation process. (a) Self-focusing of a laser beam by
optical Kerr effect. (b) Defocusing of the beam by the plasma. (c) Illustration of the collapse of the
beam on itself by the Kerr effect leading to the ionization of the media with the consequent formation
of a filament. Adapted from [137].

49



i
i

“output” — 2023/2/8 — 13:32 — page 50 — #62 i
i

i
i

i
i

Chapter 2. Supercontinuum generation in bulk media

2.8 Femtosecond filamentation

Femtosecond filamentation refers to the ability of powerful femtosecond laser pulses
to propagate nonlinearly over distances of several diffraction lengths in a medium with
Kerr nonlinearity (see Fig. 2.4). The main process which leads to the generation of
filamentation is self-focusing through which the laser beam gets narrow and intense
enough to deposit its energy into a needle-shaped region along the propagation axis.
Because of the strong light-matter interaction in this region, there could be the genera-
tion of an electron-hole plasma and the emission of new radiations.
One of the main proofs of femtosecond filamentation is represented by the conical emis-
sion of white light (see Fig.2.5). It is accompanied by axial supercontinuum generation.
By looking at the laser beam cross-section one can observe that after the termination of
the filament, it shows a white central spot surrounded by colored rings, whose wave-
lengths decrease from the center to the outer rings. Conical filamentation has been
observed for filamentation in media of various natures and lasers of different central
wavelengths.

Figure 2.5: Picture displaying the conical emission of the WLC generation in a 10-mm YAG crystal.
Taken from the BCARS experimental setup described in this work.

2.9 Conclusion

In light of the processes discussed in this chapter, supercontinuum generation [138] in
bulk media is a rather complex physical phenomenon that involves many nonlinear opti-
cal processes. Indeed, the spectral broadening of a laser pulse impinging onto nonlinear
crystal results from the interplay of nonlinear effects deriving from the interaction of
the driving laser with a crystal. With self-focusing the beam size shrinks, leading to in-
creased intensities. The increased intensity generates plasma, freeing electrons, which
defocus the beam. When the plasma defocusing compensates for the self-focusing, a
filament is created. During propagation, other nonlinear effects contribute to the broad-
ening such as self-steepening that shortens the trailing edge of the pulse in time and
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leads to a broadening towards shorter wavelengths.
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This chapter will describe the main features of the BCARS experimental setup I de-
signed and built during my Ph.D. The first version of the system enabled us to cover
the fingerprint region of the vibrational spectrum (500 - 1800 cm−1) via the two-color
mechanism. We employed this method to acquire the vibrational spectra of solvents,
plastic spheres, and biological samples such as murine vertebrae slices. Despite the
system showing very high performance in terms of acquisition speed and sensitivity,
it was not possible to image plastic beads and biological samples covering also the
CH-stretching region of the vibrational spectrum, because a good SNR of the spectra
required high average power of the broadband Stokes beam that in most of the times led
to damage of the scrutinized sample. This was one of the main reasons why I decided
to find an optimal configuration of the optical sources to construct a system for imaging
cells and tissues with a pixel dwell time down to 1 ms covering the full Raman spectrum
(500 - 3100 cm−1). This configuration consists in a combination of both the excitation
methods that have been widely discussed in Chapter 1 in section 1.4.3, namely the two-
color and the three-color mechanism. The description of the experimental setup refers
to this last configuration; however, the reader will be guided throughout the description
of the next chapters to understand which configuration has been adopted for each result.

The main goal of this chapter is to provide the reader with a protocol to build a
BCARS experimental setup. After describing the optical components that constitute
the optical laser sources, the chapter will show a complete characterization of the pump
and Stokes beam, concluding with a description of the microscope and of the employed
detection system.
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Chapter 3. Experimental Setup and optical sources

3.1 Experimental setup

A scheme of the BCARS system is shown in Fig. 3.1. The system starts with a com-
mercial fiber-based ytterbium laser system (Monaco1035, Coherent) that delivers ≈270
fs pulses at 1035 nm wavelength with variable repetition rate and average power, which
we fixed at 2 MHz and ≈6 W, respectively. A polarizing beam splitter divides the laser
output into two branches. A half-wave plate mounted on a manual rotational stage con-
trols the average powers of the two beams. We generate narrowband pump pulses with
energy fluctuations <1 % RMS by sending the first branch, with ≈2 W average power,
to a high-finesse Fabry–Perot etalon (air-space etalon, SLS Optics), which allows reach-
ing a spectral resolution of ≈9 cm−1, that is sufficient to match the typical linewidths
of vibrational Lorentzian peaks in condensed media [114]. The second replica, with ≈
4W average power, generates WLC in a 10 mm YAG crystal, used as broadband Stokes
pulses.

For the WLC generation stage, the combination of a half-wave plate and a polarizing
beam splitter cube is employed to finely tune the power impinging on the crystal. An
iris is placed before the focusing lens to control the divergence of the beam driving
the WLC. A 75-mm lens focuses the light onto the crystal, mounted on a single-axis
translational stage, and a 75-mm achromatic doublet collimates the WLC. A long-pass
filter (LP1050, Thorlabs) selects the red-shifted lobe of the WLC (1050 – 1600 nm),
filtering out the fundamental beam and the blue-shifted components. An SF11 (60-cm
tip-to-tip distance) prism pair compressor compensates for the chirp of the broadband
beam (GDD ≈ 8000 fs2) introduced by its propagation through the optical path and the
objectives. A homemade mask is used after the second prism of the compressor where
all colors travel in parallel to finely select the bandwidth of the Stokes beam. The
generated Stokes pulses feature a sub-20 fs pulse duration at the sample plane, after the
illumination objective, and a bandwidth spanning 1200-1600 nm, adjustable according
to the desired excitation mechanism and the application. Moreover, the source features
signal stability comparable to that of the driving laser beam (<1 % RMS).

The spatiotemporal overlap of the two pulse trains is realized by finely tuning a
dichroic mirror (Di02-R1064-25x36, Semrock) and a mechanical delay line mounted
in the pump path. The beams are then collinearly focused on the sample plane with a
100× air objective (LCPLN100XIR, Olympus, numerical aperture (NA) = 0.85) and the
transmitted B-CARS beam is collimated by an identical objective, through a homemade
transmission microscope in up-right configuration. A good match between the spot size
of the two beams and the dimension of the back aperture of the illumination objective
is essential to avoid both losing powers before the samples and reducing the nominal
NA of the employed objective, which implies a worst spatial resolution of the acquired
images. While we can control the spot size of the broadband Stokes beam at the back
aperture of the illumination objective by slightly tuning the position of the achromatic
doublet, a telescope is needed to reduce the beam dimension of the pump beam that
slightly diverges after several meters of propagation in the optical table. For these
purposes, a 3:1 telescope is employed before the combiner.

The sample scanning is performed via two translational stages: PI-nano XYZ (P-
545.3R8S, Physik Instrumente) and an XY motorized translation stage (U-780.DNS,
Physik Instrumente), mounted one on top of the other. The former is used to finely ad-
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3.2. Advantages of the BCARS system

just the position of the sample with respect to the focal spot in the X, Y, and Z directions,
enabling it to move over a range of 200 µm along the three axes; the latter is used to per-
form the raster scanning of the sample over large areas (up to ≈ 2x2cm2, limited by the
presence of the collection objectives that can hit the stage). The collimated beam, carry-
ing the B-CARS signal relative to the illuminated pixel, is filtered through a short-pass
filter (SP1000, Thorlabs) and focused onto the detection system with a 35 mm focus-
ing lens (B-coated), consisting of a spectrometer with a 600 groves/mm grating (AC-
TON SP2150, Princeton Instruments) and a front-illuminated CCD (BLAZE100HR,
Princeton Instruments). The detection system is synchronized with the scanning stage
through a custom-written Matlab interface, collecting hyperspectral images. The sys-
tem enables us to scan the sample along the X-Y, X-Z, and Y-Z directions.

Figure 3.1: Schematic illustration of the BCARS experimental setup.

3.2 Advantages of the BCARS system

The main novelty of our BCARS microscopy system is the use of a low-repetition-rate
(2 MHz) pulsed laser in the infrared. The majority of the systems based on nonlinear
optical microscopy work with higher repetition rate (≈ 40 - 80 MHz) fs or ps lasers
[139]. Assuming a laser operating at 80 MHz and a pixel dwell time of 100 µs, it
implies that each pixel of the image is integrating 8000 pulses. Since nonlinear signals
scale quadratically or cubically with the laser peak power, using a lower repetition rate
and keeping fixed the average power and the pixel dwell time, one integrates a lower
number of pulses to collect the signal from a single pixel but gain in sensitivity thanks
to the higher pulse energy. In the case of the CARS signal, we know that:
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ICARS ∝ |χ(3)
V IB|

2I2P IS (3.1)

Considering that the intensity of a laser pulse can be written as:

I =
ϵ

τA
=

P

fτA
(3.2)

where ϵ,τ , and A are the energy, pulse width, and focus area, respectively. The pulse
energy can be also expressed in function of the average power P and repetition rate f
as ϵ = P/f . Hence, the CARS intensity reads as:

PCARS = fτaSA · ICARS ∝ fτaSA · |χ(3)
V IB|

2

(
PP

fτPA

)2(
PS

fτSA

)
(3.3)

= |χ(3)
V IB|

2P
2
PPs

f 2A2

τaS

τ 2P τS
∝ 1

f 2
(3.4)

Hence the average CARS signal scales inversely to the square of the repetition rate
of the pulse laser. It demonstrates that a lower repetition rate determines a higher
sensitivity of the system at a fixed pump and Stokes average power.

In light of this, the employment of a lowered repetition rate for BCARS unlocks
three key advantages. The first one is the possibility to generate the broadband Stokes
pulse through WLC generation in bulk crystal rather than PCF since it requires pulse
energies of the order of ≈ 1-2 µJ, which can not be reached using a higher repetition
rate laser since huge average powers would be needed. The possibility of generating
WLC allows us to create a more compact, robust, simple and alignment-insensitive
CARS setup that can be used for very long acquisition time without signal degradation
because of the excellent long-term stability of the broadband laser source [102]. The
second advantage relates to the fact that a repetition rate of 2 MHz allows a temporal
delay of 0.5 µs between two consecutive pulses, leaving more time to the system for
thermal energy dissipation, thus reducing photothermal damage [103]. Eventually, as
we have shown above through the mathematical derivation, for a given average power
at the focus, limited by sample degradation, a stronger BCARS signal can be obtained
since higher pulse energy results in higher peak intensity. The higher sensitivity of our
system entails higher acquisition speed and/or SNR of the acquired spectra.

Thanks to all these details, I will show in chapter 5 that our BCARS microscope
delivers high-quality images at state-of-the-art acquisition speed (<1 ms/pixel), limited
by the spectrometer refresh rate. Moreover, it features unprecedented specificity and
sensitivity when detecting DMSO in a binary solution with water.

Another important key point of the setup is the operating range of wavelengths. In-
deed, we employ optical sources in a red-shifted spectral region (1035 nm for the pump
and 1050 - 1600 nm for the Stokes beam), while standard CARS setups operate with
wavelengths of 800 nm for the pump and 830 - 1000 nm for the Stokes. This character-
istic of the optical setup enables us to use higher laser intensities on the sample before
the onset of photo-damage [140], thanks to a reduced multi-photon absorption from
cell/tissue pigments and especially DNA. Nevertheless, the use of longer wavelengths
for the pump and Stokes beam generate anti-Stokes components in a region of the spec-
trum (800 - 1000 nm) where most of the CCD sensor feature lower quantum efficiency.
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3.3. Characterization of the optical sources

However, this is not an issue, since, with respect to old CCD sensors that were front
illuminated, new CCD sensors present a back-illuminated configuration guaranteeing
an enhanced quantum efficiency and better performances thanks to a thick substrate of
silicon. Moreover, new devices, such as the one we are employing (BLAZE HR, Prince-
ton Instruments), are characterized by a technology that suppresses to its minimum the
etaloning, which is the problematic appearance of fringes caused by constructive and
destructive interference in back-illuminated sensors.

Eventually, one of the main key features of the setup is the possibility to change
the parameters of the broadband Stokes beam, such as its average power, its polariza-
tion, its pulse duration, and its spectral bandwidth, thus enabling the user to use only
the two-color CARS mechanism or both three-color and two-color CARS. Moreover,
we can rotate the polarization and vary the average power of the pump beam. All this
degree of freedom makes the system versatile depending on the application. Indeed it
allows us to do polarization-sensitive measurements where an analyzer is needed for
selecting the polarization of the anti-Stokes component; to investigate only the finger-
print region of the vibrational spectrum discarding the portion relative to the silent and
the CH-stretching region; to perform time-delayed CARS measurements mainly used
for spectroscopic applications.

3.3 Characterization of the optical sources

This section will briefly describe the sources employed for the BCARS experiments.
In particular, I performed autocorrelation measurements, using a home-built second-
harmonic generation frequency-resolved optical gating (SHG-FROG) setup equipped
with a spectrometer (Ocean Optics USB2000-UV+VIS-ES). I will start with a brief
description of the FROG setup and then present the autocorrelation measurements of
the pump and Stokes pulses.

3.3.1 Theory and experimental setup for SHG-FROG

The BCARS experimental setup presented above deals with ultrashort laser pulses of
the order of tens of femtoseconds or of a few picoseconds. Measurements of pulses
on these time scales are an important issue since the speed required is considerably
faster than that of existing photodetectors and oscilloscopes. There are several methods
that allow us to resolve femtosecond pulses. Some of them are the so-called correla-
tion measurements, which are widespread experimentally but which offer only partial
information about the optical pulse. Other available techniques are the one based on
frequency-resolved optical gating [141] (FROG), which are particularly robust and of-
fer a complete characterization of a pulse, retrieving the electric field in time E(t).

In a FROG experiment, one measures the spectrogram of the field E(t) [142]. Such
measurement requires an ultrafast gate function through which the spectrogram of the
field can be reconstructed. In FROG, as in other ultrashort pulse characterization meth-
ods, the pulse is used to gate itself via a nonlinear optical interaction. Indeed, by chang-
ing the delay between the pulse-gate and the pulse itself with a motorized translational
stage, it is possible to acquire for a given delay the spectrum of the gated signal [143].
If we define the electric field of the pulse as a function of time t as E(t) and the one
of the delayed pulses as E(t − τ) with τ the delay between the two pulses, the gated
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Chapter 3. Experimental Setup and optical sources

signal is:
Egated(t, τ) = E(t)E(t− τ) (3.5)

and the correspondent spectrogram, describing the evolution of the spectral content of
the gated signal as a function of the delay τ , is defined as the square modulus of the
time Fourier transform of the gated function:

SFROG(ω, τ) =

∣∣∣∣∫ +∞

−∞
Egatede

−iωtdt

∣∣∣∣2
=

∣∣∣∣∫ +∞

−∞
E(t)E(t− τ)e−iωtdt

∣∣∣∣2
(3.6)

The pulse duration can be retrieved from the intensity autocorrelation plot. Indeed, by
integrating the spectrogram along the frequency domain, one obtains the intensity plot
as a function of the delay τ . Once the intensity autocorrelation has been retrieved, it can
be fitted with a Gaussian or with the squared of a hyperbolic secant. The pulse duration
∆tpulse will be related to the full width at half maximum (FWHM) of the intensity
autocorrelation according to:

• for a Gaussian fit:

∆tpulse =
∆tAC

1.44
(3.7)

• for a sech2(·) fit:

∆tpulse =
∆tAC

1.55
(3.8)

There are many ways to implement a FROG set-up, such as polarization-gating FROG
[144] or Self-diffraction FROG [145], which offer reliable results but are cumbersome
to implement. On the other hand, Non-collinear SHG-FROG offers the best trade-
off between robustness and practical implementation. The geometry which is used in
SHG-FROG is similar to the noncollinear SHG intensity autocorrelation setup, where
a spectrometer is used in place of a single-pixel photodiode.

The spectrogram in Eq.3.6 is a symmetric function of τ , that is:

SFROG(ω, τ) = SFROG(ω,−τ) (3.9)

The symmetry derives from the fact that the pulse and the gating function are identical
and therefore one cannot establish whether the pulse is ahead of the gating function or
the gating function is ahead of the pulse.
A further consequence of Eq.3.6 is that the fields E(t) and E(−t) have identical SHG-
FROG traces. Moreover, measuring the traces of a transform-limited Gaussian pulse or
of a linearly chirped Gaussian pulse, one can notice that there are qualitative differences
between the two traces since as the chirp is increased, the trace gets wider along the axis
relative to the delay τ . Nevertheless, identical traces are obtained for equal-magnitude
positive and negative linear chirps. This last feature illustrates the main disadvantage
of SHG-FROG: the inability to determine the sign of a chirp.
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3.3. Characterization of the optical sources

As already pointed out, FROG measurements are particularly useful to reconstruct
the pulse both in terms of amplitude and phase. Indeed, if the gated signal Esig(t, τ) is
known, E(t) can be obtained by direct integration:∫

Esig(t, τ)dτ =

∫
E(t)g(t− τ)dτ ≈ E(t) (3.10)

Therefore, the problem is how to determine the signal Esig(t, τ). In order to do it,
it is possible to express the FROG trace in terms of Ẽsig(t,Ω), which is the Fourier
transform of Esig(t, τ) with respect to τ :

SFROG(ω, τ) ≈
∣∣∣Ẽsig(t,Ω)e

−iωt
∣∣∣2 (3.11)

where
Ẽsig(t,Ω) =

∫
Esig(t, τ)e

−jΩτ , dτ (3.12)

Eq. 3.11 represents a phase-retrieval problem, since the main purpose is to recover
Ẽsig(t,Ω) and hence Esig(t, τ) from its two-dimensional power spectrum. While this
problem does not have a unique solution in a one-dimensional frame, it turns out that
in a two-dimensional one it is possible almost always to recover a unique solution.
Trebino and co-workers have published several algorithms for recovering the electric
field profile from FROG data [146]. Indeed, there is no possibility of reconstructing the
pulse directly, but in an indirect way using an iterative algorithm (see Fig. 3.2).
The algorithm may be divided in several steps:

• The first step consists in guessing the function E(t);

• Then we multiply it for the gate function g(t− τ) thus finding Esig(t, τ);

• Then we do the Fourier transform with respect to t, obtaining Ẽsig(ω, τ);

• At this point, one applies the experimental data by replacing the magnitude of
Ẽsig(ω, τ) with the magnitude retrieved from the FROG measurement while leav-
ing its phase unchanged, that is:

Ẽsig(ω, τ) →
Ẽsig(ω, τ)∣∣∣Ẽsig(ω, τ)

∣∣∣
√
SFROG(ω, τ) (3.13)

• Obtained the new value of Ẽ ′
sig(ω, τ), one computes its inverse Fourier transform

with respect to ω to get a new E ′
sig(t, τ)

• Eventually, one integrates it with respect to τ , thus obtaining an estimate of E(t)
which is called E ′(t) that is than compared to the guessed E(t). This step com-
pletes one iteration.

The algorithm continues by using the updated version of E(t) until the solution con-
verges.

One way to check for convergence is to compare the results corresponding to itera-
tion k, that is E(k)(t) and Ẽ

(k)
sig (ω, τ) with that of the previous iteration. Another way
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Chapter 3. Experimental Setup and optical sources

Figure 3.2: Iterative Fourier transform algorithm for retrieving the ultrashort-pulse amplitude and
phase from FROG Data.

is to compute the error between the computed and experimental values. Since E(t)
is not known directly from the experiments, one cannot compute the error in E(k)(t).
However, one can use Ẽ

(k)
sig (ω, τ) for comparison with actual FROG data. In particular,

the RMS FROG error is defined by [143]:

ϵFROG = { 1

N2

N∑
i=1

[
S
(k)
FROG(ωi, τi)− SFROG(ωi, τi)

]2
}1/2 (3.14)

where S
(k)
FROG(ω, τ) =

∣∣∣Ẽ(k)
sig (ω, τ)

∣∣∣2. The algorithm should run until the FROG error
cannot be made any smaller.

Figure 3.3: Experimental setup for SHG-FROG. PH: pinhole, BS: Beam splitter.

The experimental setup employed for the FROG data is schematically shown in Fig.
3.3. The input beam is divided into two replicas by a first beam splitter. One of the two
replicas is delayed using a mechanical delay stage. Then, the beams are combined using
another beam splitter. A concave mirror focalizes them onto a second SHG crystal, in
our case a BBO. After the BBO, under proper phase matching conditions, the second
harmonic generation beams travel on top of the original beam, while, when the two
replicas overlap in time, a third beam appears in the middle of the two replicas. This
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3.3. Characterization of the optical sources

beam corresponds to the sum frequency generation (SFG) beam. A pinhole blocks
the SHG and the fundamental beams, letting the SFG beam pass and travel toward a
spectrometer where the beam is focused via a 50 mm plano-convex lens. By scanning
the delay line, one may acquire the spectrum of the SFG beam as a function of the
delay, reconstructing the spectrogram of the pulses.

3.3.2 Pump pulses

Figure 3.4: Schematic representation of the generation of the narrowband pump pulses through the
etalon.

I first characterized the pump pulses of the system, measuring the spectrum and
reconstructing its temporal shape using the SHG-FROG setup, by focusing the two
replicas on a 1 mm BBO crystal. The fundamental laser beam at 2 MHz repetition
rate has a full width at half maximum (FWHM) of 8 nm and is centered at 1033 nm
(Fig. 3.5.(d)). To estimate the pulse duration and profile we performed an SHG-FROG
on the fundamental laser beam. The measured spectrogram is reported in Fig. 3.5.(a).
From it, we derived the intensity autocorrelation through which we estimated the pulse
duration which is ≈ 270 fs (Fig. 3.5.(b)) and reconstructed the pulse temporal profile
(Fig. 3.5. (c)).

The driving laser is sent to an etalon to generate narrowband laser pulses (Fig. 3.4).
For this purpose, I used two different etalons in the experiments I carried out during my
Ph.D. activity. In the very first configuration, I used an etalon with a free spectral range
of (∆λ)fsr =29.814 nm and a reflectance of R = 90%. Knowing these parameters, it is
possible to estimate the FWHM of the narrowband output beam, that is (∆λ)min, which
can be calculated using the characteristic equations of a Fabry-Perot Cavity. Indeed, for
a Fabry-Perot interferometer, one defines the Finesse as:

F =
(∆λ)fsr
(∆λ)min

=
π
√
F

2
. (3.15)

with F the coefficient of finesse defined as:
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Chapter 3. Experimental Setup and optical sources

Figure 3.5: Characterization of the pump pulses before the etalon. (a) Spectrogram acquired with the
SHG-FROG experimental setup employing a 1mm-BBO crystal for SFG. (b) Intensity autocorrelation
reconstructed from the spectrogram in (a). (c) Pulse temporal trace obtained through the iterative
algorithm. (d) Spectrum of the pump pulses measured with the same spectrometer used for CARS
experiments.
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F =
4R

(1−R)2
(3.16)

From these parameters, (∆λ)min ≈ 1 nm. By characterizing through an SHG-FROG
the narrowband pulses using this etalon, we obtained the spectrogram in Fig. 3.6.(a)
that gives us autocorrelation intensity and pump pulses temporal trace shown in panel
(b) and (c). The estimated pulse duration is 1.18 ps. The spectrum of the narrowband
pulses employed for CARS experiments is shown in Fig. 3.6.(d). It features a FWHM
lower than 1.1 nm, guaranteeing a spectral resolution below 11 cm−1, matching the
typical vibrational lineshape in the active Raman region for condensed media [114].

Figure 3.6: Characterization of the pump pulses after the etalon with (∆λ)fsr = 29.814 nm and R
= 90%. (a) Spectrogram acquired with the SHG-FROG experimental setup employing a 1mm-BBO
crystal for SFG. (b) Intensity autocorrelation reconstructed from the spectrogram in (a). (c) Pulse
temporal trace obtained through the iterative algorithm. (d) Spectrum of the pump pulses measured
with the same spectrometer used for CARS experiments.

The second etalon we used was characterized by (∆λ)fsr =15.4 nm and reflectance
of R = 92%. The calculated (∆λ)min, in this case, is 0.4 nm, while the pulse duration
measured with SHG-FROG is 3.74 ps, as reported in Fig. 3.7.(a-b). The pulse profile
has been retrieved through the iterative approach for pulse reconstruction in FROG
experiments (Fig. 3.7.(c)).
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Figure 3.7: Characterization of the pump pulses after the etalon with (∆λ)fsr = 15.4 nm and R = 92%.
(a) Spectrogram acquired with the SHG-FROG experimental setup employing a 1mm-BBO crystal
for SFG. (b) Intensity autocorrelation reconstructed from the spectrogram in (a). (c) Pulse temporal
trace obtained through the iterative algorithm. (d) Spectrum of the pump pulses measured with the
same spectrometer used for CARS experiments.
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3.4 Stokes pulses

Broadband Stokes pulses are generated through white-light supercontinuum in bulk
media. For this purpose, I employed a 10-mm YAG crystal, thus obtaining broadband
spectra spanning from 1050 to 1600 nm (Fig. 3.8). I characterized the broadband
Stokes pulses in 3 different cases: (i) after their generation and after an achromatic
doublet with coating C and 75 mm focal length used for collimating the beam; (ii) after
the prism compressor with 60 cm tip-to-tip distance of the prisms; (iii) after the prism
compressor and 2.54 cm piece of glass to simulate the presence of the glass objective
and estimate whether the pulses arrive at the sample plane well compressed or not.

Figure 3.8: Spectra of the WLC generation in a 10 mm YAG crystal at 8 different positions of the mask
inserted in the prism compressor stage.

We first estimated the pulse duration of the generated supercontinuum through the
SHG-FROG experimental setup using a 300 µm-thick BBO crystal. For all the FROG
measurements, we employed a thinner SHG crystal since we need a broader gain band-
width to fully characterize the Stokes spectrum. We considered the whole supercon-
tinuum after the collimating achromatic doublet and a long pass filter (FELH1050,
Thorlabs) that removed the fundamental laser pulses. From the measured spectrogram
(Fig. 3.9.(a)), we integrated along the wavelength axis to obtain the intensity autocorre-
lation (Fig. 3.9.(b)) and using a fitting with the squared hyperbolic secant we estimated
a pulse duration of 317 fs, comparable to the duration of the pump beam. We also
estimated the temporal profile as shown in Fig. 3.9.(c). In this case, we knew it was
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positively chirped, so to compress this beam and avoid temporal chirp in the CARS
spectra, a prism compressor was needed. The prism compressor should compensate
not only for the positive dispersion introduced by propagation in free space and in the
optics of the generation stage but also for the presence of the bulk glass of the illumi-
nating microscope objective. The main aim of the compressor is to introduce a negative
GDD so that it arrives compressed at the sample plane.

Figure 3.9: Characterization of the Stokes pulses after their generation and collimation with a 75 mm
achromatic doublet. (a) Spectrogram acquired with the SHG-FROG experimental setup. The SFG
was obtained by focusing the beams on a 300 µm-thick BBO crystal. A thinner crystal, with respect
to the pump pulse measurements, is needed to satisfy the phase-matching condition for a broader
bandwidth. (b) Intensity autocorrelation reconstructed from the spectrogram in (a). (c) Pulse tempo-
ral trace obtained through the iterative algorithm.

I estimated the group delay dispersion (GDD) of the microscope objective and of
the other optics in the optical setup approximately equal to 8000 fs2. This number
has been obtained by recording CARS spectra at different delays between the pump
and the Stokes beam and then measuring the difference in time between the arrival of
the blue-shifted and red-shifted colors of the Stokes beam that generate respectively
the low energy Raman modes and the high energy Raman modes. Since the pulse
spectrum is particularly broad, with a bandwidth ≃ 500 nm, the Stokes pulses are
particularly sensitive to GDD and would reach a FWHM of more than 3 ps without
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compression. Therefore, I designed a 60 cm tip-to-tip prism compressor whose main

Figure 3.10: Characterization of the Stokes pulses after the compression with a 60 cm tip-to-tip prism
compressor. The SFG was obtained by focusing the beams on a 300 µm-thick BBO crystal. (a)
Spectrogram acquired with the SHG-FROG experimental setup. (b) Intensity autocorrelation re-
constructed from the spectrogram in (a). (c) Pulse temporal trace obtained through the iterative
algorithm.

aim was to compress the pulses so that after this stage they feature a negative chirp.
In this way, it is possible to have very short pulses at the sample plane with GDD≃
0. Soon after this stage, we performed an SHG-FROG experiment, by acquiring the
spectrogram of the broadband compressed pulses (Fig. 3.10.(a)) and retrieving the
intensity autocorrelation (Fig. 3.10.(b)). By fitting this trace with a squared hyperbolic
secant, we derived a pulse duration of 387 fs, confirmed also by the reconstructed
temporal trace in Fig. Fig. 3.10.(c).

However, the FROG measurement does not allow us to know whether we introduced
a positive or negative GDD. Therefore, in order to be sure it was negatively chirped and
that the introduced negative GDD was enough to have short pulses at the sample plane
for impulsive CARS generation, we inserted a 2.54-cm thick rod of glass. This piece of
glass simulates the presence of the microscope objective. Indeed, it was not possible to
directly measure the pulse duration at the sample plane for two main practical reasons:
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(i) the beam is not collimated after the microscope objective; (ii) the microscope was
too compact that was not easy to guide the beam till the SHG-FROG setup even after a
very thin collimating lens.

Figure 3.11: Characterization of the Stokes pulses after the compression with a 60 cm tip-to-tip prism
compressor and 2.54 cm rod of glass. The SFG was obtained by focusing the beams on a 300 µm-
thick BBO crystal. (a) Spectrogram acquired with the SHG-FROG experimental setup. (b) Intensity
autocorrelation reconstructed from the spectrogram in (a). (c) Pulse temporal trace obtained through
the iterative algorithm.

After propagating through a normally dispersive medium, the Stokes pulse results
are compressed in time, with a pulse duration of 58 fs (Fig. 3.11). Thus, the hypothesis
of negative GDD after the prism compressor is confirmed, and we expect a similar pulse
duration at the sample plane. It can be observed that a pre-pulse and a post-pulse appear,
respectively at the leading and trailing front of the pulse intensity autocorrelation, and
they can be observed in the spectrogram as well for positive and negative times. The
presence of these anomalies is due to the double reflection inside the piece of glass,
which gives rise to a replica of the Stokes pulse, causing an unexpected SFG at positive
and negative delays. Since the autocorrelation in non-collinear SHG-FROG should
be symmetric with respect to the time delay, any asymmetry can be associated with
experimental inaccuracies.
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3.5 Microscope

After their generation, the pump and Stokes trains of pulses are combined through a
dichroic mirror (Di02-R1064-25x36, Semrock) and sent to a tailor-made microscopy
unit (Fig. 3.12). I designed the microscope with an upright configuration [147]. The
beams travel together going from the top to the bottom. They are focused on the sample
using a high NA air objective (Olympus LCPLN100XIR, NA = 0.85) mounted on an
XYZ mechanical axis. The transmitted B-CARS beam is collimated by an identical
objective, mounted on another XYZ mechanical stage.

The sample stage consists of two translational stages: an XYZ and an XY motor-
ized translation stage. Their combination allows the user to move the sample, find the
perfect focal plane, and perform imaging using raster scanning. I mainly use the mi-
croscopy unit working in transmission and sending to the detection unit the forward
CARS signal. I also equipped the microscope with an epi-detection line inserting be-
fore the first objective a dichroic mirror (DMLP1000R). The dichroic mirror transmits
the pump and Stokes beam, while it reflects the anti-Stokes components that are gen-
erated below 1000 nm. The epi-CARS signal is delivered through the detection unit
using a periscope.

Figure 3.12: Photos of the experimental BCARS microscopy setup, highlighting the optical sources
stage, the microscopy unit, and the detection part. The microscopy unit works in an up-right config-
uration and enables us to collect signals both in the epi and in the forward configuration.

Eventually, the microscope is equipped with a pseudo-Kohler illumination to visu-
alize the field of view that has to be imaged with BCARS (Fig. 3.13). I refer to the
illumination scheme as pseudo-Kohler rather than Kohler, since the Kohler illumina-
tion requires the insertion of an iris in the back focal plane of the condenser lens to
alter the sample contrast. In my scheme, the back-focal plane of the objective is not
accessible, thus preventing the use of a iris. A red LED is mounted in the bottom part
of the microscope followed by a collector lens that collimates the light emitted. An iris
acts as a field stop, reducing the number of rays illuminating the sample. After a mir-
ror, a field lens focalizes the collimated light into the back focal plane of the collection
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Figure 3.13: Schematic representation of the pseudo-Kohler illumination realized in the BCARS micro-
scope. The LED light is in red, while the laser beams (pump and Stokes) are in green.
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objective, thus having an illumination of the sample plane over a field of view (FOV)
dependent exclusively on the magnification of the collection objective. Our objective
with magnification M = 100 and field number FN=22 gives a FOV = FN/M = 220
µm.

The light is collected by the illumination objective and a beam splitter delivers it
toward a CCD camera (CS165MU/M, Thorlabs) by means of a tube lens. The beam
splitter is needed to also visualize the position of the laser beam (green line in Fig.
3.13) with respect to the sample.

3.6 Detection

Eventually, the setup concludes with a detection scheme that includes a short pass filter
to remove the pump and Stokes pulses, and a lens to focalize the beam into the slit
aperture of the spectrometer (Fig. 3.14). The lens has to be properly chosen in order to
match the f-number of the spectrometer. In our case, the f-number of the monochroma-
tor (Acton SP2150p, Princeton instruments), expressed as the focal length of the lens
over the diameter of the beam onto the lens (N = F/D), is f/4.0 (where N = 4.0). There-
fore we chose a lens of 35 mm in order to properly collect the anti-Stokes light sent to
the spectrometer.

Figure 3.14: Schematic representation of the detection unit. The light is sent into a monochromator
that separates the colors, while a CCD sensor with many pixels outputs the counts per pixel within a
certain pixel dwell time.

The entrance slit of the monochromator has to be properly set since contributes
to the spectral resolution of the acquired spectra. Indeed, the spectral resolution of a
spectrometer (δλ) depends on four variables that are: the slit width (Ws), the spectral
range of the spectrometer (∆λ), the pixel width (Wp), and the number of pixels in the
detector. Moreover, one needs to define a constant value which is the resolution factor
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(RF ) that is determined by the relationship between the slit width and the pixel width.
In the case were Ws ≃ Wp, the RF is 3. The setup is equipped with a low-noise BLAZE
CCD camera (BLAZE100HR, Princeton Instrument) that features high sensitivity and
high readout speeds. It has pixels whose width is 20x20 µm2. We set the slit size to
20 µm, while the wavelength range is ∆λ = 212 nm, due to the employed 600 gr/mm
grating mounted onto the motorized turret of the monochromator, and the number of
pixels is n = 1340. With these numbers, we could calculate the spectral resolution given
by the system using the equation:

δλ =
RF∆λWs

nWp

(3.17)

This equation gives us a spectral resolution of 0.47 nm, which corresponds to 5.8 cm−1.
The spectral acquisition of the detection unit is synchronized to the raster scanning

motion by means of a trigger signal generated by the stage controller. I programmed
a MATLAB interface (Fig. 3.15) to generate a trigger at each pixel step size, and the
CCD records the spectra every time a rising edge of the trigger input signal arrives. In
this way, it is possible to acquire images at very high speed, working at the minimum
exposure time allowed by the CCD camera, associating each pixel to a specific spatial
position without experiencing any motion artifacts or shifts in the rows of the acquired
images.

Figure 3.15: Matlab interface for the acquisition of the CARS images.
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CHAPTER4
Acquisition and post-processing of the CARS data

4.1 Introduction

The BCARS system is used for spectroscopic and microscopic applications. When
dealing with spectroscopic applications, one acquires a spectrum or a certain number
of spectra of the same chemical analytes, while in the case of microscopic applications,
the measured data are hyperspectral data, i.e., three-dimensional cubes, that have spatial
and spectral information. In both cases, to recover the pure vibrational information we
need to develop a post-processing pipeline made of several steps.

The analysis of the CARS data is one of the most challenging steps of CARS imag-
ing. Indeed, the relevant chemical information one may extrapolate from the CARS
data depends not only on the sample properties but also on the chosen processing steps
that should take into account various parameters, such as the wavelength range of the
Stokes and pump beam, their spectral distribution and the instruments that have to be
correctly calibrated. Eventually, special care should be taken when analyzing the CARS
data of biological samples, since spectral variations can be observed due to unavoid-
able biological changes, variations in sample preparation, sample degradation, or any
other uncontrollable experimental factor. Besides these aspects, also the errors during
the measurements and some unpredictable artifacts contribute to making the analysis
of the data quite complex.

Throughout my Ph.D., I adopted different strategies for the acquisition and analysis
of the CARS data. In this chapter, I will describe the experimental methods I used,
the data-processing algorithms that I adapted from literature, and the algorithms that
I developed or contributed to developing. All these methods have been used for the
analysis of the data that will be shown in the following chapter.

The chapter will be divided into three parts:
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Chapter 4. Acquisition and post-processing of the CARS data

• The first part includes the design of the experiment and the strategies adopted to
decide the parameters necessary to acquire CARS spectra or images.

• The second part includes the post-processing methods applied to the experimental
data and employed to obtain data comparable to the Spontaneous Raman one.
The post-processing of the data may be divided into two main steps which are the
noise reduction of the data and the NRB removal. For both of them, numerical
algorithms and machine-learning-based models have been explored.

• The third part refers to the different approaches used after the post-processing
pipeline to distinguish the different chemical constituents when imaging hetero-
geneous samples.

4.2 Experimental design

The first step for acquiring a good set of data is the design of the experiments [148]
(see Fig. 4.1). This part is extremely important to define the set of parameters that
have to be chosen for conducting the experiments. It can be divided into 4 main steps:
setup alignment, bright field image for sample visualization, preliminary CARS mea-
surements, and experimental planning.

Figure 4.1: Workflow of the experimental design. It includes 4 main parts that are: setup alignment,
bright field image, preliminary measurements, and experimental planning.

4.2.1 Setup alignment

The first important step in the design of the experiment consists in finding the best signal
by monitoring the optical sources, their spatial and temporal overlap at the sample
plane, and the alignment of the anti-Stokes component to the spectrometer. One of the
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4.2. Experimental design

most critical steps is the stability of the broadband source. In case the WLC is not
stable, the user needs to play on the three parameters of the supercontinuum stage, i.e.,
the impinging power, the iris aperture, and the crystal position with respect to the focal
plane, monitoring the spectrum of the broadband Stokes through a NIR spectrometer
(Avantes NIR256-1.7-EVO) and measuring its RMS fluctuations through a photodiode,
that acquire a sequence of adjacent pulses (60000 is a good number). Usually, this
procedure does not need to be done every day, since the WLC stage offers long-term
stability of the source.

This first phase of the experimental design includes also sample preparation that is
strictly related to the properties of the samples to be measured and the used objectives.
The spectrometer used for the signal acquisition needs to be properly set through some
calibration lamps for intensity and wavenumber calibration. This last step does not have
to be done daily, it is enough to check it once per month. Eventually, it is highly recom-
mended to define a calibration standard for wavenumber calibration. In particular, the
standard material should be measured under the same conditions and optical geometry
of the samples. For measuring biological samples or other chemical analytes, I chose
toluene as the standard material because of the high number of peaks in the fingerprint
and in the CH-stretching region. I daily acquire 100 toluene CARS spectra (blue curve
in Fig. 4.2), 100 spectra focusing on quartz coverslip (orange curve in Figure 4.2) that
we consider as NRB spectra, and 100 dark spectra with 1-ms exposure time. I average
the three sets of spectral data and use them for calibrating the wavenumber axis of our
system. We subtract the averaged dark spectrum from the CARS and NRB data and
then compare the phase retrieved toluene spectrum (light-blue curve in Fig. 4.2), after
removal of the NRB through the time-domain Kramers-Kronig algorithm [63], with the
spontaneous Raman spectrum of toluene (purple curve in Fig. 4.2), acquired averaging
5 times 5-s acquisitions with a home-built Spontaneous Raman experimental setup. The
wavenumber axis is calibrated by fitting a third-order polynomial function between the
measured and spontaneous Raman peak positions of the main Raman peaks of toluene
(for toluene I always use 8 peaks for calibration). The goodness of the calibration pro-
cedure is evaluated by computing the errors between the positions of the eight peaks of
the phase retrieved and of the spontaneous Raman spectrum (see the bottom panel in
Fig. 4.2).

4.2.2 Bright-field Image

After the setup alignment, including the sample preparation and the calibration proce-
dures, the experimental design workflow includes the visualization of the investigated
sample. In the case of spectroscopic application, this part can be skipped, since no
imaging is necessary. However, when dealing with biological samples, such as tissues
and cells, this step is crucial to establish which are the best parameters that have to be
chosen for visualizing the morphological details of the sample. I use the pseudo-Kohler
illumination described in the previous chapter to decide the pixel size and also image
size. These parameters are often linked to each other since we are limited by the max-
imum number of pixels that the hypercube can have. This limit is mainly established
by the post-processing steps, indeed, large hyperspectral data are more computationally
demanding and require long analysis times. For these reasons, I am currently limiting
the maximum size of the files to 400x400x1340 pixels, which corresponds to 214.4
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Chapter 4. Acquisition and post-processing of the CARS data

Figure 4.2: Graph showing the daily procedure I adopt for calibrating the wavenumber axis. I average
100 toluene spectra (blue curve), 100 NRB spectra measured on a quartz coverslip (orange curve),
and 100 dark spectra that I subtract from the CARS and NRB spectra. The pixel exposure time is
1 ms. The phase-retrieved spectrum (light-blue curve) is obtained from the toluene CARS spectrum
and the NRB one through the Kramers-Kronig algorithm. The new wavenumber axis is obtained via
a third-order polynomial fitting comparing the highlighted 8 peaks of the phase retrieved spectrum
with the corresponding SR peaks (purple curve). The error between the position of the peak in SR and
in the calibrated phase-retrieved spectrum is computed to estimate the goodness of the calibration
procedure.
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4.3. Data post-processing

Megapixels. Typical pixel sizes are 500 nm, 1 µm, 2 µm, or 4 µm enabling us a maxi-
mum field of view of 1.2 mm.

4.2.3 Preliminary measurements

Preliminary measurements are necessary during the design of the experiment to es-
tablish the type of signals one can expect from the investigated sample. These mea-
surements allow the user to establish the pixel dwell time to have good quality spectra
and also the average powers of the pump and Stokes beam at the sample plane thus
avoiding sample damage. The choice of pixel dwell time and pump/Stokes powers are
linked with each other. Eventually, it is highly recommended during this phase to check
whether a subsequent scan of the same field of view is detrimental to the sample.

4.2.4 Experiment planning

Once all the measurement parameters have been established, the experiment planning
determines the minimum number of samples required to reach a statistically meaningful
conclusion and the number of measurements needed per sample.

4.3 Data post-processing

After the design of the experiment and the acquisition of the experimental data, the data
present some artifacts or unwanted contributions that may derive from the instrumen-
tation or from the sample itself. I will describe here all the steps that are needed for the
removal of the artifacts and noise reduction in the acquired BCARS data, the retrieval
of the pure vibrational information removing the unspecific contribution given by the
NRB, and the spectral unmixing algorithm that enable us to localize different chemical
species in heterogeneous samples.

The data post-processing pipeline (see Fig. 4.3) is divided into 4 main steps:

• Quality control step for deciding whether the acquired data are good, cropping the
image or the spectrum, and removing artifacts;

• Denoising of the hyperspectral data that may be performed either using numerical
algorithms or machine-learning models;

• Removal of the NRB implemented either using numerical algorithms or machine-
learning models;

• Spectral unmixing of the hyperspectral images in which we may distinguish fac-
torization and clusterization methods;

4.3.1 Quality control

This step aims to determine the quality of the spectra and the images acquired in the
laboratory. In particular, the user should identify some anomalies and artifacts in the
data such as burning effects, defocusing, device-related artifacts, or other types of data
contamination (e.g. environmental light). Sometimes, part of the data can be still
considered for further analysis and the images can be cleaned either by reducing the

77



i
i

“output” — 2023/2/8 — 13:32 — page 78 — #90 i
i

i
i

i
i

Chapter 4. Acquisition and post-processing of the CARS data

Figure 4.3: Workflow for the data post-processing. The main steps are: Quality control; Denoising of
the hyperspectral data; NRB removal; Spectral unmixing.
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4.4. Denoising of the hyperspectral data

image size or by removing the spectra that present evident anomalies and may alter
the subsequent analysis. One important phase during quality control is spike removal.
Spikes derive from electrons generated on the CCD or CMOS detector by high-energy
cosmic particles. They appear randomly in the signal and are very narrow features that
affect the analysis. There are different ways to detect and remove these spikes. One
way is to record two spectra from the same sample in identical conditions and detect
spikes by comparing the two measurements. However, acquiring two spectra for each
sample is too time-consuming, especially in CARS imaging. Another possibility is
to compare the spectra of two or more adjacent points in the sample, provided that
their corresponding Raman features are almost the same for these two measurements.
However, this approach fails if the sample is heterogeneous. Hence, a better solution
is to compare each spectrum to the mean spectrum of the surrounding pixels given a
spatial window size. After being detected, a spike can be removed using the median
filter that replaces every point of a signal with the median of that point and a specified
number of neighboring points. Accordingly, median filtering discards points that differ
considerably from their surroundings.

4.4 Denoising of the hyperspectral data

After the quality check, the BCARS hyperspectral data still suffer from the presence of
noise. The noise affects the measurements and needs to be removed. However, when
dealing with CARS spectra the denoising task is not so straightforward, since one has to
preserve the typical dispersive lineshapes while canceling the random fluctuations into
the spectrum. During my Ph.D., I explored different strategies for the removal of the
random noise, some of them are based on numerical algorithms such as moving-mean
techniques, Fourier transform-based approaches, Savitzky-Golay filter, singular value
decomposition (SVD) [60, 63], and spectral total variation (STV) [149]. Other strate-
gies use more sophisticated models based on machine learning, a field that I studied
during my Ph.D. and on which I published a review entitled: "Artificial intelligence in
classical and quantum photonics" [150].

4.4.1 Denosing via Singular Value Decompositon

Among the denoising algorithms, singular value decomposition (SVD) is one of the
most used for spatial and spectral denoising of the CARS hyperspectral images [60,63].
The three-dimensional BCARS dataset (m · n · s with m the number of spatial pixels
along x, n the number of spatial pixels along y, and s the number of spectral pixels)
is unfolded into a two-dimensional matrix, M , whose rows represent the spectral axis
with s spectral points and whose columns represent the spatial pixels (p = m · n). The
SVD algorithm factorizes this matrix into three components:

M = USV∗ (4.1)

where U is a two-dimensional matrix (s·s) and contains the spectral bases (orthonormal
eigenvectors), S is a diagonal matrix (s · s) containing the “singular values” (eigenval-
ues) ordered from the larger to the smaller, V (p · s) describes the spatial distribution
of the bases in U, and ∗ is the conjugate transpose. A schematic representation of the
SVD decomposition is reported in 4.4.
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The SVD decomposition can be considered as a decomposition of the M matrix in
a weighted, ordered sum of contributions, each represented by λi. The first singular
values represent the high spatial and spectral coherent contribution, while, increasing
the order i, the lower coherent parts can be found. Therefore, by setting to zero all the
singular values over a certain i, we remove the singular vector with the least spatial and
spectral coherence. Since the noise is characterized by complete randomness in space
and by a high frequency in spectra, removing the λi with high i, we are effectively
denoising the data [151]. After having set to zero all the λi, for i > ifilter, changing
the matrix S to Ŝ, the denoised matrix M̂ can be calculated as: M̂ = UŜV∗. It is worth
noticing that the SVD works appropriately only in case the noise is additive and follows
a gaussian distribution. However, BCARS data typically exhibits a Poisson-Gaussian
noise. Therefore, before performing the SVD, we applied an Anscombe transforma-
tion [152] that acts as a variance stabilizer whitening the noise of the data. After the
reconstruction of matrix M̂ , we apply the inverse Anscombe transformation to restore
the BCARS spectra with mixed noise.

Figure 4.4: Schematic representation of SVD decomposition.

4.4.2 Denoising via machine-learning

Recently, machine-learning methods [150] have been used for denoising broadband
CRS images. Machine learning (ML) is a branch of Artificial Intelligence that has had
a high impact on several different scientific and engineering domains. ML is defined
as the science that examines how computers can be automatically trained to solve com-
plex tasks starting from the analysis of data. ML have become widespread thanks to
the new opportunities opened by Deep Learning (DL), a methodology that exploits the
advancements in computing power to solve highly complex tasks, such as computer vi-
sion, speech recognition, and self-driving cars, and that aims to approximate non-linear
transfer functions, leveraging their data-driven nature. Photonics is among the most ac-
tive and promising fields in science, technology, and engineering. The combination of
ML-based techniques and photonics has led to groundbreaking developments in many
applications and provides huge opportunities for both fields [153–156]. Indeed, on the
one hand, photonics can be used to generate rich data sets for ML computational tasks,
on the other hand, photonic systems are an interesting platform for AI implementa-
tions [157, 158].

A ML algorithm is able to learn information from data [159]. Depending on the
kind of data available, ML tasks are divided into three macro-areas.

• Unsupervised Learning, where ML models deal with the extraction of information
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from the data without any target value or label available.

• Supervised Learning, where the ML model is provided with a dataset including
input-output pairs. The output data, or labels, allow the evaluation of the model
performance during the training. Supervised learning can be exploited to approx-
imate the complex or unknown function mapping the input data to the output.

• Reinforcement Learning is a specialized ML area that deals with the control of a
dynamical system [160], where the model is trained to find a control law for the
system so that some objective is optimized.

4.4.3 Machine-learning fundamentals

Every ML problem consists of a dataset with N entries D = (X,y) = {(xi, yi), i =
1 . . . N}, where X is the input matrix whose rows correspond to data instances, whereas
the columns are the features of the dataset, namely the variables or attributes of the
instances. On the other hand, yi is the corresponding ground-truth vector, representing
the ideal output of the model. The features of X can be numerical and/or categorical
(i.e. input attributes encoded in the form of discrete numerical values) depending on
the context, and constitute the independent variables. The goal of ML algorithms is to
approximate the nonlinear transfer faction f : xi → yi, acting on a set of parameters
θ. For a single input-output pair, the error between the prediction and the ground truth
is quantified utilizing the loss function Li(f(xi, θ), yi). The parameters of the NN are
adjusted to minimize the cost function C(f(X, θ),y) (or C(θ)), which is the average of
the loss functions Li(f(xi, θ), yi) over the overall training dataset. In formulae:

C(f(X, θ),y) =
1

Ntrain

Ntrain∑
i=0

Li(f(xi, θ), yi) (4.2)

with Ntrain the total amount of instances in the training set. Indeed, in ML models,
the dataset is partitioned into two independent sets D = Dtrain ∪Dtest, respectively the
training set and test set. The former is used to optimize the set of parameters θ, while the
second is used to evaluate the performances of the model on new, unseen data. A typical
training-test split is approximately 80/20%. In addition, a portion of the training set
(e.g. 20%) is used as a validation set, meaning that it is used for an unbiased evaluation
of the model during training and for fine-tuning of the model hyperparameters, which
are the untrainable parameters that define the topology of the network.

When evaluating the goodness of a model one has to monitor two quantities that are
the training error Etrain = C(Xtrain,ytrain) and the test error Etest = C(Xtest,ytest).
Model performances depend on many factors, such as the amount of data available
(the cardinality of the training set), the number of parameters available to the model
(the model complexity), and the number of optimization iterations carried out. For
a reasonably good prediction, both Etrain and Etest should be considered. While the
minimization of Etrain ensures that the model is learning the mapping f , the ability
to perform well on new data is expressed by Etest. Typically Etrain results slightly
lower than Etest. However, if Etest ≫ Etrain the model is overfitting the training set. It
means that the model is utilizing its representation power to store information related
to fluctuations in the training set. To mitigate overfitting one may increase the number
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Chapter 4. Acquisition and post-processing of the CARS data

of data points available to train the model, or reduce the model complexity by reducing
the number of parameters, or applying regularization techniques (e.g. L1, Lasso regu-
larization, and L2, Ridge regularization). This crucial aspect of ML is usually referred
to as bias-variance trade-off [161].

The goal of the model is to find a set of parameters that minimizes C(θ), thus max-
imizing the model performance precision by leading to a minimum average error be-
tween ideal and predicted outputs. Gradient Descent is the typical procedure used to
compute θ. The idea of this technique is that for every iteration we compute the cost
function C(θ). As an example, if the chosen loss function is the Mean Squared Error,
the cost function is defined as:

C(θ) ≡ MSE =
1

Ntrain

Ntrain∑
i=1

(f(xi, θ)− yi)
2 . (4.3)

Given the total cost for the current iteration, we can compute an update in our pa-
rameters at iteration (t + 1) in the opposite direction of the gradient (∇) of C(θ) with
respect to the parameters at iteration t, i.e. in the direction of the minimum of C(θ). In
formulae:

θt+1 = θt − η∇θtC(θt) . (4.4)

where η is the learning rate of the algorithm, a hyperparameter (i.e. a parameter that
controls the learning process and is not part of weights and biases to be optimized dur-
ing learning) that controls how much the parameters vary in response to the estimated
error. This basic update rule has been widely investigated, and several improvements
have been introduced. In particular, to avoid the computation of the gradient over the
entire dataset that would be time-consuming and computationally expensive, random
subsets of the dataset (mini-batches) can be used at each iteration. This reduces the
computational cost and introduces stochasticity in the training, which in turn reduces
overfitting. To mitigate the risk of being trapped in local minima of the cost function,
some optimizers add momentum to the update rule as an exponentially weighted av-
erage over the previous values of the gradient. Among these refined optimizers, one
of the most popular is the Adaptive Moment estimation optimizer (ADAM) [162]: the
learning rate is adjusted based on the average first moment (the mean) and the average
second moment (the uncentered variance) of the gradient of C(θ).

4.4.4 Neural Networks fundamentals

DL is a ML methodology that employs deep neural networks (DNNs) to solve ML
tasks. DNNs are a category of powerful function approximators. A neural network(NN)
is formed of elementary units called neurons (Fig. 4.5.(a)). Each neuron receives a
series of real numbers as input x, computes their weighted average with a set of weights
w and a bias b, z = xTw+ b, and outputs a number f(z) obtained applying a nonlinear
function f , called the activation function. The bias term b is often incorporated in the
set of weights w to compact the notation, considering an extra 1 in the vector x (in
Fig. 4.5.(a)). The nonlinear function is the basis of the approximation power of NNs.
Typical non-linear activation functions, reported in Figure 4.5.(b), are the sigmoid σ(z),
the hyperbolic tangent tanh(z), and the Rectified Linear-Unit, ReLU(z). They are
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defined as:

σ(z) =
1

1 + e−z
; tanh(z) =

ez − e−z

ez + e−z
; ReLU(z) = max(0, z) . (4.5)

The Universal Approximation Theorem guarantees the ability of NNs to approxi-
mate complex functions. The theorem was formulated by George Cybenko in 1989
[163, 164]. It states that a NN consisting of an input layer, a single hidden layer, and
an output layer can approximate any arbitrary function between its input and output,
provided that its hidden layer is adequately large. However, the size of the hidden
layer grows exponentially with the complexity and nonlinearity of the function, rapidly
reaching unfeasibly large levels. DNNs aim at solving this dimensional issue by stack-
ing multiple hidden layers, exponentially increasing the approximation capabilities of
each neuron of the deeper layers, hence compensating for the limited number of neu-
rons available on each layer.

In practice, the best performances are achieved by structuring multiple layers of
neurons with finite width (see Fig. 4.5.(c-d)) obtaining a deep architecture, from which
the nomenclature deep neural network stems. Each neuron is linked to all the neurons
of the previous and following layers in a so-called fully connected architecture. Since
the information travels in one direction only, such models are often referred to as “feed-
forward" neural networks.

NNs are trained in the same way described above, i.e. by adjusting the weights
in order to minimize the cost function C(θ). However, differently from other ML tech-
niques, NNs are characterized by having a very high number of parameters; small-sized
NNs have hundreds or thousands of parameters, moderately large NNs need to train a
few million parameters, while the largest ones reach hundreds of millions of parame-
ters. Despite the complex, interconnected structure of neurons and weights, the differ-
entiability of activation functions ensures that NNs can be trained through Stochastic
Gradient Descent [165]. The backpropagation algorithm [?] implements in a very effi-
cient manner the calculation of the gradient of C(θ). This algorithm leverages dynamic
programming and efficient matrix multiplication, performed on Graphical Processing
Units. At the heart of backpropagation is an expression for the partial derivative of the
cost function with respect to any weight or bias of the network. This expression gives
us detailed insights into the overall behavior of the network while changing the weights
and the biases. The typical notation to refer to all the weights in the networks is wl

jk. It
denotes the weight from the k-th neuron in the (l− 1)-th layer to the j-th neuron in the
l-th layer. A similar notation is used for the biases and the activation functions. Indeed,
blj denotes the bias of the j-th neuron in the l-th layer, while alj represents the activation
of the j-th neuron in the l-th layer (see Figure 4.5.(a)). Using these notations, the acti-
vation of the j-th neuron in the l-th layer is related to the activations in the (l − 1)-th
layer by the equation:

alj = f

(∑
k

wl
jka

(l−1)
k + blj

)
(4.6)

where the sum is over all the k neurons of the (l − 1)-th layer and f is the chosen
activation function (see Eq. (4.5)). Typically, one may refer to the input of the activation
function as zlj , that is zlj =

∑
k w

l
jka

(l−1)
k + blj .
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Figure 4.5: (a) Illustration of a neuron j at layer l; (b) Plots of typical non-linear activation functions:
sigmoid, tanh, ReLU; (c) Scheme of a shallow NN featuring a single hidden layer; (d) Scheme of a
deep NN featuring several hidden layers. From [150]
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Defining the error introduced by the j-th neuron in the l-th layer as:

δlj ≡
∂C
∂zlj

=
∂C
∂alj

∂alj
∂zlj

(4.7)

the backpropagation algorithm is based on four fundamental equations. They are:

1. An equation for the error δLj of the output layer L:

δLj =
∂C
∂aLj

f ′ (zLj ) (4.8)

where f ′(zLj ) =
(
df
dz

)
zLj

expresses how fast the activation function is changing at

zLj .

2. An equation for the error δlk of the k-th neuron in the previous layer in terms of
the error δl+1

j of the j-th neuron in the next layer:

δlk =
(
wl+1

jk δl+1
j

)
f ′ (zlj) (4.9)

3. An equation for the partial derivative of the cost function with respect to any bias
in the network:

∂C
∂blj

=
∂C
∂zlj

∂zlj
∂blj

=
∂C
∂zlj

· 1 = δlj (4.10)

4. An equation for the partial derivative of the cost function with respect to any
weight in the network:

∂C
∂wl

jk

=
∂C
∂zlj

∂zlj
∂wl

j

= δlja
l−1
k (4.11)

Eventually, after the input has been propagated to the network by computing activa-
tion functions alj = f(zlj), the output error is computed through Eq. (4.8). Applying
the chain rule of partial derivatives from the output layer backward [?], the error is
backpropagated using Eq. (4.9). Finally, Eq. (4.10) and Eq. (4.11) are used to compute
the partial derivatives of the cost function with respect to any weight and bias.

4.4.5 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are one of the most popular Network architec-
tures utilized in DL, in particular in imaging-related tasks. CNNs were first introduced
in [167]. Unlike standard NNs, CNNs include the so-called convolutional layers, which
may either constitute their entire end-to-end model architecture or precede standard
fully-connected layers. Convolutional layers present two main features:

• Each neuron has only local connectivity with the previous layer, in the sense that
its inputs come from a small set of (neighboring) neurons from the previous layer.

• In every layer, all neurons share the same weights. This set of weights takes the
name of filter or “kernel", and several different filters may be placed in the same
convolutional layer to operate on the same input, as in Figure 4.6.
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Figure 4.6: LeNet architecture, featuring two sets of convolutional and subsampling layers, followed by
two fully-connected layers and finally an output layer. As highlighted in the image, convolutional fil-
ters or kernels have local connectivity with their input, which enables feature extraction in a spatially
invariant way. Adapted from [150, 166].

The combination of these two properties, depicted in Figure 4.6, allows the character-
ization of CNNs in terms of the number of filters employed at each layer. One of the
main advantages of CNNs is the significantly reduced number of parameters compared
to standard NNs, depicted in Figure 4.5.(c-d), allowing much deeper and more com-
plex architectures to be deployed. Besides, CNNs are also known as features extractor
layers since the local connectivity of the neurons allows the network to better localize
features (e.g., a face) in their input, while the sharing of the weights provides spatial
invariance properties to their analysis (e.g., a face is recognized independently from
its location in the input image). CNNs automatically extract features from data in the
form of the so-called feature maps (Figure 4.6), which are the result of a kernel being
cross-correlated to its input.

The most important CNNs models are U-Net and ResNet. These architectures have
been used for image segmentation, with many applications in biomedical image analy-
sis. The U-net architecture [168] consists of a contracting path and an expansive path.
The contracting path has the typical structure of a convolutional network for downsam-
pling. The expansive path consists of an upsampling to propagate context information
to higher resolution layers, realized by transposed convolutional layers, and concate-
nation with a cropped feature map from the contracting path. As a consequence, the
expansive path is more or less symmetric to the contracting path and leads to a u-shaped
architecture. Hence, the U-Net architecture can be seen as a sort of encoder-decoder
architecture but differs in the expansive path because of the presence of concatenations.

On the other hand, ResNet paved the way for the class of Residual Neural Net-
works (ResNN) [169] models. These algorithms are a technological breakthrough that
effectively allowed the deployment of DNNs with over 100 layers. The constituting
element of a ResNN is the residual block which is characterized by a skip connection
between its input and output. The presence of these connections and their combination
creates a path where the input is propagated without passing through any convolutional
layer, hence preserving its informative content that is more easily provided to deeper
layers. ResNNs can efficiently solve the problem of vanishing and exploding gradi-
ents. In fact, when extremely deep architectures are trained, the gradient computed by
backpropagation tends to shrink to zero or become too big after several applications of
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4.4. Denoising of the hyperspectral data

the derivative chain rule. As a result, the network parameters fail to update efficiently.
The skip connections typical of ResNet allow the flow of backpropagation directly on
previous layers, which proved able to solve the gradient degradation issue.

4.4.6 CNN spectral denoiser

So far, I introduced the main fundamentals of DNNs. These models have found many
applications in many photonic fields and, in particular, in the field of microspectroscopy.
In particular, it has proven powerful both for noise reduction and artifact removal tasks
and also for accurate and efficient chemometric analysis of spectral data. The first
demonstration of CRS image denoising through CNN architectures was performed by
Manifold et al. [170], who employed a U-net CNN [168] architecture for SRS signals.
CNNs for denoising CARS endoscopic images have been later applied by Yamato et
al. [171]. Finally, Lin et al. [172] developed a spatial-spectral residual net, based on the
U-net architecture, to denoise hyperspectral SRS images, training the model on images
containing similar spatial features as those to be denoised. During my Ph.D. I used a
CNN-based architecture to reduce the noise from the experimental CARS spectra [100]
acquired with a front-illuminated CCD sensor with 1024 pixels (PIXIS100, Princeton
Instruments). The training dataset consists of high-SNR BCARS spectra of six different
spectroscopic grade solvents acquired with our system with a long (100 ms) exposure
time. The noisy inputs are obtained by adding random noise with uniform distribution,
while the outputs are obtained by computing a moving average (3 points out of 1024)
of the acquired spectra, which is enough to remove the random Gaussian noise but not
the dispersive features. Then, we applied data augmentation to the original dataset,
reaching higher performances of the network during the training procedure.

Models, metrics and noise analysis

The CNN is inspired by the LeNet architecture and is meant to increase the SNR of the
recorded spectra without incrementing the CCD exposure time. The network features 6
1D convolutional layers with rectified linear unit (ReLU) activation function, arranged
as follows: (i) 32 (256,1) kernels, (ii) 64 (128,1) kernels, (iii) 96 (64,1) kernels, (iv) 128
(16,1) kernels, (v) 128 (8,1) kernels, (vi) 256 (3,1) kernels. Two average pooling layers
with a (3,1) size are used to decrease the feature map dimensionality, preserving the
relevant information. Eventually, 6 fully connected layers derive the prediction: (i) 64
neurons, (ii) 64 neurons, (iii) 96 neurons, (iv) 128 neurons, (v) 256 neurons, (vi) 1024
neurons. Before the last layer, a dropout layer removes 35% of the preceding neurons.
The whole architecture is schematically shown in Table 4.7

For the training, we employed a batch size of 128 examples and 100 training epochs
with a validation split of 20 %, which guaranteed convergence with high accuracy. The
Adaptive moment estimation (Adam) optimizer was used to adapt the learning rate of
the model, thus minimizing the loss function, namely the mean absolute percentage er-
ror (MAPE) between the prediction and the ground truth. Figure 4.9 shows the metrics
(Loss function of the network, MAPE, Mean square error or MSE, and R2) per epoch
relative to the training and validation datasets.

The hyperparameters of the network were adjusted using a balanced training dataset
consisting of 6 ·104 high SNR experimental spectra acquired with our system at 100 ms

87



i
i

“output” — 2023/2/8 — 13:32 — page 88 — #100 i
i

i
i

i
i

Chapter 4. Acquisition and post-processing of the CARS data

Figure 4.7: Model architecture of the CNN spectral denoiser. (a) Hyperparameters of the neural net-
work. (b) Graphical representation of the CNN denoiser. Adapted from [100].

Figure 4.8: Metrics of the model for 100 epochs.From [100].
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4.4. Denoising of the hyperspectral data

exposure time, associated with six different species (methanol, isopropanol, toluene,
acetone, ethanol, dimethyl sulfoxide).

The model is able to denoise experimental spectra, still maintaining the typical dis-
persive lineshapes of the CARS signal and recognizing congested peaks. To quanti-
tatively assess the robustness of the model to noise, I performed a noise analysis as
reported in Fig. 4.9. We did a single training of the network with a dataset featuring
uniformly distributed noise (i.e., U(0.01,0.04)), and tested inputs with increasing noise
levels (from left to right in Fig. 4.9). In each box, we reported the noisy input spectrum
(blue curve), the ground truth spectrum (black dashed lines), and the model prediction
(red curve). The input is obtained by adding random noise to experimental data ac-
quired at 100 ms. The random noise is added with uniform distribution featuring the
parameters reported in the corresponding box. We used the SNR function to evaluate
the performances of the model for each noise configuration. The SNR is defined as the
average of the signal in the region of the peaks divided by twice the standard deviation
of the spectrum in the region with no peaks. The goodness of the predicted outcome is
evaluated in terms of the loss functions, namely, MAPE, MSE, and R2, as calculated
on a minibatch of data with corresponding features. For every noisy input tested, we
observed an R2 > 97% and an MSE < 2 · 10−3. This analysis proves that even for very
noisy spectral traces, the prediction is in excellent agreement with the expected ground
truth.

Figure 4.9: Noise analysis of the trained model on noisy test datasets of 60000 spectra. Model inputs
(blue curves) feature increasing levels of randomly distributed noise from left to right. The ground
truth (black dashed lines) is in excellent agreement with the model prediction (red curves) for every
noise level employed in the analysis. Model performance metrics are reported in the table for each
noisy case study.From [100].

Data augmentation methods

By applying spectral Data Augmentation (DA) to the original dataset, we derived 30 ·
104 input-output pairs for an extended model training, which increased remarkably its
performance on unseen test data. In fact, the DA-trained model reaches R2>98% and
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Chapter 4. Acquisition and post-processing of the CARS data

MSE<8 · 10−4 on a test set of 6 · 103 instances. The process of DA was crucial in order
to improve the accuracy of the neural network. It is performed on the input-output
pairs of the original dataset. Spectra were augmented exclusively by applying intensity
variations, hence, no variations in the position of the peaks along the wavelength axis
were introduced. Four different methods were employed for DA (see Fig. 4.10), so
that the final training dataset consists of the original dataset along with the four new
ones, obtaining a 5-folds larger dataset. The first two DA methods introduce linear
intensity variations, by summing to the original spectrum a line with a negative slope
(DA1) or with a positive slope (DA2). Since the measured spectra are characterized
by a region where there is just noise and a region where there is the CARS signal
with the distorted Raman peaks, the slope is applied just to this spectral region, which
we identified as the “signal region”. The line is modeled as a y = mx function in
the signal region, that is zero in the pixel region before the signal. The slope m is
uniformly varied in order to have a variation of the last pixel of the region of the CARS
signal between 8 % and 24 % of its original intensity. For the second method, the same
approach is applied with the only difference that the function has a negative slope.
The third and the fourth DA methods vary the spectrum intensity by summing (DA3)
or subtracting (DA4) a non-symmetric triangular function to the original spectra. The
function features a maximum in correspondence with the main peak of the spectrum and
it is zero outside the signal region. The height of the triangular function is uniformly
distributed to introduce intensity variations of the main peak of the spectrum between
2 % and 10 % for the third method or between -10 % and -2% for the fourth method.

Comparison of the CNN denoiser with numerical algorithms

The performance of the CNN denoiser has been compared with conventional algo-
rithms (see Fig. 4.11), namely the moving mean, the Fourier-transform filtering, or
the Savitzky-Golay filter. For the comparison, I used a B-CARS spectrum of toluene
acquired at 100-ms exposure time. I added random noise uniformly distributed, and
then I used the CNN for the denoising. The moving mean algorithm returns a spectrum
where each pixel is the local mean of k-point values. The Fourier-transform approach
operates a filter in the Fourier domain of the original spectrum. It zeroes all the coef-
ficients above an arbitrary frequency, typically associated with noise, and then applies
the inverse Fourier transform to obtain the denoised version of the spectrum. Finally,
the Savitzky-Golay filter smooths the noisy spectrum fitting subsequent subsets of ad-
jacent data points with a low-degree polynomial function using the method of linear
least squares.

The comparison tells us that all the numerical approaches have lower prediction ac-
curacy when compared to the denoising method via deep learning. The reason why
classical mathematical methods are not suitable for this denoising task can be under-
stood by referring to Fig. 4.11.(a). Indeed, when considering CARS spectra, it is
important to preserve the typical dispersive line shape given by the interference term
between the resonant vibrational response of the sample and the NRB, which results
in a slow rise, a steep decay, and another slow recovery of the signal with frequency.
While our neural network can recognize and maintain original spectral features (see yel-
low curve), moving mean, Savitzky-Golay and Fourier-transform filtering approaches
introduce artifacts and/or alter peak shapes. The moving mean algorithm with high
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Figure 4.10: Data augmentation methods. From [100].
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Chapter 4. Acquisition and post-processing of the CARS data

k-values and the Savitzky-Golay filter smooth the sharp edge of typical CARS peaks,
whereas the Fourier transform cancels them by filtering out their typical high-frequency
components. Eventually, we also applied the Kramers-Kronig algorithm [46] to the dif-
ferent spectra (in Fig. 4.11.(a)) to retrieve the imaginary part of the resonant third-order
susceptibility, χ(3) (4.11.(b)). These results clearly demonstrate that our neural network
outperforms conventional spectral denoising methods.

Figure 4.11: Comparison of four different denoising methods on a CARS spectrum of toluene: CNN,
moving mean algorithm, Fourier-transform approach, and Savitzky-Golay filter. (a) Denoising meth-
ods on a noisy input toluene CARS spectrum (blue curve) obtained considering experimental data
and adding random noise. (b) Im{χ(3)

R } spectra retrieved through the Kramers-Kronig algorithm
starting from the spectra in panel (a). A SR spectrum (black curve) of toluene acquired with 5 s
exposure time is reported for comparison.

4.5 NRB removal

After the denoising of the hyperspectral data, the post-processing pipeline follows with
a quality check of the data, where the user should make sure that all the peaks have
been preserved and the noise reduction has properly worked. The third step of the
data analysis is the removal of the NRB. As seen for the denoising of the hyperspectral
data, this task can be solved using numerical algorithms or it can be read as a super-
vised learning task using neural networks since the function that goes from the input
CARS spectrum to the output imaginary part of the resonant third-order susceptibility,
ℑ{χ(3)

R }, is highly nonlinear. In this section, I will describe the two methods I mainly
explore during my Ph.D. for getting rid of the non-resonant background. These are
the time-domain Kramers-Kronig (KK) algorithm [173] and Specnet, a CNN model we
developed in our lab [48].
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4.5. NRB removal

4.5.1 Numerical algorithms for NRB removal

Despite the existence of optical methods to suppress the NRB in CARS measurements,
such as Time-resolved CARS [174] (described in 1) or Box-CARS [175], the NRB
is beneficial since it acts as a heterodyne amplifier of the weak Raman signals, en-
abling high-sensitivity detection. Moreover, experimental implementations for its re-
moval lead to weaker signals, hence, lower SNRs, and greater experimental complexity.
Therefore, numerical methods aiming at removing the non-resonant part after acquisi-
tion have been developed. These methods are phase-retrieval methods and exploit the
intrinsic heterodyne nature of the CARS signal. They may be divided into two main
classes: the ones based on the maximization of entropy (Maximum Entropy method:
MEM) [46] and the ones relying on phase retrieval through the time-domain Kramers-
Kronig (KK) relations [63].

In section 1.4, it has been shown that the CARS intensity scales quadratically with
the modulus of the third-order nonlinear vibrational susceptibility χ

(3)
V IB. Recalling that

χ
(3)
V IB = χ

(3)
R + χ

(3)
NR, we may write:

IAS ∝
∣∣∣χ(3)

R

∣∣∣2 + ∣∣∣χ(3)
NR

∣∣∣2 + 2χ
(3)
NRℜ

{
χ
(3)
R

}
, (4.12)

The resonant susceptibility χ
(3)
R is a complex number, where the real part has a dis-

persive shape, while the imaginary part presents a Lorentzian shape. On the other hand,
the non-resonant susceptibility χ

(3)
NR is real if far from electronic resonances. If one can

extrapolate the phase φ(ω) of χ(3), it is possible to recover the spectral information em-

bedded in
∣∣∣χ(3)

R

∣∣∣2. Therefore, both MEM and KK methods aim at retrieving the phase

of χ(3).

Time-domain Kramers Kronig algorithm

Let us introduce the phase retrieval method based on the time-domain Kramers-Kronig
(KK) relations. According to the KK connection, a function, f(ω), has an explicit,
causal relationship between its real and imaginary components. As a result, if just the
real (or imaginary) component is known, the imaginary (or real) component can be
determined. In CARS spectroscopy, neither the real nor the imaginary part of χ(3) is
directly accessible. However, there is an explicit connection between the complex norm
of the function and the phase if the function is square integrable [63]:

ln (|f(ω)|) = −H̃ {ϕ} , (4.13)

ϕ = H̃ {ln (|f(ω)|)} , (4.14)

where H̃ is the Hilbert transform. In order to calculate it, the complex modulus of the
function or its phase over an infinite frequency range should be known. However, since
we can measure only a portion of the spectrum, it is possible to define a windowed
version of the Hilbert transform,H̃w, as:

H̃w {f(x);ωa, ωb} =
P
π

∫ ωb

ωa

f(x′)

x− x′dx
′, (4.15)
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where ωa and ωb are the boundaries of the covered spectral range and P is the Cauchy
principal value.

As long as two conditions are met:

1. The Raman peaks contained within this window are not impacted by that outside
of the window

2. We are far from any electronic resonances, which is valid for infrared pump and
Stokes beams

the Hilbert transform is related to its windowed version in eq.(4.15) by the relation:

H̃w

{
1

2
ln
∣∣χ(3)

∣∣2} ≃ H̃
{
1

2
ln
∣∣χ(3)

∣∣2}+ ϵ(ω), (4.16)

where ϵ(ω) is an additive error term. Let us consider the CARS signal intensity, ICARS .
In section. 1.4 we wrote it in terms of the pump and Stokes intensities, however, it
could also be written in terms of electric fields as we did in eq.(1.61):

ICARS(ω) =
∣∣{[ES(ω)⊗ EP (ω)]χ

(3)(ω)
}
∗ EP (ω)

∣∣2 ≡ |C̃st|2|χ̃(3)|2, (4.17)

where, in eq.(4.17), ⊗ and ∗ are the cross-correlation and the convolution operators
respectively. Let us define the correlation between pump and probe fields as Cst =
[ES(ω)⊗ EP (ω)]. it corresponds to the coherent stimulation profile. Assuming a spec-
trally narrow pump, we can define the effective stimulation profile C̃st and the effective
non-linear susceptibility as:

C̃st(ω) ≡
[Cst(ω) ∗ EP (ω)]∫

EP (ω)dω
, (4.18)

χ̃(3)(ω) ≡ χ(3)(ω) ∗ EP (ω), (4.19)

Therefore, performing the windowed Hilbert transform (4.15) of the logarithm of the
CARS signal intensity (4.17), taking into account eq.(4.16) and applying the property
in eq.(4.14), we find:

ϕCARS = H̃w

{
1

2
ln (ICARS(ω))

}
≃ ϵ(ω)+H̃w

{
1

2
ln
∣∣∣C̃st(ω)

∣∣∣2}+H̃
{
1

2
ln
∣∣χ̃(3)(ω)

∣∣2} ,

(4.20)
Applying again the Hilbert transform property eq.(4.14) to eq.(4.20), we find:

ϕCARS ≃ ϵ(ω) + H̃w

{
1

2
ln
∣∣∣C̃st(ω)

∣∣∣2}+ ∠
[
χ
(3)
R + χ

(3)
NR

]
, (4.21)

where the ∠ operator extracts the phase. This phase term contains several contribu-
tions: the error ϵ, due to the use of the windowed version of the Hilbert transform, the
contribution from the effective stimulation profile, and the contribution from both the
resonant and non-resonant parts of the third-order nonlinear susceptibility. If it was
possible to measure the NRB intensity INRB = |C̃st|2|χ̃NR

(3)|2, we could apply the
windowed Hilbert transform to the ratio ICARS/INRB, obtaining:
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ϕCARS/NRB = H̃w

{
1

2
ln

(
ICARS(ω)

INRB(ω)

)}
≃ ϵ(ω) + H̃w

{
1

2
ln
∣∣∣C̃st(ω)

∣∣∣2}+

−
[
ϵ(ω) + H̃w

{
1

2
ln
∣∣∣C̃st(ω)

∣∣∣2}]+ ∠
[
χ
(3)
R + χ

(3)
NR

]
− ∠

[
χ
(3)
NR

]
≃

∠
[
χ
(3)
R + χ

(3)
NR

]
,

(4.22)

where in the last part of eq.(4.22) we implicitly assumed that χ(3)
NR is real, being far

from electronic resonances. Using the ratio of the CARS and NRB intensities as our
signal, the complex spectrum can be written as:

ICARS/NRB =

√
ICARS(ω)

INRB(ω)
exp iϕCARS/NRB ≃ |χ̃(3)|

|χ̃(3)
NR|

exp i∠
[
χ
(3)
R + χ

(3)
NR

]
, (4.23)

The Raman-like spectrum can be extracted as the imaginary part of ICARS/NRB in
eq.(4.23):

ℑ
{
ICARS/NRB

}
=

Im
{
χ
(3)
R (ω)

}
∣∣∣χ(3)

NR

∣∣∣ , (4.24)

where the imaginary part of the resonant third-order non-linear susceptibility carries
the vibrational information. Therefore, the retrieved spectrum is directly proportional
to the spontaneous Raman one, scaled by the non-resonant component.

The described method relies on a precise measurement of the non-resonant back-
ground. However, up to now, it is not possible to measure the pure contribution of the
non-resonant term. To circumvent this problem, the NRB spectrum is measured from a
reference material with no Raman peaks, such as glass or water. However, this leads to
a multiplicative complex error which should be taken into account.

The reference measurement, Iref can be linked to INRB by the multiplicative rela-
tion: Iref (ω) = ξ(ω)INRB(ω), where ξ(ω) is assumed to be real and positive. Let us
calculate the phase of the ratio ICARS/Iref , similarly to what we did in eq.(4.22):

ϕCARS/ref = H̃w

{
1

2
ln

(
ICARS(ω)

ξ(ω)INRB(ω)

)}
≃ ϕCARS/NRB + H̃w

{
1

2
ln

(
1

ξ(ω)

)}
︸ ︷︷ ︸

ϕerr

,

(4.25)
As we did in eq.(4.23), we can calculate the imaginary part of the spectrum obtained as
the ratio ICARS/ref = ICARS/Iref , where we use Iref instead of INRB:

Im
{
ICARS/ref

}
=

√
1

ξ(ω)︸ ︷︷ ︸
Aerr(ω)

√
ICARS(ω)

INRB(ω)
sin
[
ϕCARS/NRB + ϕerr

]
(4.26)
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From eq. 4.25 and eq. 4.26, it can be seen that using a reference instead of the real
NRB leads to an amplitude (Aerr) and a phase (ϕerr) error. Aerr and ϕerr are linked by
the relationship:

lnAerr(ω) = −H̃ {ϕerr(ω)} ,
ϕerr(ω) = H̃ {lnAerr(ω)} ,

(4.27)

where the Hilbert transform property in eq. (4.14) has been used. However, since the
Hilbert transform of a constant is equal to zero, there is an ambiguity in eq.4.27. In
particular, if ξ(ω) is multiplied by a constant α, the phase error remains the same:

ϕerr(ω) = H̃
{
ln

1

αξ(ω)

}
= H̃

{
ln

1

ξ(ω)

}
. (4.28)

These phase and amplitude errors can be corrected with the following strategies:

1. Remove phase error via detrending ϕCARS/ref and correct part of the amplitude
error exploiting the relationship in eq.(4.27),

2. Correct for scaling errors, related to the constant α, and for the use of the win-
dowed version of the Hilbert transform in step 1, leading to ϵerr. Then unity
centering the real component of the phase-corrected spectrum [63].

Let us start with the phase correction. The phase ϕCARS/ref (ω) is qualitatively simi-
lar to a Raman-like spectrum since peaks extend positively over a baseline. However,
the slowly-varying phase error ϕerr causes a slowly-varying deviation from the zero
baselines. Therefore, isolating the erroneous baseline allows us to find ϕerr. Using tra-
ditional baseline detrending methods, ϕerr(ω) can be extracted from ϕCARS/ref (ω) and
removed. Moreover, using eq. 4.27, part of the amplitude error can be corrected. The
two corrections can be implemented by multiplying the retrieved spectrum ICARS/ref

by a complex phase-correction multiplier. The phase corrected spectrum Ipc reads as:

Ipc = ICARS/ref

 1

exp
[
−H̃w {ϕerr(ω)}

] exp [−iϕerr(ω)]

 =

=

√
ICARS(ω)

Iref (ω)
exp iϕCARS/ref

 1

exp
[
−H̃w {ϕerr(ω)}

] exp [−iϕerr(ω)]

 ,

(4.29)

We can now proceed with the amplitude correction. In 4.28 we saw that retrieving Aerr

from ϕerr leads to an ambiguity related to the scaling constant α. Furthermore, in 4.29,
the windowed version of the Hilbert transform, H̃w, was used in place of H̃, causing a
window-effect error ϵerr(ω):

H̃ {ϕerr(ω)} = H̃w {ϕerr(ω)}+ ϵerr(ω), (4.30)

Therefore we need to correct for the Aerr ambiguity and ϵ(ω). Both of these vari-
ables can be found by examining the real component of the phase-corrected spec-
trum in 4.29. Since the real component of 4.23 is unity centered, which means that
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|χ̃(3)|/|χ̃(3)

NR| cosϕCARS/NRB

〉
= 1, any alteration of the mean of the real component

in 4.29 is caused by the presence of the scaling constant α, thus, one could measure
this mean and normalize Ipc by this value. Nevertheless, ϵerr might give this means
a frequency-dependent component. Using numerical means, though, one can find a
slowly varying centerline and normalize the phase-corrected spectrum, thus removing
α and ϵerr in one step. Finally, a rescaled, phase-corrected, complex spectrum Ipc,sc
may be calculated as:

Ipc,sc =
Ipc(ω)

⟨Re {Ipc(ω)}⟩ (ω)
=

|χ̃(3)|
|χ̃(3)

NR|
exp

[
iϕCARS/NRB

]
, (4.31)

The KK algorithm for NRB removal demonstrates how the pure vibrational informa-
tion can be extrapolated even using a reference measurement of the non-resonant back-
ground [63]. An example of the application of the algorithm is shown in Fig. 4.12.

Figure 4.12: Example of the application of the KK algorithm to a spectrum of toluene. ICARS: CARS
spectrum of toluene (blue curve), Iref reference spectrum on glass (orange curve), IKK phase re-
trieved spectrum after the Hilbert transform (yellow curve), Ipc phase corrected spectrum (violet
curve), Ipc,sc phase and scale corrected spectrum(green curve).
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Maximum Entropy Method

I will briefly describe the Maximum Entropy Method (MEM) which has been demon-
strated to be functionally equivalent to the time-domain KK algorithm [46]. The MEM
algorithm is based on the hypothesis that any inferences made from incomplete data
should be consistent with maximized entropy of the associated probability distribution,
given the constraints of the known information [176]. This hypothesis can be applied to
compute a power spectrum S(ν) associated with discrete measured data [46, 96]. This
could be applied to model the CARS lineshape as:

S(ν) =

∣∣∣∣∣ β

1 +
∑M

k=1 ak exp(−2πikν)

∣∣∣∣∣
2

≡
∣∣∣∣ β

AM(ν)

∣∣∣∣ (4.32)

where ν is the frequency, normalized to run from 0 to 1 over the experimental range,
A and β are complex coefficients, and M is the number of correlation coefficients
used for reconstructing the spectrum. M can be as high as the number of spectral
points (N ); however, the higher order coefficients represent primarily noise, therefore
typically M ≤ N/2 is used. The coefficients ak and β can be found solving the Toeplitz
equation (4.38): 

C0 C∗
1 · · · C∗

M

C1 C0 · · · C∗
M−1

...
... . . . ...

CM CM−1 . . . C0




1

a1
...

aM

 =


|β|2

0
...
0

 (4.33)

where ∗ denotes the complex conjugate and Ck are the discrete Fourier transform of
the CARS spectrum at a discrete set of normalized frequencies νn = n/N , with n =
0, 1, . . . , N , calculated as:

Ck = N−1

N−1∑
n=0

S(νn)exp(2πikνn), (4.34)

where S(ν) is normalized by the NRB reference spectrum. Substituting the values of
the coefficients ak and β (which are found solving (4.38), taking (4.34) into account)
in eq. 4.32, it is possible to find AM(ν), from which the spectral phase ϕCARS can be
retrieved as:

ϕCARS(ν) = ∠[AM(ν)], (4.35)
This result is obtained directly from the measured spectrum, however, in (4.35), the
error due to a non-real NRB contribution has not been taken into account yet. The
errors introduced by the presence of a reference spectrum in place of the real NRB are
assumed to contribute to a slowly varying baseline that can be subtracted in a similar
way as it is done in the time-domain KK algorithm.

4.5.2 NRB removal via deep learning

The NRB removal task can also be read as a supervised machine-learning task. Indeed,
the main idea is that a DNN can approximate the nonlinear and complex function that
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4.5. NRB removal

maps the measured CARS spectrum with the imaginary part of the third-order nonlinear
susceptibility. At the beginning of my Ph.D., I took part in the realization of a CNN for
the removal of the NRB. This work has been published in [48].

So far I have introduced the phase reconstruction methods which are mostly used
when dealing with CARS spectroscopy. However, both the KK algorithm and the MEM
methods for the retrieval of the pure vibrational information and removal of the NRB
contribution, require an independent measurement of a reference spectrum. Moreover,
the phase-retrieved spectra rely on the choice of parameters made by the user. The
main advantage of substituting these algorithms with supervised learning methods is the
possibility to retrieve pure vibrational information in an unbiased way without requiring
the measurement of a reference material.

Model architecture

We realized a CNN inspired by the most common Lenet architecture [167] that com-
bines convolutional layers and fully connected layers. The formers have the main role
of extrapolating the features from the CARS spectra that are the typical dispersive line-
shapes deriving from the heterodyne term in the expression of the CARS signal. The
latters restore the initial dimension of the inputs, generalizing the information discov-
ered previously by the convolutional layers and correlating the feature maps derived
from the input outputting the imaginary part of the third-order susceptibility. The code
of the network is available online [177]. The network, called SpecNet, consists of five
1-dimensional convolutional layers with 128, 64, 16, 16, and 16 filters of dimensions
32, 16, 8, 8, and 8, respectively, followed by three fully connected layers of 32, 16, and
640 neurons (as the output is expected to have the same dimensions as the input). All
layers had a ReLU (rectified Linear Unit) activation function (see Fig. 4.13.(a-b)).

Training dataset

The input data features 640 spectral points. We trained the network using a synthetic
dataset. In particular, knowing that the CARS intensity scales quadratically with the
modulus of χ(3)

V IB = χ
(3)
R + χ

(3)
NR, we simulated the resonant term χ

(3)
R as the sum of

N Lorentzian functions (with N up to 15), with amplitude following a uniform dis-
tribution U(0, 1), width uniformly distributed as U(0.001, 0.008) and centered with a
random frequency ν following a uniform distribution U(0, 1). The non-resonant contri-
bution, mimicking the NRB in our spectra, is generated as the product of two sigmoidal
functions (see Fig. 4.14.(c)), i.e. χ(3)

NR = σ1σ2 with:

σi =
1

1 + exp [−(ν − ci)si]
(4.36)

where ν is the normalized frequency, i = 1, 2 and c, s define the center and broad-
ness of the sigmoidal functions and are chosen so that c1 follows a normal distribution
N (0.2, 0.3), c2 follows a normal distribution N (0.7, 0.3), and s1,2 are opposite num-
bers following a normal distribution N (10, 5, 2). After normalizing the CARS signal,
we added random noise to the CARS signal with amplitude uniformly distributed as
U(0.0005, 0.003). The simulated CARS signal (see Fig. 4.14.(a)) has the form:
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Chapter 4. Acquisition and post-processing of the CARS data

Figure 4.13: Model architecture of the SpecNet network for the NRB removal. (a) Hyperparameters of
the neural network. (b) Graphical representation of the SpecNet.

ICARS =
|χ(3)

R (ν) + χ
(3)
NR(ν)|

2
+ noise (4.37)

The ground truth of the network is obtained by computing the imaginary part of
χ
(3)
R (ν) (see Fig. 4.14.(b)). The training dataset is constituted of 50000 instances. The

loss function chosen was the mean squared error (MSE) between the true target vector
y and the predicted one ŷ. To avoid overfitting and reduce the sensitivity of the model
to noise, we utilized L2 weight regularization [159] on the weights of the first fully
connected layer with a weight of 5 · 10−1. The optimization has been performed using
the Adam optimizer with a batch size of 256 examples. The entire training procedure
required 10 epochs. The computing time required to process a spectrum, averaged over
100 000 examples, is about 0.1 ms, which is much shorter than the current state of the
art for the acquisition time of a BCARS spectrum, around 3 ms for biological tissues.

Model performances and test on experimental data

After the training, the MSE loss function of the training dataset is 6.2 · 10−4 and the
validation loss function is 5.64 · 10−4 (see Fig. 4.15). Thanks to the capability of
convolutional layers to handle spatial invariance, i.e. to recognize similar structures
in different locations of the input, although the model was trained with a maximum
number of peaks N = 15, it performs well even if the number of features is larger.
Indeed, by testing the network on a sample made of more than 15 peaks, the prediction
is in good agreement with the ground truth (Fig. 4.16).

Eventually, the network has shown good performances when tested on experimen-
tal data. I tested the network with experimental data acquired with the BCARS setup

100



i
i

“output” — 2023/2/8 — 13:32 — page 101 — #113 i
i

i
i

i
i

4.5. NRB removal

Figure 4.14: Simulated data for the SpecNet. (a) Simulated CARS spectra. (b) Ground truth relative to
the simulated CARS spectra in (a). (c) Examples of the simulated nonresonant contribution deriving
from the product of two sigmoidal functions.

Figure 4.15: Mean square error (MSE) loss of the training and validation set after 10 epochs of training
with 50000 instances.
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Chapter 4. Acquisition and post-processing of the CARS data

Figure 4.16: Prediction of the SpecNet on a spectrum with a higher number of spectral peaks than the
typical spectra of the training dataset.

using a spectrometer equipped with a front-illuminated CCD with 1024 spectral pix-
els (PIXIS100, Princeton Instruments). I measured the spectra of six solvents: ace-
tone, ethanol, methanol, isopropanol, dimethyl sulfoxide (DMSO), and toluene (see
Fig. 2(a)). For these experiments, using solvents droplets deposited between two 170
µm glass coverslips (see Fig. 4.17), I set the CCD exposure time to 0.8 ms, i.e., the
minimum allowed by the detector electronics, and collected single-point B-CARS spec-
tra, spanning the whole fingerprint region from 500 to 2000 cm−1. For each spectrum,
I averaged 30 spectra and cropped the data selecting the whole fingerprint region to
have 640 spectral points (blue curves in 4.17) and used them to feed the network after
normalization. The prediction of the SpecNet (orange curves in 4.17) have been com-
pared with the spontaneous Raman spectra obtained averaging 5 spectra acquired with
5 s integration time (grey areas in 4.17). The traces show a good agreement, indeed,
all the main peaks in the fingerprint region are recognized by the network and the NRB
is completely suppressed. Despite its capabilities in the recognition of the peaks, the
SpecNet is still sensitive to random noise, thus making harder the recognition of small
features in the fingerprint region. This last aspect calls for further improvement of the
training set on which we are currently working.

Conclusion

We realized a deep-learning model called SpecNet that enables the user to remove the
non-resonant background contribution from broadband CARS spectra. The model is
built as a CNN with seven hidden layers. The training was performed on a simulated
dataset that allows a high generalization capability to different spectral shapes of the
non-resonant background. The performances of the network were assessed on real
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Figure 4.17: Prediction of the SpecNet on experimental data acquired on 6 different solvents ac-
quired with the BCARS setup: methanol, acetone, toluene, ethanol, isopropanol, dimethyl sulfoxide
(DMSO). Each spectrum is the average of 30 spectra acquired with 0.8 ms pixel dwell time. Spectral
points: 640.
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experimental data, and the model was able to correctly process them retrieving all the
relevant vibrational peaks of different solvent specimens in a time of 0.1 ms, which
is faster than the time required to record the spectrum. Moreover, the model does not
need the independent measurement of a reference sample or any manual intervention
by the operator for the processing as it is needed using numerical algorithms such as
the KK algorithm or the MEM method. This could be implemented, for example, in
parallel during the integration time of the next pixel so that no time is lost for the
spectral processing at all, thus considerably reducing the processing time of CARS
hyperspectral images.

We believe that this approach for NRB removal will speed up BCARS processing
and may be implemented for online retrieval of the vibrational peaks.

4.5.3 State-of-the-art of NRB removal via deep learning

Recently, many works on NRB removal via deep learning have been published. One of
them was published contemporary to ours and employs a different model and training
dataset [49], while others improve the performances of the SpecNet by either chang-
ing the model architecture [50] or the training dataset [178, 179]. Houhou et al. [49]
published a work in 2020, the same year as SpecNet, where the NRB removal task
was tackled by a long short-term memory(LSTM) [180] topology of the network. The
LSTM deals with sequential data and has the same architecture as recurrent neural net-
works. In 2022, Wang et al. [50] proposed a new DNN architecture called Very dEep
Convolutional auTOencodeRs (VECTOR), using the same training dataset generated in
out SpecNet. VECTOR is constituted by an encoder and a decoder. On the one hand,
the encoder aims to compress the input to a lower dimensional latent representation
without losing critical information. The decoder learns to reconstruct the input from
the compressed representation. Skip connections are introduced to bypass the encoder
to the decoder, thus boosting the performance of the network reaching lower MSE with
respect to our SpecNet. In 2022, Junjury et al. [178] used the SpecNet and retrained
the model with a new training set made of synthetic and semi-synthetic data. While the
synthetic data were generated using our code, the semi-synthetic data is built starting
from spontaneous Raman data, applying DA to them thus increasing the numerosity
of the dataset, retrieving the real and imaginary part through the Kramers-Kronig rela-
tions and adding simulated NRB in the same way it is done for the synthetic data. The
retrained model has shown potential improvement compared to the SpecNet model in
terms of efficient extraction of imaginary parts across the total spectral range. Further
individual peak analysis has revealed that the proposed model predicted the peak ampli-
tudes, widths, and centers without much deviation from the true ones. The final results
on the experimental CARS spectra demonstrated the potential of the approach where
prediction error is 10 times less compared to the original SpecNet model. Eventually,
in 2022, the same group of Junjury, led by Vartiainen, published another work [179] in
which the performances of the SpecNet are boosted by fine-tuning with semi-synthetic
spectra the SpecNet model trained on synthetic data.

Despite many improvements, since the publication of the SpecNet, NRB removal via
deep learning is not still used for BCARS imaging. In the framework of the CRIMSON
project, I am currently collaborating with other partners of the consortium in finding
a generalized model that can be used with spectra acquired in different labs and can
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show good prediction not only for CARS spectroscopy but also for BCARS imaging.
The model combines the main features of the network published in the literature (CNN
and recurrent neural networks) and will be based on a new training dataset that includes
all the possible scenarios one can encounter when acquiring spectra with a BCARS
system.

4.6 Spectral unmixing

After the two post-processing steps that I described above, i.e. the denoising of the
hyperspectral data and the removal of the NRB, the last step consists of the unmixing
of the chemical components of the heterogeneous samples. This step is intended only
for microscopic applications, i.e. for CARS imaging. When doing spectroscopy other
strategies, such as principal component analysis, can be used for identifying the differ-
ent features of the spectra belonging to the investigated analytes. For spectral unmixing
in CARS images, we can distinguish two classes of algorithms: the factorization and
the clusterization methods.

The first ones have the goal of decomposing the hyperspectral dataset D in a matrix
of the spectra S and a matrix of concentrations C so that D = CS∗ + ϵ where ϵ is the
error that has to be minimized in the iterative process of the algorithms. It implies that
in the factorization methods, each pixel spectrum of the image can be seen as a linear
combination of the spectral basis identified by the algorithm and the coefficients of this
linear combination represent the concentrations of that species in the sample. Through-
out my Ph.D. experimental activity, I mainly used two factorization methods which are
the multivariate curve resolution-alternating least squares (MCR-ALS) analysis and the
N-FINDR algorithm.

On the other hand, the clusterization methods aim at identifying in the hyperspectral
images two or more groups of pixels with similar spectral features. The spectrum as-
sociated with the cluster will be representative of all the pixels belonging to the cluster.
In this case, if one pixel belongs to a group it cannot be part of the other group. So that
we have as output a matrix of the representative spectra and an image where each pixel
is associated with only one class. As for the clusterization methods, I mainly used the
hierarchical cluster analysis and the k-means cluster analysis (KMCA).

In the following sections, I will briefly describe the main algorithms that I used
for the processing of the data shown in the next chapter. These are the MCR-ALS
algorithm, the N-FINDR algorithm, and the KMCA algorithm.

4.6.1 Multivariate curve resolution analysis

The MCR-ALS algorithm has been popularized by Tauler and colleagues [181–183].
For this approach, we assumed that the hyperspectral data cube D, unfolded as a number
of pixels times spectral points matrix, is a linear combination of the concentration C
and the spectral profiles S of the chemical constituents of the sample, i.e., D = CS∗+ϵ.
Here, ϵ is a matrix containing the experimental error, while the superscript ∗ means the
transpose of the matrix. The algorithm starts by obtaining C and S through a singular-
value decomposition of the spectral data and these two matrices constitute the initial
guesses. Assuming we want to define the guessed S as the pure spectra, we could
calculate C = DS(S∗S)−1 and S∗ = (C∗C)−1 C∗D. These new values of C and S are
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then optimized with an alternating least-squares (ALS) algorithm. Since CARS spectra
and concentrations must be positively signed, the alternating least-squares algorithm Is
constrained to deliver only non-negative results. The optimized C and S enable us to
allowed us to reconstruct a new matrix D̃ = CS∗ which is compared with the initial
dataset D. We iterate these steps until the error ϵ is less than an arbitrary threshold
value. The matrices C and S are respectively the chemical images of the concentrations
and spectral profiles of the different species of the heterogeneous sample.

4.6.2 N-FINDR algorithm

The N-FINDR algorithm [184] is a factorization method that allows us to reduce the
dimensionality of the hyperspectral data by finding the combination of spectra, called
endmembers, which best represents the whole image. The algorithm is based on the
maximization of a quantity which is the volume that is proportional to the determi-
nant of a matrix E that is the augmented matrix of the endmembers. Defining the i-th
endmember as ei, the augmented endmember matrix E is:

E =

[
1 1 · · · 1

e1 e2 · · · em

]
(4.38)

with m the number of endmembers. The volume is defined as:

V (E) =
1

(m− 1)!
abs(|E|) (4.39)

The algorithm begins with a random set of vectors. To find the endmembers, every pixel
in the image must be evaluated as to its likelihood of being a pure or nearly pure pixel.
This is done by calculating the volume with each pixel in place of each endmember.
If the replacement results in an increase in volume, the pixel replaces the endmember.
This procedure is repeated until there are no more replacements for endmembers. Once
the endmembers are found, the spectra constitute the new basis onto which project the
initial image, using a non-negatively constrained least squares algorithm. This last step
finds the abundances or concentration maps of the reduced dataset.

4.6.3 K-means cluster analysis

K-means cluster analysis (KMCA) is a clusterization algorithm used for spectral un-
mixing. Clustering is the partitioning of the original dataset into k subsets called clus-
ters [185,186]. The number k of clusters is arbitrarily selected through an initial guess.
The k-means algorithm starts by randomly distributing the k-clusters. Then, the algo-
rithm assesses the distance of all spectra of the dataset to the mean cluster spectrum.
Finally, it assigns each spectral trace to the cluster with the closest mean spectrum. Note
that iterating the previous steps provides optimized results [186]. The main goal of the
KMCA is to minimize the distances between the data within each cluster and to maxi-
mize the distances between different clusters according to some well-defined distance
metric. The most employed clustering criterion is the sum of the squared Euclidean dis-
tances between each instance xi (a pixel spectrum) and the centroid mJ (cluster center
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spectrum) of the subset. This distance is known as clustering error [187]:

E(m1, . . . ,mk) =
N∑

(i=1)

k∑
(j=1)

(I(xi ∈ Cj)) |xi −mj|2 (4.40)

where Cj denotes the j-th cluster and I is a function whose value is 1 when the i-th
instance belongs to the cluster Cj or 0 when such instance belongs to another cluster.
As mentioned above, the k-means algorithm finds locally optimal solutions with respect
to this distance metric through iteration.
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CHAPTER5
Results

5.1 Introduction

In this chapter, I will present and discuss the results obtained with the BCARS system
and the post-processing methods mentioned in the previous chapters. In particular, the
chapter will be divided into two main sections.

The first section is entitled "Fingerprint multiplex CARS at high speed based on
supercontinuum generation in bulk media and deep learning spectral denoising" and
refers to all the results published in this paper [100]. For these results, the CARS spectra
were obtained exploiting only the two-color mechanism and it allows us to access the
fingerprint region of many samples such as solvents, polymer beads, and biological
tissues, e.g. longitudinal slices of murine vertebrae. The data post-processing is based
on a pipeline based of three steps: the CNN spectral denoiser, the KK algorithm for
NRB removal, and spectral unmixing algorithms such as MCR-ALS and KMCA.

The second section entitled "Ultrabroadband CARS microscopy of biological sam-
ples with white light continuum in bulk media" shows the most recent results obtained
with the experimental setup that combines two different excitation methods for CARS
generation, the two-color, and the three-color mechanism. This configuration allows us
to access the whole Raman active region of biological samples. These results are still
unpublished and will be part of a manuscript that is in preparation.
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Figure 5.1: Scheme of the BCARS experimental setup.HWP: half-wave plate; PBS: polarizing beam
splitter; LP: long-pass filter; SP: short-pass filter.

5.2 Fingerprint multiplex CARS at high speed based on supercontin-
uum generation in bulk media and deep learning spectral denoising

5.2.1 Experimental setup and post-processing pipeline

The architecture of the B-CARS microscope is shown in Fig. 5.1. The system fea-
tures 1.1 ps narrowband pump pulses with energy fluctuations <1% RMS generated
by spectral filtering through a high-finesse Fabry–Perot etalon, which allows reaching
a spectral resolution of ≈ 11cm−1 (≈ 1.1 nm FWHM bandwidth). The broadband
Stokes source generated into the 10-mm YAG crystal shows very good stability with
energy fluctuations <1% RMS comparable to those of the driving laser. A long-wave-
pass filter selects the red-shifted lobe of the WLC (1050 – 1300 nm) that has a spectral
energy density high enough to generate CARS in the entire fingerprint region even at
very short pixel-dwell times. An SF-11 prism pair compresses the Stokes pulse, com-
pensating for the dispersion introduced by the optical elements of the system. The pulse
duration of the Stokes at the sample plane is comparable to the one of the pump beam
since no temporal chirp is experienced when detecting the CARS spectra. The micro-
scope is equipped with two identical 100x air objectives with NA=0.85. For the CARS
signal acquisition, I used a spectrometer made of a monochromator (ACTON SP2150,
Princeton Instruments) equipped with a front-illuminated CCD with 1024 spectral pix-
els (PIXIS100, Princeton Instruments). Average powers of ≈40 mW for the pump and
≈10 mW for the Stokes beam at the sample plane have been used for all the experi-
ments.

The post-processing pipeline that I employed for the analysis of the BCARS spectra
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and hyperspectral data is schematically shown in Fig. 5.2. It is divided into three
main steps: (i) a spectral denoiser based on a CNN architecture to increase the SNR of
the acquired CARS spectra; (ii) a numerical method to remove NRB from the spectra,
based on the Kramers-Kronig relations [63], and (iii) spectral unmixing methods that
are the MCR-ALS algorithm and the KMCA algorithm to discern the different chemical
constituents in the heterogeneous samples.

Figure 5.2: Scheme of the data processing pipeline: (i) CNN spectral denoiser, (ii) NRB removal via the
KK algorithm, and (iii) Spectral unmixing methods to obtain false-color images.

5.2.2 BCARS spectroscopy of solvents

The system was first used to acquire the spectral profiles of six solvents: acetone,
ethanol, methanol, isopropanol, dimethyl sulfoxide (DMSO), and toluene (see Fig.
5.3.(a)). The solvents were deposited in a sandwich configuration between two 170-µm
glass coverslips (see Fig. 5.3.(b)) and I set to 0.8 ms the CCD exposure time, which is
the minimum allowed by the detector electronics. The measured CARS spectra, cov-
ering the whole fingerprint region from 500 to 2000 cm−1 (blue curves in Fig.5.3.(a))
show the characteristic lineshapes of the CARS signal, because of the interference with
the chemically unspecific NRB. A comparison of the phase retrieved spectra (red lines
in Fig. 5.3.(a)), after applying the KK algorithm [46], with the SR spectra (grey areas
in Fig. 5.3.(a)) shows a very good agreement both in the relative positions of the peaks
and their amplitude ratios.

Then, I investigated the detection limit of the BCARS system measuring spectra of
a set of binary solutions of DMSO and pure water with variable DMSO concentration,
ranging from 100% to 0%. For the experiment, the exposure time was set to 10 ms, and
I averaged over a hundred spectra for a total of 1-second measurement time, adopting
the same sample configuration employed for solvents. Without the help of any spectral
denoising method, I retrieved the pure vibrational response of the DMSO using the KK
algorithm. As a reference spectrum for the KK algorithm, we used the CARS spec-
trum collected on the sample with pure water (0% DMSO – 100 % water). As it was
expected, the response of the retrieved Imχ

(3)
R is linear with respect to DMSO concen-

tration (Fig. 5.3.(c)) and the measured detection limit of the system is ≈ 14.1 mmol/L.
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This limit corresponds to the value of the solvent concentration at which the main peak
of DMSO in the fingerprint region at ≈667 cm−1 is equal to the background signal due
to noise. This result demonstrates a two-fold increase of the limit of sensitivity with
respect to previously reported multiplex CARS in the fingerprint region [94].

Figure 5.3: (a) BCARS raw single-point spectra (blue solid lines) acquired with 0.8-ms exposure time
on six solvents (as indicated), sandwiched between two 170-µm glass coverslips. The red lines
are phase-retrieved spectra after the Kramers-Kronig algorithm. SR spectra (grey areas) are also
plotted for comparison. (b) Scheme of the sample configuration employed for the experiments. (c)
Dilution test experiment on a binary solution of DMSO and pure water. We considered the retrieved
imaginary part of the third-order resonant susceptibility of the main peak of DMSO at 667 cm−1. The
inset shows a zoom on the low-concentration binary solutions. Estimated sensitivity: 14.1 mmol/L of
DMSO in pure water. Error bars: 1 standard deviation.

5.2.3 BCARS microscopy of plastic beads

To assess the image capabilities of the microscope, spectral hypercubes were measured.
BCARS imaging is performed by raster scanning the sample in the x-y directions, with-
out changing the z-position, and simultaneously acquiring a CARS spectrum with the
CCD. Images of a sample made by mixing 10-µm polystyrene (PS) and 8-µm poly-
methyl-methacrylate (PMMA) beads, immersed in DMSO were delivered (see Fig. 5.4)
with 1-ms integration time (panel 5.4.(a)). The black triangles in the spectral profiles
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correspond to the three main peaks relative to the three chemical species (650 cm−1

for DMSO, 780 cm−1 for PMMA, 970 cm−1 for PS). Note that the peaks are shifted
with respect to the corresponding ones in the SR spectra (grey areas in panel 5.4.(c))
because of the distortions of the line widths introduced by NRB. Panel 5.4.(b) shows
the portions of the hypercube we collected at these three specific vibrational frequen-
cies. After the CNN-based spectral denoising and NRB removal, classification analysis
was performed by applying the MCR-ALS algorithm. The number of components (i.e.,
the chemical species) is fixed to three. The algorithm outputs pure spectra and con-
centration maps (Fig. 5.4.(c)-(d)). The comparison of the reconstructed spectra with
the SR ones (grey areas in panel 5.4.(c)) demonstrates the capabilities of the system
of recognizing the main chemical features of heterogeneous samples in the whole fin-
gerprint region. Indeed, in the spectra, all the peaks, even the less intense ones, can
be identified. Note that in the retrieved spectrum of the 8-µm PMMA beads there is a
residual peak of DMSO. This is due to a sample thickness between the two coverslips
of 10 µm, determined by the size of the PS beads. It implies that the DMSO solvent
may be locally present in correspondence with the smaller PMMA beads.

Figure 5.4: BCARS image of 10-µm PS and 8-µm PMMA beads soaked in DMSO and sandwiched
between two 170 µm glass coverslips. (a) Single-pixel CARS spectra in the fingerprint region of a PS
bead (green curve), DMSO (blue curve), and a PMMA bead (red curve). (b) Frames of the measured
BCARS hypercube at three selected Raman shifts (black triangles in panel (a)) corresponding to
three main characteristic peaks (650 cm−1 for DMSO, 780 cm−1 for PMMA, 970 cm−1 for PS) of
the species in the fingerprint region. (c) MCR-ALS retrieved spectra of the three chemical species
after the post-processing data pipeline and correspondent SR spectra (grey areas) (d) False-color
image retrieved with MCR-ALS analysis, with the same color code as (c). Imaging settings: 90×90
pixels, 1-µm pixel size, 1024 spectral points, 1 ms pixel dwell time, Scale bars: 20 µm, total image
acquisition time: 8.1 s.
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Chapter 5. Results

5.2.4 BCARS imaging of biological tissues

I used the BCARS microscope to map biological specimens, imaging longitudinal sec-
tions of non-decalcified methyl methacrylate (MMA)-embedded murine spine (verte-
brae) [188]. The sample consists of 6-µm-thick sections including both the compact
cortical part and the cancellous trabecular part of bone tissue, the latter being inter-
spersed with bone marrow. Bone is constituted by a flexible matrix, mainly made up of
type-I collagen, and by an inorganic mineral counterpart, mostly composed of calcium
phosphate (hydroxyapatite), which gives rigidity to bones. The interplay of these two
constituents provides tensile and compressive strength for load bearing. Conversely,
bone marrow is rich in cells taking part in hematopoiesis, thus playing a crucial role
in blood cell production. Consecutive tissue sections were deposited either on slides
for routine histological procedures or on a polylysine-treated quartz coverslip. After
removing the resin, a second 170-µm quartz coverslip was applied to obtain a sand-
wich configuration. I visualized the morphological details by analyzing the bright-field
image of the adjacent tissue slice stained with Hematoxylin and Eosin (H&E) (Fig.
5.5.(a)). In this image, I identified a 400×800-µm2 field of view (dashed area) charac-
terized by the presence of the cells of the bone marrow, the trabecular and cortical bone,
and the muscular tissue surrounding the vertebrae. The same region was images on the
unstained slice, thus obtaining the hypercube shown in Fig. 5.5.(b-d). In this case, I
selected three Raman shifts, i.e., 790 cm−1 for DNA, 960 cm−1 for hydroxyapatite and
1410 cm−1 for CH2 of proteins and lipids corresponding to prominent peaks in CARS
spectra (Fig. 5.5.(e)). On the denoised and processed hypercube, I applied the KMCA
algorithm to identify the main chemical constituents of the sample. In this case, the
KMCA is preferred to MCR-ALS since it proved to be more effective with a large-
sized dataset. The concentration map and the spectra for a fixed number of clusters
equal to 4 are shown in Fig. 5.5.(f-g). The images clearly show that a cluster can be as-
sociated with the region of the vertebra related to cortical and trabecular bone, another
one with the bone marrow, and the last one with the muscle (see Fig. 5.5(g)). The fourth
cluster accounts for empty regions of the sample. The relative spectra, i.e. the centroids
of the KMCA, give us information on the chemical composition of each region of the
scrutinized sample. Indeed, the centroid of the first cluster (in red) shows an intense
band between 940 and 970 cm−1, typically associated with phosphate bonds in hydrox-
yapatite (960 cm−1). The small band around 1060-1080 cm−1 represents carbonate in
hydroxyapatite, while the bands at 1220-1230 cm−1 correspond with amide III, pro-
teins, the peak at ≈ 1440 cm−1 is typical of CH2 bonds and represents both proteins
and lipids(the organic matrix) and the peak at ≈1650 cm−1 is associated with amide I,
proteins [189]. These spectral features clearly correspond to the bone, mostly charac-
terized by mineral crystals embedded in an organic protein-rich matrix. The centroids
of the second and third clusters (in green and blue respectively) are mainly character-
ized by vibrations around 790 cm−1, typically assigned to DNA, and by strong signals
in the spectral region between 1400 and 1700 cm−1, mainly associated to protein and
lipids. These clusters can be designated to bone marrow and to muscular tissue, marked
by a high cellular fraction and protein-rich muscle fibers, respectively.
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5.2. Fingerprint multiplex CARS at high speed based on supercontinuum generation in
bulk media and deep learning spectral denoising

Figure 5.5: Microscopy of 6-µm thick murine spine sandwiched between two 170 µm quartz coverslips.
(a) Bright-field image of a tissue slice stained with H&E. (b-d) Frames of the measured BCARS
hypercube at three different Raman shifts (black triangles in panel (e)) on the unstained adjacent
slice. (e) CARS spectra from the bone marrow region (green curve, +), from the muscle region (blue
curve, *), and from the bone tissue (red curve, x). (f-g) Concentration map and vibrational spectra of
the three clusters associated with bone marrow, muscle, and bone, obtained after denoising the data
with the CNN model, NRB removal through the KK algorithm, and applying the KMCA algorithm.
Imaging settings for the B-CARS dataset: 200 µm scale bar, 400×800 pixels, 1-µm pixel size, 1024
spectral points, 10-ms pixel dwell time, total image acquisition time: 55 minutes.

5.2.5 Conclusion

This work demonstrates a new approach to BCARS spectroscopy and microscopy. The
two key novel elements introduced are: (1) the use of a low-repetition-rate (2 MHz)
pulsed laser in the infrared and (2) the advanced data-processing pipeline. The former
innovation opens the possibility to make the system more simple and compact thanks
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Chapter 5. Results

to broadband Stokes beam using WLC generation in bulk media rather than PCFs.
Moreover, it enables stronger CARS signals thanks to the higher pulse energy and peak
power. Eventually, it shifts the wavelength of the pump/Stokes pulses beyond 1 µm,
thus limiting the multi-photon sample damage when imaging biological samples.

Thanks to these innovations, we could demonstrate extremely fast (down to 0.8-ms
pixel dwell time, limited by the CCD read-out time) BCARS microscopy in the weak
vibrational fingerprint region, with record-breaking sensitivity (down to 14.1 mmol/L),
without compromising sample integrity.

5.3 Ultrabroadband CARS microscopy of biological samples with white-
light continuum in bulk media

5.3.1 Ultrabroadband two-color CARS spectroscopy on solvents

So far, I have shown results of CARS spectra spanning the whole fingerprint region
(500-1800 cm−1). However, as it has been discussed in chapters 2 and 3, it is possible
to generate a broader WLC (1050-1600 nm) playing on the incident pulse energy, on
the aperture of the iris, and on the position of the 10-mm YAG crystal with respect to
the focal plane. Under these conditions, the spatio-temporal superposition of the pump
and Stokes beam at the focal plane allows us to generate a two-color CARS spectrum
covering both the fingerprint region (500-1800 cm−1) and the CH-stretching region
(2700-3100 cm−1). With this setup configuration, I measured the CARS spectrum of
six different solvents (5.6). I fixed the exposure time to 0.8 ms and used higher power
at the sample plane with respect to previous results, i.e., 55 mW for the pump and of 25
mW for the Stokes beam. Fig. 5.6 shows the BCARS spectra (blue curves) and relative
phase retrieved spectra using the KK algorithm (red curves), where all the peaks show
a good agreement with the spontaneous Raman spectrum (grey areas) acquired within
25 s (five averages with 5-s exposure time). Although these power values are sufficient
to obtain a good signal for solvents, in the case of polymer beads or biological samples
they are excessive and lead to sample damage.

To perform high-speed multiplex CARS imaging on biological samples covering
the entire Raman active region, I modified the setup configuration. The new BCARS
implementation employs a new etalon to reach 3.7 ps pump pulses thus having a higher
spectral resolution, i.e. ≈ 9 cm−1. Then, I further compress the broadband Stokes
beam (≈1100-1600 nm) reaching sub-20 fs pulses at the focal plane after the first mi-
croscope objective. The use of an ultrashort laser source with fine-tuned pulse dura-
tion and adjustable spectral range enables us to cover the first part of the vibrational
spectrum (from 500 to 1400 cm−1) through intra-pulse excitation, also called the three-
color CARS mechanism, of the Stokes beam [98], using the narrowband pump beam
as a probe, and the remaining part (from 1400 to 3100 cm−1) through inter-pulse ex-
citation, that is the two-color CARS mechanism, between the narrowband pump and
the broadband Stokes beam. The combination of these two processes for broadband
CARS generation allows us to obtain good quality and very broad spectra working at
a moderate average power of the Stokes (< 10 mW) and pump beams (< 25 mW) and
with < 3-ms pixel exposure time when imaging soft biological tissues and cells.
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5.3. Ultrabroadband CARS microscopy of biological samples with white-light
continuum in bulk media

Figure 5.6: BCARS spectra of six different solvents acquired with 0.8 ms exposure time sandwiched
between two 170-µm glass coverslips. The plots show the CARS intensities (blue curves), the phase
retrieved spectra via the KK algorithm (red curves), and the SR spectra acquired averaging five
spectra acquired with 5-s exposure time (grey areas). No denoising has been applied before the
application of the KK algorithm.
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Chapter 5. Results

5.3.2 Ultrabroadband CARS spectroscopy combining two and three-color mech-
anism

Figure 5.7: (a) CARS spectrum of toluene sandwiched between two 170 µm quartz coverslips acquired
with 1-ms exposure time in two different setup configurations: masking the Stokes spectrum in (b.1)
thus obtaining pulses with spectrum (b.2) without compressing it (two color CARS only); using the
Stokes in (b.2) and compressing it to reach 20-fs pulses thus exciting the vibrational mode both with
the three-color and the two-color mechanisms.

In the new setup configuration, the pulse duration of the broadband beam and its
spectral coverage have been finely tuned. The pulse duration of the Stokes beam is
adjusted by increasing the tip-to-tip distance between the two prisms of the compressor,
that now is ≈ 60 cm and then it is finely tuned by changing the insertion of one of the
two prisms. The bandwidth is controlled by inserting a mask in the region of the prism
compressor where the colors are spatially separated.

If we just considered the situation of an uncompressed masked Stokes beam with
bandwidth ≈ 1200-1600 nm (Fig. 5.7.(b)), we can obtain spectra for toluene in the
same configuration described above covering the Raman region from 1400 cm−1 to
3200 cm−1 (Fig. 5.7.(a)). By compressing the masked Stokes beam, keeping all the
other parameters fixed (bandwidth and average power), we can demonstrate that at dif-
ferent Stokes duration, we can vary the CARS excitation profile (Fig. 5.7.(a)) in the
region below 1400 cm−1, while the portion above this threshold does not present sub-
stantial differences, apart from some intensity variations due to unavoidable slight mis-
alignment of the pump and Stokes beams during the compression of the supercontin-
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5.3. Ultrabroadband CARS microscopy of biological samples with white-light
continuum in bulk media

uum. The optimum is achieved when the Stokes pulse duration reaches the minimum.
This condition results in a spectrum that below 1400 cm−1 has the highest intensity and
broadness. The two-color mechanism spectral coverage strictly depends on the spectral
extension of the Stokes beam that reaches ≈1600 nm, so considering the inter-pulse
excitation between pump and Stokes beam, we could visualize Raman modes till ≈
3400 cm−1. However, the spectrometer, for the presence of a 600 gr/mm grating, limits
the accessible bandwidth to ≈3200 cm−1. A 300 gr/mm grating would have been good
to cover a large spectral range but would have determined a lower number of spectral
points in the main Raman active region of biological samples (400 – 3100 cm−1).

The new setup configuration allows us to perform time-delayed CARS, by changing
the arrival time of the narrowband pulses with respect to the broadband ones. This
technique enables isolating all the modes excited only via the three-color mechanisms
and optically suppressing the NRB without the need for any post-processing algorithm.

Figure 5.8: Time-delayed CARS on Toluene changing the delay between the narrowband and the broad-
band Stokes beam with a mechanical delay stage. Exposure time per spectrum: 0.8 ms.

Indeed, the resonant contribution in CARS is characterized by a coherence time in
the order of picoseconds since vibrational levels are populated. On the other hand, the
non-resonant contribution arises from electronic contributions, in which only virtual
levels are populated. By changing the delay between the pump and Stokes pulses, we
expect to see a reduction of the NRB after less than a hundred femtoseconds (indeed, the
NRB main contribution exists for a duration comparable to the Stokes pulse duration,
τ = 20fs, hence it completely vanishes after 4-5 τ ). The signal generated via two-
color CARS vanishes since in order to excite the modes via the two-color mechanism
both pump and Stokes photons are needed simultaneously at the sample. On the other
hand, in three-color CARS, increasing the delay between Stokes and pump, in which
the latter acts only as a probe, it is possible to isolate the resonant contribution, which is
characterized by higher coherence time. I performed time-delayed CARS spectroscopy
on solvents. In particular, for the case of toluene in Fig. 5.8, we can observe how the
NRB and the two-color CARS signal decrease dramatically increasing the delay. By
contrast, the vibrational peaks at low wavenumbers (in the three-color CARS region)
assume a Lorentzian lineshape, since there is no more heterodyne amplification given
by the presence of the NRB.
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Chapter 5. Results

5.3.3 Ultrabroadband CARS microscopy of senescence cells

Figure 5.9: (a) BCARS image of therapy-induced senescent HepG2 cancer cells 72 hours after treatment
with DFO. The false-color images highlight three different species in the cells. (b) Retrieved spectra
associated with the three species in panels (a). Imaging settings: 1-ms pixel exposure time; 500-nm
pixel size.

We employed the new configuration of the BCARS system to deliver chemical im-
ages on cells identifying the main subcellular components. We imaged HepG2 cancer
cells with therapy induced senescence. The cells were fixed on a 22×22 mm2 and
170-µm thick quartz coverslip. For the measurements we adopted a sandwich con-
figuration, using a 25×50 mm2 and 170-µm thick quartz coverslip on which we re-
lease a drop of PBS and then stuck the sample coverslip using enamel. The system
enables us to acquire images on cells with 500-nm pixel size and 1-ms pixel dwell
time. After the acquisition, we post-processed the hyperspectral data following the
pipeline that includes the image denoising via SVD, the NRB removal via the time do-
main Kramers-Kronig algorithm, and spectral unmixing methods based on N-FINDR
for distinguishing the different chemical species. The result (Fig. 5.9.(a)) shows an
image of cells where the lipids (red), proteins (green), and nuclei (blue) are mapped.
The spectral unmixing method employed allows us to also associate each species with
its spectrum. Together with the spectra of the identified subcellular components, we
report the average spectrum of the cells (black line in Fig. 5.9.(b)), obtained by av-
eraging the spectra of the pixel of the foreground, after isolating it from the substrate
(black area in Fig. 5.9.(a)) through a k-means cluster analysis. The spectra show the
typical Raman peaks of cells [189]. In particular, in the fingerprint region the peak
at 790 cm−1 is characteristic of DNA, at 1002 cm−1 is associated with phenylalanine,
the band between 1200-1300 cm−1 represents Amide III (proteins), the peak at 1304
cm−1 represents CH2 twisting (lipids), the peak at 1448 cm−1 is associated with CH2

bonds, the peak around 1557 cm−1 is characteristic of Amide II (proteins), the peak at
1665 cm−1 is typical of amide I (proteins), and the peak at 1752 cm−1 is typical of the
C = O of lipids (triglycerides). In the CH stretching region, the spectra feature broader
peaks, in the red line the broad peak around 2858 cm−1 is related to the CH2 symmetric
stretch of lipids, in the green line the peak at 2926 cm−1 is related to the symmetric
CH3 stretch, due primarily to proteins, and in the blue line the peak at 3020 cm−1 is
related to unsaturated =CH stretch of lipids.
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5.3. Ultrabroadband CARS microscopy of biological samples with white-light
continuum in bulk media

5.3.4 Ultrabroadband CARS microscopy of biological tissues

Figure 5.10: BCARS imaging on a tumoral liver slice of a mouse model. (a) Image on the H&E stained
slice. (b) Bright-field image of the unstained slice used for BCARS imaging. (c) 600 x 600 µm2

BCARS image on tumor liver obtained through N-FINDR analysis after noise and NRB removal. (d)
Retrieved spectra associated to the species in panels (c). Imaging settings of panel (c): 300×300
pixels; 3-ms pixel exposure time; 2-µm pixel size.

We imaged liver slices of an orthotopic mouse model to assess the capabilities of the
system in tumor recognition. This model consists of the implantation of hepatocellular
carcinoma (HCC) tumor cells into the liver by direct intrahepatic injection. Tumors oc-
cur in the natural liver microenvironment and mimic the metastatic behavior of HCC.
For the experiment, two adjacent 10-µm thick slices of the same liver sample were cut.
The first one is treated with H&E staining and helps us localize the tumoral region
(Fig. 5.10.(a)), and the other one is fixed onto a 25×50 mm2 170-µm thick quartz cov-
erslip and sandwiched with a second 170-µm thick quartz coverslip, thus constituting
the unstained slice imaged with the BCARS microscope. From the bright field image
(Fig. 5.10.(b)) on the unstained slices, we identify a 600×600 µm2 frame for BCARS
imaging with a 3-ms pixel dwell time. After denoising and NRB removal, we de-
rived through the N-FINDR algorithm concentration maps and spectra of two different
chemical constituents in the sample, the tumorous region (red) and the healthy region
(green) (Fig. 5.10.(c-d)). Significant differences in the spectra are observed in corre-
spondence with the peak at 1656 cm−1 associated with Amide I, more intense in the

121



i
i

“output” — 2023/2/8 — 13:32 — page 122 — #134 i
i

i
i

i
i

Chapter 5. Results

healthy tissue (green area). The green spectrum also shows a peak around 1742 cm−1,
typical of lipids, that is not present in the red species. Moreover, in the CH-stretching
region, the green spectrum is shifted towards higher wavenumbers with the main peak
centered around 2930 cm−1. This peak is characteristic of the symmetric CH3 stretch,
due primarily to protein. The spectra show other biologically relevant peaks. The broad
peak centered around 810-840 cm−1 is typically associated with collagen; the peak at
1002 cm−1 corresponds to the presence of phenylalanine; the peak at 1300 cm−1 is
typical of lipids, while the intense and broad peak at 1450 cm−1 is typical of CH2 and
CH3 deformation. The comparison of the BCARS image and the image on the H&E
slice confirms that our microscope can identify the tumoral region without the need for
any staining, avoiding a time-consuming sample preparation procedure and undesired
structural or chemical alteration. In addition, it provides rich chemical information on
the sample composition.

5.3.5 Conclusion

I presented a new experimental approach to multiplex CARS based on a 2-MHz repeti-
tion rate amplified ytterbium fiber femtosecond laser system used to generate white
light supercontinuum in bulk media. By precompressing the generated broadband
Stokes pulses, we could reach at the sample plane sub-20-fs pulses that coupled with
the narrowband 3.7-ps pump pulses generate a CARS signal spanning the entire Raman
spectrum of biological samples. The broadband anti-Stokes signal is generated by two
nonlinear processes that act in parallel, namely the three-color and the two-color mech-
anisms. The former derives from the intra-pulse interaction of the Stokes pulses and
generates an excitation profile depending on the number of permutations of the colors
inside the Stokes bandwidth. We exploited this mechanism to cover the first portion
of the spectrum (500 – 1400 cm−1). The latter is the result of the inter-pulse interac-
tion between the pump and the Stokes beam and generates an excitation profile that is,
under the assumption of a sufficiently narrow pump spectrum, as broad as the Stokes
pulse spectrum. We employed this mechanism to cover the remaining portion of the
Raman spectrum (1400 – 3100 cm−1). The system thanks to the new optical design
delivers highly informative chemical maps of cells and tissues with millisecond pixel
dwell time. We have shown images on cancer HepG2 cells acquired with 1-ms expo-
sure time, distinguishing lipids, proteins, and nuclei and highlighting the main peaks in
each of their spectra. Eventually, we demonstrated the potentiality of the system to be
used in histopathological settings, imaging a mouse liver model implanted with hepato-
cellular carcinoma. Comparing the results with the H&E image of an adjacent slice, we
can say that our system, besides localizing the tumor and giving morphological details
on the sample, provides information on the chemical composition of each region of the
sample.
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CHAPTER6
Conclusion and Outlook

The last decades saw continual advances in CRS microscopy and spectroscopy tech-
niques. CRS imaging delivers vibrational maps of the endogenous content in cells and
tissues in a label-free and non-destructive way, which is particularly useful in clinical
applications, such as histopathology and disease diagnosis. The main goal is to bring
CRS technology to a reliable, robust, and user-friendly platform to be used in clinical
settings. As it has been reviewed in Chapter 1 of this thesis, many groups are work-
ing in this respect to compact the experimental setups, increase the acquisition speed,
and improve their reliability by coupling the systems with mathematical methods either
based on numerical algorithms or on machine learning based models for boosting its
performances.

Among the possible implementations of CRS, the most common are the ones based
on SRS and CARS. The VIBRA lab in Politecnico di Milano offers a variety of systems
either based on narrowband CARS and SRS or broadband CARS and SRS that have
been built in the last decades. My main contribution to the lab, which constitutes the
main heart of this thesis, has been the construction of an experimental setup for BCARS
spectroscopy and microscopy and the development of a post-processing pipeline for the
analysis of the hyperspectral data. This work describes all the steps that I followed to
reach the first prototype of a BCARS microscope with white-light continuum genera-
tion in bulk media able to reveal the entire Raman active region of biological samples
with unprecedented speed (<3 ms/pixel) and sensitivity (≈ 14 mmol/L).

In chapter 1, I provided an overview of the main theoretical foundations of CRS
techniques, reviewing the state of the art for BCARS and its main implementations.

Chapter 2 described the main optical processes contributing to the broadening of the
spectrum of a femtosecond pulse when it is focused inside a bulk crystal. Here, I also
described from a practical point of view how to switch on and stabilize the WLC.
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Chapter 3 introduced the architecture of the BCARS experimental setup with the
main advantages of using this configuration rather than other solutions presented in the
literature. The chapter continued with a full characterization of the optical sources and
an illustration of the design of the microscope used for the acquisition of the hyper-
spectral data.

Chapter 4 presented the acquisition methods and the data post-processing pipeline
employed for CARS spectroscopy and imaging. In particular, I described the methods
used to set the measurement parameters (e.g., pixel size, image size, pixel dwell time,
and number of measurements) and then I reviewed the main algorithms used for the
data denoising and artifact removal in CARS spectra. This chapter also provides an
overview of machine learning and neural network fundamentals. Indeed, deep learning
methods proved to be powerful tools for solving highly nonlinear problems such as
the denoising of the CARS spectra or the removal of the NRB. Eventually, the chapter
ended with a description of the main algorithms for spectral unmixing that I employed
for delivering chemical maps of heterogeneous biological samples.

Chapter 5 reports the main results obtained with the BCARS experimental setup
when using it for the spectroscopy of solvents or the microscopy of plastic beads and
biological samples, such as cells and tissues. In particular, the first part of the chapter
described the results obtained with a previous configuration of the system that enabled
us to cover the entire fingerprint region of the vibrational spectrum using exclusively the
two-color CARS mechanism. With this configuration, I demonstrated state-of-the-art
speed (<1 ms/pixel for solvents and beads) and unprecedented sensitivity for multiplex
CARS spectroscopy and microscopy when detecting DMSO in water (≈ 14mmol/L).
The second part presented the main results obtained with a new configuration of the ex-
perimental setup that allows us to image cells and biological tissues acquiring spectra in
the entire Raman-active region (500 - 3200 cm−1) using moderate average power for the
pump and Stokes beams at the sample. In this case, the generation of the anti-Stokes
component derives from the interplay of two optical processes occurring in parallel
which are the three-color and two-color CARS mechanisms. I demonstrated unprece-
dented speed for multiplex CARS when imaging cancer HepG2 cells (1 ms/pixel) and
when imaging soft tissue such as tumor liver in mouse models (< 3 ms/pixel).

The reported results open the path toward the use of BCARS for studying cancer
diseases both at the cellular and the tissue level. With respect to standard techniques
which employ labels, such as fluorescence microscopy, the system enables avoiding the
long preparation time of the sample and the use of markers that often alter the chemical
structure or undergo photobleaching, preventing to image the same region twice. On the
other hand, with respect to other label-free techniques, such as SR, it provides higher
acquisition speed and does not suffer from sample autofluorescence. We envisage that
the technology can be further improved in terms of acquisition speed by employing
either line scanning or wide-field illumination.
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Glossary

BCARS Broadband Coherent anti-Stokes Raman scattering. 23

CARS Coherent anti-Stokes Raman scattering. 5

CNN Convolutional Neural Network. 85

CRS Coherent Raman scattering. 4

CSRS Coherent Stokes Raman scattering. 14

DA Data Augmentantion. 89

DL Deep Learning. 80

DNN Deep Neural Network. 82

E-CARS Epi-detection Coherent anti-Stokes Raman scattering. 34

F-CARS Forward Coherent anti-Stokes Raman scattering. 34

FROG Frequency Resolved Optical Gating. 57

FT Fourier Transform. 39

FWHM Full width at half maximum. 58, 61

GDD Group Delay Dispersion. 66

ISRS Impulsive stimulated Raman scattering. 28

KK Kramers-Kronig. 92, 93

KMCA K-means cluster analysis. 105, 106

LSTM Long Short-Term Memory. 104

129



i
i

“output” — 2023/2/8 — 13:32 — page 130 — #142 i
i

i
i

i
i

Glossary

MCR-ALS Multivariate curve resolution-alternating least squares. 105

MEM Maximum Entropy Method. 98

MIR Mid-infrared. 2

ML Machine Learning. 80

NA Numerical aperture. 54

NIR Near-infrared. 2

NN Neural Network. 82

NRB Non-resonant background. 22

PCF Photonic crystal fiber. 25

ResNN Residual Neural Network. 86

SF Spectral focusing. 24

SFG Sum frequency generation. 61

SHG Sercond Harmonic generation. 57

SR Spontaneous Raman. 2

SRG Stimulated Raman Gain. 35

SRL Stimulated Raman Loss. 35

SRS Stimulated Raman scattering. 5

STV Spectral toal variation. 79

SVD Singular Value Decomposition. 79

TD-CARS Time-delayed Coherent anti-Stokes Raman Scattering. 32

WLC White Light Continuum. 26, 43
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