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Abstract
This Thesis focuses on spin waves in ferromagnetic 3d transition metals. These collective
excitations of a ferromagnetic ground state have been studied for years by Inelastic neutron
Scattering (INS), able to measure their dispersion quite directly. Here we focus on the pos-
sibility to address their study with Inelastic X-Ray Scattering (RIXS), a newer technique that
has been rarely employed in the study metallic systems.

All the experimental work was carried out at the ID32 beamline of the European Synchrotron
Radiatoin Facility (ESRF) in Grenoble, France. Here, a high resolution, state of the art, RIXS
spectrometer has been used to measure two ferromagnetic systems: fcc cobalt and fcc nickel
in the form of thin film single crystals, epitaxially grown and characterized in situ.

The results are positive as they show that RIXS is capable of measuring spin wave dispersions
even for metals, which is still debatable at the current time, even for materials that are typically
inaccessible by INS, namely nanometric thin films. Fcc cobalt data shows good agreement with
neutron studies of comparable alloy systems, but still displays some discrepancies with ab initio
calculations. Fcc nickel is instead more problematic: the acquired spectra show degradation
effects after long measurement times, that lead to an anomalous shift in the dispersion. The
importance of the magnetization direction for RIXS measurements is also considered and taken
into account.

This work highlights the possibility of using RIXS as a complementary technique for the study
of collective excitations, namely spin waves, also in metals. This opens the possibility of reliably
measuring other systems that are unaccessible to INS, although some aspects of the technique
are still to be mastered.

Estratto
Questa Tesi si concentra sulle onde di spin nei metalli di transizione 3d ferromagnetici. Queste
eccitazioni collettive dello stato fondamentale ferromagnetico sono state studiate per anni con
lo Scattering Anelastico di Neutroni (INS), in grado di misurare la loro dispersione in maniera
diretta. Qui ci concentriamo sulla possibilità di affrontare il loro studio con lo Scattering
Anelastico di Raggi X (RIXS), una tecnica più recente raramente impiegata nello studio sistemi
metallici.

Tutto il lavoro sperimentale è stato svolto presso la beamline ID32 dell’ Struttura Europea di
Radiazione di Sincrotrone (ESRF) a Grenoble, Francia. Qui, uno spettrometro RIXS ad alta
risoluzione è stato utilizzato per misurare due sistemi ferromagnetici: cobalto cfc e nichel cfc
nella forma di film sottili a cristallo singolo, cresciuti epitassialmente e caratterizzati in situ.

I risultati sono positivi e dimostrano che RIXS è in grado di misurare le dispersioni delle onde
di spin anche per i metalli, possibilità ad oggi ancora discussa, anche per materiali che sono
tipicamente inaccessibili ad INS, come film sottili nanometrici. I dati sul cobalto cfc sono
compatibili con studi a neutroni di leghe simili al sistema in esame, ma mostrano ancora
alcune discrepanze con i calcoli ab initio. Il nichel cfc è invece più problematico: gli spettri
acquisiti mostrano effetti di degradazione causati dai lunghi tempi di misura, che portano ad
uno spostamento anomalo della dispersione. Per quest’ultimo caso, si sottolinea l’importanza
della direzione di magnetizzazione per le misure RIXS.

Questo lavoro evidenzia la possibilità di utilizzare RIXS come tecnica complementare per lo
studio delle eccitazioni collettive, in particolare delle onde di spin, anche nei metalli. Questo
apre la possibilità di misurare in modo affidabile altri sistemi che non sono accessibili ad INS,
nonostante alcuni aspetti della tecnica siano ancora da padroneggiare.
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Chapter 1

Introduction

The study of magnetism is a strongly established field of research that extends its domains
from the fundamental understanding of physical phenomena to the developement of novel
applications [1]. Among various systems, often complicated and exotic, elementary 3d metals,
studied exceedingly in their electronic and magnetic properties, still lack a proper description in
many details surrounding their static and dynamic magnetic behaviour. They are in principle
simple, but their non-local nature and the strong correlation effects play an important role
that make detailed predictions hard to make [1, 2, 3].

The field of Itinerant Ferromagnetism, that tries to tackle this many-body problem, usually
relies on calculations, and still needs strong experimental comparisons especially for what
concerns dynamical phenomena. Spin waves, collective excitations of a ferromagnetic ground
state, are one of these. Although they have been discussed since the 1930s, their description
in metals, mostly in terms of ab initio calculations, is still lacking good predictive capabilities
[2, 4].

Historically, the fundamental technique for their experimental study has been Inelastic Neutron
Scattering (INS) with which they were first measured in ferrite in 1957 [5]. In the next 40
years, the technique has developed strongly, becoming more and more consolidated [6]: INS
has little limitation on the type of probed material, and has successfully characterized the spin
wave dispersion of insulators (see for example refs. [7, 8]) and metals, like the ones we’ll cover
in this work (see refs. [9, 10, 11, 12, 13]). The main limitation of this powerful technique is
the need of fairly big samples, with weights in the order of grams [6].

Recently, Resonant Inelastic X-Ray Scattering (RIXS), a relatively new technique that probes
many of the elementary excitations of solids [14] (charge density waves, d-d, excitons, plasmons
and phonons) was shown to be successful in the measurement of spin waves as well [15, 16,
17]. The European Synchrotron Radiation Facility (ESRF) is currently the first hard x-ray
fourth generation synchrotron light source in the world [18] and its soft-RIXS beamline, ID32,
the result of many years of upgrades [19, 20], already delivered important and competitive
results in the field [21]. For what concerns spin waves, one of the differences with INS is
the possibility of working with much smaller samples, even of nanometric scale, opening the
possibility of studying materials which are produced by physical and chemical methods and
that are impossible to grow up to the sizes needed for INS.

Althogh many novel systems have been successfully probed, with particular interest in the
field of high TC superconductors, Mott insulators and other strongly correlated materials, little
work has been done for RIXS on metals. This is possibly due to the presence of a high
fluorescence background that covers up interesting regions in the spectrum of the emitted
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photons. However, recent work from both ID32 at ESRF [22], where the experiments of this
Thesis have also taken place, and from the Brookhaven National Laboratory [23], clearly show
that RIXS can be used to probe excitations in metals as well, particularly spin waves. As it
had happened with strongly correlated systems, this puts RIXS in the position of being an
alternative, or more precisely a complementary technique, to Inelastic Neutron Scattering and
Spin Polarized Electron Energy Loss Spectroscopy (SPEELS).

In the following work we address RIXS spectroscopy of 3d metals with the precise aim of
probing spin waves. The 3d ferromagnetic metals are iron, cobalt and nickel: the former was
studied successfully and in depth in the references above [22, 23], showing good agreement
with previous data from INS and with theoretical ab initio calculations [24], which slightly
underestimate the dispersion energies. Nickel instead, studied again by the same group of
ID32, showed an unexpected energy deviation with respect to both, which is discussed in
section 2.2. The starting point for this work is then to go back to nickel and try to determine
the nature of the previous effect, trying to understand if the dispersion flattening is of physical
nature or has to do with effects of the technique.

This behaviour, along with the difference between measures and theory, which generally over-
estimates the energies even with respect to INS, was ascribed to correlation effects, which are
known to be stronger in nickel than in iron. To check this hypothesis as well, a new system
was taken into consideration and was studied in the second part of this work: fcc cobalt.
This material, which is not stable in bulk at standard conditions (where it is usually hcp), is
obtained with epitaxial growth and can be seen as an in-between case to the former two in
terms of electronic and magnetic structure. If correlations have any effect on the dispersion,
their intermediate appearance should be observed in this system as well.

Epitaxial growth is chosen for samples of both materials, that are measured mostly in the
[0√21] direction. It shall be noted that this low symmetry direction was chosen by accident,
and due an error done in the characterization phase, where a LEED diffraction pattern was
interpreted with an offset of 45°. The initial measures where intended for the [111] direction,
but since the spin wave dispersion is more or less isotropic (as will be discussed in chapter 2
and appendix A) it was difficult to recognize the error. Some measurements are also performed
in the [001] direction, inspired by the work of ref. [23].

A more solid understanding of dynamic spin phenomena in metallic media, as the one presented
in this work, could be helpful in different ways.

First of all, having good knowledge of spin waves in elementary systems, supported by experi-
ments of different nature, is the starting point for developing stronger ab initio computational
methods. Many calculations are still too far from reproducing the real systems, and providing
more experimental data is key to highlight the right direction, for example in terms of the
chosen approximations. When this will be done, the possibility could be that of eventually
engineer materials, in this case metallic alloys, with wanted properties in a computationally
optimized way [3].

More generally, spin waves are showing an increasing relevance and the phenomenon lacks
some details in its understanding [2]. The work at ESRF, together with that of Brookhaven,
hints to results that are in acceptable agreement with other techniques. If INS and SPEELS
results are replicated to a good extent, RIXS could be then considered as a complementary
technique for the field. Moreover, this could open new possibilities for the study of systems
that are partially different to those measured by the other two, as RIXS probes both bulk like
behaviour, at variance with the surface sensitivity of SPEELS, and for much smaller samples
than the ones of INS. Epitaxially grown films display a huge variety of possibilities that can
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be taken into account and that are simply inaccessible to INS: small samples, multilayers,
thermodynamically unstable phases and so on. To a certain extent, the study of fcc cobalt
presented in this work already applies this idea.

Lastly, the work presented hereafter also tries to broaden the scope of RIXS as a whole. The
focus of the technique has been historically bound to strongly correlated systems: cuprates
[25, 17, 21], nickelates [26, 27], functional oxides [28] and iridates, all of which are insulators
or semiconductors. The possibility to probe, characterize and explore metallic samples, with
the advantages of above, might broaden the reach of this new spectroscopy technique. The
results of this work and those of refs. [22, 23] shall be taken as first steps in this potentially
new direction.
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Chapter 2

Spin Waves

Spin waves, often referred to as magnons in quasiparticle language, are collective excitations
in spin ordering of a ferromagnetic material.

They have been part of the discussion on the magnetic properties of solids for almost a century:
while the spontaneous magnetization of ferromagnets is well described by Curie-Weiss law and
renormalization group theory close to critical point (M(T )/M(0) ∝ (T −TC)

β, where β is the
wilsonian critical exponent [1]), a proper description for the low temperature empirical relation

M(T )/M(0) = 1−
(
T

Θ

) 3
2

(2.1)

was already found by Bloch in 1930 [29] by including low energy perturbations of spin ordering
that follow a quadratic dispersion [1]. In the equation, which is now referred to as Bloch’s
Law, Θ is nothing but a constant while M(0) is the magnetization of the system at 0 K.

In the following years, much work has been done both in the experimental and theoretical
directions, as welle as for different systems. Spin waves can be described in a semiclassical
manner, where they appear as a collective precession of spins around their position (fig. 2.1),
or in a full quantum-dynamical fashion, where they are taken as a superposition of spin flips
from the ground state.

In this chapter, we first describe a simple model where spins are completely localized, and
obtain an analytical spin wave dispersion relation E(q). We then complete the picture with
more recent developments, particularly those concerning the differences that arise when a
metallic media, whose electrons have a delocalized nature, is taken into account. This will be
done together with some information on the computational approaches that are fundamental
to the topic.

Figure 2.1: Semiclassical representation of a 1D spin wave. Adapted from
[1].
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Understanding the nature of spin waves in metallic media bears on a more general understand-
ing of magnetism in metals. Moreover, as it will be made clear later, it is the best way to
verify how much computational tools are reliable for eventual material search and compound
engineering in the near future.

2.1 Local Theory of Spin Waves
In the following section we present a simple derivation of spin waves, where they emerge as
elementary excitations of a ferromagnetic ground state.

Figure 2.2: Schematic depiction of
the system described in this section.

All of what follows is based on the assumption that
we are describing atoms on a regular lattice of j sites,
where the exchange integral J completely dominates
over all magnetic effects. For the moment, we are
completely neglecting the metallic nature of our sam-
ple: we ignore this issue, as it will be covered in the
next section.

The spin operator for each atomic site is Ŝj , with its
related ladder operators S+

j and S−
j defined as usual

(see for example ref. [1]). We perform a transfor-
mation introduced by Holstein and Primakoff in 1940
[30] that maps the spin operators onto bosonic cre-
ation and annihilation operators ˆ

b†j and b̂j . This can be done as it can be shown that all spin
commutation rules are preserved.

Ŝz
j = S − n̂j

Ŝ+
j =

√
2S − n̂j b̂j ≈ b̂j

√
2S

Ŝ−
j = b̂†j

√
2S − n̂j ≈ b̂†j

√
2S (2.2)

It is clear that in this mapping the vacuum state is the one in which all sites have positive +S
spin along the z axis. In eq. (2.2) we have also expanded the spin ladder operators linearly:
this approximation is especially good at low temperatures, where the number of excitations n̂j

in the ground state is small. We then take the Heisenberg Hamiltonian:

H = −J
∑
⟨i,j⟩

Ŝi · Ŝj =

= −J
∑
⟨i,j⟩

[Ŝz
i Ŝ

z
j +

1

2
(Ŝ+

i Ŝ
−
j + Ŝ−

i Ŝ
+
j )] (2.3)

and substitute each term in its approximate form. Here ⟨i, j⟩ means that the sum is performed
over nearest neighbours. After some algebra, the result can be written as:

H = −NZ0JS
2

2
+ JS

∑
⟨i,j⟩

(b̂†i − b̂†j)(b̂i − b̂j)

= E0 −
JS

2

∑
i

∑
a

(b̂†i b̂i+a + b̂†i+ab̂i) + JSZ0

∑
i

n̂i (2.4)
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Z0 is the coordination number, and N the number of atoms in the system. The first term,
that we choose to call E0, is the energy of the ground state in which all spins point in the same
direction, while the remaining part is the energy of excitations in the lattice. The approximation
made in eq. (2.2) is what limits the accuracy of eq. (2.4): higher order approximations would
have delivered higher order terms, as for example magnon-magnon interactions. The summing
over nearest neighbours is made explicit by the use of the lattice vector a, pointing to the Z0

atoms, and by a factor 1/2 accounting for double counting. The bosonic operators can be
represented in momentum space:

b̂†j =
1√
N

∑
q

e−iq·rj b̂†q

b̂j =
1√
N

∑
q

eiq·rj b̂q (2.5)

leading to:

H = E0 + Z0JS
∑
q

[
1− 1

Z0

∑
a

cos(q · a)

]
b̂†qb̂q

= E0 +
∑
q

E(q)n̂q (2.6)

where of course b̂†qb̂q = n̂q can be interpreted as the number operator of the spin excitations
at momentum q, which will be of bosonic nature and with unitary spin [31]. These take several
names: ”magnon” follows the usual quasiparticle jargon, while ”spin wave” is more reminiscent
of their intuitive meaning.

It is interesting to give an analytical expression of the dispersion E(q) for given directions. The
reason is that energy dispersions are what is primarily measured in experiments, at the same
time containing information on some parameters of the system. For example, measuring the
dispersion of spin waves gives numerical information on the product JS. The final shape of
the curve depends on the lattice (the set of nearest neighbour vectors a) and on the direction
of q, which is an experiment parameter.

In what follows we quickly specialize eq. (2.6) to the case of our experiment. All measurements
were on fcc crystals, a lattice with coordination number Z0 = 12 and atoms positioned as in
fig. 2.3. Measures were taken along the [001] and [0√21] directions, so we take a look at E(q)
along these.
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Figure 2.3: Fcc lattice. For a given atom, its twelve nearest neighbours are
shown.

(a) The [001] direction. (b) The [0√21] direction.

Figure 2.4: The two directions of propagation for the measured spin waves.

Starting with the [001] direction, we can see that four of the total twelve vectors give null vector
product inside a cosine, and the other eight are cos(qa/2), where a is the lattice constant of
the fcc lattice (see fig. 2.4a).

E(q) = 12JS

[
1− 1

12

(
4 + 8 cos

qa

2

)]
= 8JS

(
1− cos

qa

2

)
(2.7)

For the [0√21] direction things get quickly more complicated. The dispersion reduces to:

E(q) = 12JS

[
1− 1

3

(
cos

qa√
12

+ cos
qa√
6
+ cos

qa√
12

cos
qa√
6

)]
(2.8)
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The two dispersions have a different range in q, but peculiarly enough reduce to the exact
same at high wavelengths. If we take the limit of small q in fact we can use cosx ≈ 1− x2/2:

E(q) ≈ 8JS

(
1− 1 +

1

2

q2a2

4

)
= Dq2

E(q) ≈ 12JS

(
1− 1 +

1

3

q2a2

4

)
= Dq2 (2.9)

Notice that we have defined D = JSa2 in the same way for both dispersions. This parameter
is usually referred to as ”Spin Wave Stiffness Constant” [2, 32] and is the main parameter
obtained by dispersion measures. It can be shown quite effortlessly that the result obtained
for these two directions is in fact general for all q in the fcc lattice and for any cubic lattice
(see appendix A). D can then be regarded as a property of the material.

Figure 2.5: The dispersions for the two directions and their long wavelength
approximation. The gray bars roughly delimit the region of our measure-
ments.

Each spin wave is a delocalized excitation with unitary spin: they will increase with temperature
decreasing the magnetization from its saturation value M(0). We can evaluate their number
considering the density of states ρ(ω) ∝

√
ω for a quadratic dispersion:

nmagnon =

∫ ∞

0

ρ(ω)dω

eβh̄ω − 1
∝

(
T

D

) 3
2

(2.10)

where β = 1/kBT with kB the Boltzmann constant. This result is Bloch’s law as soon as
we realise that M(0) − M(T ) ∝ nmagnon. The name ”stiffness” now finds justification for
its meaning, as D dictates how hard it is to get away from saturation magnetization by just
raising temperature.

2.2 Spin Waves in Metals
In the previous section we have seen a straightforward derivation of spin waves, which gave an
analytical expression for their dispersion that is isotropic at long wavelengths. Although little
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approximation was made (always justified by the low temperature limit), we have to recall the
initial premise of dealing with a lattice of localized spins. While the model is rather accurate
for insulators and materials in which electrons are bound to their relative atoms, we must
remember that our systems of interest are ferromagnetic transition metals. Here electrons are
delocalized and the magnetic moment assumes fractional value, so their wave nature must be
taken into account. It is then legitimate to take some care adapting the previous results.

Figure 2.6: The Stoner criterion for some metals.
Adapted from [3]

The framework under which magnetic
effects are treated in metals is usually
referred to as ”Itinerant Magnetism”
(or ”Band Magnetism”), and can be
seen as an extension of electron band
theory inclusive of magnetic and ex-
change interactions [1, 3]. It should
be remarked that, apart from the ap-
parent simplicity of the problem, many
aspects remain unsolved and impossible
to address without the aid of numerical
methods and experiments.

Non-ferromagnetic effects in metals are
described under some degree by Pauli
paramagnetism and Landau-Peierls dia-

magnetism, while a ferromagnetic approach was developed by Slater and Stoner and later for-
malized as a mean field decoupling of the Hubbard model [1]. The main result is that, given
a material, if the equation Uρ(EF ) ≥ 1 is satisfied (U is the onsite strength of the electron
repulsion) then ferromagnetism must take place. This criterion finds great agreement between
calculations (where U is evaluated numerically [3]) and the fact that only three 3d transition
metals are known to be ferromagnets: iron, cobalt and nickel. The model is however too
simple to include other effects: among the discrepancies the low temperature magnetization
obtained in the Stoner framework M(T )−M(0) ∝ T 2 is in contrast with experiments, where
a Bloch-like behaviour is also observed [2]. The difference in exponent should then presumably
hint to spin waves of the same nature as the ones from the previous section.

In their 1951 and 1952 papers [33, 34] Herring and Kittel were among the first to address
this point. Along with a theoretical model that tries to account for the presence of spin
waves in ferromagnetic metals, one concern is to provide general arguments on why their
presence should be generally accepted and their dispersion quadratic, regardless of the media
or theoretical model.

One of the problems of modelling spin waves in metallic media is the presence of the ”Stoner
continuum” [1, 35]. This region of the momentum-energy plane is one where spin excitations
from one spin-split band to the other can take place. As shown pictorially in fig. 2.7, there is
a precise region in which this region and the spin wave dispersion interact. Usually, what is
thought is that inside the region the spin wave dispersion is still present, but damped (meaning
excitations also appear in its neighbouring areas), a concept that is referred to as ”Landau
Damping” [2]. A clear description of what happens is still missing, and disagreement between
experiments and ab initio calculation is still present.

As anticipated, a more effective way to treat the many body problem from a theoretical point
of view is by doing so with the aid of computers. In fact, most of contemporary literature
on the topic focuses on building models and expanding approximations that can provide good
simulations of what is seen experimentally. In some cases, the theoretical justifications at the
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base of calculations can hint analytically to our previous eq. (2.6) as for example in ref. [36].
Throughout the years different approaches to the problem and different approximations have
been used to calculate compete spin wave dispersions, with more or less good agreement with
data. Giving a detailed outlook on all such implementations is out of the scope of this work,
but a schematic and chronological introduction can be found in ref. [2].

Figure 2.7: The stoner continuum and its
crossing with the spin wave dispersion for
a strong itinerant ferromagnet like nickel
and cobalt. ∆ is the exchange splitting be-
tween the bands and qB is the wavevector
at the Brillouin boundary. Adapted from
[35].

Density Functional Theory (DFT) methods are
nowadays a standard choice for ab initio calcu-
lations of quantum systems of many kinds. These
must be adapted in the perspective of dealing with
magnetic phenomena, with the conventional elec-
tron density replaced by spin density. The most
difficult part is then having to deal with exchange
correlation effects: these are usually taken care
of by a family of approximations that go under
the name of Local Spin Density Approximation
(LSDA). In ”Theory of Itinerant Electron Mag-
netism” by Kübler [3] a proper definition of LSDA
is given, along with different applications to the
whole field of magnetic metals. One of such is
obtaining a computable dispersion for spin waves,
which finds good agreement with data.

LSDA however finds difficulties at finite tempera-
tures. A different framework is given by Melnikov
in the book ”Dynamic Spin Fluctuation Theory of
Metallic Magnetism” [2]. Here magnetism in met-
als is treated from a rather general point of view,
with the study of the susceptibility matrix χ and
its dynamics. Spin waves are treated, together
with Stoner excitations and all magnetic effects, on the same level.

Figure 2.8: An example result from a DSFT
calculation. The peak position for each q can
be seen as a dispersing, but more information
is present in the manifold shape.Taken from [2]

In the book it is shown that the imaginary
part of the matrix χ is what is measured in
experiments: the treatment in the book gives
meaning to transverse components of such
matrix by applying the Random Phase Ap-
proximation (RPA) and identifies both spin
waves and Stoner excitations in its singulari-
ties. This work presents a computational ap-
proach that is at the basis of the most recent
calculations, which goes under the name of
Dynamical Spin Fluctation Theory (DSFT).
The output of such calculations is not only
a dispersion, but more generally a manifold,
as χ = χ(ω,q) is function of both momen-
tum and energy. This gives the possibility
of quantitatively comparing experiments also
in the domain of peak shape, and not only
in position. In this case, the anticipated dif-
ficulty in modelling the interaction between
the spin wave dispersion and the Stoner con-
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tinuum is surpassed by a modelling of both: the expected effects should for example be visible
as a damping of spin wave intensity when the Stoner region is accessed [2].

The importance of an experimental comparison is key to evaluate the reliability of available
numerical methods. The experimental data is not used to complete the free parameters in
given models, but it’s rather compared with ab initio calculations. This process helps under-
standing which of the available approximations gives the more consistent result, in order to
assume their validity in more general cases. It is hoped that, in the future, the computational
approaches developed thanks to this back-and-forth process will be enough to help designing
and engineering new materials with desired properties [3, 2].
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Chapter 3

Resonant Inelastic X-Ray Scattering

In this chapter we briefly introduce Resonant Inelastic X- Ray Scattering spectroscopy, both its
theoretical basis, its applications for measuring collective excitations, and its implementation in
the spectrometer present at the ID32 beamline of the European Synchrotron Radiation Facility.

We will start with a description of the scattering process itself and will try to point out how
excitations can be seen. Then, we will briefly take a look at the instrument configuration
present at ID32. Finally, magnetic excitations observed by RIXS are summerised along with
some of the relevant works in this area. A more complete and in depth treatment is given for
instance by Ament et al. [14].

3.1 General theory of the RIXS process
Resonant Inelastic X-Ray Scattering (RIXS) is a “photon-in, photon-out” Scattering process
involving X-Rays. It is Inelastic as energy is generally not conserved: the lower energy of the
outgoing photons is absorbed, among other channels, by collective excitations of the material.
If these are described as common with their associated quasiparticles (phonons, excitons and,
in our case, magnons) we are allowed to use the simple conservation rules:

h̄k = h̄k′ + h̄q

h̄ωk = h̄ωk′ + Eq (3.1)

where k (k′) and ωk (ωk′) are momentum and frequency of the incoming (outgoing) photon,
while q and Eq are the momentum and energy of the quasiparticle excitation in the material.
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Figure 3.1: K, L and M edges in function of atomic number. The soft X-ray
regime is highlighted. Adapted from [37].

An important feature of the technique, and of the process, is that it is Resonant. Differently
from other techniques RIXS is based on a second order scattering process. One consequence
of this, that we will explain soon in more detail, is that the scattering process needs to be at
resonance with an electronic transition in order to be visible. The incoming photons must then
be tuned in frequency to trigger particular transitions of the probed sample, usually those from
deep lying energetic states to outer bands. These are referred to as edges, and are specific
of each element. This gives the possibility of performing a chemical tuning as choosing one
or another edge gives the possibility to observe the contributions of electrons from various
elements in the sample. It is also this that justifies the use of X-ray synchrotron radiation, as
these transitions lie in a wide range of energies. In this work we’ll focus on soft RIXS, with
energies between 400-1600 eV, as this energy regime is the one implemented at ID32, where
our experiments have been carried out. As it can be seen in fig. 3.1, the energy range is enough
to cover the K edges of nitrogen and oxygen, the M edges of rare earths and, to our interest,
the L edges of 3d transition metals.

A pictorial way to look at the process is as in fig. 3.2. An electron is promoted from a deep
core state to an outer band by absorbing a photon. The intermediate state |n⟩ is virtual, and
the modification of the system with the introduction of the hole can let another electron relax
with an extra excitation of the material while a second photon is emitted. Scattering to this
state could be enhanced by the resonant process, resulting in a peak in the spectra.

Figure 3.2: Three steps of the RIXS process. In the end, a collective
excitation in the material, like spin waves, is depicted by the wiggle.
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To give an analytical description of the scattering process we consider a transition triggered
by photon-matter interaction.

We take the Hamiltonian describing the whole system (both the electrons in the solid and the
electromagnetic field) and split it in two terms as follows: H = H0 +H ′.
The first one, H0, affects both electrons and photons, but separately. It is the part that defines
the eigenstates of the system, and thus those that are the initial (”ground”) and final states
of our scattering problem. As they act on (yet) uncoupled degrees of freedom we can simply
write:

|g⟩ = |g⟩ ⊗ |kϵ⟩ = |g;kϵ⟩
|f⟩ = |f⟩ ⊗ |k′ϵ′⟩ = |f ;k′ϵ′⟩ (3.2)

where we obviously have that for instance |g⟩ is the initial state of the solid, while |kϵ⟩ is the
state of the incoming photon (labelled by wavevector k and polarization ϵ).

The second part of the Hamiltonian, H ′, is the one that only includes the coupling of matter
with the electromagnetic field, and is treated as a perturbation. It is this one that can be
”switched on” during the interaction. Then, the typical way to treat state transitions in a
quantum mechanical formalism is by doing so with the help of Fermi’s Golden Rule. The
transition rate w is:

w =
2π

h̄

∑
f

∣∣∣∣∣⟨f|H ′ |g⟩+
∑
n

⟨f|H ′ |n⟩ ⟨n|H ′ |g⟩
Eg − En

∣∣∣∣∣
2

δ(Ef − Eg). (3.3)

Here, in contrast with plenty of textbook examples, the second order terms is also included. It
can be immediately seen that although usually negligible, it becomes more and more prominent
when the denominator gets close to zero: Eg − En = Eg + h̄ωk − En ≈ 0. This is satisfied
when the photon energy is in resonance with a transition from electron ground state to a virtual
state |n⟩. As previously anticipated, we choose to tune our incoming photons to a specific
edge of an element in our system. It must be stressed that the state |n⟩ is only virtual, thus
physically intermediate to the whole process. In the final state |f⟩ some electron will surely
have relaxed back to fill the hole in the original core state as the highly excited state is also
unstable; the solid in itself however could have gained some excitation in the form of collective
motion. Intuitively, if energy can be transferred to excitations in some preferential way, we will
see a peak for that one channel.

Proceeding with our analytical treatment, the equation would require us to use a complete
description of light-matter interaction. This is properly done by quantum electrodynamics,
although in an unfeasible manner. Fortunately, the scale of energies participating in a con-
densed matter system is usually well below the relativistic limit, and an approximate interaction
Hamiltonian can be expressed as follows:

H ′ =
N∑
i=1

[ e

m
A(ri) · pi +

e2

2m
A2(ri) +

eh̄

2m
σi · ∇ ×A(ri)+

− e2h̄

(2mc)2
σi ·

∂A(ri)

∂t
×A(ri)

]
(3.4)
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Here the vector potential is intended in its usual second-quantized form (see for example ref.
[38]). We completely neglect the first terms of the transition rate in eq. (3.3), as we know
from experiments that the second one dominates in resonant scattering. Here, only the first
and third terms (of non-magnetic and magnetic nature) of eq. (3.4) give nonzero amplitudes.
It can be shown that the magnetic terms is of much smaller intensity: we have essentially
discarded all but one interaction terms in H ′ and we can write

e2h̄

2m2V ϵ0
√
ωkωk′

∑
n

N∑
i,j=1

⟨f | e−ik′·riϵ∗′ · pi |n⟩ ⟨n| e−ik·rj ϵ · pj |g⟩
Eg + h̄ωk − En + iΓ

=

=
e2h̄

√
ωkωk′

2V ϵ0

∑
n

⟨f | D′† |n⟩ ⟨n| D |g⟩
Eg + h̄ωk − En + iΓ

=

=
e2h̄

√
ωkωk′

2V ϵ0
Ffg (3.5)

To simplify the notation we have introduced the transition operator D and the scattering
amplitude Ffg. The lifetime broadening Γ is also introduced to account for all the other
relaxation channels. The transition rate w can be then related to the double-differential cross
section obtaining the principal equation describing the RIXS process:

d2σ

d(h̄w)dΩ
=

e4ω3
k′ωk

16π2ϵ20c
4

∑
f

|Ffg|2 δ(Eg − Ef + h̄ω) (3.6)

which is known as the Kramers-Heisenberg equation. A finite temperature version of this
equation can be derived as well, but it is omitted as all our measures were carried out at T =
20K.

In its simplified form of eq. (3.6), it might seem hard to understand how RIXS can give
knowledge on the probed material. One has to remember that the sought information is
contained in the |f⟩ states: the probability to access one is proportional to Ffg, and thus
depends on the transitions to and from the intermediate states |n⟩. The set of eigenstates of
the hamiltonian H0, which includes the effects of the core hole on the remaining electrons,
takes then part in the scattering amplitude. It is not granted that every quasiparticle, spin
waves being no exception, is actually seen in the process.

3.2 Overview of the RIXS spectrometer at ID32
We have seen that RIXS is a second order scattering process, which means it is inherently
photon-hungry. Moreover, it needs a properly tunable source of X-rays, with a wide enough
range of frequencies to cover the edges of different elements of interest. At the moment only
synchrotron radiation satisfies both demands, ensuring high brilliance [39] and resolution in all
the X-ray band. RIXS is a highly specialised technique, performed only in a few laboratories in
the world, with increasing demand due to the novelty of its measurements [40]. In the following
section we review the basic information on the instrument used to perform the measures of
this work.
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3.2.1 Synchrotron radiation
Although they have given essential contribution to material science and biology, X-rays have
undergone very few changes in their production technique: from their discovery in 1895 until
almost a century later the main device has been the X-ray tube. When the first circular
accelerators started to be used for the study of subatomic physics, a new idea for producing
high quality X-rays emerged, and with it the first synchrotron light sources.

Figure 3.3: Schematic of the ESRF
storage ring with its beamlines. Taken
from [41].

The concept is to use radiation emitted by acceler-
ated charged particles, namely electrons or more rarely
positrons, that are kept rotating at relativistic speed
and constant energy in what is called a ”storage ring”,
a toroidal vacuum tube. Intuitively, it is the centripetal
force, provided by bending magnets, that lets electrons
emit tangentially to their trajectory. Although this also
true, in reality X-ray emission is mostly taken care of by
undulators. These devices are linear arrays of dipoole
magnets with alternating polarity: the resulting sinu-
soidal magnetic field generates a coherent movement
of the relativistic electrons. X-ray emission is much
more controlled: the light is no longer white, but it
is centered around a frequency of choice with a some-
what narrower band. The band can be tuned by oper-
ating mechanically on the undulator piece. Moreover,
the emitted beam has intrinsic higher brilliance than
the one produced by the bending magnets. It is these
segments, which are alternated with the curved ones
of the ring, that produce the X-rays that are actually
used in experiments. Each couple of elements is associated to a laboratory, called ”beamline”
from the geometry of the tangential beam, that uses X-rays produced in its own undulator
(see fig. 3.4). Monochromatic light is finally obtained from the narrow band with the aid of
monochromators [39].

Figure 3.4: A schematic representation of a synchrotron section. Each
undualtor belongs to a specific beamline.

Nowadays, latest generation synchrotrons reach a brilliance which is of 12 orders of magnitude
above the one of X-ray tubes. The improved overall quality of X-ray beams has given the field
a completely new range of scopes, and the number of possible uses is growing.

All the experiments of this work have been carried out at the European Synchrotron Radiation
Facility, a joint project of 22 countries situated in the scientific polygon of Grenoble, France.
It officially started its activity in September 1994 and currently counts 40 beamlines tangential
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to the storage ring, with a diameter of 844m. From August 2020 the Extremely Bright Source
(EBS) project completed its first step [18]. This upgrade let ESRF increase its brightness by a
factor of 100 with respect to its previous stage, making it the first 4th-generation high energy
synchrotron light source of the world. ESRF operates at 6 GeV and up to 200 mA current,
with refills scheduled for approximately every hour [42].

3.2.2 ID32 Beamline
ID32 is an upgrade beamline at ESRF specialized in soft X-ray scattering and absorption
spectroscopy. It opened officially in 2014 as a direct evolution of ID08, and is currently one
of the few beamlines which are external to the old experimental hall. The beam is produced
with two APPLE-II undulators [43] and travels to the two endstations, at 110m and 120m
respectively from the ring. The undulators ensure a range of energies from 400 eV to 1600
eV, with total freedom in the choice of polarization (either vertical, horizontal, or circular).
The monochromator is implemented with a plane mirror and four variable line spaced (VLS)
gratings: the former is of dedicated design, it is cross shaped and liquid nitrogen cooled to
ensure thermal stability, while the gratings are all of different spacing.

Figure 3.5: Top view of the beamline layout. Adapted from [41].

Figure 3.6: The RIXS four
circle goniometer. Taken
from [19].

The beamline presents two branches: the beam can be directed
to either of the two with the use of a deflecting mirror just
after the monochromator. The first branch is for polarization
dependent X-Ray Absorption Spectroscopy, and is in direct con-
tact with a Sample Preparation Facility, while the second only
includes the RIXS spectrometer. As most of the information
of the absorption branch is contained in the following chapter
(section 4.1 and section 4.2 for what concerns sample prepara-
tion, section 4.1.3 for what concerns X-Ray Absorption Spec-
troscopy), we only focus on the RIXS branch in what follows
[19].

High resolution RIXS is a fairly new technique: the instrument
at ID32 has been one of the first in its kind, and introduced
many technical innovations with respect to previous generation
machines (AXES at ID08 and SAXES at the ADRESS beamline
at the Swiss Light Source [44, 45, 20]). Its optical scheme,
schematized in fig. 3.7, is however quite simple to describe [19].
The spectrometer makes use of a four circle goniometer to hold
the sample, see fig. 3.6. This allows to move it freely to desired
positions: incoming and outgoing X-rays define the the scattering plane, which is intended to
be horizontal. Beam characterization is performed with a razor blade that can be mounted on
the same sample slot. Cooling is also ensured by liquid helium to a minimum of circa 17K.
The outgoing beam is then horizontally collimated until it reaches a spherical VLS grating that
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disperses the X-ray energies in the vertical direction. These beams then access a vacuum tube
of around 10 meters at the end of which a CCD detector is installed. To ensure the possibility
of choosing the direction (and thus wavevector) of scattered X-rays, all the elements from
collimator to detector must be able to move freely. Vertical and longitudinal motion are
performed mechanically quite easilly. The arm has a 100° range of horizontal rotation which is
allowed without breaking vacuum from the sample chamber: this lets the spectrometer perform
dispersion measurements with decreased times and complete automation. Although it is not
the case of this work, a polarimeter and a second CCD detector allow polarization-dependent
measurements [19].

Figure 3.7: Side and top view of the RIXS spectrometer optical layout.
Adapted from [41].

Figure 3.8: The sample chamber and the analyser of the RIXS spectrometer
at ID32. Taken from [41].
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Figure 3.9: The resolution of the ID32
RIXS spectrometer as a function of energy.
The gray vertical lines are in correspon-
dence with the cobalt and nickel edges re-
spectively. Adapted from [41].

The energy resolution of the instrument is not ab-
solute and depends on the specific edge of mea-
surement, and thus on the incoming photon en-
ergy. Its final value depends on the vertical spot
size, the line density of the grating and the pixel
size at the detector. For our measures we had
FWHM ≈ 30 meV (see fig. 3.9).

The focused beam, impinging the probed mate-
rial, has a spot size which usally depends on the
many parameters of the setup as well. It usually
reaches around FWHM ≈ 2.5 µm in height and
FWHM ≈ 50 µm in width.

XAS can be also performed in the RIXS spectrom-
eter in Total Electron Yield (TEY) mode by sim-
ply measuring the sample drain current (see sec-
tion 4.1.3). This allows us to choose the energy
for the RIXS spectra, which are in correspondence
of absorption peaks. Moreover, it is used to lo-
cate the best sample areas, to check the degree of
possible contamination and to evaluate the level
of degradation of surface due to the X-ray beam
exposure. Moreover, in our case, XMCD measures
were performed as an alternative to those in the

dedicated branch (section 4.1.3). This is simply done by taking two spectra around the edge of
interest with opposed circular polarizations, and by taking a difference afterwards. This gives
magnetic information on the sample, and was used qualitatively to determine the preferential
direction of magnetization.

3.3 RIXS and magnetic excitations
It was not obvious from the beginning that RIXS could be used to probe magnetic excitations.
In fact, it is generally true that photons can’t couple with electron spin as a unitary change
in magnetic moment ∆S = 1 is usually forbidden in first order dipole transitions. Being a
second order process, RIXS does not strictly adhere to this assumption, and the presence
of an intermediate state completely changes the problem. One paper addressing this is the
one published by van Groot et al. [46] in 1998. Here the possibility of localized spin flips in
RIXS is taken into consideration as a relaxation channel mediated by strong orbital momentum
coupling. The paper focuses on 3p electrons for copper and 2p electrons for nickel, but the
method is general. Selection rules and polarization dependence is also obtained in the paper.
The extension to proper spin waves can then be done by considering that also the incident
beam acts on the many electrons of the system at the same time [14]. In a 2008 paper by van
den Brink [47] a comprehensive theoretical model for spin wave RIXS is proposed. Starting
from the same Heisenberg Hamiltonian of eq. (2.3), the scattering amplitude Ffg is computed
as a series expansion of the hamiltonian H0. It is found that, using a ultra-short lifetime
approximation, a momentum dependent four-spin correlation function is what is measured in
experiments, by including the modification of exchange correlation due to the presence of an
intermediate electron hole.

Ffg =
U2
C

U2 − U2
C

·
⟨f |

∑
k JkSk−qS−k |g⟩

(h̄ωk − iΓ)(h̄ωk − iΓ− h̄ωk′)
(3.7)
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Figure 3.10: The spin wave disper-
sion for the antiferromagnetic compound
La2CuO4. The purple line if fromneutron
measurements, while blue dots are from
RIXS. Taken from [17].

Here U is the onsite electron repulsion, just like in
section 2.2, while UC is its modified value due to
the core hole, and the expression in the braket is
the fourier-transformed Heisenberg hamiltonian.

As soon as the resolution of RIXS spectrome-
ters went under the 1eV regime with AXES and
SAXES [44, 45] (see the next section), the pos-
sibility of using the technique as a probe of mag-
netic excitations became of experimentally possi-
ble as well, as spin waves started to be observed in
typical ferromagnetic and antiferromagnetic ma-
terials. A good example is for instance the paper
by Braicovich et al. [17] where the antiferromag-
netic spin wave dispersion of La2CuO4 agrees with
both theoretical predictions and previous neutron
data (See fig. 3.10, note that the dispersion does
not have the typical quadratic shape as discussed
in section 2.2 due to the difference between ferrro-
magnetic and antiferromagnetic systems). After
benchmarking paradigmatic 2D and 3D Heisenberg materials like this, in order to test how
comparable the data was with existing knowledge, research turned to novel materials and
started to have increasing importance in the field of high TC superconductivity as a strong
explorative tool [14, 40].

The use of the Heisenberg model in the theoretical approaches presented above could be
criticized with similar arguments to those in section 2.2, as in our case we are dealing with
nonlocalized materials. More in general, all of what has been put in this section is part of
a quite extensive literature that deals with cuprates and other strongly correlated materials.
The assumption that the theoretical justifications can be translated to metallic ferromagnetic
materials seems innocuous, but together with the open questions on the nature of metallic
spin waves, puts an interesting starting point for experimental investigation. We will discuss
the state of the art in section 3.4.

3.4 RIXS studies on Spin Waves in metals
As anticipated in section 3.3, RIXS spectroscopy has very rarely been applied to the study
of metals. This is possibly due to the intrinsic need of preserving good vacuum after the
sample is prepared, as opposed to oxides, or because one has to deal with the much higher
fluorescence yield. The experiments presented in this work are a direct follow-up of a previous
series of measurements done by the same group at ID32, led by Nicholas Brookes. Most of
the information on these is contained in ref. [22], and we summerise it shortly in this section.

RIXS measurements were performed on two fcc crystals along the [111] direction at the ID32
beamline of ESRF. As the setup is very similar to the one of the final experiments, details are
discussed in section 5.1.

The first sample is an epitaxically grown iron fcc film of around 10 nm. Here a spin wave
dispersion is clearly found, and it’s in great agreement with previous neutron measurements
(see fig. 3.12a) and in reasonable similarity with theoretical calculations, which underestimate
the stiffnes D. The novelty of RIXS that can be immediately appreciated is that the same
dispersion of INS is obtained by a much smaller sample, of around 10 nm.
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Figure 3.11: The effect of detun-
ing the incoming energy on the RIXS
spectrum. The arrows on the inset
show the value of energy of each.
Taken from [22].

The second sample is a nickel single crystal, cleaned
with repeated cycles of Ar+ sputtering with subsequent
annealing. In the spectra, the fluorescence has a much
closer position to the zero with respect to the iron sam-
ple, and its tail covers the sought magnons. Incoming
energy is then detuned, slighly moving up of 1 eV from
the nickel L3 edge (see fig. 3.11). At difference with
iron, the spectra does not adhere with neutron data in
the high momenta range (see fig. 4.10). As opposed to
iron, here calculations seem to overestimate D. In the
paper, possible options are considered: this energy dis-
crepancy at high q could be ascribed to the interaction
with the Stoner continuum, that ends up in a damping
[2], but this is not supported by the calculations [22].

A more accurate study of fcc nickel is required, and it
is thus the starting point of this work.

In what follows, the difference between the two dis-
persions is also explored through the measure of an

electronically in-between case: fcc cobalt. Here correlation effects, that are stronger than in
iron, should still play a smaller role than in nickel. The idea is that if the behaviour seen
in nickel is of physical nature, it should appear to some extent in this sample as well. Note
that this is valid also for the comparison with ab initio calculations: between the two com-
puted values of D, one overestimating and the other one underestimating, we should have an
intermediate situation.

Although not the thermodynamically stable configuration of the metal, which is usually hcp,
fcc cobalt is fairly easy to obtain epitaxially. For this reason this system has not been studied
by INS: the intrinsic need of bulk samples makes any study of thermodynamically unstable
materials impossible, as they can’t grow up to macroscopic single crystals. The solution
usually employed is to use alloys which stabilize the system of interest: fcc cobalt for example
is thermodynamically favoured with the presence of 8% iron in its structure, as studied by
Sinclair et al. [11].

(a) Iron spin wave dispersion. (b) Nickel spin wave dispersion.

Figure 3.12: In (a), black squares are RIXS data while white triangles are from neutron
measurements. In (b), black squares are RIXS data while blue dots and red triangles are from
neutron measurements. Taken from [22].
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It shall be noted that another work on metallic RIXS was performed recently in Brookhaven by
Pelliciari et al. [23]. Here the spin wave dispersion of iron and its thickness dependence, from
bulk down to a film of three unit cells, are measured. The same idea of reducing the sample
thickness with respect to INS is then exploited. The dispersion is shown to change as the
stiffness gets lower for thinner films. This work shows an interesting use of RIXS that could be
explored in the future and, together with the measurements performed here at ID32, clearly
demonstrate the possibility for Resonant Inelastic X-ray Scattering to see and accurately probe
spin waves and their dispersion.
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Chapter 4

Sample Growth and Characterization

In this chapter we address the techniques that have been used to both obtain and characterize
the samples of interest.

The aim of our research was to measure spin waves in two ferromagnetic metals, cobalt
and nickel. As the study of spin waves and their dispersion is of course q-dependent it was
mandatory to have a single crystal sample. This, together with the presence of the sample
preparation facility in close contact with the spectrometer of the ID32 beamline, led the choice
of growing the metallic films epitaxially.

Figure 4.1: The whole sample preparation facility and high-field XMCD endstation. Taken
from [48].
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It is known that the two metals of interest tend to grow with an fcc structure when evaporated
on a copper [001] surface (see for example refs. [49, 50, 51] for nickel, refs. [52, 53] for
cobalt). The choice of film growth takes advantage of one of the differences between RIXS
and INS: while the latter needs macroscopic bulk materials to significantly scatter neutrons,
the former only needs a few hundred micrometers in area and a few nanometers in depth.
Epitaxially growing one’s own samples gives some additional advantages: the film is “fresh”,
it can be prepared just before experiment with as little exposure as possible, and the recipe
can be tested and refined in advance to ensure a correct crystalline purity and absence of
contamination.

Molecular beam epitaxy also gives much more freedom in the choices of growth. As the
process does not take place at thermodynamic equilibrium, cobalt can grow easily outside of
its normal hcp phase, growing as fcc instead. This couldn’t happen in macroscopic samples,
where the solution is usually to employ alloys [11]. Finally, for reasons that will be made
clear in section 4.3, it also let us deposit a cobalt buffer layer in a nickel sample to force its
magnetization in the planar direction.

One has to consider that photon scattering does need some amount of material to have
reasonable counting times for the spectrometer. Moreover, our interest was to compare data
with INS experiments, either directly or for similar systems, where the spin wave dispersion is
that of a bulk sample. For these two reasons, growth was performed to obtain samples in the
orders of 1 to 10 nm.

Characterization was done on both test samples and in the final ones as well to ensure crystal
degree of order, to check for any kind of contamination and to investigate magnetization.
The methods used are all well established. In particular, magnetic characterization was also
performed using the XMCD endstation at ID32 [48].

The ID32 beamline at ESRF combines a flexible design that lets samples be moved through
different chambers effortlessly [48]. All growths took place in the so called ”metal chamber”
(C3, pink in fig. 4.1), which contains all the needed instruments to perform epitaxy and basic
characterization. UHV is ensured in all the environments: specifically, the pressure of our
chamber was in the low 10-10 mbar regime.

4.1 Characterization Techniques
The methods used to characterize our samples are reviewed in the following section with
their theoretical basis and technical implementation, and are treated with particular attention
towards the information highlighted by each, trying to relate each output to how it’s useful
and how it has been employed in our case. The information presented is not meant to be
exhaustive, as many other sources of information already exist in the literature.

4.1.1 Low Energy Electron Diffraction
To investigate the crystaline structure of our samples and their surface, Low Energy Electron
Diffraction (LEED) was used. The aim of this technique was in our case to have a qualitative
picture of the atomic ordering in the sample: the output of a LEED measure is a diffraction
pattern, generated on a phosphorescent screen and possibly captured by a camera, that is
then compared with theoretical knowledge about the lattice structure and with previous data.
The width of the diffraction peaks gives information on the degree of ordering of the crystal
structure, while the presence of extra peaks is a sign of contamination or reconstruction.

LEED [54] is nowadays mature and commonly employed in a vast range of laboratories as a
feasible alternative to X-Ray Diffraction, with the biggest differences being its sensitivity to
surface instead of bulk. The need of a UHV environment, which made LEED difficult in its
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first appearances, is nowadays obtained with little difficulty and, in our case, granted as of
mandatory importance for the growth itself [48].

The energy range in which collimated electrons have comparable wavelength to interatomic
spacing (circa 1 Å) is around 20-500 eV, which is when their inelastic mean free path is the
smallest, usually a few monolayers [55]. This justifies the fact that LEED is a surface technique,
in opposition to X-Ray Diffraction where penetration depth is in the order of microns. It
should be noted that the energy dependence of the inelastic mean free path tends to follow a
”universal curve”, more or less valid for the majority of diffusive media of interest, and thus
this assumption is valid in general [56].

Recalling the Von Laue Condition, one has diffraction peaks when a generic beam satisfies:

G = k′ − k (4.1)

Figure 4.2: The Ewald sphere intersecting the
recitprocal lattice ”rods”. Taken from [55].

Figure 4.3: Rear view LEED configuration.
Adapted from [55].

where k and k′ are wavevectors of the incom-
ing and outgoing beam, while G is a vector
identifying a point in the reciprocal lattice of
the probed crystal. As we consider elastic
scattering, one has |k| = |k′|: this lets us
look at eq. (4.1) geometrically, as the con-
dition is satisfied when the points of the re-
ciprocal lattice belong to a sphere of radius
|k′|, sharing the same center. This picture is
due to Ewald and the constructioin is often
referred to as Ewald Sphere [57].

We have seen that LEED only probes the sur-
face of the sample: we then intuitively take
this as if the crystal, instead of a plane, was
three-dimensional with an infinite spacing be-
tween each of the planes. As lengths appear
at the denominator of reciprocal base vectors,
we’ll end up with infinitely close dots (”rods”
or ”lines”) instead of points in our reciprocal
lattice, as in fig. 4.2. Adjusting the energy of
the beam results in a change in the radius of
the Ewald Sphere: the presence of ”rods” lets
us always end up with the diffraction condi-
tion satisfied as long as we exceed the energy
of the first order peaks. In our case, where
we worked with a length of a ≈ 3.5Å, the first
order peaks appeared at around V = 67eV.

A typical diffractometer for LEED crystallog-
raphy usually follows a simple scheme as in
fig. 4.3 . The grounded sample is hit by
a beam of focused electrons coming from
an electron gun where they are extracted by
thermoionic effect. Once the surface has
been hit by electrons, only a small percent-
age diffracts elastically. To get rid of lower
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energy electrons, scattered inelastically in all directions, a negative potential is applied between
two grids (G1 and G2 in figure). A stronger positive potential is then applied between a further
grid and the phosphorescent screen (G3 and F), to reach the latter with high enough energy to
impinge it and make it glow. The same screen is visible from outside the UHV chamber. The
instrument present at the Sample Preparation Facity of ID32 is a commercial rearview LEED
provided by VacGen.

The type of monitoring done was of two kinds. Spot size was a qualitative indicator of long
range crystaline order. It might happen that diffraction peaks appear in the correct position,
but with a too broad shape: this is intuitively explained by a less ordered sample. Alternatively,
if new peaks appear within the known ones, adsorption has taken place: when this happens in
a periodic manner, spacings are usually bigger than the ones of the substrate, and thus appear
as closer points in the diffraction pattern. Moreover, disorder and contamination can also be
seen in the form of a relative higher background.

Figure 4.4: Schematic depiction of a fcc [001] surface, with its face high-
lighted by the dashed square. The measured LEED pattern is the one on
bottom right. The circle represents a possible field of view of the instru-
ment.

We can now restrict ourselves to the specific case of our samples: all substrates and films were
fcc crystals cut on the [001] face, with the [100] direction aligned to the horizontal axis. As
shown in figure fig. 4.4, the resulting surface geometry is the one of a simple square lattice
with size a = a0/

√
2 tilted of 45°. As the reciprocal of a square lattice is again a square lattice,

the resulting LEED pattern is as in fig. 4.4.

LEED was performed to calibrate the cleaning process in order to make it effective and quick.
It was also done after each growth, be it a test one or a definitive one, to check the overall
quality of the sample.

4.1.2 Auger Electron Spectroscopy
Auger Electron Spectroscopy (AES) is a analytical technique of popular use in the field of
surface characterization. It is often considered as semi-quantitative; indeed even in our case
most of the information was drawn from qualitative analysis of recorded spectra, while some
calculation was performed only to confirm assumptions based on complementary data.
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The Auger Process, discovered independently by Lise Meitner and Pierre Auger in the 20s [58],
is one of the possible relaxation channels through which a core hole, usually generated by an
energetic electron beam, (that we take at E0) in an atom is filled by a more energetic electron
(initially at E1). Instead of emitting a photon, the excess energy is absorbed by a second
electron (initially at E2) that is then expelled freely with a residual kinetic energy:

Ek = (E1 − E0)− (EF − E2) + (−ϕ) (4.2)

Figure 4.5: Energy level diagram for the
Auger process.

where ϕ is the work function of the specific ma-
terial and EF is the Fermi Energy. EF can be
arbitrarily set as the 0 of the energy scale, while
ϕ is calibrated.

It is important to see that the Energy of emitted
Auger electrons EK is independent from the way
in which the first core-hole is generated, which is
usually an electron beam of given energy. Note
that E1 and E2 (see fig. 4.5) can be any of the
many occupied states, even coinciding: there are
many Auger lines depending on which electrons fill
the holes and which are ejected. Each transition
is recognized an labelled depending on these three
involved levels, E0, E1, E2.

The valence band just below EF is responsible
of a cascading effect that contributes to the high
number of low energetic electrons in the first re-
gion of the spectrum, as the vacancies left in the
first process generate other Auger decays and so
on, with increasingly lower kinetic energies. This
phenomena, known as electorn yield, is at the ba-
sis of XAS measurements described in the next section.

Following a similar reasoning to the one of LEED, it can be easily seen that AES is a surface
technique as well, as the inelastic mean free path of Auger electrons is still the bottleneck
of the detection process. In this case, the depth of measurements is of around 100 Å as the
kinetic energies of emitted electrons, for instance in the case of copper, lie in the 60 to 1000
eV range.

Typical Auger spectra display a high background and broad peaks. The reason for the former
problem resides in the presence of backscattered electrons together with Auger ones, while the
latter is related to the short lifetime of the core-hole state [59, 60].

AES counts the number of Auger electrons emitted at each Ek, resulting in an energy spectrum
for a range of choice. As in many other spectroscopy techniques, the peaks are specific of each
element on the surface of the material (an thus act as ”chemical footprints” for it) and can
be either computed numerically or, if the technique is mature enough, compared with known
literature. As this is the case of AES, our main choice of reference was the Handbook of Auger
Electron Spectroscopy [61].
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Figure 4.6: The double CMA implementation of an
Auger spectrometer. Taken from [62].

The technical implementation of AES
is nowadays pretty standard, but subtle
differences exist. I describe it in what
follows focusing on the specific setup
of the instrument present at the ID32
Beamline. The spectrometer is a STAIB
DESA 100 double-pass CMA, and can
be used in both lock-in and pulse count-
ing modes [48]. To ionize the atoms of
the sample at their core level, a colli-
mated electron beam of usually 3 KeV
is used, providing a current in the order
of 10 µA. The Auger electrons gener-
ated by the incident electron beam with
the sample must then be analyzed: there

must be detector able to proportionally count the number N of electrons produced at each Ek.
This is done by a Cylindrical Mirror Analyzer (fig. 4.6): a potential that lets electrons with
only a specific energy reach the end of the device, acting as a very narrow band pass filter.
The signal is then amplified by a channeltron.

Our measurements were restricted to pulse counting mode, which have a small difference in
comparing spectra with literature, which are usually displayed as derivative.

Spectra were usually taken in the 500 to 1000 eV range, where both the main features for all
three elements used (cobalt, nickel, and the copper substrate) and the eventual presence of
oxygen, sign of contamination, were visible. In fig. 4.7 the three characteristic spectra of the
elements we used, cobalt, nickel and copper, are shown.

Figure 4.7: Auger spectra measured during the preparation of our growths.

4.1.3 X-Ray Magnetic Circular Dichroism
The branch of the ID32 beamline where the sample preparation and characterization takes
place, that I describe throughout this chapter, has its centerpiece in the X-Ray Absorption
Spectroscopy endstation for X-Ray Magnetic Circular Dichroism and X-Ray Magnetic Linear
Dichroism (XMCD and XMLD respectively).

X-Ray Absorption Spectroscopy (XAS) is nowadays a much used technique for sample char-
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acterization and analysis. When the beam impinges the material, electrons from low energetic
states are excited to higher energy ones by photon absorption, resulting in a decrease in inten-
sity. If the change in intensity is evaluated over a scan of some hundreds of electronvolts, the
final spectra reflects the local properties of the electronic structure of the probed material, in
particular of its empty states, showing peaks corresponding to the transition of each element as
well as new information on their environment [63]. This excitation process is the same at the
base of RIXS. XAS is in fact used to determine which are the resonances (edges) for inelastic
scattering (fig. 4.8).

The need of tunable X-rays, that are swept in each measurement over such a long photon
energy range dictates the need of synchrotron light. The measure can be performed in either
Total Electron Yield (TEY), based on the cascading of low energetic Auger electrons, or Total
Fluorescence Yield (TFY). Both of the two always take place, but with different probabilities.
As for small atomic numbers almost 99% of the decay usually happens by means of Auger
yield, our XAS measures are usually restricted to TEY.

Figure 4.8: Normalized XAS for thin films of cobalt
(7 nm) and nickel (5 nm) grown for our experiments.

XMCD and XMLD are based on the
idea of considering the polarization of
the incoming beam as the new degree
of freedom of the experiment. For the
former case, differences in XAS spec-
tra acquired with different circular po-
larizations (clockwise or anti-clockwise)
reflect the presence of magnetization in
the sample, as some excitation channels
for spins with parallel (or antiparallel) di-
rection to the beam are favoured. Note
that this only happens if the sample
is ferromagnetic or ferrimagnetic, with
the presence of a net magnetic moment
component along the beam direction. If
the difference between two XAS spectra
is taken, usually normalized to the sum
of the peaks for the two polarizations,
an XMCD spectrum is obtained [64]. If
one looks at the XMCD main peak, its
value can be read as a percentage of the
main peak total intensity. This value is
usually referred to as ”dichroism”, and if µ+ and µ− are the peak heights for clockwise and
anti-clockwise polarizations XAS, it can simply be written: as

D = µ+ − µ− (4.3)

Just as with XAS, this value strictly depends on the material and on its magnetization. If it is
lower than expected, there might then be presence of a multi-domain structure, or magneti-
zation could not have taken place fully. In more refined applications, a quantitative approach
can be used to evaluate the spin and orbital magnetic moment of the atoms, by what are
known as ”sum-rules” [65, 66, 67].
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Figure 4.9: XMCD for a strongly magnetic nickel sample.

The instrument at ID32 (yellow in fig. 4.1) was designed for fast and reliable user measures,
with the ability to operate with ease even at extreme conditions: the temperature of the sample
can reach down to 5K while two superconducting magnets of 9T and 4T (perpendicular and
parallel to the beam) allow magnetic field dependent measurements. The sample is mounted
on a manipulator that allows rotations in the horizontal plane as well as translations, allowing
normal and grazing incidence measurements. Both TEY and TFY are performed by measuring
the drain current of the sample and with an IRD photodiode respectively [48].

In our case the set of measures was quite simple: all ferromagnetic metals have high enough
Curie Temperature to work safely at ambient temperature [3]; moreover, the order of magnitude
of their coercive field is well below 0.1 T. Our aim was understanding the presence and direction
of magnetization, by looking at both grazing and normal XMCD. As we are dealing with
films, shape anisotropy lets either planar or normal magnetization prevail over the other. As
we will see in section 5.1, this work highlights the importance of knowing the direction of
magnetization, as it influences the geometric RIXS cross section.

After the characterization of some test samples, later XMCD spectra were taken in the RIXS
spectrometer just before measurements. Here, the only difference was the inability to magnetize
the sample at will: they had to be measured in remenance.

4.2 Epitaxial Growth of metals
Generalities on the preparation of samples are discussed in this section, from the treatment of
the substrate to the growth of metals.

4.2.1 Substrate Preparation
For the growth, high purity fcc copper monocrystals cut on the [001] face have been used as
substrates. All of them had been manually aligned to have the [100] direction parallel to the
horizontal axis with an estimated error of ± 3°.

The substrate was cleaned before each growth with repeated cycles of Ar+ sputtering (P =
8x10-6 mbar with an applied voltage HV = 1 kV) of 30 minutes and subsequent annealing at
T=600°C for 20 minutes [51, 50, 49]. If metal from a previous evaporation was needed to be
removed, a higher energy of HV = 1.7 kV was used for 1 hour during sputtering.
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AES was performed prior to annealing to ensure the absence of any adsorbant, be it from the
chamber atmosphere (Carbon and Oxygen) or metal left from previous growths. In fact, heating
the sample even at low temperatures favors interdiffusion, the substrate forming an alloy with
the absorbed metal in an irreversible manner. LEED was used to determine the crystalline
quality of the substrate surface before proceeding with epitaxial growth. The cycling usually
stopped when the main diffraction peaks were sufficiently sharp, as in fig. 4.10a. After some
trials, a good recipe was found that was able to obtain sufficiently clean surfaces after only
one cycle.

When the surface was considered clean and ready for evaporation, it stayed exposed to an
atmosphere of low 10-10 mbar for no more than a few hours.

(a) LEED
(b) AES

Figure 4.10: (a) is a LEED diffraction figure of a clean Cu[001] surface. The top right peak is
not visible due to a vertical tilt in the manipulator position. V = 67 eV. (b) shows the cleaning
process, from a dirty thin nickel film (top) to its substrate (bottom), where only copper is
present.

4.2.2 Molecular Beam Epitaxy

Figure 4.11: The two modes
of growth of MBE.

From its first appearances in the 70s Molecular Beam Epitaxy
has developed into being one of the most established technolo-
gies for film growth in general. At variance with other ap-
proaches, it is one that combines ease and reproducibility with a
high degree of accuracy: films can be grown with sub-monolayer
precision, and at the same time, being an intrinsically physical
process, the growing conditions are not the ones of thermal equi-
librium expanding the range of possible atomic structures [68].

The word epitaxy comes from ”arranging upon”, to indicate the
act of building a sample by depositing atoms on a substrate.
There are however many ways in which this process takes place,
and not always complete control is granted. Depending on the
mobility of the adsorbed evaporant, the growth can be ”island-
like”, whenever a new layer starts to grow before the previous
finishes, or ”layer-by-layer”, in the opposite case (see fig. 4.11).
For metals, a low mobility usually ensures the latter, which is
preferable for our case where we ideally want a flat surface (see for example refs. [51, 50, 69]).
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In ref. [70] nickel MBE is studied with Scanning Tunnel Microscopy and is shown to display
island behaviour to a little degree, as clusters appear before the complete covering of one layer.
The paper suggests a soft annealing at T=100°C for a few minutes to increase interdiffusion
and fix the problem, but this step was considered unnecessary for the scope of the work.

EBM is performed with Evaporators. These pieces of equipment carry out the simple task
of bringing the evaporant, the material of interest mounted by the user in its solid phase, to
sublimation. Heating is performed in our case with an electron beam of controllable power.
Sublimation can be seen as the change in vapor pressure when the solid material is brought
to high temperatures (of the order of thousands of degrees Celsius), and that then results in
an extended column of gas spatially going from the evaporant to the substrate. The rate of
evaporation is roughly measured by a fluxmeter, which measures a drain current from the top
of the evaporator, proportional the number of the gaseous ions. It is this reading that ensures
stability and reproducibility of evaporation rate. As the evaporant reaches temperatures in the
range of thousands of degrees Celsius, water cooling is needed to protect the instrument.

Figure 4.12: Drawing and section of the Omicron Evaporator used. Adapted from the Instru-
ment Manual.

To monitor a more effective measure of evaporation rate a quartz crystal microbalance is
employed [71]. A quartz piezoelectric disc is used as resonator and put in oscillation: changes
in its frequency are linked to the differential absorbed mass of evaporant metal, providing good
estimates under some simplifying assumptions.

For our samples, 3 UHV EFM3 Focus Omicron Evaporators (fig. 4.12) were used, with nickel
and cobalt mounted as rods. The electron beam is provided by thermoionic electrons emitted
from a tungsten wire, accelerated by a high voltage.

4.3 Cobalt and nickel growths
Now that all the tools used in the preparation and characterization phase have been presented,
we can look at the final samples of interest.

The Evaporators were calibrated using the quartz crystal microbalance: different configurations
of current, voltage and rod positioning were tried until a good evaporation rate was established.
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Once done, the conditions are reproduced and kept constant by looking at the fluxmeter. Due
to the thickness of the final sample, a repositioning of the rod was required from time to time.

For cobalt, evaporation reached a rate of circa 1.2 Å/min , while for nickel it was slightly less,
of around 0.85 Å/min.

Each growth started from a clean Cu[001] sample, displaying a sharp LEED pattern and no
contamination in AES, as soon as temperature reached T = 30°C (see fig. 4.10a). During the
growths, pressure usually stayed in the mid 10-10mbar regime.

Figure 4.13: The two types of growth ex-
pected for nickel (top) and cobalt (bot-
tom).

We shortly cover an issue that is very general
whenever the growth is heteroepitaxial, meaning
one has two different materials one on top of each
other. It must be taken into account that there
will be a mismatch in lattice constant between the
two. The growth is called pseudomorphic when,
as in our case, this difference is of few percents:
copper has a lattice parameter of a0 = 3.61 Å [72],
which is larger than the two evaporated materials.

Nickel has a lattice parameter of a0 = 3.52 Å [72].
Its growth on copper has been studied in depth,
and it was shown to follow the Frank-van der
Mewe model [73]: the lattice stretches to match
the underlying copper layer as long as a critical
length is reached; after that, the lattice relaxes to
its usual dimension and misfits are introduced in
the crystal. The 1970 paper by Matthews et al.
[74] found this length to be of around t = 14.6
Å. As we will soon see, our growths exceeded this
value, and thus we’ll consider the sample as in its
bulk shape (fig. 4.13, top).

As we already mentioned, the fcc structure is not a stable configuration for cobalt at ambient
temperature. The value of a0 = 3.55 Å was found for the range temperatures in which this
configuration is thermodynamically favoured by Owen et al. [75]. However, a paper by Cerda
et al. [52] suggests that, for what concerns cobalt on copper [001] surfaces, the relaxation
procedure that happens in nickel (as in the Frank-van der Mewe model) does not take place.
Instead, the crystal adapts its shape in a deformed fcc where the planar stretch required to
match the copper lattice constant is balanced by a vertical compression. Although this was
proved for a small number of monolayers, we’ll use this approximation nonetheless, taking a
lattice constant of the same size of copper (fig. 4.13, bottom). It should be noticed that, for
the final dispersion results, using either accounts for only small changes.

At the end, two separate fcc cobalt samples of 7 nm thickness were obtained and successfully
measured. One LEED pattern is shown in fig. 4.14, where of course the final layer has much
broader peaks than the clean copper surface of fig. 4.10a. XMCD for both cobalt samples shows
no dichroism in the perpendicular direction, and little, although visible, dichroism in grazing
angle: the cobalt sample clearly shows a small planar magnetization, with the possibility of
multi domain structures. When magnetized in the XMCD chamber, the full dichroism of cobalt
was observed in remanence as the in-plane domains re-align themselves (fig. 4.14).
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Figure 4.14: 7nm cobalt film measured in the XMCD chamber. The final
samples, measured in RIXS, showed a similar behaviour to that prior to
magnetizaiton. LEED of the sample is included in bottom left.

Spin wave measurements in the nickel sample proved to be harder than for cobalt, and thus
more samples had to be prepared. A first sample of 5 nm was grown, and displayed strong
perpendicular magnetization (fig. 4.15).

Figure 4.15: 5 nm nickel film measured in the XMCD chamber. The other
5nm sample measured in RIXS showed a similar behaviour.

It will be made clear in section 5.1 that a planar magnetization is mandatory for measuring
spin waves in RIXS for the specific configuration of our experiment. A paper by O’Brien et
al. [76], where thickness dependent XMCD of nickel grown fcc films is studied, highlights two
magnetization transitions from planar to perpendicular at around 7 ML and from perpendicular
to planar at around 37 ML (circa 9 nm). As this first sample belongs to the in-between region
of perpendicular magnetization, two other samples were prepared with thicknesses of 10 and
15 nm to ensure planar magnetization. Unfortunately, XMCD of both displayed yet again
perpendicular magnetization, although small. This is less visible in the 15 nm sample. This
could be linked to contamination at start, as some extra spots clearly appear in the LEED
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pattern of the last sample (see fig. 4.18).

Figure 4.16: 10 nm nickel film measured in the RIXS chamber.

Figure 4.17: 15 nm nickel film measured in the RIXS chamber.

(a) Ni 10 nm (b) Ni 15 nm (c) Ni 15 nm, processed

Figure 4.18: LEED for the 10 nm and 15 nm samples. When processed,
the latter shows the presence of some extra spots, which are absent in the
former, signs of contamination.

An additional and final nickel sample of 7 nm was prepared over a cobalt buffer layer of 1 nm,
grown on the same copper substrate. This additional layer was suggested by the same authors
of ref. [76] as a solution to ensure in-plane magnetization. The growth was successful, and
the XMCD spectrum showed clear, although not huge, in-plane magnetization (fig. 4.19).
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Figure 4.19: 7 nm nickel film with a 1 nm cobalt buffer layer measured in the RIXS chamber.
Note that it’s the first XMCD spectrum in which there is higher dichroism for the grazing
angle measure.
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Chapter 5

Experimental Results and Data
Analysis

In this chapter we discuss the main results of our measurements. We begin by looking at the
final setup of the RIXS experiment. Our main objective will be looking for the dispersion, if
present, of spin waves: to properly do this, we will have to fit each RIXS spectrum as discussed
in section 5.2. We finally address a comparison of our results with both experimental results
and theoretical ab initio calculations.

5.1 Experimental Setup
After the samples were prepared as described in section 4.3, they were either directly trans-
ported to the RIXS chamber for measures or waited in a high 10-11 mbar vacuum for no more
than a few hours.

Figure 5.1: Schematics of the UHV suit-
case employed for the sample transfer.
Adapted from [77]

The RIXS chamber is not directly connected to
the sample preparation facility, and the samples
were transported with the aid of a modified UHV
suitcase provided by Ferrovac [77]. In it, a pres-
sure of mid to low 10-10 mbar was provided by a
getter ion pump that can run on a battery, allow-
ing an easy and contamination-free transport from
one branch to the other. The sample briefly saw
higher pressures of 10-8 mbar and 10-7 mbar dur-
ing the sample transfers to the RIXS measuring
chamber, usually for no more than a few minutes.
As the XAS of section 4.3 don’t show signs of
contamination, the transfer was considered suc-
cessful.

The sample was mounted on the RIXS custom
shuttle. Once facing the beam, the sample needs
a vertical tilt of 54.7° to reach the [0√21] position,
if mounted with the [100] direction horizontal. As
the goniometer only allows ± 45° rotations in the
χ direction , a 20° wedge was employed. With it, the shift in χ is of only -34.7°. To go back
to the [001] direction (see fig. 5.2), a tilt of +20° in the opposite direction is needed. The
experiments were set in a way that exploited the whole momentum range of the spectrometer.
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To align the sample, the position is moved while looking at the intensity of the main XAS
peak. The pressure in the RIXS chamber was of around low 10-9mbar and some regions of
the sample, usually those impinged with the X-ray beam, might expect some degradation with
time. This possibility is again checked with XAS.

Figure 5.2: Sample geometry and scattering geometry for the [0√21] and
[001] directions

The cobalt L3 edge is at 780 eV, while for nickel the same edge is at 853 eV. This has
consequences on the energy resolution of the measures of different materials: a cobalt elastic
peak was measured to display a FWHM ≈ 30 meV while for nickel the value was slightly more,
FWHM ≈ 37 meV.

5.2 Spectra Interpretation and Fitting
Before going to the result of the measurements, it is worth spending some time discussing
the general shape of a RIXS spectrum to explain how it is obtained and the criteria used to
interpret it. A single spectrum is made of many other spectra (scans): this is done to avoid
photon double counting, allowing to use a centroid algorithm that applied to the CCD image
increases the spatial resolution - and thus the energy resolution - of the technique. The scans
are then aligned, as some drift can occur due to external factors, and summed. The resulting
data is still in function of position: pixels are translated to electronvolts by a conversion factor
that is determined experimentally. To find the energy zero the elastic peak is used, as discussed
in the next section. The whole process involves both algorithmic and manual procedures and
is done with ”RIXSToolBox”, a dedicated program for RIXS data processing developed by
Kummer et al. as described in ref. [78].

After these steps, a typical RIXS spectrum looks like this:
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Figure 5.3: RIXS for a cobalt sample at q = 0.6 Å-1, that will be discussed
later.

The first obvious feature we observe is the large fluorescent peak centered at around 1.5 eV
for cobalt and 0.8 eV for nickel. This broad figure is often present in RIXS spectroscopy but
is exceptionally large in the case of metallic systems due to the presence of the valence band.
For our purposes, no useful information is present in it, but it will be used in our case as a
reference as it is known to not disperse or change shape with momentum. For this reason, its
area can be used to normalize the intensity of each spectra.

What is interesting to us happens at low energies (in the 500 meV range), we are of course
not interested in modelling the whole fluorescence shape. We want to use a curve that gives a
good approximation of the fluorescence peak to treat it as a background, and we’ll look at low
energies only. This can be done in various ways, but our case showed that no big difference in
the final results emerged by choosing one or the other. The most obvious approximation is to
just use a linear function, or, better, a quadratic one [79, 69, 22]:

IF (E) = (aFE + bE2) ·H(−E) (5.1)

where H(E) is the Heaviside step function and aF and b are the free parameters. Another
alternative, which is often found in literature, is to approximate to an exponential-like function:

IF (E) = aF · e−bE ·H(−E) (5.2)

However, as here the Heaviside function is present as a sharp discontinuity with a given height
aF , with little physical sense, it is smoothed by convoluting the step-like part with a Gaussian
with a width given by the instrumental resolution. This model is similar to what is used in ref.
[80, 69, 22].

IF (E) = aF · e−bE ·
(
1− erf

(
E√
2σI

))
(5.3)

Here σI is the instrumental resolution, erf is the error function and aF and b are again free
parameters.
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Differently from a Colbalt spectrum like in fig. 5.3, fluorescence in nickel is much closer to the
elastic peak, and can potentially hide interesting low energy excitations. As it is customary
in RIXS measurements [22], a way to avoid this problem is, in principle, to detune the energy
above the absorption edge: due to its nature fluorescence is known to shift downward when
energy is increased. In this case, nickel detuning was 1 eV.

The procedure, that was already tried in the previous work by the same group [22], is based on
the assumption that the spin wave spectra is not affected by detuning. For this reason, both
on and off resonance measures were taken in the RIXS spectra of nickel (see fig. 5.4).

Figure 5.4: Effects of detuning on the final spectra. These nickel measure-
ments, discussed later, were taken after shifting the incoming energy from
852 eV to 853 eV. The inset is a zoom of the low energy region, where a
spin wave is present both on and off resonance in the same position.

The other clear element is the intense peak positioned at E = 0 eV, which is of elastic nature.
This is almost always visible, but has a strong dependence on the scattering angle. It is not
good as a reference for intensity, but it is useful to find the energy zero of the whole spectra. As
discussed in the previous section, recall that for statistical reasons many spectra are acquired
and their alignment before averaging is based on the position of this peak, as it is both visible
and unique.

In our fitting, we’ll model the elastic peak as a Gaussian with its width limited by instrumental
resolution.

IE(E) = aE · 1

σI
√
2π

· e−
1
2
(E−E0)2

σI
2 (5.4)

σI is the instrumental resolution, E0 is the energy zero which might not exactly coincide with
the one found by eye during the energy conversion. aE is a free parameter.

The second peak at finite energy loss is in the position where we expect a spin wave collective
excitation. Various options exist for its fitting. In our case, we decided to use the equation of
the damped oscillator [81]:

42 Spin waves in 3d metals



ISW (E,q) =
aSW · E

(E2 − E(q)2)
2
+ E2s2

· 1

1− e−βE
(5.5)

Finally, E(q) is the spin wave dispersion we are looking for, and thus appears as a parameter for
each spectrum and fit. β = 1/kBT is simply the Boltzmann factor, while aSW and s are free
parameters of the model as well. Temperature was taken to be the one of the measurements,
20 K. The particularity of this curve is that the peak position is not actually corresponding to
the exact position of the magnetic excitation.

It might happen that the three functions described just above are not enough to replicate the
measured spectrum with accuracy. Usually, some spectral intensity seems to be leftover in
the in-between region from the spin wave to the elastic peak. As this region is usually the
one where phonons are expected [57], their presence is accounted for by a second Gaussian.
Although many phonon branches usually exist, and many of them are not visible to each RIXS
configuration, the use of this last function is of semi-euristic nature. It is usually considered
sufficient to use a single peak in a reasonable energy window and to limit its width to the one
of the instrumental resolution.

IP (E,q) = aP · 1

σI
√
2π

· e−
1
2
(E−EP (q))2

σI
2 (5.6)

Here, a part from aP , the other parameter is the position of the Gaussian which is of course
dispersing as EP (q).

At the end, data for each spectrum was fitted with an equation:

I(E) = IF (E) + ISW (E,q) + IE(E) + IP (E,q) (5.7)

σI , which appears in many of the functions considered, is not strictly fixed to the resolution
of the instrument, but it is left as free to be slightly higher to account for possible resolution
degradation due to drift or external factors.
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Figure 5.5: An example of the fitting function. The spin wave peak is
shaded in this graph for clarity.

It shall be noted that the spin wave peak is not always as clear as in the case above. The
way in which we worked was to put constraints to let each component behave in a physically
”reasonable” way.

5.3 Cobalt
As we already mentioned in section 4.3, two different cobalt samples were prepared and suc-
cesfully measured.

The first one was measured along the [0√21] and [001] directions, while the second was just
measured along [0√21] only to verify reproducibility of the previous results. We’ll display the
results together, but we’ll highlight from which set of measures each comes from.

[0√21] Direction
For the first 7 nm cobalt sample, eight spectra were taken, each of 100 scans of 45 seconds.
The q values were chosen to be inside the extremes of the instrument window, which is dictated
by the physical angular range of the spectrometer arm. These values are q = 0.348 Å-1 and
q = 0.763 Å-1. These spectra already showed a very clear dispersion of the spin wave peak,
which is most of the times clearly visible.

The second 7nm cobalt sample, prepared in the same manner at a time distance of three
months, was measured at new values of q for a total of six spectra.

It is important to notice, as it seems not be the case for nickel, that although measurements
took place over a long time of more than 24 hours, no contamination or degradation seems to
have taken place.
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Figure 5.6: Cobalt [0√21] RIXS spectra at different q. The spin wave
contribution is shown in orange. Starred spectra are from the second set of
measurements.

For the fits, the exponential-like background was used as well as a phonon with Gaussian shape,
as discussed in the previous section. The energy range of this last phonon, that ideally takes
care of more than one possible branch, never exceeds the 40 meV range. This is in partial
agreement with theoretical and experimental results [82, 83], where the value for our q values
is of around 20-30 meV.

With the fitting done, we can finally look at the q dependence of the spin wave energy peak
position, and try to model its dispersion with our available knowledge. Notice that half of the
points from the second set of measurements agrees with the others, the two main exceptions
being the high q points, for which the peak width in fig. 5.6 seems to have gotten broader.
The reason of this is currently not known.

For fitting the dispersion in order to find the value of the stiffness constant, the first choice is
to try the simplest form possible, namely the quadratic equation E(q) = Dq2. From this, we
can directly find a value for D, which we can compare with literature. As the curve doesn’t
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seem to perfectly fit our data, we also try to use the full, non-approximate form of eq. (2.8).
As seen in fig. 2.5, the region we are working in should be one in which the approximation
start to be less valid. Here, D is not present in its explicit form, but can be obtained easily
from the product JS. Recall that no direct justification for the use of this expression in metals
yet exists, but the curve seems to fit our points slightly better nevertheless.

Figure 5.7: Spin wave peak positions for the cobalt [0√21] data. Error bars
are smaller than marker size.

The values obtained for the stiffness in this case are D = 321 ± 8 meV Å2 for the quadratic
dispersion and D = 372 ± 6 meV Å2 for the cosine-like one.

[001] Direction
Fewer measurements were taken along the [001] direction: The reason we focused on the
other direction for cobalt is that here the elastic contribution is much higher than in the [0√21]
direction, and it could mask the peaks of interest. In fact, to reduce its intensity we detuned
χ by a few degrees (3-5°), with little overall effect on the measured q direction. With this
tweak, although the peak is still very high, the spin wave dispersion is almost always visible.
Six spectra were acquired at the q shown in fig. 5.8, each based on 130 scans of 45 seconds.
Here the dispersion window is slightly different, and goes from q = 0.348 Å-1 to q = 0.774
Å-1. The fitting is performed as in the previous case and shown hereafter.

The dispersion fit follows the same procedure as before, with the difference that here we’ll be
using eq. (2.7) as cosine-like function to fit the data to instead of eq. (2.8). The same quali-
tative remarks can be done. We can see that the first point of the dispersion has remarkably
high error bars: this is simply due to the presence of the phonon and the high elastic peak,
that make it difficult to fit a spin wave peak. A part from this detail, the data is well-fitted,
and we obtain the values of D = 332 ± 8 meV Å2 for the quadratic dispersion and D = 377
± 4 meV Å2 for the cosine-like function.
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Figure 5.8: Cobalt [001] RIXS spectra at six different q. The spin wave
contribution is shown in orange.

The fact that the stiffness values found in the two directions are close enough to be considered
the same is not surprising, as it has been already discussed in chapter 2. It would be useful
to understand which of the two fitting equations is more accurately describes the data. The
second fit, with the cosine-like function found in the nearest neighbour Heisenberg model of
chapter 2, seems to give a more tight fit by eye. The variance found for the cosine-like fits
is also slightly better than with the quadratic dispersion, even if not by much, and the final
values of D are closer to each other. A more interesting and complete way to answer this
question however is comparing the value with data from other measurements.
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Figure 5.9: Fits for the cobalt [001] data. When not shown, error bars are
smaller than marker size.

Comparison with previous experiments and calculations
As we have previously stated, the main tool for studying spin waves has historically been
Inelastic Neutron Scattering. The need of macroscopic samples makes measuring fcc cobalt
hard, as this it is not a thermodinamically favoured configuration at ambient temperature. In
this sense, fcc cobalt has never been directly measured by INS as it was always some form
of alloy, stable at ambient temperature. Nevertheless, the 1960 results of ref. [11] perfecty
agrees with our data, even if the fcc cobalt sample contained Iron to an extent of 8%. For
what regards hcp cobalt, old measures seemed to hint to higher values of around 490 meV Å2

[12], while more recent ones [13] point to lower values which are closer to our fcc case.

Another technique able to capture spin waves in thin films with good resolution is Spin Polarized
Electron Energy Loss Spectroscopy (SPEELS). Measures on 8 ML (1.5 nm) samples of fcc
cobalt were performed and showed values which are reasonably close to ours [84, 85]. In ref.
[84] the lower value of around 340 meV Å2 with respect to previous INS and Brillouin Light
Scattering experiments [86] is justified by the use of a thin film instead of a bulk sample. A
RIXS thickness dependent study of D, as done in ref. [23], might help settling this point as
the measures of ref. [85], although less recent, are in agreement with both ours and those for
the fcc cobalt alloy.

In the end, looking at the totality of available data, it is reasonable to assume that our fit that
employs the non-approximated form of the spin wave dispersion is more correct, as it agrees
pretty well with most of the previous literature.

Ab initio calculations have been performed as well, as for example in ref. [87], showing that
theoretical models, if compared with a large set of experiments, don’t seem to be capable of
reproducing the spin wave spectra effectively.

These results are grouped in the following table in chronological order.
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Table 5.1: Recap table of previous results from literature along with ours,
averaged.

System Method year D [meV Å2]
fcc Co 8% Fe [11] INS 1960 381 ± 39
hcp Co [12] INS 1966 490 ± 20
hcp Co [13] INS 1995 412 ± 12
fcc Co [86] BLS 1996 466 ± 16
fcc Co [87] calc. 2001 663 ± 6
fcc Co 8ML [85] SPEELS 2003 388 ± 3
fcc Co 8ML [84] SPEELS 2012 346 ± 14
fcc Co 7nm RIXS 2021 375 ± 4

Some additional calculations were done by Kun Cao of Sun Yat-sen Univerisity using LDA,
in a similar way to what was done in refs. [22, 24] and based on the framework of Melnikov
[2]. The chosen directions were the ones originally intended for measure, [001] and [111]. The
first thing we observe is that, in line with previous calculations of ref [87], the stiffness D is
higher than that of experimental data as its value ranges from 450 meV Å2 in the quadratic
approximation to 525 meV Å2 in the cosine-like fit (fig. 5.10).

Figure 5.10: The calculated dispersions for the [001] and [111] Directions
of fcc cobalt. The red dotted line is calculated with the stiffness found from
experiments. The red stars in the [001] plot are in correspondence of our
measures.

We can directly compare the [001] simulations with our measures, where some additional
differences arise. If we try to look at the shape of the peaks, which should reproduce the one
of experiments, a strongly damped region is observed between around q = 0.6 Å-1 and q =
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0.7 Å-1. Recall that the FWHM of the magnon peaks might contain information about an
eventual interaction with the Stoner continuum, as explained in chapter 2: this phenomena is
not observed at all in our measures, and is also absent in the [0√21] direction calculations, where
the widths decrease steadily. Apart from the described region, the FWHM is of comparable
magnitude if we consider the effect of instrumental resolution. Qualitatively, the peak height
and area show comparable behaviour despite the discussed region.

Figure 5.11: [001] Direct comparison. Black triangles are from ab initio
calculations. Red crosses are from our fits, and their FWHM is deconvoluted
with instrumental resolution after approximating the peak shape to that of
a Lorenzian. Peak intensity of our measures is adjusted to be in the same
window of the calcualations.

5.4 Nickel
Measuring nickel proved itself to be harder than expected. The first problem was described
through the rest of this work, and we’ll adddress it fully now. As the first sample of 5nm,
which displayed strong out of plane magnetization (see fig. 4.15), was measured, no spin waves
where observed either on and off-resonance. The geometric cross section of RIXS scattering
for spin waves was then studied by numerical methods to ensure that their eventual absence
for this case was of physical nature.

Calculations were performed by Davide Betto using Quanty code [88] with the two symmetric
directions of magnetization, in-plane and out-of-plane, as described in [22]. Although the
calculations were performed for measures along the [111] direction, which was the one originally
intended, the result should have little difference as we are just performing an in-plane rotation
of 45° degrees and the symmetry of either magnetization configuration remains the same. The
result shows the possibility of being partially unable to see spin waves if the magnetization
direction of the sample is out of plane.

As it can be seen in fig. 5.12 the in-plane magnetization gives nonzero cross section for all
wavevectors. On the contrary, for out-of-plane magnetization, a region of finite but low cross
section is present at the same wavevectors as our measurement. This justifies what has been
carried out throughout section 4.3: no clear spin-wave presence was observed in either of the
samples that displayed out-of-plane magnetizations, those of 10 and 15 nm (see fig. 4.16 and
fig. 4.17).

Finally, when a cobalt buffer layer was grown before nickel as suggested in ref [76] a dis-
tinct peak was immediately seen along with in-plane magnetization, as can be seen clearly in
fig. 5.13).

When this problem was solved, only a handful of measures were taken for reasons of time. The
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[0√21] direction was chosen and a total of eight spectra of 300 scans of 40 second each were
taken. The last two spectra (see fig. 5.14) have a lower number of scans due to less available
time.

Figure 5.12: Cross section of in-plane and out-of-plane magnetization as
a function of wavevector and energy. The interval of our measurements is
delimited by gray bars.

To make sure that the anomalous behaviour of ref. [22], where a flattening of the dispersion
takes place, was not effected by the detuning of the incident energy, the very first measurement
was performed both on-resonance and off-resonance, on a q point that did show discrepancies
between previous RIXS and INS studies. As it is shown in fig. 5.4 and more closely in fig. 5.13
and fig. 5.14 (spectra 1 and 2), a spin wave peak is clearly present in both. If compared with
previous data from [22], its energy value is higher and seems to be more comparable with
some of the previous INS measurements [9]. As detuning decreases intensity (see eq. (3.6),
where the energy difference appears at the denominator), a first set of four measurements was
performed on resonance. Although the first peak was promising, two peaks at higher momenta
were mostly buried in the background. A point at low q was taken as well and reproduced the
previous results, more in agreement with INS than with previous RIXS.
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Figure 5.13: On-resonance nickel [0√21] RIXS spectra at four different q.
The spin wave contribution is shown in orange. Bottom left number indi-
cates the order in which the spectra were taken (see also fig. 5.14).

Figure 5.14: Off-resonance nickel [0√21] RIXS spectra at four different q.
The spin wave contribution is shown in orange. Bottom left number indi-
cates the order in which the spectra were taken (see also fig. 5.13).
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As we were interested in the dispersion at high q, where we wanted to investigate the nature
of the anomalous flattening observed for bulk nickel, we repeated the measures for the two
high momenta points also off-resonance.

Here the second problem of measuring nickel took place, as coming back to them the positions
of the peak shifted downwards in the off-resonance measurements, in a similar way to what
happened in ref. [22]. However, the fact that the point at q = 0.626 Å-1 was initially
well above those measurements, hints to the fact that this energy change should not be an
effect of resonance. As the effect took place only after hours of measurements, the suggested
explanation is that the energy deviation might be related to contamination effects, and thus
appear only after long measuring times. The reasons why contamination should directly affect
spin waves and their dispersions is still unclear. Nevertheless, the final XAS for the examined
point showed a shoulder on the L2 peak (see fig. 5.17).

In the following figure we plot our data along with the one from ref. [22]. Only three out of
four q points are shown for our measurements as for the highest q value it was impossible to
extrapolate a clear spin wave peak. Data, especially that taken at early times, agrees fairly
well with previous neutron measures like the ones from ref. [9]. It is interesting to notice that
older neutron data by the same author does indeed show a situation in which the peaks are
shifting from the usual spin wave dispersion [10], similarly to what happens in RIXS. Fitting
was performed using the quadratic background and without considering any phonon.

Figure 5.15: Extrapolated peak position for spin waves in the on-resonance
and off-resonance spectra. Data from previous measures [22] is displayed
as well.

A more in depth study, like the one performed for cobalt, is necessary. However, we can
nevertheless compare our data with some ab initio calculations of the same kind of those
described in the previous section, even if the results are for a different direction. We can
intuitively see that, even if optimistically we take the on-resonance measures as good, the
dispersion they hint to is yet again well below the calculated one, meaning the stiffness constant
D will surely be lower than the one estimated numerically, in a similar manner to what happens
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for cobalt. For what concerns the widths, calculations show an increasing FWHM but no sharp
transition to an eventual Stoner region. However, we have too few data to compare this with
our measurements.

Figure 5.16: Comparison of ab initio calculations for nickel spin waves in
the [111] direction compared with the peak positions of our measures in
the [0√21] direction. Green stars are on-resonance while Red stars are off-
resonance.

A more consistent study of nickel is required, but the information acquired on the importance
of magnetization direction and on the possibility to detune without fear to affect the dispersion
are promising. A solution for the possible contamination should be tested in future experiments.

Figure 5.17: XAS of the 7 nm nickel sample with the 1 nm cobalt buffer
layer. The shoulder on the L2 peak is sign of contamination and was not
present in the beginning.
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Chapter 6

Conclusions and Outlook

In this Thesis, a RIXS study of two 3d ferromagnetic metals has been carried out, namely of
fcc cobalt and nickel.

Measurements of fcc cobalt were successful: the result is reproducible to a good extent and in
good agreement with data from previous experiments carried out with other techniques such
as INS and SPEELS . We recall that our choice of fcc cobalt reflects our initial premise to try
and understand if the differences between iron and nickel from ref. [22] could be explained by
means of an electronically in-between case. The dispersion in our measures is clear and does
not seem to have any sort of deviation, as happens with nickel. However, just as in nickel, the
energies are overestimated by calculations: these discrepancies make us think that correlation
effects might not be the only missing piece of the many body problem modelled by ab initio
calculations.

To give a more consistent look to the whole study, and to understand better to which extent
the extrapolated values of D are influenced by the dimensions of the sample, a thickness
dependent RIXS study like the one of Pelliciari et al. [23] could be carried out. To test the
effect of possible distortions of the lattice on the stiffness, new calculations and more direction
dependent measurements could also be performed.

For nickel, some forward steps were made but we are still not answering all the questions we
had in the beginning. We established the importance of the direction of magnetization in the
sample also experimentally, and we seem to have shown that detuning the incoming energy
above the edge should not affect the measurements of the spin wave position. If it is needed,
this last assumption can also better be tested with a sample of cobalt or iron, by performing a
series of measurements on and off-resonance for high momenta on what is now a more or less
consolidated dispersion.

What still remains unanswered is the energy deviation that happens at high q. Its apparent
dependence on time and the final XAS suggest a problem of contamination. Nickel seems to
be much more sensitive to contamination than iron and cobalt. This was not apriori expected.
At the same time, although it is known that contamination can effect the magnetisation of a
ferromagnetic system, why spin wave positions change is again not clear.

We feel that with the acquired knowledge, some extra trials should be made to understand
better the problem of the shifting dispersion, and to evaluate the possibility of it coming from
the interaction with the Stoner continuum. Growing a capping layer, of either copper or cobalt,
to protect the sample from contamination is surely the next thing to be tried, and should be
reasonably feasible due to the powerful chemical sensitivity of RIXS and to the flexibility of
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MBE.

The two experiments have shown that RIXS can give good results for the measurement of
spin waves in metallic systems. For the future, especially after the study of nickel is eventually
perfectioned, one possibility is to try to employ epitaxial growth to its full, designing alloy films,
performing systematic studies on different phases of the same material, growing sandwiches
and multilayers, or even designing nanometric or mesoscopic systems.

It shall be noted that, during the preparation of the experiments of this work, a sample of this
kind was already tested: a cobalt film covered by a 12ML wedge of copper was measured in
RIXS to look for Quantum Well States [89, 90, 91]. Although the result was negative, both
XAS and RIXS showed that the technical possibility is mature enough to be employed.

Figure 6.1: Scheme of the 12 ML copper wedge grown on 7 nm fcc cobalt.
Below, the L3 XAS peak on the copper edge is shown in function of position.
Aside from the two sample sides, that give a dip, we can see a clear flat
region (on the left) and a steadily decreasing one (on the right), showing
the wedge growth was successful.
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Appendix A

Proof of the isotropy of spin wave
dispersion at long wavelengths

It is useful to generalize the result obtained for the [001] and [0√21] axes, showing that the
approximatation E(q) = D|q|2 is valid in all directions for a fcc lattice. Recalling eq. (2.6):

E(q) = 12JS

[
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]
(A.1)

We write a generic q along its components qx, qy, qz. Of course we have:

|q|2 = q2x + q2y + q2z (A.2)

Our first step is to sum all cosine terms. The contribution of the four nearest neighbours in
the xy plane is:
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We do the same also for the yz and zx planes and obtain:
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We now expand cos(x) ≈ 1− x2/2 as before:
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Which finally reduces to:

12− a2|q|2 (A.6)

Plugged into eq. (A.1) gives:

E(q) ≈ 12JS

[
1− 1

12

(
12− a2|q|2

)]
= JSa2|q|2 (A.7)

Which proves that D does not depend on the direction of spin waves, and can be considered as
a general property of the material. With similar arguments the same result can be obtained for
bcc and simple cubic lattices. This is equivalent to saying that, at least at low temperatures,
anisotropy effects can be fully neglected.
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