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Abstract

Diabetic Retinopathy is a increasing source of loss of vision worldwide. Devel-
oping better knowledge bases and tools to diagnose it as early as possible is of
great importance. This study aims to expand previous studies by measuring and
analyzing six features on differentiated Artery-Vein OCTA vessel maps in order to
help diagnose Diabetic Retinopathy in its Non-Proliferative stages. Six features
(VPI, VDI, VSD,V AD, VCI and FD) have been automatically calculated on ar-
teries and veins only and then used to derive four feature sets. The classification
of the vessels was made possible by previously published algorithms. For each
feature, four values have been derived (feature sets): artery value, vein values,
average values and ratios between the artery and vein values. A complete statis-
tical analysis was performed using two sets of three cohorts (Control, NoDR and
NPDR and Mild, Moderate and Severe NPDR). The Bonferroni Correction was
applied in order to minimize the risk of False Positives.

Insights about the illness have been gained, especially surrounding the balance
between artery and vein values, which is shown to be perturbed by the onset
(but not the severity) of DR. The observed results hint at a high significance
of A/V Ratio measurements and of the VCI feature. A/V Ratio are shown to
reach statistical significance in five out of the six features, and are also able to
differentiate the NPDR cohort from both the others in two of the six features.



Chapter 1

Background

1.1 Diabetic Retinopathy

1.1.1 A Global Cause for Concern?

Diabetic Retinopathy (DR) is a pathology that belongs to the wider family of
retinopathies. As the name implies, this illness affects the retina of patients with
Diabetes Mellitus (DM). It is estimated that, for US citizens aged 20 to 64, DR is
the leading cause of blindness [1]. A study from 2004 estimated that the number
of Americans affected by DR is greater than 4 million [2]. The study also observed
that four out of ten DM patients aged 40+ develop DR. Taking a look at the global
situation, in 2018 Pandey et al cast a prediction for 2025 [3]. By that year, the
predicted number of people affected by diabetes-related retinopathies in the world
will almost reach 600 million. Since the endpoint of DR is blindness, even before
the Covid19 pandemic, this increase in affected patients can likely cause strain
on the healthcare systems, especially the ones of countries with a high diabetic
population and the ones of developing countries. An early diagnose of Diabetic
Retinopathy is crucial: an early detection is able to prevent, at least partially, the
loss of vision caused by DR [3]. Diagnosing the first stages of DR will bring many
benefits to the patients and to the healthcare providers.

1.1.2 Onset and Progression

Diabetes Mellitus, which is a necessary but not sufficient condition to develop
DR, has the effect of increasing the glucose concentration in the blood stream.
This can lead to blockages in the retina blood vessels. When this happens, the
blood flow is impeded and the vessel walls can break. This first stage is called
NPDR (Non-Proliferative DR), as no new vessels are formed to replace the (even
partially) blocked ones. The leakings have the effect of swelling the eye and the
retina, which in turn increase the number and severity of the leakings. When many
vessels become completely blocked, the severity of Diabetic Retinopathy increases
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and a new stage is reached. The stage of PDR (Proliferative DR) is named so
because new blood vessels begin to be formed. However, these vessels are not
formed properly and the leakings are not only unavoidable, but also increased.
All of these leaks will gradually increase the pressure in the eye. The greater
pressure cannot be endured by the optic nerve fibers, which become more and
more damaged. As a consequence, there will be a mounting loss of vision. Another
consequence is that the retina may start to detach. The loss of vision is permanent
even if stopped. Thus, an early diagnosis can prevent permanent damage in the
an important sensory organ in the human body. A diagnosis of DR in its NPDR
stage will reduce vision damage to the minimum. Figure 1.1 shows a comparison
between an Healthy eye and an eye with Severe NPDR.

Figure 1.1: OCTA images of a Healthy eye (left) and a Severe NPDR eye (right)
from two different patients. Adapted from Differential Artery-Vein Analysis in
OCT Angiography of Diabetic Retinopathy [9], 2021, Copyright 2021 by UIC.

1.2 DR Biomarkers in Blood Vessels

The problem of oxygen transport and blood flow was studied by Murray in 1926 [4].
The base for his reasoning was the hypothesis of maximum energetic economy of
the blood flow. As a consequence, blood vessels should have some kind of preferred
physiological patterns in terms of radius, number, branching, etc. Oxygen flow
through the cardiovascular system is impaired whenever the vessels deviate from
the physiological standards. Ernest et al. observed in 1983 that hyperglycemia
in dogs impaired oxygen autoregulation [5]. Grunwald et al. found in 1996 that
Diabetes Mellitus increased total volumetric blood flow rate and ”decreased reg-
ulatory responses to hyperoxia” [6]. Total volumetric blood flow rate increased
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along with the illness duration. With the introduction of advances in digital imag-
ing, the number and the quality of studies in this field has increased. Sasongko et
al. performed a study on 1159 subjects in 2010 [7]. They observed a correlation
between Diabetes Mellitus (and Diabetic Retinopathy) and an abnormal pattern
of blood vessels: “Longer diabetes duration was associated with larger arteriolar
branching angle and increased arteriolar [tortuosity]”. Also, hyperglycemia was
also associated with increased arteriolar tortuosity. Some of these changes occur
even before that DR begins to develop in the patient.

1.3 Fundus Images

Fundus Imaging was invented almost a century ago, but its use increased and
widened with the arrival of digital imaging, which offered major improvements in
image acquisition and analysis. ”Fundus” refers to the ”Fundus Oculi” (Latin for
”back of the eye”), which is the retina. Fundus images are taken with a Fundus
Camera, a special kind of camera which illuminates the retina and captures its
reflected light [8]. Both of these actions are performed through the pupil, which
acts as ”both entrance and exit for its illuminating and imaging light rays” [9].
As can be seen in Figure 1.2, the macula (center), the optic disk (center left) and
the major blood vessels can be distinguished. It can be also noted that the image
was captured using RGB channels, having thus three signals per pixels. These
signals can be used to extract color-sensitive information [10]. Specific fluorescent
dyes can be used to enhance the contrast of certain parts of the image, improving
the identification and segmentation of specific areas.

These characteristics made Fundus imaging the traditional method to ”follow,
diagnose and treat eye diseases” [8]. This includes the identification of Diabetic
Retinopathy. A number of studies have been performed to diagnose DR (automat-
ically or not) by segmenting blood vessels and/or by searching for and locating
specific lesions in the retina [11]. Specific procedures have been implemented
to locate microaneurysms and small hemorrhages, which are clues that point to
blood circulation abnormalities. Some of these algorithms (using Deep Learning
models) managed to reach an AUC (Area Under the Curve) of 0.99. Similarly
successful were the attempts of using Convolutional Neural Networks to segment
and analyze blood vessels and their pattern, reaching over 97 % accuracy. There
are disadvantages to these approaches, namely the fact that the inner workings of
the models are not humanly intelligible, thus requiring lots of time and effort in
case of errors or unexpected behaviors. There have also been attempts of manual
measurements used for the same purpose. E.g. in 2014, Habib et al. manually
measured six geometric features to see whether their distributions were statisti-
cally different in Control, NPDR and DR patients [12]. Moreover, the presence of
lesions in the retina makes recognising the blood vessels near them difficult, and
the image quality may vary depending on many factors. Nonetheless, there seem
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Figure 1.2: Fundus Image of the left eye of a healthy 25 Swedish years old male.
By Mikael Häggström, used with permission.

to be promising results.

1.4 Optical Coherence Tomography-Angiography

(OCTA)

Optical Coherence Tomography-Angiography (OCTA) is an imaging technique
that is noncontact and noninvasive. Its output is a tridimensional image composed
of multiple monochromatic bidimensional scans which can differentiate between
blood vessels and background tissues. In the last twenty years, its ”speed, acquisi-
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tion speed and resolution” underwent major improvements [13]. ”Its noninvasive
and tridimensional nature makes it preferable to invasive and bidimensional meth-
ods such as Fluorescein Angiography (FA)” [9]. As a result of that, this technique
achieved ”rapid and wide adoption in ophthalmology” [13]. Moreover, a number
of solutions exist in order to increase OCTA blood vessel contrast. Figure 1.3
shows how OCTA enhances the smaller vessels barely visible (or not visible at all)
in the En Face OCT image.

Figure 1.3: En-Face OCT image (left) and corresponding OCTA image (right) of
a Healthy eye. Adapted from Differential Artery-Vein Analysis in OCT Angiog-
raphy of Diabetic Retinopathy [9], 2021, Copyright 2021 by UIC.

OCTA images have been used to identify vessel geometry and blood flow ab-
normalities [14, 15]. The popularity of this method also means that it has been
used to identify different retinopathies, such as:

• Age-Related Macular Degeneration [16–20];

• Sickle Cell Retinopathy [21–24];

• Diabetic Retinopathy [9, 25–41].

Regarding the identification of DR, many features have been proposed and
studied over the years In this study, six of such features will be measured and an-
alyzed. However, unlike previous studies, these features are going to be measured
two times: on arteries only and on veins only. From these two measurements, four
feature sets will be derived and analyzed. In order to do this, arteries and vein
have to be differentiated from each other.
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1.5 Differentiation of Arteries and Veins

Artery-Vein differentiation has previously been used to search for increased sen-
sitivity in diagnosing DR and its stages and also to observe if and how the illness
affected arteries or veins in a different way [9]. In 2019, Alam et al. demonstrated
that measuring features on arteries and veins separately increased sensitivity on
Sickle Cell retinopathy identification [22].

There many strategies that have been proposed to classify the vessels in dif-
ferent types of images, like the mentioned Fundus [10,42] and OCTA images. For
the latter, such methods range from Near Infrared Oxymetry [43] to Deep Learn-
ing models [44]. In this study, the process to differentiate arteries from veins is
the same as the work by Castelnuovo [9], which is a slight modification of the
algorithm developed by Alam et al. in 2019 [45].

1.6 Definitions of DR Stages

In this study, all the patients affected by Diabetic Retinopathy were diagnosed
with different stages of NPDR. There are no PDR patients’ images. Non-Proliferative
Diabetic Retinopathy is divided into three stages (Mild, Moderate and Severe) de-
fined by the American Diabetes Association (ADA) like follows [46] :

• Mild NPDR: ”Small areas of balloon-like swelling in the retina’s tiny blood
vessels, called microaneurysms, occur at this earliest stage of the disease.
These microaneurysms may leak fluid into the retina”. This stage of the
illness is the very first one, and is the ideal one to be differentiated from the
cohorts that present no retinopathy;

• Moderate NPDR: “As the disease progresses, blood vessels that nourish the
retina may swell and distort. They may also lose their ability to transport
blood. Both conditions cause characteristic changes to the appearance of
the retina and may contribute to DM”. This stage is sort of a middle point
between the start of the illness and its more damaging stages;

• Severe NPDR: “Many more blood vessels are blocked, depriving blood sup-
ply to areas of the retina. These areas secrete growth factors that signal the
retina to grow new blood vessels”. This is the stage immediately preceding
the Proliferative phase of the illness (PDR).

1.7 Aims

The aim of this study is to test whether measuring six selected features on differ-
entiated Artery-Vein OCTA vessel maps can increase the sensitivity of Diabetic
Retinopathy detection in its Non-Proliferative stages.



Chapter 2

Materials and Methods

This study follows the ethical standards contained in the Declaration of Helsinki
by the World Medical Association.

2.1 Composition of the Dataset

A total of 143 OCTA images of both right and left eyes of patients, belonging to
five cohorts, were used for this study. All of these images are macular scans taken
by the Lions of Illinois Eye Research Institute (LIERI) using an ANGIOVUE®

spectral domain OCTA system (Optovue, Fremont, CA) with a 70-kHz A-scan
rate, an axial resolution of 5 µm, and a lateral resolution of 15 µm. The images
were exported by the ReVue® software (Optovue, Fremont, CA). The dataset is a
slightly expanded version of the one used in the work by Castelnuovo [9]. A total
of four images were added to that dataset. Every image has a different quality
score assigned to it by the software, which is taken into account when choosing
which images to add to the dataset. The staging of the illness in the images was
done by a specialized professional. The five cohorts that will be used in this study
are composed by:

• 32 images belonging to Control patients (without both Diabetes and Dia-
betic Retinopathy);

• 24 images belonging to NoDR patients (with Diabetes but without Diabetic
Retinopathy);

• 24 images belonging to Mild NPDR patients;

• 22 images belonging to Moderate NPDR patients;

• 41 images belonging to Severe NPDR patients.
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2.2 Obtaining a Binary Vessel Map from the

Raw OCTA Image

Since OCTA images are tri-dimensional volumes made of bi-dimensional scans, the
very first step is to extract a single level from the mesh. The ”Outer Retina” level
was selected for all images in the dataset. The extracted images were processed
by a custom-made Matlab® (Mathworks, Natick, MA) scripts.

Firstly, the images are filtered with a Frangi 2D filter. This filter enhances the
edges of the blood vessels. Secondly, the resulting images are binarized using a
single threshold, slightly different for every image in order to have the best output
quality. Thirdly, spurious pixels are eliminated and small holes in the vessels are
filled. Also, small unconnected clusters of pixels are also cleaned. This step
concludes the preprocessing of the images. The complete procedure is shown in
Figure 2.1. Figure 2.2 shows the input and the output images of the preprocessing
step.

Figure 2.1: Simple flowchart showing all main steps of this study from the raw
OCTA image to the six measured features
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Figure 2.2: Overview of the preprocessing step. Left: raw OCTA image. Right:
output binary vessel map. Center: overlay of the vessel map (red) on the OCTA
image in order to assess the ”goodness” of the preprocessing steps. Adapted from
Differential Artery-Vein Analysis in OCT Angiography of Diabetic Retinopathy
[9], 2021, Copyright 2021 by UIC.

2.3 Differentiating Arteries from Veins

This algorithm, developed by Alam et al [45] in 2019, is able to differentiate
arteries from veins using OCT images. While the original workflow took as input
En Face OCT images, in this study both En Face and Outer Layer OCT images
will be used, following the procedure shown in [9]. The rationale for using the
OCT images for this classification is that, since ”the en face OCT and OCTA are
naturally reconstructed from the same spectrogram data sets, the OCT artery-vein
vessel map can be readily used to guide artery-vein differentiation in corresponding
OCTA” [45]. This procedure is illustrated in Figure 2.3. It can be seen that Outer
Layer OCT images are used only to obtain a vessel mask, while the En Face OCT
images are used for the proper artery-vein differentiation. Figure 2.4 shows the
Source Node Classification step more in detail.

2.3.1 Bias Field Correction

OCT images tend to suffer from intensity dis-homogeneity [45]. In order to elim-
inate this undesirable condition, a Bias Field Correction step has to be added to
the image preprocessing. The workflow is straightforward. Firstly, the bias field
of the image is estimated. The image is modeled as the result of the pixel-by-pixel
product of the ”true” image and the bias field. The bias field is then modeled
as the weighted sum of smooth basis functions. ”20 polynomials of the first de-
gree are chosen as the basis functions” [45]. This leaves only the weights of these
functions to be estimated. Secondly, according to the chosen model, the image
is divided by the estimated bias field. This Correction is applied to both the En
Face and the Outer Layer OCT, as shown in Figure 2.3. Figure 2.5 and Figure
2.6 shows the preprocessing steps applied to both En Face and Outer Layer OCT
images.
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Figure 2.3: Simple flowchart showing the main steps of the Artery-Vein Differenti-
ation algorithm. The blue-colored boxes show inputs and outputs. Adapted from
OCT feature analysis guided artery-vein differentiation in OCTA [45], March 29
2019, Copyright 2019 by The Optical Society



2.3 Differentiating Arteries from Veins 11

Figure 2.4: Main steps or the Source Node Classification procedure. Adapted from
OCT feature analysis guided artery-vein differentiation in OCTA [45], March 29
2019, Copyright 2019 by The Optical Society

2.3.2 From Outer Layer OCT image to Vessel Mask

Once the Outer Layer OCT image is preprocessed, a mask containing only the
pixels belonging to blood vessels must be extracted. Since this layer contains the
shadows of the vessels, it is not possible to differentiate them between arteries
and veins. However, it has ”more contrast with respect to the background, thus
making the vessel mask extraction easier” [9]. Figure 2.7 shows the differences
between En Face and Outer Layer OCT images. Since the latter contains only the
shadows of the vessels, there is no need to correct for the elimination of the macula.
The differences in contrast are also clearly visible. It is also worth noting that
every pair of images was manually checked for correspondences of blood vessels
and shadows. No images were discarded.
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Figure 2.5: Bias Field Correction and Intensity Normalization for an En-Face
OCT image. From left to right: the raw image, the estimated Bias Field, the raw
image divided by said Bias Field and the image after Intensity Normalization.
Adapted from OCT feature analysis guided artery-vein differentiation in OCTA
[45], March 29 2019, Copyright 2019 by The Optical Society

Figure 2.6: Bias Field Correction and Intensity Normalization for an Outer Layer
OCT image. From left to right: the raw image, the estimated Bias Field, the raw
image divided by said Bias Field and the image after Intensity Normalization.
Adapted from OCT feature analysis guided artery-vein differentiation in OCTA
[45], March 29 2019, Copyright 2019 by The Optical Society

Three steps are needed in order to extract the Vessel Mask:

1. Matched Filtering

2. Bottom-Hat Filtering

3. Binary Thresholding

In order to enhance blood vessels of every diameter and direction, ”2D Gaus-
sian kernels of 12 different orientations and 10 different sizes are implemented
to match blood vessels” [45]. These 120 2D Gaussian kernels are the ones that
were defined by Li et al [47] in 2009. The mean is subtracted from every kernel
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Figure 2.7: En-Face (left) and Outer Layer OCT (right) images of the same eye
of the same patient. Adapted from Differential Artery-Vein Analysis in OCT
Angiography of Diabetic Retinopathy [9], 2021, Copyright 2021 by UIC.

before the convolution with the OCT image. The result of these operations is
an image with larger values where vessel-like structures are identified (Figure 2.8
- Top middle). This image is then subtracted from the input OCT image. As
can be seen in Figure 2.8 - (Top Right), the resulting image presents an increased
contrast between blood vessels and background compared to the input image. Fol-
lowing the improved procedure described in [9], ”a selection of four bottom-hat
filters with different structural elements and different sizes were applied to the
image in parallel and their results were averaged”. The result of this step can
be seen in Figure 2.8 - (Bottom Left). The last step is to apply a single global
threshold to the image in order to binarize it. This threshold is slightly different
from image to image, and it was manually selected in order to extract the best
quality masks. An example of a generated Vessel Mask can be seen in Figure 2.8 -
(Bottom Middle). Every resulting Mask is checked against the corresponding En
Face OCT image to assess that the blood vessels of both images coincide (Figure
2.9). Again, no image was discarded during this step. After the Vessel Mask is
extracted, it is multiplied with the Intensity Normalized En Face OCT image, as
seen following the procedure laid out in Figure 2.3. This output image contains
only the intensity values of pixels belonging to blood vessels (Figure 2.8 - Bottom
Right), which will be classified in Arteries or Veins in the next steps.
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Figure 2.8: Overview of the OCT Vessel Mask generation. Top left: Intensity
Normalized Outer Layer OCT image from the previous step. Top middle: mask
generated by the Matched Gaussian filtering. Top right: image after subtraction of
the mask. Bottom left: image after Bottom-Hat filtering. Bottom middle: image
after single threshold binarization. Bottom right: result of the multiplication of
the vessel map with the Intensity Normalized En-Face OCT image. Adapted from
Differential Artery-Vein Analysis in OCT Angiography of Diabetic Retinopathy
[9], 2021, Copyright 2021 by UIC.

Figure 2.9: Generated graphics used to assess the correspondence between the
blood vessels of the Vessel Mask and the ones in the Intensity Normalized En
Face OCT image. Adapted from Differential Artery-Vein Analysis in OCT An-
giography of Diabetic Retinopathy [9], 2021, Copyright 2021 by UIC.
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2.3.3 Identification of Source Nodes

Once the OCT Intensity Map is generated, the blood vessels are to be classified
as either being Arteries or Veins. The procedure was laid out by Alam et al [45]
and consists of three steps:

1. Source Node Identification: these nodes are the points in which the vessels
cross a set boundary near the image border;

2. Feature Extraction: these features should be capable of classifying every
single node.

3. Vessel Tracing: the classification is extended to the whole vessels by tracing
them from the start (Source Node) to the end points.

The first of these steps is done by skeletonizing the vessel map and by defining a
boundary offset. Skeletonization is a process by which, following multiple erosions
of the image, the maximum width of each vessel is exactly one pixel. The boundary
offset refers to the pixel gap between the image border and the boundary by which
the Source Nodes are identified. The intersections between the skeletonized vessels
and the boundary are therefore marked as Source Nodes. This procedure is shown
in Figure 2.10 (Left Panel).

2.3.4 Extraction of the Profiles

The concept of ’Profiles’ was defined by Vàsquez et al [48]. Small windows centered
on each Source Node allow to extract vessel and skeleton segments. Starting from
the skeletons, a set of profiles is created [45]. Two profiles must have a distance of
two pixels between them along the skeleton segment. The number of profiles must
be at least 5 and can not be more than 20. ”In case of a segment smaller than
5 pixels long, profiles are taken from all of the pixels”. The first profile is always
located on the midpoint of the extracted segment. The others are iteratively
constructed by moving by two pixels in each direction. Figure 2.10 (Middle Panel)
shows this procedure.

This operation identified multiple profiles for each Source Node segment. A
’Profile Set’ is created to store the profiles grouped by Source Node. For example,
the OCT image used as reference in these Figures has 14 identified Source Nodes.
Therefore, 14 profile sets will be created, each one with a different number of
profiles.
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Figure 2.10: Overview of the Source Node Classification procedure. Left: the
Source Nodes (blue crosses) are located. Middle: some Profiles (in yellow) are
created along a Source Node Segment. Right: Source Nodes classified as arteries
(in red) or veins (in teal). Adapted from OCT feature analysis guided artery-vein
differentiation in OCTA [45], March 29 2019, Copyright 2019 by The Optical
Society

2.3.5 Source Node Classification

For every profile in every profile set, four features are extracted. These features
are introduced and explained by Alam et al [45]:

• Ratio of Vessel Width to Central Reflex (RWCR);

• Average of Maximum Profile Brightness (AMPB);

• Average of Median Profile Intensity (AMPI);

• Optical Density of Vessel Boundary Intensity compared to Background In-
tensity (ODVB).

The averaged and normalized distributions of these four features in Arteries
and Veins is shown in Figure 2.11. It can be seen that RWCR and ODVB have
the better discriminating capability.

Once we have the full set of the features, the classification process can be-
gin. Arteries and Veins are identified via K-means clustering, where there are
two possible clusters. The results are reliable and efficient and does not require
much computation power [45]. The cluster centers are initialized to be the two
input points farthest away from each other. Euclidean distancing was used to
measure the distance between points. Three steps were introduced to maximize
the accuracy of the algorithm:

1. The K-means classification is applied to every segment of the Source Nodes;
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Figure 2.11: Normalized feature distribution in artery and vein vessels. RWCR:
ratio of width to central reflex; AMPB: average of maximum profile brightness;
AMPI: average of median profile intensity; ODVB: optical density of vessel bound-
ary. Reprinted from OCT feature analysis guided artery-vein differentiation in
OCTA [45], March 29 2019, Copyright 2019 by The Optical Society.

2. The image is subdivided into four quadrant. The k-means predictions are
separately calculated for each quadrant. This is done to minimize the effect
of the inhomogeneous intensity distributions of the quadrants on the final
estimation;

3. The quadrants are rotated by 45°. The classification is re-performed on
every quadrant each time they rotate. In order to reach 360°, a total of eight
rotations have to be performed. Thus, eight predictions will be present for
each Source Node. This is illustrated in Figure 2.12. Rotations of 45° make
the quadrants overlap. This step complements the second one.

The final classification for each node will be chosen based on the eight predic-
tions. A majority vote is enough to eliminate errors due to outlier predictions.

2.3.6 Vessel Tracking

Once all Source Nodes are classified into arteries or veins, the rest of the vessel
structures must be classified as well. Alam et al. developed a blood vessel tracking
algorithm for this purpose [10]. Figure 2.13 contains a pipeline of such procedure.

The starting point is a Source Node. A grid (initially 3 by 3 pixels) is used
to locate the pixels belonging to the vessel. When a pixel is not found, the grid
is enlarged. This process is repeated until an intersection is found. Here, the
algorithm has to identify the main branch of the vessel. This decision is based on
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Figure 2.12: Illustration of the eight rotations of the quadrants. The center of
rotations is the fovea (at the center of the OCT image). Adapted from OCT
feature analysis guided artery-vein differentiation in OCTA [45], March 29 2019,
Copyright 2019 by The Optical Society.

curvature and angle information. Panel C of Figure 2.14 shows a vessel bifurcation,
upon which four points are located:

• P0, which identifies the branch that leads to the Source Node;

• P1, which identifies the bifurcation point;

• P2 and P3, which identify the two paths that that vessel takes once it splits.

These four points are used to identify two curves: P0-P1-P2 and P0-P1-P3.
For each curve,a curvature metric is defined by Alam et al [10]. ”The path with
smaller curvature is therefore considered the main branch and it will be used by
the algorithm to advance forward” [9]. Moreover, the path with the greatest angle
(X and Y in Figure 2.14 - C) is also taken into account. After having located the
main path, the algorithm marks the unused branch and follows the main one.
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Figure 2.13: Flowchart of the Blood Vessel Tracking procedure. Adapted from
Combining ODR and Blood Vessel Tracking for Artery- Vein Classification and
Analysis in Color Fundus Images [10], April 2018, Copyright 2018 by ARVO
Journals.

Whenever a four-way intersection is reached, the decision is made once all the
normal bifurcations in the image have been resolved. When the endpoint of the
main branch is reached, the algorithm starts from one of the marked secondary
paths. When all of the bifurcations of a vessel are classified, the whole process
restarts from a new Source Node. When the four-way intersections are the only
ones to remain unclassified, the final phase of the procedure begins. Every four-
way intersection belongs to one of two cases: either it is a crossing point of two
different vessels or it is a case of a single vessel with multiple branching. In order



2.3 Differentiating Arteries from Veins 20

Figure 2.14: Core steps of the Vessel Tracking algorithm. A: the algorithm starts
from a Source Node. B: the main branch of the vessel is tracked; the green dots
represent the encountered branch nodes. One four-way intersection is marked with
a yellow dot. C: enlarged window showing the process of choosing the forward
path in the vessel map. D: the whole vessel is identified. E: these steps are
repeated until the Skeleton Map is completely classified in arteries (red) and
vein (teal). F: fully classified OCT Vessel Map. Adapted from Combining ODR
and Blood Vessel Tracking for Artery- Vein Classification and Analysis in Color
Fundus Images [10], April 2018, Copyright 2018 by ARVO Journals.

to ascertain their type, the four branches are back-tracked until they reach an
endpoint or another intersection. If an endpoint is reached, then the branch is
classified in the same way as the main branch. If an intersection is reached, every
branch is classified by the algorithm by comparing textural parameters between
the branches and between all classified vessels. When this process is concluded,
the Skeleton Map is fully classified (Figure 2.14 - E).

2.3.7 Generating the Classified OCTA Vessel Map

The classified Skeleton Map is used in combination with the binary OCTA Vessel
Map to generate the final Classified Vessel Map. ”The en face OCT and OCTA
images are generated from 3D projection of OCT B-scans and B-Scan speckle
variance images, respectively. This means the structural coordinates of both im-
ages are same” [45]. The classification can thus be directly transferred from OCT
to OCTA, without the need of complex methods of overlaying. This simple pro-
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Figure 2.15: Artery-Vein classification in OCTA. A: classified source nodes in
OCT vessel map. B: OCT artery-vein map. C: original OCTA image. D: OCTA
binary vessel map. E: OCT artery-vein map overlaid onto the OCTA binary vessel
map. F: final OCTA artery-vein map. Adapted from OCT feature analysis guided
artery-vein differentiation in OCTA [45], March 29 2019, Copyright 2019 by The
Optical Society.

cess covers the bigger blood vessels. However, the smaller vessels that appear in
OCTA images but are absent in OCT images have to be classified in a different
way. They have to be traced in a similar way to the vessel tracking occurred in
Section 2.4.6. ”It starts in the skeleton map: from the endpoint of an unclas-
sified vessel and back-tracks until it reaches a classified vessel, and then begins
again from another endpoint. Four-ways intersections are treated in the same
way as before” [9]. When this step is completed, the Classified OCTA Vessel Map
is completed. Figure 2.15 shows the workflow of the OCTA Artery-Vein Map
generation.

2.4 Generating Arteries and Veins Maps

The Classified OCTA Maps must be further processed in order to measure the
features. The last two steps are:

• Separating Arteries from Veins;

• Bridging the gaps in the Vein Maps.

2.4.1 Separating Arteries from Veins

Separating Arteries from Veins is very simple. The two types of vessels are saved
in the Classified OCTA Map with two different colors: red for the Arteries and
teal for the Veins. A short MATLAB procedure can extract the two different
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colors and separate them in two images: one with only the red pixels (Arteries)
and one with only the teal pixels (Veins). Figure 2.16 shows the result of this
step.

Figure 2.16: Input and Outputs of the Artery-Vein Separation procedure.
Adapted from Differential Artery-Vein Analysis in OCT Angiography of Diabetic
Retinopathy [9], 2021, Copyright 2021 by UIC.

2.4.2 Bridging the gaps in the Vein Maps

As can be seen in Figure 2.16, the Vein Map has many gaps along its vessels.
This is because there are many instances of four-way crossings between vessels
of different types. Usually, Arteries are the ones that cross over Veins. Thus,
by arbitrary convention, the algorithm favors the integrity of Arteries, which are
always made to cross over Veins in the Classified OCTA Map. This leaves the Vein
Map with gaps. A custom MATLAB procedure was conceived in order to bridge
those gaps, taking advantage of morphological transformations of the binary Vein
Map. This Bridged Vein Map (Figure 2.17 - Right) is used in this study. Note
that not all the gaps are closed: the largest ones are still unbridged. However, the
vast majority of the gaps are bridged without compromising the original structure
of the vessels, which is the most important aspect to consider.
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Figure 2.17: Transition from unbridged Vein Map (Left) to Bridged Vein Map
(Right). The red circles locate the bridged gaps.

2.5 Features

2.5.1 Description of the Six Features

In this study, six parameters will be measured by an automatic custom MATLAB
procedure. These features are:

• Vessel Perimeter Index (VPI): it measures the share of pixels in vessel
perimeters compared to the total area of the image. It is defined by Chu et
al. [35] as:

V PI =
Σn

i=1,j=1P(i,j)

Σn
i=1,j=1T(i,j)

(2.1)

where P(i,j) represents all the white pixels along the vessels’ perimeters, and
T(i,j) represents the total area of pixels in the image;

• Vessel Diameter Index (VDI): it represent an approximation of the mean
diameter of the vessels in the image. It is defined by Chu et al. [35] as:

V DI =
Σn

i=1,j=1A(i,j)

Σn
i=1,j=1S(i,j)

(2.2)

where A(i,j) represents all the white pixels in the vessels’ areas, and S(i,j) all
the white pixels in the vessels’ skeletons;
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• Vessel Skeleton Density (VSD): it measures the share of pixels in vessel
skeletons compared to the total area of the image. It is defined by Chu et
al. [35] as:

V SD =
Σn

i=1,j=1S(i,j)

Σn
i=1,j=1T(i,j)

(2.3)

where S(i,j) represents all the white pixels in the vessels’ skeleton, and T(i,j)
represents the total area of pixels in the image;

• Vessel Area Density (VAD): it measures the share of pixels in vessel areas
compared to the total area of the image. It is defined by Chu et al. [35] as:

V AD =
Σn

i=1,j=1A(i,j)

Σn
i=1,j=1T(i,j)

(2.4)

where A(i,j) represents all the white pixels in the vessels’ areas, and T(i,j)
represents the total area of pixels in the image;

• Vessel Complexity Index (VCI): it is a parameter that is used to represent
visual complexity of the pattern of the vessels. It is defined by Chu et al. [35]
as:

V CI =
(Σn

i=1,j=1P(i,j))
2

4πΣn
i=1,j=1A(i,j)

(2.5)

where P(i,j) represents all the white pixels along the vessels’ perimeters, and
A(i,j) represents all the white pixels in the vessels’ areas;

• Fractal Dimension (FD): like VCI, it is used to represent visual complexity
of the vasculature. It is also linked to vessel tortuosity. This parameter is
calculated using the Box-Counting method on the skeletons of the vessels
[40].

2.5.2 Measurement of the Features

This procedure is simple and straight-forward. First, the images are cleaned of any
spurious pixels. When the images are cleaned (Figure 2.18 - A), the Perimeter Map
(Figure 2.18 - B) and the Skeleton Map (Figure 2.18 - C) are generated. Then,
T(i,j), A(i,j), S(i,j) and P(i,j) are counted. After this, five of the six features (VPI,
VDI, VSD, VAD and VCI) are calculated. The Fractal Dimension is computed
via a separate MATLAB procedure. The measured values of the features are
saved separately for each cohort. The measures for Arteries and Veins are done
independently.
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Figure 2.18: Images used for the Feature Computation: Vessel Map (Left),
Perimeter Map (Center) and Skeleton Map (Right).

2.6 Feature Sets

The six features mentioned above are measured two times (Arteries and Veins).
Two other feature sets are derived from these two measurements. In order, the
four feature sets that will be analyzed in this study are:

• ARTERY: set composed of features extracted from Artery Maps;

• VEIN: set composed of features extracted from Vein Maps;

• A/V Ratio: set composed of the ratios between artery and vein features:

A/V Feature =
FeatureA
FeatureV

(2.6)

• AVERAGE: set composed of the arithmetic averages between artery and
vein features:

AverageFeature =
FeatureA + FeatureV

2
(2.7)

2.7 Statistical Analysis Protocol

In this section, the protocol of the Statistical Analysis conducted in this study is
described. Since the Gaussianity of the distributions is not guaranteed, Kruskal-
Wallis and Mann-Whitney tests were used instead of ANOVAs and t-tests. First,
the Mild, Moderate and Severe cohorts are put together to form a unique NPDR
cohort that is comprised of only patients with the illness. A Kruskal-Wallis Test is
performed on the three main cohorts (Control, NoDR and NPDR). This is done in
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order to see whether the three cohorts are statistically different from one another.
For the features that showed statistical significance (p <0.05), a series of three
Mann-Whitney tests were performed:

• Control vs NoDR

• Control vs NPDR

• NoDR vs NPDR

The p-values of these tests were corrected using the Bonferroni Correction.
These tests were done in order to see in detail which distributions were separable.
Then, another Kruskal-Wallis Test is performed on the three NPDR cohorts (Mild,
Moderate and Severe NPDR). The purpose of this test is to see if the three stages
of NPDR have feature distributions that can be separated from each other. Again,
for the features that showed statistical significance (p ¡ 0.05), a series of three
Mann-Whitney tests were performed:

• Mild NPDR vs Moderate NPDR

• Mild NPDR vs Severe NPDR

• Moderate NPDR vs Severe NPDR

Again, the p-values of these tests were corrected using the Bonferroni Cor-
rection. These tests were done in order to see in detail which distributions were
separable.
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Results

Before showing the results, it is worth noting that the patients’ demographics are
the same as the study by Castelnuovo [9] and the work by Le et al [25]. The
distributions of age, sex and hypertension were not statistically different between
the NPDR cohorts and the Control patients.

3.1 First Kruskal-Wallis Tests

These tests were performed in order to see whether the Control, NoDR and NPDR
cohorts have statistically different distributions. A summary of the distribution
of the features for the three cohorts and their p-values are shown in the next
sections.

3.1.1 Artery Features

The following table shows the median values values and the 25th and 75th per-
centiles of the distributions of the cohorts, alongside the Kruskal-Wallis p-value,
for the features measured on the Artery Vessel Maps:

Features Control NoDR NPDR p-values
VPI 0.055 (0.043-0.064) 0.053 (0.050-0.059) 0.063 (0.048-0.073) 0.0242
VDI 2.549 (2.445-2.661) 2.744 (2.603-2.827) 2.574 (2.444-2.754) 0.0068
VSD 0.024 (0.019-0.028) 0.023 (0.020-0.025) 0.026 (0.020-0.031) 0.055
VAD 0.063 (0.049-0.071) 0.061 (0.057-0.067) 0.067 (0.054-0.081) 0.2029
VCI 359.4 (273.9-472.9) 565.4 (426.6-635.6) 432.2 (346.2-521.4) 0.0006
FD 1.384 (1.337-1.419) 1.392 (1.367-1.417) 1.406 (1.339-1.448) 0.2393

Table 3.1: Distributions and p-values of the Artery Features.
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Based on the p-values, it can be asserted that VPI, VDI and VCI are able to
differentiate at least one cohort from the other two, with a greater emphasis on
the latter.

3.1.2 Vein Features

The following table shows the median values values and the 25th and 75th per-
centiles of the distributions of the cohorts, alongside the Kruskal-Wallis p-value,
for the features measured on the Vein Vessel Maps:

Features Control NoDR NPDR p-values
VPI 0.047 (0.043-0.059) 0.048 (0.042-0.054) 0.051 (0.040-0.060) 0.625
VDI 2.689 (2.615-2.780) 2.945 (2.865-3.116) 2.769 (2.601-2.963) 0.0002
VSD 0.021 (0.018-0.025) 0.020 (0.017-0.022) 0.021 (0.016-0.025) 0.4169
VAD 0.058 (0.050-0.066) 0.059 (0.049-0.066) 0.059 (0.044-0.071) 0.9999
VCI 309.0 (271.8-413.0) 468.4 (377.2-550.5) 352.5 (274.0-427.9) 0.0008
FD 1.353 (1.326-1.393) 1.362 (1.323-1.388) 1.363 (1.309-1.403) 0.9851

Table 3.2: Distributions and p-values of the Vein Features.

Based on the p-values, it can be asserted that VDI and VCI are able to dif-
ferentiate at least one cohort from the other two, with a greater emphasis on the
former.

3.1.3 A/V Differential Features

The following table shows the median values values and the 25th and 75th per-
centiles of the distributions of the cohorts, alongside the Kruskal-Wallis p-value,
for the ratios of the features measured on the Artery Vessel Maps and the ones
measured on the Vein Vessel Maps:

Features Control NoDR NPDR p-values
VPI 1.089 (0.943-1.209) 1.077 (0.957-1.241) 1.221 (1.090-1.382) 0.0021
VDI 0.958 (0.921-0.993) 0.932 (0.892-0.962) 0.936 (0.910-0.966) 0.0993
VSD 1.107 (0.982-1.225) 1.114 (0.965-1.274) 1.235 (1.100-1.407) 0.0038
VAD 1.063 (0.946-1.177) 1.008 (0.894-1.197) 1.178 (1.033-1.309) 0.0087
VCI 1.113 (0.983-1.264) 1.144 (1.020-1.321) 1.280 (1.125-1.438) 0.0019
FD 1.017 (0.996-1.034) 1.021 (0.996-1.035) 1.032 (1.014-1.056) 0.0115

Table 3.3: Distributions and p-values of the A/V Differential Features.
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Based on the p-values, it can be asserted that, apart from VDI, every feature
is able to differentiate at least one cohort from the other two. These are very
encouraging results, possibly suggesting that the A/V Ratios of the features carry
a high significance and can be used to aid the diagnosis of Diabetic Retinopathy.

3.1.4 Average Features

The following table shows the median values values and the 25th and 75th per-
centiles of the distributions of the cohorts, alongside the Kruskal-Wallis p-value,
for the averages of the features measured on the Artery Vessel Maps and the Vein
Vessel Maps:

Features Control NoDR NPDR p-values
VPI 0.049 (0.044-0.064) 0.051 (0.045-0.057) 0.058 (0.045-0.066) 0.1275
VDI 2.603 (2.567-2.692) 2.861 (2.706-3.015) 2.656 (2.521-2.875) 0.0005
VSD 0.021 (0.019-0.027) 0.021 (0.019-0.024) 0.024 (0.019-0.028) 0.167
VAD 0.057 (0.052-0.069) 0.063 (0.052-0.066) 0.064 (0.051-0.075) 0.5857
VCI 320.5 (281.6-436.9) 498.4 (391.3-579.9) 395.4 (320.3-460.5) 0.0006
FD 1.357 (1.339-1.408) 1.377 (1.352-1.402) 1.389 (1.331-1.420) 0.6538

Table 3.4: Distributions and p-values of the Average Features.

Based on the p-values, it can be asserted that, similarly with the Vein Features,
VDI and VCI are able to differentiate at least one cohort from the other two. It
is worth noting that VCI’s p-values are all below the significance threshold.

3.2 First Mann-Whitney Tests

After the Kruskal-Wallis tests, a number of promising features can be identified.
Therefore, three Mann-Whitney statistical tests are performed in order to see
which cohorts could be separated from each other. The three tests are:

• Control vs NoDR

• Control vs NPDR

• NoDR vs NPDR

The first test is done to see the differences in the features’ distributions due to
the presence of Diabetes Mellitus only. The second is done to see the differences
in the features’ distributions due to both Diabetes and Diabetic Retinopathy. The
final test is done to see the differences in the features’ distributions due to the
presence of NPDR only, since both cohorts’ patients have Diabetes Mellitus.
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3.2.1 Bonferroni Correction

As the number of statistical hypotheses which are tested increases, the probability
of observing rare events also increases [49]. This is the basis of the Bonferroni
Correction. Since three hypotheses are tested for each feature (the three tests
mentioned above), the probability of having False Positives (type I errors) is in-
creased by a factor of three. In order to account this increase, the Bonferroni
Correction states that the threshold of p-value significance should by divided by
the same factor. Thus, the significance threshold for these Mann-Whitney tests
has to be 0.0166. This technique is very conservative, and suffers from an increase
in False Negatives (type II errors). Therefore, p-values that do not pass the new
significance threshold but are still lower than the original threshold will be marked
with the * symbol, while the p-values that pass the new significance threshold will
be shown in bold.

3.2.2 First Mann-Whitney Test: Control vs NoDR

The Mann-Whitney p-values for the Control vs NoDR cohort test are shown in
the next table:

p-values VPI VDI VSD VAD VCI FD
Artery 0.6241 0.005 0.3735 0.8337 0.0001 0.6818
Vein 0.4593 0.0001 0.1770 0.9442 0.0002 0.9124

A/V Ratio 0.9681 0.0561 0.9045 0.6745 0.4413 0.9124
Average 0.6745 0.0002 0.3222 0.9442 0.0001 0.7566

Table 3.5: p-values of the Control vs NoDR Mann-Whitney test.

It can be seen that only two features, namely VDI and VCI, are able to dif-
ferentiate patients with Diabetes Mellitus from control patients.

3.2.3 Second Mann-Whitney Test: Control vs NPDR

The Mann-Whitney p-values for the Control vs NPDR cohort test are shown in
the next table:

p-values VPI VDI VSD VAD VCI FD
Artery 0.0949 0.8337 0.2380 0.2150 0.0293* 0.1645
Vein 0.7339 0.3222 0.6672 0.9920 0.3371 0.8808

A/V Ratio 0.0025 0.1010 0.0032 0.0160 0.0014 0.0078
Average 0.3222 0.6892 0.6101 0.5419 0.1052 0.4902

Table 3.6: p-values of the Control vs NPDR Mann-Whitney test.
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It can be seen that only the A/V Ratio features, with the exception of VDI, are
able to differentiate between Control and NPDR patients. This suggests that the
relative changes of these features in Arteries and Veins have the potential to help
to better understand and diagnose Diabetic Retinopathy in its Non-Proliferative
stage.

3.2.4 Third Mann-Whitney Test: NoDR vs NPDR

The Mann-Whitney p-values for the NoDR vs NPDR cohort test are shown in the
next table:

p-values VPI VDI VSD VAD VCI FD
Artery 0.0111 0.0032 0.0188* 0.1188 0.0124 0.2150
Vein 0.3421 0.0003 0.2937 0.9761 0.0016 0.9681

A/V Ratio 0.0143 0.2757 0.0257* 0.0155 0.0293* 0.0488*
Average 0.0394* 0.0005 0.05* 0.3173 0.0047 0.4473

Table 3.7: p-values of the NoDR vs NPDR Mann-Whitney test.

It can be seen that, in contrast to the previous tests, there are many p-values
marked with the * symbol, making the interpretation of the table tricky. Also,
there are some features that have a significant p-value only with specific measuring
modalities. For example, VPI’s p-values are below the threshold only if measured
on Arteries and if the A/V Ratio is taken. VPI measures on Veins only do not
seem to be informative.

3.3 Box and Whiskers Plots

To better visualize the differences and similarities between the distributions of
the cohorts, one box and whisker plot per feature is shown in this section. A
distribution is marked if it is significantly different from the other two or only
one of the other distributions. For simplicity’s sake, only p-values that passed the
Bonferroni Correction were used.

3.3.1 VPI Box and Whisker Plot

The next graph shows the distributions of the Vessel Perimeter Index (VPI) across
the four feature sets:
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Figure 3.1: VPI Box and Whisker Plot

As can be seen, the Artery NoDR and NPDR distributions can be differenti-
ated: the former has a very narrow shape compared to the latter. More impor-
tantly, the A/V Ratio NPDR distribution is separable from the cohorts without
Diabetic Retinopathy.

3.3.2 VDI Box and Whisker Plot

The next graph shows the distributions of the Vessel Diameter Index (VDI) across
the four feature sets:

Figure 3.2: VDI Box and Whisker Plot
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As can be seen, in the Artery, Vein and Average measurements, the NoDR
distributions are significantly higher than the other two distributions, especially
the Control ones.

3.3.3 VSD Box and Whisker Plot

The next graph shows the distributions of the Vessel Skeleton Density (VSD)
across the four feature sets:

Figure 3.3: VSD Box and Whisker Plot

As can be seen, this feature does not seem to be that useful. The only differ-
entiable distributions are the A/V Ratio Control and NPDR ones, which follow
the trend seen in VPI (and that will be seen in other features): a sudden increase
in A/V Ratio values for the patients with Diabetic Retinopathy.

3.3.4 VAD Box and Whisker Plot

The next graph shows the distributions of the Vessel Area Density (VAD) across
the four feature sets:
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Figure 3.4: VAD Box and Whisker Plot

As can be seen, this feature seems to be useful only in the A/V Ratio mea-
surements. The NPDR distribution can be distinguished from the others.

3.3.5 VCI Box and Whisker Plot

The next graph shows the distributions of the Vessel Complexity Index (VCI)
across the four feature sets:

Figure 3.5: VCI Box and Whisker Plot
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As can be seen, the NoDR distributions follow the same trend as in VAD,
while the A/V Ratio measurements follow an ascending trend.

3.3.6 FD Box and Whisker Plot

The next graph shows the distributions of the Fractal Dimension (FD) across the
four feature sets:

Figure 3.6: FD Box and Whisker Plot

As can be seen, the A/V Ratio distributions follow the trend seen in VCI,
where the NPDR values rise over the two other distributions but are significantly
different only from the Control cohort.

3.4 Second Kruskal-Wallis Tests

These tests were performed in order to see whether the Mild, Moderate and Severe
NPDR have statistically different distributions. A summary of the distribution of
the features for the three cohorts and their p-values are shown in the next tables.

3.4.1 Artery Features

The following table shows the median values values and the 25th and 75th per-
centiles of the distributions of the cohorts, alongside the Kruskal-Wallis p-value,
for the features measured on the Artery Vessel Maps:
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Features Mild NPDR Moderate NPDR Severe NPDR p-values
VPI 0.060 (0.050-0.069) 0.056 (0.047-0.070) 0.066 (0.045-0.075) 0.5599
VDI 2.459 (2.379-2.498) 2.560 (2.466-2.711) 2.725 (2.547-2.900) <0.0001
VSD 0.026 (0.022-0.029) 0.024 (0.020-0.029) 0.027 (0.018-0.032) 0.6737
VAD 0.064 (0.053-0.074) 0.060 (0.051-0.077) 0.074 (0.058-0.082) 0.2712
VCI 421.6 (344.1-470.4) 417.0 (346.6-502.9) 472.5 (357.2-531.4) 0.3679
FD 1.403 (1.363-1.433) 1.397 (1.341-1.430) 1.425 (1.329-1.449) 0.6005

Table 3.8: Distributions and p-values of the Artery Features.

Based on the p-values, it can be asserted that only VDI is able to differentiate
at least one stage of the illness from the other two.

3.4.2 Vein Features

The following table shows the median values values and the 25th and 75th per-
centiles of the distributions of the cohorts, alongside the Kruskal-Wallis p-value,
for the features measured on the Vein Vessel Maps:

Features Mild NPDR Moderate NPDR Severe NPDR p-values
VPI 0.052 (0.039-0.063) 0.047 (0.039-0.055) 0.053 (0.044-0.059) 0.4819
VDI 2.580 (2.543-2.661) 2.703 (2.614-2.884) 2.904 (2.775-3.065) <0.0001
VSD 0.022 (0.016-0.027) 0.019 (0.016-0.023) 0.021 (0.018-0.025) 0.4561
VAD 0.058 (0.041-0.073) 0.051 (0.045-0.061) 0.063 (0.054-0.071) 0.2865
VCI 352.9 (266.7-423.2) 326.3 (277.9-390.2) 364.8 (296.7-480.0) 0.3642
FD 1.365 (1.302-1.412) 1.335 (1.309-1.375) 1.371 (1.318-1.403) 0.3716

Table 3.9: Distributions and p-values of the Vein Features.

Based on the p-values, it can be asserted that,as before, VDI seems capable of
separating at lest one of the cohorts from the other two.

3.4.3 A/V Differential Features

The following table shows the median values values and the 25th and 75th per-
centiles of the distributions of the cohorts, alongside the Kruskal-Wallis p-value,
for the ratios of the features measured on the Artery Vessel Maps and the ones
measured on the Vein Vessel Maps:
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Features Mild NPDR Moderate NPDR Severe NPDR p-values
VPI 1.187 (1.044-1.415) 1.210 (1.122-1.292) 1.258 (1.093-1.409) 0.7371
VDI 0.935 (0.910-0.963) 0.943 (0.924-0.964) 0.927 (0.904-0.984) 0.2837
VSD 1.212 (1.045-1.465) 1.223 (1.126-1.308) 1.270 (1.085-1.450) 0.8395
VAD 1.139 (0.987-1.350) 1.170 (1.072-1.256) 1.186 (1.006-1.325) 0.8437
VCI 1.248 (1.093-1.422) 1.227 (1.170-1.360) 1.352 (1.088-1.473) 0.5220
FD 1.029 (1.010-1.063) 1.029 (1.018-1.044) 1.037 (1.013-1.062) 0.7558

Table 3.10: Distributions and p-values of the A/V Differential Features.

Based on the p-values, it can be asserted that none of these A/V Ratio features
seems able to differentiate between the three stages of the illness. This might also
mean that the changes in the values of the Artery and Vein features due to the
onset and the worsening of NPDR may happen with the same ratio.

3.4.4 Average Features

The following table shows the median values values and the 25th and 75th per-
centiles of the distributions of the cohorts, alongside the Kruskal-Wallis p-value,
for the averages of the features measured on the Artery Vessel Maps and the Vein
Vessel Maps:

Features Mild NPDR Moderate NPDR Severe NPDR p-values
VPI 0.058 (0.044-0.066) 0.052 (0.044-0.063) 0.061 (0.047-0.066) 0.4991
VDI 2.517 (2.476-2.552) 2.645 (2.529-2.765) 2.813 (2.650-2.941) <0.0001
VSD 0.025 (0.020-0.028) 0.021 (0.018-0.026) 0.025 (0.019-0.028) 0.5827
VAD 0.062 (0.048-0.075) 0.055 (0.048-0.070) 0.069 (0.055-0.076) 0.2541
VCI 397.9 (296.9-439.1) 368.8 (313.5-432.5) 418.4 (360.5-481.2) 0.3679
FD 1.392 (1.334-1.422) 1.364 (1.326-1.398) 1.402 (1.335-1.421) 0.4795

Table 3.11: Distributions and p-values of the Average Features.

As expected, based on VDI’s Artery and Vein p-values, it can be seen how the
Average VDI distributions contain at least one that is significantly different from
the others.
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3.5 Second Mann-Whitney Tests

After these last Kruskal-Wallis tests, only VDI can be identified as a promising
feature. As seen before, a series of three Mann-Whitney statistical testsare per-
fomed in order to see which cohorts can be separated from each other. The three
tests are:

• Mild NPDR vs Moderate NPDR

• Mild NPDR vs Severe NPDR

• Moderate NPDR vs Severe NPDR

As before, the Bonferroni Correction will be applied. So, p-values that do not
pass the new significance threshold but are still lower than the original threshold
will be still marked with the * symbol, while the p-values that pass the new
significance threshold will be shown in bold.

3.5.1 VDI’s Mann-Whitney Tests

In the next table, the p-values for all three Mann-Whitney test performed on
VDI’s values are shown:

p-values Mild vs Moderate Mild vs Severe Moderate vs Severe
Artery 0.0061 <0.0001 0.0324*
Vein 0.0061 <0.0001 0.0135

A/V Ratio 0.2585 0.7795 0.1211
Average 0.0039 <0.0001 0.0114

Table 3.12: p-values of VDI’s Mann-Whitney tests.

As can be seen, Average features seem to be better than individual Artery
and Vein features in separating the cohorts. The last feature set, along with the
Vein only measurements, seems to be able to distinguish all three stages of NPDR
from each other, with a greater confidence in separating Mild NPDR from Severe
NPDR.

3.5.2 VDI NPDR Box and Whisker Plot

To better visualize the differences and similarities between the distributions of
VDI in the three stages of NPDR, a box and whisker plot is shown in this section.
As before, a distribution is marked if it is significantly different from the other two
or only one of the other distributions. Only p-values that passed the Bonferroni
Correction were used.
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Figure 3.7: FD Box and Whisker Plot

A very clear ascending trend can be seen. While the Artery distributions closer
together, the Vein and Average ones can be each separated from the others. The
distributions of the A/V Ratios are similar and thus not differentiable, as seen in
Table 3.10.

In the next chapter, these results will be discussed and compared to previous
findings of similar studies.



Chapter 4

Discussion

To summarize, vessels found in OCTA images were differentiated into arteries
and veins by an automatic procedure. After this, another automatic procedure
was used to measure and extract six features (VPI, VDI, VSD, VAD, VCI and
FD). Two rounds of statistical tests were performed on two sets of three different
cohorts in order to see which distributions were significantly different from the
others.

4.1 Discussion about the Distributions of the

Features

The previously shown results will be discussed, for every feature, in the following
sections. These results will be compared to previous findings of similar studies.

4.1.1 VPI

The Vessel Perimeter Index, which is calculated with Equation 2.1, represents
the share of pixels in the image that sit on the vessels diameters. It was chosen
because VPI ”can detect abnormal microvasculature and also provide repeatable
quantitative results” [35].

In this study, VPI was found to be most significant if measured by taking
A/V Ratios (Table 3.3). In this way, this feature seems to be able to differentiate
the Control and NoDR patients from the NPDR ones (Tables 3.6 and 3.7), while
being unable to tell these first two cohorts apart (Table 3.5).

While, with the other measurement modalities, VPI shows a somewhat as-
cending trend, with A/V Ratios it shows a clear spike for NPDR values (Figure
3.1). This might happen because the illness affects arteries and vein in a different
way. Remembering the formula for VPI calculation, NPDR seems to be the cause
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of an increase in perimeter pixels in arteries, while seeming to not cause similar
changes in veins. Also, looking at the Artery distributions, it can be seen that
there seem to be significantly more perimeter pixels in images of NPDR patients
compared to images of NoDR patients.

According to measurements made by Chu et al. on Optical Microangiography
(OMAG) OCTA images, [35], VPI was found to decrease with the presence of the
illness. VPI was also found to decrease in Sickle Cell Retinopathy [21]. In this
study, however, it seems to not follow these global trend. Perhaps this discrepancy
is due to the measurement modalities, which did not include unclassified vessel
maps. Perhaps, differentiating Arteries from Veins has a more complex influence
on the measuring process.

4.1.2 VDI

The Vessel Diameter Index, which is calculated with Equation 2.2, represents the
average diameter of all the vessels in the image. In this study, VDI was the only
feature to not show a significant p-value in the A/V Ratio measurements (Table
3.3). Conversely, it seems able to differentiate Control and NPDR patients from
the NoDR ones (Tables 3.5 and 3.7). This separation seems to be clearer in the
Vein measurements.

The NoDR distribution can be distinguished based on the fact that its values
are broadly higher than the ones in the other two cohorts, as seen in Figure 3.2.
Remembering the formula for VDI calculation, NoDR patients seem to suffer from
an increase in area of the vessels and/or a decrease in their skeleton pixels (total
length of the vessels). The distributions of Vessel Skeleton Density and Vessel
Area Density should help us to better understand the balance of these two effects.
Since the A/V Ratio distributions do not seem to be significantly different from
one another, it can be stated that the equilibrium between VDI in Arteries and
Vein seems to be maintained.

VDI is also the only feature in this study that seems to be able to differentiate
between all three NPDR cohorts (Table 3.12). As seen in Figure 3.7, Averaged
VDI values (like Artery and Vein ones), show a very clear ascending trend between
the cohorts, with the Mild NPDR distribution being quite compact. A static A/V
Ratio trend suggests that the relationships between Artery and Vein VDIs are
conserved in all stages of NPDR. Taking into account the A/V Ratio information
from before, it can be observed how A/V Ratio VDI values seem to be consistent
among all distributions.

Chu et al. found that VDI increased in NPDR patients [35]. A significant VDI
increase was measured between Control and Severe NPDR patients in Superficial
Layer OCTA by Kim et al [36], who also observed a positive correlation between
VDI and Diabetic Retinopathy Severity. This positive correlation can be found
in this study in Figure 3.7. Healthy eyes could not be differentiated from Mild
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NPDR eyes. Frizziero et al. measured VDI in ring-shaped regions of interest
in OCTA images and observed a significant decrease of the feature in Mild and
Moderate NPDR patients compared to the Control cohort [37]. These levels of
significance were not found in Severe NPDR eyes. It was also observed that
”larger peripapillary vessels showed a significant increase in VDI in NPDR eyes.”
The behaviour of VDI in NPDR does not seem to be universal. Moreover, since the
NoDR cohort was not included in these cited studies, the spike in VDI observed
in NoDR patients in this study could not be reported.

4.1.3 VSD

The Vessel Skeleton Density, which is calculated with Equation 2.3, represents
the share of skeleton pixels in the image. In other words, it is a measure of the
combined lengths of the vessels in the image. In this study, VSD was found to be
most significant if measured by taking A/V Ratios. In this way, this feature seems
to be able to differentiate the Control patients from the NPDR ones (Table 3.6),
while not managing to show a significant p-value after the Bonferroni Correction
in the NoDR vs NPDR cohorts test (Table 3.7).

As can be observed in Figure 3.3, VSD shows a very weak increasing trend for
Artery and Average values, but it also shows a very weak decreasing trend for the
values measured on Vein maps. These two seemingly weak trends have a combined
effect in the A/V Ratio measurements. As can be seen in their distributions,
values from NPDR patients experience a bump such as their distribution can told
apart from the Control patients cohort. Thus, it seems that the slight increase
in Arteries and the slight decrease in Veins of VSD makes their ratios a useful
measure to describe what appears to be a disequilibrium.

Chu et al observed an increase in VSD between Control and NPDR patients
[35]. This trend is weakened in this study’s Averaged distributions, which are
closer to a measurement on an unclassified image. Kim et al., however, found a
significant VSD decrease between Control patients and both Mild and Severe
NPDR cohorts, demonstrating a negative correlation with the severity of the
illness. Durbin et al. also observed a negative correlation between VSD and
severity of Diabetic Retinopathy (and also age of the subject) [38]. Khadamy
et al. found a significantly lower VSD among DR patients compared to Healthy
ones [28]. In this study, a very weak version of both trends can be observed in
Arteries and Veins. However, apart from A/V Ratio, no VSD distributions are
statistically different from the others.
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4.1.4 VAD

The Vessel Area Density, which is calculated with Equation 2.4, represents the
share of area pixels in the image. In other words, it is a measure of the combined
areas of the vessels in the image. It was chosen also because it strongly correlates
with FAZ Area and FAZ Acircularity [34]. In this study, VAD was found to be
most significant if measured by taking A/V Ratios (Table 3.3). Like VPI, this
feature seems to be able to differentiate the Control and NoDR patients from the
NPDR ones (Tables 3.6 and 3.7), while being unable to tell these first two cohorts
apart (Table 3.5).

As can be observed in Figure 3.4, VAD shows a very weak increasing trend for
Artery and Average values, while not showing a particular trend for the values
measured on Vein maps. As can be seen in their A/V Ratio distributions, values
from NPDR patients experience a bump such as their distribution can told apart
from the Control and NoDR patients cohorts. Thus, it seems that also NPDR
VAD A/V Ratios suggest a disequilibrium that does not occur in patients with
Diabetes alone. Remembering the formula for VAD calculation, it is clear that
any differences in distributions are due to a significant increase or decrease of
the total vessel area in the image. In case of A/V Ratios, a significant increase
in NPDR VAD values means that the area of arteries increased and/or the area
of veins decreased. Thus latter case does not seem to be happening, since Vein
distributions are observed to be indistinguishable from each other (Table 3.2).
In fact, measurements from VPI, VSD, VDI and VAD seem to suggest that vein
microvasculature is affected by NPDR in a minor way compared to arteries.

Chu et al observed that VAD decreases in NPDR patients, but ”has the com-
plication of not changing when there are decreased perfusion and vessel dilation
happening at the same time” [35]. This fact might explain the weak or absent
trends in VAD distributions. Moreover, since in that study there was no NoDR
cohorts, some of those changes could have been introduced by Diabetes. The
bump in A/V Ratio NPDR values might thus be interpreted as an imbalance
between decreasing perfusion and vessel dilation in arteries and veins. The latter
component seems to beat the former in artery measurements, causing a significant
increase in A/V Ratios.

Kim et al also found a significant decrease in VAD from Control to NPDR
patients [36]. This decrease slowed when Severe NPDR becomes PDR. However,
Hyungwoo et al observed an increase in VAD when NPDR approaches PDR [34].
Frizziero et al also found VAD to be ”significantly reduced in NPDR eyes, along
with the progression of NPDR” [37]. In his review, Tey et al assert that ”vessel
density decreases in a patient with DR, as well as a diabetic patient without DR,
attributing to the fact that parafoveal capillary nonperfusion may potentially be
an early sign of DR” and that ”despite the contradictory results, VAD has shown
to decrease in DR” [27]. The absence of a descending trend in this study might
be explained by the work by Khadamy et al, which state that ”Repeated VD
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measurements using the same device is reliable; however, significant variability
exists in measurements using different devices and methods. Hence, comparisons
should be made using the same type of device.”. Also, it states that VAD is
correlated with age and sex but not with HbA1c or duration of Diabetes. Thus,
it can be seen that there are many variables at play behind this simple feature,
and a direct comparisons may not be so informative.

4.1.5 VCI

The Vessel Complexity Index, which is calculated with Equation 2.5, represents
the visual complexity of the pattern of the vessels. In this study, VCI was found
to be the feature with most significant p-values, achieving statistical significance
in every feature set (Tables 3.1 to 3.4). In the Artery, Vein and Average mea-
surements, the NoDR distribution can be differentiated from the other Control
and NPDR patients. In A/V Ratio measurements, the NPDR cohorts can be
differentiated only from the Control one.

As can be observed in Figure 3.5, VCI values show a triangle-shaped trend.
Looking at the A/V Ratio distributions, there seems to be an ascending trend.
There seem to be a growing imbalance between Artery and Vein VCI that starts
in patients with Diabetes and increases in patients with NPDR. Remembering the
formula for VCI calculation, it is clear that understanding the underlying causes
of such changes might not be so straightforward. However, the previous features
could be used to help this explanation, namely VPI and VAD, which depend
only on one of the terms which compose VCI. It is also worth remembering that
squaring the perimeter pixels in the numerator makes the relationship between
VCI and these two features non-linear.

Chu et al [35] introduced this parameter as a microvasculature feature for the
first time in 2016, observing a decrease in VCI between Control and DR patients.
Vessel Complexity Index was reported to be able to distinguish between NPDR
and PDR patients by Alam et al [39]. Neither of these studies have tested VCI
on a NoDR cohort. VCI seems to be most useful when a significant difference in
visual complexity of the vasculature occurs.

4.1.6 FD

The Fractal Dimension, which is calculated with the Box-Counting method, is
associated with visual complexity and vessel tortuosity. In this study, FD was
found to be the worst performing feature in this study. In A/V Ratio measure-
ments, the NPDR cohorts can be differentiated only from the Control one (Table
3.6). Its Vein distributions are almost the same for the three cohorts (Table 3.2).
Its Artery and Average distributions seem to follow a very weak ascending trend
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(Figure 3.6). Perhaps this is why a significant increase from Control values to
NPDR values in the FD A/V Ratio distributions.

Kim et al observed that ”FD progressively decreased with increasing severity
of DR” [36], suggesting a gradual loss of vessel complexity. Zahid et al also found
that FD decreases in eyes affected by DR [41]. However, calculating the Fractal
Dimension using the Box-Counting method implies that its Artery and Vein (and,
by extension, Average and A/V Ratio) values are quite different from the values
that could be measured on an undifferentiated vessel map. This has the upside
of exploring new ways of DR identification, but has the downside of not being
comparable to previous measurements (which used unclassified images).

4.2 Insights given by the Significant Differences

in Value Distributions

In this section, all the significant differences that have arisen from the statisti-
cal tests are put together to gain insights about the changes on microvasculature
properties caused by the presence of Diabetes Mellitus and then Non-Proliferative
Diabetic Retinopathy.

The value distributions of VPI seem to give us the following insights:

• The number of vessel perimeters pixels of arteries increases when, starting
from a condition of Diabetes Mellitus, NPDR develops in the eye. This
increase is more contained between Healthy and NPDR eyes.

• NPDR eyes have a higher A/V Ratio concerning the vessel pixels than the
other two cohorts. This seems to be caused by an increase of Artery values
rather than a decrease in Vein values.

• NPDR stages are not differentiable between themselves based only on vessel
perimeter pixels. In the A/V Ratio case, this could mean that a certain
Artery-Vein balance, which seems only slightly perturbed by Diabetes, is
being dragged towards a higher equilibrium point, which identifies all stages
of NPDR. This balance must be linked to the effects of the illness on the
microvasculature of the eyes.

The value distributions of VDI seem to give us the following insights:

• Both in arteries and veins, average vessel diameter values soar in patients
affected by Diabetes Mellitus. This is perhaps the result of vessel swelling
and blockages.



4.2 Insights given by the Significant Differences in Value Distributions46

• A/V Ratio distributions seem to show a weak decrease in values between
Control patients and the other two cohorts. This seem to point out a shifted
balance caused by Diabetes Mellitus, which is the common trait between the
NoDR and NPDR cohorts.

• VDI is able to differentiate between the three stages of NPDR with Artery,
Vein and Average measurements. This significant ascending trend is also
found in literature, and has to be due to the vessel swelling caused by DR.
Since the A/V Ratio distributions of NPDR stages cannot be differentiated,
we can assert that, in case of VDI, differentiating Arteries from Veins seems
to produce the same results as using unclassified vessel maps.

The value distributions of VSD seem to give us the following insights:

• Due to a somewhat increased number of Artery skeleton pixels and a some-
what decreased number of Vein skeleton pixels, Control patients’ A/V Ratio
values are observed to be lower than the ones from their NPDR counterparts.
This may suggest an alteration of balance due to the opposite effect that
NPDR seems to have on the two classes of vessels.

The value distributions of VAD seem to give us the following insights:

• A/V Ratio NPDR value are significantly higher than both Control and
NoDR ones. This suggests an imbalance due to the presence of NPDR.

• While Vein distributions are totally indistinguishable from each other, Artery
NPDR values are slightly higher. This fact seems to suggest that DR could
be effecting arteries more than veins.

• Coupling this information with the ones from VSD, it is clear that VDI
Control and NPDR values seems similar because both skeleton and area
pixels slightly rise in arteries while they remain the same in veins. Also,
observing the NoDR distributions in VSD and VAD, it is clear how the VDI
ones result higher than the other two cohorts: the skeleton pixels are on the
lower side, while the area pixels are on par with the Control cohort.

• Looking at the VDI Vein NPDR distribution, it can be seen that it seems
slightly higher that its Control counterpart. However, their area pixel (VAD)
distributions seem exactly the same. A sightly higher average diameter but
the same vessel area can be explained by the contemporary swelling and
blockages of the veins, condition described by Chu et al [35].
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The value distributions of VCI seem to give us the following insights:

• Both in arteries and veins, average vessel diameter values soar in patients
affected by Diabetes Mellitus. This increased vessel visual complexity can
be the effects of many causes.

• On the A/V Ratio front, VCI seems to be able to differentiate the Control
and the NPDR patients, with the NoDR distribution being observed as
some kind of a middle point. This could be interpreted as a continuous
process that steers the artery-vein equilibrium from one point to another.
The higher NoDR values are thus still following this equilibrium path.

• Once this trend is ascertained, the causes can be at most two: the increase
in complexity of Arteries and/or the loss of complexity of Veins. Looking at
the Artery and Vein Control and NPDR distributions, the latter hypothesis
can be excluded. Thus, an increases Artery visual complexity (relative to
the Veins’ one) is possibly the cause of this trend.

• This means that, in Veins, number of perimeter (VPI) and area (VAD) pixels
should stay similar to the Control case. Also, Artery VPI and VAD NPDR
values seem to be slightly higher than Control ones. However, since the
number of perimeter pixels is squared at the numerator in order to calculate
VCI, these changes should determine the increase in Artery complexity. All
these conditions are verified in this study.

The value distributions of FD seem to give us the following insights:

• A/V Ratio NPDR values rise significantly above their Control counterparts,
and almost significantly above their NoDR counterparts. This seems to point
at an effect of Diabetic Retinopathy. This effect has to be due to an increase
in Artery complexity and tortuosity, and/or a decrease in these properties
of Veins. The latter cause is to exclude, while the former is likely the prime
cause of these changes. This reasoning is also supported by observations of
increased in visual complexity in arteries in VCI.



Conclusions

To summarize, measuring previously established features on differentiated artery-
vein OCTA vessel maps in order to identify Non-Proliferative Diabetic Retinopa-
thy has produced helpful and insightful results.

Measuring the features on arteries and veins only is not an improvement per se.
It is however very important because it enables the calculation of the A/V Ratios.
These have been shown to be a high-significance type of measurement: of the six
features, five have statistically different distributions among their cohorts. In
this study, A/V Ratios have shown the potential to differentiate NPDR patients
from at least one between the Control and the NoDR cohorts. In the case of
VPI and VAD the NPDR values can be differentiated from both the other two
cohorts. A/V Ratio measurements have also been devised to take advantages of
the imbalances between artery and vein values, thus showing a difference in effect
and/or magnitude of effect of the illness. In light of this, it is possible to say
that, in five out of the six analyzed features, NPDR introduces a perturbation
in the equilibrium that seems to be in place between arteries and veins values.
This effect is now quantifiable and is able to be used to gain more insights on and
to better identify the first stages of DR, which have been established to be the
most crucial regarding diagnosis. The fact that this type of measurement does
not seem able to distinguish between the three NPDR cohorts further validate
this hypothesis, since the changes introduced by the onset of DR are maintained
throughout NPDR stages.

An interesting finding is the high significance of VCI in all of its measure-
ments. The Vessel Complexity Index is a feature that has had minor attention in
literature. However, in this study, it has shown a great potential. Incorporating
vessel perimeter and area information into a unique parameter seems to result
in a perceivable increase in significance. Perhaps, VCI will be studied further in
future research.

Of the six features, only one seems able to differentiate between the three
stages of NPDR: the Vessel Diameter Index. This feature shows a very clear
ascending trend and can differentiate every NPDR cohort from each other. This
could be a very important finding, since, once NPDR is diagnosed, its staging
could be also done automatically in a more easier fashion.
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