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Abstract

Machine learning is a field of artificial intelligence that, day by day, is becoming part of
every aspect of human life. This is due to its excellent characteristics, including flexi-
bility and relative ease of deployment, all accompanied by an extraordinary capacity for
prediction.

However, the underlying algorithms construct complex models, often incomprehensible for
humans, causing a difficulty to provide an interpretation of the reasons that contributed
to a given output. This becomes a problem of critical importance when the decisions
derived from such systems strongly affect humans’ lives and that is the main reason why,
in many applications, machine learning techniques still struggle to find a place in use.

The development of XAI (eXplainable Artificial Intelligence) techniques have in recent
years greatly improved the interpretability of models, which have thus progressed from
acting as black-box models to ensuring a behaviour that is comprehensible to humans.
However, the novelty of such approaches is reflected in the presence of several issues related
to notions such as fairness, confidence, accessibility and many others. Among these, by
placing a particular focus on the trustworthiness of an XAI algorithm, recent studies have
shown that under this aspect, even the most widely adopted algorithms present various
problematics since, for some complex models, the explanations lack robustness, which is
tightly related to concept just mentioned.

In this work, research and analysis is conducted on the application of these techniques
to ensemble models, i.e. models derived from the combination of many individual ones.
The promise is to use aggregation to make explanations more robust and consequently
more reliable, alongside the predictive abilities of the model. In particular, we argue that
a combination through discriminative averaging of ensembles weak learners explanations
can improve the robustness of explanations in ensemble models. This approach has been
implemented and tested with post-hoc SHAP method and Random Forest ensemble with
successful results. The improvements obtained have been measured quantitatively and
some insights about explicability robustness on ensemble methods are presented.
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Abstract in lingua italiana

L’apprendimento automatico è un campo dell’intelligenza artificiale che, giorno dopo
giorno, sta entrando a far parte di ogni aspetto della vita umana. Ciò è dovuto alle
sue eccellenti caratteristiche, tra cui la flessibilità e la relativa facilità di implementazione,
il tutto accompagnato da una straordinaria capacità di previsione.

Tuttavia, gli algoritmi sottostanti costruiscono modelli complessi, spesso incomprensibili
per gli esseri umani, causando la difficoltà di fornire un’interpretazione delle ragioni che
hanno contribuito a un determinato risultato. Questo diventa un problema di importanza
critica quando le decisioni derivate da tali sistemi influenzano fortemente la vita degli
esseri umani e questo è il motivo principale per cui, in molte applicazioni, le tecniche di
apprendimento automatico faticano ancora a trovare impiego.

Negli ultimi anni, lo sviluppo di tecniche XAI (eXplainable Artificial Intelligence) ha
migliorato notevolmente l’interpretabilità dei modelli, che sono così passati dall’agire
come modelli black-box a garantire un comportamento comprensibile all’uomo. Tut-
tavia, la modernità di questi approcci si riflette nella presenza di diverse problematiche
legate a nozioni come equità, fiducia, accessibilità e molte altre. Tra questi, ponendo
attenzione sulla affidabilità, studi recenti hanno dimostrato che anche gli algoritmi più
adottati presentano diverse problematiche poiché, per alcuni modelli complessi, le spie-
gazioni mancano di robustezza, che è strettamente legata al concetto appena citato.

In questo lavoro, vengono condotte ricerche e analisi sull’applicazione di queste tecniche
ai "modelli ensemble", cioè ai modelli derivati dalla combinazione di molti predittori in-
dividuali. La promessa è quella di utilizzare l’aggregazione per rendere le spiegazioni
più robuste e di conseguenza più affidabili, insieme alle capacità predittive del modello.
In particolare, sosteniamo che una combinazione attraverso una media discriminativa
di insiemi di spiegazioni di weak learners può migliorare la robustezza delle spiegazioni
negli ensemble. Questo approccio è stato implementato e testato con il metodo post-hoc
SHAP e l’ensemble Random Forest con risultati positivi. I miglioramenti ottenuti sono
stati misurati quantitativamente e sono state presentate alcune intuizioni sulla robustezza
delle spiegazioni nei metodi ensemble.
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1| Introduction

1.1. Rationale

Machine learning (ML) is increasingly becoming an important aspect of various fields,
with applications ranging from image recognition and natural language processing to
medical diagnosis and fraud detection, in which decisions can heavily affect humans’ lives.
However, with the increasing use of AI in real-world applications, concerns have arisen
about the transparency, trustworthiness, and reliability of these systems. Indeed, ML
algorithms used in AI can be categorized as white-box or black-box. White-box models
provide results that are understandable for experts in the domain. Black-box models,
on the other hand, are extremely hard to explain and can hardly be understood even
by domain experts. This implies that, while often characterized by significantly greater
predictive capabilities along the ability to recognize more complex learnable patterns,
the latter type of models hardly finds a place in use when dealing with critical real-
world domains. As a result, the concept of explainable artificial intelligence (XAI) has
become a crucial area of research. The importance of XAI lies in its ability to provide
understandable and interpretable reasoning for the decisions made by AI systems. With
XAI, users can comprehend the decision-making process of AI systems and identify any
potential biases or errors.

There are several works in the literature that highlight the importance of model trans-
parency, interpretability and explainability. However, recent studies have shown that,
alongside the broad variety of XAI methods, there are still a number of concerns regard-
ing the robustness of the explanation values that they are able to produce, particularly in
situations in which models are feed with inputs that lay outside the data distribution they
were trained on. Furthermore, explanations provided by models may be sensitive to small
changes in the input data, leading to unreliable explanations. All these concerns justify
the need to carry out investigations in order to develop explanation methods capable of
improve this quality.
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1.2. Objectives

This work is devoted to the conduction of a study aimed at the developing of efficient
and effective methods for the application of model-agnostic XAI techniques to model
ensembles. The objective is to find a way to exploit the excellent prediction capabilities
and improved robustness of this category of models in order to enable the production of
explanation values that are consequently more robust to small perturbations in the input
data and therefore more trustable.

In this work, we decided to carry out the achievement of this goal by pursuing responses
to the following queries:

• How can we define and measure the robustness of model explanations?

• How robust the existing XAI techniques can be considered?

• How can we incorporate the concept of robustness into the design and development
of procedures for producing better explanations?

From a practical point of view, a case study is conducted by first reviewing the current
state of ML model and XAI methods used to calculate explanation values, realizing then
a comparison between the robustness of explanations obtained from the single models,
the explanations obtained applying the XAI techniques straight to the ensemble model
and finally the explanations obtained by the application of our proposed solution.

What we are aiming to is the production of explanation values that result more robust to
small deviations in the input. This means that, given a certain data point x and a slightly
perturbed version of it x′, we expect the explanations y and y′, respectively produced from
the two inputs just mentioned, to differ marginally. To achieve this objective, the idea is
to take advantage of the decomposability of the ensemble models in order to exploit the
explanation values provided by the single weak estimators for the purpose of the building
of a more robust global explanation by means of some form of combination.

1.3. Contributes

Concerning researches in the field of explainable artificial intelligence, it can be argued
that the content of this paper highlights a point of view that has so far rarely (if ever)
been explored. Typically, when trying to explain the reasons for the output of a model
ensemble, we consider the model as a whole while overlooking the individual contributions
of the weak learners that compose it. For this purpose, we propose to produce a global
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explanation of the ensemble resulting from combining the explanations of a subset of
weak learners. The underlying concept is based on the idea that the global explanations
obtained through the straightforward application of the XAI methods to the ensemble
suffer from some undesirable influence from the weak estimators who, at the prediction
stage, provided a label different from the majority. Considering these influences as noise,
what makes this work promising is that applying a discriminative selection of explana-
tions to be taken into account can yield, through their combination, a de-noised global
explanation deprived of the bad influence of the weak learners who provided an incorrect
prediction.
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2| State of the Art

Technological advances in the field of artificial intelligence have enabled us to achieve
extraordinary objectives. Nowadays, the use of AI techniques allows us to perform tasks
in a better way, in terms of speed, reproducibility and scalability [32]. For this and other
reasons, nowadays a number of decision-making problems in the real-world domain are
addressed with the help of Machine Learning models. Their reliability, accuracy and ease
of deployment are the pivotal properties that justify their widespread use. For the purpose
of this work, the focus is on supervised learning models, i.e. models that, through the use
of a labelled data set, are subjected to a training phase that consists of finding the best
values to assign to its parameters in order to minimise the prediction error. The resulting
model will thus be a tool capable of providing predictions on unlabelled data based on
the decision patterns learned from the dataset it was trained on.

2.1. Decision Tree

In this work, experiments are conducted focusing on Decision Tree (DT), which is a family
of supervised predictive models that can be used for both classification and regression
cases. They are tree-structured models composed by nodes and branches, where the
inner nodes represent the features of a dataset, the branches represent the decision rules
and each leaf node represents an outcome. There are several algorithms that allows the
construction of a Decision Tree model, such as CART [10], CHAID [25], MARS [18] and
many others. In this work we will focus on the former one, which is the algorithm deployed
in our experiments. The CART (Classification And Regression Trees) algorithm is a type
of classification algorithm that is required to build a decision tree on the basis of Gini’s
impurity index (other possibilities are entropy and information gain). To construct
a decision tree, the CART algorithm starts with the specification of a feature that will
become the root node. Gini’s formula is used to measure this impurity and identify how
well a feature classifies the given data. The feature with the least impurity is selected as
the node at any level. This process is iterated at every node at each depth level until all
the data is classified.
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Once the tree is constructed, to predict the class of a certain data point the algorithm
starts with the root node of the tree. The algorithm compares the values of the root
attribute with the attribute of the record and, based on the comparison, follows the
branch and jumps to the next node. For the next node, the algorithm again compares the
attribute value with the other sub-nodes and moves further. It continues the process until
it reaches the leaf node of the tree, within which the input prediction will be contained.
Decision Tree is one of the most commonly used models due to its speed and ease of
interpretation, mixed with a reduced need for input data cleaning, compared to most
models. However, it suffers from some disadvantages, such as the increasing complexity
of the algorithm in the case of multi-labelled classification problems, the inability to learn
excessively complex patterns and the tendency to overfit the data [10].

2.2. Ensemble Methods and Bagging

When dealing with problems such as the overfitting of training data, one outstanding
solution is surely represented by the so-called ensembles of models. There are in fact
several techniques that allow the contributions of individual models to be put together
to provide more accurate and robust predictions. Ensembles are designed to increase the
accuracy of the single models [19]. To better understand, human being tends to apply the
same kind of reasoning when dealing with real-life decision processes, by seeking several
opinions before making any important decision. We weigh the individual opinions, and
combine them to reach our final decision [34, 36]. Indeed, the main idea behind the
ensemble methodology is to weigh several individual estimators and combine them in order
to obtain an estimator that outperforms every one of them. The individual models that
we combine are known as weak learners. We call them weak learners because they either
have a high bias or high variance, which is the reason why they cannot learn efficiently
and perform poorly. A high-bias model results from not learning data well enough. It
is not related to the distribution of the data, hence future predictions will be unrelated
to the data and thus incorrect. On the other hand, a high variance model results from
learning the data too well. It varies with each data point, hence it is impossible to predict
the next point accurately. As we know from the bias-variance trade-off, an underfit model
has high bias and low variance, whereas an overfit model has high variance and low bias.
In either case, there is no balance between this two quantities. To overcome this problem,
ensemble learning tries to balance this bias-variance trade-off by reducing one of this two
quantities.
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Bagging. Among all the ensemble methods, Bagging [7], also known as bootstrap aggre-
gating, is a powerful model which helps to prevent overfitting by means of the aggregation
of multiple versions of a predicted model. We use it for combining weak learners of high
variance, to produce a more balanced model. Each model is trained individually, and
combined using an averaging process. The primary focus of bagging is to achieve less
variance than any model has individually. As the name says, the method consists in two
main steps: Bootsrapping and Aggregation. The first one involves resampling subsets of
data with replacement from an initial dataset. In other words, subsets of data are taken
from the initial dataset by means of a drawing process in which an individual data point
can be sampled multiple times. These subsets of data are called bootstrapped datasets
or, simply, bootstraps. Each one of them is used to train a separate weak learner. In
the aggregation phase, the individual weak learners are trained independently from each
other in a way that each estimator makes independent predictions. The results of those
predictions are aggregated at the end to get the overall one, using either max voting (used
for classification problems, consists in taking the most occurring prediction) or averaging
(used for regression problems, consists in taking the average of the predictions).

2.3. Random Forest

One relevant case of ensemble method is that of tree ensembles, that improve the gen-
eralization capability of single decision trees, which are usually prone to overfitting. To
circumvent this problem, in fact, tree ensembles combine several trees to obtain an aggre-
gated prediction by means of a majority voting [5]. In this work, particular attention is
placed on Random Forest (RF), a very successful machine learning tool that exploits the
combination of independent decision trees to build up a more powerful learner. Indeed,
a Random Forest is a classifier consisting of a collection of tree-structured classifiers in
which each tree casts a unit vote for the most popular class to assign to the input sample.

There are several works in the literature that introduce different approaches for con-
structing the ensemble. To cite a few examples, in [7] each tree is trained on a randomly
selected version (without replacement) of the training set (bagging), in [15] the split at
each node is selected from the best K splits, in [8] several training sets are generated as a
consequence of randomising the outputs of the original one, in [24] each tree is grown by
randomly selecting a subset of features, and in [21] the splitting points in each node of the
tree are selected randomly instead of using the optimal split based on the training data.
In the case of this work, experiments have been carried out using the Random Forest
as a reference model, as specified in [9], where bagging (Bootstrapping + AGGregation)
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is used in conjunction with a random selection of features. This particular method has
been shown to come with a significant increment in the classification accuracy as well
as in the ability to generalize of the model with respect to Decision Tree [9, 24]. One
of the key ideas behind Random Forest is the use of random feature selection. Instead
of using all the available features to construct each decision tree, the algorithm selects
a random subset of features for each tree. This helps to reduce the correlation between
the individual trees and increase the diversity of the ensemble. In addition, the use of
bootstrapping also helps to increase the diversity of the trees. As already mentioned, the
bootstrapping technique consists of constructing a new training set for each tree in the
ensemble by dragging and replacing the data points that make up the ensemble. In each
bootstrap training set, about one-third of the instances are left out, which are going to be
used to conduct the out-of-bag estimates to assess the performance of the corresponding
weak tree. To make a prediction for a new input instance, the model applies each of the
individual decision trees to the input and combines their predictions. In a classification
problem, the final prediction is the class that receives the most votes from the individual
trees. In a regression problem, the final prediction is the average of the predictions made
by the individual trees. One of the main advantages of this ensemble is its ability to han-
dle high-dimensional data with complex interactions between the features. The algorithm
can also handle missing data and noisy data, making it a robust and reliable method for a
wide range of applications. In addition, the use of multiple decision trees reduces the risk
of overfitting, which is a common problem in many other machine learning algorithms.

2.4. eXplainable Artificial Intelligence (XAI)

However, there are certain areas of competence in which addressing the problem of under-
standing how a model produced a certain output becomes a matter of great importance
[22]. Many algorithms construct models that are opaque for humans [11], while explana-
tions that support the output provided by a model become crucial in fields such as, for
example, medicine, where an expert needs a lot of information about the features that
contributed to the making of a certain decision [39]. Furthermore, XAI techniques not
only improve the trustworthiness and transparency of ML models by providing expla-
nations and simplifications of so-called “black-box models” but can also act as tools for
extracting new knowledge from them.

Having said that, if some models enjoy intrinsic explainability (e.g. Decision Trees), oth-
ers, more complex, act as real black boxes during their decision making process [5]. A
striking case is provided by Deep Neural Networks, which are highly praised for their
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ability to learn complicated relationships between inputs and outputs, at the cost, never-
theless, of an increasing difficulty in interpreting the reasons for certain choices. Speaking
of ensembles of models, specifically ensembles of trees, this technique, while effective
against overfitting, makes the interpretation of the resulting model more complex than
that of each of its component trees [5].

In general, it is well-known that there is a clear trade-off between the performance of a ma-
chine learning model and its ability to produce explainable and interpretable predictions.
In fact, although they enjoy greater transparency than black-box models, intrinsically ex-
plainable models are not as powerful and fail to reach the state of the art when compared
to the former [27].

Post-hoc Explainability. When a model does not meet the requirements to be consid-
ered intrinsically explainable, it is necessary to apply methods to explain the reasons for
its decisions. In this case, we are referring to post-hoc explainability techniques, which
can help to interpret the output of a model by giving a measurement of how much a
certain feature of the input data contributed to the final decision. These can be divided
into model-agnostic, which are applicable to any type of model, or model-specific, which
are tailored or specifically created to explain certain ML models. In this work, we will
focus our studies mainly on the former category.

Model-agnostic post-hoc explainability techniques are designed to adapt their use to any
type of model. The main types of approach consist of improving the interpretability of
a model by simplifying it, or by extracting knowledge directly from it, with consequent
visualisation. Following the taxonomy stated in [5], we can divide these techniques into
the following main categories:

• Explanation by simplification. The opaque model is approximated by a sim-
plified version of it, which is easier to interpret. The difficulty in applying this
technique lies in the need to consider models that are flexible enough to be approx-
imated effectively, regardless of their original complexity [6]. Within this category
we also find some local explanations techniques, among which we mention Local
Interpretable Model-Agnostic Explanations (LIME). The functioning of LIME con-
sists in identifying an interpretable model that is able to faithfully approximate the
predictions of the original model, within a neighbourhood of the input data point
whose output we intend to explain [35].

• Feature relevance explanation. This type of techniques aims to rank features
according to their relevance in the determination of the output of a given model.
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Among the various techniques belonging to this category, one that is certainly worth
mentioning is SHapley Additive exPlanations (SHAP). SHAP is a technique derived
from Game Theory, which uses the formula for calculating the players’ Shapley
Values to attribute to each feature a value indicating its importance in the prediction
process, following the principles of local accuracy, missingness and consistency [29].

SHapley Additive exPlanations (SHAP). We include a separate paragraph to talk
in details about SHAP, which is the XAI technique used as a reference method for the
experiments conducted in this work. One of the main challenges in interpreting the
predictions of complex machine learning models is understanding the contribution of each
input feature to the final prediction. SHAP addresses this challenge by providing a way
to assign an importance value to each feature based on its contribution to the prediction.
The importance values are calculated using game theory concepts, specifically the Shapley
values which are a way to calculate the contributions of each player in a cooperative game
and so to find the most fair way to distribute the final prize basing on them. In a ML
setting, the feature values of a data instance act as players in a coalition. In such a case,
the Shapley value is the average marginal contribution of a feature value across all possible
partitions of the feature space. Let A be the set of features of the input space, the formula
to calculate SHAP explanation value for a feature a ∈ A of the input x, coming from [29],
is the following:

ϕa(x) =
∑

S⊆A\{a}

|S|!(|A| − |S| − 1)!

|A|!
[
fS∪{a}(xS∪{a})− fS(xS)

]
(2.1)

where S is a partition of setA (the sum is built upon every possible partition of the feature
set) and f(·) is the prediction function of the model we want to explain. The formula works
by computing the SHAP values for each input feature of a given instance, which indicates
the amount by which the feature affects the predicted output. To calculate such an
influence, each marginal contribution of the feature is calculated as the difference between
the prediction for feature set S ∪ {a} and the prediction for the set S. These marginal
contributions are then averaged through a weighted mean over all possible partitions
S ⊆ A \ {a} to obtain the feature-specific SHAP explanation, that can be a positive or
negative value basing on the type of influence of the feature on the prediction. The final
SHAP explanation for a given input x is the set of all feature-specific SHAP explanations,
thus written as:

ϕ(x) =
{
ϕa(x) | ∀a ∈ A

}
(2.2)
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One of the key advantages of this technique is its ability to provide local and global ex-
planations for individual predictions. Local explanations can be generated by calculating
the SHAP values for each feature for a specific input instance, while global ones can be
generated by aggregating the SHAP values across multiple samples or across the entire
dataset. The global explanations can be visualized using various techniques, such as a
feature importance plot or a dependence plot. Since its introduction, there have been
many developments and variations of the SHAP technique. For example, one popular ex-
tension is the use of TreeSHAP [30], which provides a more efficient way to calculate the
SHAP values for decision tree-based models. Another extension is the use of KernelSHAP
[29], which provides a more accurate way to estimate the SHAP values for models with
non-linear interactions between the features.

Robustness of Explanations. Although the aforementioned XAI techniques enjoy
many desirable properties, including the near absence of the need to make modifications
to existing models in order to be applied, they also have several limitations, mainly con-
cerning their robustness. In [33], robustness is defined as the ability of a model to provide
consistently correct or incorrect output, like the original output, when given slightly per-
turbed versions of the starting data point as input. When transposing this quality to XAI
algorithms, many of them fail to produce explanations that respect this principle. To cite
an example, in [26] is highlighted the inability of most of the saliency methods to be invari-
ant to simple transformations. In [31], a taxonomy is defined concerning the analysis of the
robustness of an XAI algorithm. In particular, three sources of instability in explanations
are identified as causes of greatest interest, namely input perturbations, model changes
and hyperparameters selection. Focusing on the former element, intuitively, robustness
means that similar inputs must produce similar explanation values, that is, regardless of
its method of representation, an explanation, in order to be considered valid, must remain
(almost) constant in its vicinity [2].

It is important to specify that there is a substantial difference between the robustness of
an ML model and that of an XAI algorithm. When we refer to the former, we usually
want to measure the ability of a model, which has performed well in the training phase,
to behave equally well in the deployment environment which often differs from the envi-
ronment in which training data was gathered [38], that is, from a practical point of view,
to enjoy more or less the same accuracy even during the testing phase. Concerning the
second one, instead, we expect an XAI method to produce explanations that, on average,
do not vary excessively (with respect to distance from the original input) within the neigh-
borhood of a data point of interest, thus remaining consistent in the face of imperceptible
changes in the input. It is important to specify that "imperceptible" means that the
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perturbation does not lead to change in the prediction. Having said that, when we talk
about robustness we typically refer to either mean or adversarial robustness. In evaluat-
ing the mean robustness of an explanation algorithm, Speaking of adversarial robustness,
instead, we refer to the production of inputs that are specifically designed by an adversary
to force a machine learning system to produce erroneous outputs [12], that is an input
that maximises the error of the system. However, this type of robustness measurement
appears to be more suitable for applications in the field of cybersecurity with regard to
decision-making models, in order to assess the robustness of a model to adversarial attacks
[37] (a scenario which hardly happens when we deal with model explanations). For these
reasons, in this work to characterize the trustworthiness of XAI methods the choice fell
on the mean robustness.

Random Forest Intrinsic Explainability. As already mentioned, Random Forest is
one of the most widely used category of model, which boasts many successful applications
in the field of ML. Concerning its intrinsic explainability, however, this decreases as the
number of weak learners in the ensemble increases. Random Forest is able to provide a
measure of the importance of each feature regarding the prediction, however this is not
sufficient to consider the model transparent. It is, in fact, necessary to have a better
understanding of how much each feature contributes to a certain label assignment and
especially to understand it on a sample-by-sample basis. One way to overcome the in-
herent lack of explainability of Random Forest models is to apply XAI model-agnostic
algorithms, such as SHAP, to obtain explanations that match the characteristics we are
looking for. At [2] the authors observed that such an application yields values that only
partially meet the expectations. Although the method provides the contribution of every
feature for each data point in most cases the corresponding values have low robustness
to small perturbations of the input. This can be interpreted as a symptom of a lack of
trustworthiness of these explanations. On top of that, Decision Tree is a model with very
good intrinsic explainability but by design it creates hard decision boundaries meaning
that small changes in the input can lead to abrupt changes in the explanations. Random
Forest relies on the combination of several weak learners to create a smoother decision
boundary that better adapts to the real one. Hence, it is expected that the softer bound-
aries that provide a more robust model will also provide more robust explicabilities.

RF-specific Explainaibility Methods. We include a specific subsection to discuss
the inherent explainability for Random Forest in order to provide a global overview of
efforts done on XAI specifically for this technique. There have been several works devoted
to the development of explanation techniques. The following are some examples of the
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current state of the art in the domain of Random Forest explainability and, more gen-
erally, tree ensembles, mostly taken from [35]. Starting from methods of simplification,
in [17] counterfactual sets are extracted from the model to create a more transparent
version of the same, [16] poses the idea of training a less complex, and thus more in-
trinsically explicable, model on samples randomly extracted from the test set labelled by
the ensemble, in [14] it is explained how to construct a Simplified Tree Ensemble Learner
(STEL) on the basis of rules extracted from the ensemble and selected through feature
selection and complexity-driven criteria, finally [23] presents as a solution that of training
two models, one more complex (i.e. opaque) dedicated to prediction and a simpler one
(i.e. transparent) that will be used to extract explanations, whose simultaneous use is
governed by statistical divergence measures. Speaking, instead, of methods related to
feature importance, among the earliest works on the subject we can find [10] and [3] in
which the influence of a feature is analysed by means of random permutations of Out-
Of-Bag (OOB) samples and measured through the use of metrics such as MDA (Mean
Decrease Accuracy) and MIE (Mean Increase Error), which is followed by the work in [4]
that makes use of feature importance measurement and partial dependency plots as tools
to provide humans with information regarding the underlying learning processes in order
to successfully extract knowledge from them.

Nevertheless, although these can be considered successful applications in the field of tree
ensembles’ explainability, in all cases it can be seen that robustness is not a property that
is contemplated as a measuring instrument for their effectiveness. An XAI algorithm, in
order to be considered robust, must be able to produce explanations that do not vary
excessively as a result of small perturbations of the original data point.
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In the following chapter, the work done on the design and conduction of the experiments
and the data used are presented. By examining the literature, one can see that robustness
is a property for which a measurement method has not yet been unanimously defined.
Furthermore, among the various works that can be found on this subject, very few concern
the specific application of the concept of robustness to model explanations. However, as
shown in the coming sections, it was still possible to identify the most suitable metric for
the conducted experiments by making use of the notion of local Lipschitz continuity, which
was initially used as a starting point to formally assess the robustness of the classic model
explanations, and subsequently as a key tool to conduct a comparative analysis between
the latter and the developed procedures. The comparisons immediately showed that
combining the explanations of the weak learners in an ensemble leads to the production
of values that significantly improve this characteristic, so it was decided to explore such a
path until the development of the procedure called AXOM (Averaging on the eXplanations
Of the Majority), with which remarkable results were obtained. Before going into details
with the various steps that led to the development of the solution, we include some specific
paragraphs that can help the reader to better understand some critical parts of the work.

Benchmark models and method. We decided to conduct the experiments using
Decision Tree and Random Forest as the reference models and SHAP as the reference XAI
algorithm. The main reason behind this choice is that the simplicity and the authors’ good
confidence with these tools were key features in understanding the mechanisms behind the
process of evaluating the robustness of explanations, given the novelty of the study. It was
possible in this way to relate the results back to some well-known behaviors of the models
and method, so as to provide better insights into the chosen approach. In addition, given
the low computational capacity available at the time the experiments were performed, the
speed of DT, RF, and TreeSHAP was crucial to be able to conduct the work in reasonable
time.

Zones of explanation constancy. SHAP is a method designed in such a way that,
when applied to Decision Tree (and, consequently, tree ensembles), as long as one feed the
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algorithm with input data that activate the same decision branch, it will always provide
constant explanation values. We will refer to the portions of space within which the XAI
method outputs a constant value as zones of explanation constancy. When dealing with
tree ensembles, two data points xi and xj do not fall in the same zone of explanation
constancy if the two inputs activate two different decision branches in at least one of the
weak trees of the ensemble. Note that this does not necessarily mean that the two input
points produce a different prediction. Indeed, in Fig. 3.1 is shown a very simple example
in which this kind of behavior is achieved.

2-Dimensional plots. In this work, heatmaps were produced basing the values ob-
tained from 10000 perturbed xj points, 100 for each row and 100 for each column. In
order to make the representation in two dimensions possible (and only for the purpose
of the plots), all graphical analyses were conducted by constructing the surroundings of
the points of interest with perturbed points only along two axes of the feature space. In
this regards, it is important to mention is that, for every heatmap produced in this work,
the choice of the features in question was partially arbitrary, using as the only criterion
a compromise between the need to analyse significant features and that of choosing axes
along which the perturbations did not cause changes in predictions too frequently (which
produce areas that do not fall within the cases of interest for the purposes of the robust-
ness calculation, see Section 3.1 for a more detailed discussion in this regard), so as to
provide clean and significant plots in their entirety.

Figure 3.1: Zones of explanation constancy - As explained, as far as two data points activate the same prediction
branches, and thus the same predicted label, they will produce the same SHAP explanation values, while two data points
that activate different decision branches lead to the production of different SHAP explanation values. However, this latter
case does not necessarily imply the fact that the predicted labels are different. This simple example illustrates how two
inputs that share the same prediction label can lead to the production of two different explanations.
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3.1. Robustness Metric Definition

As a first step, we need to rigorously define a method to quantify the robustness property
of an explanation. The choice, basing on the work presented in [2], fell on the notion of
Lipschitz continuity, in this case to be locally applied. It is, in fact, defined as follows:

Definition 3.1.1. f : X ⊆ Rn → Rm is locally Lipschitz if for every x0 there exist
δ > 0 and M ∈ R such that ||x− x0|| < δ implies ||f(x)− f(x0)|| ≤M ||x− x0||.

Making use of this notion, the paper analyses, for each sample xi of the test set, a circle
Bϵ(xi) of radius ϵ of the data point in search of the maximum variation of the explanation
value L̂(xi), basing on the formula:

L̂(xi) = max
xj∈Bϵ(xi)

||g(xi)− g(xj)||2
||xi − xj||2

(3.1)

where the function g(·) of interest is the one implemented by the XAI algorithm, in our
case the SHAP function expressed in 2.2.

The choice of searching for the maximum value, however, results in measurements that
are unreliable for the purpose of a balanced and fair calculation of robustness around a
given data point. The reason lies in the fact that, especially in the specific case where
SHAP explanations are applied to a Random Forest model (composed by several weak
Decision Trees), the values of interest are eclipsed by the peak measured in the area closest
to xi. This is because within each of the zones of explanation constancy (see discussion
at the beginning of Chapter 3) different from the one to which the xi point belongs, the
value of fraction in (3.1) increases as the distance of xj with xi decreases, because of the
denominator. In simple words, when ||xi − xj||2 has a very low value, but large enough
to change decision branch even in only one of the weak trees in the ensemble, the value
of L̂(xi) diverges. Arguably, this is a very frequently encountered case, also basing on
the number of estimators of which our ensemble is composed, just consider the case when
the data point xi around which we want to compute the robustness of our algorithm,
is on the boundary of one of the above-mentioned zones. Fig. 3.2 shows, for each of
the examined datasets, an example comparing the values obtained by first considering
the difference (top) of the SHAP explanation values and then their incremental ratio
(bottom). Specifically, in both cases each xm point of the map represents a 2-dimensional
version of the p-dimensional point xj. Being ax and ay the two features that vary along
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the two axes, we define the correspondence between xj and xm as:

xj(xm) =
{
xj,1, ..., xj,ax−1, xm,ax , xj,ax+1, ..., xj,ay−1, xm,ay , xj,ay+1, ..., xj,p

}
(3.2)

In this way we can formally define the computation of the heat value of each point of the
two maps. The explanations’ difference map follows:

Hd(xm) = ||g(xi)− g(xj(xm))||2 (3.3)

while the explanations’ incremental ratio map follows:

Hr(xm) =
||g(xi)− g(xj(xm))||2
||xi − xj(xm)||2

(3.4)

where, again, g(·) is the SHAP explanation function defined in (2.2). It can be observed
that the tendency of the values in the incremental ratio is to tend towards infinity as
one approaches the centre of the space, although the differences in SHAP explanation are
sometimes negligible. This behavior is the consequence of the presence of the normaliza-
tion factor ||xi−xj||2 at the denominator of (3.1), which value tends to 0 as xj approaches
xi. This is reflected in the fact that using such a metric concentrate in penalize the models
that creates a lot of explanation boundaries (especially if close to the xi point) instead of
assessing the real robustness within the neighborhood.

Figure 3.2: SHAP explanations difference and incremental ratio heatmaps comparison - The picture shows
a comparison between the difference (top, see eq (3.3)) and the incremental ratio (bottom, see eq (3.4)) of the SHAP
explanations produced by Random Forest in a neighbourhood of some xi points of interest, on each of the four datasets. It
can be seen that proximity to the centre of the search space is a factor that leads to the production of such high values that
the differences between SHAP explanations in the surrounding areas are obscured. This shows that assessing the robustness
of SHAP explanations through the maximum value of L(xi) is not a sufficiently fair method.
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Nevertheless, when it comes to considering the difference in explanation values between
one data point and another, it remains necessary to take into account the distance between
these two. Intuitively, we expect that as the two considered points get further away, the
explanations provided will also diverge more and more, and not balancing this growth
would be "punitive" toward the more distant xj points. Therefore, to avoid removing this
contribution while trying to ensure that all points within the space surrounding xi are
covered in the robustness calculation, we modify the robustness criteria to calculate the
average value of the incremental ratio between the explanation of xi and the explanation
of the xj points around it. For this purpose, the definition of a discriminated finite-
sample neighborhood is additionally provided. Let X denote the input space to which all
xi points belong, let A be the set of features of X and let f(·) be the prediction function
of the model. Define, for every xi sample of the considered test set, a discriminative
discretization of its surrounding, in which points are evenly distributed, as:

Nf,ϵ(xi) =
{
xj ∈ X | |xi,a − xj,a| ≤ ϵ ∀a ∈ A, f(xi) = f(xj)

}
(3.5)

where, finally, xi,a indicates the value of the feature a of data point xi. Given that, we now
want to calculate the robustness of the SHAP explanations on data point xi by means of
the following formula:

L̄(xi) =
1

|Nf,ϵ(xi)|
∑

xj∈Nf,ϵ(xi)

||g(xi)− g(xj)||2
||xi − xj||2

(3.6)

It can be seen that the computation of this value is significantly lighter than the one
defined in (3.1) while preserving a good exhaustiveness of the analysis of the surrounding
of the point considered. It is important to note that this function provides robustness
values that are not particularly meaningful when taken individually, i.e., it is difficult to
assess the quality of a result based on a set of values derived from a single model, as the
values obtained may differ significantly when changing dataset or XAI method. In fact,
the values obtained are only meaningful when used to conduct a comparative analysis
between the robustness of explanations of different models applied to the same dataset
with the same XAI method.

On top of that, as one can notice from the definition of the neighborhood in (3.5), we
decided to include in the robustness calculation only the perturbed samples whose label
predicted by the model is the same as the original sample. The reason behind this choice is
that, intuitively, we only expect robust explanation values as long as these only account for
a single output value. Indeed, it is reasonable to expect that a perturbed data point whose
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label differs from that of the original data point will produce an explanation that differs
substantially from that of the original data point, since different outputs are understood
with different explanations. To fix the ideas, given f(·) and g(·), respectively the model’s
prediction function and explanation function, taken a point xi and a perturbed version
of it xj, if f(xi) ̸= f(xj) then we expect g(xi) and g(xj) to also differ substantially.
Thus, considering perturbed samples with a label different from the original one in the
robustness calculation would lead to an unfair robustness calculation, which would reward
algorithms that produce robust values when this property is undesirable.

3.2. Combination of Weak eXplanations

3.2.1. Why ensembles?

As explained earlier, the robustness of the explanations turns out to be a crucial property
for them to be considered reliable and trustworthy. It is intuitively reasonable to think
that if an ensemble of models performs well on a given dataset, it is then likely that
most of the weak learners of which it is composed will contain extractable knowledge
that can be considered useful in terms of explaining a certain decision. Indeed, it can
be argued that producing explanations coming from the output of an ensemble of several
weak learners is desirable for humans to understand a prediction, just think, in a practical
case, of the tendency of many people to feel more confident about a medical opinion when
it is the result of the union of the opinions of multiple experts. Taking into consideration
that this type of aggregation has been widely shown to increase the robustness of the
predictions, it is logical to expect that the same improvements will be observed on the
explanations as well. Again, zones of explanation constancy in SHAP play a key role in
justifying the cause of this improvement. Indeed, they can be identified as the cause of
the abrupt changes in the SHAP explanations provided by Decision Tree models, since
the low complexity of the decision branches structure brings to less frequent, although
more sudden, change in explanation values, while, on the other hand, we may expect that
explain ensemble outputs will lead to the production of explanations in which, due to the
overlapping of weak SHAP explanations around the point of interest, changes in values
are smoother, which is reflected in the absence of large differences in explanation values
between two relatively close points. To prove that Random Forest produces explanations
that are the result of such overlapping, we present here this notationally-adapted version
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Figure 3.3: From DT greymaps to RF greymaps - A simple illustration of how the production of a RF greymap is
influenced by the SHAP explanations of the individual weak learners that compose the ensemble. In this toy case, RF is an
ensemble of only two DT models, which produce two greymaps that, combined through averaging, lead to the production
of a greymap in which the progression of the SHAP explanation difference function as defined in (3.3) (the point in red in
the center is xi, while the neighborhood is composed by the xj perturbed points) is significantly smoother, thus reflecting
a more desirable behavior in terms of algorithm robustness.

of SHAP formula, for a multi-labelled classification setting:

ϕk,a(x) =
∑

S⊆A\{a}

|S|!(|A| − |S| − 1)!

|A|!
[
fk,S∪{a}(xS∪{a})− fk,S(xS)

]
(3.7)

where A is the set of all the features of the dataset, a ∈ A is the feature for which we
want to compute the explanation value and fk,S(xS) is a function, built upon a partition
S of the set of feature, that returns 1 if, for the data point xS (which is the data point x
considering only the features in S), the label k is provided by the model (note that this
particular notation makes explicit the fact that we are provided with a set of explanations,
one for each feature, that are label specific). By looking at the formula, one can see that
the XAI function is linear with respect to the values predicted by the weak learners. For
this reason, averaging the explanations produced by the weak learners provides the same
value as directly applying the explanation algorithm to the entire ensemble which, for
its part, produces explanations based on predictions that are the result of averaging the
predictions of the decision trees that compose it. See Appendix A for further details.

Furthermore, to illustrate the implications of such behavior, we present two instances: a
very simple hand-crafted example in Fig. 3.3 and a practical example over the case study
datasets in Fig. 3.4. These two pictures show a comparison built basing on the variation
of the value of the explanations in the neighbourhood of certain points of interest xi

(the central point of the square maps), computed through the formula defined in (3.3)
for each xj belonging to the neighbourhood of xi. Indeed, what can be seen is that
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Figure 3.4: DT-RF comparison between heatmaps of SHAP explanations difference - Comparison between DT
and RF regarding differences in the SHAP explanation values (see eq (3.3)) around some points of interest of the different
datasets. For all four datasets analyzed, it can be seen that RF, w.r.t. DT, provides SHAP explanations that, while
suffering from a smaller presence of areas where they are constant, enjoy a smoother progression in the values which is
reflected in SHAP explanations that are overall more stable to perturbations with no abrupt numerical differences for small
perturbations.

the greymaps and heatmaps related to the explanations produced by Random Forest
depict more gradual color changes, which correspond to differences in values that follow
a smoother (thus more desiderable) progression.

3.2.2. Why combine Weak eXplanations?

Nevertheless, obtaining this behavior by means of the direct application of XAI algorithms
to model ensembles leads to the production of explanations that are smoother but do not
provide significant improvements on the robustness. On top of that, it comes natural to
wonder the reason behind this behavior. One way to try to overcome this problem could
be to exploit some form of combination of the individual weak models explanations. In
this regard, the trivial solution is to combine the contributions of the individual models
through a simple average. However, as we already shown, when it comes to linear ex-
planation algorithms like SHAP the simple average combination does not produce any
variation in the original explanation values with respect to the straight application of the
XAI method to the ensemble.

By intuition, a probable reason behind the lack of significant improvements in Random
Forest explanations is that progressively more complex models, though often better per-
forming, still tend to be more sensitive to the noise generated by the explanations of
the weak learners that provided a wrong label. Consequently, it could be argued that
in a complex ensemble in which outputs are generally produced by contributions from
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Figure 3.5: AXOM functioning illustration - A toy example to illustrate the functioning of AXOM: the ensemble (RF)
consists of eight weak learners (DT) each of whom casts a vote li on the prediction of the input, with associated explanation
ϕi. Ensemble output is chosen according to a majority vote, in which lRF = 0 wins. AXOM, to generate the output
explanation, considers averages only the explanations of the weak learners who were part of the majority, hence expressing
a prediction consistent with the final ensemble prediction.

the individual models that are widely diversified, it may be reasonable to "reward" those
explanations from the models that contributed positively to the final decision. In simple
terms, in the case of classification problems, a non-trivial variation of the above-proposed
solution is to consider in the averaging only those weak explanations that come from the
weak learners who provided as output the same label as the ensemble output. Intuitively,
a weak learner who contributed positively to the final ensemble output will be able to
provide more relevant explanations regarding the decision made. The next section will be
devoted to an in-depth analysis of this solution, called AXOM, including the implications
of such a form of combination.

3.3. Averaging on the eXplanations Of the Majority

(AXOM)

The high explicability of the weak learners that make up the ensemble is certainly the
most appealing property when it comes to robustness of explanations. However, it must
be considered that XAI algorithms such as SHAP, that are based on model output values,
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are highly dependent on the prediction accuracy for a given dataset. Although Decision
Tree’s transparency positively affects the trustworthiness of explanations, the (relatively)
low accuracy in the predictions of weak learners is reflected in the production of explana-
tions that are less robust. As mentioned above, combining the explanations of individual
learners of an ensemble can help improve this quality. Specifically, we consider only to
combine the explanations of weak learners that positively contributed to the ensemble
output, while by "positively" we mean that the classification of the weak learner matches
with the obtained by the random forest ensemble (see Fig. 3.5 for a more clear graphical
explanation).

In algorithm 3.1 the AXOM evaluation algorithm for each data point x is presented. The
method receives as parameters the ensemble e (a Random Forest trained model), the data
point x and the SHAP explainer σ. ϕw ∈ R1×p contains the SHAP explanations of the
weak learner w, being p the number of features, and an explanation is added to Φ ∈ Rn×p,
being n the number of selected weak learners, if the label provided by the weak learner lw
is equal to that predicted by the ensemble le. The final explanation axom_shap ∈ R1×p

is the mean of all selected weak explanations Φ for sample x.

Algorithm 3.1 AXOM procedure to calculate single-sample explanations for an ensemble
procedure axom_shap_explanation(e, x, σ)

le ← e.predict(x) ▷ Ensemble label prediction for x
W ← e.estimators ▷ Store the ensemble’s weak learners set
Φ← new List( )
for w in W do

lw ← w.predict(x) ▷ Weak learners label prediction for w, x
if lw = le then

ϕ←shap_explanation(w, x, σ) ▷ SHAP weak explanation for w, x
Φ.append(ϕ)

end if
end for
axom_shap ← 1

|Φ|
∑

ϕ∈Φ ϕ ▷ Mean of SHAP weak explanations
return axom_shap

end procedure

This method ensures that the obtained explanation is free from the noise resulting from
the explanations of the weak learners that provided a different label from the ensemble.
Arguably, this improves the quality of the explanation only in the case where the ensemble
has provided correct output. In this regard, when a sample-specific explanation is pro-
duced, we expect to obtain data that support the decision that was actually made. Such
information is most clearly extractable from the majority weak learners, which makes the
method useful for the purposes of understanding what led to that decision.



3| Development 25

3.4. Datasets

We decided to test the methods on four commonly used datasets from UCI Machine
Learning Repository. Specifically, the data used as a benchmark came from the fol-
lowing:

• Wine [1]. The data come from the results of a chemical analysis of wines derived
from 3 different cultivars.

• Glass Identification [20]. The data regard the study of classification of 7
types of glass.

• Seeds [13]. The examined group comprised kernels belonging to 3 different varieties
of wheat.

• Banknote Authentication [28]. Data were extracted from images that were
taken from genuine and forged banknote-like specimens (2 classes).

In Table 3.1 some other specific information as well as the accuracy of the tested models
are specified. All of these datasets address a classification task with multivariate data
points. Features of all datasets were entirely numerical, mostly real-valued, with some
integer exceptions. To ensure consistency and comparability across all variables, datasets
were standardized with values between 0 and 1 using a min-max scaling method, in order
to reduce the potential bias in analysis and facilitate the interpretation of results across
multiple variables. In this way, influence of each variable in the analysis was equalized,
allowing for the interpretation of robustness results on a common scale. It is important to
mention that among these four datasets, each one enjoys a good balancing of the classes,
except for Glass Identification. Indeed, classes 0 and 1 alone represent almost the
70% of the samples, while there are no samples at all belonging to class 4.

Datasets N. of features Training set size Test set size Accuracy
DT RF

Wine 13 160 18 88.9% 100%
Glass 10 192 22 81.8% 95.5%
Seeds 7 189 21 85.7% 95.2%
Banknote 5 1234 138 98.6% 99.3%

Table 3.1: Descriptions of the datasets with accompanying information on DT and RF performance on them.

On top of this, as one can notice, the number of features of the tested datasets was
limited to 13. The reason behind this choice is related to computational power needs. In
particular, given the choice of using 10000 points to evaluate the robustness around the
neighbourhood area of interest, datasets with at most ⌊log2(10000)⌋ = 13 features were
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chosen in order to guarantee an adequate search in the entire feature space, that is, with
at least two perturbations along each feature axis.

3.5. Experimental Design

With regard to the conducted tests on robustness, the choice of the radius of the neigh-
bourhood of the data points of the test set to be analysed was ϵ = 0.01. This value
defines the perturbation area to be analyzed and it is constant for all the experiments. It
is important to mention that all data samples are normalised to 0-1 range and thereof the
perturbation is of 1%. The same experiments were done for Decision Trees and Random
Forest models. Both were trained on each of the four above-mentioned datasets in order
to, by means of a brief grid-search validation, obtain the best model based on accuracy
metric. Two functions were then defined for calculating the value of L̄, one that performs
this calculation through the explanations obtained directly from the Decision Tree and
Random Forest models and one that performs it on Random Forest through the previ-
ously defined AXOM algorithm. For each data point xi of the different test sets 10000
perturbed xj samples are randomly generated, on which the variation of the explanation
value is calculated through the formula in (3.6). In algorithm 3.2, the method used for
calculating the robustness of the explanations of a generic sample xi is reported.

Algorithm 3.2 Procedure to calculate mean robustness of explanation for a sample xi

procedure compute_mean_robustness(e, xi, σ)
ϵ← 0.01
npoints ← 10000
gxi
← explain(e, xi, σ) ▷ Explanation of model prediction for sample xi

M ← new List( )
Nf,ϵ ← grid(xi, ϵ, npoints, e) ▷ Neighborhood of 10k points with same label as xi

for xj in Nf,ϵ do
gxj
← explain(e, xj, σ) ▷ Explanation of model prediction for sample xj

µ← ||gxi−gxj ||2
||xi−xj ||2 ▷ Incremental ratio between xi and xj exps

M .append(µ)
end for
L̄ ← 1

|M |
∑

µ∈M µ ▷ Overall robustness: average of all xj contributions
return L̄

end procedure

The method receives as parameters the model e (Decision Tree or Random Forest), the
data point of interest xi and the SHAP explainer σ. First of all, the search parameters
epsilon and npoints are fixed (in the algorithm we reported the values used in our exper-
iments) and the SHAP explanation gxi

for point xi is calculated. After that, we build a
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grid Nf,ϵ around the data point xi which is going to be used to carry out the evaluation of
the robustness in the neighborhood (we recall that the neighborhood is composed by the
xj point with same label as xi, see (3.5) for its definition). For each xj ∈ Nf,ϵ the SHAP
explanation gxj

is produced and used to evaluate µ, that is the variation of explanation
value, as defined in (3.6). Finally, the mean robustness is calculated as the average of
all the µ values. Note that this procedure is valid for both classic and AXOM SHAP
explanations. Indeed, the method explain refers in a general way to the method for
which one needs to asses the robustness.
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Robustness comparison. Table 4.1 shows the L̄ results in the form of mean and
standard deviation for each model and dataset, while Fig. 4.1 present them in a more
detailed way by means of box plots (Note: L̄ indicates the variation of explanation values
in the neighborhood, thus a lower mean value is associated with a higher robustness). It
is possible to observe from the mean and standard deviation values that the AXOM
procedure provides explanations that on average are more robust in each of the four
analyzed datasets compared with RF. However, when comparing the robustness values of
AXOM with those of Decision Tree, the former provides significant improvements only
in the datasets Glass and Banknote, while in Seeds the same average robustness can
be observed (although the standard deviation values are indicative of a better reliability
of AXOM explanations) and in Wine DT overperforms AXOM, enjoying a seemingly
perfect robustness. In the later parts of this chapter we will analyze in detail the reasons
for these anomalous behaviors.

Model Wine Glass Seeds Banknote
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Decision Tree 0.00 0.00 1.89 1.78 0.65 2.02 1.75 3.32
Random Forest 0.55 0.51 1.75 1.87 0.77 0.72 1.58 1.57
AXOM 0.47 0.44 1.27 0.72 0.65 0.67 1.28 1.34

Table 4.1: Mean and standard deviation of the L̄(xi) values calculated for each sample xi of the various test sets. Lower
values of L̄ denote better robustness to perturbations.

Figure 4.1: Robustness comparison through box plots - Box plots constructed from the L̄(xi) values of the xi samples
of the test sets of each of the four analysed datasets. By isolating the outliers, it can be seen that in all cases the AXOM
box plots represent a significant improvement in the robustness values with respect to the global RF while regarding DT,
except for the Wine dataset on which it presents an apparently perfect behaviour due to the decision boundaries too far
from the analysed test points.
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Statistical analysis. To verify the reliability of these results, two-sample t-test was
used (One-tailed Student’s T-tests were carried out for dataset Banknote, in which
population is over 30 samples and therefore considerable as normally distributed, while
Wilcoxon’s T-tests was carried out for the others, since the distributions of the series were
not normal). This made it possible to assess the probability that the improvement in mean
robustness was due to chance. As we expected, Table 4.2 shows that AXOM significantly
improves robustness over RF for all datasets (see row RF vs. AXOM), with p-values all
below the 0.05 threshold. Regarding the DT vs. AXOM comparison, neglecting for the
moment the case of the Wine dataset which we will discuss later, it can be observed
that the equality in mean robustness in Seeds is nevertheless reflected in a statistical
improvement in favor of AXOM, which possesses values deviating from the mean with
less magnitude. Indeed, Fig.4.1 shows that for this dataset the box is squeezed on zero,
but there are outliers with a very larger value with respect to the other two models.
What can be observed, still, is that the DT vs. AXOM comparison always gives better
results than the DT vs. RF comparison, again delineating the better effectiveness of the
procedure.

Comparison p values
Wine Glass Seeds Banknote

DT vs. RF <0.001 0.774 0.008 0.3023
DT vs. AXOM <0.001 0.113 0.008 0.0656
RF vs. AXOM 0.042 0.007 0.030 0.0444

Table 4.2: Two samples mean T-test values when comparing the robustness of RF, DT and AXOM, for each dataset.

Figure 4.2: RF-AXOM Robustness comparison through incremental ratio heatmaps - Sample-specific comparison
between the robustness heatmaps of explanations (see eq (3.4)) of RF (top) and AXOM (bottom). RF and AXOM produce
explanations that vary proportionally equally, except for the absence of some boundaries in AXOM due to the absence of
some weak learners’ explanations in the average. The ranges of values of heatmaps produced by AXOM, are smaller than
those of RF.
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Figure 4.3: DT-RF-AXOM full test set Robustness comparison - Comparison of the robustness heatmaps of the
explanations (see eq (4.2)) for DT, RF and AXOM for the entire dataset. The plot was produced by centering in (0, 0)
all the xi samples in the dataset so that all the samples could be fit into the same box of size 2ϵ× 2ϵ. It is clear from the
plots that, in general, RF and AXOM enjoy better smoothness and robustness in value changes than DT, with AXOM in
particular possessing darker plots in color than RF, indicative of better average value robustness.

Heatmaps plots. To get some insights about the results, we present two graphical
illustrations by means of heatmaps constructed according to the incremental ratio of
explanation values within the neighborhood of the xi points of interest.

Fig. 4.2 shows the heatmaps of the robustness of the neighborhood of all four test sets,
focusing on RF (top) and AXOM (bottom), taking a representative sample from each of
the four datasets as an example. Each H(xm) value of the map is computed as defined in
(3.4). While being not completely general, with this plot the improvement in robustness
brought by AXOM can be clearly appreciated. One can see that the two sets of SHAP
explanations vary proportionally very similarly with each other around the xi points, with
the only difference represented by the fact that the heatmaps of AXOM exhibit darker
colors, indicating lower value variations as well as more desirable behavior.

Fig. 4.3 shows the same type of comparison (including also DT), but this time by over-
lapping (through averaging) the heatmaps of all test samples. To be more specific, being
T the set of all test points of a given dataset, all xi ∈ T test samples were centered in
(0, 0) so that all samples could be fit in the same box with axes bounded inside (−ϵ, ϵ),
in which the xm points vary. As explained in (3.2), there is a correspondence between xj

and xm, this time slightly differently defined as:

xj(xm) =
{
xj,1, ..., xj,ax−1, xj,ax + xm,ax , xj,ax+1, ..., xj,ay−1, xj,ay + xm,ay , xj,ay+1, ..., xj,p

}
(4.1)

Making use of this definition, the heat value in correspondence of each generic xm point
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of the map is given by the following formula:

H(xm) =
1

|T |
∑
xi∈T

||g(xi)− g(xj(xm))||2
||xi − xj(xm)||2

(4.2)

It is possible to see from the colors of the plots that RF and AXOM (except for the
usual anomalous case represented by the Wine dataset) always exhibit more desirable
behavior than DT, with significantly smaller explanation values that vary considerably
more smoothly. Comparing RF vs. AXOM, also in this case one can evidently delineate
a similarity in explanation variance but with much smaller value ranges for the latter.

DT explanations’ robustness. Before understanding the reasons of the apparently
good robustness of DT, it is worth to recall that the accuracy of the RF model is better
than DT (see Table 3.1), and so intuitively also the expected quality of the explanations.
Having said that, AXOM improves robustness for all datasets except for Wine dataset,
when compared with DT. This is due a fortuitous behavior of the Decision Tree model for
the experimental design parameters. Indeed, it can be observed from Table 4.1 that the
obtained robustness is 0. That would mean that the robustness is "perfect", i.e. all the
SHAP explanations for the perturbed data have exactly the same value as the original
data point. However, the production of explanations that are constant over a large portion
of the feature space is only desirable behaviour if the problem to be explained is simple,
which represents a contradiction, as the need for explanations grows with the complexity
of the problem. This explains the need to construct explanations in such a way that
they are capable of modelling more complex behaviour and thus, analogous to matters
concerning the accuracy of a model, justifies the possibility of constructing "ensembles of
explanations". To recall the constancy of the explanations, at Fig. 3.4 can be observed
that for Wine dataset the differences in explanations of DT are zero-valued (and so
explanation values are constant). This happens when all the perturbed points belonging
to the neighborhood fall into the same branch of the sample under analysis, meaning that
the decision surface of the DT branches have a large margin between them, or at least
larger than the perturbation parameter that is in our case ϵ = 0.01. This can be also
appreciated for the other datasets (Glass, Seeds, and Banknote) by comparing the
robustness values obtained by RF and DT on the same datasets and samples. Indeed,
what can be deduced from the box plots is that DT tends to provide explanations that
enjoy perfect robustness only in samples that are sufficiently distant (i.e. far enough away
not to be affected by the perturbations) from the decision surfaces where a branch change
occurs, whereas for data points that are more "unlucky" in this respect, the value of L̄
is significantly larger, meaning that DT is not able to provide SHAP explanations that
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smoothly change inside the neighborhood of those samples. An example of this behaviour
is shown in Fig. 4.4 through two representative samples of Wine test set. Specifically,
by setting ϵ = 0.2 (in the experiments ϵ = 0.01 was set), and thus enlarging the range
of points plotted in the heatmaps concerning the difference in explanations as defined in
(3.3), it can be seen that DT provides explanations that, although enjoying (apparent)
perfect robustness in a relatively large neighbourhood, suffer abrupt changes in value as
soon as a change in the decision branch is reached, with values significantly higher than
those of AXOM. We recall that in DT a change of decision branch does not necessarily
imply a change of predicted label. In fact, according to the algorithm used to produce the
heatmaps, if such areas appeared in this plot they would be characterized by the color
grey.

Figure 4.4: DT-AXOM explanations smoothness comparison in Wine dataset - Comparison of DT and AXOM ex-
planations difference heatmaps for two representative samples of Wine dataset. The plots were produced using a maximum
perturbation ϵ = 0.2 to show that tweaking a data point enough to change decision branch of DT, results in abrupt value
changes in the SHAP explanations produced (even if there is no change in the prediction label, in which case we would
observe a grey area), thus proving that DT only enjoys apparent good robustness. In contrast, AXOM, while suffering
value changes even in the face of smaller perturbations, produces explanations that vary more smoothly, following a more
desirable behaviour.

SHAP values comparison. Finally, we show in detail the values resulting from the
production of explanations through the classical method and AXOM. Fig. 4.5 shows
the explanations produced from the predicted labels of four representative samples of
the different test sets, while Fig. 4.6 shows the multi-label explanation values of the
entire test sets. As one can observe, RF and AXOM tend to distribute the "merit" of
the produced output across all features, confirming the fact that such explanations are
capable of modeling and explaining more complex behaviours, compared to DT which
tends instead to load as much responsibility as possible into fewer features. At first
glance, the values of the full test-set explanations of RF and AXOM appear to have high
similarity, especially when compared with those produced by DT. To identify the reason
for this behavior, it is necessary to keep in mind that AXOM’s explanations are the result
of de-noising RF’s explanations, where the noise is represented by the explanations of the
weak estimators that provided an incorrect label (considering the ensemble prediction as
ground truth). Clearly, the fewer components that provide a prediction different from
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the ensemble prediction, the more similar the RF and AXOM explanations will be to
each other. In this regard, Table 4.3 shows the average percentage of weak learners who
provided a label different from the ensemble on the test data, i.e., the percentage of
weak explanations discarded by AXOM. It is possible to see that Glass is the dataset in
which there is more indecision within voting, while in Bank we observe behavior tending
toward voting unanimity, which is reflected respectively in a lower and higher similarity
of explanations, as observable in Fig. 4.6. In fact, although at first sight the differences
are not easy to detect, we can see, for example, that in Glass the explanations of classes
2 and 4 differ significantly between RF and AXOM for almost all features, in addition
to the fact that the ranges of values are higher in the case of AXOM. Seeds and Wine

on the other hand, as expected from the values, exhibit intermediate behavior. On top
of that, once the reasons for these behaviors are identified, the fact that the AXOM
explanations are the result of combining explanations of weak learners who "guessed"
the prediction makes the hypothesis that these values are more credible in explaining an
output reasonable.

Wine Glass Seeds Banknote
Weak Mislabeling

Percentage 12.1% 24.9% 14.0% 2.5%

Table 4.3: Weak learner’s mislabeling percentage, for each datasets. The values represent the average number of weak
learners that cast a vote different with respect to the final ensemble prediction
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Figure 4.5: Sample-based SHAP values comparison - Comparison of the SHAP values produced by DT, RF and
AXOM to explain a representative sample of each of the datasets. It can be seen that DT substantially differentiates the
values between the various features, while RF and AXOM tend to distribute the responsibilities of the output more widely,
while retaining significant differences between their values.

Figure 4.6: Full test set SHAP values comparison - Comparison of the multi-output SHAP explanations produced by
DT, RF and AXOM, for each of the datasets. As for the single-output explanations of the individual samples, it is possible
to see a substantial difference between DT explanations and those of the ensembles, which are more similar. This is a
symptom of a radical difference in the interpretation of the test set by DT and RF, while showing that AXOM, although
producing more robust values, allows similar knowledge to be extracted as RF.
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5| Conclusions

There is a growing concern about the reliability of the explanations offered by some XAI
methods. This concern is also linked to the need to build trust in artificial intelligent sys-
tems that can be integrated into our way of life, thus directing studies towards improving
the trustworthiness of models. By analysing the elements on which such characteristic
is based, robustness of explanation values was identified as a pivotal property. In this
work, in order to steer progress in this direction, we first presented as a solution the es-
tablishment of an unambiguous and justifiably fair criterion for measuring the robustness
of model explanations, based on the assessment of the variation of explanation values
around a point, and then proposed a procedure for calculating the SHAP explanations of
model ensembles as the result of averaging the explanation values of weak learners who
contributed positively to the final prediction. This approach has proven to be a method
that significantly improves the robustness of model explanations compared to explana-
tions obtained through the direct application of XAI methods to the ensemble under
consideration. We can confirm that weak learners, who enjoy greater explainability than
the complex model, taken individually can play a key role in explaining the decisions of
the ensemble to which they belong. In particular, the application of a combination of indi-
vidual weak explanations may lead to the production of more robust global explanations
through the reduction of variance in the explanations, achieved by a selection of weak
learners who provided a prediction consistent with the global output (producing explana-
tions that were consequently consistent with each other), thus eliminating noise deriving
from the explanations of weak learners who provided a different prediction, thereof con-
sidered by the ensemble as incorrect. We envisage that this approach is not limited to
Random Forest and SHAP and that it is natural to extend it to other types of ensembles,
such as Bagging or Gradient Boosting, as well as to other post-hoc XAI techniques.





39

6| Future Work

The development of explanation methods that produce more robust, and therefore reliable,
values could gradually encourage the deployment of Machine Learning tools in fields where
they currently struggle to find possibilities for use. The fact that the reliability of results
is still a major shortcoming of the models despite their high accuracy, should prompt
scientists to spend increasing efforts on researches in the field of eXplainable Artificial
Intelligence.

On the other hand, the development of this work and the achieved results pave the
ground for future investigations concerning the reliability of XAI algorithms applied to
model ensembles. It has been shown that aggregation can be used to produce "ensembles
of explanations" which are characterised by more robust values than those produced
by applying the methods directly to the global ensemble. However, although the work
presents a successful application, there are a multitude of research paths to follow in order
to improve the work, as well as make it more general.

Extension of the Analysis. It was possible to observe the performance of AXOM, in
terms of robustness, compared to standard procedures for producing explanations, with
perturbations of the given inputs of 1%, that is, with ϵ = 0.01. An interesting extension
of the analysis could be to evaluate the results of the same experiments by applying
different values of the perturbation range (however within reasonable limits). It would
then be possible to capture further insights into the behaviour of this property.

Procedure Generalization In this work, experiments were conducted considering De-
cision Tree and Random Forest as the reference models and SHAP as the explanation
algorithm. Nevertheless, it is easy to realize that the existing work can be easily gener-
alized to other types of model ensembles (e.g. bagging of models, gradient boosting etc.)
as well as to additional model-agnostic XAI algorithms (e.g LIME). It would be useful
to understand how the robustness of the procedure changes depending on the Machine
Learning tools to which it is applied.



40 6| Future Work

Performance Improvements. In ensembles of models composed of a large number of
weak learners, calculating a distinct explanation value for each of the weak learners may
be a computationally intensive task to perform, depending on the XAI algorithm used
and the model being explained. It would be interesting to develop heuristics that would
allow such computation to be performed in a more lightweight manner.

Application to Regression Problems. Given the impossibility of treating the output
as categorical classes, an interesting idea to apply the procedure to regression problems
is that of weighting the average of the explanations with weight values that decay as the
output provided by the individual model diverges from that of the ensemble. Certainly one
problem arising from the latter solution is that this would introduce the need to carefully
tune the values relative to the intensity of the decay, as well as the magnitude of the
function to be used. This could be solved by trying to evaluate parameter by parameter
the mean robustness of the explanations of the samples present within a validation set.

Making Use of Another Combination Method. The type of aggregation of weak
learners’ explanations that is shown in this work is a discriminative average, which con-
siders in the calculation only those values produced by weak learners who "agree" with
the ensemble output. It is possible that the application of different tools for aggregating
numerical values will lead to even better robustness results. Depending on the ensemble
used, it might be useful to use prediction probabilities to weight the mean, as well as to
discriminate estimators by criteria different from the one used in this work.
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A| SHAP - Equivalence between
RF global explanation and
average of weak explanations

The SHAP explanation of label k and feature i for a Random Forest model is:

ϕk,a(x) =
∑

S⊆A\{a}

|S|!(|A| − |S| − 1)!

|A|!
[
fk,S∪{a}(xS∪{a})− fk,S(xS)

]
(A.1)

where the function fk,S(xS) is the prediction function constructed on the feature set S
and returns 1 if x is classified with the label k and 0 otherwise. By calling fw,k,S(xS) the
exact same prediction function, but related to the weak learner w of the ensemble, we can
define the equation that links the predictions of the weak Decision Trees to that of the
Random Forest model as:

fk,S(xS) =
1

|W|
∑
w∈W

fw,k,S(xS) (A.2)

where W is the set of weak learners that compose the ensemble. By substituting this
value in place of fk,S(xS) in the equation (A.1) we obtain:

ϕk,a(x) =
∑

S⊆A\{a}

|S|!(|A| − |S| − 1)!

|A|!
· 1

|W|
∑
w∈W

[
fw,k,S∪{a}(xS∪{a})− fw,k,S(xS)

]
(A.3)

Given the linearity of the sum operator, we can take out the sum constructed on W , thus
obtaining:

ϕk,a(x) =
1

|W|
∑
w∈W

∑
S⊆A\{a}

|S|!(|A| − |S| − 1)!

|A|!
[
fw,k,S∪{a}(xS∪{a})− fw,k,S(xS)

]
(A.4)

which corresponds to the formula for calculating the explanations of an ensemble by
averaging the explanations of its weak learners.
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