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Abstract

In modern telecommunication networks, network observability entails the use of diverse
data sources to understand the state and behavior of the network, and its ability to provide
the required service and user experience. Because of the vast amounts of data collection
and transmission involved in this process, the network’s performance is negatively im-
pacted, and it can become difficult for network operators to identify the occurrence of
problematic behavior before it is too late.

To enable a more efficient form of data collection and aid in diagnostic operations, this
thesis aims to develop an autonomous anomaly detection system for time series data.
The system is to be developed as a microservices-based solution, to be integrated with a
software-defined networking controller platform developed at Ericsson.

This thesis describes the extensive experimentation process conducted during the develop-
ment of this system, including various methods of data processing, time series clustering,
and anomaly detection. The resulting system is a highly customizable and scalable prod-
uct, supported by modern and reliable anomaly detection models. The system is capable
of detecting several different kinds of anomalies in an arbitrary n umber of mobile network
monitoring metrics, and can be easily configured to fit the specific needs of each customer.

Keywords: anomaly detection, outlier detection, time series, software-defined network-
ing, microservices





Abstract in lingua italiana

Nelle reti di telecomunicazioni moderne, l’osservbilità della rete prevede l’utilizzo di varie
fonti di dati per comprendere lo stato e comportamento della rete, e la sua capacità di
fornire il servizio e l’esperienza dell’utente richieste. A causa delle vaste quantità di dati
che è necessario raccogliere e trasmettere come parte di questo processo, le prestazioni
della rete risultano deteriorate, e puó essere difficile per gli operatori della rete identificare
occorrenze di comportamenti problematici prima che sia troppo tardi.

Per permettere una forma piú efficiente di raccoglimento dei dati e per aiutare nelle oper-
azioni diagnostiche, questa tesi si pone l’obbiettivo di sviluppare un sistema di rilevamento
delle anomalie autonomo per dati aventi la forma di serie temporali. Is sistema é imple-
mentato mediante un’architettura a microservizi, da essere integrato con una piattaforma
software-defined networking controller sviluppata ad Ericsson.

Questa tesi descrive l’ampio processo di sperimentazione condotto durante lo sviluppo del
sistema, che include varie operazioni di trattamento dei dati, clustering di serie tempo-
rali, e rilevamento di anomalie. Il sistema risultante é un prodotto altamente scalabile e
personalizzabile, supportato da sistemi di rilevamento delle anomalie moderni e affidabili.
Questo sistema é in grado di rilevare diversi tipi di anomalie in un numero arbitrario di
metriche per il monitoraggio della rete, e puó essere facilmente configurato per adattarsi
ai bisogni specifici di ciascun cliente.

Parole chiave: rilevamento delle anomalie, rilevamento di valori anomali, serie tem-
porali, software-defined networking, microservizi
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1| Introduction

The following chapter provides an introductory view of the thesis. Section 1.1 describes
the motivation behind this work, as well as an outline of how its implementation was
conducted. Section 1.2, instead, provides an overview of the content of the chapters that
are to follow.

1.1. Problem Statement

In modern telecommunication networks, network observability entails the use of diverse
data sources to understand the state and behavior of the network, and its ability to
provide the required service and user experience.

Over the course of recent years, mobile transport networks have become increasingly com-
plex and difficult to manage, leading to the development of new approaches to centralize
the management of the network, such as software-defined networking. As a result, a com-
mon problem related to network observability is the large quantity of data that is required
to comprehensively analyze and observe the network behavior, and the load the collection
and transmission of that data puts on the network’s resources.

Collecting such large amounts of detailed data, however, is superfluous during the majority
of the network’s operations. A detailed description of the network’s state is of most interest
only when the network behaves unusually, so that they may be used to understand the
root cause of the disturbance. Because of this, most data should only be collected when
anomalies arise in the network, but the extensive size of these networks and the frequent
changes to which they are subjected make it unfeasible for this collection to be triggered
by human agents. Furthermore, the vast amount of collected data makes it difficult for
network operators to recognize when and which parts of the network may be affected by
anomalous events, making analysis possible only after the event has visibly impacted the
network’s operations.

To solve these problems, a small subset of diagnostic network metrics influenced by anoma-
lies of interest can be selected, and an anomaly detection system can be designed to au-
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tonomously detect disturbances in their behavior. Such a system would make it possible
to automatically request more detailed data from the affected network elements when un-
usual behavior takes place, and immediately alert network operators whenever the system
starts to diverge from its established patterns. What makes this task particularly difficult
to accomplish, however, is the high degree of variation that can be observed in the values
taken over time by network metrics. These metrics are often affected by various kinds
of cyclical variations, as well as permanent alterations to their behavior in response to
changes in the environment and network configuration, which make most basic detection
techniques insufficient. As a result, an anomaly detection system operating on such data
should be capable of detecting anomalies in metrics characterized by very different be-
havioral patterns, be adaptable to changes in their behavior, and be able to function in
the presence of previously unseen patterns.

1.1.1. Research Question

The purpose of this thesis is to answer the following research question:

RESEARCH QUESTION

How could an anomaly detection system for reduced amounts of mobile
network operational data be constructed?

More specifically, the goal is to design an autonomous system for detecting the presence
of anomalies in some basic network time series data, in order to notify operators, enable
the automatic adjustment of data collection, and other forms of automation. The imple-
mentation should be a cloud-native, microservices-based solution to be integrated on top
of an existing software-defined networking controller platform developed at Ericsson.

The use of microservices ensures that the system may be easily integrated with the plat-
form while undergoing development independently, so that it may be maintained and
updated without impacting the main system. The detection system should be built using
reliable and scalable technologies, and constructed to be easily configurable to suit the
needs of the end user, as well as to be easy to expand through future work.

1.2. Structure of the Thesis

The rest of this thesis is organized as follows:

- Chapter 2 explains in greater detail the fundamental concepts of networking and
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anomaly detection necessary for the understanding of the problem at hand, as well as
its relevance. It also details the context in which this work was conducted, including
the software utilized and the characteristics of the available data set and hardware,
and provides a high-level overview of the solution to be developed.

- Chapter 3 contains a theoretical explanation of the variety of methods applied
during the implementation phase, including data processing, clustering, and machine
learning techniques. It also describes the choice of strategy used to evaluate the
various tested algorithms, and the metrics employed for this purpose.

- Chapter 4 details the implementation of the thesis itself, such as the processing
operations conducted on the available data set, various attempts at clustering the
processed data, and experimentation with various machine learning libraries. It also
contains a numerical evaluation of the various tested models, and a description of
the final implemented system.

- Chapter 5, finally, summarizes the contents of this document, discusses its success
in achieving its stated goals, and lists a number of future developments that may
be carried out to further improve on its results.
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The following chapter expands on the problem statement expressed in Chapter 1, and
provides the foundations necessary for the understanding of the methods described in
Chapter 3. It explains the most relevant domain concepts, as well as the specific context
in which this thesis was carried out. Section 2.1 describes the approach of software-
defined networking, as well as its impact on the internet protocol networking industry.
Section 2.2 describes the principles of microservices architecture, and the reasons that
make it well-suited for the implementation of the anomaly detection systems. Section 2.3
describes the concept of network observability, including why it is relevant and why it is
difficult to achieve. Section 2.4, describes the fundamental concepts of anomaly detection
and time series. Section 2.5 describes the data set used as part of this study, and the
rationale behind the decisions made in its regard. Section 2.6 describes the computational
resources and software libraries used during the experimental phases of this thesis work.
Section 2.7, finally, provides a high-level overview of the system to be developed, and lists
the principles followed in its design and implementation.

2.1. Software Defined Networking

Despite the widespread adoption of the Internet, traditional Internet protocol (IP) net-
works are complex and difficult to manage. [4] This is derived from a number of issues,
including the difficulty in configuring the network according to predefined policies as well
as in response to faults or changes. This is because expressing the desired high-level
network policies requires each individual network device (routers, switches, etc.) to be
configured separately using low-level, vendor-specific commands. [33] Another source of
complexity is the high degree of vertical integration often encountered in these networks:
the control plane (which decides how to handle the traffic) and the data plane (which
forwards traffic according to the control plane’s decisions) are tightly joined, reducing
flexibility and stifling innovation. [44]

Software-defined networking (SDN), is an approach to design, implement, and manage IP
networks that entails the separation of the control plane and the data plane, thereby allow-
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ing programmatically efficient network configuration by centralizing network intelligence
in the network controllers. [5] In this way, network nodes become simple traffic-forwarding
devices that communicate with the SDN controller by means of established application
programming interfaces (API), which simplifies policy enforcement and network configu-
ration and evolution. [30] A graphical representation of SDN architecture is provided in
Figure 2.1.

Figure 2.1: Simplified graphical representation of SDN architecture.

According to Kreutz et al. [33], the pillars of SDN network architecture are that:

1) The control plane and data planes are decoupled.

2) Traffic forwarding decisions are flow-based (not destination-based), where a flow
is intended as a sequence of packets between a source and a destination that are
handled with identical service policies on the forwarding devices.

3) Control logic is moved to an external entity, the SDN controller, which provides an
abstracted network view that simplifies the programming of forwarding devices.

4) The network is programmable by way of software applications running on the SDN
controller.
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The integration of the controller with software applications is one of the fundamental
elements of SDN’s value proposition, and makes it possible to execute complex operations
over the network infrastructure, such as deploying an anomaly detection system (ADS).
In particular, SDN is suitable for the use of more advanced anomaly detection techniques
based on machine learning because of its ability to obtain a global view of the network. [58]
The programmability of SDN also ensures that these solutions can be executed on the IP
network in real-time. [59]

2.2. Microservices Architecture

Microservices architecture (MSA) is a technique for developing software that makes it
possible to structure applications as collections of small, loosely coupled software ser-
vices. In MSA, these services should be independent processes interacting via messages,
deployed in isolation, and possessing dedicated data storage tools. [20] MSA does not
mandate any specific programming paradigm, but instead provides a framework to divide
the components of a distributed application into independent entities, each one carrying
out a specific function necessary to the application’s purpose. As a result, the internal
implementation of each microservice does not have to abide by any explicit rule, so long
as it provides its functionalities to an outward-facing API.

The adoption of MSA is of particular benefit for the development of SDN controllers, as
it provides the ability to easily scale the controller’s resources to match the requirements
dictated by the network’s scale. Furthermore, it allows for increased flexibility when
developing applications such as ADSs, as they are decoupled from a specific controller
and can be integrated to expand the latter’s functionalities without the need to recompile
the controller itself. [18]

2.3. Network Observability

Network observability can be defined as the ability to answer any question about the
network quickly and easily. Network monitoring generally consists of two steps: data
measurement and data processing. The former includes collecting and storing the data,
and can be further divided into collection, preprocessing, and transmission. The latter
focuses on organizing the data as interpretable information, and can be split into analysis
and presentation. [52] A more detailed description of this process is presented as follows:

1) Collection: the process of gathering data is defined by the means through which
the data is collected, the target devices to be observed, and the frequency with
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which the information is updated.

2) Preprocessing: the raw data is aggregated and processed into some statistical
format, to aid in itemizing and tracking the measurements. A number of operations
may also be performed on the data to make it more suitable for the analysis process
that is to follow.

3) Transmission: the itemized data is transmitted to the analytics center according
to some messaging protocol.

4) Analysis: the data is analyzed to produce statistics and identify particular events.
The result of this analysis provides network status information to traffic engineering
and fault management applications.

5) Presentation: the results of the analysis process are presented in a human-readable
way, commonly in the form of graphs and tables.

As IP networks increase in size and complexity, however, monitoring increases in difficulty:
the latency and inconsistency of large networks can lead to faulty measurements [54],
and the difficulty of coordinating measurement collection from various devices mandates
efficient methods for preprocessing and transmission.

The advent of SDN architectures has made network monitoring through the collection
of measurements from different network devices trivial, providing network agents with
a global view that allows them to perform monitoring at different spatial and temporal
scales. [57] Transmission of the data is handled through the controller’s southbound API,
allowing network designers to define suitable data structures for their requirements instead
of having to rely on standard communication protocols, and analysis and presentation are
made increasingly convenient by allowing for centralized control and integration with ap-
plications through the northbound APIs. [52] Such applications include ones for anomaly
detection, which may provide additional insights into the outlier events occurring in the
network by drawing attention to and helping categorize them.

2.4. Basics of Anomaly Detection

Anomaly detection refers to the problem of finding patterns in data that do not conform
to expected behavior, which are often referred to as anomalies or outliers. According to
Hawkins [25], an outlier can be defined as: "An observation which deviates so much from
other observations as to arouse suspicions that it was generated by a different mechanism".
Outlier detection finds use in a large variety of fields due to the assumption that, in a
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wide number of application domains, anomalies in data often correspond to relevant and
actionable information. [13] The output of an outlier detection algorithm can generally
be one of two types [1]:

- Outlier scores: a score quantifying how much each data point diverges from the
expected behavior.

- Binary tables: a label indicating whether a data point is an outlier or not, typically
achieved by setting a threshold on outlier scores.

It is, however, worth mentioning the limitations inherent to all anomaly detection tech-
niques: while these systems may be able to identify probable anomalies, they will never
be able to ascertain their presence with absolute certainty. Furthermore, they may only
provide judgment on the metrics used to monitor the system, but this may or may not
correspond to the presence of an anomaly or fault in the underlying system itself. [29]

Keeping this in mind, anomaly detection systems may nevertheless provide great insights
into the behavior and health of monitored systems, bring to light undetected problems,
help in diagnosing faults and changes, and aid in root cause analysis.

2.4.1. Time Series

One of the many domains of application for anomaly detection is that of time series, for
example for the purpose of system monitoring and control. A time series can be defined
as a sequence of observations performed in succession through time, either continuously
or at discrete instants. For discrete time series, data is typically collected at regular time
intervals, and is either sampled from another continuous series, aggregated over a period
of time, or is an inherently discrete sequence. [15]

Time series data can be stationary or non-stationary. A stationary process can be defined
as a stochastic process for which the unconditional joint probability distribution is not
variable with time. [22] A common reason for non-stationarity is the presence of a trend,
a low-frequency variation in the mean that may or may not be deterministic. When the
trend is deterministic, the series can be transformed into a stationary process by removing
the trend component, which is in this case only a function of time, while non-deterministic
trends can instead be removed through differencing.

Another possible characteristic of time series is seasonality, the occurrence of repetitive
patterns in the series’ levels at regular intervals, usually quarterly, monthly, or weekly. A
similar concept to that of seasonality is that of cyclical patterns. These patterns differ
from seasonal cycles in that they do not repeat with fixed periodicity. Examples of time
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series with trend and seasonality are displayed in Figure 2.2.

(a) Time series with a trend. (b) Time series with seasonality.

Figure 2.2: Examples of time series with trend and seasonality. In both cases, the plot
above displays the time series itself, while the one below displays its trend or seasonality
in isolation. The x-axis represents time, while the y-axis represents the value of the time
series.

According to Jinka et al., [29], the increasing amount of time series data being collected
in applications such as IP networks means that traditional means of monitoring are no
longer adequate. The easiest way to identify anomalies, for example, used to be the visual
inspection of some graphical representation of the data, which requires human intervention
and cannot scale up to systems as large as those managed by an SDN controller. Another
straightforward method of anomaly detection is the use of static thresholds, but this
approach is also severely lacking, as the normal parameters of one system may be different
from those of others, and they might also change over time within the same system both
on the long and short terms. The shortcomings of these approaches highlight the need
for more advanced techniques, capable of acting autonomously, scaling up efficiently, and
adapting to the nature of the specific time series that they are applied to.

2.4.2. Classification of Anomaly Detection Approaches

A large body of work has been published classifying, reviewing, and comparing various
outlier detection techniques for time series data. [14] [1] [19] [9] [7] In his book on out-
lier analysis, Aggarwal [1] categorizes anomaly detection methods into probabilistic and
statistical models, linear models, proximity-based models, high-dimensional models, and
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ensemble models.

Braei and Wagner [9], on the other hand, focus on univariate time series and favor a
broader distinction, dividing the methods into statistical methods, classical machine learn-
ing methods, and deep learning methods (identified as those machine learning methods
that rely on neural networks). The first group of models generally assumes that the data
is generated by a specific statistical model, while the second and third treat the data
generation process as a black box and attempt to model the data by learning from the
observations directly, either through conventional machine learning or deep learning.

In the time series domain, Blazquez et al. [7] instead classify outlier detection techniques
based on three factors: their input, outlier type, and nature of the method.

- The input factor specifies the type of data that the detection algorithm can work
with. It may be either univariate or multivariate, depending on whether the input
is merely an ordered set of observations, each recorded at a given time, or a set of
n-dimensional vectors each made up of n observations.

- The method factor specifies the nature of the detection process employed by the
algorithm. It can once again be univariate if it considers a single time-dependent
variable at a time, or multivariate if it is capable of analyzing multiple variables at
once.

- The outlier type factor specifies the kind of anomaly that the algorithm aims to
detect: point outliers, subsequence outliers, or outlier time series.

In this classification, point outliers are defined as data points characterized by unusual
behavior at a specific time instant when compared to other values in the time series.
Subsequence outliers are instead described as sets of consecutive points whose collective
behavior is unusual, even though the single point’s behavior might not be anomalous
on its own. Finally, outlier time series are identified as entire variables whose behavior
diverges from the rest. The first two kinds of anomalies may be either univariate or
multivariate depending on the number of affected variables, whereas the latter may only
occur in multivariate data.

Cook et al. [19] provide a similar classification of outliers into point anomalies, contextual
anomalies, and pattern anomalies, based on their relation with surrounding data. Point
anomalies are characterized by the return of the time series to its normal behavior within
a few observations from the occurrence of the anomalous event. Contextual anomalies
are observations that diverge from the regular patterns of the sequence when taken in the
context of surrounding data, but fall within the range of expected values when taken in
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isolation. Pattern anomalies, finally, are sets of observations that are anomalous when
taken as a whole and compared to the rest of the data, while individually they may or
may not be unusual.

Another important distinction for anomaly detection methods is that between supervised,
semi-supervised, and unsupervised approaches. [9] In supervised approaches the time se-
ries data set is labeled, meaning that for each sample it is known whether that sample is
an anomaly or not. Semi-supervised approaches are instead characterized by a data set
that contains exclusively data points with normal behavior, and no outliers. Unsuper-
vised methods, finally, assume that no label is provided for the data. For this latter type
of technique, a common approach is to assign an anomaly score to each data point, and
classify as outliers those points whose score’s distance from the global mean of anomaly
scores exceeds 3 standard deviations.

2.5. Data Set

The raw data set utilized to conduct this study consists of measurements sampled at
regular, 15-minute intervals (96 samples per day), from a real-world IP network belonging
to one of Ericsson’s customers. The samples in the data were collected over the course of
several months, from July 2022 to December 2022, and were deemed by company experts
to be representative of the type of data the ADS would be operating on after deployment.

Each row of the data describes an observation taken from a single interface of one net-
work element, such as a router or microwave transmitter antenna. Each of these samples
includes several fields, including information regarding the context in which the observa-
tion was performed and a counters column, a set of measurements of various metrics,
calculated over the previous 15-minute interval. For example, a row of the data set might
contain the counter inoctets, which describes the number of bytes received by the inter-
face during the previous 15 minutes. The number and type of distinct counters present
in each row of data varies greatly between different interfaces, ranging from zero to 170
distinct counters for each observation.

The schema of the raw data set is reported in more detail in Figure 2.3, and an example
of ten random rows of data is provided in Figure 2.4. Furthermore, an explanation of the
contents of the various fields in the schema is provided in Table 2.1.

The data set presents numerous instances of missing measurements in which an interface’s
records at a given timestamp are completely missing, in some cases resulting in several
days of consecutively missing samples for the same interface. More importantly, the data
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Figure 2.3: Schema of the raw data set, as provided by PySpark.

Figure 2.4: Ten rows of the raw data set, chosen randomly.

set contains no information regarding which data points may or may not correspond
to anomalies in the underlying system, meaning that the data set can be considered
unlabeled for the purpose of anomaly detection. These characteristics were determined to
be typical of data collected from mobile transport networks, since these systems can often
be subject to equipment malfunction that causes missing measurements, and labeling the
data is extremely difficult as a consequence of the vast quantity collected at each sampling
instant.

Furthermore, the relatively large amount of time elapsing between consecutive measure-
ments means that finer changes in the counter metrics’ behavior cannot be detected.
Nevertheless, because the ADS is tasked with operating on a small amount of data and
the collection of finer-grained metrics is to be enabled only upon the detection of an
anomaly, this was considered acceptable.
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FIELD NAME FIELD DESCRIPTION

fdn A string containing the sub-network, node, and interface identifiers.

neid A string containing the sub network and node identifiers.

moClass A descriptor for the type of device/interface.

granularity The length of time over which the measurement was performed (in sec-
onds).

software The software and version running on the node.

timestamp The time at which the measurement was taken (the end of the sampling
interval).

counters A variety of network metrics, calculated over the sampling interval,
stored as a map with the counters’ names as keys and their registered
amount as values.

pdfCounters Same as the counters field, and if one of the two contains information,
the other is always empty (likely the result of naming differences during
the collection and aggregation of this data).

runid Always set to datastream. An artifact produced by the storage method
used for the raw data.

Table 2.1: Description of the fields in the raw data set’s schema.

2.5.1. Data Point Definition

To limit the scope and variety of data analyzed, the physical ports belonging to routers
were chosen as the main focus of this thesis from among the numerous network nodes and
interfaces present in the data set. When considering only these elements, the data set
contains information from 12241 distinct interfaces belonging to 2245 different routers,
with the number fluctuating between different sampling timestamps as a consequence of
the missing data previously described.

A subset of nine metrics of interest for anomaly detection purposes was identified among
the variable set of those appearing in the counters field of the selected interfaces. These
counters were chosen based on several different aspects. Firstly, these metrics appear in
the counters of more than 80% of router interfaces, ensuring that they contain mean-
ingful information for a majority of the analyzed data. Secondly, these metrics were
determined to contain useful information for identifying mobile network traffic anomalies
by domain experts within the company. Finally, these metrics were deemed to be among
those conventionally sampled from network nodes in the company’s existing monitoring
software, ensuring that they would not require the collection of additional data to be
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METRIC NAME METRIC DESCRIPTION

inoctets The number of ingress octets (bytes of data) received, corre-
sponding to the number of ingress frames received, excluding
error frames.

outoctets The number of egress octets (bytes of data) sent, corresponding
to the number of egress frames sent.

inpackets Incoming IP packets that need to be decrypted, counted by
packets.

outpackets Outgoing IP packets that need to be encrypted, counted by
packets.

ifInDiscardPkts Number ingress discarded IP packets.

ifOutDiscardPkts Number of egress discarded IP packets.

ifInErrorPkts Number of ingress error packets.

ifOutErrorPkts Number of egress error packets.

CrcErrorPkts The total number of CRC (cyclic redundancy check) error
packets.

Table 2.2: Description of the selected counter metrics.

tracked in a production setting, which would increase the load on the network. The nine
selected counters and their explanation are listed in Table 2.2.

Each interface is thus characterized by a 15-minute granularity multivariate time series of
which the different counters are the features, and an example for one month of data can
be observed in Figure 2.5.

Upon visual inspection, a large number of the selected time series appear to be charac-
terized by a discernible seasonality in the first four counters, and display minimal trend
over the span of the six sampled months. It is nevertheless possible that more significant
trends and patterns may be observed when observing a larger period of time than that
present in the data set, such as multiple years.

In summary, a data point for the anomaly detection process can be defined as:

DATA POINT

A set of nine network metrics calculated over a 15-minute time window
from a single interface of one network element.

For each of these data points, the anomaly detection system should provide an anomaly
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Figure 2.5: Example of one interface’s time series across one month of samples. The x-
axis represents time with 15-minute granularity over the course of July 2022. The y-axis
represents the value of the metric whose name is indicated above the plot.

label, indicating whether or not the observation is determined to be anomalous.

2.6. Computational Resources and Tools

Because the data used to conduct this thesis was drawn from a real-world network be-
longing to Ericsson’s customers, the company’s data governance and security policies
imposed constraints on where and how the data could be stored and utilized in order to
avoid the exposure of sensible information. Among other things, these policies required
all computer code utilizing the data set to be run on a cloud-based JupyterLab [32] envi-
ronment, connected to a data lake in which the data set was stored in the form of pickle,
parquet, and csv files. Since this developing environment was intended as a shared re-
source for data science experimentation within the company, the computational resources
available to each user were severely limited, which imposed constraints on the kinds of
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computations that could be conducted during some of the thesis work. Most notably,
the absence of a GPU made experimentation with modern deep learning techniques par-
ticularly impractical, as training such models would require prohibitive amounts of time
The resources available through the computation environment are reported in detail in
Table 2.3.

RESOURCE VALUE

CPU Model 8x Intel Xeon Processor (Cascadelake) @ 2.30 GHz

CPU Cache 16 MB

CPU Cores 1

RAM 14 GB

GPU Model None

Table 2.3: Computational environment hardware specifications.

The implementation of this thesis was carried out using version 3.8.10 of the Python pro-
gramming language. [53] Table 2.4 lists the version of the software libraries used through-
out this work.

LIBRARY VERSION

gluonts [2] 0.13.1

jupyterlab [32] 3.2.6

kats [28] 0.2.0

pandas [39] [56] 1.5.3

pyspark [61] 3.1.1

quidditch [23] 1.4.0

salesforce-merlion [6] 2.0.2

scikit-learn [41] 1.2.2

statsmodels [49] 0.14.0

tslearn [50] 0.5.3.2

Table 2.4: Software libraries used during the course of this thesis.

2.7. Solution Architecture

To create an Anomaly Detection System compatible with the company’s MSA-based
SDN solution, the system was designed to be split into several separate microservices, as
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described in Figure 2.6.

Figure 2.6: High-level architecture of the Anomaly Detection System. Elements with a
gray border are existing Ericsson infrastructure. Elements with a blue border are the
object of the implementation of this thesis. Elements with a dotted border are planned
expansions of the system to be carried out during future work.

As stated in Section 1.1, the goal of the system is to autonomously identify abnormalities
in the network data, to allow the use of automated data collection protocols in response
to the detected anomalies, as well as to assist network operators during maintenance and
monitoring. The proposed system covers all of the five stages of the network monitoring
process described in Section 2.3, although the focus of the implementation of this thesis
are exclusively the preprocessing, transmission, and analysis steps.

In this system, the raw data is extracted from the network nodes and stored in a gen-
eral database (collection stage), from which other systems and services may draw the
needed information. For the purpose of this ADS, the data is then queried by a data
cleaning service, whose purpose is to reshape the data to prepare it for anomaly detec-
tion (preprocessing stage). The data cleaning service stores the data it produces in an
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apposite database (transmission stage), where it can be extracted by other services when
needed. This allows each data point to be processed a single time, instead of requiring
the computations to be repeated whenever the data is needed.

A subset of the cleaned data is extracted at regular intervals by a model training service,
which trains one or more anomaly detection models on a desired amount of recent obser-
vations. This ensures that the system is always up to date with changes occurring within
the data.

The most recent data that has not yet been used in training is then taken as input
by an anomaly detection service with a configured prediction frequency (analysis stage).
This service is entirely dedicated to identifying anomalous samples within the data, for
example by using the models trained by the training service. The anomaly detection
service outputs an anomaly report, a data set in which each analyzed sample is labeled
as either anomalous or not anomalous. For those outliers whose abnormality cannot be
determined with absolute certainty, an anomaly score indicating the system’s confidence
in the prediction is also provided (presentation stage).

As an extension to this process, the system was designed to be expanded upon through
the addition of an anomaly classification service, which would take the output of the
detection service and attempt to classify the identified anomalies into different categories.
The output of the anomaly detection service, integrated with that of the classification
service, could then be fed into a rule engine service which would execute automated
actions set up by the system’s operator in response to the received information. This
would include providing alerts to the operator when certain conditions are met, such as
a certain number of anomalies occurring on the same network element in a short period,
and requesting the retrieval of more detailed monitoring information from affected nodes.
The additional information could then be used by the network operator for diagnostic
purposes, or fed to other automated systems to provide a more precise classification of
the anomalies or root cause analyses.

2.7.1. System Specifications

For the development of the ADS, a number of specifications were defined to describe the
desirable properties that such a system should possess to accomplish its stated goal. These
specifications are not to be intended as strict requirements, as this thesis work aims to
determine how such a system could be constructed, and how it would perform on real-life
data They should rather be interpreted as principles to be followed during the decision
processes involved in its implementation. These specifications are reported in Table 2.5.
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CODE SPECIFICATION

S1 The system should identify the majority of anomalies occurring within the data.

S2 The system should not mark a large number of ordinary observations as anoma-
lous.

S3 The system should be able to adapt to the appearance of novel behaviors in the
monitored metrics.

S4 The system should provide online predictions within the span of one sampling
interval.

S5 The system should require low amounts of processing resources.

S6 The system should be able to scale to handle varying amounts of input data.

S7 The system should be built with reliable, stable technologies.

S8 The system should be easy to maintain and expand upon in future work.

Table 2.5: Specifications for the development of the ADS.

Specification S1 describes the main purpose of the system, which is to identify anomalous
occurrences in the monitored metrics. Specification S2 is necessary to ensure that the
system may be of use in a practical scenario: if the ADS frequently mis-labels ordinary
data points as anomalies its reliability will diminish, reducing its usefulness to the users
and making it harder to set up automated responses based on its predictions. Specifi-
cation S3 is required because of the sudden changes in behavioral patterns that network
monitoring metrics can be subjected to, as a result of changes in the environment or net-
work configuration. Specification S4 is motivated by the goal of establishing automated
responses to the system’s predictions, as the execution of some, such as requesting addi-
tional diagnostic data from the network, would require the anomalies to be detected as
soon as they arise to provide the greatest benefits. Specification S5 is dictated by the
desire to develop the system in the form of software to be run on client hardware, which
offers no guarantees on the available processing power. Specification S6 aims to guarantee
the system’s ability to handle IP networks of varying sizes, to adapt to the customer’s
needs. Specifications S7 and S8, finally, have the objective of ensuring that the system is
built according to the quality standards set by Ericsson software, and that it may be the
object of continuous maintenance and improvement.
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The following chapter explains how the contents of Chapter 2 drove the choice of which
techniques to adopt during the implementation of this thesis, which is detailed in Chap-
ter 4. The chapter also provides a theoretical explanation for those techniques, and for the
methods used to evaluate the performance of the system. Section 3.1 describes the data
cleaning operations to be performed to prepare the data for use in anomaly detection. Sec-
tion 3.2 describes some time series processing operations that were carried out during the
implementation phase. Section 3.3 describes various concepts and techniques relating to
clustering and, in particular, the clustering of time series. Section 3.4 describes the choice
of anomaly detection algorithms and technologies used in the implementation phase, and
provides a definition for the type of anomalies this work focuses on. Section 3.5, finally,
describes the choice of how the evaluation of the tested detection algorithms should be
conducted, and defines the metrics used to measure the models’ performance.

3.1. Data Cleaning Methods

In order to prepare the raw data for ingestion by the anomaly detection service, various
data cleaning operations should be performed.

Firstly, as discussed in Section 2.5.1, the data that does not pertain to physical router
interfaces must be pruned out. The data should also be processed to eliminate unneces-
sary fields and optimize the ones that contain useful information to make their contents
more readily accessible. In particular, the unique identifiers used to distinguish network
elements are stored within the fdn and neid fields in the form of long and complex strings.
Because accessing these identifiers requires parsing the text contained in those fields, their
information should be extracted into individual fields. These identifiers should also be
substituted with new, generated values to avoid the possibility of sensible information
from the company’s customers being leaked.

Furthermore, the time series features to be analyzed are contained in the counters field,
a map of string keys and decimal values, which makes the extraction of data cumbersome
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and contains, in most cases, numerous metrics that are not going to be utilized by the
ADS. To facilitate the process of anomaly detection, the relevant information should be
refined into distinct fields dedicated to each metric of interest.

Any discernible errors in the data must then be processed, such as mismatching field
types, or data attributed to the wrong interfaces or timestamps. Finally, missing samples
should be replaced with rows containing empty values in the feature fields (such as null
or NaN), to enable them to be later imputed with artificial values to fill those gaps.

3.1.1. Missing Data Imputation

For the purpose of anomaly detection on a mobile transport network, missing data can
be determined to be, itself, an anomaly to be reported, as it indicates a failure on some
part of the data collection pipeline to provide the expected samples. Some time series
algorithms, however, have diminished performance when a part of the data points are
missing, or even fail to function at all. To negate this problem, several different data
imputation techniques have been proposed.

When replacing missing values, the aim is to alter the original characteristics of the data
as little as possible. This can be achieved by inserting values that are as similar as possible
to what the true behavior of the time series would have been, if the data had been sampled
correctly. Achieving this result, however, can be quite difficult, as it requires a good grasp
of the fundamental process that generated the data in the first place.

This task is made harder when the time series in question presents strong trend or sea-
sonality components, as filling the gaps with values that respect the sequence’s global
characteristics without taking into account those elements often fails to reconstruct the
original behavior of the series. As discussed in Section 2.5.1, the time series that compose
the data set for this study almost universally show strong seasonality components, which
is the main complicating factor in their handling, whereas most interfaces show negligible
trends on the monthly scale.

Among the various existing imputation techniques, the following ways to replace missing
values were considered for implementation:

- Fill with zeroes: this approach is extremely simple to implement, but will invari-
ably result in strong deviations from the original time series’ characteristics (unless,
of course, the sequence was solely composed of zero values).

- Fill with series’ mean: this approach is quite simple to implement, requiring
only the calculation of the global average of values, and maintains unaltered the
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mean value of the data. It however alters the sequence’s standard deviation signif-
icantly in the presence of series with changing values, especially those with trend
and seasonality components.

- Fill with previous valid value: this approach is supported by many popular
software libraries, and results in small deviations from the time series’ normal char-
acteristics when missing data points are few and separate from one another. When
multiple data points are consecutively missing, however, it results in ’flat’ sections
that disregard trend and seasonality.

- Fill through linear interpolation of previous and next valid values: this
approach is supported by a few common software libraries, and often has improved
performance compared to previous approaches due to its ability to approximate
local time series trend and behavior. It is nevertheless unable to preserve seasonality
behavior when entire cycles are missing from the original series.

- Fill with previous valid value sampled at the same day of the week, hour
and minute: this approach is of more difficult implementation than the previous,
but allows to fill missing values while preserving the behavior that the series is
known to take at a given temporal coordinate (assuming daily and weekly cycles
are the prevailing factors). This can restore even consecutive missing parts of the
time series while altering its characteristics very little and even maintaining seasonal
behavior, but will fail to account for the presence of trends.

- Fill with prediction from forecasting algorithm: this is a complex approach
that requires the use of a sufficiently well-performing time series forecasting model,
which would be used to forecast the behavior of the series in missing sections, even
when encompassing numerous cycles of seasonality. The efficacy of this approach is
proportional to its ability to accurately model and predict the original time series’
behavior and is more computationally burdening, but is capable of accounting for
both seasonal and trend components.

3.2. Time Series Processing Methods

Numerous operations can be performed on time series to extract meaningful information
regarding their characteristics and behavior, as well as to alter their properties to make
them better suited for various tasks. Listed below are some techniques that were used at
various points and for various purposes during the course of this thesis, so as to provide
a reference to their execution.
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3.2.1. Scaling

A common pre-processing step for numerous time series tasks is that of scaling, which aims
to bring sequences that take different ranges of values to a common, comparable scale. One
example of scaling operation is that of standardization. A data set is called standardized
if it has a mean µ of zero and a standard deviation σ of one. Thus, given an univariate
time series T whose global mean and standard deviation are µ and σ respectively, each
sample x of T can be standardized by computing:

x′ =
x− µ

σ
, ∀x ∈ T

When dealing with a multivariate time series this operation can be computed on each
variable independently, so long as preserving the relationship in scale between the different
features is not important. Standardization provides a good way to bring different time
series to similar scales while at the same time being resistant to outliers, meaning that
the same time series, with and without outliers, should be brought to an approximately
comparable scaling if data points with outlying values are a small percentage of the total.
A comparison between the unscaled and standardized versions of a time series is provided
in Figure 3.1 as an example.

(a) Unscaled time series. (b) Standardized time series.

Figure 3.1: Comparison between an unscaled and standardized time series. The x-axis
represents time, while the y-axis indicates the value of the time series.

A similar operation to standardization is that of normalization. A data set is called
normalized if all of its values x are contained within the interval [0, 1], with the maximum
and minimum values being one and zero respectively. Thus, given an univariate time series
T whose global maximum and minimum are xmax and xmin respectively, each sample x of
T can be normalized by computing:

x′ =
x− xmin

xmax − xmin

, ∀x ∈ T
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When dealing with a multivariate time series this operation can once again be computed
on each variable independently, so long as preserving the relationship in scale between the
features is not important. Normalization is useful for bringing time series to comparable
scales when the scaled values must fall within a specified range without exception. A
comparison between the unscaled and normalized versions of a time series is provided
in Figure 3.2, and a comparison between the scaling provided by standardization and
normalization is provided in Figure 3.3.

(a) Unscaled time series. (b) Normalized time series.

Figure 3.2: Comparison between an unscaled and normalized time series. The x-axis
represents time, while the y-axis indicates the value of the time series.

Figure 3.3: Scale comparison between standardized and normalized time series. The x-
axis represents time, while the y-axis indicates the value of the time series.

3.2.2. Seasonal-Trend Decomposition

The presence of the trend or seasonality components described in Section 2.4.1 can make
analyzing, forecasting, and performing anomaly detection on time series a complex en-
deavor. One popular tool for quantifying the effect of these factors is Seasonal-Trend
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decomposition based on Loess (STL). [17] STL is a technique that relies on the smooth-
ing provided by a regression curve to aid in decomposing a seasonal time series Y into
three components: a trend component T , a seasonality component S, and a remainder
component R accounting for the residual noise. As such, this technique assumes that for
each data point v in the original time series:

Yv = Tv + Sv +Rv

The residual component R describes the remaining variation in the data after seasonality
and trend are removed, and can be used as a general indication of when the data is
diverging from its expected behavior. An example of STL decomposition being applied to
the inoctets feature of a time series from the available data set is provided in Figure 3.4.

Figure 3.4: STL decomposition applied to an example time series. From top to bottom,
the figure displays the original time series, its trend component, its seasonal component,
and its remainder component. The x-axis represents time, while the y-axes represent the
value of each component.

3.2.3. Principal Component Analysis

One common way to convert a time series into a feature vector is to employ Principal
Component Analysis (PCA) [40], an algorithm commonly used for dimensionality reduc-
tion. PCA aims to detect structures in the relationship between features by identifying
variables (principal components) that, when orthogonally combined, explain the majority
of the variability in the original data. [35] Choosing an increasing number of principal
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components thus makes it possible to retain a greater amount of information through
the transformation, at the expense of the transformed data having a larger number of
features. PCA can be performed to obtain an alternative representation of the data, in
order to use algorithms and techniques that do not take the temporal aspect of time series
into account.

3.3. Clustering Methods

The data set contains a very large number of different time series, making it difficult to
visualize the full variety of behavioral patterns that the network interfaces can exhibit.
One way to explore the data set more efficiently is to perform clustering on its time series,
in order to group them by some measure of similarity and make it possible to visualize
its variety more succinctly.

Warren Liao [55] defines clustering as the process of identifying structure within unlabeled
data, by organizing it into groups such that the distance between objects in different
groups is maximized, and that the one between objects in the same groups is minimized.
Numerous algorithms have been created for the specific purpose of time series clustering,
for the most part by either adapting existing approaches for static data to sequential data,
or by converting time series into a static form and then applying the former approaches
directly. In the first case, the main alteration lies in using a distance or similarity mea-
sure specifically suited for time series data, whereas in the second case, the data is first
converted into either a feature vector or several model parameters (for example through
PCA), on which conventional clustering is then applied. [55]

3.3.1. Clustering Algorithms

A large number of different clustering approaches have been developed for a variety of
different applications. From among this varied and extensive set, two were experimented
with during the course of this thesis: K-Means and DBSCAN.

• K-Means [37] is a well-known algorithm for data clustering, where every group’s
centroid is identified by the average value of the objects that are inside of it. The
algorithm works by minimizing an objective function, usually determined to be some
measure of the total distance between the objects in the data and their respective
cluster’s centers. A solution is reached by iterating between distributing the objects
in the data set into the most appropriate cluster (initialized to an arbitrary position),
and updating the centroid of the cluster by averaging its members’ coordinates. The
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two steps are repeated until convergence, attained when the value of the objective
function cannot be reduced anymore. [55] This algorithm requires the choice of the
parameter k, which indicates the number of clusters, and has a tendency to produce
clusters of round shape.

• DBSCAN [21] is another popular approach for data clustering which groups to-
gether points that are densely packed together. The algorithm operates by choosing
a random object, and calculating the number of objects in its vicinity by using an
appropriate distance function and a threshold ϵ. A new cluster is formed if an ob-
ject has a sufficiently large number of neighbors, and the operation is then repeated
for those points, expanding the cluster until the minimum number of neighbors is
not reached by the objects at the cluster’s edge. At the end of this process, all
of the densely packed objects are gathered together in clusters, with any leftovers
being labeled as noise. This algorithm has the advantage of not requiring the prior
definition of the number of clusters to be formed, and is capable of identifying
arbitrarily-shaped clusters.

3.3.2. Dynamic Time Warping

A similarity measure for sequential data, necessary to apply most clustering techniques
to time series without transforming them, is harder to define than those for static data
because the order of data points in the sequence must be taken into account. [42]

A similarity measure based on Dynamic Programming commonly referred to as Dynamic
Time Warping (DTW) has been initially proposed for speech recognition [47] tasks, and
has since been adopted for a variety of applications. DTW is capable of identifying the
optimal alignment between two time series, as well as providing the similarity between
them in the form of their alignment cost. Figure 3.5, taken from Information Retrieval
for Music and Motion, by Meinard Müller. [38], provides an example of time alignment
using DTW, with the arrows indicating aligned points in the two sequences.

Petitjean et al. [42] propose an averaging method for a set of sequences under DTW
called DTW Barycenter Averaging (DBA), which is designed to be used in similarity-
based clustering techniques, especially those that require averaging such as K-Means.
Further work proves that it can be used to improve the performance and accuracy of time
series classifiers. [43]
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Figure 3.5: Example of alignment of two sequences using DTW.

3.3.3. Clustering Evaluation

Evaluating the results of a clustering process can be difficult when the optimal grouping
is not known beforehand, as each algorithm can have various tunable parameters. To
provide a measure of the quality of a specific clustering attempt, a large number of different
measures have been proposed. Among these, the silhouette score [46] is a common method
used to quantify the degree of consistency of clustered data. It offers a condensed measure
of how similar an object is to those in its own cluster compared to those of different ones,
and assumes values between -1 and +1, with higher values indicating more coherence.

The silhouette score on its own, however, can be insufficient to determine the appropriate
value to attribute to a parameter, depending on the objective of the clustering process.
The elbow method is a simple heuristic that is often used to determine the best value to
be attributed to a parameter during clustering. The method entails plotting a graph of
the variation of the data explained by clustering using each number of clusters, in order
to then select the elbow of the curve as the value to use for the parameter. The purpose
of this choice is to find the point where increasing the parameter will provide diminishing
returns. The variation in the data can be calculated in many ways, including using the
silhouette score. The elbow method is rightly criticized for its subjective and approximate
nature, but also provides an evaluation strategy that is quickly and easily implemented.
Because clustering is not the main focus of this thesis, the use of the elbow method was
determined to be an acceptable compromise to expedite the process.

3.4. Anomaly Detection Methods

As stated in Section 2.5, the data set used in this work does not contain any labeled
anomalies. This is a common occurrence when dealing with a large number of time series
sampled at a high frequency, and by discussing the issue with company experts it was
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deemed unfeasible for labeled data to be provided to such a system when deployed in
a real-world environment. As a result, only unsupervised anomaly detection approaches
were considered for the development of the ADS. An important consequence of this fact
is the absence of an objective, quantitative, and automated way to evaluate changes in
the system’s detection performance at run time, once deployed.

Several approaches to the implementation of the anomaly detection process were con-
sidered, and the choice on which technique to adopt was dictated in accordance to the
available resources described in Section 2.6 and the specifications detailed in Section 2.7.1.
The three main options were determined to be the creation of a single, global anomaly
detection model, the creation of multiple models each dedicated to a subset of similar
time series, or the creation of a different model for each interface or time series feature.
The results of these considerations are as follows:

- Global Model: such a model would be initially trained on a large and varied
training data set, and be tasked with detecting anomalies in all monitored interfaces.
This would have the advantage of requiring the ADS to load a single model from
memory, reducing the time required to access memory storage, and would need to
be retrained only occasionally to account for large changes in the metrics’ behavior.
On the other hand, training the model would require vast amounts of computational
resources, which lies in opposition to specification S5, and would require training
to be carried out on Ericsson premises. This, however, would make it difficult to
train the model to adapt to novel time series patterns as required by specification S3,
because the new data would have to be obtained from customers. In addition, a new
model would likely have to be created for each metric, or combination of metrics,
chosen by customers for monitoring, if their behavior differs significantly. Finally,
the limited resources available during this thesis would make the development of such
a system quite difficult, as it would likely have to rely on deep learning technology
which is prohibitively slow to train in the absence of GPUs.

- Subset-Specific Models: this approach would require the creation of a small
number of different models, each specialized in dealing with a distinct subset of
interfaces. These sets of interfaces would be grouped based on similarities in their
behavior, for example through clustering. This method would have the advantage of
creating models specific to each behavioral pattern, thereby allowing the use of less
powerful algorithms that could be trained on customer premises, all the while main-
taining the total number of models relatively low. The appearance of new behaviors
or the addition of new metrics would also be made easier, such as by automating a
process that generates a new cluster and a new, dedicated model. It would, however,
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require performing clustering on the interface’s time series at regular intervals (to
ensure that each interface is assigned to the correct model, and each model trained
on the correct time series) to account for changes in the time series’ behavior. To
achieve this, a sufficiently efficient method for univariate or multivariate time series
clustering would have to be identified, as specification S4 requires the system to
be able to provide predictions within one sampling interval, while also being able
to reliably distinguish time series with different behaviors. Once again, finally, the
limited resources available would make the process of performing thorough cluster-
ing experimentation extremely lengthy, as many such algorithms have elevated time
complexities.

- Interface/Feature-Specific Models: this approach would entail the creation of
a separate, lightweight model for each interface (multivariate techniques) or time
series (univariate techniques), trained with the desired frequency to adapt to changes
in their behavior. This approach allows for maximum flexibility to adapt to each
customer’s use case, while at the same ensuring that the models are extremely
specialized to detect anomalies in their monitored metric(s). Unfortunately, this
also results in a much greater number of models having to be created, trained,
and loaded, which can result in a significant slowing of the system’s operations.
Thankfully, because the system is to be developed as a MSA-based solution, this
process could easily be parallelized by replicating the anomaly detection service
through a linear increase in computational resources.

In the end, it was chosen to proceed with development adopting the interface-specific and
feature-specific model approaches, as they allowed for maximum versatility while requiring
resources compatible with those available for experimentation.

Another decision to be made was the choice of technologies to adopt in the implemen-
tation of the anomaly detection algorithms. In accordance with specifications S6 and
S7, the ADS should be easily maintainable, expansible, and extendable through future
work, favoring technologies that may help ensure that the system is easy to modify and
upgrade (for example through the addition of new functionalities). Furthermore, in the
interest of being able to conduct a sufficient number of experiments in the limited time
available, tools that could provide reliable access to a variety of different anomaly de-
tection models and support tools were deemed desirable. As a result, the best course of
action was determined to be the use of the Python programming language [53], because
of its wide adoption in the industry and extensive ecosystem of relevant libraries. In
particular, the Python language offers a number of open-source libraries specialized in
time series anomaly detection, such as Darts [26], Luminaire [12], Merlion [6], Kats [28],
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and TODS [34], as well as Quidditch [23], an inner-source library developed internally at
Ericsson. Among these, Merlion, Kats, and Quidditch were chosen for experimenta-
tion, as they appeared to display many desirable characteristics, such as a wide range of
anomaly detection algorithms corresponding to the characteristics listed previously, inte-
grated auxiliary time series processing and visualization capabilities, and support by the
open source and Ericsson community, respectively.

3.4.1. Anomaly Detection Models

A variety of different models were tested from each of the three chosen anomaly detection
libraries, in order to evaluate the suitability of the library on a technical level and the
performance of the models on the available data. These models are implementations of
a variety of different univariate and multivariate approaches, including both statistical,
machine learning, and deep learning methods.

The anomaly detection algorithms tested from the Quidditch library are time series
implementations of the following techniques:

- Auto Encoder [8] (multivariate): a neural network approach for generating lower-
dimensional representations of data unsupervisedly. Anomaly scores are determined
by calculating the reconstruction error for each sample.

- HDBSCAN [11] (multivariate): a density-based, hierarchical clustering method. It
labels low-density points as anomalies based on their distance to the nearest cluster.

- Isolation Forest [36] (multivariate): a method that partitions the data into trees,
identifying anomalies as those points requiring fewer partitions to be isolated.

- KnnCAD [10] (univariate): a density-based and distance-based method that flags
as anomalies points whose distance with their k-nearest neighbors is significantly
different from the rest of the data.

- One Class SVM [48] (multivariate): a classification approach that constructs a
hyperplane enclosing the majority of data points, labeling as anomalies those left
outside based on their distance from the plane.

- Random Cut Forest [24] (multivariate): an approach that creates a forest of
randomly generated, equally deep trees, and identifies anomalies as those having on
average shorter paths to be reached.

From among the Kats library, the following models were tested:

- Outlier Detector (univariate): a method similar to the one based on STL de-
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composition described in Section 4.4.1, decomposes the time series and classifies as
anomalies those points lying outside a specified interquartile range. Well suited for
the detection of spike anomalies.

- CUSUM Detector (univariate): an algorithm designed to detect changes in the
time series’ mean and determine their anomalous nature based on hypothesis testing.
It is specialized in detecting level shifts and changepoints.

- Robust Stat Detector (univariate): a method that works by smoothing the time
series and highlighting its spikes through differentiation. The z-scores of the result-
ing values are used to determine anomalies. Suitable for detecting spikes and level
shifts.

- Multivariate Anomaly Detector (multivariate): an algorithm that calculates
each point’s deviation from its expected value, computed using an appropriately
fitted VAR (Vector Autoregressive) model that generates one-step-ahead forecasts of
the time series. Suited for detecting anomalies in the relationship between different
features of a multivariate time series.

- Prophet Detector (univariate): an anomaly detector based on the Facebook Prophet [51]
forecasting model, which fits an additive model with various components such as
trend, seasonality, and holidays to the data. Samples that strongly deviate from the
forecast are classified as anomalies. Suitable for detecting any kind of anomaly on
time series with strong seasonality.

Finally, the following Merlion library models were experimented with:

- DBL - Dynamic Baseline (univariate): a model that detects anomalies by calcu-
lating each sample’s deviation from the behavior of historical data that has occurred
in the same window of time, as defined by any combination of day, day of the week,
or day of the month.

- WindStats (univariate): an anomaly detector based on the calculation of sliding
window statistics, which assumes weekly seasonality in the data. It divides the week
into buckets of a specified number of minutes, and determines anomaly scores for
samples by comparing their value against those of historical data.

- Spectral Residual (univariate): an implementation of the algorithm described by
Ren et al. [45], which combines the use of saliency maps and convolutional neural
networks to extract anomalies from the frequency spectrum of the time series.

- Stat Treshold (univariate): a basic model that simply applies a provided thresh-
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olding technique to the input data to determine anomalous samples.

- ZMS - Multiple Z-Scores (univariate): an algorithm specialized in detecting
spikes and sharp trend changes, as well as their direction. It functions by building
models of normalcy at multiple, exponentially growing time scales.

- Isolation Forest (multivariate): implementation of the algorithm proposed by Liu
et al. [36] It partitions the data into trees, and identifies anomalies as those points
requiring fewer partitions to be isolated.

- Random Cut Forest (multivariate): a refinement of Isolation Forest proposed by
Guha et al. [24] It identifies anomalies by creating a forest of randomly generated
trees that partition the data into smaller subsets, assigning larger anomaly scores
to samples that are on average reachable through shorter paths.

- Autoencoder (multivariate): an algorithm that utilizes an autoencoder [3] to infer
the correlations between different variables in a multivariate time series by com-
pressing it into a lower-dimensional representation, or latent vector. By attempting
to reconstruct the input and comparing the result with the original data, points with
a significant reconstruction error can be classified as anomalies, as they deviate from
the main patterns of the time series.

- VAE - Variational Autoencoder (multivariate): an improvement of the classic
autoencoder approach proposed by Kingma and Welling. [31] In addition to the
traditional encoder-decoder structure, this approach includes a probabilistic layer
that models the latent space as a probability distribution. This allows to generate
new samples by drawing from the learned distribution.

- DAGMM - Deep Autoencoding Gaussian Mixture Model (multivariate): an
improvement of the classic autoencoder approach proposed by Zong et al. [62] This
approach assumes that the latent space can be represented by a mixture of Gaussian
distributions, which allows for the modeling of both normal and anomalous patterns.
Anomaly scores are calculated based on both the reconstruction error and the log-
likelihood of the occurrence of the data based on the estimated Gaussian Mixture
Model.

- LSTM ED - Long Short-Term Memory Encoder-Decoder (multivariate): a
model based on the classic encoder-decoder architecture where both networks are
Long Short-Term Memory neural networks. The reconstruction error is used to
estimate anomaly scores.

- Prophet (univariate): an anomaly detector based on Facebook ’s Prophet model



3| Methods 35

for time series forecasting. [51] It fits an additive model with various components
such as trend, seasonality, and holidays to the data, and assigns anomaly scores to
observations based on their deviation from the model’s forecasts.

3.4.2. Types of Anomalies of Interest

In order to experiment with different kinds of anomaly detection techniques and evaluate
their performance, it is necessary to determine what type of behavior in the monitored
data is considered an anomaly of interest for the ADS. It was determined that, for the
purpose of this study, the system would be interested in drawing attention to three kinds
of anomalies:

- Missing values: these are instances in which the value for one or more of the
monitored metrics is absent from a given sampling timestamp. It corresponds to a
failure to record or transmit the measurement, and can be identified with absolute
certainty.

- Domain violations: these are instances in which the value for one or more of the
monitored metrics lies outside the defined domain range that the metric should take
under normal circumstances. For example, a metric counting the number of bytes
received by an interface should never fall below zero. These anomalies correspond to
some kind of fault in the monitoring equipment or in a corruption of the data, and
can once again be identified with certainty so long as the domain range is correctly
defined.

- Unexpected behavior: these are instances in which the value of one or more of the
monitored metrics deviates significantly from the pattern established by previous
observations. These anomalies can correspond to a wide variety of different changes
happening inside the monitored network, and often it is not possible to identify
them with absolute confidence. It is to detect this kind of anomaly that advanced
anomaly detection algorithms have to be employed.

From among the nine metrics chosen for anomaly detection described in Section 2.5,
it was decided that all metrics should be analyzed for missing values and domain vio-
lations. Because the last five (ifInDiscardPkts, ifOutDiscardPkts, ifInErrorPkts,
ifOutErrorPkts, and CrcErrorPkts) already measure the occurrence of undesirable
events in the network, however, it was determined that their expected domain should
be set to zero, and the detection of unexpected behavior should instead focus on the first
four counters (inoctets, outoctets, inpackets, and outpackets). The system was
nevertheless designed in such a way that it could flexibly adapt to the analysis of any set
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of monitoring metrics, including the full set of the nine selected features.

For the purpose of testing and comparing the performance of different detection algorithms
and focusing the experimentation efforts, a subset of behavioral anomalies of interest
for this thesis was also determined from among the various classifications described in
Section 2.4.

Firstly, because the available data covers a range of only 6 months, any patterns repeating
with a periodicity greater than monthly could not be easily taken into account, and thus
only deviations from the seasonality occurring below monthly scope are considered when
detecting anomalies. This also excludes the detection of anomalies caused by sudden
shifts in the trend component of time series, as no such anomalies could be identified in
the limited time frame of the available data.

Secondly, this work focuses on detecting behavioral anomalies relating to individual ob-
servations, rather than entire sequences or time series. This is motivated by a variety of
factors, including the desire to provide the ability to perform online anomaly detection,
and the fact that the algorithms within the chosen libraries operate by providing labels
or scores for each individual observation. These anomalies are nevertheless evaluated in
the context of the surrounding data and the established pattern of the time series, and fu-
ture work could aggregate predictions made for single samples into evaluations for longer
sequences based on some defined parameters.

Finally, three main types of anomalous behaviors were identified to be occurring within
the time series in the data set. While it is not of immediate interest for the system to be
able to distinguish between these anomalies, it should nevertheless be able to detect all
of these types. The description of each type is reported below, and examples for each are
provided in Figure 3.6.

- Spikes (or dips): these are anomalies in which the value of the time series sharply
increases or decreases in a manner that deviates from the sequence’s usual seasonal
pattern. The change lasts for a very small number of time steps, after which the
series resumes its normal behavior.

- Level Shifts: these are anomalies in which the average value of the time series shifts
upwards or downwards, but the behavior of the series remains otherwise unchanged.
Shifts can be temporary, with the sequence returning to the original level after a
certain amount of time, or permanent, with the new level becoming the normality
for the time series going forward.

- Changepoints: these are anomalies in which the behavior of the time series changes
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radically for a certain amount of time, potentially affecting both its mean, variance,
and seasonality. The change might be permanent, or it might revert to the original
behavior after some time has elapsed.

The three types of anomaly are not equally represented within the data. While computing
precise statistics is made difficult by the absence of labeled outliers, it is apparent upon
visual inspection that spike anomalies occur in the data with far greater frequency than
the other categories.

(a) Time series with spikes. (b) Time series with level shifts.

(c) Time series with changepoints.

Figure 3.6: Examples of the three types of anomalies of interest occurring within the data.
The x-axis represents time, while the y-axis represents the value taken by the time series.

Anomalies in multivariate time series can also themselves be univariate or multivariate,
depending on whether they affect one or more of the time series’ features, and both uni-
variate and multivariate detection techniques were experimented with during the course
of this work.

3.5. Model Evaluation Methods

In order to identify which anomaly detection algorithm is best suited for use in the de-
veloped system, a way to compare their performance must be defined. However, because
of the lack of labeled behavioral anomalies in the available data (see Section 2.5), this
cannot be achieved by simply comparing the anomalies predicted by the system with a
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set of ground-truth labels. Since this type of evaluation metric was deemed necessary to
determine the capabilities of the models, three possible solutions were identified to solve
the issue:

- Gathering more data: this solution would involve the collection of more real-
life data, this time with marked anomalies that could be used for performance
evaluation. While this method would be ideal for providing an indication of how the
system would perform in production, collecting such data would require a significant
amount of time, as well as for specific data collection software to be developed,
and for a strategy to be devised to label the anomalies in the coming data. This
would probably entail a mix of log analysis, cross-referencing with real-world events
affecting the infrastructure and network traffic, and manual investigation of the time
series, resulting in the use of a large number of company resources.

- Manual labeling: this solution would require manually analyzing a subset of time
series from the data set, and creating a labeled set of evaluation time series where
outlying points are indicated by an appropriate indicator. This approach would
have the advantage of evaluating the system on authentic, real-world data, thereby
ensuring that its performance is reflective of the one it would have when deployed
on a live network. On the other hand, manually labeling the data points would
require an extraordinary amount of time, which would severely limit the size of
the evaluation data set produced. Furthermore, the labeling would heavily rely
on the ability of the labeling agent to identify the anomalies in the data, thereby
disproportionately favoring those outliers that are easily identifiable by the human
eye, and exposing the process to high amounts of human bias and error.

- Synthetic time series: this solution would entail generating a new set of synthetic
time series whose behavior resembles that of the original data if it were without
anomalies, and then randomly injecting anomalies at various locations while gener-
ating a corresponding set of labels. By creating a process that can automatically
generate new time series, this approach would allow to obtain a much larger eval-
uation data set in a smaller amount of time. Furthermore, because the anomalies
would be injected randomly by the automated process, the resulting time series
would present both hard and easy-to-identify labeled anomalies, reducing human
bias. Another advantage of this approach is that, since the produced data is artifi-
cial, it would be possible to carry out the evaluation process in a different compu-
tational environment than the one used for experimentation, potentially enabling
access to increased processing power. At the same time, however, the reliability
of this method hinges on the fact that the synthetic time series and anomalies are
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similar to those of the original set, but because of the inherent variation present in
the data it is not possible to establish this fact with absolute certainty. Additionally,
some of the original time series display highly irregular behavior, making it difficult
to determine what parts are determined by outliers, and which are not.

After some consideration, it was decided that the generation of synthetic time series
would be the best approach to adopt given the available time and computational resources.
Because of this, however, it was decided to limit the evaluation of the models to univariate
synthetic time series, as a suitable way to generate multivariate synthetic series that
accurately reflect the original data could not be identified in the available time.

Several different metrics were considered to quantitatively evaluate the performance of
the anomaly detection models. These evaluation metrics reflect the main performance
indicators for the success of the system (see Section 2.7.1: the ability to correctly identify
anomalies in the data while producing a low number of false alerts, hereby called detection
accuracy (see specifications S1 and S2), and the amount of processing resources required
for training the models, from here called computational requirements (see specifications
S4 and S5).

3.5.1. Detection Accuracy Metrics

In classification problems, the terms true positive, true negative, false positive , and false
negative are used to compare the predictions of the classifier to be evaluated with some
trusted external labeling. To this purpose, the terms positive and negative refer to the
prediction of the classifier, and the terms true and false indicate whether such prediction
corresponds with the trusted labels. More specifically, in the field of anomaly detection
(binary classification of observed data points as ordinary or anomalous):

- True positives (TP) are anomalous observations correctly flagged by the ADS.

- True negatives (TN) are ordinary observations correctly ignored by the ADS.

- False positives (FP) are ordinary observations mistakenly flagged by the ADS.

- False negatives (FN) are anomalous observations mistakenly ignored by the ADS.

From these definitions, the popular performance metrics precision and recall can be calcu-
lated. Precision can be seen as a measure of quality for the detector, indicating its ability
to make correct predictions rather than mistaken ones. It can assume values between 0
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and 1, with higher scores being more desirable, and is defined as:

PRECISION =
TP

TP + FP

Recall, on the other hand, can be seen as a measure of quantity, indicating which portion
of the total anomalies the detector succeeds in identifying. It can assume values between
0 and 1, with higher scores being more desirable, and is defined as:

RECALL =
TP

TP + FN

When used in isolation, precision and recall fail to offer a sufficiently complete picture of
the algorithm’s ability to identify anomalies. For example, an algorithm that flags every
data point as anomalous would obtain a perfect recall score, and one that only makes
a single prediction that happens to be correct, would result in a perfect precision score.
Furthermore, under many circumstances, it is possible to increase one at the expense of
the other, for example by raising or lowering the threshold applied to anomaly scores to
sparsify predicted anomalies. To overcome these shortcomings, precision and recall are
often reported alongside their harmonic mean, the F1 score, which describes the system’s
accuracy by incorporating both of its components’ contributions. It can assume values
between 0 and 1, with higher scores being more desirable, and is defined as:

F1 = 2 · PRECISION ·RECALL

PRECISION +RECALL

Another similar metric to precision and recall is fallout. Fallout can be interpreted as
a measure of the ability of the detector to avoid the misclassification of ordinary data
points as anomalous. This metric is particularly relevant in the field of anomaly detection
because a system that raises many false alarms may be perceived as unreliable by its
users, and hinder the creation of automatic response systems based on its predictions.
Fallout can assume values between 0 and 1, with lower scores being more desirable, and
is defined as:

FALLOUT =
FP

FP + TN

It is important to note that the detection accuracy metrics were calculated point-wise.
This means that each anomaly is identified by a label marking a single observation as
anomalous, and the correctness of the model’s prediction is determined based on whether
it detected that same sample as anomalous. In some use cases, however, it is of greater
interest to the network operators to identify the general window of time in which the
anomaly occurs rather than each specific point, as certain anomalies present unusual
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behavior for extended periods of time (such as for level shifts and changepoints). For
this purpose, point-adjusted [60] and revised point-adjusted [27] metrics have been pro-
posed, which operate by treating anomalies as windows rather than labels tied to singular
observations.

The decision was made to use point-wise metrics in this evaluation, however, because of the
difficulty in determining an appropriate window size for anomalies, especially regarding
permanent or protracted changes in the time series behavior. Furthermore, because some
of the use cases for the system require online detection, its ability to detect anomalous
behavior in individual new samples was deemed more relevant. It should nevertheless be
taken into account that these factors cause a more pessimistic estimate of the model’s
performance to be calculated, as many algorithms have a tendency to label multiple
observations as anomalous following the occurrence of level shifts and changepoints.

3.5.2. Anomaly-Specific Accuracy Metrics

A relevant aspect of the system’s performance is its ability to identify all three different
types of anomalies of interest described in Section 3.4.2. However, because the three
groups are not equally represented within the data, evaluating the system without distin-
guishing between anomaly types would not produce a complete picture of its performance.

One possible solution to this problem is to evaluate the system on different synthetic data
sets, each containing anomalies of a single type, and one additional one containing mixed
anomalies. This, however, would require an amount of processing time four times greater
than performing the evaluation on a single set, resulting in the necessity to use data sets
of smaller sizes. Furthermore, since in the original data set level shift and changepoint
anomalies almost always manifest in time series that also present spike anomalies, isolating
those categories of outliers might result in distorted results.

As a result, the solution that was adopted was the additional computation of a partial
recall metric for each type of anomaly. This metric, calculated by counting as positives
only those labels pertaining to each specific kind of anomaly, makes it possible to deter-
mine the ability of the model to identify outliers of that specific type. Computing other
metrics, such as precision, in a similar way would instead serve no purpose, as the model
correctly identifying anomalies of other kinds in the data would be treated as a false
positive, mistakenly penalizing it.
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3.5.3. Computational Requirements Metrics

Because the system is to be deployed on customer hardware, the computational power
involved in training and running its models is an important factor to consider. As general
measures of the processing requirements of the model, the mean training time (MTT)
and mean prediction time (MPT) of each algorithm were calculated. These quantities
are defined as the average time required by the algorithm to be trained on a time series
of 2976 samples (31 days), and to perform a prediction on one new sample, respectively.
While these values are naturally affected by the hardware the models are deployed on,
they still offer a useful measure of their performance relative to each other.
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4| Numerical Experiments

The following chapter explains how the techniques detailed in Chapter 3 were employed
in the implementation of this thesis, with the results being discussed in Chapter 5. It
describes the various experiments conducted throughout this work, and provides an eval-
uation of various tested anomaly detection models on the available data. Section 4.1
describes the specific cleaning operations performed on the data, as well as the output of
that process. Section 4.2 describes the process of clustering the interfaces from the clean
data through various techniques. Section 4.3 describes some time series analysis opera-
tions that were conducted on the cleaned data to better understand its characteristics.
Section 4.4 describes the experiments conducted with different anomaly detection algo-
rithms, their results, and the factors that lead to the choice of using a specific software
library. Section 4.6 describes the evaluation of the selected anomaly detection models,
and the parameters used in its execution. Section 4.7, finally, describes how the different
elements of this chapter were brought together to produce the final anomaly detection
system.

4.1. Data Cleaning Experiments

The first operation conducted as part of the implementation of the ADS was to perform
several data cleaning operations on the available raw data, to make it more suitable for
automated anomaly detection as described in Section 3.1. The sequence of transformations
applied to the data is as follows:

1) Interface selection: the data not pertaining to the physical router interfaces of
interest was filtered out of the data set. The network elements to be excluded from
the data were identified by using the contents of the identification fields fdn and
neid, as well as the moClass field.

2) Identifier extraction: the identifiers for the Network Node and Interface of each
data point were extracted from the fdn and neid strings, and turned into separate
columns, since they were revealed to be the only ones strictly required to uniquely
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identify each interface. In doing so, some data that was mistakenly attributed to
separate network elements despite originating from the same interface was unified
under a single identifier, as it was determined to be the likely result of corruption
in the data generation process.

3) Data anonymization: the identifiers extracted in the previous step were substi-
tuted with new, manually generated IDs. This was done to prevent the possibility
of the data being connected to the real-life infrastructure that produced it, avoiding
the leaking of private information from Ericsson’s clients.

4) Counters extraction: the subset of nine counters listed in 2.5 was unpacked from
the counters field and turned into distinct columns. For those interfaces whose
counters field was lacking one or more of those metrics, the corresponding column’s
value was set to zero.

5) Pruning of excess fields: all of the columns from the original data set were
removed, with the sole exception of the timestamp field. The resulting schema for
the cleaned data set is reported in Figure 4.1.

6) Error correction: all duplicate samples in the data (samples bearing the same
identifiers and timestamp) were removed, as they contained the same data in all
instances where such an overlap occurred. Furthermore, the first timestamp in
each day (the timestamp for hours 00:00:00) was mistakenly attributed to the day
preceding the actual sampling date, and this mistake was corrected for all such
samples.

7) Missing samples padding: for each interface, all of the missing measurements
were replaced by setting their value on all features to NaN. This was done to reduce
the work required to substitute the missing values with the appropriate technique
from those listed in 3.1.1, as required by each particular anomaly detection ap-
proach.

The data cleaning process was carried out using PySpark [61], a Python library that
allows to perform large-scale data processing in a distributed environment. This choice
was made to improve the efficiency of the cleaning operations during the implementation
of the thesis, which was necessary because of the limitations on processing power described
in Section 2.6. Furthermore, this ensured that the process could be easily transferred into
its own data cleaning microservice as described in Section 2.7, as it can efficiently be
scaled to handle smaller or larger loads of time series data.
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Figure 4.1: Schema of the cleaned data set, as provided by PySpark.

4.2. Clustering Experiments

The cleaned data set contains 12241 distinct multivariate time series, displaying various
kinds of different behaviors and characteristics. To conduct anomaly detection experi-
ments that would cover the full diversification of the data set within the time and re-
sources available, it was necessary to create an experimental data set of smaller size that
would still retain as much as possible of the variety expressed by the original data. To
do so, the interfaces were grouped based on similarities in their time series using different
clustering algorithms.

Both time series clustering approaches described in Section 3.3 were followed: applying
a clustering algorithm adapted for time series to the data directly, and applying classic
clustering algorithms to the data after transforming it using PCA (see Section 3.2.3. In
both cases, any missing samples were imputed using the linear interpolation technique
described in Section 3.1.1.

For the first approach, an implementation for time series of the K-Means algorithm from
the tslearn [50] Python package was utilized, using DTW as a distance measure. Because
of the elevated computational burden entailed by this technique, several further reductions
had to be applied to the cleaned data to be able to perform the operation:

- Only a single month of data was used for clustering, with the choice falling on
August 2022 as the month bearing the least amount of missing samples.
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- Only a single of the four features of interest for anomaly detection was utilized (the
inoctets metric, expressing the number of ingress bytes received by the interface).

- Only 10% of the total number of router interfaces was used. These were chosen at
random from those that presented fewer than 20% of overall missing samples after
the data cleaning operations were performed.

Because of the large amount of time required to execute this process even after applying
the limitations listed above, only a small number of experiments was conducted. The
clustering process was performed with both normalized and standardized time series (see
Section 3.2.1), in order to compare the results obtained by either method, in both cases
using 20 as the number of clusters. As the standardized set displayed more variety, one
further clustering attempt was carried out using standardized time series and 30 clusters,
to examine the consequences of increasing the number of groups. The two clustering
operations displayed comparable results, with a similar ability to distinguish between
time series with different behaviors. The results of this clustering approach are reported
in Appendix A.1.

Given the severe limitations that had to be imposed on the number of interfaces used,
however, it was decided to perform further experimentation using the second approach.
This approach was carried out using the scikit-learn [41] Python library’s implemen-
tations of the PCA and K-Means algorithms. In this case, the entirety of the data set
was utilized, as the processing time required to carry out the clustering operation was
significantly lower. The experimentation process was carried out as follows, both using
normalized and standardized time series:

1) The data set was scaled using either normalization or standardization.

2) PCA was performed to investigate the cumulative variance explained by each num-
ber of principal components.

3) The scaled data was transformed through PCA using two principal components (for
visualization purposes), as well as the number of principal components necessary to
explain 95% of the scaled data set’s variance (64 and 120 for the normalized and
standardized data respectively).

4) The transformed data using two principal components was plotted.

5) The classic K-Means algorithm was repeatedly applied to the transformed data sets
using a progressively increasing number of clusters, and the silhouette score for each
attempt was computed.
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6) Promising number of clusters were selected through the elbow method, and plotted
to examine their results.

By visually comparing the plots of the transformed data with two principal components
from both the standardized and normalized data sets, it can be observed that the data
set scaled through standardization tends to form a much more homogeneous group within
the new, lower-dimensional space. This is also reflected by the much greater number
of principal components required to explain 95% or more of the standardized data set’s
variance. The results of these transformations are compared in Figure 4.2.

(a) Normalized time series.

(b) Standardized time series.

Figure 4.2: Comparison between the normalized and standardized data sets transformed
through PCA (two principal components). The x- and y-axes describe the first and second
principal components, respectively.

The clustering results of the data transformed using two principal components were, pre-
dictably, unsatisfactory, as the variety displayed by the different clusters was very low.
When using the number of principal components necessary to explain 95% of the vari-
ance, instead, the results were more promising, with the standardized data, in particular,
displaying a more varied cluster set. The results of this clustering approach are reported
in greater detail in Appendix A.2.
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An additional experiment was carried out by applying the DBSCAN clustering algorithm
to the data transformed by PCA using various numbers of principal components. In this
case, the number of clusters is automatically determined by the algorithm, and the elbow
method was instead applied to selecting the ϵ parameter. This process, however, produced
less interesting results than those of the K-Means algorithm, as it would always result in
a small number of clusters being formed, which failed to capture the desired time series
variety. An example comparing the clustering performed by K-Means and DBSCAN on
the data transformed using two principal components is provided in Figure 4.3, and some
of the results are displayed in more detail in Appendix A.3.

(a) K-Means clustering.

(b) DBSCAN clustering.

Figure 4.3: K-Means and DBSCAN clustering comparison on the normalized data trans-
formed using two principal components. The x- and y-axes describe the first and second
principal components, respectively.

Ultimately, however, the results obtained from the PCA-based clustering were determined
to be inferior to those of the first approach, which was able to capture a wider variety
of significantly different time series. As a result, the data set to be used in anomaly
detection experimentation was created by drawing one random member from each of the
20 clusters identified by the DTW-based method using standardized data. This data set,
which will be referred to as the experimentation data set from this point on, is displayed
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in Appendix B.1.

4.3. Time Series Decomposition Experiments

By visually inspecting the experimentation data set, it can be observed that most of the
interfaces’ time series are characterized by a strong daily seasonality, with some displaying
seasonal behavior also on a weekly scale (with the weekend behaving differently from the
weekdays) and on a sub-daily scale (with some sequences presenting two distinct peaks
within the normal daily behavior).

Assuming that anomalies in the data with strong seasonality could be identifiable as
significant deviations from the seasonal behavior of each time series, an attempt was
made to remove the seasonal behavior from the time series. To accomplish this, the
implementation of STL decomposition from the statsmodels [49] Python library was
used, as described in Section 3.2.2.

The decomposition was performed on a single month of data of the first feature (inoctets)
for each of the time series in the experimentation data set, attempting to isolate the sea-
sonality occurring with daily frequency (or 96 samples). The time series was then recon-
structed by adding only the trend and seasonality components, to simulate its behavior
in the absence of anomalies and compare it with the original and the residual component.
An example of the results of this process is displayed in Figure B.2, with the full results
on the experimentation data set being reported in Appendix B.2.

The reconstructed signal still appears noisy in most cases, but seems to effectively smooth
over most spike anomalies, which are then recognizable in the residual component’s plot
as outlying values compared to the global mean and variance of the component. When
encountering level shift or changepoint anomalies, on the other hand, the reconstructed
time series has a more unpredictable behavior, with the reconstruction’s attempts to adapt
to the changes in behavior leading to high variance in the residuals component.

Further attempts at decomposition were performed using statsmodels’ MSTL algorithm,
which applies STL decomposition using multiple seasonal components. Specifically, the
seasonal components utilized were 48 samples (half a day), 96 samples (one day), and 672
samples (one week) in length. The results of this process, however, show little difference
from those obtained using the regular STL decomposition algorithm.

In conclusion, the decomposition process showed promising results in highlighting outlying
data points in the form of spike anomalies, but appears to become chaotic in the presence
of level shifts or changepoints.
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Figure 4.4: Results of STL decomposition and reconstruction for one time series feature.
The x-axis represents time, while the y-axis represents the value of the original and recon-
structed time series in the top image, and that of the residual component in the bottom
image.

4.4. Anomaly Detection

Several anomaly detection techniques were applied to the experimentation data set ob-
tained from the clustering process, in order to gauge their performance both in terms
of processing time and accuracy in detecting anomalies according to specifications S1,
S2, S3, and S5 listed in Section 2.7.1. Throughout this process, the tools from different
anomaly detection libraries were also compared to determine which would be the most
suitable to be used in the final ADS based on specifications S7 and S8.

The reduced experimentation data set was standardized (see Section 3.2.1) using the
Pandas library [39] [56] for Python before being used as input for the algorithms, to negate
the effects of scale on their performance (standardization was chosen over normalization
as a consequence of the presence of spike outliers in the data). Furthermore, Pandas

was also used to impute missing data in the time series through linear interpolation
(see Section 3.1.1), which was deemed a good compromise between precision and ease of
implementation to fill in the gaps.

Because of the lack of an available labeled data set and the limited resources available,
the algorithms from different libraries were compared based on visual inspection of their
ability to identify data points that displayed seemingly anomalous behavior. Furthermore,
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parameter tuning for these algorithms was carried out manually, as an objective measure of
performance would be needed to automate the parameter selection process. A quantitative
evaluation based on synthetic time series was later carried out for the models of the most
promising library (see Section 4.6).

4.4.1. STL Residuals Detection

A first attempt at performing univariate anomaly detection was carried out by utilizing
the results of the seasonal-trend decomposition described in Section 4.3. Each sample’s
residual component value is utilized as its anomaly score, and anomalies are identified as
those samples whose score’s distance from the data’s mean exceeds N standard deviations
(N=3 appears to offer the best results). Figure 4.5 displays an example of the results of this
process, with the threshold for anomalies being indicated by the transparent confidence
bounds, and anomalies being marked with red crosses. A more comprehensive view is
provided in Appendix C.1.

(a) Time series with spikes.

(b) Time series with a changepoint and level shifts.

Figure 4.5: Examples of anomaly detection based on STL residuals (N=3). The x-axis
represents time, while the y-axis represents the value of the time series. The red crosses
in the plot are placed in correspondence of detected anomalies.

As expected, this method is particularly effective at identifying spike anomalies, but shows
much less consistency in identifying changepoint and level shift outliers.
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4.4.2. Quidditch Library

The first anomaly detection library used as part of the experimentation process was
Quidditch [23], an inner-source framework developed internally at Ericsson. Quidditch
offers implementations for many univariate and multivariate anomaly detection models,
as well as functions for performing different time series processing operations, such as dif-
ferencing, de-trending, and scaling. The library also contains the necessary infrastructure
to set up anomaly detection pipelines and ensembles, as well as some tools to provide
increased explainability of detection results. These factors make it a good candidate for
the construction of the ADS.

From the set of Quidditch algorithms listed in Section 3.4.1, Isolation Forest and Ran-
dom Cut Forest appeared to provide the most promising results. Nevertheless, after
conducting various experiments, they still appeared to perform less optimally than the
STL decomposition approach detailed in Section 4.4.1, being able to identify less apparent
anomalies and instead mistakenly labeling a greater number of ordinary samples, while
also requiring greater amounts of time to train.

Furthermore, experimenting with the Quidditch library brought to light several issues
with its use as a basis for the ADS, despite the advantages brought by being an internal
company tool:

- Some of the implemented algorithms contain bugs that make them difficult or im-
possible to use without modifying their code. This makes working with the library
more cumbersome, but also poses doubts regarding the reliability of the library for
use in production-grade systems.

- Because of the confidentiality of customer data, examples of projects making use of
the library are difficult to access. Paired with its inner-source nature, this results in
a severe lack of available example material on how to use the libraries tool effectively,
which is available for most open-source frameworks.

- Since the library is an internal tool maintained by company employees, updates
can be infrequent and dependent on the availability of dedicated personnel. As
such, bugs may persist unaddressed for long stretches of time and new features and
techniques may be slow to be added.

As a result of these considerations, Quidditch was put aside in the hopes of identifying
a more suitable tool.
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4.4.3. Kats Library

The second library used for experimentation was Kats [28], an open-source framework
for time series analysis developed by Facebook ’s Infrastructure Data Science team. Kats

provides several outlier detection algorithms, each specialized in detecting a specific kind of
anomaly. Furthermore, it offers various time series forecasting models, feature extraction
modules, visualization tools, and parameter tuning support, making it a promising option
for the development of the ADS.

Several of the algorithms offered by Kats and listed in Section 3.4.1 appeared to provide
promising results upon visual inspection. In particular, the ability of some algorithms to
identify specific kinds of anomalies could allow for a preliminary form of classification to
be applied without the need for labels or additional data. Another advantage of the library
is its support for parameter tuning. While the documentation available at the time of
writing only provides examples of automating parameter selection for forecasting models,
recent work by Facebook ’s Infrastructure Data Science team indicates the possibility of
using the tools provided by Kats to perform automatic model selection and parameter
tuning of anomaly detection models without the need for a labeled data set. [16]

Despite these significant advantages, however, some drawbacks also emerged from the
experiments conducted with the library:

- Some of the algorithms in the library present bugs that make their features unable to
be used without altering the code base. Once again, this results in greater difficulty
in using the library to its full potential, and does not inspire confidence regarding
the employment of this tool in production systems.

- The documentation for the library is extremely variable in quality, with some fea-
tures being documented extensively and others lacking any sort of explanation as
to their usage and function. The example code provided by the authors for the
library’s tools also appears to be lagging behind some of its more recent additions,
making it difficult for inexperienced users to familiarize themselves with it.

- Updates to the library’s code appear to be infrequent, and issues opened on its
repository’s page have been left unaddressed for a significant amount of time (as of
the writing of this thesis). This is not ideal for a library to be used in production
systems, as any bugs or discovered vulnerabilities would have to be fixed manually
instead of being able to rely on official updates.

As a result, despite its promise, Kats was deemed not ideal for use in the development
of the ADS in its state at the time of writing, and experimentation was carried on with
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other tools.

4.4.4. Merlion Library

The third and final anomaly detection library utilized for experimentation was Merlion [6],
an open-source time series intelligence library developed and maintained by the Salesforce
team. Merlion features implementations for a variety of popular time series forecasting
and anomaly detection techniques, as well as support for various pre-processing and post-
processing operations. The library also provides various tools for visualization, parameter
tuning, evaluation, and ensembling, which would be useful in the development of an ADS.
Furthermore, all anomaly detection and forecasting models in the library are constructed
to provide a unified interface and inherit functionalities from some common base classes,
ensuring that the framework can be easily expanded through the addition of new models.
These factors make it ideal for the implementation of a resilient and expansible ADS.

All of the algorithms in the Merlion library allow post-processing rules to be defined,
which influence how the anomaly scores obtained as outputs from the models are used to
identify anomalies. Specifically, the library offers the possibility of employing an anomaly
score calibrator to transform the anomaly scores so that they follow a standard normal
distribution, which can be useful to ensure that the scores returned by different models
may be directly compared. When using the calibrator, however, the accuracy of the al-
gorithms appeared to worsen significantly, leading to the decision to ignore this feature
when testing individual models. Furthermore, the library allows for the use of thresholds
to sparsify the detected anomalies, by setting to zero those anomaly scores whose value
does not surpass N standard deviations from the series’ anomaly score mean. Experimen-
tation lead to the decision of setting N=4 when not employing a calibrator, while if the
latter is used a better choice appears to be N=3.

Several of the tested Merlion algorithms listed in Section 3.4.1 showed good performance
upon visual inspection, and a more thorough evaluation of the models is provided in
Section 4.6.2. Beyond the promising results obtained by its algorithms, the library also
proved to be quite polished and robust during experimentation, along with possessing
detailed documentation and being subjected to frequent updates. Furthermore, the tools
provided by Merlion also include various ways to load and save model parameters, and to
update trained models, which make the library a good candidate for use in a live system.
Because of these considerations, it was decided to use Merlion as the building blocks for
the ADS to be developed.

An example of anomaly detection conducted through the Prophet model, plotted using
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the library’s own tools, is shown in Figure 4.6. A more extensive display of the various
models’ predictions on the experimental data set is provided in Appendix C.2.

Figure 4.6: Anomaly detection using the Prophet model on a single time series feature.
The x-axis represents time, while the y-axis reported on the left represents the value of the
time series, and that on the right the value of anomaly scores. In the figure, the original
time series is displayed in black, with a vertical dashed line dividing the training and test
sets. The blue line indicates the model’s forecast, as well as its confidence bound. The
red vertical lines show instead the anomaly score of each sample in the test set, with the
base being a score of zero.

In an attempt to further improve the accuracy of the algorithms, Merlion’s tools were
also used to create ensembles of well-performing algorithms. These algorithms would each
express an anomaly score for every data point, and their collective estimations would then
be combined by taking either the mean, median, or maximum of the different models’
scores. Upon visual inspection, the ensembles seemed to provide comparable results to
those obtained by the individual best models, without a clear improvement or degradation
of performance.

4.5. Model Evaluation Environment

As discussed in Section 3.5, the numerical evaluation of the models from the chosen library
(Merlion) was carried out using a set of synthetically generated univariate time series.
Because of this, the evaluation process could be carried out in a different computational
environment with access to greater processing power, as there was no risk of leaking
sensible customer data. The hardware used as part of this process is reported in Table 4.1.
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RESOURCE VALUE

CPU Model 8x 11th Gen Intel(R) Core(TM) i5-1145G7 @ 2.60 GHz

CPU Cache 8 MB

CPU Cores 4

RAM 24 GB

GPU Model Mesa Intel(R) Xe Graphics (TGL GT2)

GPU Memory 3 GB

Table 4.1: Evaluation environment hardware specifications.

4.5.1. Synthetic Time Series Generation

The synthetic time series used for model evaluation were generated using the GluonTS

library for Python. [2] As discussed in Section 3.5 this evaluation focuses on the detection
of univariate anomalies, which made the process of generating time series considerably
easier by restricting it to simulating a single variable at the time. The data was generated
as a superposition of different numeric sequences with parameters reflecting those found
in the inoctets, outoctets, inpackets, and outpackets features of the original data,
with each value in the time series corresponding to one 15-minute interval sample. These
sequences include:

- A smooth daily seasonality with sinusoidal behavior. This accounts for the main
seasonality observed in the data.

- A series of additional seasonal sequences with shorter periods and lower, randomly-
determined amplitudes. These account for other cyclic behavior observed in some
of the data, such as the morning and afternoon having distinct peaks.

- A scaling factor differentiating between weekdays and weekends, and another dif-
ferentiating between the days of the week.

- A sequence of Gaussian noise that simulates random fluctuations in the measured
traffic.

The base time series is then further modified by injecting a random number of labeled
behavioral anomalies and scaled to match the original data. The three types of behavioral
anomalies described in Section 3.4.2 are added separately, and their labels are kept distinct
to enable the computation of more detailed statistics for each category.

It is important to note that the anomaly label associated with level shift and changepoint
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anomalies marks as anomalous only the moment of transition between the original and
novel behavior, as, when the change persists for longer periods of time, no clear way was
found to determine how long to consider the following observations as anomalous. The
anomalies were simulated as follows:

- Spike: a sudden increase or drop of random intensity in the value of the time series,
with a high chance of reverting to the original value with each new observation.

- Level Shift: a random shift in the scale and level of the time series, which reverts
to the original after a random amount of time. With each change, the new level
and scale have a small chance of becoming the normality, with subsequent shifts
reverting to those conditions instead of the original ones.

- Changepoint: a random change between the original time series and a new se-
quence with different behavior. Each subsequent change has a small probability of
returning the time series to its original behavior.

The likelihood of an anomaly occurring at a given sample is determined randomly. For
spike anomalies, the probability of occurrence was set to an approximation of their fre-
quency in the original data. Because level shifts and changepoints appear much more
rarely, however, their chance of occurrence had to be increased so that they would appear
in the evaluation data set in significant numbers. An example of generated time series
is provided in Figure 4.7, with spike anomalies highlighted in red, level shift anomalies
highlighted in blue, and changepoint anomalies highlighted in green.

Figure 4.7: Examples of synthetic time series with injected anomalies. The x-axis repre-
sents time, while the y-axis represents the value of the time series.
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4.6. Anomaly Detection Models Evaluation

Using Merlion’s evaluation tools, each model was tested on a set of 100 synthetic univari-
ate time series of 45 days in length, with the first 31 days being used for the initial training
of the model, and the remaining 14 to compute the evaluation metrics. The models were
asked to predict the anomaly score of a single sample in the future at the time, thereby
simulating an online detection environment and resulting in a total of 1344 predictions
(96 per day). In order to limit the computational burden of the process, the models were
retraining once every six hours of data on the samples from the most recent 31 days,
though experimentation showed that more frequent re-trainings would lead to improved
prediction accuracy. Each model was tested using the most promising set of hyperparam-
eters identified during the experimentation phase, including general parameters such as
pre-processing and post-processing steps, and model-specific parameters. In addition, the
best-performing models were combined in an ensemble in an attempt to improve on their
individual scores.

4.6.1. Model Hyperparameters

The general hyperparameters common to every evaluated model are reported in Table 4.2.
Every model was tested after standardizing the data as described in Section 3.2.1, which
was achieved through Merlion’s built-in pre-processing capabilities. Furthermore, each
model’s predicted anomaly scores were sparsified through the use of Merlion’s threshold-
ing functions, setting any anomaly scores whose value failed to reach the cut-off point to
zero. For this purpose, the threshold was set to a value of four standard deviations from
the mean of anomaly scores for the given time series: this value was deemed optimal dur-
ing the experimentation phase by visually inspecting the model’s results on the reduced
data set obtained from clustering. As described in Section 4.4.4, Merlion also provides
a calibrator to transform anomaly scores to fit a standard normal distribution, but this
feature was not utilized, as it showed a decrease in accuracy during the experimentation
phase when applied to individual models.

The hyperparameters specific to each model are reported in Table 4.6.1. They are listed
with the names and values used in the Python code, and any parameters not specified in
the table were assigned the default value provided by the library.

MODEL PARAMETER VALUE

DBL train_window ’4w’
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MODEL PARAMETER VALUE

DBL wind_sz ’7d’

trends [’daily’, ’weekly’]

WindStats wind_sz 60

max_day 7

Spectral Residual local_wind_sz 96*7

q 5

Stat Treshold - -

ZMS base 10

lag_inflation 1.0

Isolation Forest max_n_samples None

n_estimators 100

Random Cut Forest n_estimators 100

max_n_samples 8000

online_updates True

Autoencoder hidden_size 5

layer_sizes (25, 10)

sequence_len 1

lr 10e-3

batch_size 512

num_epochs 20

VAE encoder_hidden_sizes (12, 6)

decoder_hidden_sizes (12, 6)

latent_size 3

sequence_len 1

kld_weight 1.0
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MODEL PARAMETER VALUE

VAE dropout_rate 0.0

num_eval_samples 10

lr 10e-3

batch_size 512

num_epochs 10

DAGMM gmm_k 3

hidden_size 4

sequence_len 1

lambda_energy 0.1

lambda_cov_diag 5*10e-3

lr 10e-3

batch_size 256

num_epochs 10

LSTM ED hidden_size 5

sequence_len 1

dropout (0.3, 0.3)

lr 10e-3

batch_size 256

num_epochs 30

n_layers (2,2)

Prophet - -

Table 4.3: Specific hyperparameters for the evaluated models.
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PARAMETER VALUE

Training set size 2976 samples (31 days)

Test set size 1344 samples (14 days)

Training frequency 24 samples (6 hours)

Detection frequency 1 sample (15 minutes)

Pre-processing Input standardization

Post-processing Anomaly score threshold (4σ)

Table 4.2: General hyperparameters for the evaluated models.

4.6.2. Model Evaluation Results

The results for each evaluated model on the chosen metrics (see Section 3.5) are reported
in Table 4.4. The performance achieved by a Random model, which randomly assigns
anomaly labels to each sample with 50% probability, is also reported at the top of the
table for comparison. All performance metrics were computed as an average of those
obtained by a given model on each of the 100 synthetic time series in the evaluation
set (it should be noted that the average F1 score does not correspond to the F1 score
calculated using the average precision and recall). For the Precision, Recall, and F1 Score
metrics a higher value is desirable, while for Fallout, MTT, and MPT, lower values are
preferred.

Furthermore, Table 4.5 reports the partial recall scores of each model for the three injected
anomaly types, as described in Section 3.5.2.

From these results, the Prophet model was identified as achieving the best performance
among those evaluated. The model surpasses all others both in precision and recall,
resulting in a better overall F1 score, while retaining competitive fallout, and training
time, although it shows a significant average prediction time when compared to most
other options. The model also displays an outstanding performance when looking at
specific types of anomalies, obtaining the best results on all three partial recall scores.

One aspect worth noting is the absence of model-specific hyperparameters for Prophet:
while its performance surpassed all others during the course of this evaluation, it is nev-
ertheless possible that a different choice of parameters for the other models might change
this result. In particular, deep learning approaches like Autoencoder, VAE, DAGMM, and
LSTM ED have a large number of parameters, and a more structured tuning approach
making use of better hardware and more data could produce results far superior to those
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Algorithm Precision Recall Fallout F1 MTT MPT

Random 0.0081 0.5920 0.4999 0.0159 - -

DBL 0.8246 0.6262 0.0014 0.6643 1.1563s 0.1862s

WindStats 0.5650 0.6666 0.0054 0.5691 0.0861s 0.0174s

Spec Residual 0.4538 0.14372 0.0000 0.1866 0.0367s 0.0135s

StatTreshold 0.8218 0.4824 0.0014 0.5402 0.0427s 0.0124s

ZMS 0.8721 0.4838 0.0005 0.5618 0.0579s 0.0234s

IsoForest 0.8543 0.5243 0.0004 0.5904 0.3681s 0.0910s

RanCutForest 0.3953 0.7903 0.0062 0.4704 2.4291s 1.0744s

Autoencoder 0.2419 0.4435 0.0138 0.2494 7.2149s 0.0546s

VAE 0.5457 0.7550 0.0087 0.5775 2.1497s 0.1092s

DAGMM 0.1613 0.3940 0.0040 0.1843 14.2508s 1.5305s

LSTM ED 0.4760 0.7556 0.0106 0.5228 11.9479s 0.1711s

Prophet 0.8768 0.8116 0.0008 0.8231 0.4706s 0.3673s

Table 4.4: Evaluation of the Merlion library models. The best overall results for each
metric are highlighted in bold font.

achieved by those models during this study. Another element of note is that deep learn-
ing algorithms tend to benefit greatly from larger training sets, and thus using the same
amount of data (31 days) for all models might disproportionately penalize these methods.

4.6.3. Training Data Evaluation Results

To better diagnose the different evaluated algorithms and identify possibilities for im-
provement, the models were also evaluated on their training data. This was achieved
by using a similar process to that used for the testing data in Section 4.6.2, but instead
including the testing data in the one used for training the model before computing the
prediction. A comparison between the F1 and Fallout scores of the various models when
tested on data used and not used in training is reported in Table 4.6.

In general, most models show a slight improvement in F1 score when tested on the training
data, with the most significant discrepancy showing for the Random Cut Forest and
DAGMM models, indicating perhaps an overfitting of the training data.

For models that base their prediction on comparing new observations with historical data,
such as DBL, WindStats, StatThreshold, and ZMS, it appears that testing on the training
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Partial Recall

Algorithm Spike Level Shift Changepoint

Random 0.5914 0.6667 0.5454

DBL 0.6209 0.6111 0.7273

WindStats 0.6620 0.2222 0.7273

Spectral Residual 0.1394 0.1111 0.5454

Stat Treshold 0.4785 0.4444 0.7273

ZMS 0.4840 0.5 0.7273

Isolation Forest 0.5210 0.6667 0.8182

Random Cut Forest 0.7884 0.8334 0.6364

Autoencoder 0.4364 0.3333 0.8182

VAE 0.7517 0.4444 0.8182

DAGMM 0.3935 0.3889 0.3636

LSTM ED 0.7549 0.4444 0.6364

Prophet 0.8066 0.8889 1.0000

Table 4.5: Evaluation of the Merlion library models on specific types of anomalies. The
best overall results for each metric are highlighted in bold font.

data can variably result in minor improvements or degradation of performance. This is
likely because, when training on a new observation, if the observation is anomalous it
results in a skew of the model’s expectation of behavior away from the real normalcy of
the time series, while training on ordinary data better aligns it to the truth. As such,
depending on the number of anomalies contained in recent observations, training the
model on the data it is then asked to analyze may yield both improved and worsened
results.

For deep learning models, instead, the relatively small difference between the training
and testing performance may suggest that a more accurate tuning of parameters may be
required, in order to increase the size of the network and improve the models’ ability to
extrapolate the time series’ behavior.

4.6.4. Post-processing Evaluation Results

An additional set of detection experiments was performed on the Prophet model to ana-
lyze its performance using different sets of post-processing options. This was carried out



64 4| Numerical Experiments

Training Data New Data

Algorithm Fallout F1 Fallout F1

DBL 0.0011 0.6649 0.0014 0.6643

WindStats 0.0051 0.5383 0.0054 0.5691

Spec Residual 0.0000 0.1927 0.0000 0.1866

StatTreshold 0.0013 0.5417 0.0014 0.5402

ZMS 0.0005 0.5565 0.0005 0.5618

IsoForest 0.0004 0.5875 0.0004 0.5904

RanCutForest 0.0067 0.5418 0.0062 0.4704

Autoencoder 0.0109 0.2491 0.0138 0.2494

VAE 0.0087 0.5775 0.0087 0.5775

DAGMM 0.0035 0.2265 0.0040 0.1843

LSTM ED 0.0112 0.5305 0.0106 0.5228

Prophet 0.0008 0.8305 0.0008 0.8231

Table 4.6: Evaluation of the Merlion library models when tested on training vs. previ-
ously unseen data. The best results for F1 Score and Fallout of each model are highlighted
in bold font.

to verify the conclusions drawn through visual inspection of the detection plots during the
experimentation phase, to objectively determine the best combination of post-processing
parameters to be applied to the best-performing model. The results of these experiments
are reported in Table 4.7. The measures pertaining to computation times were omitted,
as the effect on those metrics caused by the post-processing operations is negligible.

The results confirm that the use of the calibrator on the individual model results in a
severe deterioration of its performance, even when using the threshold that results in
the highest F1 score (which is proven to be three standard deviations). Without using
anomaly score calibration, the threshold can nevertheless be tuned to increase Recall at
the expense of Precision and Fallout or vice versa, but the value resulting in the best F1
score (while maintaining a low Fallout) is confirmed to be four standard deviations.

4.6.5. Ensemble Evaluation Results

In an attempt to improve the performances obtained from the evaluation of the individual
models, the best-performing algorithms were merged in ensembles using Merlion’s built-
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Prophet Algorithm

Calibration Threshold Precision Recall Fallout F1

No 3σ 0.7882 0.8757 0.0013 0.7992

No 4σ 0.8641 0.8097 0.0011 0.8121

No 5σ 0.8747 0.7594 0.0009 0.7831

Yes 2σ 0.2287 0.3302 0.0107 0.1848

Yes 3σ 0.6164 0.2422 0.0011 0.3210

Yes 4σ 0.1870 0.0677 0.0004 0.0906

Table 4.7: Evaluation of the Prophet model using various post-processing parameters.
The best overall results for each metric are highlighted in bold font.

in tools. The predictions of the ensembles are determined by combining the scores of the
individual models through a specified policy, such as taking for each sample the mean of
the models’ predicted anomaly scores). It should be noted that because different models
can produce anomaly scores with values at different scales, models assigning larger scores
on average will have a greater influence on the ensemble’s final prediction than the ones
using smaller values. As a result, some ensembles were created and tested both with
and without the use of the anomaly score calibration post-processing feature offered by
Merlion (see Section 4.4.4), despite its tendency to decrease the model’s performance
when applied to individual models.

The evaluation of the ensemble models was once again performed on a smaller data set
of synthetic time series because of the increased processing time required, and the results
are reported in Table 4.8. The MTT and MPT scores of the models were omitted, as
they roughly correspond to the sum of the individual models, with the process of merging
the result being negligible in comparison. The results obtained by the best performing
individual model (Prophet) on the smaller evaluation data set are reported twice at the
top for comparison, both with a four standard deviations threshold and no calibration,
and with a three standard deviation threshold alongside calibration.

In the table, the Agg column indicates the aggregation policy used to combine the indi-
vidual models’ anomaly scores. The Post column indicates instead the post-processing
operation applied to the individual models. A Post value of C indicates the application
of the anomaly score calibrator on each individual model, while a value of T indicates the
use of a threshold on their score (set to three standard deviations when also using the
calibrator, and four otherwise). A final threshold of four standard deviations (or three,
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when using calibration) is always applied to the final aggregated anomaly score produced
by the ensemble.

From these results it can be observed that some ensembles succeed in slightly surpassing
the best individual model in terms of Recall or Fallout, but nevertheless fail to improve on
the F1 score. These marginal improvements hardly justify the greatly increased processing
time resulting from the use of multiple models simultaneously. As such, the individual
Prophet model was determined to be the best suited to be used in the development of
the final system.
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Algorithms Post Agg Precision Recall Fallout F1

Prophet T - 0.8641 0.8097 0.0011 0.8121

C+T - 0.6164 0.2423 0.0012 0.3210

DBL+Prophet - Mean 0.8239 0.7922 0.0012 0.7751

- Max 0.8233 0.7932 0.0012 0.7752

C Mean 0.8391 0.7207 0.0010 0.7351

C Max 0.8164 0.7014 0.0010 0.7117

T Mean 0.8246 0.7963 0.0012 0.7765

T Max 0.8246 0.7911 0.0012 0.7736

C+T Mean 0.8176 0.7041 0.0010 0.7190

C+T Max 0.8179 0.7042 0.0011 0.7160

DBL+Prophet C Mean 0.8216 0.6266 0.0015 0.6688

+IsoForest C Max 0.7816 0.6001 0.0005 0.6435

C Median 0.7816 0.6035 0.0005 0.6457

C Mean 0.8319 0.8289 0.0016 0.7999

C Max 0.8627 0.7855 0.0012 0.7963

C Median 0.8636 0.7880 0.0013 0.7994

T Mean 0.8226 0.6178 0.0015 0.6591

T Max 0.7816 0.6009 0.0005 0.6430

T Median 0.7816 0.5858 0.0005 0.6339

Table 4.8: Evaluation of the ensemble models using various parameter combinations.
The best overall results for each metric are highlighted in bold font. The Agg column
indicates the policy for combining the models’ anomaly scores. The Post column indicates
the applied post-processing operation: C indicates the application of the anomaly score
calibrator on each individual model, while T indicates the use of a threshold on their
score.
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4.7. Microservices Implementation

When referring to the solution architecture presented in Section 2.7, the components
implemented during the course of this thesis are the data cleaning, model training, and
anomaly detection services.

The data cleaning service performs the data cleaning operations described in Section 4.1
with the exception of step 3 (data anonymization), since in the context of live deployment
on customer hardware there is no need to hide the information from the operator. As
previously specified, each observation is associated with the network element to which it
belongs and a timestamp indicating when it was sampled, as well as several features of
interest to be analyzed. The cleaned data is then saved to the designated storage location,
and the Model Training and Anomaly Detection services are informed of the presence of
new data.

The model training service is tasked with creating and updating the models used to
perform anomaly detection according to some specified parameters. For the univariate
detection algorithms, a new model has to be created for each feature of every network
interface, whereas for multivariate detection algorithms, a single model can be generated
for each interface. When the service cannot identify an existing model for a given feature
or interface in the designated storage location, it will generate a new one according to the
specified parameters (including which kind of model to choose, what parameters to use,
and what pre-processing and post-processing operations should be performed). When a
model already exists, the system will instead calculate the time elapsed between the last
sample used in training and the most recent available sample in the data for which anomaly
detection has already been performed. If this quantity exceeds the amount specified in
the service parameters, the model will be updated by training it on the more recent data
cleaned by the Data Cleaning service.

The anomaly detection service, finally, provides an estimation of anomaly scores for each
data point that has not yet been analyzed. By default, the system performs its prediction
on the data as soon as a new sample is available, but the service parameters may be
changed so that the detection process is executed with a specific cadence. The detection
process is composed of the following steps:

1) The data is loaded from the designated storage location. The amount of data to
be loaded is determined by the service configurations, and includes both the most
recent observations (for which detection has to be performed), as well as a specified
amount of samples preceding them (necessary for the use of some models).
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2) The system identifies missing samples, which are marked by the presence of NaN

values in the data features, and flags them as anomalies.

3) The system analyzes the data’s features, flagging those values that fall outside a
predefined domain range that can be specified for each feature (which defaults to
accepting any value). For example, all of the features used as part of this study
(listed in Section 4.1) correspond to the counting of a certain number of packets or
bytes in the network, and as such, negative values should be always be flagged as
errors. Furthermore, five of the features are themselves indicators for the presence of
errors or discarded packets in the network, and should thus be flagged as anomalous
whenever their value exceeds zero.

4) The system imputes the values according to the specified imputation policy, and
applies a given scaling technique to the data. By default, these are set to linear
interpolation and standardization respectively.

4) The system loads the appropriate anomaly detection model for the given network
interface. Only the subset of specified features of interest is analyzed in this phase.
If the service is configured to perform univariate detection it will load a model for
each of its features, otherwise a single multivariate model will be used. The model
flags each data point that it deems an outlier, and provides an anomaly score to
indicate the magnitude of the anomaly (univariate models will each provide a score
for their designated feature, while multivariate models will return a single value for
each observation).

5) The anomaly labels and scores calculated during the previous steps are aggregated
and stored in the designated storage location.

The implemented system is configured to utilize by default the Prophet model for uni-
variate detection, and the Isolation Forest model for multivariate detection, with uni-
variate detection being the default choice. Nevertheless, the ADS is structured in such a
way that any other models from the Merlion library may be easily be used instead by
modifying the appropriate configurations.

The output of the system is a new data point for each analyzed observation, which bears
the latter’s node ID, interface IDs, and timestamp. This data point, however, does not
possess the same features as the original observation, but is instead associated with several
new features indicating the presence or the absence of various kinds of anomalies.

The first set of features (identified by the suffix _missing_anom), indicates with a boolean
value whether the specified feature was missing from the sample. In that case, no other
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anomalies will be reported for that feature in the same sample.

The second set of features (identified by the suffix (_value_anom)), indicates with a
boolean value whether the specified feature assumed a value outside its established domain
in the given sample. In that case, no behavioral anomalies will be reported for that feature
in the same sample.

The third and final set of features(identified by the suffix _behavior_anom), indicates the
anomaly score associated with the given sample, as provided by the detection model. This
analysis is only executed for a specified subset of features, and a non-zero score marks the
feature’s value as anomalous.

An example of the schema of the system’s output for a data point in the experimentation
data set is provided in Figure 4.8.
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Figure 4.8: Example schema of the anomaly detection service’s output, as provided by
Pandas.
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The following chapter draws from the contents of Chapter 4 to discuss the results of this
thesis in relation to the goals established in Chapters 1 and 2. Section 5.1 summarizes
the contents of this thesis, and the answer it provides to its driving research question.
Section 5.2 analyzes the success of the system in respecting the specifications that guided
its development. Section 5.3, finally, lists a series of potential improvements over the
contents of this thesis that could be carried out in future work.

5.1. Thesis Summary

The purpose of this thesis was to develop an autonomous anomaly detection system, to
be deployed as part of a software-defined networking controller platform developed at
Ericsson.

The purpose of this thesis was to answer the research question described in Section 1.1.1:
’How could an anomaly detection system for reduced amounts of mobile network op-
erational data be constructed?’. The goal of this system was to unsupervisedly detect
anomalous behavior occurring in a number of monitored network metrics, in order to
provide diagnostic support to network operators and enable the creation of automated
responses to the presence of abnormalities. To ensure that the system would be adaptable
and scalable to networks of changing characteristics and sizes, the system was constructed
using machine learning technology and in accordance with microservices architecture.

The data used in this study covered six months of regularly sampled multivariate time
series data from a real-life network. This data was cleaned and processed using PySpark

to enable its use by autonomous anomaly detection algorithms.

Experimentation of such algorithms was carried out on a reduced data set of time series
with varied behavior, obtained by performing clustering on the original data and taking
one time series from each group. Several attempts at clustering were made, with the best
results being obtained by using the K-Means algorithm with dynamic time warping as a
similarity measure.
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Several anomaly detection techniques were tested on the data, drawing from the tools
available across three different anomaly detection libraries for Python. In the end, the
Merlion open-source library was chosen to be used in the development of the anomaly
detection models employed by the system, as a result of the wide range of algorithms and
tools it provides, its extensive documentation, and its reliable code base.

The library’s algorithms were evaluated across a variety of metrics on a data set of syn-
thetic time series, generated appositely to resemble the original data. The models’ accu-
racy and computational requirements were compared on a univariate detection problem,
with the Prophet model emerging as the most promising among those tested.

In answer to the research question of this thesis, the anomaly detection system was imple-
mented as a set of three microservices, each carrying out data cleaning, model training,
and anomaly detection activities respectively. It is constructed using scalable and reliable
technologies, which ensure it is adaptable to different network specifics, and is configurable
to enable finer control over its performance trade-offs. Its anomaly detection service is
capable of identifying different types of faults in the data, including behaviors that di-
verge from the system’s historical patterns, which it achieves through a mix of static and
machine learning-based techniques. The system was built to be highly customizable by
the end user to fit their specific needs, and to be easily maintainable and expansible by
the Ericsson team through future work.

5.2. Satisfaction of System Specifications

The anomaly detection system developed throughout the course of this thesis was imple-
mented according to the specifications described in Section 2.7.1. With regard to those
specifications, the following conclusions can be drawn from the final result:

S1) The system should identify the majority of anomalies occurring within
the data:
The developed ADS is capable of detecting missing data, as well as samples whose
values exceed or fall below set domain limits (see Section 4.7). Furthermore, the
system uses autonomously trained, manually configurable machine learning models
to determine unusual behavior within the data. Its models are estimated to be
capable of detecting an average of 81.16% of anomalies occurring within a given
monitored metric, if trained every six hours (see Section 4.6.2).

S2) The system should not mark a large number of ordinary observations as
anomalous:



5| Conclusions 75

The developed ADS is estimated to perform erroneous detections on an average
of only 0.08% of the analyzed data, when its models are trained every six hours
(see Section 4.6.2). Additional parameters may be configured by its operators to
reduce this quantity, such as by raising the threshold used to determine anomalous
occurrences.

S3) The system should be able to adapt to the appearance of novel behaviors
in the monitored metrics:
By choosing to employ lightweight and highly specialized models, the system is
capable of retraining itself to adapt to new behavioral patterns with any desired
frequency (at the cost of increased computational burden). Furthermore, because
these models require only a small amount of data to be trained and can be de-
ployed for a single time series, the system can quickly adapt to the addition of new
monitoring metrics.

S4) The system should provide online predictions within the span of one
sampling interval:
The developed ADS employs models that are capable of expressing predictions on
a given metric within an estimated average of 0.3673 seconds (see Section 4.6.2).
While during this thesis no estimation was calculated on the time required for the
execution of the remaining parts of the system’s functions, its components were
developed as individual microservices using scalable technologies (see Section 4.7),
which should ensure that the system can always reach a sufficient performance when
provided with the necessary processing power.

S5) The system should be able to function with low amounts of processing
power:
The developed ADS was implemented favoring modern and efficient technologies.
Furthermore, the system allows for a significant degree of customization, which
makes it possible to sacrifice its accuracy in exchange for a reduced computational
burden, for example by using a lighter detection model or increasing the time be-
tween re-trainings (see Section 4.7).

S6) The system should be able to scale to handle varying amounts of input
data:
The developed ADS was implemented using scalable technologies and frameworks,
such as PySpark and MSA (see Sections 4.1 and 4.7). As a result, the system can
be efficiently scaled to adapt to IP networks of smaller or larger sizes.

S7) The system should be built with reliable, stable technologies: The de-
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veloped ADS was built using open-source, well-supported libraries, such PySpark,
Pandas, and Merlion (see Sections 4.1, 4.4, and 4.7). These libraries were deemed
to be both stable and reliable.

S8) The system should be easy to maintain and expand upon in future work:
The developed ADS was built with the specific intention of being expansible through
future developments (see Section 2.7). Furthermore, the adhesion to MSA en-
sures that the different parts of the system can easily be modified without im-
pacting the rest of the system (see Section 4.7). Finally, the system was built using
well-documented, open-source libraries, and its code was documented painstakingly
throughout the course of this work.

It can be concluded that the system broadly meets the defined specifications, and can
successfully accomplish its stated goal of performing autonomous anomaly detection on a
provided set of arbitrary network metrics.

5.3. Future Development

Numerous improvements could be carried out in future work to improve or expand on the
contents of this thesis.

Firstly, as described in Section 2.7, the system should be expanded by the addition of an
anomaly classification service and a rule engine service. The former would perform clas-
sification on the detected anomalies to divide them into different groups. A preliminary
version of this process could be carried out by using algorithms capable of detecting spe-
cific types of anomalies, but a more advanced approach, possibly incorporating additional
data to be requested from the IP network, should also be taken into consideration. The
latter service would instead provide a set of configurable rules to the network operator,
which would allow them to customize the alerts provided by the system, as well as set up
automated responses to detected anomalies (such as requesting additional, detailed data),
or to the output of the classification process.

In addition to this, the amount and variety of available data should be improved. An
example would entail using observations over longer periods of time, which would enable
analysis of anomalies occurring over the network’s quarterly and yearly behavior, and
better take into account the effects of holidays and other yearly trends. Data could also
be drawn from different networks, to enable a better view of the time series’ behavior over
different geographies and uses. Another option would entail collecting data with a higher
sampling frequency to analyze finer changes in the monitored metrics, and additional
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metrics such as error logs could also be analyzed using text analysis techniques. More
importantly, data containing labeled anomalies should be obtained, to gain better insight
into which anomalous behaviors in the monitored metrics actually correspond to real-
world events of interest.

The anomaly detection process itself could be improved in multiple ways. To begin with,
the algorithms tested as part of this thesis should be evaluated in greater detail, for
example by performing more accurate hyperparameter tuning and training more powerful
models with larger amounts of data. More detection models could also be developed to
work in support of the existing system, such as by detecting anomalies at different time
scales, or by performing multivariate anomaly detection alongside the univariate one.
Additional experiments could then be conducted by testing a wider array of detection
algorithms and libraries.

A more extensive evaluation of the system’s global performance should also be undertaken.
This includes testing the performance of its components other than anomaly detection
(such as the data cleaning pipeline), but also verifying its ability to scale when faced with
varying loads of input data. Beyond this, a more rigorous model and data versioning
system could be integrated with the existing infrastructure, along with automated forms
of testing and deployment in accordance with MLOps best practices from within the
industry.

The clustering process described in this thesis work could also be improved. During this
work, clustering was only carried out to obtain a varied data set to be used in experimen-
tation, and thus a limited portion of the available time was spent in its implementation.
Potential improvements would include experimentation with different approaches, such as
by combining DTW with algorithms other than K-Means, and a more rigorous selection
of optimal parameters than the use of the loathed elbow method, but also simply utilizing
more powerful hardware and a greater amount of data.

Another improvement could take the form of developing cluster-specific models, as dis-
cussed in Section 3.4. This would entail the use of clustering on the live data coming into
the system, and would have the double advantage of allowing for a lower number of models
to be created and trained (one for each cluster, rather than one for each network interface
metric), while also making it possible for models to be trained on a wider range of time
series (enabling the use of more powerful, generalizing models). An attempt could also
be made to develop one single, powerful, general model capable of detecting anomalies on
any time series in the data, given a sufficiently large and varied training set.

Finally, a vast improvement to the system would be the addition of an AutoML system.
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Such a system would be capable of tuning and selecting different models based on their
performance on the data. In order to do this, a labeled data set would be required, which
is difficult to obtain for anomaly detection tasks under normal circumstances, but could
be approximated by automating the process of synthetic time series generation. One such
approach has been proposed by the Facebook Data Science Team [16] by applying seasonal
decomposition on the input data, removing the contributions of the residual component,
and adding randomized anomalies to the resulting time series. Another option would
instead be to develop a generative model capable of generating anomaly-free time series
similar in behavior to those sampled by the network, on which anomalies would once
again be injected randomly.
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A| First Appendix - Clustering

This appendix displays the results obtained from the execution of the various cluster-
ing approaches detailed in Section 4.2. Each figure reports the results of one clustering
attempt, with every plot being the result of the semi-transparent superimposition of all
the time series in one cluster (in grey), along with one red time series calculated as the
average of the group’s members using DBA.
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A.1. K-Means Clustering with DTW

A.1.1. Normalized - 20 Clusters

Figure A.1: Clustering of normalized time series in 20 clusters using K-Means with DTW.
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A.1.2. Standardized - 20 Clusters

Figure A.2: Clustering of standardized time series in 20 clusters using K-Means with
DTW.
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A.1.3. Standardized - 30 Clusters

Figure A.3: Clustering of standardized time series in 30 clusters using K-Means with
DTW.
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A.2. K-Means Clustering with PCA

A.2.1. Normalized - 2 Principal Components - 27 Clusters

Figure A.4: Clustering using K-Means of normalized time series, transformed using PCA
with 2 principal components, in 27 clusters.
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A.2.2. Normalized - 64 Principal Components - 26 Clusters

Figure A.5: Clustering using K-Means of normalized time series, transformed using PCA
with 64 principal components, in 26 clusters.
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A.2.3. Standardized - 2 Principal Components - 20 Clusters

Figure A.6: Clustering using K-Means of standardized time series, transformed using
PCA with 2 principal components, in 20 clusters.
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A.2.4. Standardized - 120 Principal Components - 24 Clusters

Figure A.7: Clustering using K-Means of standardized time series, transformed using
PCA with 120 principal components, in 24 clusters.
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A.3. DBSCAN Clustering with PCA

A.3.1. Standardized - 2 Principal Components - 0.8 eps

Figure A.8: Clustering using DBSCAN of normalized time series, transformed using PCA
with 2 principal components, with an ϵ of 0.8.

A.3.2. Standardized - 64 Principal Components - 11 eps

Figure A.9: Clustering using DBSCAN of normalized time series, transformed using PCA
with 64 principal components, with an ϵ of 11.
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B| Second Appendix - Time

Series Analysis

This appendix displays the experimentation data set used in time series analysis and
anomaly detection, as well as the results of the analysis itself. The plots are composed
of a number of different subplots, with subplots belonging to the same network element
having the same color and being boxed by black lines.

B.1. Experimentation Data Set

Each vertical set of four time series in Figure B.1 represents the six months of data for
the four features of a network interface’s time series. Gaps in the plots indicate missing
data.
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Figure B.1: Experimentation data set.
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B.2. STL Decomposition

Figure B.2 displays the decomposition and reconstruction of one month of data from the
first feature of each time series in the experimentation data set. The first plot displays the
sequence reconstructed from the trend and seasonal components obtained through STL
decomposition, superimposed on a high-transparency version of the original. The second
plot displays the residual component.
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Figure B.2: STL decomposition and reconstruction of the data set.
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C| Third Appendix - Anomaly

Detection

This appendix displays the results of the various anomaly detection approaches tested
on the experimentation data set during the implementation of the thesis, as detailed in
Section 4.4. The plots are etherogeneous in their style and presentation, as they were
often generated using functions specific to each anomaly detection library.

C.1. STL Residuals

Figure C.1 reports the results of the anomaly detection process based on STL residuals
described in Section 4.4.1. Each subplot displays the detection process being applied to
one month of one time series feature, with the anomaly threshold determined through
the residual component being indicated by a transparent confidence bound, and outliers
being marked with red crosses. Only the first two features (inoctets and outoctets)
from each network interface are reported for visualization purposes.
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Figure C.1: Anomaly detection based on STL residuals using 3σ threshold.
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C.2. Merlion

The following sections display the results of several of the anomaly detection algorithms
in the Merlion library on the experimentation data set, as detailed in Section 4.4.4. The
plots were created using Merlion’s built-in functionalities, and are split into two parts for
ease of visualization. Each section of four plots in the figures pertains to the four features
of one network interface’s time series.

The plots display the original time series in black, with a vertical, dashed line indicating
the separation between the model’s training and test sets. In the section of the plot
dedicated to the test set, a red line indicating the anomaly score of each sample is provided.
A flat line represents a score of zero, indicating that the sample’s anomaly score did not
reach the cut-off value of the applied threshold, whereas a vertical line indicates a non-zero
score of proportional magnitude. For the Prophet model (which is a forecasting model),
the forecast is also drawn in light blue alongside its confidence interval.
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C.2.1. Autoencoder

.

Figure C.2: Autoencoder anomaly detection - part 1.
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Figure C.3: Autoencoder anomaly detection - part 2.
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C.2.2. DBL

.

Figure C.4: DBL anomaly detection - part 1.
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Figure C.5: DBL anomaly detection - part 2.
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C.2.3. Isolation Forest

.

Figure C.6: Isolation Forest anomaly detection - part 1.
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Figure C.7: Isolation Forest anomaly detection - part 2.
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C.2.4. LSTM ED

.

Figure C.8: LSTM ED anomaly detection - part 1.
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Figure C.9: LSTM ED anomaly detection - part 2.
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C.2.5. Prophet

.

Figure C.10: Prophet anomaly detection - part 1.
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Figure C.11: Prophet anomaly detection - part 2.
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C.2.6. Spectral Residual

.

Figure C.12: Spectral Residual anomaly detection - part 1.
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Figure C.13: Spectral Residual anomaly detection - part 2.



116 C| Third Appendix - Anomaly Detection

C.2.7. Stat Threshold

.

Figure C.14: Stat Threshold anomaly detection - part 1.
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Figure C.15: Stat Threshold anomaly detection - part 2.
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C.2.8. VAE

.

Figure C.16: VAE anomaly detection - part 1.
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Figure C.17: VAE anomaly detection - part 2.
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C.2.9. WindStats

.

Figure C.18: WindStats anomaly detection - part 1.
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Figure C.19: WindStats anomaly detection - part 2.
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C.2.10. ZMS

.

Figure C.20: ZMS
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Figure C.21: ZMS anomaly detection - part 2.
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Abbreviations and Acronyms

ADS Anomaly Detection System - a system dedicated to identifying the oc-
currence of rare events or observations, that deviate significantly from
the majority of the data and to some definition of normal behavior.

API Application Programming Interfaces - a set of defined rules that enable
different applications to communicate with each other.

DBA DTW Barycenter Averaging - an averaging method for time series based
on dynamic time warping.

DTW Dynamic Time Warping - an algorithm often used as a time series sim-
ilarity measure.

IP Internet Protocol - the set of rules governing the format of data sent via
the internet or local network.

MSA Microservices Architecture - a type of application architecture where the
application is developed as a collection of services that are independent
from one another and communicate through well-defined interfaces.

PCA Principal Component Analysis - an algorithm commonly used for dimen-
sionality reduction, which works by finding a reduced set of variables
that explain most of the variance in the data.

SDN Software Defined Networking - an approach to design, implement, and
manage networks that separates the control plane and the data plane,
centralizing network intelligence in one or more network controllers.

STL Seasonal-Trend decomposition using Loess - a technique for time se-
ries decomposition which separates time series into trend, seasonal, and
remainder components.
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