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The proliferation of high-dimensional, yet not
free from contamination, datasets across vari-
ous fields has been a defining trend in recent
years. This surge in dimensionality and com-
plexity poses a significant challenge for tradi-
tional clustering methods, as existing robust
clustering methods suffer from the curse of di-
mensionality when p is large, while existing ap-
proaches for high-dimensional data are, in gen-
eral, not robust. This thesis aims to address
that challenge, by integrating high-dimensional
covariance matrix estimators into the efficient
TCLUST methodology for robust constrained
clustering. While TCLUST has demonstrated
strong performance in handling contaminated
low-dimensional data, it faces two significant
limitations when dealing with a substantial in-
crease in the number of variables. The first
limitation is related to inizialization. TCLUST
relies on the initial random selection of only
k × (p+ 1) observations to establish an outlier-
free starting point. However, as the dimension-
ality p increases, this initial subset may exceed
the total number of observations n, thereby in-
creasing the risk of including outliers during the
initialization phase. The second limitation arises
from the parameters growth in the covariance

matrices, causing them to become singular or ill-
conditioned, resulting in a determinant equal to
zero. Consequently, they become non-invertible
and unmanageable using traditional methods re-
liant on matrix inversion. To address this chal-
lenge, regularization techniques are indispens-
able, as they introduce penalty terms within the
covariance matrix estimation, allowing for reli-
able inference even when p > n.

1. TCLUST: a robust con-
strained clustering algorithm

Let {x1, . . . ,xn} be a dataset of observations
in Rp and ϕ(·;µ,Σ) be the probability density
function of a p-variate Gaussian distribution
with mean µ and covariance matrix Σ. We con-
sider the following robust constrained clustering
problem for a fixed trimming level α: search for
a partition R0, R1, . . . , Rk of indeces {1, . . . , n}
with #R0 = ⌈nα⌉, centers m1, ...,mk in Rp,
symmetric positive semidefinite p × p scatter
matrices S1, ...,Sk and weights p1, ..., pk with

pj ∈ [0, 1] and
k∑

j=1
pj = 1, which maximizes

k∑
j=1

∑
i∈Rj

log (pjϕ(xi;mj ,Sj)) . (1)
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The direct maximization of (1) without any con-
straint on the scatter matrices is not a well-
defined problem. To address this issue, an eigen-
value ratio constraint on S1, . . . ,Sk is intro-
duced:

max
j,l

λl (Sj)

min
j,l

λl (Sj)
≤ c. (2)

Here, λl (Sj) for l = 1, . . . , p represents the set
of eigenvalues of the scatter matrix Sj , j =
1, . . . , k, and c ≥ 1 is a constant controlling the
strength of the constraint (2), where the smaller
the value of c is, the stronger the restriction im-
posed on the solution.
The maximization (1) under the eigenvalue con-
straint (2) leads to the TCLUST methodology
[3], a fast and efficient algorithm for robust con-
strained clustering, which shows good perfor-
mance on low-dimensional data.
The algorithm proceeds through several steps,
including initialization, concentration step and
target function evaluation. In the initialization,
the algorithm is started multiple times with dif-
ferent random configurations to ensure robust-
ness. The concentration step involves:

• E-step:
For each observation xi, the quantities

Dj (xi; θ) = pjϕ (xi;mj ,Sj)

for j = 1, . . . , k, are computed, with θ =
(p1, . . . , pk,m1, . . . ,mk,S1, . . . ,Sk) as the
set of cluster parameters in the current it-
eration of the algorithm.

• C-step:
The ⌈nα⌉ observations xi with the smallest
values of

D (xi; θ) =

= max {D1 (xi; θ) , . . . , Dk (xi; θ)}
(3)

are discarded as possible outliers (for this
iteration). Each remaining observation xi

is then assigned to a cluster j such that
Dj (xi; θ) = D (xi; θ). This yields a par-
tition R0, R1, . . . , Rk of {1, . . . , n} holding
the indexes of the trimmed observations in
R0, and the indexes of the observations be-
longing to cluster j in Rj , for j = 1, . . . , k.

• M-step:
The parameters are updated, based on the
non-discarded observations and their clus-
ter assignments. At this point, it is crucial
to properly enforce the constraints on the
cluster scatter matrices.

Finally, the algorithm evaluates the target
function to select the best parameters.

2. Well-conditioned estimators
for high-dimensional covari-
ance matrices

In this chapter we will introduce a series of reg-
ularized covariance matrix estimators to address
the challenge of estimating high-dimensional co-
variance matrices within the TCLUST method-
ology.

2.1. Minimum Regularized Covari-
ance Determinant estimator

The Minimum Regularized Covariance Determi-
nant (MRCD) approach searches for an h-subset
of the data whose regularized covariance matrix
has the lowest possible determinant [2].
The variables are standardized before proceed-
ing. The regularized covariance matrix, denoted
as K(H), is a key element in the MRCD ap-
proach. It incorporates two essential compo-
nents: a predetermined target matrix T, which
is well-conditioned, symmetric and positive def-
inite, and a scalar weight coefficient ρ. This reg-
ularization parameter, ranging from 0 to 1, plays
a crucial role in controlling the influence of the
target matrix on the result. In particular, K(H)
is defined as follows:

K(H) = ρT+ (1− ρ)cαSU (H), (4)

where SU (H) is the sample covariance matrix
for the the standardized data, and cα is a consis-
tency factor that depends on the trimming per-
centage α = (n− h)/n.
The MRCD subset HMRCD is defined by min-
imizing the determinant of the regularized co-
variance matrix K(H) in (4):

HMRCD = argmin
H∈Hh

(
det(K(H))1/p

)
.
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Once HMRCD is determined, the MRCD loca-
tion and scatter estimates of the original data
matrix are computed as

mMRCD = νX +DXmU (HMRCD)

KMRCD = DXQΛ1/2[ρI + (1− ρ)cα

SW (HMRCD)]Λ
1/2QTDX .

2.2. Linear Shrinkage estimator of
Ledoit-Wolf

The goal of the Ledoit-Wolf linear shrinkage es-
timator [4] is to find the well-conditioned esti-
mator for Σ as the linear combination Σ∗ =
ρ1I+ρ2S that minimizes the expected quadratic
loss E

[
∥Σ∗ −Σ∥2

]
. We introduce four scalar

functions of Σ: µ, α2, β2 and δ2, which are cru-
cial for finding the optimal linear combination
Σ∗. A key theorem is presented, demonstrating
that:

Σ∗ =
β2

δ2
µI +

α2

δ2
S, E

[
∥Σ∗ −Σ∥2

]
=

α2β2

δ2
.

Here, we are considering the Frobenius norm
∥A∥ =

√
tr (AAT ) /p. However, this estima-

tor relies on knowledge of the four scalar func-
tions, which are typically unknown in practice.
To address this limitation, the section introduces
a consistent estimation framework based on gen-
eral asymptotics. It explores a sequence of sta-
tistical models, considering the spectral decom-
position of covariance matrices. The consistent
estimators for the four scalar functions are de-
rived, allowing for the calculation of an efficient
unbiased estimator, denoted as S∗

n. The most
important result is the following: the efficient
unbiased estimator S∗

n has uniformly minimum
quadratic risk asymptotically among all the lin-
ear combinations of the identity with the sample
covariance matrix, including those that are effi-
cient unbiased estimators, and even those that
use hindsight knowledge of the true covariance
matrix. Thus, it is legitimate to say that S∗

n is
an asymptotically optimal linear shrinkage esti-
mator of the covariance matrix Σ with respect
to quadratic loss under general asymptotics.

2.3. Sparse CovGlasso estimator
Suppose observations come from a p-variate
Gaussian distribution with zero mean and co-
variance matrix Σ. The log-likelihood is

ℓ(Σ) = −np

2
log(2π)− n

2
log(det(Σ))− n

2
tr(Σ−1S)

and the goal of the sparse CovGlasso estimator is
to find Σ positive definite that minimizes minus
the penalized log-likelihood:

log(det(Σ)) + tr(Σ−1S) + λ∥P ∗Σ∥1, (5)

where we define ∥A∥1 =
∑

ij |Aij |. We are
adding the lasso penalty of the form λ∥P ∗Σ∥1
to the likelihood, where λ is the lasso regulariza-
tion parameter, P is an arbitrary matrix with
non-negative elements, and ∗ denotes the ele-
mentwise multiplication.
Initially, Bien and Tibshirani [1] proposed a
majorize-minimize approach to approximately
minimize (5), but two years later Wang [5] sug-
gested a new algorithm, showing it has several
advantages with respect to the previous one,
including simplicity, computational speed and
numerical stability. This section presents the
minimization of the objective function (5) us-
ing the coordinate descent algorithm introduced
by Wang.

3. Work development
The initial proposal aims to enhance the
TCLUST methodology by integrating the Mini-
mum Regularized Covariance Determinant esti-
mator, addressing the challenge of robust clus-
tering for high-dimensional data. TCLUST em-
ploys sample covariance matrices with eigen-
value ratio constraints as robust covariance ma-
trix estimators. However, this approach be-
comes inadequate in high dimensional settings
where the number of variables may exceed the
available observations. This can result in unre-
liable covariance estimates, sensitivity to data
noise, highly correlated variables, and numer-
ical instability. To mitigate these issues, the
MRCD estimator may replace the sample covari-
ance estimator, providing increased stability and
robustness against singularity.
The proposal involves developing a new algo-
rithm based on the TCLUST, and addresses its
limitations in high-dimensional data handling.
This analysis involves a deep dive into the sub-
functions of the TCLUST algorithm, focusing
on improving the initialization procedure, clus-
ter assignment and parameter estimation. A key
modification is the use of MRCD for covariance
matrix estimation, enhancing stability and re-
liability. In particular, the initialization pro-
cedure is updated to address high-dimensional
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challenges. It randomly assigns a subset of ob-
servations to clusters, designates some observa-
tions as outliers, computes cluster weights, and
extracts final cluster assignments. Additionally,
a threshold is introduced to guarantee that clus-
ters maintain a minimum size, preventing the
formation of empty or excessively small clusters.
The main function is introduced to perform mul-
tiple initializations and iterations, and evaluate
results. Each initialization includes numerous
iterations, where the following actions are per-
formed:

• Assignment of data points to clusters by
computing likelihoods for observations in
clusters and updating assignments based on
these likelihoods. Each observation is as-
signed to the cluster that maximizes its like-
lihood, and the ⌈nα⌉ observations with the
smallest values of (3) are discarded as out-
liers.

• Computation of the value for objective
function (1).

• Estimation of mean vectors and covariance
matrices for each cluster using the MRCD
approach.

The best initialization, i.e. the one with the
highest objective function value at the end of
its iteration cycle, is selected. The result is an
object containing cluster centers, covariance ma-
trices, assignments, and other relevant informa-
tion.
The next steps involve creating a new objec-
tive function that incorporates MRCD objective
functions for each cluster, potentially reformu-
lating the MRCD problem in terms of likelihood.
This step aims to make the proposed method
likelihood-based.
We begin by distinguishing between likelihood-
based and heuristic methodologies. Likelihood-
based methodologies are rooted in probabil-
ity and statistics, relying on formal probabilis-
tic models. They involve clear assumptions
about data distributions and aim to estimate
model parameters that maximize the likelihood
of observed data. These methods provide in-
terpretable results with statistical inferences.
Heuristic methodologies, on the other hand, use
practical rules and strategies to solve complex
problems, often without formal models or pre-
cise distributions. They prioritize finding satis-
factory solutions efficiently, making them suit-

able for large-scale problems.
In this context, we investigate whether the
MRCD estimation problem can be expressed
in terms of likelihood. We use the likelihood
of a multivariate Gaussian distribution and es-
tablish the maximum likelihood estimators for
mean and covariance matrix. However, we in-
troduce a term to incorporate regularization, re-
sulting in the regularized version of Σ as K =
ρT + (1 − ρ)cαΣ. Consequently, the problem
becomes to minimize:

n∑
i=1

wi

(
ln |K|+ d ln(2π) +MD2 (xi;µ,K)

)
under the constraint that

n∑
i=1

wi = h.

(6)

Since the second term of (6) is constant, to prove
that minimizing (6) is equivalent to minimizing
the determinant of

K̂MLE = ρT+ (1− ρ)cαΣ̂MLE =

= ρT+ (1− ρ)cα(
1

h

n∑
i=1

wi (xi − µ̂MLE) (xi − µ̂MLE)
T ),

we need to prove that the third term of (6) is
also constant. Our analysis concludes that it
is not constant, and thus the MRCD estimation
problem cannot be reformulated in terms of like-
lihood, and our proposed MRCD algorithm re-
mains heuristic in nature.
As next step, we introduce another algo-
rithm based on the TCLUST framework, in-
corporating a Gaussian-based covariance ma-
trix estimator called the CovGlasso estima-
tor. This approach aims to create a likelihood-
based methodology for robust clustering in high-
dimensional settings.
The primary objective is to construct an objec-
tive function that reflects the likelihood-based
nature of the methodology. We can formulate
this objective function as the summation of k
minus penalized log-likelihoods, each represent-
ing the individual objective function (5) of the
CovGlasso methodology for each cluster:

k∑
i=1

(
log

(
det

(
Σ̂i

))
+ tr

(
Σ̂

−1

i Si

)
+ λ

∥∥∥P ∗ Σ̂i

∥∥∥
1

)
.
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The objective function of our new methodology
needs to be collectively minimized, as it is the
sum of k CovGlasso objective functions, each re-
quiring minimization.
The initialization process is crucial. A new type
of initial cluster assignment, involving the ap-
plication of TCLUST on a subset of the origi-
nal variables, is introduced. This approach of-
fers improved initialization precision and com-
putational efficiency compared to random as-
signment.
Parameter estimation within clusters is en-
hanced by incorporating the CovGlasso estima-
tor. The lasso regularization ensures stability
and avoids degenerate solutions. In this regard,
two additional input parameters are introduced:
λ, the lasso regularization parameter, and P , the
lasso regularization matrix. It is important to
note that, in an iterative setting, λ remains con-
stant throughout the algorithm execution, en-
suring the consistency of the likelihood-based
approach.
In the previously developed heuristic methodol-
ogy, where the MRCD estimator has been incor-
porated into the TCLUST algorithm, a single
issue arises: this approach presents a doubly-
robust extension. Outliers are effectively ad-
dressed not only within the clustering procedure
itself, but also through the modified M-step that
makes use of MRCD to compute the regular-
ized covariance matrices, exploiting its robust-
based estimation. Therefore, our intention is
to replace the MRCD estimator with the lin-
ear shrinkage estimator proposed by Ledoit and
Wolf, which can be seen as a particular case
of the former, where the subset H in equation
(4) corresponds to the entire sample, the target
matrix T is the identity matrix, and the data
does not require initial standardization. The
Ledoit-Wolf estimator lacks robustness to out-
liers, as it incorporates them in its computation.
Nonetheless, considering its incorporation into
the TCLUST algorithm, it becomes logical to
use it, given that the robustness is already en-
forced by the TCLUST procedure. We therefore
replace the original MRCD estimator within the
M-step with the Ledoit-Wolf approach for co-
variance matrix estimation, keeping all the re-
maining steps unchanged, except for the initial-
ization procedure, which is improved as done for
CovGlasso in TCLUST.

We finally end up with two distinct algorithms
for robust clustering in high-dimensional set-
tings: a heuristic methodology called Ledoit-
Wolf in TCLUST, and a likelihood-based
methodology, the CovGlasso in TCLUST. These
methodologies will be tested and compared us-
ing simulated and real-world data in the next
chapter.

4. Data analysis
We rigorously assess and compare the two
methodologies we have developed for robust
clustering in high-dimensional data scenarios.
Our evaluation encompasses both simulated and
real-world data, with a particular focus on the
handwritten digits recognition problem. Our
goal is to validate the efficacy of our algorithms
in accurately clustering digits while effectively
identifying outliers.

4.1. Simulated data
To evaluate our algorithms, we begin with sim-
ulated data. We generate synthetic data, sim-
ulating a three-component mixture distribution,
with each component modeled as a Gaussian dis-
tribution. Additionally, we introduce outliers by
using a separate Gaussian component. For each
Gaussian distribution, we employ distinct mean
vectors while sharing a common covariance ma-
trix. This approach allows for a clear visualiza-
tion of our simulated data in the first two dimen-
sions of the feature space. Indeed, it results in
the generated data points from the distinct dis-
tributions being closely situated and distinctly
separated from each other, as shown in the scat-
ter plot presented in Figure 1.

Figure 1: Simulated data in the first two dimen-
sions of the feature space.
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Now, we apply our two robust clustering algo-
rithms to this simulated dataset with specifically
chosen input parameter values. The results are
listed below:

• Both algorithms achieve a remarkable 100%
accuracy in detecting outliers and assign-
ing data points to their respective clusters.
This exceptional performance demonstrates
their robustness.

• The precise cluster assignment indicates the
ability of our metodologies to identify pat-
terns within the data, even in presence of
noise and outlying units.

• Visual representations in Figure 2 show the
same estimated clusters with slightly differ-
ent elliptical shapes, due to the different co-
variance matrix estimation techniques used
in each algorithm.

Figure 2: Clustering results using Ledoit-Wolf
in TCLUST (on the left) and CovGlasso in
TCLUST (on the right).

The evaluation on simulated data confirms the
outstanding performance of our robust clus-
tering algorithms, underscoring their robust-
ness and effectiveness when dealing with high-
dimensional simulated data. Now, we transi-
tion to real-world data, specifically addressing
the challenge of handwritten digit recognition,
where we anticipate greater complexity.

4.2. Real-world data: the handwrit-
ten digits recognition problem

This section delves into the practical application
of our robust clustering algorithms to real-world
high-dimensional data. We concentrate on two
datasets designed for handwritten digit recog-
nition, arising from the USPS dataset available
through the UCI Machine Learning Repository.
It contain images of handwritten digits from 0
to 9, partitioned into a 16× 16 grid, resulting in
256 pixels as features, as shown in Figure 3.

Figure 3: Visual representation of digits 0 to 9
from the handwritten digits dataset.

We start our analysis of the USPS dataset by
plotting the multivariate means for all the dig-
its. This initial step aims to identify both the
groups of digits exhibiting the highest similari-
ties among themselves and groups of digits that
are more easily distinguishable, in order to ap-
ply our algorithms to two distinct subsets of the
original USPS dataset, each one representing a
different level of complexity. In the more com-
plex one, in addition to the challenges of high-
dimensional data and presence of outliers, there
arises also the issue of limited separation be-
tween classes.

Figure 4: Multivariate means for all digits
within the USPS dataset.

It is evident from Figure 4 that digits 0, 1 and
4 exhibit clearly distinct behaviors, each diverg-
ing significantly from the others, while digits 3,
5 and 8 display remarkably similar multivariate
means.
Our approach involves the application of our two
robust clustering methodologies, Ledoit-Wolf in
TCLUST and CovGlasso in TCLUST, with the
primary goal of assessing their effectiveness and
robustness. In the case of more easily distin-
guishable digits (0, 1 and 4), both algorithms ex-
hibit remarkable clustering results, with Ledoit-
Wolf in TCLUST yielding an overall accuracy
of 90.3% and ARI of 0.729, and CovGlasso in
TCLUST boasting an overall accuracy of 96.8%
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and ARI of 0.905. In particular, both method-
ologies excel in identifying the five anomalous
units present in the processed dataset, accu-
rately labeling them as outliers, as shown in Ta-
ble 1.

group 0 1 4 out
0 45 3 2 0
1 0 50 0 0
4 1 9 40 0

out 0 0 0 5

(a) Ledoit-Wolf in TCLUST

group 0 1 4 out
0 48 0 2 0
1 0 49 1 0
4 0 2 48 0

out 0 0 0 5

(b) CovGlasso in TCLUST

Table 1: Contingency tables for comparisons be-
tween estimated cluster labels and true labels (0,
1 and 4).

For the more challenging digits (3, 5 and 8),
CovGlasso in TCLUST outperforms Ledoit-Wolf
in TCLUST, achieving an overall accuracy of
69.7% and ARI of 0.385.

group 3 5 8 out
3 48 2 0 0
5 29 19 2 0
8 4 10 36 0

out 0 0 0 5

Table 2: Contingency table for comparisons be-
tween estimated cluster labels and true labels
using CovGlasso in TCLUST (3, 5 and 8).

While the algorithm struggles to correctly iden-
tify the true 5s, primarily assigning them to the
estimated cluster of 3s as shown in Table 2, the
other digits are mostly recognized accurately,
and the outliers continue to be detected as well.
To conclude, we validate CovGlasso in
TCLUST, the methodology demonstrating
superior performance in clustering digits 0, 1
and 4, as well as digits 3, 5 and 8, by confirming
the steady decrease of the objective function
throughout the algorithm iterations, and the
sparsity patterns in the covariance matrices,
aligning with our methodology expectations.

5. Conclusions
This thesis presents a solution to the complex
problem of robust clustering in high-dimensional
data scenarios. We implemented two method-
ologies: one heuristic, incorporating the Ledoit-
Wolf linear shrinkage estimator into TCLUST,
and another likelihood-based, employing the
sparse CovGlasso estimator within TCLUST.
We then applied these methodologies to both
simulated and real-world data, to test and eval-
uate them. In the case of the simulated dataset,
both of our algorithms demonstrated excep-
tional performance by correctly assigning all
data points to their respective clusters and iden-
tifying all anomalous units within the data.
For the dataset of digits 0, 1 and 4, both al-
gorithms performed very well, achieving high
overall accuracy and ARI scores. However, on
the dataset containing digits 3, 5 and 8, Cov-
Glasso in TCLUST outperformed Ledoit-Wolf
in TCLUST, producing satisfactory results de-
spite the inherent challenges of the task, which
includes high data dimensionality, the presence
of outliers, and significant similarity between
classes. In conclusion, CovGlasso in TCLUST
emerges as a robust solution for addressing clus-
tering challenges in real-world high-dimensional
data.
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