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Abstract

The advent of Data Age has come. The amount of data produced and managed every
day is continuously, exponentially growing in almost every sector. Each organisation or
company must deal with more and more data. Data is currently one of the most valuable
resources that each company could own, since it can potentially generate many precious
business insights.
Technologies are continuously evolving and, with them, the usage of data is constantly
improving. Nowadays, we don’t simply analyse data but we try to predict them, making
machines learn from the past data. We try, in some ways, to “forecast the future”, inves-
tigating over the possible connections between past and future data.
Here the Data Science finds place: it is able to manipulate large amounts of historical
data to obtain these insights. The Forecasting Science is a clear example of technology at
the service of the business: it supports companies of different markets in executing several
core activities, such as organising the processes, managing the flows of both materials and
information and monitoring the business KPIs. All these aspects of the business give to
the decision makers precious information about the development of the business; thus,
the Forecasting Science represents a way to make conscious, science-based and bias-free
decisions.
The objectives of this thesis are to investigate over the most largely used mathematical
methods that enable the time series forecasting and to identify the most appropriate ones
in terms of predictions’ accuracy. The aim is to evaluate them not only in absolute terms,
but also in relation to the hyperparameters they assume. Moreover, the aim is to spot any
eventual connection between the performances of each model and the main characteristics
of the time series such as granularity, seasonality, trend, noise and autocorrelation.
The results clearly show that the choice of the model significantly impacts the accuracy
of the forecasting: a good choice of the model is able to generate quite affordable predic-
tions. The main evidences suggest the existence of a model that usually outperforms all
the other algorithms. Moreover, the choice of the hyperparameters that fit each model
strongly affects the performances: great attention should be put on the tuning process.
At the same time, it is not possible to find any high correlation between the character-
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istics of the time series and the optimal model identified. Thus, a big effort should be
put on the automatization of the whole process of model testing to try each (time series
- model - hyperparmeters) combination and identify the optimal model tuned for each
dataset. Finally, results clearly evidence the possibility to obtain different conclusions -
and therefore to make different decisions - depending on the choice of the accuracy metric.

Keywords: Time Series, Statistical Models, Machine Learning, Data Science, Sales Fore-
casting, Business Insights
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Abstract in lingua italiana

Viviamo oggi nell’era dei dati. La quantità di dati generata ogni giorno cresce esponenzial-
mente. Ogni impresa, a prescindere dal settore di appartenenza, si trova quotidianemente
a gestire un ammontare sempre crescente di dati. I dati sono attualmente tra le risorse
più preziose che ogni azienda possa possedere, poiché forniscono informazioni di grande
valore per il business.
Le tecnologie digitali sono in continua evoluzione e, con loro, anche l’utilizzo dei dati.
Oggi il mercato non si limita all’analisi degli stessi, ma è in grado di predire i dati futuri.
In un certo senso, l’obiettivo oggi è "predire il futuro", analizzando le possibili connessioni
presenti nei dati storici.
Qui entra in gioco la Data Science, che permette di ottenere informazione sul futuro anal-
izzando grandi quantità di dati relativi a serie storiche. La scienza delle previsioni è un
chiaro esempio di tecnologia al servizio del business: supporta aziende di diversi settori
nell’esecuzione di fondamentali attività quali l’organizzazione dei processi, la gestione dei
flussi di materiali e informazioni e il monitoraggio dei principali indicatori di business.
Tali aspetti legati al business forniscono una serie di preziose informazioni a coloro che
hanno un ruolo decisionale nell’organizzazione. Dunque, la scienza delle previsioni for-
nisce un metodo per prendere decisioni consapevoli e basate su reali evidenze.
L’obiettivo di questa tesi è analizzare i più diffusi modelli matematici per la previsione di
serie storiche ed individuare i più appropriati al perseguimento di questo scopo. I modelli
vengono valutati rispetto alla loro accuratezza. Inoltre, essi non vengono valutati solo in
termini assoluti, ma anche relativamente ai parametri che li regolano. L’obiettivo è anche
quello di legare l’accuratezza dei vari modelli in relazione alle caratteristiche della serie
storica, quali la granularità, la stagionalità, il trend, la variabilità e l’autocorrelazione.
Infine, viene analizzato l’impatto della scelta della metrica sui risultati.
Questi ultimi mostrano chiaramente l’impatto della scelta del modello sull’accuratezza
delle previsioni: una buona scelta dell’algoritmo genera previsioni sufficientemente affid-
abili. Generalmente, una classe di modelli sembra performare meglio delle altre. Inoltre,
la scelta degli iperparametri impatta significativamente sulla perfromance del modello:
dunque, è importante dedicare risorse al processo di tuning degli iperparametri. Allo



stesso tempo, è molto difficile stabilire una connessione tra le caratteristiche del dataset
e il modello più accurato. Di conseguenza, non potendo selezionare a priori il modello
ottimale, la scelta migliore sembra essere l’automatizzazione dell’intero processo di speri-
mentazione sui modelli, con l’obiettivo di testare tutte le possibili configurazioni miglio-
rando le performances. Per concludere, è evidente l’impatto che la scelta della metrica
ha sui risultati degli esperimenti. Infatti, è possibile ottenere risultati diversi - e dunque
prendere decisioni diverse - sulla base della scelta dell’indicatore o di una combinazione
di indicatori.

Parole chiave: Serie Storiche, Modelli Statistici, Machine Learning, Data Science, Pre-
visione delle Vendite, Visione di Business



v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

Introduction 1

1 Theoretical Background and Business Objectives 3
1.1 Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Mathematical Approach to Time Series . . . . . . . . . . . . . . . . 3
1.1.2 Main Components of the Time Series . . . . . . . . . . . . . . . . . 4

1.2 Traditional Forecasting Models . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.1 Exponential Smoothing Models . . . . . . . . . . . . . . . . . . . . 8
1.2.2 Autoregressive Models . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Machine Learning Models: Regression . . . . . . . . . . . . . . . . . . . . . 12
1.3.1 Sliding Window for Time Series . . . . . . . . . . . . . . . . . . . . 13

1.4 The Prophet Forecasting Model . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Time Series Analysis and Forecasting Process . . . . . . . . . . . . . . . . 16
1.6 Forecasting Accuracy Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.7 Business Objectives, Use Cases and Applications . . . . . . . . . . . . . . . 21

1.7.1 Data Science at the Service of the Business . . . . . . . . . . . . . . 21
1.7.2 Business Applications and Impacts . . . . . . . . . . . . . . . . . . 23
1.7.3 Business Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Experiments settings 27
2.1 Datasets Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Dataset A: Pharma Dataset . . . . . . . . . . . . . . . . . . . . . . 27



vi | Contents

2.1.2 Dataset B: Food Demand Forecasting Dataset . . . . . . . . . . . . 29
2.2 Tested Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.1 Exponential Smoothing Models . . . . . . . . . . . . . . . . . . . . 32
2.2.2 Autoregressive Models . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.3 Regression models . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.4 Prophet Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.1 Hyperparameters Tuning . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.2 Hyperparameter Spaces . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Evaluated Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5 Experiments and Methodologies . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Data Exploration and Preliminary Analyses 45
3.1 Pharma Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.1 Time Series Decomposition . . . . . . . . . . . . . . . . . . . . . . . 45
3.1.2 Statistical Evidences . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Food Demand dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2.1 Time Series Decomposition . . . . . . . . . . . . . . . . . . . . . . . 55
3.2.2 Statistical Evidences . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Main Results and Evidences . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3.1 Model Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3.2 Impact of Hyperparameters . . . . . . . . . . . . . . . . . . . . . . 72
3.3.3 Impact of Sub Series on Aggregated Time Series . . . . . . . . . . . 75
3.3.4 Model - Dataset Specificity Assessment . . . . . . . . . . . . . . . . 76

3.4 Conclusions and Takeaways . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 Future Developments 81
4.1 Experimental Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2 Optimal Hyperparameter Tuning Techniques . . . . . . . . . . . . . . . . . 82
4.3 Multivariate Time Series Forecasting . . . . . . . . . . . . . . . . . . . . . 83
4.4 Model Testing Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.5 Cloud Computing for Data Science . . . . . . . . . . . . . . . . . . . . . . 84

Bibliography 87

A Datasets 91



B Experiments Outline Algorithm 95

C Time Series Graphs 97

D Experiments’ Complete Results 121

List of Figures 131

List of Tables 135

List of Symbols 137

Acknowledgements 139





1

Introduction

Business Objective

The forecasting process is one of the main fields of data science and it helps companies
of different markets in executing several planning activities. It is a clear example of
technology at the service of the business: the forecasting techniques help corporations in
organising the processes, structuring the production line, and managing the flows of both
materials and information.
From an operational viewpoint, making business forecasts of many different variables
drives the organization of scarce resources such as materials, information and goods, the
capacity planning - both in terms of budgets and in terms of time -, and the monitoring of
business KPIs and performance trends. Therefore, as all these aspects of the business give
many insights to the decision makers about the business development, the data science
can be considered as the first supporter of each company management since it represents
a way to make conscious, science-based and bias-free decisions. Therefore, if the result of
the analysis is a high-quality prediction, then it enables the corporation to be both more
efficient in managing resources and reducing costs and more effective in offering a better
service, at the same time.
Since the quality of the predictions is fundamental, the forecasting techniques should
be analysed in order to identify the best one – or the best combination of them - in
each specific case use. Furthermore, a set of metrics to evaluate the performances of the
different methods must be identified.
The aim of this thesis is, in some ways, to “forecast the future”, to make predictions about
the trend of some business-related time series and to investigate the mathematical methods
that enable this powerful instrument. The ultimate goal is to support companies in the
decision making process, giving precious insights and reporting results obtained through
the scientific method.
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Methodology Overview

A first research activity is performed in order to understand the theoretical background
and the state of the art of the research in the time series forecasting field. The main
key points are reported in Chapter 1, together with the business objective and the final
aim of this research work. Then, we define the perimeter of the research work setting the
experiments in terms of datasets, models, hyperparameter spaces and tuning and accuracy
metrics in Chapter 2. The study has the aim to observe the behaviour of the traditional
forecasting methods on the datasets under exam and to assess their performances. After
that, also machine learning algorithms and experimental methods are tested.
The following step is the data exploration phase in which the time series under analysis
are studied in order to spot their main peculiarities in statistical terms. This phase has
the final aim to link the evidences of the experiments with the characteristics of the times
series and it is reported in Chapter 3.
Then, in Chapter 3.2.2, we report the main results, evidences and considerations that
emerge from our analysis.
Finally, a series of possible future developments is reported in Chapter 4. It is aimed at
reporting the points that are still open and the ones that can be touched in the future
analysis in order to go in depth with this topic and improve the core points of this thesis.
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1| Theoretical Background and

Business Objectives

This chapter is dedicated to the description of the theoretical background that lies under the
theme of the time series forecasting. Indeed, the theoretical fundamentals of time series
and of the currently most used models, of the parameters that optimize each algorithm and
of the metrics that evaluate every method are provided. Moreover, a brief description of
the characteristics of the forecasting models’ mathematical properties, of their performance
and of their current use cases is reported. Finally, a range of real-life examples and
business applications is presented.
The theoretical background of time series, forecasting models and accuracy metrics comes
from a careful examination and study of the literature.

1.1. Time Series

In mathematics, a time series is a series of data points indexed (or listed or graphed)
in time order. Most commonly, a time series is a sequence taken at successive equally
spaced points in time. As it is stated in [7], time series are used in statistics, signal
processing, pattern recognition, econometrics, mathematical finance, weather forecasting,
control engineering, astronomy, communications engineering, and, more in general, in any
domain of applied science and engineering which involves temporal measurements.

1.1.1. Mathematical Approach to Time Series

“A time series is a sequence {yt} of values assumed by a quantity under interest indexed
in time order t” [7]. In general, as it is largely explained in [44], time series can be classified
in the following two categories.

• Discrete time series present time values that belong to a discrete set; most commonly,
a time series is a discrete one and it is taken at successive equally spaced points in
time.
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• Continuous time series assume values that are gathered in a continuous time interval.

In this thesis, the focus will be posed on discrete time series only and the time periods
will be natural uniform time intervals like hours, days, weeks, months and years.
From a mathematical viewpoint, the stochastic nature of the values taken by the time
series is evident. Indeed, the observations {yt} can be considered as the realizations of the
random variable Yt in the various time instants t. Therefore, a time series model {yt} will
include the assignment of the probability distribution of the random variables sequence
{Yt}, which can be considered by definition as a stochastic process.
In most of the models, the first E[Yt] and second-order moments E[Yt+hYt] are among the
most important indicators to evaluate the model.

1.1.2. Main Components of the Time Series

The time series are usually characterised by three main properties, called components:
trend, seasonality and random noise. We report the main ones, as explained by literature
in [44], [23].

• Trend. The trend components is responsible for the long-time behaviour of the
time series. Usually, this component is indicated by Mt, and it is approximated by
simple functions such as the linear, polynomial (usually of second or third order),
exponential or logarithmic ones.
The mathematical object which is responsible for the modeling of the trend com-
ponent is called moving average mt(h) with parameters h and t. It is defined as
the arithmetic average of h successive values that the time series {yt} assumes. In
this case, it is natural to suppose that the index t is one of the indexes of the h

observations considered. In general, this t is the central point of the h observations
taken into account. Equation (1.1) shows the mathematical expression of the simple
centered moving average when h is odd:

mt(h) =
yt+(h−1)/2 + yt+(h−1)/2−1 + ...+ yt−(h−1)/2

h
. (1.1)

If h is even, the expression above becomes:

mt(h) =
yt+h/2 + yt+h/2−1 + ...+ yt−h/2+1

2h
+

yt+h/2−1 + yt+h/2−2 + ...+ yt−h/2

2h
.

(1.2)
When h is equal to the whole temporal horizon that is considered during the time
series analysis L, then the trend component of the time series is calculated since the
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moving average captures only the long-term variations.
Moreover, the moving average can be used to generate future predictions centering
mt in the last of the h observations. A more accurate estimation can be computed
attributing different weights wi to the different observations and calculating in this
way the so-called weighted moving average.

• Seasonality. The seasonality component is responsible for the short-term fluctua-
tions, which often present a regular frequency during the time span considered. The
seasonality component is denoted by Qt and it is mathematically represented by a
periodic function.

• Random noise. The random noise is a component which is able to model the irreg-
ular and unexpected fluctuations that a random variable usually has and that any
other component can explain. In mathematical terms, the random noise is the time
series {εt}, which is obtained removing from the original time series {yt} the trend
and seasonality component. It represents the so-called white noise process, which
is equivalent to a sequence of independent random variables which are normally
distributed with mean equal to 0 and constant variance: Et∼N(0;σ2).

The main components of time series are graphically represented in Figure 1.1, which shows
the evolution of the Google job search market during time1.

1https://www.researchgate.net/
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Figure 1.1: Original time series of the Google job search market decomposed into trend,
seasonal, and irregular components

The above-mentioned components easily find a practical application in the business field
and in many different markets. In general, the trend component can be stationary, in-
creasing or decreasing and represents the behaviour of the market in the long term. For
example, after Covid-19 spread in 2020, the trend component of the time series of the
biotechnology companies’ stocks has been increasing much faster.
On the other hand, the seasonality component is determined by the natural cycles or the
seasonality of the product (and consequently of their demands).
Sometimes, a fourth component can be added to the model, and it represents the oscil-
lations that are due to the economic cycle. In all the other cases, the economic cycle
is considered as impacting in the medium-long term, and therefore it is included in the
trend component.
In this use case, as it is appreciable by the graphic, the trend component increases in the
early 2000s, while it is more stable from 2009 on. Moreover, after 2009 the noise increases,
maybe because of the economic crisis of that year.

In mathematical terms, each time series can be expressed as a combination of these
components:

Yt = g(Mt, Qt, εt) (1.3)
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where g is a function that should be selected in every specific case. In most of the cases,
g expresses an additive or multiplicative relationship among the components of the time
series. However, some models such as exponential smoothing models are obtained as the
combination of additive and multiplicative components.
A multiplicative model is the most largely used and it has the following shape:

Yt = Mt ×Qt × εt. (1.4)

Otherwise, the additive model

Yt = Mt +Qt + εt. (1.5)

can be considered.
In order to perform the time series analysis and forecasting, it is useful to decompose
the time series in its components. Indeed, time series decomposition provides a useful
abstract model for thinking about time series generally and for better understanding
problems during time series analysis and forecasting.
In general, the trend component Mt can be approximated as the moving average mt(L)

centered in h = L. As usually the decomposition model is multiplicative, then the removal
of the trend component simply consist in the division by Mt ≈ mt(L):

Bt = Qtεt =
Yt

Mt

≈ Yt

mt(L)
(1.6)

. Alternatively, when the model is additive, then the removal of the trend component
is performed computing successive differences between adjacent values of the time series
such as:

Dt = Yt − Yt−1 (1.7)

. Similarly, it is possible to deseasonalise the time series dividing it by the seasonality
component. The seasonality component Ql(t) is a function of l(t), the set of time points
that belong to the frequency period, observed plotting the time series subtracted by
its trend component. The deseasonalised time series together with the linear trend is
calculated as the following expression:

yt
Ql(t)

= Mtεt (1.8)

. Made these considerations, it is possible to make predictions for the future periods
that are based on the decomposition of the time series. Indeed, the trend component
is projected in the future period, and then the seasonality component is added to this
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model, extending the periodic oscillations identified.

1.2. Traditional Forecasting Models

The most traditional and largely used methods for the time series analysis and forecasting
are the statistical methods, which are based on a strong theoretical basis explained in
[44] and are, at the same time, empirically proven to be particularly efficient in the
economic context. In general, traditional time series models account for the fact that
data points taken over time may have an internal structure that should be accounted for.
These methods take into account as independent variable the one individuated by the
points in time only: no other attributes are - in general - taken into consideration when
producing an analysis through these models. This is the characteristic that distinguish
between the traditional (also called statistical) models and other kinds of algorithms.
The traditional forecasting models for time series include the following ones.

• Exponential smoothing models are based on the decomposition of the time
series in its main components, as explained in Paragraph 1.1.2, and they are deeply
described in [12]

• Autoregressive models are based on the process of identification of patterns and
correlations between different observations, homogeneously distributed on the time
span considered.

1.2.1. Exponential Smoothing Models

“The exponential smoothing class includes simple, single parameter models that predict
the future as a linear combination of a previous value and a current shock. Exponential
smoothing assumes that a series extends infinitely into the past, and that this influence of
past on future decays smoothly and exponentially. The smooth rate of decay is expressed
by a smoothing constant.”[44]
The most simple model of this class is called simple exponential smoothing (SES) or
brown model, and it relies on the smoothed mean st, which is computed as the average
value of the observations of the time series until time t. It is defined through the recursive
expressions:

st = αyt + (1− α)st−1s1 = y1, (1.9)

where α ∈ [0, 1] is the parameter that regulates the relative importance of the recent value
yt with respect to the smoothed mean of the previous values. The expression (1.9) can be
recursively applied to obtain the following relationship between the forecast of the future
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period and the observations in the past:

ft+1 = α[yt + (1− α)yt−1 + ...+ (1− α)t−2y2] + (1− α)t−1y1. (1.10)

From equation (1.10) it is evident that the prediction is expressed as a linear combination
of the past observations of the time series, with weights exponentially decreasing as the
time goes back. Moreover, the parameter α indicates the relative importance that is given
to the past observations with respect to the most recent ones: if α ≃ 0, the model gives
almost the same importance to all the past observations; instead, if α ≃ 1 then the model
is more responsive and it weights more the most recent values of the time series.

It is possible to extend the simple model to those time series which present a strong trend
component. It is called Holt exponential smoothing model. This model is based
on two components: the smoothed mean st and the linear smoothing trend mt, which
approximates the trend component Mt. The mathematical expression of the smoothed
mean is adjusted in order to take into account the smoothed trend too:

st = αyt + (1− α)(st−1 +mt−1), (1.11)

and, at the same time, the smoothed trend is defined as:

mt = β(st − st−1) + (1− β)mt−1. (1.12)

Similarly, also β ∈ [0, 1] modulates the importance of the most recent value of the trend
and assumes the same mathematical value that α has.
The prediction for period t+ 1 is made by the additive composition of these two compo-
nents:

ft+1 = st +mt. (1.13)

The exponential smoothing model can be extended when it presents a seasonality com-
ponent. The model is called Winters and it presents an additional components called
smoothed seasonal index qt, that approximates the multiplicative seasonality component
Qt. From a mathematical point of view, the model assumes the following shape:

st = α
yt

qt − L
+ (1− α)(st−1 +mt−1), (1.14)
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mt = β(st − st−1) + (1− β)mt−1, (1.15)

qt = γ
yt
st

+ (1− γ)qt−L, (1.16)

where L is the number of periods that are considered and γ ∈ [0, 1] is the parameters that
weights the relative importance of the most recent values of seasonality yt

st
with respect

to the ones of the past.
Finally, the prediction for the future period t+ 1 is defined as:

ft+1 = (st +mt)qt−L+1. (1.17)

For every exponential smoothing method we then need to choose the value for the smooth-
ing parameters α, β, γ. In general, the most robust and objective way to choose the values
of the parameters included in any exponential smoothing method is to estimate them from
the observed data, by evaluating some specific metrics. The most common and efficient
way consists in the minimization of the Sum of Squared Errors (SSE). The errors are
specified as et = yt − ŷt|t−1 for t = 1, ..., T . Therefore, the metric that must be minimized
is defined as:

SSE =
T∑
t=1

(yt − ŷt|t−1)
2 =

T∑
t=1

e2t (1.18)

To solve this optimization problem it is necessary to use linear regression techniques or
non-linear optimization tools.

1.2.2. Autoregressive Models

As stated in [44], “Autoregressive (AR) methods are based on the idea of identifying
possible relationships between the observations of a time series analysing the autocorre-
lation that exists among observations taken at different time moments”. The values of
the time series are usually separated by a fixed time interval in autoregressive models.
Moreover, the output variable of an AR model depends linearly on its own previous values
and on a stochastic term; thus the model is in the form of a stochastic difference equation,
as explained in [19]. The idea behind the AR models is to analyse the autocorrelation
through the backshift B, as it is clear from:

BhYt = Tt−h, (1.19)
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with t > h. We analyse the correlation between variables Yt and BhYt. If there is for
example a seasonality component with period L, then it is expected that the time series
Yt and BLYt = Yt−L are strongly positively correlated.
In general, the AR model is particularly efficient if it is applied to a stationary time
series; therefore, it is always useful to decompose the time series before applying the AR
model. In order to make the mean stationary, the differencing operator of order h should
be applied between successive terms of the time series:

∇hYt = Yt − Yt−h, (1.20)

with t > h.
In general, an autoregressive model of order p creates a linear regression relationship
between the original time series and the one created through the use of the backshift
operator B, until order p:

Yt = γ + ϕ1Yt−1 + ϕ2Yt−2 + ...+ ϕpYt−p + εt. (1.21)

The term εt is a random variable with normal distribution and zero mean and it repre-
sents the noise. All the parameters that Equation (1.21) presents must be determined
minimizing the sum of squared errors.
Made all these considerations, the prediction for period t through an AR model has the
mathematical shape that follows:

ft+1 = γ + ϕ1Yt + ϕ2Yt−1 + ...+ ϕpYt−p+1. (1.22)

Another model that is classified as autoregressive is the moving average model (MA).
It is based on the objective to establish a linear regression between the original time series
and the time series composed by the prediction errors in the previous periods.
Starting from this model, the most general autoregressive integrated moving average
models (ARIMA) integrates the two previously described approaches. Indeed, when the
time series Yt is non-stationary, then it is possible to apply a model whose variables are
the prediction errors zt−1, ..., zt−q of the past q time periods and A1, .., At. In general, the
term At is obtained differencing the term Ytd times: At = ∇dYt. The general shape of the
ARIMA model is:

At = γ + εt + ϕ1At−1 + ϕ2At−2 + ...+ ϕpAt−p − θ1zt−1 − θ2zt−2 − ...− θqzt−q. (1.23)
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Also in this case, the search for the optimal parameters is performed by minimizing the
sum of squared errors.
The prediction for period t is then formulated as:

ft+1 = γ + ϕ1At + ϕ2At−1 + ...+ ϕpAt−p+1 − θ1zt − θ2zt−1 − ...− θqzt−q+1. (1.24)

If the time series includes a component of seasonality, then it is often also appropriate to
develop an ARIMA model for it. This model is usually denoted by ARIMA (P,D,Q) to
distinguish its order from the corresponding order (p, d, q) of the non-seasonal component.
In particular, in this model the time series is obtained by successive differences of order
DL, so using multiples of the seasonality cycle.

To establish the eventual existence of a seasonality component, autocorrelation (ACF)
and partial autocorrelation (PACF) diagrams should be created. The autocorrelation
coefficient for lag h is defined as:

ACFh = corr(Yt, Yt−h) (1.25)

and indicates the degree of correlation between the values of the time series Yt and the
values of the series Yt−h. Instead, the partial autocorrelation coefficient expresses the
correlation between Yt and Yt−h that is not accounted for by shorter lags; it is defined as:

PACFh = corr(Yt, Yt−h|Yt−1, Yt−2, ..., Yt−h+1). (1.26)

In general, the ACF and PACF can be observed in order to establish the most appropriate
parameters p and q of the ARIMA model. Anyway, sometimes it is not so easy to find
their optimal values by the simple observation of these two graphics. The so called auto-
ARIMA model is able to calculate them using an empirical machine learning model.

1.3. Machine Learning Models: Regression

The most largely used machine learning model for time series forecasting exploits super-
vised learning, as explained in [22], [24]. Supervised learning algorithms aim at estimating
the value of an output variable y through some input variables X, and through the con-
struction of an algorithm to learn the mapping function from the input to the output.
Given a sequence of values of a time series dataset, it is possible to restructure the data to
look like a supervised learning problem, in particular like a regression problem. Indeed,
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the objective of time series forecasting is to predict the future values of a specific variable,
not to split the observations in groups as the classification does. We can do this by using
previous time steps as input variables and use the next time step as the output variable.
The purpose of the regression models is to find a functional relationship between the at-
tributes X (or a subset of them) and the target variable y. In mathematical terms, the
regression models find out the existence of a function f that relates the n attributes and
the dependent variable y, as explained in Equation 1.27:

y = f(X1, X2, ..., Xn). (1.27)

The function f can assume many different shapes, such as the linear, quadratic and
exponential, but also more complex ones. These functions identify the algorithms that
will then able to predict the values assumed by the target.
In general, when a regression model is developed, all the records of the train dataset
are taken in an unspecified order, since ex ante all the observations equally influence the
target variable. Anyway, in the specific case of the time series forecasting, the past values
of the variables can’t be considered randomly, but the temporal sequence is essential.
Therefore, in time series analysis and forecasting, the order between the observations is
preserved, and it must continue to be preserved when using the same dataset to train a
supervised model.

1.3.1. Sliding Window for Time Series

The use of previous time steps to predict the next time step is called the sliding window
method or simply window method, as it is explained in [22], [30]. In statistics and time
series analysis, it is also called lag method. The classic name comes from the number of
past time steps, which is called the window width. In general, the width sliding window
can be increased to include different numbers previous time steps.
It is useful to say that a time series dataset is prepared in such a way that any of the
standard linear and nonlinear machine learning algorithms may be applied, as long as the
order of the rows is preserved. The following schema explains the basic idea behind the
window method (each xi represents an observation of the time series):
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Figure 1.2: Schematic representation of the sliding window for time series forecasting

The sliding window approach can be used on a time series that has more than one value,
the so-called multivariate time series. The approach is exactly the same as the one that
treats with univariate time series.
The number of future time steps to be forecasted is important. It is traditional to use
different names for the problem depending on the number of time-steps to forecast:

• One-Step Forecast: when the next time step (t+ 1) is predicted.

• Multi-Step Forecast: when two or more future time steps want to be predicted.

The approach to multi-step forecast consists in the iteration of the one-step forecast. It
can be decided to re-tune the parameters and re-train the model at each step or to keep
the same model with the same parameters at each iteration.

1.4. The Prophet Forecasting Model

Prophet is a procedure for forecasting time series data which has been developed by the
core data science team of Facebook. It is an additive model that is able to handle non-
linear trends, yearly, weekly and daily seasonality and holiday effects. It works optimally
with data that present seasonal effects and that are distributed on a long time span.
Section 1.4 is aimed at presenting the main characteristics of the Facebook Prophet model,
deeply explained in [5], [41], [42], [35].

1.4.1. The Model

In general, the standard mathematical shape of a Prophet model is similar to a Gen-
eralised Additive Model (GAM), a class of regression models with potentially non-linear
smoothers applied to the regressors. Therefore, in some sense the Prophet model can be
interpreted as the integration of statistical (traditional) models and ragressors (machine
learning models). In general, the Prophet model is executed by framing the forecasting
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problem as a curve-fitting exercise, which is strongly different from time series models
that account for the temporal dependence structure in the data.

The main components of the time series are combined as follows:

y(t) = g(t) + s(t) + h(t) + εt. (1.28)

In addition to the traditional trend or growth component (g(t)) and seasonality component
(s(t)), we add in this case the holiday effect h(t), which potentially has irregular schedules
over months, weeks and days.
Going more in depth, in general there is nonlinear growth, which is usually modeled
through the logistic growth model as is clear from the following equation:

g(t) =
C

1 + e−k(t−m)
, (1.29)

where C is the capacity, k the growth rate and m an offset parameter.
Then, for what regards the seasonality, it is generally modeled as a periodic function,
whose effects can be approximated with the following formula:

s(t) =
∑

: i = 1N(ancos(
2πnt

P
+ bnsin(

2πnt

p
)), (1.30)

which is the standard expression of a Fourier series of periodicity P . Usually, the choice of
the best parameters that fit the model can be automated using a model selection technique
such as AIC (Akaike Information Criterion), which by calculating and comparing the AIC
scores of several possible models, chooses the one that is the best fit for the data.
Holidays and events provide some predictable shocks to many business time series and
often do not follow a periodic pattern, so their effects are not well modeled by a smooth
cycle. In general, the impact of a particular holiday on the time series is often similar year
after year, so it is important to incorporate it into the forecast. Therefore, a custom list
of past and future holidays and events is provided and it can be identified by the event
or holiday’s unique name, as shown in Table 1.1.
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Holiday Country Year Date

Christmas * 2020 25 Dec 2020

Christmas * 2021 25 Dec 2021

Christmas * 2022 25 Dec 2022

Christmas * 2023 25 Dec 2023

Easter Italy 2020 12 Apr 2020

Easter Italy 2021 4 Apr 2021

Easter Italy 2022 17 Apr 2022

Easter Italy 2023 9 Apr 2023

Table 1.1: Example list of holidays in Italy. The country and the year are specified
because holidays may occur on different days in different countries and different years.

For a given forecasting problem we use both the global set of holidays and the country-
specific ones.
From a mathematical viewpoint, it is important to say that, to include the effect of holi-
days into the model, they are assumed as independent. For each holiday i, Di presents each
past and future date for a holiday. Moreover, an indicator function represents whether
time t is during holiday i, and it assigns to each holiday a parameter κi which is the
corresponding change in the forecast, as it is clear from Equation 1.31 and Equation 1.32:

Z(t) = [1(t ∈ D1), ...,1(t ∈ DL)] (1.31)

and taking

h(t) = Z(t)κ. (1.32)

Thanks to the simplicity of the model, the fitting process is very fast and it has easily
interpretable parameters that can be changed by the analyst to impose assumptions on
the forecast. Moreover, it is easy to extend the model to include new components.

1.5. Time Series Analysis and Forecasting Process

The time series analysis comprises methods for analysing time series data in order to
extract meaningful statistics and other peculiar characteristics of the series itself. The



1| Theoretical Background and Business Objectives 17

entire process is well explained in [6]. In particular, the first step consists in the decom-
position of the time series identifying the components in the most precise way possible
(see paragraph 1.1.2). Then, an evaluation of the volatility of the datum under analysis
is made, in order to estimate the expected accuracy of the predictions.
The time series forecasting consists in building models through the observation of
historical data, in using them to make predictions for future time periods and to drive
future strategic decision-making. An important distinction in forecasting is that, at the
time of the work, the future outcome is completely unavailable. Moreover, it can only be
estimated through a careful analysis and some evidence-based priors.
The process aimed at forecasting time series is a standard process based on some standard
steps and it basically has the same structure for all the possible mathematical models that
can be chosen. In general terms, the forecasting process is structured as Figure 1.3 shows.
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Figure 1.3: Main steps of the quantitative forecasting process

The first step of the roadmap highlights the importance of the definition of the business
objective the forecasting wants to reach. It should be clear to identify the most significant
variables that are going to be analysed and the one that is going to be predicted. All the
following steps must be executed keeping the final objective clear in mind.
The final step regards the measurement and the evaluation of the results. Since the scope
of this thesis comprises the evaluation of the forecasting accuracy that the various methods
present, it is also necessary to estimate it, referring to the real data than compose the
prediction. On the other hand, it is also necessary to elaborate a set of metrics that
measure the confidence level the forecasting method has "ex ante", without knowing the
real data in advance as it happens in a real-world situation when a forecasting on future
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data is made. This is the reason why, in Section 1.6 both some "ex post" metrics and
some "ex ante" ones will be presented.

1.6. Forecasting Accuracy Metrics

This section is based on the literature of [1] and [44]. The accuracy metrics are able to
measure the accuracy of the predictions generated using a time series model. Accuracy is
a measure of observational error. Accuracy is how close a given set of observations are to
their true values. The two main objectives of the accuracy measures are reported here.

• The first one is to assess alternative models and to determine the parameters that
are assigned to the model. To determine which is the most appropriate model, each
model is applied to the past data and the metrics are evaluated on this dataset. The
model that presents the minimum total error is selected.

• The second aim is to assess the accuracy of the predictions that have been made
through the comparison of the forecasts with the real observed data. The periodic
evaluation of the accuracy of predictions makes it possible to determine if a model
is accurate or if a revision is required.

The first category of measures is the one of the distortion indices, which are used to
discriminate among models using signed mean errors. In general, the prediction error
is defined as the difference between forecasts ft and sales yt:

et = yt − ft. (1.33)

In a very similar way, the percentage prediction error is defined as:

ePt =
yt − ft

yt
× 100. (1.34)

This second metric is independent of the scale on which the observations are measured
and is therefore a more reliable measure, especially for comparing the accuracy of different
time series.
Then, it could be necessary to estimate the overall differences between the forecasts and
the sales, both in absolute and average terms. It is called Forecast Bias or Mean
Signed Deviation:

Forecast Bias =
n∑

t=1

(yt − ft) (1.35)



20 1| Theoretical Background and Business Objectives

Mean Signed Deviation =
1

n

n∑
t=1

(yt − ft) (1.36)

Forecast bias is the difference between forecast and sales, and it captures the overall bias
that the forecast has. If the forecast over-estimates sales, the forecast bias is considered
negative. If the forecast under-estimates sales, the forecast bias is considered positive.

Then, it can be useful to assess how large the forecast error is on average in absolute
terms. These metrics are called dispersion indices. The Mean Absolute Error
(MAE) is the metric based on this idea, and it is defined as:

MAE =
1

n

n∑
t=1

|yt − ft| (1.37)

The Mean Absolute Percentage Error (MAPE) has the same objective of the MAD
metric, but it expresses the forecast error in relation to sales volume:

MAPE =
100

n

n∑
t=1

|yt − ft|
yt

(1.38)

Basically, it tells you by how many percentage points your forecasts are off, on average.
This is probably the single most commonly used forecasting metric in demand planning.
Other largely used dispersion indexes are the Mean Square Error (MSE), whose shape
is the following:

MSE =

∑n
t=1(yt − ft)

2

n
(1.39)

, which is the same as the sum of square errors SSE but divided by n, and the Root
Mean Square Error, calculated as:

RMSE =

√∑n
t=1(yt − ft)2

n
(1.40)

.
It is important to highlight that, despite their names, the forecasting accuracy indexes
measure forecast error, meaning that 0 or 0% is the target and larger numbers indicate a
larger error.
In general, among the models that show null (or almost null) distortion, the model with
the least dispersion is usually preferred.

Table 1.2 reports the above described measures and their mathematical formulations.
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Forecast Accuracy Measure Formula

Prediction Error et = yt − ft

Percentage Prediction Error ePt = yt−ft
yt

× 100

Forecast Bias Forecast bias =
∑n

t=1(yt − ft)

Mean Signed Deviation % Forecast bias % = 1
n

∑n
t=1(yt − ft)

Mean Absolute Error MAE = 1
n

∑n
t=1 |yt − ft|

Mean Absolute Percentage Error MAPE = 100
n

∑n
t=1

|yt−ft|
yt

Mean Square Error MSE =
∑n

t=1(yt−ft)2

n

Root Mean Square Error RMSE =
√∑n

t=1(yt−ft)2

n

Table 1.2: Main accuracy metrics and related mathematical formulations

1.7. Business Objectives, Use Cases and Applications

1.7.1. Data Science at the Service of the Business

The global Big Data Analytics market size is expected to be worth USD 103 billion
in 2027. The market size was USD 56 billion in 2020 and USD 64 billion in 2021 2.
Further, the market is estimated to grow at a CAGR of 13.2% during the 2021-2028
period 3. This growth is evident from Figure 1.4. Indeed, Big Data Analytics examines
the unstructured and structured record to envision and deliver understandings regarding
connections, hidden patterns, varying market trends, and many more. Therefore, its
application fields are growing fast in number and many more companies exploit the power
of Big Data Analytics to develop their businesses.

2Source: Statista 2021
3Source: www.globenewswire.com
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Figure 1.4: Big Data market size revenue worldwide from 2011 to 2027 (in billion USD),
source: Statista 2021

Regarding the industries, the growth is expected in almost every field, with investments
in Data Management and Analytics that touch the 10%. Insurance, Manufacturing and
Telecommunication fields present the strongest growth. Indeed, almost 8 big companies
out of 10 integrate data coming from different internal and external sources and the 54%
is experimenting in the Advanced Analytics field.
At the same time, the volume of data that companies are going to handle is growing
very fast, following an exponential curve. The total amount of data created, captured,
copied, and consumed globally is reached 64.2 zettabytes (1021 bytes) in 2022 4. Over
the next years up to 2025, global data creation is projected to grow to more than 180
zettabytes, as it is clear from Figure 1.7.

4Source: Statista 2021
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Figure 1.5: Volume of data created, captured, copied, and consumed worldwide from 2010
to 2025 in zettabytes, source: Statista 2021

As a consequence, companies need to manage increasing amounts of data to extract
value from them. Data Science is becoming key in the decision making process for
all the big companies and it constitutes an important source of competitive advantage.
Therefore, also the demand of competencies is continuously increasing: the number of
Data Scientists is increasing with a growth rate of 28% in the big companies. This is the
reason why Data Science is something many more companies that operate in different
fields are investing in and will invest in even more in the future.

1.7.2. Business Applications and Impacts

The time series forecasting is considered a key activity that comes under the Data
Science ones. It has many possible applications and it is one of the most common areas
where research and business applications go hand in hand. Indeed, time series forecasting
is based on data science and it is applied in many business cases.
For example, price prediction in time series forecasting can produce great opportunities
and increase the customer experience in many fields, such as the flight industry. Indeed,
prices of airplane tickets are mostly fluctuating and price aggregators can offer a better
experience to the customers if they are able to predict future prices since they can send
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notifications to clients who want to know whether the price drops down. This encourages
customers using this platform as their go-to platform for optimizing their travel budgets.
Consequently, the time series forecast constitutes, in this case, a strong source of compet-
itive advantage.
Then, during the pandemic, time series forecasting has become the key technique applied
in healthcare to predict the spread of Covid-19. It has been used for predicting the
transmission rate, the mortality ratios, the spread of the epidemic, and more. From this
moment on, the time series prevision has become fundamental in many healthcare fields
such as genetics, diagnosis and treatment and the results reported an important progress.
Time series forecasting is important also in the financial industry since investors and
traders try to forecast the behaviour of financial markets through some variables such as
the price of stock options, the volatility of the markets and the foreign currency risks.
The estimation of these indicators of the future market will enable investors to construct
portfolios and estimate the risk they bring. In Figure 1.6 the forecasting of the stock price
of Google for 2021 has been executed using the Facebook Prophet model, as it is clear
from the example in [35].

Figure 1.6: 2021 Google stock price predicted in 2020 using the Facebook Prophet model

Finally, the most general applications regard business processes in general, and there-
fore they are applicable to many different companies in different fields. Predicting cus-
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tomer demand is a core objective which is fundamental for every company since it allows
the enterprise to offer a better service and therefore to gain competitive advantage over
the competitors. It then relies on the effectiveness layer. Moreover, all the internal ac-
tivities can be better managed, correctly allocating the scarce resources such as time,
money, materials, technical competencies that any company has. In this way, the waste
is reduced and therefore a higher level of efficiency is reached. Moreover, data analysed,
manipulated, aggregated and visualized in an effective way can constitute a solid base that
relies on the scientific method and that can help managers to take the most complicated
decision in strategic, tactical and operational terms. The following figure shows the most
important benefits, presented in literature in [20], [36], that the Forecasting Science and,
more in general, the Data Science, bring to almost every company.

Figure 1.7: Main benefits of the forecasting science at strategic, tactical and operational
levels

1.7.3. Business Objectives

The objective of this thesis is to analyse the most largely used forecasting models and
algorithms, in order to understand if one is more appropriate than the other ones for
predicting time series. Their performances are assessed not only in absolute terms, but
also in relation to the hyperparameters they assume and in connection with the charac-
teristics that the time series presents. Therefore, more than one dataset, with different
characteristics, are treated. Moreover, an effort is made also in analysing the impact that
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the choice of the evaluation metric has on the drafts that emerge.
The final aim, from a business viewpoint, consists in supporting companies in pursuing a
very common goal: forecasting the sales of the future periods to better plan the organi-
zation of their internal resources. This is the reason why the datasets under analysis will
treat business time series exclusively related to the sales of different manufac-
turing companies such as food retailers, pharmaceutical firms and more.
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2| Experiments settings

This chapter is dedicated to the description of the way the experiments on the various
model are conduced in terms of datasets’ choice, tested models, parameters’ tuning method-
ology and calculated accuracy metrics. Moreover, we present a general overview of the
preliminary analysis that are made on each dataset.

2.1. Datasets Description

In this section, we present the structure of the datasets under analysis in terms of records
and attributes, the context they are inserted in and their main general characteristics.

2.1.1. Dataset A: Pharma Dataset

The first dataset that is going to be analysed is taken from [45], and it is constituted by a
multivariate time series of pharmaceutical products’ sales. The time series con-
tains data recorded at a small scale, for a single distributor, pharmacy chain or individual
pharmacy. Even if this dataset is made by a multivariate time series, we treat it in this
case in a set of univariate time series forecasting problems.
The initial dataset consisted in 600000 records of transactional data, collecting in almost
6 years from 2014 to 2019 (the last one is not complete). It contained information regard-
ing the drug category, the date and time of sale and the category the product belonged
to. Even if the original time series presented a very low frequency of transactions, other
datasets with (more) aggregated data are available in the same source. For this analysis,
the main dataset that is considered is the one that presents a daily frequency of observa-
tions, with 2106 records. This choice is mainly due to the very large applicability of the
methods developed on this dataset: the daily sales time series are very commonly used by
companies. At the same time, a daily frequency is a good compromise between easiness
in manipulation and accuracy in representing short term fluctuations.
The transformation of the dataset from the original one to the one that is used in this
thesis is well explained in Figure A.1, taken from [45].
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Figure 2.1: Tranformation from the original dataset to the daily time series

Regarding the time, the dataset presents a first column, named datum, that contains the
timestamp at which the transactions take place and other features that contains other
derived temporal variables. The list of these variables is presented below:

• Year ;

• Month;

• Hour ;

• Weekday Name.

The column named Hour is available but it is clearly meaningful only in the hourly
dataset.
Moreover, a series of variables that indicates the 8 categories of the original 57 sold
products are available as columns of the dataset.

• M01AB indicates the sales volume of anti-inflammatory and antirheumatic prod-
ucts, non-steroids, acetic acid derivatives and related items.

• M01AE indicates the sales volume of anti-inflammatory and antirheumatic prod-
ucts, non-steroids and propionic acid derivatives.

• N02BA indicates the sales volume of other analgesics and antipyretics, salicylic acid
and derivative substances.

• N02BE/B indicates the sales volume of other analgesics and antipyretics, Pyra-
zolones and Anilides.

• N05B indicates the sales volume of psycholeptics and anxiolytic drugs.

• N05C indicates the sales volume of psycholeptics drugs, hypnotics and sedatives
drugs.
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• R03 indicates the sales volume of drugs for obstructive airway diseases.

• R06 indicates the sales volume of antihistamines for systemic use.

It is important to highlight the fact that data cleaning and feature engineering have
already been performed before loading the dataset, therefore, it does not present any
missing data and the time series results as complete and cleaned, and the records are
already sorted in temporal order.
Last, before making any kind of analysis on the dataset, it is split in 2 subdatasets: train
and test ones. The train set presents 1825 rows and it covers exactly 5 years, from 2014
to 2018 included; it presents all the features. The test set, instead, presents 281 records
that cover almost 10 months of 2019. It presents the column containing the timestamp
and the temporal features only, since the ones related to the volumes must be predicted.
From now on, we’ll indicate these datasets as train dataset and test dataset. The dataset
containing the real data of 2019 will be named as real dataset.
The head of the complete dataset is reported in Appendix A.

2.1.2. Dataset B: Food Demand Forecasting Dataset

The second dataset we are going to analyse is taken from [33], and it is constituted by
a univariate time series of food sales. Data are taken from the sales of a meal de-
livery company that operates in many different cities. The dataset presents also some
geographical variables that authorize the treatment of this forecasting problem in a set of
univariate time series forecasting problems.
The original main dataset is composed by 456548 records and 9 columns which contain
both temporal and geographical variables and variables related to the price of the order.
Regarding the frequency and the deepness of the dataset, it presents weekly data, dis-
tributed along 145 weeks. It is important to highlight the fact that, differently from the
previous dataset, in this case only the number of the week is known, but any information
regarding the timestamp of the transaction is available: it means that week 1 can be any
week of any year, it is not known as a specific week.
Moreover, another additional dataset is given: it contains information regarding the ful-
fillment center. The first and simplest action that is made is the joining of the two tables
in a unique dataset, using the center unique identification code as the key attribute. The
final dataset presents the attributes that follows.

• Id is the identification code.

• Week is the number of the week the transactions refer to.
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• Meal Id is the identification code of the product that is sold.

• Checkout Price is the price of the checkout for that demand.

• Base Price is the base price for that demand.

• Emailer for promotion is a flag that indicates the subscription to promotions.

• Homepage featured is a flag related to the featured homepage.

• City code is the code that identifies the specific city of those orders.

• Region code is the code that identifies the specific region in which those orders take
place.

• Op area is the geographic area that identifies the operative area with that demand.

• Center type indicates the type of center in which that number of orders takes place.

The target variable that should be predicted is called Num orders and it refers to the
number of orders that are made in the specific geographic area and in the specific week
indicated by the other features. It is a measure of the demand of each segment and it is
expressed in terms of volumes, not of revenues.
A schematic view of the dataset structure and its attributes is available in Figure A.2.
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Figure 2.2: Tranformation from the original datasets to the Food Demand Forecasting
dataset

Also in this case, before analysing the dataset, it is divided in 2 subdatasets: train and
test ones. The train set presents 430283 rows and it covers a time horizon of exactly 137
weeks; it presents all the features. The test set, instead, presents 35265 records that cover
the remaining 8 weeks. The latter presents all the informative features except the one
named Num orders, since the sales volumes must be predicted. From now on, we’ll refer
to these datasets as train dataset and test dataset. The dataset containing the real data
of 2019 will be named as real dataset.
The head of the complete original dataset is again reported in Appendix A.
It is important to highlight the fact that this dataset does not present a unique value for
moment in time. For this reason, it is necessary to create many sub time series filtering the
dataset with respect to the values of some features and aggregating taking the timestamp
as index. Each of the columns of the final dataset - apart from the timestamp one - is one
of the time series obtained as explained above. In particular, each column is named with
the original column name and the value on which the dataset has been filtered. Moreover,
the Aggregate column is obtained without filtering the dataset and the ts one contains
the timestamp that refers to the first day of the respective week indicated in the original
dataset. Indeed, the time series forecasting requires a specific time moment for every
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observation: the first day is set as January 1st, 2018 in order to avoid any bias due to the
Covid-19 emergency.
The head of this final dataset is reported in Appendix A.

2.2. Tested Models

The models that are going to be tested in this thesis refer to the theoretical frameworks
deeply described in Chapter 1. From a practical viewpoint, the code that trains and tests
all the models is created following the main guidelines available in literature [39], [34],
[25], [26], [37], [46].
More details regarding the parameters of the functions mentioned below and their config-
uration spaces are deeply explained in Section 2.3.

2.2.1. Exponential Smoothing Models

The models that belong to the Exponential Smoothing category we are going to test in this
thesis are listed below. The functions are taken from the Python library statsmodels.
Holt’s Winter Seasonal Exponential Smoothing includes a trend component and a
seasonal component. In this case the function is named ExponentialSmoothing and it
is set with many different parameters that indicates the way of aggregating components
(additive or multiplicative) the presence of a damped trend, the use of a Box-Cox trans-
formation and the initialization method. It is the most general method of this class and,
for this reason, we will test this method only, changing the parameters that regulates the
weights of the various components, falling in different particular cases such as the Simple
Exponential Smoothing and the Holt’s Exponential Smoothing.

2.2.2. Autoregressive Models

Also in this case, the models of the Autoregressive category are tested through the func-
tions of the Python library statsmodels. The models that are trained and tested as well
as the functions that are used to test the characteristics of the time series are listed below.

• The check for stationarity of the time series is performed through the function
adfuller.

• The order of the AR model to be trained is determined by the partial autocor-
relation plots, made through the function plot_pacf.

• The function auto_arima is used to train the Autoregression model in an auto-
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matic way. This function does not require any kind of preliminary study to identify
the most appropriate parameters of the model, but it tests many different combina-
tions of parameters and it creates the model with the optimal one. Regarding the
assessment of the different configurations, it uses the Akaikeś information crite-
rion (AIC) to evaluate which is the optimal configuration. Indeed, it estimates the
quality of each model, relative to each of the other models; thus, it provides a sort
of method for model selection. AIC is founded on information theory. It estimates
the relative amount of information lost by a given model when it is trained: the less
information a model loses, the higher the quality of that model.

2.2.3. Regression models

Regarding the machine learning (regression) algorithms, some of them are proven to be
more efficient in forecasting time series. Several studies such as [40], [43] have been done
that show a higher effectiveness in this application field. The most effective Regressors
for time series prevision that are going to be tested in this thesis are listed below.

• Linear Regressor is the most simple regressor and the one that represents the base-
line. The other regressors are usually tested starting from it. This model is tested
though the function LinearRegression of the module linear_model belonging to
the library scikit.

• Support Vector Machines (SVMs)) indicates a set of supervised learning meth-
ods. As it is stated in [29]: “The ability of SVMs to solve nonlinear regression es-
timation problems makes SVMs successful in time series forecasting”. Indeed, this
set of methods is based on the subdivision of the dataset in sub datasets using
(linear or non linear) hyperplanes. SVMs are implemented through the functions
LinearSVR and SVR of the Python module svm of the library sklearn, as stated in
the scikit-learn documentation [18].

• Ridge Regression is a method of estimating the coefficients of multiple-regression
models. It is a model belonging to the class of the elastic nets. Also in this case,
the function Lasso belongs to the library sklearn.

• Lasso Regression is a regression analysis method that performs both variable
selection and regularization in order to enhance the prediction accuracy and inter-
pretability of the resulting statistical model. The function that is used is the Ridge

one, belonging to the sklearn library.

• K-nearest neighbors algorithm (k-NN) is a non-parametric supervised learning
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method used for classification and regression. The input consists of the k closest
training examples in a data set. In k-NN regression, the output is the property
value for the object. This value is the average of the values of k nearest neighbors.
The KNN method is implemented through the function KNeighborsRegressor of
the module neighbors of the sklearn library.

• Gradient Boosting Regression Method is an efficient implementation of a
stochastic mathematical model. It is an ensemble of decision tree algorithms where
new trees fix errors of those trees that are already part of the model. Trees are
added until no further improvements can be made to the model. The function that
tests the behaviour of this model is GradientBoostingRegressor from the library
sklearn.ensemble, and the details of the implementation are deeply treated in [27],
[16].

All these machine learning models are tested with different sets of hyperparameters. The
tuning process of these latter is deeply explained in 2.3.1. Then, the forecasting is executed
using the sliding window through the class ForecasterAutoreg of the library skforecast,
as explained in [13], [31]. For this forecasting, the subseries that are not predicted are
used as features to explain the target one and the timestamp is taken as the row index
of the dataset. The predictions produced by each model are then compared through the
metrics explained in Section 2.4.

2.2.4. Prophet Model

The Prophet Model is a particular procedure implemented by Meta (Facebook) and
available both in Python and R. It is an open-source library called fbprophet that offers
many methods for the forecasting of univariate time series. The specific function that we
present and use in this thesis is called Prophet and it is able to create a model, to fit it
and to use the model to predict the future data.

2.3. Parameters

In this section, we present the hyperparameters tuning methods that are used to test the
models and to optimize the performance of each algorithm. Moreover, a description of the
parameters of the functions and of the domain in which they take their values is provided.
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2.3.1. Hyperparameters Tuning

As stated in [17]: “in machine learning, hyperparameter tuning is the problem of choosing
a set of optimal hyperparameters for a learning algorithm. A hyperparameter is a param-
eter whose value is used to control the learning process”.
The same kind of machine learning model can require different constraints, weights or
learning rates to generalize different data patterns. They must be tuned so that the
model can optimally solve the problem. Hyperparameter optimization finds a combina-
tion of hyperparameters that yields an optimal model which minimizes a predefined loss
function on given independent data. The objective function takes a tuple of hyperparam-
eters and returns the associated loss.
In general, the hyperparameter optimization can be approached in two main ways, de-
scribed below.

• Grid search searches the optimal parameters in a manually specified subset of
the hyperparameter space. It exhaustively searches the space in a sequential man-
ner and trains a model for every possible combination of hyperparameter values.
The grid search algorithm trains multiple models (one for each combination) and
finally retains the best combination of hyperparameter values, evaluated by some
performance metrics.

• Random search define a search space as a bounded domain of hyperparameter
values and randomly samples points in that domain. It can outperform Grid search,
especially when only a small number of hyperparameters affects the final perfor-
mance of the machine learning algorithm. It is very simple and it is one of the
important base-lines for the hyperparameter optimization methods.

The main advantage of the Grid search optimizer is the completeness of the hyperpa-
rameter space in which it executes the search process. On the other hand, it is a very
complex method in computational terms and therefore it is a very slow tuning method.
The random optimizer instead is a faster but less complete method.
The two methods are visually represented in Figure 2.3 and Figure 2.41. Note that the
blue lines indicate regions with strong results, while red ones show the regions of the
domain with the worst results.

1Source: www.wikipedia.org
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Figure 2.3: Grid search: different values of two different hyperparameters

Figure 2.4: Random search: different values of two different hyperparameters

In this thesis, the hyperparameters are tuned in the same way, regardless the model we
are testing and the level of complexity that the hyperparameter space presents. This
choice is due to the fact that, since the objective of this thesis is to assess the models,
we want to be as consistent as possible and to avoid any bias related to the different
hyperparameter tuning methods. In this thesis, we will assess the models through the
Grid search optimizer, since most of the parameters of the models present a discrete
state space.
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2.3.2. Hyperparameter Spaces

The models that are tested in this thesis present different sets of parameters. Each
parameter of each model has a different domain and therefore the values that it assumes
belong to this domain. The lists that follow in this Section include all the values that
are tested during the experiments (grids), that constitute a discrete subset of the whole
hyperparameters space of each model. The whole list of values is reported since it is
meaningful in terms of model interpretability.
Instead, due to the high complexity of the machine learning models, the values assumed
by their hyperparameters are not reported.
The ExponentialSmoothing method presents the following parameters:

• trend: [additive, multiplicative, None],

• damped_trend: [True, False],

• seasonal: [additive, multiplicative, None],

• seasonal_periods: [365, 30, 7]

• remove_bias: [True, False]

It is important to highlight the fact that the parameter called optimized is always set
as True since it automatically detects the best parameters that regulates the smoothing
levels, α, β and γ.

Then, the auto ARIMA model presents some parameters that are correlated and that
assume different values depending on the results of two tests: the adfuller test for stabil-
ity and the PACF test for the auto-correlation of the time series. The auto_arima function
automatically iterates over the parameters (P,D,Q) and the seasonal orders (p, d, q), con-
sidering the characteristics of the time series such as the stationarity. The parameters on
which the model iterates are listed below:

• seasonal: [True, False],

• stationary: [True, False].

Then, the parameter with_intercept is set with the value auto because in this way the
model automatically detects the trend component of the time series. The models are
tested with many parameter configurations and the best one is assessed through the AIC.

Regarding the Regression models, each of them presents specific hyperparameters.
Each of the following lists includes the space of the hyperparameters that is automati-
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cally tuned by every regressor. In particular, only the most impactful hyperparameters’
spaces are reported below. Regarding the Linear Regressor, it does not present any
parameter since it is a very simple model. Instead, the SVR’s hyperparameters take
values in the following space:

• C: [10, 5, 15, 20, 50],

• degree: [3, 2, 1, 0],

• epsilon: [0.05, 0.01],

• gamma: [0.5, 1],

• max_iter: [-1, 20, 50, 100, 1000],

• shrinking: [True, False].

Regarding the Ridge and Lasso regressions, they are trained with the following param-
eters:

• normalize: [True, False],

• alpha: [0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000] that, as it is notice-
able, is a logarithmic parameter space.

The kNN model is then tested with the parameters listed below:

• n_neighbors: [5, 10, 20, 25, 30, 35, 40, 45, 50, 55, 60],

• p: [1, 2].

The GradientBoosting model is then tested with these main hyperparameters:

• learning_rate: [0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09,

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8],

• max_depth: [2, 3, 4, 5, 6, 7, 8, 9].

Finally, the Prophet model is tested tuning some parameters whose names and respective
domains are reported below:

• changepoint_prior_scale: [0.001, 0.01, 0.1, 0.5],

• seasonality_prior_scale: [0.01, 0.1, 1.0, 10.0],

• holidays_prior_scale: [0.01, 0.1, 1.0, 10],

• seasonality_mode: [’additive’, ’multiplicative’].
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2.4. Evaluated Metrics

Regarding the metrics that are evaluated for each model, they are chosen with the ob-
jective to compare all the models, and therefore they should be applicable to all of them
and also easy to compute. Moreover, they should be easy to interpret once the results
are available. Among all the indexes presented in Section 1.6, the following ones are
calculated for each model and each set of parameters:

• Mean Absolute Error (MAE),

• Mean Absolute Percentage Error (MAPE),

• Mean Absolute Percentage Error Adjusted (MAPE_adj),

• Mean Squared Error (MSE),

• Root Mean Squared Error (RMSE).

More precise considerations should be made for the Adjusted MAPE. This metric is de-
fined exactly as the MAPE, but it is computed only on those observations of the future
time series that are non null. This little trick makes the construction of a relative met-
ric possible and, at the same time, enables the assessment of different time series with
different orders of magnitude. On the other side, this metric presents a big drawback:
it is computed only on a part of the previsions’ vector, and therefore it is not computed
exactly in the same way in every sub series.
Then, it is important to highlight the fact that all these metrics are computed for each
experiments but only the Mean Squared Error is used to choose the best model. This
choice is due to the fact that it should be evaluated on the same series and therefore it is
not necessary to use a relative measure. Moreover, it is easily interpretable and it can be
quickly computed when testing the regression models. It is computed taking as reference
values the real values that the time series assumes in the future period.
Anyway, all the metrics are evaluated at every step since their values are assessed and
their behaviours can be analysed. It would be easy to change the metric responsible for
the choice of the best model, if necessary.

2.5. Experiments and Methodologies

Regarding the experiments that are executed and the methodologies that we follow in
this thesis, many points must be investigated. The process that is described below will
be followed for the analysis of the two datasets.
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As a first step, a deep analysis is performed in order to highlight the main characteristics
of the time series in terms of frequency of the time steps and, above all, statistical terms.
The datasets are described and they are (eventually) split in more than one subsets using
one or more filters. Indeed, it could be useful to split the time series in more than one
sub-time series in order to assess whether the errors of the sub series are compensated in
aggregating them in a unique time series or the greater accuracy of the previsions of the
sub series leads to a greater accuracy in the comprehensive dataset.
Once the time series is analysed and the eventual sub time series are identified, all the
methods mentioned in Section 2.2 are tested with the different parameters configurations
listed in Section 2.3.1.
For each method, the optimal set of parameters is identified comparing the predicted time
series with the real dataset, using the metrics above-mentioned in Section 2.4.
Then, all these best models are compared through the same metrics and the optimal
model with the optimal set of parameters is identified.
At this point, also some combinations of the models are tested and compared with the
previously mentioned algorithms. In this case, in order to simplify the experiments, the
optimal combination of parameters is considered in each case.
The whole process is shown in a schematic way in Figure 2.5.
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Figure 2.5: Experiments outline: process of forecasting trials
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Regarding the process, it is important to introduce the method that is followed to execute
the experiments. The algorithm to test the models is set trying to automate the process
of assessment of the models and the parameters. In particular, some python functions are
set to execute some tasks making them modular.

• The preprocessing function is aimed at executing the data preparation for all the
models under analysis.

• The fit_predict_evaluate function is the most important one. For each model,
it defines the hyperparameters space and it tunes them. For each combination of
parameters, it fits the model and it makes the predictions on the future time interval.
Then, it evaluates each model through the metric mentioned in 2.4.

• The update_results function writes the results in a file to make them easily read-
able and always available.

Then, we call all these functions into a cycle that iterates over subdatasets and models.
In this way, the same process is made for all the experiments and it is - at least partially
- automated.
In Algorithm ??, the main logical steps of the experiments’ outline are reported.

Algorithm 2.1 Experiments outline
1: define sub series, models and hyperparameter spaces
2: for eachtimeseriests do
3: import time series ts
4: for eachmodelm do
5: preprocess data for m
6: tune hyperparameters for m on ts
7: fit moel m on d
8: predict future data
9: evaluate predictions

10: save metrics
11: end for
12: end for

The complete cycle that regulates the process of experimentation that we follow in this
thesis is reported in Appendix B. The implementation of this algorithm is executed in
Python and it exploits the functions explained above.

Finally, an analysis is made creating an aggregated time series which is computed as
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the sum of all the sub series of the Pharma dataset analysed and forecasted in the previ-
ously explained process. It is predicted testing the same sets of models and parameters
listed above. From now on, this first future time series will be denoted as Configuration
B. It is compared with the prediction of the future series obtained as the sum of the sub
time series predicted with the best configuration established through the experiments.
This second series will be indicated as Configuration A. The two different terms of the
comparison are obtained from the process explained in Figure 2.6.

Figure 2.6: Aggregation of the sub time series at different levels: Configuration A on the
left and Configuration B on the right
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The objective of this final analysis is to verify the impact of having a high accuracy in
time series predictions. Indeed, if the gain in terms of accuracy is not significant, it is
easy to figure a better performance in the predicted aggregated time series, due to the
compensation of opposite errors in the sub series. This analysis can suggest the subdivision
of the time series into more sub series, created filtering the dataset with respect to some
business variables. However, in this specific case, the sub series are treated as independent
ones, ignoring the correlation that obviously exists between them.
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Preliminary Analyses

This chapter is dedicated to the preliminary analysis of the time series that are going to be
treated in this thesis. The objective is to evaluate which are the most important features of
the time series and the technical characteristics they have. Moreover, a general description
of the dataset is fundamental in order to perform the best possible data preparation.

3.1. Pharma Dataset

First of all, it is important to make a consideration regarding the granularity of the Pharma
dataset. In particular, each of the 9 time series coming from this dataset presents a daily
frequency; therefore, each of them presents all the fluctuations that are appreciable in
a short time span such as any eventual weekly periodicity.

3.1.1. Time Series Decomposition

The first step consists in the decomposition of the time series in its main components,
to analyse ad report its main characteristics. The decomposition of the time series is
supported by the function seasonal_decompose. To perform this analysis, a choice among
a multiplicative and an additive composition model must be made. As it is stated in [38],
“we can usually identify an additive or multiplicative time series from its variation: if the
magnitude of the seasonal component changes with time, then the series is multiplicative;
otherwise, the series is additive”. Therefore, an estimation of the seasonality magnitude
is made for each sub series through the plot of the seasonality in the first and last year of
analysis.
The result is the same for all the sub series that present a magnitude of the seasonal
component which varies over time. The aggregated time series is presented as an example.
Its seasonal component is graphically represented in 2014 and 2018 in Figure 3.1.
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Figure 3.1: Magnitude of the seasonal component of the aggregated time series, at the
beginning and at the end of the time span of analysis (2014 and 2018)

As it is clear from the graph, the magnitude of the seasonality effect changes over time.
Therefore, for the decomposition of the time series, we will consider a multiplicative model.
The decomposition into the main components is performed through the function seasonal_decompose

of the statsmodels library and it is performed for every sub time series. Regarding the
behaviour of the time series, every sub time series presents a clear weekly periodicity,
that remains quiet constant as the time goes by. This phenomenon is visible in Figure 3.2,
where the aggregate time series is represented on a time horizon of one month.
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Figure 3.2: Weekly periodicity of the aggregate time series in January 2014 and January
2018

As it is clear from the graph, the time series is periodic in a week time span even if the
shape of the function changes over the five years of analysis. The aggregate time series is
taken as an example, but the same behaviour is visible also analysing the sub time series.
An exhaustive representation of this phenomenon in the sub time series is provided in
Appendix C.
At this point, all the time series are decomposed into the main components and they are
represented in a graphic. In Figure 3.3, we report again the aggregate time series as an
example.
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Figure 3.3: Decomposition of the aggregate time series into its main components through
a multiplicative model

Regarding seasonality, in this time series the seasonal component seems to be very weak.
Anyway, the behaviours of its sub series are very different one from another: some
series present a very strong seasonal effect during the year while other products seem not
to have a yearly seasonal pattern. We report in the Figure 3.4 and Figure 3.5 the two
most significant examples, while a complete representation of all the sub series is available
in Appendix C.
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Figure 3.4: Decomposition of the R06 item time series into its main components: the
seasonal behaviour along the year is evident

Figure 3.5: Decomposition of the M01AE item time series into its main components: the
seasonal behaviour along the year is almost absent
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On the other hand, the trend component is not so evident in all the cases: all the time
series seem to be almost stationary and any particular tendency or monotony is visible
from the above reported graphs. Moreover, an Augmented Dickey–Fuller test is executed
to verify the stationarity of the time series, as explained in [8]. This test is a hypothesis
test: the null hypothesis is that the time series is non-stationary, while the alternative
one states that the time series is stationary. The result of the test is determined by a
threshold value that is 1% in this thesis:

• if the p-value of the test is greater than the threshold of 0.01 then the null hypothesis
is accepted and the time series is considered as non-stationary;

• if the p-value of the test is lower than the threshold of 0.01 then the null hypothesis
is rejected and the time series is considered as stationary.

In the following table the p-values resulting from the Adfuller test are reported for every
time series that is analysed.

Time series p-value flag stationarity

Aggregate 0.000700 1

M01AB 0.000000 1

M01AE 0.000000 1

N02BA 0.000000 1

N02BE 0.002897 1

N05B 0.000157 1

N05C 0.000000 1

R03 0.000618 1

R06 0.007405 1

Table 3.1: P-values of the Adfuller test for all the time series related to the Pharma
dataset

In this table, the last column indicates the result of the test, so the stationarity of the
time series. It assumes value 1 when the the series is stationary, otherwise, it assumes
value 0.
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3.1.2. Statistical Evidences

Regarding the time series under analysis in statistical terms, a series of indicators is
computed for each of them, in order to catch their differences and similarities in these
terms. It must be considered that each of these time series is composed by 1825 time
steps distributed with a daily frequency.

Time series mean std cv min max 25% 50% 75%

Aggregate 60.55 21.26 35.11 0.0 198.95 46.66 58.52 73.33

M01AB 4.98 2.71 54.54 0.00 17.00 3.00 4.68 6.66

M01AE 3.90 2.09 53.67 0.00 13.34 2.34 3.67 5.19

N02BA 4.00 2.43 60.76 0.00 16.00 2.00 4.00 5.30

N02BE 30.15 15.46 51.28 0.00 161.00 19.30 27.20 38.60

N05B 8.90 5.78 64.99 0.00 54.83 5.00 8.00 12.00

N05C 0.58 1.09 188.95 0.00 9.00 0.00 0.00 1.00

R03 5.29 6.13 115.86 0.00 41.00 1.00 3.00 8.00

R06 2.76 2.34 84.82 0.00 15.00 1.00 2.00 4.00

Table 3.2: Main statistical indicators for all the time series related to the Pharma dataset

At this point, the correlation and autocorrelation of the various time series are analysed.
As stated in [11], in statistics, the correlation is a statistical relationship between two
random variables or bivariate data.
The autocorrelation is conceptually similar to the correlation between two different time
series. It is the correlation that incurs within the same time series and basically links the
past data with the future ones, but it does not touch any other variable.
In this thesis, we analyse the correlation that exists between the sub time series in couples.
Of course, the Aggregate time series is excluded from this work. In Figure 3.6, the complete
correlation matrix of the Pharma dataset is reported.
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Figure 3.6: Correlation matrix of the sub series of the Pharma dataset

As it is clear from the matrix, a weak correlation of around 20% exists between the M01AB,
M01AE, N02BA, and N02BE time series. In this thesis, we don’t take into considera-
tion any potential correlation between two time series but they are analysed separately.
Anyway, as a future development of this thesis, these correlations can be taken into consid-
eration taking as exogenous variables the other time series, as it will be well explained in 4.

Regarding the autocorrelation, it is assessed through the representation of the time series
in a 2D plot showing the lag value along the x-axis and the correlation on the y-axis
between -1 and 1. Confidence intervals are drawn as a cone. In general, it is set to a 95%
confidence interval, suggesting that correlation values outside of this area are very likely
a correlation and not a statistical fluctuation. Figure 3.7 and Figure 3.8 present this kind
of plot in two very different cases.
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Figure 3.7: Plot of the autocorrelation of the M01AE time series

Figure 3.8: Plot of the autocorrelation of the N02BE time series

As it is evident from the two graphs reported above, the two time series under analysis
present very different behaviours in terms of autocorrelation: the M01AE time series’
plot is always inside the confidence interval while in Figure 3.8,N02BE series presents a
strong positive autocorrelation.
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A partial autocorrelation is a summary of the relationship between an observation in a
time series with observations at prior time steps. The partial autocorrelation at lag k
is the correlation that results from the removal the effect of the correlations due to the
terms at previous lags.
Taking as examples the two time series mentioned above, we can see also in this case very
different behaviours, as it is shown in Figure 3.9 and Figure 3.10

Figure 3.9: Plot of the partial autocorrelation of the M01AE time series
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Figure 3.10: Plot of the partial autocorrelation of the N02BE time series

The whole autocorrelation analysis, supplemented with the plots of ACF and PACF tests
of all the time series is reported in Appendix C.
What we expect is to link these two characteristics - autocorrelation and partial autocor-
relation - with the behaviour of the AutoRegressive methods.

3.2. Food Demand dataset

The Food Demand dataset presents 11 sub series which are much less granular than the
ones coming from the Pharma dataset. Indeed, they present a weekly frequency, which
determines a much more smoothed graphic.

3.2.1. Time Series Decomposition

This section is very similar to Section 3.1.1. Also in this case the decomposition of the
various time series in its components is essential. But before doing that, an analysis on
the magnitude of the variation should be performed in order to choose among an additive
and a multiplicative composition model.
Since the weekly frequency and the deepness of the time series (120 steps) are much
lower than the the ones of the Pharma dataset, then the magnitude of the seasonal com-
ponent is estimated plotting the whole time series on which we train the models. The
result suggests an almost constant magnitude in the seasonal component of all the time
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series under analysis. The Aggregate time series is reported as an example in Figure 3.11.

Figure 3.11: Magnitude of the seasonal component of the aggregated time series during
the time span of analysis

Since this behaviour in terms of seasonal magnitude is common to every sub time series,
an additive model is chosen to perform the decomposition of all of them. Anyway, it
is important to highlight that an eventual evolution of the seasonal magnitude would be
less evident on a dataset with the low frequency and the short time horizon that these
time series present.
Regarding the behaviour of the time series, it is very different among the sub series, as it
is clearly visible from the observed time series decomposed in Figure 3.12 and Figure 3.13.
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Figure 3.12: Decomposition of the meal_2956 time series into its main components: the
seasonal behaviour along the year is evident

Figure 3.13: Decomposition of the meal_2290 item time series into its main components:
the seasonal behaviour along the year is evident, but very different to the one of the
previous example
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Regarding the trend component of the time series, it is also very different in the cases
under analysis. Indeed, we can see a monotonically increasing trend in meal_2956 time
series, while a much more variable trend in the case of meal_2290 series. The main
components of all the sub series under analysis are reported in Appendix C.
Also in this case, an Augmented Dickey–Fuller test is executed to verify the stationarity of
the time series. This hypothesis test is assessed with the same criterion that is explained
in Section 3.1.1. The results of this analysis are reported in Table 3.4.

Time series p-value flag stationarity

Aggregate 0.141780 0

TYPE_A 0.101892 0

TYPE_C 0.077651 0

region_56 0.150183 0

region_93 0.003958 1

meal_2290 0.000000 1

meal_2956 0.948512 0

city_473 0.000000 1

city_713 0.016371 0

email 0.000000 1

homepage 0.001366 1

Table 3.3: P-values of the Adfuller test for all the time series related to the Food Demand
dataset

As it can be seen from Table 3.4, the behaviour of these time series is much variable,
differently from the time series belonging to the Pharma dataset.

3.2.2. Statistical Evidences

The statistical analysis of these time series is almost identical to the previous one, so a
very similar table is reported below.
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Series mean std cv min max 25% 50% 75%

Aggregate 825763 132578 16 380065 1303457 743129 810667 892979

TYPE_A 477859 76312 16 219225 752163 429081 470631 519103

TYPE_C 142021 31907 22 63982 270164 120597 136739 155809

region_56 415939 68028 16 165490 621244 373972 412951 451389

region_93 9606 2539 26 5402 19975 7943 8992 10565

meal_2290 69038 64755 94 18658 488252 45264 50433 60629

meal_2956 1587 1842 116 0 6752 0 253 3182

city_473 8367 1764 21 5271 14730 7175 8044 9094

city_713 15901 2384 15 6736 22265 14354 16042 17151

email 162932 129203 79 0 667183 61842 149136 233220

homepage 207696 103904 50 52778 654956 132589 198997 257536

Table 3.4: Main statistical indicators for all the time series related to the Food Demand
dataset

Also in this case, the correlation and autocorrelation of the various time series are anal-
ysed, excluding the Aggregate time series. In Figure 3.14, the complete correlation matrix
of the Food Demand dataset is reported.



60 3| Data Exploration and Preliminary Analyses

Figure 3.14: Correlation matrix of the sub series of the Food Demand dataset

Differently from the previous dataset, this one presents strong correlations between some
series. Indeed, especially TYPE_A, TYPE_C and region_56 time series present linear
correlation coefficients around 90%.

Regarding the autocorrelation, it is quiet similar for every series, with the exception of
meal_2956 time series. Figure 3.15 shows the former one while Figure 3.16 the latter and
they present the differences of these two cases.
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Figure 3.15: Plot of the autocorrelation of the meal_2956 time series

Figure 3.16: Plot of the autocorrelation of the meal_2290 time series

The meal_2290 time series’ plot is almost always inside the confidence interval while in
Figure 3.15,meal_2956 series presents a strong positive autocorrelation.
Instead, regarding the partial autocorrelation, the phenomenon of correlation is much less
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evident than before. Taking as examples the two time series mentioned above, we can see
that the behaviours are aligned with the ones visible in the autocorrelation plots, even if
they are less clear. This fact is shown in Figure 3.17 and Figure 3.18

Figure 3.17: Plot of the partial autocorrelation of the meal_2956 time series

Figure 3.18: Plot of the partial autocorrelation of the meal_2290 time series
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Also in this case, the whole autocorrelation analysis, supplemented with the plots of ACF
and PACF tests of all the time series is reported in Appendix C.

This chapter is dedicated to the presentation of the main results and evidences that the
analyses of this thesis highlighted. The results will be showed in order to compare the
performances of the models themselves and also to link them to the characteristics of the
time series analysed. Then, an analysis on the aggregation of the time series is presented.
Finally, an impact of the hyperparameters on the goodness of the models is assessed.

3.3. Main Results and Evidences

3.3.1. Model Assessment

Regarding the assessment of the models that have been tested, both some differences and
similarities can be appreciated in focusing on a dataset or on the other one.
An important premise that should be given is that all the models are evaluated comparing
their MAE. This choice is due to the fact that the MAE is the most largely used metric
for model assessment and moreover it gives a clear idea of the magnitude of the distance
between the forecasted values and the real ones. Moreover, it is selected as the preferred
metric also in order to maintain coherence in model assessment, since it is the measure
that is used to evaluate the best parameter configuration for each model.
First of all, we have to say that for both the two datasets the traditional (or statis-
tical) models, especially the ARIMA models, are in general the ones with the worst
performance, even if they are tuned with different parameters. Indeed, they are the
best models in very few cases. A possible cause of this behaviour could be the simplicity
of the model which is not able to capture all the layers of complexity of the time series.
Table 3.5 and Table 3.6 list the best model of each sub series in terms of performance,
and the best regressor for the same time series, with the respective MAE values.
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Time series Best model MAE Best regressor MAE

Aggregate Prophet 13.71 KNN 14.80

M01AB ExpSmoothing 2.19 GradientBoosting 2.21

M01AE Prophet 1.68 KNN 1.77

N02BA Prophet 1.46 LassoReg 1.50

N02BE GradientBoosting 8.85 GradientBoosting 8.85

N05B ExpSmoothing 3.22 KNN 3.35

N05C ExpSmoothing 0.70 GradientBoosting 0.81

R03 KNN 5.42 KNN 5.42

R06 Prophet 1.85 KNN 1.93

Table 3.5: The best model and best regressor reported with their respective MAE values
for each sub series of the Pharma dataset

Time series Best model MAE Best regressor MAE

Aggregate Prophet 68816 SVR 72918

TYPE_A Prophet 41978 SVR 47593

TYPE_C GradientBoosting 14620 GradientBoosting 14620

region_56 GradientBoosting 35357 GradientBoosting 35357

region_93 Prophet 1373 SVR 1699

meal_2290 SVR 11741 SVR 11741

meal_2956 ExpSmoothing 1486 RidgeReg 1498

city_473 SVR 742 SVR 742

city_713 Prophet 1447 LassoReg 1493

email Prophet 77449 SVR 81614

homepage Prophet 70128 KNN 80103

Table 3.6: The best model and best regressor reported with their respective MAE values
for each sub series of the Food Demand dataset

Regarding the Pharma dataset, for many sub series the Prophet model is the best one
in terms of MAE value. In this case, also some regressors such as the Gradient Boosting
and the kNN present and some traditional models such as the Exponential Smoothing
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present a good performance, that in some cases slightly exceeds the one of the Prophet
model.
For what regards the best model among the regression ones, in the majority of the cases,
the best model is the K-Nearest Neighbors or the Gradient Boosting, together with the
SVR.
It is important to highlight this fact in order derive some general considerations about
the complexity of the algorithms in connection to the accuracy of the predictions that it
makes for that time series. Therefore, for these sub time series, in general the models
which offer the best performances are the ones that present the highest level of com-
plexity. This consideration is valid both for traditional and machine learning models.

Regarding the Food Demand dataset, for many sub series (6 cases out of 12) the Prophet
model is the one that presents the best performance in terms of MAE. Again, in most
of the cases, the Prophet and a regression model are the best ones, while the traditional
models are the less accurate ones. When the best model is a regressor, this best model is
not always the same but it is much variable.
Regarding the best model among the regression ones, it is evident that in the case of this
dataset, the stepwise Support Vector Regressor and Gradient Boosting Regres-
sor are the most accurate ones in most of the cases. They are among the most complex
algorithms tested for regression.
This aspect, together with the bad performances of the traditional models and the good
accuracy of the forecast obtained training the Prophet model, suggests also in this case
the dominance of the most complex algorithms when determining the accuracy of
the predicted time series.

So, we have mentioned the dominance of the Prophet model in many sub series of both
the two datasets that are analysed. In addition, the Prophet model usually performs well,
even when it is not the optimal model. Indeed, in most of the cases under analysis, the
performances of the Prophet are very close to the ones of the best model. This
consideration is true regardless the metric that is considered and for almost every time
series, and it can be appreciated looking at Figure D.1 and Figure D.2 in Appendix D.
Then, also a consideration on the model classes performances (Exponential Smooth-
ing, Auto Regressive, Regression and Prophet models) is reported. As already reported,
the Prophet model seems to be the class which performs better, while the Auto Regressive
models are the ones with the worst MAE. In Figure 3.19 and Figure 3.20, we report the
performances of the model classes in terms of MAE, considering in Regressor the best
regression model for each dataset. In both cases, the chart is divided into sub charts in
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order to make them more readable, since the time series present very different orders of
magnitude.

Figure 3.19: Plot of the performances of the models in terms of MAE - Pharma dataset
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Figure 3.20: Plot of the performances of the models in terms of MAE - Food Demand
dataset

Another important consideration that must be done is related to the general results that
we obtained at the end of the analysis. The question we would like to ask is whether the
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predictions are satisfying and if they can considered as reliable in any business application.
This consideration can be done considering the adjusted MAPE as a metric in order to
understand which is the average percentage error of each time series. The following
Table 3.7 and Table 3.8 report the optimal model identified for each sub series of Pharma
and Food Demand dataset respectively.

Time series Best model MAPE_adj

Aggregate Prophet 28.83

M01AB ExpSmoothing 68.18

M01AE Prophet 114.57

N02BA Prophet 86.67

N02BE GradientBoosting 33.87

N05B ExpSmoothing 63.09

N05C ExpSmoothing 49.06

R03 KNN 110.17

R06 Prophet 76.64

Table 3.7: The best model reported with its respective adjusted MAPE values for each
sub series of the Pharma dataset
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Time series Best model MAPE_adj

Aggregate Prophet 9.35

TYPE_A Prophet 9.62

TYPE_C GradientBoosting 10.95

region_56 GradientBoosting 8.58

region_93 Prophet 27.42

meal_2290 SVR 14.36

meal_2956 ExpSmoothing 25.11

city_473 SVR 8.32

city_713 Prophet 9.75

email Prophet 187.34

homepage Prophet 48.45

Table 3.8: The best model reported with its respective adjusted MAPE values for each
sub series of the Food Demand dataset

For what regards the Pharma dataset, in general its sub series don’t show a good adjusted
MAPE, since in many cases it is around 50%. Therefore, the predictions that are made,
related to this dataset, are not affordable for any business application. The only case
in which they are quite good is the one of the Aggregate time series. In any case, it is
important to highlight the fact that the adjusted MAPE should be compared with the
variability of the time series itself.
Instead, regarding the Food Demand dataset, its sub series generally present a quite good
adjusted MAPE, around the 10%. This aspect makes the predictions quite reliable, since
the average relative error is low. Anyway, some of the sub series such as email and home-
page time series, present a very bad adjusted MAPE, which makes the predictions too
little accurate to be affordable for business application.

Then, we report below the plots of a good prediction and a bad one in terms of adjusted
MAPE for both the two datasets.
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Figure 3.21: Plot of the M01AE time series and its future predictions - Pharma dataset

Figure 3.22: Plot of the Aggregate time series and its future predictions - Pharma dataset
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Figure 3.23: Plot of the email time series and its future predictions - Food Demand
dataset

Figure 3.24: Plot of the Aggregate time series and its future predictions - Food Demand
dataset

The light blue band in these graphs represents the range between a lower and an upper
bound that constitute an uncertainty interval and are responsible for the residual compo-
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nent of the time series (white noise). Then we can notice that the series which have the
worst performances are those that presents the thickest dark blue line and largest band,
as it was expected.

Additionally, it is important to underline the impact of the metrics that are considered
to evaluate the accuracy of the predictions. Indeed, as it can be seen from the complete
results in Figure D.1 and Figure D.2 in Appendix D, switching the selected metric
from MAE to MAPE or MSD, we obtain different results. Therefore, the choice of the
most appropriate metric to evaluate the accuracy of the predictions is fundamental and
it must be taken considering the business requirements and the objective of the analysis.

3.3.2. Impact of Hyperparameters

In this section we analyse the impact that the choice of the set of hyperparameters has
on the model’s performances. Due to the considerations concerning the Prophet method,
reported in Section 3.3.1, the impact of the hyperparameter tuning is assessed on the
Prophet model only. A summary of the results of this analysis is reported in Table 3.9
and Table 3.10 below. It is important to specify that the improvements and degradation
rates reported below are calculated referring to a baseline value, which is the MAE
calculated fitting the model without any parameter. The baseline value is indicated as
default. Then, the average, minimum and maximum values of MAE describe the dataset
that is obtained from the Grid search tuning of the hyperparameters.

Series default avg min max improve_% degrad_%

Aggregate 16.05 15.60 14.21 18.64 11.46 16.14

M01AB 2.25 2.24 2.19 2.43 2.67 8.00

M01AE 1.67 1.76 1.68 1.88 −0.60 12.57

N02BA 1.56 1.50 1.46 1.74 6.41 11.54

N02BE 10.28 10.26 9.12 12.64 11.28 22.96

N05B 3.45 3.55 3.34 4.46 3.19 29.28

N05C 0.86 0.87 0.82 1.06 4.65 23.26

R03 6.08 6.37 5.60 7.12 7.89 17.11

R06 1.87 1.94 1.85 2.23 1.07 19.25

Table 3.9: MAE values of the Prophet model, compared with the default one, Pharma
dataset
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Series default avg min max improve_% degrad_%

Aggregate 88511 80663 68816 90942 22.25 2.75

TYPE_A 4896 46959 40941 58840 16.27 20.34

TYPE_C 2110 19298 16308 23807 22.89 12.56

region_56 41223 40752 36907 44464 10.47 7.86

region_93 1809 1875 1363 2866 24.67 58.42

meal_2290 29702 29731 13230 49046 55.46 65.13

meal_2956 2611 2204 1650 3636 36.81 39.25

city_473 1050 1080 953 1342 9.19 27.88

city_713 1568 1816 1438 4863 8.30 210.08

email 79776 80935 77449 87666 2.92 9.89

homepage 73928 74261 68462 83374 7.39 12.78

Table 3.10: MAE values of the Prophet model, compared with the default one, Food
Demand dataset

As it is evident from these two tables, the impact of hyperparameters tuning is remarkable.
The choice of the best model improves the performance evaluated on the Pharma dataset
by 5.3% and a bad choice of the hyperparameters degradates the performance by the 17.8%
on average. Regarding the Food Demand dataset, we obtain an average improvement
around the 19.7% and an average degradation rate equal to 42.4% with respect to the
baseline.
The improvements and degradation rates registered for the two datasets are represented
in Figure 3.25 and Figure 3.26.
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Figure 3.25: Plot of improvement and degradation rates - Pharma dataset

Figure 3.26: Plot of improvement and degradation rates - Food Demand dataset

As it is visible in the graphs, a big improvement does not always correspond to a big
degradation and vice versa: this phenomenon cannot be spotted in advance. Moreover, in
general, the degradation rate in case of a bad hyperparameter choice is greater than
the improvement rate in case of an optimal tuning. These considerations can be made
for both the two datasets.
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3.3.3. Impact of Sub Series on Aggregated Time Series

This section is aimed at reporting the results that emerge from the analysis of a time
series which results from the aggregation of its sub series, observation by observation.
The objective and the procedure of this analysis is explained in Figure 2.6 of Section 2.5.
We report in the following Table 3.11 the main evidences.

Metric Configuration A Configuration B

MAE 13.90 13.71

MSE 333.65 324.77

RMSE 18.27 18.02

Table 3.11: Main results of the analysis on the aggregation

As it can be seen from the table, regardless the metric that is considered, Configuration B
of the experiment seems to produce the most accurate predictions, even if the difference
between the two considerations is not so big. Therefore, it seems to be convenient to
forecast the aggregate time series in the best possible way instead of dividing it into
sub series and to predict them separately.
This result could be due to some particular behaviours that have a more marked effect
in the aggregate time series. Moreover, another reason could be the compensation of the
errors during the initial aggregating phase.
In Figure 3.27 the predictions (Configuration A and Configuration B) are represented in
a graph.
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Figure 3.27: Plot of Configuration A and Configuration B predictions

The two curves have the same shape in terms of trend, even if Configuration A presents
a higher noise, as it was exepcted considering the construction of the time series.

3.3.4. Model - Dataset Specificity Assessment

In this section the main results in relation with the characteristics of the time series are
reported, in order to give a general overview of the behaviour of the various models on
the different types of time series and to spot eventual correlations and patterns.
Table 3.12 and Table 3.13 show the MAPE of the best model and the coefficient of
variation of the initial time series.
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Time series Best model MAPE_adj cv

Aggregate Prophet 28.83 35

M01AB ExpSmoothing 68.18 55

M01AE Prophet 114.57 54

N02BA Prophet 86.67 61

N02BE Prophet 44.38 51

N05B ExpSmoothing 63.09 65

N05C ExpSmoothing 49.06 189

R03 KNN 110.17 11

R06 Prophet 76.64 85

Table 3.12: The best model reported with its respective adjusted MAPE values for each
sub series of the Pharma dataset

Time series Best model MAPE_adj cv

Aggregate Prophet 9.35 16

TYPE_A Prophet 9.62 16

TYPE_C GradientBoosting 10.95 22

region_56 GradientBoosting 8.58 16

region_93 Prophet 27.42 26

meal_2290 SVR 14.36 94

meal_2956 ExpSmoothing 25.11 116

city_473 SVR 8.32 21

city_713 Prophet 9.75 15

email Prophet 187.34 79

homepage Prophet 48.45 50

Table 3.13: The best model reported with its respective adjusted MAPE values for each
sub series of the Food Demand dataset

First of all, the best model seems not to be correlated with the MAPE or with the CV
of the time series. We can say that in some cases, a much variable time series presents
quite good MAPE: for example, meal_2956 shows a not so bad MAPE with respect to
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the other series, in the light of a time series with a coefficient of variation equal to 116%.
A similar observation can be done for meal_2290 and N05C series.
Instead, in the case of email, M01AE and R03 series, a very bad MAPE is produced,
even if the variance of the starting time series is not so high with respect to its average
value.
Anyway, another aspect should be added to this consideration, that is the random noise
component of the time series. Indeed, from a theoretical viewpoint, the residual is the part
of the variance that the model is not able to explain with a trend or seasonal component
of the time series. The best models identified - Exponential Smoothing and Prophet - are,
theoretically speaking, the best ones in capturing the trend and seasonal components.
Regarding this aspect, if we observe the Food Demand dataset, we see that the email
time series, which is the one with the less evident trend and seasonality components, is
also the time series which presents the worst performance in terms of MAPE. Moreover,
in general the trend and the seasonality components are very clear observing the Food
Demand dataset, while they are not looking at the Pharma dataset. In general, the MAPE
is quite bad for the Pharma data, while it is low when looking at the Food Demand one.
Therefore, we can say that the models, and the Prophet more specifically, make better
previsions when the trend and seasonality components are marked, so when the white
noise present a relatively low variance.
Then, a consideration that must be made is related to a specific sub series. The meal_2290
time series is the one that presents the maximum coefficient of variation and the sub series
that shows the highest autocorrelation. It is the only case in which the optimal model is
the Exponential Smoothing, that is probably able to give much importance to the past
observations tuning the hyperparameters in an effective way.

3.4. Conclusions and Takeaways

In this section we report the main points that have emerged as results of this research
work and the main takeaways that should be considered in making time series forecast-
ing.
First of all, we have to say that this kind of analysis - and consequently its result - is very
specific: it strongly depends on the time series that is forecasted and its main charac-
teristics. At the same time, it is very hard to find a priori a correlation between the best
model in terms of accuracy and the characteristics of the time series, probably due to the
very complex set of factors that drive the forecasting optimization.
Due to this consideration, a deep analysis must be made on each dataset in order to iden-
tify the best model and the optimal parameters it should be tuned with. In particular,
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the best practice is to test each model tuned with its optimal hyperparameters on each
dataset series. Due to the high number of possible combinations of a dataset and a model,
the best idea is to make the whole process automatic, in order to test all the couples
and therefore to obtain the best performances.
Moreover, the impact of hyperparameters tuning is remarkable: thus, a great effort
should be put also on the tuning process, consequently identifying the optimal set and to
obtain the best results from each single model.
Regarding the models, the dominance of complex algorithms such as the Prophet
model and some regressors such as the Gradient Boosting, the Support Vector and the
K-Nearest Neighbors Regressors is evident. In particular, a dominance of the Prophet
model emerges from the analysis: even if the optimal model is not the Prophet, the latter
usually obtains performances that are not so far from the ones of the optimal configura-
tion.
Another important point that must be highlighted is the strong dependency of the
predictions’ accuracy from the metric that is chosen to evaluate them: changing the
metric, we can also draw different conclusions.

In general, what emerges is the importance of investing in the Forecasting Science,
trying to make even more accurate predictions.
From a business perspective, the great advantage of owning these accurate time series pro-
jections is remarkable. Thanks to forecasting, the planning of the company’s resources in
terms of time, money and materials sees a great improvement, thus enabling their optimal
allocation and avoiding waste: the improvement in terms of efficiency is significant.
On the other side, very precise sales predictions enables a good demand forecasting, which
makes the company able to meet customers’ requests better: the upgrade in effective-
ness is great too.
Being able to forecast the future with a sufficiently high level of confidence makes every
strategic choice as if it were be based on real data. The decision-making process sees
a huge gain, thus ensuring a strong competitive advantage to the company.





81

4| Future Developments

This chapter is dedicated to the description of some possible developments of this thesis
that could be put in practise in the next future. They are both linked with both the most
technical aspects and the ones related to the business applications of this thesis.

4.1. Experimental Models

As a first possible future development of this thesis there is the implementation of some
experimental methods which proved in literature to be particularly efficient in learning
sequences. These methods belong to the Long Short-Term Memory (LSTM) class,
which is a particular category of Recurrent Neural Networks. Recurrent Neural
Networks suffer from short-term memory.
The LSTM models try to overcome this problem and therefore they are very much effective
for the time series analysis and forecasting, as it is well explained in [14], [15] and [28].

• Long Short-Term Memory (LSTM) networks are recurrent neural networks
capable of learning order dependence in sequence prediction problems. LSTMs are
a complex area of deep learning, particularly efficient in the analysis and forecasting
of sequential data. The core concept of LSTM’s are the cell state, together with
it’s various gates. It can be considered as the “memory” of the network. The cell
state, in theory, can carry relevant information throughout the processing of the
sequence. So even information from the earlier time steps can make it’s way to later
time steps, reducing the effects of short-term memory. The gates can learn what
information is relevant to keep or forget during training. This model is implemented
in the function LSTM of the module kerasl̇ayers.

• Gated Recurrent Unit (GRU) So now we know how an LSTM work, let’s briefly
look at the GRU. The GRU is the new generation of Recurrent Neural networks
and is similar to an LSTM. “It is a special type of optimized LSTM-based recurrent
neural network” [28]. GRU has not got the cell state and it used the hidden state
to transfer information. It has been implemented through the function GRU coming
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from kerasl̇ayersṙecurrent.

These particular deep learning algorithms can be tested with the sliding window technique,
in addiction to the ones that are already tested in this thesis, as well as many other
traditional regression models which are not currently tested.
Moreover, it could be a good idea to add some additional features not related to time
in order to evaluate regression and Prophet models using also other information that
can impact the time series values. For example, the type of product that is sold or the
geographic area in which the transaction happens.

4.2. Optimal Hyperparameter Tuning Techniques

Since the parameter configuration heavily impacts the performance of the model, one
possible development of this thesis could be the tuning of the hyperparameters of each
model as effectively as possible. As it is stated in literature [21], [32].
Bayesian optimization is a global optimization method for noisy functions. It creates a
probabilistic model of the function mapping from hyperparameter values to the objective.
It evaluates iteratively promising hyperparameter configuration and it updates it. In this
way it is able to find the optimum. It tries to balance exploration (hyperparameters for
which the outcome is most uncertain) and exploitation (hyperparameters expected close
to the optimum).
In practice, Bayesian optimization generally obtains better results in fewer evalua-
tions compared to Grid search and random search, due to the ability to evaluate the
quality of experiments at each iteration. Indeed, in the Grid search method, the individ-
ual experiments are executed by building multiple models with various hyperparameter
values. All these experiments are independent of each other. Since each experiment is
performed independently, the Grid search method is not able to use the information from
one experiment to improve the next experiment.
Regarding the performances of the two algorithms, the bayesian optimizer is efficient
because it selects hyperparameters in an informed and smart way. Indeed, prioritizing
hyperparameters that appear more promising from the past results, this method can find
the best hyperparameters in a shorter time period than grid search. On the other side,
as it is easy to imagine, the bayesian optimizer for hyperparameter tuning increases the
complexity that is necessary to learn the method. This is the reason why, also in this
case, in order to improve the performance of the methods, we could exploit the cloud
computing in order to deal with more complex algorithms such as the bayesian optimizer.
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Figure 4.11 shows the way the bayesian optimizer explores the space of the hyperparam-
eters.

Figure 4.1: Bayesian optimizer: it smartly explores the space of potential choices

Comparing it with Figure 2.3 and Figure 2.4 in Chapter 2, the great potential improvement
that this tuning method can bring to the accuracy of the methods is evident.

4.3. Multivariate Time Series Forecasting

A further analysis that has not been executed in this research work is the multivariate
time series analysis, which can be performed efficiently on the Pharma dataset. Indeed,
all the models that are tested in this thesis can be adapted to a multivariate time series
forecasting problem. This allows us to spot any possible connection that exists between
the sub series, that are not considered since in this thesis the sub series are analysed
separately.
For example, in this thesis the Pharma dataset has been analysed and predicted consider-
ing the sub series as independent, but since they describe the sales of the various products,
a correlation between them can be expected. Predicting all the time series at the same
time with the multivariate forecasting would enable the identification of all these possible
correlations.

1Source: www.wikipedia.org
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4.4. Model Testing Automation

As it is clear from the results reported in Chapter 3.2.2, the accuracy of a forecasting pro-
cess and the optimal model for performing it are very much volatile. Indeed, even if some
correlations have been spotted between the accuracy of the model and the characteristics
of the time series, it is still not possible to know in advance which is the optimal model
and which is its optimal parameter configuration.
Thus, in order evaluate the performance of all the models and to choose the best one, all
the models should be tested and all the hyperparameters belonging to their specific state
space are tuned for each model. This requires many trials and many evaluations, one for
each different experiment.
Due to the complexity of this process, it cannot be performed manually by humans.
It must be automated as much as possible in order to make the machine perform the
whole process and to reduce as much as possible the human intervention. The latter
would ideally be necessary only in the initial and final phases: during the setting of the
models and hyperparameter spaces and during the choice of the best model, given the
performance of all the experiments made.
Since this process presents a very high level of complexity - especially in computational
terms - a fully automated system that relies on cloud computing is necessary in order
to increase the capacity of the system and not to run into issues due to computational
reasons. Some companies are working in this field providing cloud-based solutions for
data science automation.
One of the most largely used platforms is DataRobot 2. As stated in [2] and [3], it is a
service which offers solutions for managing the whole life cycle of Data Science projects
based on Artificial Intelligence. From a practical viewpoint, with "the whole life cycle"
we intend the execution of the whole process, starting from the data exploration and
preparation, going to the models development, the hyperparameter tuning, the perfor-
mance evaluation and the predictions creation. For the whole process, a user interface is
available so that there is not need to write any code but only the business level insights
must be managed by humans. The system relies on cloud computing and it is based on
Python programming language and its related libraries.

4.5. Cloud Computing for Data Science

As already stated in Section 4.4, the increase in complexity of algorithms, layers and
correlations must be managed since the machine learning and forecasting models bring

2https://www.datarobot.com/
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much computational effort to the system. A fully automated system that relies on cloud
computing is necessary in order to increase the capacity of the system and not to run into
issues due to computational reasons. Some companies are working in this field providing
cloud-based solutions for data science automation.
Moreover, since the amount of data processed every day by company is continuously
growing, it is necessary to scale up the system relying on cloud-based solutions.
Some examples are the DataRobot platform already mentioned in Section 4.4 and the
DataBricks platform 3. As it is stated in [4], the latter offers a service for the development
of data science projects and it offers an interface with the mos largely used instruments for
Data Science such as SQL for data extraction, Python for data manipulation and model
development and Tableau for data visualization.
In general, due to the well-noted benefits of the cloud computing, it represents the future
of the Data science for business [9], [10].

3https://databricks.com/it/
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Figure A.1: Complete Pharma dataset
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Figure A.2: Complete Food Demand dataset
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Figure A.3: Final Food Demand dataset
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B| Experiments Outline

Algorithm

Figure B.1: Experiments’ outline algorithm - main cycle (Pharma dataset)
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Figure C.1: Weekly periodicity of all the sub series - Pharma dataset
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Figure C.2: Decomposition of the aggregate time series and all its sub series with a
multiplicative model - Pharma dataset
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Figure C.3: Autocorrelation and Partial Autocorrelation - Pharma dataset
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Figure C.4: Decomposition of the aggregate time series and all its sub series with an
additive model - Food Demand dataset
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Figure C.5: Autocorrelation and Partial Autocorrelation - Food Demand dataset
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Results

Figure D.1: Results of the experiments of all the sub series - Pharma dataset
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Figure D.2: Results of the experiments of all the sub series - Food Demand dataset
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