
Executive Summary of the Thesis

Stochastic Linear Bandit with Global-Local Structure

Laurea Magistrale in Computer Science and Engineering - Ingegneria Informatica

Author: Francesco Fulco Gonzales

Advisor: Prof. Francesco Trovò

Co-advisor: Marco Mussi, Gianmarco Genalti, Prof. Marcello Restelli

Academic year: 2021-2022

1. Introduction
This work addresses the problem of Multi-Agent
Stochastic Linear Bandit within a novel setting
called Partitioned Linear Setting, where there
are multiple linear bandits that face different
yet related tasks. The setting assumes that the
parameter vector is decomposed into a global
component, shared across all agents, and a local
component specific to each agent. The objec-
tive of the work is to design an algorithm that
balancing exploration and exploitation trade-off
by leveraging both the global information shared
among bandits and effectively maximize the col-
lective reward of the agents. We propose an al-
gorithm that aims to exploit the shared global
information and effectively collaborate among
the agents to achieve the goal of maximizing the
collective reward over time. To solve this set-
ting we propose an online regret minimization
algorithm, namely P-LinUCB. We tested the al-
gorithm in a synthetic setting and we show that
it outperforms the state-of-the-art baseline for
multi-agent bandits across multiple scenarios.

2. Background
The stochastic multi-armed bandit [2] is a fun-
damental problem in sequential decision-making
under uncertainty. In this setting, an agent is

presented with a set of choices, or arms, each
associated with an unknown probability distri-
bution of rewards. The agent selects an arm to
pull at each time step, with the goal of maxi-
mizing their total reward over a fixed number
of time steps, called horizon. The agent faces
a trade-off between exploring different arms to
learn more about their reward distributions and
exploiting the arms with the highest expected
rewards based on current knowledge.
Among the different classes of bandits, we study
the stochastic linear bandit, i.e., a variant of the
multi-armed bandit problem where each arm is
a vector and the expected reward of each arm
is a linear function of the arm vector. More
specifically, the expected reward of an arm is
given by the dot product of the arm vector and
an unknown parameter vector, which the agent
aims to estimate through repeated pulls of the
arms. One important property of the stochas-
tic linear bandit is that by imposing a (linear)
relationship between the arms, it lets the agent
learn the environment without necessarily hav-
ing to pull every arm, since it gather informa-
tion on the parameter from any arm pull, thus
significantly simplifying the setting and making
problems with large or infinite actions spaces
tractable. In the following sections, we ana-
lyze a prominent algorithm for linear bandits,

1



Executive summary Francesco Fulco Gonzales

which serves as foundation for our algorithm,
and then we outline the existing approaches for
Multi-Agent MABs.

2.1. LinUCB
LinUCB [3] extends the famous UCB algorithm
to the linear setting. The core idea is to main-
tain a confidence set for the vector of coefficients
θ of the linear function that generates the re-
wards, rather than for the mean reward of each
arm since it is the factor shared by all arms. At
each round, the algorithm selects an estimate
of the coefficients from the confidence set, and
chooses an action that maximizes the predicted
reward. The problem, therefore, becomes con-
structing confidence sets for the vector of coef-
ficients of the linear function based on observed
action-reward pairs in previous time steps.

2.2. Multi-Agent Bandits
The problem of learning across multiple ban-
dit instances has been actively researched in the
field of recommendation systems, where users
and their similarities are represented as a graph.
The goal of these works is to design a feedback-
sharing mechanism to leverage user similarities
embedded in the graph. One of the most promi-
nent works in this line of research approaches the
problem from a clustering perspective [1]. The
authors assign a linear bandit instance to each
user and make the assumption that users within
the same cluster exhibit the same behavior, and
therefore have similar bandit weights. The al-
gorithm, called CLUB, obtains the clustering of
users partitioning the graph by repeatedly delet-
ing edges between users whose bandit weights
differ significantly. Another adjacent area of re-
search is the multi-task bandits literature, which
aims to transfer knowledge across several simi-
lar bandit problems while managing the classical
exploration-exploitation trade-off. The multi-
task linear bandit setting [4] works under the
assumption that all the tasks are similar, where
the similarity of two task is defined as having
L2-norm of the difference of bandit parameters
smaller than some threshold. Their algorith-
mic solution is a variant of LinUCB that con-
structs two confidence bounds, one task-specific
and multi-task bounds, and at each round con-
siders the tightest confidence bound, since it’s
the most certain, and then selects the arm with

the largest retained confidence bound, in typical
UCB fashion.
[5] considers the setting where the unknown
parameter in each linear bandit instance can
be decomposed into a global parameter plus
a sparse instance-specific term. They propose
an estimator that combines the trimmed mean
from robust statistics to learn across similar in-
stances and LASSO regression to debias the re-
sults by capturing the instance-specific informa-
tion. This estimator, called Robust Multitask
Estimator, is then used in N (number of users)
linear bandits running at each problem instance.

3. Problem Formulation
The multi-agent stochastic linear bandit setting
is an extension of the stochastic linear bandit
problem, where N linear bandits are trying to
solve different yet related tasks. Each linear
bandit i is characterized by a parameter vector
θi ∈ Rdi . At each time step t, an external con-
text index i ∈ {1, . . . , N} arrives, determining
which agent will be the actor of the current turn,
out of the N available agents. At each time step
t, agent i chooses a vector arm ai,t ∈ Ai ⊆ Rdi ,
where Ai is the set of available arms and di is the
i-th vector dimension. The set of possible arms
can be either discrete or continuous, and the di-
mensions of the arms of different bandits can be
different, hence the subscript i for the dimen-
sion. The agent then receives a scalar reward
yt ∈ R, which is generated by a linear function of
the arm vector, and an additive stochastic noise,
that characterizes the stochastic bandit setting.
The function generating the reward is:

yt = θi⊤ai,t + ηt,

where θi is the unknown bandit parameter, dif-
ferent for each agent i, and ηt is a zero-mean
subgaussian random noise.

3.1. Regret
The objective of each individual bandit i is to
minimize its expected regret. Since we take into
account all agents together and not each indi-
vidual separately, the overall objective function
of the problem is to maximize the sum of the
cumulative regret throughout all bandits:

RT =

T∑
t=1

max
ait,t∈Ait

θit⊤
∗ ait,t − E [yt] ,

2



Executive summary Francesco Fulco Gonzales

where it denotes the agent i served at time t,
and θit

∗ is the optimal parameter vector for agent
it, and yt the actual reward collected by agent
it. The expectation is with respect to the ran-
domness in the environment and policy. The
first term in this expression is the maximum ex-
pected reward using any policy, since the pa-
rameter is known to be optimal and the max
operator selects the action that yields the high-
est reward. The second term is the expected
reward collected by the learner.

3.2. Partitioned Linear Bandit
The peculiarity of the partitioned setting con-
sists in the decomposition of the linear bandit
parameter, which has k of its components shared
across all bandits, with k < d, and the remain-
ing d− k components specific to each bandit in-
stance. We will use the slicing notation : k or
k : to denote the first or last k components of a
vector. For the sake of simplicity, we will char-
acterize them as global components, with the
subscript g, and local components with the sub-
script l. Therefore, we have a unique parameter
vector θg and a set of parameter vectors specific
to each agent {θ1

l , . . . ,θ
N
l }. At each time step t

the agent i chooses an arm ai,t and observes the
reward yt generated as follows:

yt = θ⊤
g ag,t + θi⊤

l ai,t + ηt.

We notice that there are two independent com-
ponents that contribute to the reward: the
global component, shared by all bandits, that
is a linear function of the first k components of
the arm, and a local component specific to the
agent i to be served, which is also a different
linear function of the remaining part of the arm,
plus the standard σ-subgaussian noise η.

4. Proposed Algorithm
The proposed algorithm solves the setting by
leveraging the assumption that each bandit pa-
rameter consists in the concatenation of the
shared and local parameters, i.e., θi = [θg,θ

i
l ].

We use this important piece of information to
learn θg using the data from all bandit in-
stances, while learning θi

l separately. The al-
gorithm starts with each independent bandit in-
stance learning the whole θi on its own, until one
of them achieves a low enough regression error,
such that we can consider its estimate of the θg

reliable. From that point on, we will only up-
date the local components of the parameter of
all agents, which speeds up the learning process.

Algorithm 1 Partitioned LinUCB

1: Input: N,T, {Ai}Ni=1, k, ε, w, λ
2: is_split = false
3: Instantiate LinUCBi(Ai, λ) ∀i = 1, . . . , N
4: for t = 1, 2, . . . , T do
5: Receive index i
6: if is_split then
7: al = argmaxa∈Ai,l

UCBi (a)
8: Pull arm ai,t = [ag,al]
9: Receive reward yt

10: yl,t = yt − θ⊤
g ag

11: Update(LinUCBi,ai, yl,t)
12: else
13: Pull ai,t = argmaxa∈Ai UCBi(a)
14: Receive reward yt
15: Update(LinUCBi,ai,t, yt)
16: if AggregCriterion(yi,hist , ŷi,hist , w, ε)

then
17: LinUCBj = Split(LinUCBj , k)
18: ∀j ̸= i
19: ag = ai,t,:k

20: is_split = true
21: end if
22: end if
23: end for

4.1. Set-up
Algorithm 1 takes as inputs the the number of
agents N , time horizon T , the set of arms of
each agent {Ai}Ni=1, the partitioning parameter
k that splits the arms dimension in global vs
local, the sliding window dimension w and the
regularization hyper-parameter λ. The instanti-
ation of the N LinUCBs happens according to
the standard LinUCB algorithm [2].

4.2. Update
The update of the parameters of bandit i is de-
noted with Update(LinUCBi,a, r), which hap-
pens again according to LinUCB. At each time
step t a bandit index i is sampled from the un-
known context distribution, and a different ac-
tion and update is performed based on whether
we are in the first few rounds, or we have already
performed the aggregation. If the aggregation
has not happened yet, we follow the standard

3



Executive summary Francesco Fulco Gonzales

bandit protocol, and then we check the condi-
tion for the aggregation (Line 16), following a
defined criterion.

4.3. Aggregation Criterion
The split is performed only the first time the
aggregation condition is met. This condition is
captured in the AggregationCriterion sub-
routine, which defines the specific metric and
condition to use to evaluate the goodness of the
estimate of θ̂. To assess the quality of the es-
timation of θ̂ we evaluate the regression error
on the prediction of the reward. Among the
plethora of available regression metrics we chose
the Mean Absolute Percentage Error (MAPE),
defined as:

MAPE =
1

n

n∑
t=1

∣∣∣∣yt − ŷt
yt

∣∣∣∣ ,
where n is the total number of observations, yt
is the reward collected at time t, which is stored
in the vector denoted as yi,hist , and ŷt = θi⊤ai,t

is the predicted reward at time t, stored in the
vector ŷi,hist . We compute the MAPE over the
last w samples in a moving average fashion. This
allows for a robust evaluation of the regression
performance, for a big enough value of w, while
also allowing to forget the past incorrect predic-
tion, characteristic of the online learning setting.
Our choice for a regression error metric fell on
the MAPE because it allows for a more intu-
itive interpretation compared to other metrics
such as the Mean Average Error or the Mean
Squared Error, while also providing a relative
scale, i.e., a score from 0 to 1, which makes
choosing a threshold value somewhat more gen-
eralizable. In summary, when the moving aver-
age over the last w samples of the residual of the
regression for θi is smaller than some threshold
ε > 0, we know that we have a good enough esti-
mate of the true parameter of bandit i, and each
agent i may focus solely on learning its local pa-
rameters. This criterion and the threshold value
were derived from experimental evaluations, and
although it proves to be experimentally robust
and works well in practice. We suppose that a
theoretical analysis could provide a more sound
criterion, which would only need to be plugged
in the AggregationCriterion subroutine.

Algorithm 2 AggregationCriterion

1: Input: yhist , ŷhist , w, ε

2: et :=
∣∣∣yt−ŷt

yt

∣∣∣
3: if et+···+et−w

w < ε then
4: return true
5: else
6: return false
7: end if

4.4. Split
If the above aggregation requirement is satisfied,
we save the estimated optimal sub-arm and run
the Split subroutine, which partitions all the
parameters of the given agent. Namely, it splits
the local subarms, which will be the only ones to
be pulled from now on, since the global optimal
subarm has been found, and recomputes the lo-
cal θ̂l,t, using the closed form solution, using the
last k components of the arm history matrix Ht

and reward history vector yt.
It’s worth noting that the condition is met un-
der the assumption that there is one of the N
products whose reward depends almost exclu-
sively on the global components, such that the
local ones give a negligible contribution to the
expected reward. From the following time step,
the algorithm will execute the first branch of the
if statement, where the bandit only chooses the
best local subarm, i.e., some al ∈ Ai,l. Note
that this set may completely differ from all other
agents both in terms of content and dimension-
ality. The agent then pulls the arm obtained as
the concatenation of the global and local com-
ponents. The reward needed for the update is
corrected by removing the contribution of the
global components, since we only want to up-
date the local ones.

Algorithm 3 Split

1: Input: LinUCB, k
2: for a ∈ A do
3: a = ak:

4: end for
5: θ̂l,t = (H⊤

k:,tHk:,t + λI)−1H⊤
k:,tyk:,t

6: return LinUCB

4



Executive summary Francesco Fulco Gonzales

5. Experiments
5.1. Baseline
A straightforward approach to solve the setting
is to employ N independent LinUCB instances.
This approach, named IND-LinUCB (INDepen-
dent LinUCB) by the literature, requires each
bandit to learn the whole θi parameter vector,
but by doing so it ignores the underlying struc-
ture of the problem. Learning the global com-
ponents independently for each bandit hurts the
overall performance, since it cannot use the feed-
back received by other agents. We chose IND-
LinUCB as a baseline for the experiments be-
cause it fits best the problem setting, since, be-
sides adopting the linear bandit structure, it is
also able to learn a different local parameter vec-
tor per context.

5.2. Threshold

5.2.1 Goal

This experiment aims to evaluate the perfor-
mance of our algorithm in a setting as plain
as possible, which does not take advantage of
the strengths of our algorithm. In fact, here we
seek to empirically demonstrate that for a rea-
sonable choice of the threshold ε, our algorithm’s
regret is upper bounded by IND-LinUCB, mean-
ing that for a small enough value of ε, P-LinUCB
has the same performance as IND-LinUCB in
the worst case. This is the case in which the al-
gorithm does not find a good enough θi to aggre-
gate the bandit instances and therefore adopts
the same strategy as IND-LINUCB. Instead, in
most cases, our algorithm has a gain in perfor-
mance. This experiment shows that there is vir-
tually no downside in using P-LinUCB as op-
posed to IND-LinUCB, with at least a moderate
gain in performance in most cases and significant
gain a few quite common scenarios.

5.2.2 Setting

This experiment uses the standard parameters
reported at the beginning of the section and vary
the values of the hyper-parameter ε, for which
we test three configurations, two extremes to
show the edge cases and a reasonable choice.

5.2.3 Results

As expected, we can observe that the extreme
cases perform poorly, while for an appropriate
choice of the threshold, P-LinUCB yields a good
result when compared to the baseline algorithm.
Table 1 breaks down the cumulative regrets av-
eraged over 10 runs for the two algorithms, along
with the standard deviation, and their percent-
age difference, for the three values of ε. We no-
tice immediately that P-LinUCB falling back to
IND-LinUCB when a good estimate of θ is not
found, where the definition of good is solely dic-
tated by the threshold ε on the moving MAPE.
By setting an aggressively low allowed error we
prevent the aggregation to happen. On the op-
posite extreme, too large of a threshold leads
to very bad results, since the global bandit pa-
rameter θg is fixed before giving it enough time
to be accurately learned, and we want to ab-
solutely avoid this case, since it underperforms
IND-LinUCB. The reasonable-valued scenario
instead performs quite well, even though this
very plain setting that does not take advantage
of the strengths of the algorithm. This experi-
ment is an empirical demonstration that for a
reasonable choice of the threshold P-LinUCB
will perform at least as well as IND-LinUCB.

ε IND P-LinUCB ∆-regret

0.01 694 (14) 694 (14) 0%

0.1 694 (14) 581 (84) −16.28%

105 694 (14) 1254 (2871) 80.69%

Table 1: Regret for different values of ε.

5.3. Long Tail Context Distribution

5.3.1 Goal

One of the primary benefits of our algorithm is
its ability to learn the global parameter θg at the
same rate as the top-performing agent, which we
will call Leader. The stronger the Leader com-
pared to other agents the bigger are the gains in
performance with respect to a strategy that does
not leverage cross-agent structure, such as our
baseline. A strong Leader is one that learns its
parameter vector much faster than other agents,
since it will satisfy the splitting criterion sooner,
which will benefit all agents. One scenario that
induces the creation of a strong Leader is the

5



Executive summary Francesco Fulco Gonzales

long-tail economic model, which refers to the
phenomenon where the vast majority of prod-
uct sell in relatively small quantities, making up
the tail-end of the distribution, in contrast to a
few popular products that sell in large quantities
and dominate the head of the curve. In this set-
ting the most popular product will collect much
more data, since it will be sampled much more
often than the others and will be able to explore
more, thus reducing its confidence interval and
improving the estimate of its parameter much
faster.

5.3.2 Setting

We perform four runs using a different context
sampling distribution for each. In one run we
use the uniform distribution to serve as com-
parison, and in the remaining three we sim-
ulate a long-tail distribution by sampling one
context p times, while the rest of the context
share the remaining probability uniformly, i.e.,
each has probability p

N−1 of being sampled. The
three long-tail experiments are run with p = 0.2,
p = 0.5, p = 0.9. Note that the uniform distri-
bution is equivalent to p = 1

N = 1
11 = 0.09.

5.3.3 Results

We can clearly see that the uniform distribution
in Table 2 is at a great disadvantage compared
to the rest, and that the more the distribution is
unbalanced, the greater the gain in performance.
In fact we observe that the regret gets smaller
for larger values of p. This follows from the fact
that the Leader will be sampled increasingly fre-
quently, and therefore achieves a good estimate
of his parameter sooner, leading to an overall
smaller cumulative regret. IND-LinUCB instead
is not able to share the learned parameter across
bandits, and only the Leader will benefit from
the additional data, thus leading to a much more
modest improvement w.r.t. the uniform case.

6. Conclusions
This work introduces a new problem setting,
called Partitioned Linear Setting, in which mul-
tiple agents make decisions to maximize their
collective reward over time by balancing the
exploration-exploitation trade-off and collabo-
rating effectively. To solve this setting we de-
velop an algorithm called Partitioned LinUCB,

p IND P-LinUCB ∆-regret

Uni. 707 (15) 581 (92) −17.82%

0.2 704 (12) 551 (91) −21.73%

0.5 650 (11) 405 (87) −37.69%

0.9 432 (9) 231 (51) −46.53%

Table 2: Context distribution study.

which exploits the shared components of the
bandit parameter vector to learn the global com-
ponent from the most accurate bandit instance
and shares it across all bandits when the esti-
mate is accurate, while it learns the local com-
ponents separately for each instance. The exper-
imental results show that Partitioned LinUCB
outperforms the naive solution of running an in-
dependent linear bandit per context and con-
tributes to the development of more efficient and
effective algorithms for similar problems.

References
[1] Claudio Gentile, Shuai Li, and Giovanni

Zappella. Online clustering of bandits. In
International Conference on Machine Learn-
ing, pages 757–765. PMLR, 2014.

[2] Tor Lattimore and Csaba Szepesvári. Ban-
dit algorithms. Cambridge University Press,
2020.

[3] Lihong Li, Wei Chu, John Langford, and
Robert E Schapire. A contextual-bandit ap-
proach to personalized news article recom-
mendation. In Proceedings of the 19th in-
ternational conference on World wide web,
pages 661–670, 2010.

[4] Marta Soare, Ouais Alsharif, Alessandro
Lazaric, and Joelle Pineau. Multi-task linear
bandits. In NIPS2014 workshop on transfer
and multi-task learning: theory meets prac-
tice, 2014.

[5] Kan Xu and Hamsa Bastani. Learning across
bandits in high dimension via robust statis-
tics. arXiv preprint arXiv:2112.14233, 2021.

6


	Introduction
	Background
	LinUCB
	Multi-Agent Bandits

	Problem Formulation
	Regret
	Partitioned Linear Bandit

	Proposed Algorithm
	Set-up
	Update
	Aggregation Criterion
	Split

	Experiments
	Baseline
	Threshold
	Goal
	Setting
	Results

	Long Tail Context Distribution
	Goal
	Setting
	Results


	Conclusions

