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A B S T R A C T

Automation of driving task has become in the recent years the main objective
of automotive sector and legislators. Driver assistance technologies in today’s
vehicles help to save lives, preventing crashes, and improving the driving
experience. These technologies allow the identification and reaction, in case of
risks for the vehicle, for its occupants and for any other road user. The aim of
this thesis is to develop a standalone system based on low resolution LiDAR
sensor capable of identifying, classify and track obstacle in the road scene. The
algorithm uses Convolutional Neural Network model for object detection and
a custom Extended Kalman Filter for tracking. The results are encouraging
and show that our solution can perform the task is designed for in real time,
with a comparable accuracy to more complex systems but at a fraction of
the cost. Moreover, the tracking results guarantee a good evaluation of the
driving scenario, particularly useful for situation assessment and for decision
making.

xvii



S O M M A R I O

L’automazione della guida è diventata negli ultimi anni l’obiettivo principale
del settore automobilistico e dei legislatori. Le tecnologie di assistenza alla
guida nei veicoli di oggi aiutano a salvare vite umane, a prevenire incidenti
e a migliorare l’esperienza di guida. Queste tecnologie consentono l’identi-
ficazione e la reazione, in caso di rischi per il veicolo, per i suoi occupanti
e per qualsiasi altro utente della strada. Lo scopo di questa tesi è quello di
sviluppare un sistema autonomo basato su sensore LiDAR a bassa risoluzione
in grado di identificare, classificare e tracciare gli ostacoli nella scena stradale.
L’algoritmo utilizza il modello di rete neurale convolutiva per il rilevamento
di oggetti e un filtro Kalman esteso personalizzato per il tracciamento. I
risultati sono incoraggianti e dimostrano che la nostra soluzione può svol-
gere l’attività per cui è stata progettata in tempo reale, con una precisione
paragonabile a sistemi più complessi ma a una frazione del costo. Inoltre, i
risultati del tracking garantiscono una buona stima dello scenario di guida,
particolarmente utile per la valutazione della situazione e per il processo
decisionale.
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1
I N T R O D U C T I O N

A self-driving car, also known as an Autonomous Vehicle (AV), driverless car,
or robo-car is a vehicle that is capable of sensing its environment and moving
safely with little or no human intervention.

Self-driving cars combine a variety of sensors to perceive their surroundings,
such as radar, LiDAR, sonar, Geo Positioning System (GPS), odometry and
inertial measurement units. Advanced control systems interpret sensor in-
formation to identify appropriate navigation paths, as well as obstacles and
relevant road marks.

Autonomous vehicle is considered the most disruptive and impactful tech-
nology of the XXI century and all the big automotive and tech companies are
currently developing all the technologies and hardware required to tackle
this non-trivial problem.

Self-driving technology is expected to revolutionize different sector and
is seen as the natural evolution of the road vehicles. In the near future AV
technologies will become more and more accessible and common in everyday
life and will enable cheaper, safer and easier means of transport and shipping
and will radically change the way we use and know them. However There
are still many technologies that has to be invented and developed to allow its
widespread adoption.
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2 introduction

1.1 motivation

In the recent years thanks to regulation authority’s enforcement and techno-
logical advancement the automotive industry has been forced to implement
new system to increase vehicle safety and the overall sector is pushing to-
wards full autonomous driving systems. Cars are one of the most dangerous
way of transportation. According to European Commission report on road
safety [1] 25100 people died in 2018 and many more remained severely in-
jured for road traffic fatalities just in EU. For comparison, in the same period,
only 885 people have lost their life in train disasters [2] and much less in
airplane accidents according to the Annual Safety Review of the EASA [3].

Even if the figures have decreased by 30% in the last decade thanks to
passive and active safety systems integrated in vehicles there is still a long
road ahead of us and the ambitious goal of cutting by 50% fatalities by 2020

has not been reached despite the unilateral effort by car manufacturer and
legislator.

From the data of EU [1] we know that at least 94% of the incident are
caused by human errors in Europe and in US is not any better. It is clear that
Advanced Driver Assistance Systems also known as ADAS and autonomous
driving technology can help reduce those figures by removing the weak point
in the loop, the human. Moreover, those system can reduce stress on the
driver and let him free from the driving load. Additionally, it’s unbelievable
the amount of time people lose driving a vehicle from point a to point b.

Statistics says that we spend in average 18 days per year [5] inside a car
but thanks to AV we can use this time in a better way. We can also re-imagine
the way we move and live our cities by using the vehicle as a transportation
medium that is able to bring us to the destination and then autonomously
drive to a parking location so that cities can be freed up from cars and traffic.
Furthermore, we can think at last mile deliveries, usually the most polluting
and time-consuming ones carried out by specific autonomous small electric
autonomous vehicles, a faster, cheaper, and more eco-friendly solution.
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1.2 objectives

While autonomous vehicle technology appears to be developing at a fast
pace, no commercially available vehicles have yet reached the stability and
reliability required for the highest level of driving autonomy. Nowadays we
have systems on the market capable of different levels of automation, but no
one is capable of full self-driving in every condition and situation.

System like Tesla autopilot 1.0 can drive autonomously on highways but
struggle in city centers, problem that is expected to be solved with the next
generation of vehicles.

To make the additional step and fill the gap between robot cars and hu-
man drivers a huge amount of technological improvement needs to be taken
in serious consideration by manufacturers in order to ensure autonomous
vehicle safety on public roads.

For the reasons mentioned above we decided with this work, to develop
a modular and reliable system able to detect and prevent accidents leveraging
on a low-cost sensor and a new technique. Our main goal is to solve the hard
problem of detection and tracking for self-driving vehicles in a complex envi-
ronment by using the robust output of a LiDAR sensor. The idea is to develop
different modules that execute different computation steps that transform raw
data into aggregated, highly informative and human comprehensive evidence
with all the information required to carry out the driving task. Moreover,
during the work, we benchmarked different LiDAR sensors with different
specification to understand which is the best trade-off between accuracy and
performance and which is the lower limit in terms of cost and resolution to
achieve good results. We finally tested different tracking algorithm.
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1.3 thesis outline

This thesis is organized into 5 chapters. The first one is a brief introduction
to the main macro theme. In the second Chapter we will describe more in
depth how to classify and analyze autonomous vehicles by presenting a brief
Historical tour on the development of this technology from the beginning
to the present days. The chapter than presents the enabling hardware and
software for autonomous vehicles and ends with a in depth analysis of the
state-of-the-art approaches currently in use for LiDAR segmentation and
object tracking. In chapter three then we will present our solution analyz-
ing system architecture and project choices. In the fourth chapter we will
introduce the experimental setup used for solution validation and testing
and we will present the results obtained. The last chapter will be dedicated
to the conclusion, the evaluation of system limits, possible improvements,
and future addition. The chapter ends with the potential application of the
system.



2
S TAT E O F T H E A RT

In this chapter we present the state of the art regarding autonomous driving
focusing on perception pipeline and how sensor data are handled and used
on the current best performing autonomous vehicles, we analyze different
works concerning development of those systems comparing pros and cons of
each approach.

First, we give a general overview description of what autonomous driv-
ing technology is, what it does and how. We present and explain the different
autonomous driving levels. Then, we give a background about the history of
autonomous vehicles following the biggest milestones achieved in the past
years and analyzing the technological breakthrough that made it possible
concluding with the present days and examining the current level of AVs.
Moreover, we give a brief overview on what is missing for full automation
and what the next developments can bring to the sector showing the possible
scenarios that can change our lives.

We then dive deeper in the perception pipeline giving a better understanding
on software and hardware architecture and integration analyzing which are
the differences between a standard and an autonomous vehicle. We present
the data flow from the acquisition to the generation of aggregated data and
how that information can be used to take informed decisions.

We conclude this chapter presenting Machine Learning (ML) and Deep
Learning (DL) techniques since are at the basis of our research work.

5



6 state of the art

2.1 autonomous driving : levels of automated driving systems

Before describing the existing projects concerning autonomous driving, we
have to define what an autonomous vehicle is. Autonomous vehicles, also
known as AV, are a specific class of robots capable of performing, with differ-
ent levels of autonomy, the principal task of moving the vehicle itself and the
cargo in it from a given starting point to a given destination. This is achieved
through a specific set of hardware and software capable of substituting the
human driver.

The Society of Automotive Engineers (SAE) defines 6 levels of driving au-
tomation ranging from 0 (fully manual) to 5 (fully autonomous) [4]. These
levels have been adopted by the U.S. Department of Transportation and are
today considered the standard classification for AV.

Depending on the human interaction in the driving task we have:

• Level 0: Manually controlled. The human controls the "dynamic driving
task" although there may be systems in place to help the driver. An
example would be the emergency braking system—since it technically
does not "drive" the vehicle, it does not qualify as automation.

• Level 1: The vehicle features a single automated system for driver
assistance, such as steering or accelerating. Adaptive cruise control,
where the vehicle can be kept at a safe distance behind the next car,
qualifies as Level 1 because the human driver still monitors and provide
inputs for the other aspects of driving such as steering and braking.

• Level 2: This means advanced driver assistance systems or ADAS. The
vehicle can control both steering and acceleration/deceleration input
to the vehicle. Here the automation falls short of self-driving because
a human is in the driver’s seat and can take control of the car at any
time. Tesla Autopilot and Cadillac Super Cruise systems both qualify
as Level 2.

• Level 3: Vehicles have “environmental detection” capabilities and can
make informed decisions for themselves, such as accelerating past a
slow-moving vehicle. Those kinds of systems however still require hu-
man override if something goes wrong. The driver must remain alert
and ready to take control if the system is unable to execute the task.
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Figure 2.1: SAE Autonomous Driving Levels Classification

• Level 4: Vehicles can intervene if things go wrong or there is a system
failure. In this sense, these cars do not require human interaction in
most circumstances. However, a human still has the option to manually
override system decisions. Level 4 vehicles can operate in full self-
driving mode but until legislation and infrastructure evolves, they can
only do so within a limited area (usually an urban environment where
top speeds reach an average of 50Km/h).

• Level 5: Do not require human attention—the “dynamic driving task”
is eliminated. Level 5 cars will not even have steering wheels or acceler-
ation/braking pedals since are totally useless. They will be able to go
anywhere and do anything that an experienced human driver can do
without any external help.
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2.2 autonomous driving : history

Here we want to present brief overview on the history of autonomous vehicles
to give a background to the reader about the evolution in time from the first
prototypes to the latest state of the art vehicles currently under testing.

2.2.1 Precursor

Since the beginning of the XX century have been conducted experiments
on self-driving cars. In US in 1925, Houdina Radio Control demonstrated
the radio-controlled "American Wonder" on New York City streets, a car
specifically modified and capable of traveling up Broadway and down Fifth
Avenue through the thick of a traffic jam. It was not an autonomous vehicle
but instead was controlled wirelessly by an operator in a nearby car, it was
the first vehicle with remote control and electronic actuation.

For the first truly autonomous vehicles we have to wait 30 years. In the
50s, in America has been shown the first autonomous capable car. After some
scale models, in 1957 a full-size system was successfully demonstrated by
RCA Labs and the State of Nebraska on a 120m strip of public highway.
This vehicle, thanks to a series of sensors embedded in the road and radio
receivers on the car, was capable of driving, following the preceding vehicle
and reacting to changes in speed while following the road. Of course, this
solution was quite rudimental, not particularly robust, and expensive since
required modification not only to the vehicle itself but also to the road infras-
tructure.
In Europe similar experiments were carried out from 1960 to mid-1970.

2.2.2 First attempts

It is only at the beginning of the 80s that the ideas of a senosrized infras-
tructure left the space to a self-contained fully autonomous vehicle. This
nontrivial step was unlocked thanks to new technologies like digital cameras
and new, more powerful but efficient computing machine that could be inte-
grated on the vehicle and had enough power to elaborate sensor data locally.
The first vehicle of this kind was the Mercedes-Benz robotic van, designed
by Ernst Dickmanns and his team at the Bundeswehr University Munich in
Munich, Germany. During the test, the vehicle achieved a speed of 63 km/h
on streets without traffic, performed different tests on overtakes and on safety
features always in a controlled experimental environment. Thanks to those
achievements many more similar projects started: in Italy the ARGO Project,
the European Union founded EUREKA Prometheus Project and in the United
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States DARPA (Defense Advanced Research Projects Agency) established the
Autonomous Land driven Vehicle (ALV) project. The latter achieved the first
road-following demonstration of LIDAR technology, computer vision and
autonomous robotic control to direct a robotic vehicle at speeds of up to 31

km/h.
In 1987, HRL Laboratories demonstrated the first off-road map and sensor-
based autonomous navigation on the ALV. The vehicle traveled over 610 m
at 3.1 km/h on complex terrain with steep slopes, ravines, large rocks, and
vegetation. By 1989, Carnegie Mellon University had pioneered the use of
neural networks to steer and otherwise control autonomous vehicles, forming
the basis of contemporary control strategies.

2.2.3 Past Years

Modern concept of autonomous vehicle and first robust and concrete results
have been achieved after 2000. We clearly identify the DARPA Grand Chal-
lenge 2004 as the exact moment in which the method to solve the AV problem
drastically changed turning towards the current approach. The first edition
of the challenge was held on March 13, 2004 in the Mojave Desert region
of the United States, along a 240 km route. The stakes were high but none
of the robot vehicles finished the route. Carnegie Mellon University’s Red
Team and car Sandstorm traveled the farthest distance, completing 11.78 km
of the course before getting hung up on a rock after making a switchback
turn. This edition of the competition demonstrated that the exact control
strategies hard-coded from the human experience are not enough to solve the
general AV driving problem since the variability and the unpredictability of
the driving scenario cannot be robustly handled and embedded a-priori in the
code. No winner was declared, and the cash prize was not given. Therefore, a
second DARPA Grand Challenge event was scheduled for 2005. This second
round of the DARPA Grand Challenge began on October 8, 2005. All but one
of the 23 finalists in the 2005 race surpassed the 11.78 km distance completed
by the best vehicle in the 2004 race and five vehicles successfully completed
the 212 km course.

The third competition of the DARPA Grand Challenge, [6] known as the "Ur-
ban Challenge", took place on November 3, 2007 at the site of the now-closed
George Air Force Base, in Victorville, California. The course involved a 96 km
urban area, to be completed in less than 6 hours. Rules included obeying all
traffic regulations while negotiating with other agents and obstacles. Tartan
Racing claimed the $2 million prize with their vehicle "Boss".
The Urban Challenge required designers to build vehicles able to obey all
traffic laws while they detect and avoid other robots on the course. This is
particularly challenging for vehicle software, as vehicles must make "intelli-
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Figure 2.2: The autonomous vehicle of Stanford university named "Stanley", winner
of the 2005 challenge during the competition

gent" decisions in real time based on the actions of other vehicles. Other than
previous autonomous vehicle efforts that focused on structured situations
such as highway driving with little interaction between the road actors, this
competition operated in a more cluttered urban environment and required
the cars to perform sophisticated interactions with each other, such as main-
taining precedence at a 4-way stop intersection.

After those challenges many companies started investing on the development
of autonomous driving technology and many startups were founded, the
revolution of AV has begun.
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Figure 2.3: Disengagement report for major Av players in California during testing
in 2019: Mile driven before disengagement

2.3 current state

Currently the market is developing fast, today we already have different
vendors offering on premium products commercial solution capable of au-
tonomously driving in specific settings up to Level 2 and in many cities are
under testing prototype vehicles with higher autonomy ratings. Here we
present the most advanced solution from the biggest players in this sector.

To correctly compare the performance of an autonomous vehicle has been
developed a performance metric called disengagement rate which is the total
amount of km driven by a vehicle in autonomous mode before requiring
human intervention.
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2.3.1 Tesla

When we think to autonomous driving the first company that comes to
our mind is for sure Tesla. The company is developing its autonomous
driving software and hardware since 2013. In the beginning the system, called
Autopilot 1.0, was developed in collaboration with Mobileye, a company
leader in this sector. It was intended as an advanced ADAS capable of lane
keeping on highways combined with an adaptive cruise control plus some
additional safety features. After the acquisition of the company by Intel, Tesla
decided to move to the much promising and powerful NVIDIA hardware that
powered the Autopilot 2.0 and allowed the car to perform Level 2 driving but
with some limitation, it was introduced the lane change, collision avoidance
and the navigate on autopilot feature capable of full self-driving on highways.
In 2020 the system received the biggest upgrade ever moving to the Autopilot
3.0. In this latest iteration the system is installed on every Tesla and is based
on a custom FPGA (Field Programmable Gate Array) developed in house
by Tesla, a series of cameras all around the vehicle and different radars. The
system is advertised as full self-driving capable and in the latest quarter
of 2020 first US users received Full Self Driving Beta (FSD) software that
is capable of driving autonomously in almost every situation. The human
driver still must monitor the system constantly, but the impression is that
the system is pretty capable and can be categorized as Level 3. Tesla plans to
release the FSD functionality to all his vehicle worldwide in late 2021.
The main advantages of Tesla are the database of more than 3 billion miles
driven recorded by a fleet of almost 1 million vehicles in rapid growth, the
full control over hardware and software and the deep learning approach
over the full pipeline. Tesla is the biggest AV payer in terms of vehicle fleet
and hours driven but is also one of the few that do not use LiDAR sensor
considered useless by company CEO Elon Musk that stated back in 2019:

"Anyone [AV developer company] relying on LiDAR is doomed"

The car tries to mitigate the absence of the LiDAR leveraging more on radar
data to assist cameras in all the situation where cameras are not enough.
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Figure 2.4: FSD Sensor suite on Tesla Model 3
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2.3.2 WAYMO

In 2016 after the massive company restructuring Google, today Alphabet,
decided to group all the AV development under the hat of WAYMO. Google
was already active in the autonomous driving sector since 2009 inside the
secrets X-lab run by Sergey Brin, one of the tree company co-founders.
The company has the aim of developing hardware and software to integrate
in production vehicles to give the capabilities of full autonomous driving
and has multiple partnership with big automotive companies like Daimler
AG, FCA (Fiat Chrysler Automobile), Jaguar Lan Rover, Volvo and Nissan
Renault.
Thanks to the access to Google Maps data and the power of Google Cloud
the company has developed both vehicles prototypes and a simulation envi-
ronment so that the iteration of the software can be tested with near reality
accuracy in a virtual world before roll-out. Thanks to this approach Waymo
achieved one of the lowest disengagement rate compared to competitors. The
system designed by Google is composed of high level, and therefore high cost,
but redundant sensor suite. The system in its latest iteration [8] has 3 LiDARs,
3 radars and multiple cameras all around the vehicle. Thanks to his high
reliability in late 2018, the company launched a commercial self-driving car
service called "Waymo One"; users in the Phoenix metropolitan area can use
an app to request a pick-up. By November 2019, the company was operating
autonomous vehicles without a safety backup driver and was the first service
worldwide to have a remote tele-operator connected only if the system gets
sucked at some point.
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Figure 2.5: WAIMO experimental vehicle sensor setup
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Figure 2.6: Comma.ai hardware installed on the windscreen of a compatible mass
production vehicle

2.3.3 Comma.ai

The start-up, founded by the famous hacker George Hotz in 2015, is devel-
oping OpenPilot. The system is currently capable of autonomous driving of
Level 2 in specific non complex situations and is composed by a commercially
available android smartphone embedded in a custom case that has to be
mounted on the windscreen and act both as a sensor and as main computing
unit on which runs the code.
The system is compatible with multiple commercially available cars and is
based on already integrated sensors in the vehicle like the radar and cameras
mixed with the on board cameras of the OpenPilot hardware. The system has
already driven over 30 million miles on over 2000 devices active on average
every day. The figures are limited compared with the other player, but the
results and the development phase is really high.
The main peculiarities of the system are the fact that is fully open-source
and pretty cheap, is based on camera vision and do not require additional,
expensive hardware or big modification to the vehicle except from the smart-
phone installation and connection with the car systems that can be done by
the driver in a couple of minutes, it is already compatible with commercially
available cars and has a feature that allows the monitoring of the behavior
of the driver since Level 2 autonomy still requires a constant human scene
monitoring.
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Figure 2.7: NuTonomy AV prototype sensor architecture

2.3.4 NuTonomy

Founded in 2013 by professors and students from MIT, NuTonomy is active
in the sector of autonomous vehicles and robots. It has been the first company
to publicly demonstrate a fleet of autonomous vehicles in 2016 in Singapore
as an autonomous taxi service. The aim of the company, similarly to WAIMO,
is to develop the technology not a full vehicle. The sensor suite is composed
by a LiDAR on top of the vehicle, 5 radars and 6 cameras that combined give
a full 360 degrees view on the surrounding. From 2017 NuTonomy is part of
Delphi Automotive PLC, one of the biggest automotive suppliers in the world
active in electrification and vehicle advance safety technologies. NuTonomy
has publicly released part of their data record and created different challenges
to further increase the hype in the field and speedup the development of this
kind of system.
From 2018 NuTonomy has been publicly testing in Boston his autonomous
prototypes based on the electric car Renault Zoe continuously improving the
system reliability and safety.
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2.3.5 UBER/Aurora

The company famous for having revolutionized the transport sector invested
a big part of his income to develop the next step, an autonomous taxi system.
In early 2015, the company hired approximately 50 people from the robotics
department of Carnegie Mellon University and created the new branch
focused on Autonomous vehicles. On September 14, 2016, Uber launched
its first self-driving car services to select customers in Pittsburgh, using a
fleet of Ford Fusion cars. Each vehicle was equipped with 20 cameras, 1

Global Positioning System, 1 LiDAR, and different radars, equipment that
enabled the car to create a three-dimensional map of the surrounding space.
On December 14, 2016, Uber began using self-driving Volvo XC90 SUVs in
San Francisco. On December 21, 2016, the California Department of Motor
Vehicles revoked the registration of the vehicles Uber was using for the test
and forced the program to cease operations in California. Two months later,
Uber moved the program to Arizona, where the cars were able to pick up
passengers, although, as a safety precaution, two Uber engineers were always
in the front seats of each vehicle. In March 2017, an Uber self-driving car was
hit and flipped on its side by another vehicle that failed to yield. In November
2017, Uber announced a non-binding plan to buy up to 24,000 Volvo XC90

SUV vehicles designed to accept autonomous technology, including a different
type of steering and braking mechanism and sensors. In December 2020, Uber
announced the sale of ATG to Aurora. The company also stated it will invest
$400 million into Aurora’s research of self-driving technology. Uber itself is
pulling out of the self-driving market.
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Figure 2.8: UBER AV prototype based on Volvo XC90 car
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Figure 2.9: Lyft sensor architecture

2.3.6 Lyft

In 2012, the biggest UBER competitor in America, started to look at self-
driving cars as part of Lyft’s future offering. In January 2016, Lyft announced
an autonomous car partnership with General Motors and planned to begin
testing self-driving cars within one year. To speed up the development Lyft
announced a new partnership with NuTonomy to eventually put autonomous,
on-demand vehicles on the road. In September 2017, Lyft partnered with
Ford Motor Company to develop and test autonomous vehicles.
The development of the autonomous driving system is continuing thanks to
the partner with the state of California that approved road testing of Lyft
level 4 prototypes. The company is planning to launch an autonomous fleet
of taxi by 2023.
The system in the current iteration is composed by a big component integrated
on the vehicle roof containing the main processing unit and a suit of sensors
among which we can find a 64 plane LiDAR and 7 cameras that combined
with the car built-in radar and two additional, lower resolution 16 layers
LiDAR in the front one at each corner provide a full 360 degrees view of the
vehicle surrounding [7].
The idea of Lyft is to build hardware and software in a single module that
can be easily integrated with commercially available vehicles so the company
can focus more on the technology rather than building the car itself.
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Figure 2.10: Baidu sensor architecture

2.3.7 Baidu

In 2013, Baidu, the biggest research engine in China, commenced the develop-
ment of autonomous driverless vehicles, through the Baidu research institute.
This project gradually expanded and now includes 10,000 developers working
on an open platform, and more than 50 partners across the world, including
Intel, BMW, Benz, Kinglong and XTE. In August 2017, an early version of the
autonomous vehicle was unveiled at GoMentum, USA.
In July 2018, test drives had been carried out in Chongqing and Fujian. In
July 2018, a series of buses had commenced mass production. The bus was
first opened to an international audience in November 2018 at the Shanghai
World Expo, where 1600 participants from 72 countries were ushered to the
venue in those autonomous buses. The company rely on a standard sensor
suite that include a high-resolution LiDAR on top and 4 lower resolution one
at each side plus forward and backward radar and multiple cameras. Thanks
to the strategic partners the company tested the system in different scenarios
and on different vehicles with success. Recently Baidu has been granted the
authorization for testing their system in public roads in California.
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2.3.8 ZOOX/Amazon

Zoox was founded in 2014 by Australian artist-designer Tim Kentley-Klay, and
Jesse Levinson, son of Apple Inc. and chairman Arthur D. Levinson, who was
developing self-driving technology at Stanford University. Differently to all
the other competitors the start-up, based in California, is creating an entirely
new autonomous vehicle targeted at the robo-taxi market. The company’s
approach is centered around the fact that a retrofitted vehicle is not optimized
for autonomy. ZOOX has applied the latest techniques in automotive, robotics
and renewable energy to build a symmetrical, bi-directional battery-electric
vehicle that solves for the unique challenges of autonomous mobility.
The company had previously retrofitted Toyota Highlanders with their self-
driving system in final preparation for their commercial vehicle reveal in
December 2020. The present-day test driving is taking place in both San
Francisco’s Financial District and North Beach districts, as well as Las Vegas.
Since 2020 the company is part of Amazon Inc., the merger agreement under
which Amazon acquired Zoox is evaluated over $1.2 billion. This agreement
allowed the start-up to receive all the required resources both in terms of
money and knowledge required for such an ambitious plan and pushed the
accelerator on the development phase. Last September ZOOX became the
fourth company in the State of California to receive permit to test driver-less
automobiles on public roads and only couple of month later became the
world’s first company to showcase a fully autonomous, all-electric, purpose-
built vehicle that capable of driving up to 120 km/h.
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Figure 2.11: ZOOX autonomous bus during testing in California
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Figure 2.12: Miles driven by AV research vehicles in 2020

2.4 autonomous vehicles comparison

As we have seen, in the last years the market of autonomous vehicles has
grown substantially thanks to different big companies’ investments and star-
tups innovative ideas. The projects mentioned above are only a short list of
the most famous and interesting in the field for their approach to the problem
and the adopted solutions.

It is early to choose a winner or to decide which system performs better since
most of the data are not public and the little public information we have, is
referred to beta version of the software still under development but what
is clear is that there are two main lines of thought on how to approach the
autonomous driving problem, the one that uses LiDAR as a main sensor
pared with cameras and radars and the one based mainly on cameras and
radars but with a smaller LiDAR or completely without it. What is clear from
this comparison and from the data in Table 2.1, all the current prototypes
are yet too expensive and complex for average people since the cheaper
system like the Tesla FSD costs as much as a common utility car only for the
autonomous optional. All the other systems, except for CommaAi solution
that however, does not grant full autonomy, cost more than a luxury car and
are extremely complex.
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Autonomous Vehicles

Developer Km driven Sensors Suite Autonomy
Level

Cost (€)

Tesla AP 2.0 4 Billion 7 Cameras, 12 Radars Level 2 8k+vehicle

Tesla FSD Beta – 7 Cameras, 12 Radars Level 3 10k+vehicle

Comma Two 25 Million 1 Camera + vehicle sensors Level 2 1k+vehicle

WAYMO 40 Million 6 Cameras,3 Radars, 4 Li-
DAR

Level 4 Estimate
150k

NuTonomy – 6 Cameras,5 Radars, 1 Li-
DAR

Level 4 Estimate
150k

Lyft 0.05 Million 6 Cameras,5 Radars, 1 Li-
DAR

Level 4 Estimate
150k

Baidu 1 Million 10 Cameras,2 Radars, 5 Li-
DAR

Level 4 Estimate
150k

UBER/Aurora – 8 Cameras,5 Radars, 5 Li-
DAR

Level 4 Estimate
200k

ZOOX/Amazon 0.4 Million 14 Cameras,10 Radars, 8 Li-
DAR

Level 5 Estimate
200k

Table 2.1: Comparison between AV systems
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Figure 2.13: NASA Perseverance rover sensors

2.5 other autonomous vehicles

When we think to autonomous vehicles, we immediately think at cars but
those are not the only autonomous system currently in use or in development.
Many are the examples of autonomous systems around us. From autonomous
lawnmowers to vacuum cleaning robots, from autonomous underground
trains to aerial drones.

One interesting example is Perseverance rover built by NASA [10] landed
on Mars the 18th of February 2021. It is the first fully autonomous human
built vehicle to drive without human intervention on another planet. Thanks
to its advanced suite of sensors and software the robot can avoid obstacles,
drive trough rough terrains and reach the given destination safely.

In all those systems the perception and scene understanding pipeline is
critical and the technology developed for cars can be easily transferred to
all autonomous robotics systems and also to other road vehicles like buses
trucks and motorcycles.
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2.6 hardware and software

In this section we present all the components required to enable full self-
driving capabilities to a vehicle. To make a vehicle autonomous in fact we
need to install additional hardware and custom software that is meant to
substitute completely a human driver.

We can proceed analyzing those components comparing them to the human
driver counterpart since it exists a certain similarity between the two.
Concerning the hardware, we can identify 3 main subsystems:

• Perception system: it substitutes five human senses. It is composed by
exteroceptive sensors that monitor the environment around the vehicle
(other cars, pedestrian, obstacles etc.) and proprioceptive sensors that
monitor the state of the vehicle by measuring all its internal parameters
(speed, acceleration, position etc.).

• Actuators: they are the equivalent of human muscles. A series of elec-
trical and mechanical actuators capable of controlling the throttle, the
steering and if present the gearbox. We consider in this category also
all the relays necessary to control all the vehicles lights.

• Computing unit: it can be considered as the driver brain of the vehicle.
It is a powerful and efficient computing unit, usually custom made
specifically for autonomous vehicle workloads and is composed by
different CPU and an accelerator for Image processing and Machine
learning computations.
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Figure 2.14: Autonomous vehicle common sensors location

2.7 hardware : sensors

Given that this work is focused more on the perception part we present
here all the sensors currently in use in the best performing autonomous
vehicles. Even if not all the manufacturers agree on the necessity of using all
those sensors combined, most of them integrate multiple redundant sensing
elements to guarantee more robustness and accuracy to the system. As we
have seen from previous analysis of the AV prototypes commonly used
sensors are cameras, radars, LiDARs and GPS. Sensors are placed all around
the vehicle and usually are placed in strategic spots to cover all the vehicle
surrounding. In Figure 2.14 is shown the most common sensors setup for
an autonomous car. Sensors constitute a big percentage of the cost of the
autonomous system.
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2.7.1 Camera

Camera is the most common type of sensor and has the function of seeing
the objects in the road scene just like human drivers do with their eyes. This
type of sensor is capable of converting light energy into an electrical quantity
that can be elaborated and used by digital systems like computers.

By equipping cars with cameras at every angle, the vehicles can maintain a
360° view of the external environment, thereby providing a broader picture
of the traffic conditions around it. The cost of the sensor is low thanks to the
consumer electronic integration, it is widely available with different technical
specification and with its small form factor it is easy to integrate and hide
inside the vehicle body. Moreover, camera as a sensor is well understood and
many, well performing algorithm are already available to work with image
input.

On the market are available different families of cameras based on the same
principles but with different outputs and with different strengths and weak-
nesses.

Unfortunately, camera sensors are still far from perfect and require the
necessity of at least another type of sensor to guarantee the coverage of all
the driving situation and the robustness of the final system required for this
kind of applications. Poor weather conditions such as rain, fog, or snow can
prevent cameras from clearly seeing the obstacles in the roadway, which can
increase the likelihood of accidents. Similar problems affect human eyes but
thanks to the greater capability in terms of high contrast of eyes and situation
assessment the human can prevent and intervene in advance applying a filter
like sunglasses or by stopping for couple of minutes if the visibility conditions
are too bad. Additionally, there are often situations where the images from
the cameras simply are not good enough for a computer to make a good
decision about what the car should do. For example, in situations where the
colors of objects are very similar to the background or the contrast between
them is low, the driving algorithms can fail. Moreover, since cameras works
with light if the light is absent like in a scenario of total darkness during the
night in a road without illumination the presence of any non-illuminated and
unpredictable obstacle in the road area is hard to detect, the same happens in
the opposite situation when there is too much light due to direct illumination
of the sun during sunrise or sunset. In those cases, the output of the camera
tends to degrade and cause problems of blindness. Cameras can be also af-
flicted by dirt, rain, insects or any other impurity present on the optic that can
deform or partially occlude the optic and make the data unusable. Despite



30 state of the art

Figure 2.15: Image segmentation of pedestrians crossing the road from a monocular
camera

those weaknesses cameras are still broadly used in autonomous vehicle since
for every problem has been found solution capable of overtake them.

Let us analyze now different cameras and how they can be used in AV.

2.7.2 Monocular camera

Monocular camera is composed by one sensing element sensible to light, a
filter that allows to make the camera sensible to visible light or to infrared
spectrum and a single optic capable of guiding the light to the sensor. Monoc-
ular cameras used in automotive industry have often high resolution and
high sensitivity in order to capture as much information as possible, with a
high refresh rate (30-60Hz) and a wide field of view (FOV) to reduce blind
spots. The sensor output is a single video stream or a sequence of images.
This kind of sensors are used in all the systems where the special information
is provided by another sensor like a LiDAR or radar or to cover blind spots
like to the vehicle sides and the rear. Thanks to the fact that are very cheap
many times many cameras are installed on the vehicle and used also for a
posterior analysis and performance evaluation.
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Figure 2.16: Stereo camera working principle

2.7.3 Stereo camera

The stereo camera consists of two high-resolution mono-cameras, housed
approximately 20 centimeters apart and usually installed in the front part of
the vehicle behind the windshield. This camera configuration is inspired by
human anatomy in fact the distance between the cameras and their location in
the sensor is similar to the distance that human has between eyes that is also
the minimum distance that allows the camera to measure distances thanks
to the difference in perspective between left and right optical paths. The
fundamental strength of the stereo camera is its ability to compare the two
optical paths and compute the depth at which each object lays. Moreover, the
redundancy is a plus also in poor visibility conditions: it preserves its high-
resolution capability even under cult circumstances (where other technologies
for object recognition could be limited); for example, when several objects
are next to each other, when objects are partially obscured or when there is
poor contrast between the object and its background [11].
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Figure 2.17: Depth camera working principle

2.7.4 Depth camera

Structured light and coded light depth cameras are not identical but based
on similar technologies. They rely on projecting light, usually infrared light,
onto the scene. The projected light is patterned, either visually or over time,
or some combination of the two. Because the projected pattern is known, how
the sensor in the camera sees the pattern in the scene provides the depth
information. For example, if the pattern is a series of stripes projected onto a
ball, the stripes would deform and bend around the surface of the ball in a
specific way.

If the ball moves closer to the emitter, the pattern will change too. Using
the disparity between an expected image and the actual image viewed by the
camera, distance from the camera can be calculated for every pixel resulting
in a 3D representation of the visible region.
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Figure 2.18: Comparison between regular RGB camera and event base camera
output

2.7.5 Event based camera

Those cameras are the latest addition to sensing suite for the AV since they
are new in terms of technology. As the name implies event-based cameras are
cameras triggered by events, by changes in the framed area. This technology
allows to cut down on output bandwidth by sending images in from of
difference between frames. Basically, the output of the camera is a series of
updates over the previous frame that leads to the new one. This approach is
interesting since the amount of data that moves in an AV is very high and
this type of cameras can either reduce cost of the vehicle network or allow for
higher resolution sensors to be implemented without additional cables and
without increasing the load on the main computing unit. Since it is a fresher
technology the sensor is still not fully understood and used in commercial
vehicles, but it is promising. Thanks to their working principle, those cameras
have an higher contrast ratio in situation of low light or high contrast but
they still lack of RGB colors and are less intuitive to interpret at a first sight.
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Camera technology comparison

Technology Mono cam Stereo cam Depth cam Event based
cam

Manufacturing Single optic,
single sensor

2 mono cam
mounted 20

cm apart

1 mono cam
and a light
source

Monocular
optic with cus-
tom readout
and sensing
element

Output data 2D video
stream

3D image 3D image 2D frame dif-
ference

Resolution 720/1080/4K 720/1080/4K 720/1080 360/720

Refresh Rate (Hz) 30/60/120 60/90 10/20 Up to 1M

Data flow Medium High High Low

Cost (€) 50 100 3k 3k-6k

Pros Well Under-
stood

Depth info Depth info Compressed
data

Cons No depth info High data flow High data
flow, high cost

No Depth,
New tech

Table 2.2: Comparison between camera technologies
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2.7.6 LiDAR

LiDAR stands for Laser imaging Detection and Ranging. As the acronym
implies it is a method for measuring distances (ranging) by illuminating the
target with laser beam and measuring the reflection with a readout sensor,
a similar approach to radar systems, with the only difference being that
they use lasers instead of radio waves. Differences in laser return times and
wavelengths can then be used to make digital 3D representations of the target.
It has terrestrial, airborne, and mobile applications. LiDAR uses ultraviolet,
visible, or near infrared light to image objects. It can target a wide range of
materials, including non-metallic objects, rocks, rain, chemical compounds,
aerosols, clouds and even single molecules. A narrow laser beam can map
physical features with very high resolutions; for example, an aircraft can
map terrain at 30 cm resolution or better. LiDAR uses active sensors that
supply their own illumination source. The energy source hits objects, and the
reflected energy is detected and measured by sensors. Distance to the object
is determined by recording the time between transmitted and back scattered
pulses and by using the speed of light to calculate the distance traveled.
Autonomous vehicles use LiDAR for obstacle detection and avoidance to
navigate safely through complex environments. Point cloud output from the
LiDAR sensor provides the necessary data for robot software to determine
where potential obstacles exist in the environment and where the robot is in
relation to those potential dangers. Usually this type of sensors are mounted
on top of the vehicles providing a 360° view of the surrounding. Examples of
companies that produce LiDAR sensors commonly used in vehicle automa-
tion are Ouster and Velodyne.

Since rare earth metals are needed in order to produce LiDAR sensors,
they are much more expensive than radar sensors used in autonomous ve-
hicles. The systems required for autonomous driving can cost well beyond
$10,000, while the top sensor being used by Google and Uber costs up to
$80,000. Recently prices dropped significantly with the introduction of lower
resolution sensors that nevertheless are still suitable for autonomous vehicle
applications. In the Table 2.3 are presented the most adopted sensors with
their specifications and costs. Yet another problem is that snow or fog can
sometimes block LiDAR sensors and negatively affect their ability to detect
objects in the road.
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Figure 2.19: LiDAR data from NuScenes dataset with annotated objects

LiDAR sensors on market

Model Manufacturer Layers Range Vertical Scope Layer pitch Price(€)

HDL64E Velodyne 64 120m 2°/-24.9° 0.4° 75K

HDL32E Velodyne 32 80m 10°/-30° 1.33° 30K

VLP16 Velodyne 16 100m 10°/-10° 1.33° 8K

VLS128 Velodyne 128 245m 15°/-25° 0.11 100K

OS0-32 Ouster 32 50m 45°/-45° 0.7°-5.5° 7K

OS0-64 Ouster 64 50m 45°/-45° 0.7°-5.5° 11K

OS0-128 Ouster 128 50m 45°/-45° 0.7° 14K

OS1-16 Ouster 16 120m 22.5°/-22.5° 0.35°-2.8° 3.5K

OS1-32 Ouster 32 120m 22.5°/-22.5° 0.35°-2.8° 8K

OS1-64 Ouster 64 120m 22.5°/-22.5° 0.35°-2.8° 10K

OS1-128 Ouster 128 120m 22.5°/-22.5° 0.35° 15K

OS2-32 Ouster 32 240m 11.25°/-11.25 0.18°-0.73° 20K

OS2-64 Ouster 64 240m 11.25°/-11.25 0.18°-0.73° 23k

OS2-128 Ouster 128 240m 11.25°/-11.25 0.18° 25K

Table 2.3: Comparison between LiDAR sensors on the market
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2.7.7 Radar

RADAR stands for Radio Detection and Ranging System. It is an electromag-
netic system used to detect the location and distance of a headway object
from the point where the RADAR is placed, quickly providing its velocity,
range and angle information. It works by radiating energy (radio waves)
into space and monitoring the echo or rejected signal to detect and track
various objects. Normally radars are directional and provide information of
range (from pulse delay), velocity (from Doppler frequency shift) and angular
direction/angle. From further elaboration a radar can also output the target
size (from magnitude of return), shape and components (return as a function
of direction); from the modulation of the return can detect moving parts and
material composition.

The complexity (cost and size) of the radar increases with the extent of the
functions that the radar performs. The simplest function of radar is the range
estimation: the device emits a concentrated radio wave and listens for any
echo, if there is an object in the path of the radio wave, it will reject some
of the electromagnetic energy, and the wave will bounce back to the radar.
Radio waves move through the air at a constant speed (the speed of light), so,
based on how long it takes to the radio signal to return, the instrument can
calculate how far away the object is.
Automotive radars have been the backbone for active safety and advanced
driver assistance systems for decades. A typical automotive radar is mounted
behind the front grille of a vehicle at a height of less than one meter, where it
can monitor the road ahead and the adjacent lanes ahead of the vehicle.
This sensor can be employed in different types of driver assistance systems
depending on its detection range: long range (LRR) for Adaptive Cruise
Control, medium range (MRR) for cross traffic alert and lane change assis-
tance, shortrange (SRR) for parking aid and obstacle/pedestrian detection.
Range is one of the device’s characteristics, together with the frequency, that
distinguishes peculiar radar typologies and usages.
Despite the main disadvantage of having a low angle resolution, the numer-
ous functionalities and advantages make the radar one of the most important
sensors. It is computationally lighter than a camera and produces far less
data than a LiDAR. Its main strengths are the greater robustness to weather
or road conditions, the ability to measure the Doppler effect and its reliability.
Radar is a proven technology increasingly becoming more efficient for the
autonomous car. Modern self-driving prototypes rely on radar and LiDAR to
“cross validate" what they’re seeing and to predict motion or depend on the
complementary action of radar and cameras.
Radar sensors are good but not perfect, the pedestrian recognition algorithm
definitely needs a lot of improvement, seeing as the automotive radar sensors
used in today’s vehicles only correctly identify between 90% and 95% of
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Figure 2.20: Radar working principle

pedestrians, which is hardly enough to ensure safety on the road. As well, the
still widely-used 2D radars are not able to determine accurately an object’s
height, as the sensors only scan horizontally, which can cause a variety of
problems when driving under bridges or road signs. A wider variety of 3D
radar sensors are currently being developed to solve these issues.
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2.7.8 Global Positioning System

Global Positioning System (GPS) is a sensor which uses real time geographical
data received from several GPS satellites to calculate longitude, latitude,
speed, and of course to help navigate a car. The GPS project was started by
the U.S. Department of Defense in 1973, with the first prototype spacecraft
launched in 1978 and the full constellation of 24 satellites operational in
1993. Originally limited to use by the United States military, civilian use was
allowed from the 1980s following an executive order from President Ronald
Reagan. In recent years similar systems has been developed by other countries
like GLONASS by Russian government, Galileo by Europe, and BeiDou by
China. All the systems combined with the newest GPS satellite generation
increased a lot the precision, availability, and accuracy of the system. Today
it can guarantee an accuracy of 0.05m making this sensor particularly useful
for global localization purposes for autonomous vehicle [9]. In fact, if all
the sensors presented above give to the vehicle a local scene understanding
and localization, GPS gives a global absolute position. This information can
be used both for autonomous navigation but also for incorporating the full
map of the area the vehicle is driving through in the autonomous driving
software pipeline allowing for predictive action like slowing down before a
road intersection even if not in the full view of the sensors or being aware of
tight road turn in advance.
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Figure 2.21: Autonomous vehicle software pipeline

2.8 software

The most important part of an autonomous driving system is for sure the
software since it is the true intelligence of the vehicle. It is the equivalent
of the intelligence and experience of the human driver and it has the main
function of elaborating the sensor data and extract useful knowledge about
the scene, based on this knowledge it plans actions that bring the vehicle
from the starting point to the goal. The software is also the key difference
between all the state-of-the-art system previously discussed since the sensor
suite is quite similar with some small differences concerning primary and
secondary sensors and their resolution and quality.

Every company organizes the software in its own way but at a high level
depending on the function that are performed we can identify:

• Perception pipeline: has the task of acquiring and processing low level
data from the sensors extracting aggregated and labelled high level
data.

• Driving planner: based on sensor input should propose a possible
solution to the current scene by planning a trajectory, choosing a speed
of execution and a timing.

• Vehicle dynamic controller: checks if the proposed solution can be per-
formed by the car in the times and speed given the physical quantities
of the vehicle (power, dimensions, maximum steering angle, etc...). It
can propose changes to the kinematic values to make the proposed
solution feasible or reject it if the solution is unfeasible.

• Safety controller: verifies that the proposed solution by the Driving
planner is safe for all the external road agents and for the car to be
executed. It can reject or approve the maneuver depending on the actual
risk involved.

• Road policy controller: the software that takes care of road rules and
verifies that the motion proposed complies with all the local rules of
the road and with all the road signs present.
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All the last 3 software components are called controller since they have to
monitor and decide if the planned trajectory can be achieved in a safe way
and without breaking rules. If all those 3 components approve the maneuver
the car will execute it otherwise the solution is discarded, and the driving
planner should propose another solution.

2.8.1 Software perception pipeline architecture

Let us focus on the perception pipeline that is our main research focus and
analyze the different possibilities available. Currently there are two main
line of thoughts used by autonomous vehicles manufacturers to handle the
complexity of the perception pipeline.
Those are:

• Sensor independent pipeline

• Sensor fusion pipeline

Furthermore, depending on where the sensor data are processed and trans-
formed, we can have:

• Centralized computing unit

• Partially Decentralized computing unit

• Distributed computing unit

Any other mixing configuration called hybrid approaches obtained by ap-
plying partially one solution and partially another will be omitted here for
brevity but exist and are used. What those mixed configurations do is trying
to leverage the pros of each configuration mitigating the cons.
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2.8.2 Sensor independent pipeline

In this approach each sensor is considered independent from all the other
and its data are handled separately and considered as the only data available.
Raw data recorded by the sensor are sent to the processing unit that can
be either centralized in the central processing unit or decentralized and
situated inside the sensor module. In the decentralized approach the sensor
is called smart since it contains part of the intelligence for handling and
processing data. The inverse sensor model (ISM), the function that gives a
meaning to the sensor data recordings is applied and the processed data
are then sent to the actual perception algorithm that will infer meaning and
extract useful information to be used by Driving planner. The advantages
of an independent pipeline are the fact that the system is more robust to
sensor fails since a sensor is independent from the other and gives its view of
the surrounding world. Moreover, with independent pipelines each inverse
sensor model is custom and can easily remove specific sensor noises and
improve data outputs. With a partially decentralized solution the central
unit is freed from the weight of pre-processing computation leaving more
power to the main control algorithms or leading to a cheaper and more
efficient central computing unit. In a fully decentralized solution instead all
sensors process their own data and share the final aggregated information
with the central processing unit. With a consensus algorithm the final best
world representation is chosen by voting the most probable one. In this case
the central unit is completely freed up by the data processing task, each
sensor contains a pre-processing unit and a processing unit dedicated to the
perception specific for each sensor type.

2.8.3 Sensor Fusion

In this approach the sensor raw data are mixed with little to no pre-processing
in order to preserve as much information as possible in a centralized way
or after the inverse sensor model computation in a centralized or partially
decentralized manner to increase the certainty of the output and maximize it.
Since the idea of fusion requires a unique centralized node to perform data
merge while the distributed solution reckons on separated computing units
the two architecture are not compatible. The additional complexity introduced
in the system is not justified by tangible benefits [61]. The main advantages
of sensor fusion solution is the ability of capturing as much information as
possible and combining them increasing the certainty of the outcome. The
main drawbacks are the fact that the system is less resilient to single or
multiple sensor failure and the fact that in raw data fusion only similar data
type can be merged like radar, LiDAR and depth camera outputs or RGB and
IR images and in this case after the fusion data are treated independent from
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Sensors pipeline

Computation Independent Fusion

Centralized V V

Partially Decentralized V V

Distributed V X

Table 2.4: Feasibility of different architectural combinations

the sensor that has generated them and so in a more general way. In the case
of fusion of pre-processed data, the data aggregation is done on high level
information.
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2.9 object detection methods

Given that the main purpose of this research work is the development of
a robust ad accurate object detection pipeline based on low resolution Li-
DAR sensor we present here state-of-the-art approaches currently in use for
different road vehicle prototypes. This task is sometimes also referred to
as “general obstacle detection”, “free space estimation” or “occupancy grid
mapping” and ensures that the vehicle detects obstacles such as pedestrians,
cyclists, and other vehicles [14].
This problem consists in predicting oriented 3d bounding boxes, represented
in the LiDAR coordinate frame, corresponding to target actors in the scenes
given a point cloud obtained by a LiDAR scan. The algorithm should provide
in output the box dimensions (width, length and height), the coordinates of
the center of the box (x, y, z) with respect to the LiDAR coordinate frame
and the heading angle φ of the box measured in the body coordinate frame
which is a translated version of the LiDAR coordinate frame to the center of
the box.
This problem has been approached in the past years following two main lines
of thought, using white box approach based on occupancy grid modelling or
using a black box approach based on Machine learning techniques.

2.9.1 White box approaches

White box approach is based on Occupancy Grid (OG) which is well-known
Robotics method of representing the environment.
In this methodology the space around the vehicle, scanned by the vehicle
sensors, is represented as a grid where each grid cell contains the sensor
output in that location. Once the sensor output is converted in occupancy grid
format a clustering algorithm can be applied to classify, based on relevant
features like length, width and shape, each cell of the grid. In literature we
find many variations of the binary 2D occupancy grid [15] approach in which
the grid is a plane, and each cell contains a 1 if the spot is occupied and a 0 if
it is free, that are used for object detection and tracking in the field of AV.
The first variation is the probabilistic occupancy grid in which each cell
contains a number between 0 and 1 depending on the confidence that the cell
is occupied given one or multiple sensor measures and sensors accuracy [16].
This approach is particularly used when there are multiple sensors output
available like a LiDAR and a Radar or a depth camera that can be fused
together since each sensor view increases the confidence of the presence or
absence of obstacles.
There are variations of the 2D occupancy grid that stores in each cell the
number of points present in the vertical column above the cell itself or the
maximum height of the sensor output in each spot, in this case we call them
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2.5D occupancy grid [18].
Finally, we have 3D Occupancy Grid also called Voxel Grid [17] that represents
the vehicle surrounding space using Voxels (Volumetric pixels), 3d volumetric
entities equivalent to pixels in 2D space, that can contain either a binary or a
probabilistic value depending on the approach chosen and represents in 3d
obstacles around the vehicle. This last approach is less used since it is heavy
both in computational and memory terms and is considered mainly for off
road driving where a 3D view of the vehicle surrounding can come in handy.

2.9.2 Black box approaches

In the recent years, with the advent of many new techniques in machine
learning different interesting solutions based on a black box approach for
object detection and classification of 3D LiDAR point cloud data have been
developed. Those methods are basically classified under two categories, the
first one involves conventional heuristic approaches such as model fitting by
employing iterative approaches [19] or histogram computation after project-
ing LiDAR point clouds to 2D space [20]. In contrast, the second category
investigates advanced deep learning approaches [21][22][23] which achieved
significant improvements in performance in the last years. These approaches
in the latter class differ from each other not only in terms of network archi-
tecture but also in the way the LiDAR data are represented before being fed
to the network. Regarding the network architecture, high performance seg-
mentation methods use fully convolutional networks [24], encoder-decoder
structures [25], or multi-branch models [29].
In the context of 3D LiDAR point cloud representation, there exist three
popular methods: voxel creation [27][25][34][36], point-wise operation [28]
and image projection [23][21][33]. Voxel representation transforms a point
cloud into a high-dimensional volumetric form, i.e. 3D voxel grid [27][28][25].
In [37], point cloud data are converted into voxels containing feature vectors,
and then a convolution-like voting-based algorithm is used for detection.
Due to sparsity in point clouds, the voxel grid, however, may have empty
voxels which leads to redundant computations; to solve this issue in [38]
sparsity is exploited by using a feature-centric voting scheme to implement
novel convolutions, thus increasing the computation speed. These methods
use hand-crafted features, and even if they lead to acceptable results on
specific datasets, they are not suitable for complex scenes like the one of
autonomous driving. With a different approach, in [28][39] it is described
a system based on CNN architecture that could learn point wise features
directly from point clouds. These methods directly process point cloud data
to perform 1D convolution on k-neighborhood points, but they cannot be
applied to a large number of points; thus, image detection results are needed
to filter the original data points and propose regions of interest. VoxelNet
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presented in [27] groups point cloud data into voxels, extracts voxel wise
features, and then converts these features into a dense tensor to be processed
using 3D and 2D convolutional networks. At the core of this solution, we
find a region proposal networks [40] that have become an important building
block of top-performing object detection frameworks [41][42][43]. VoxelNet
propose a variation to the RPN architecture proposed in [40] and combine it
with the feature learning network and convolutional middle layers to form
an end-to-end trainable pipeline.

The input to the RPN is the feature map provided by the convolutional
middle layers. The network has three blocks of fully convolutional layers. The
first layer of each block down samples the feature map by half via a convolu-
tion with a stride size of 2, followed by a sequence of convolutions of stride
1. After each convolution layer, BN and ReLU operations are applied. We
then up sample the output of every block to a fixed size and concatenate to
construct the high-resolution feature map. Finally, this feature map is mapped
to the desired learning targets: a probability score map and a regression map.
The major problem with this method is the high computational cost of 3D
CNNs that grows cubically with the voxel resolution. PointCNN [44] and
spatially sparse convolution [45] use two similar approaches that increase
the 3D convolution speed. A great advantage of those approaches is that
no information is loss due to dimensionality reduction or compression in
pre-processing and in computation phase.
Point-wise methods [28] instead process points directly without converting
them into any other form. The main drawback here is the processing capacity
which cannot efficiently handle large LiDAR point sets unless fusing them
with additional cues from other sensory data, such as camera images as
shown in [35]. To handle the sparsity in LiDAR point clouds, various image
space projections, such as Bird-Eye-View (BEV) (i.e. top view) [30][31][32] and
Spherical-Front-View (SFV) (i.e. panoramic view) [23][21][33] have been intro-
duced. MV3D [43] is the first method to convert point cloud data into a BEV
representation. In this method, point cloud data are converted into several
slices to obtain height maps, and these height maps are then concatenated
with the intensity map and density map to obtain multi-channel features.
ComplexYOLO [31] uses a YOLO (You Only Look Once) [46] network and a
complex angle encoding approach to increase speed and orientation perfor-
mance, but it uses fixed heights and z-locations in the predicted 3D bounding
boxes. A key problem with all of these approaches, however, is that many
data points are dropped when generating a BEV map, resulting in a consider-
able loss of information on the vertical axis. This information loss severely
impacts the performance of these methods in 3D bounding box regression.
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2.10 multi object tracking

The second part of our research work is focused on Multi Object Tracking
(MOT). This problem consists in finding a temporal association between
entities in different consecutive scenes. In our case we want to keep track of
each vehicle and pedestrian present in the view of the system and compute
its speed, trajectory and, when necessary, fill missing bounding boxes not
segmented by the network and correct misclassified objects.
This problem can be split into two sub-problems, the first one is called data
association and tackle how bounding boxes are matched between different
frames. The second one is a prediction problem, centered on finding missing
bounding boxes and correct misclassified ones.
Bayesian filters are widespread in literature: these filters exploit the Chapman-
Kolmogorov theorem through the system transition density to achieve pre-
dicted probability density functions (PDF) [49] for the objects under consid-
eration. Measurements are then used to update the predicted PDF to find
the posterior PDF, from which the estimates can be obtained. Prediction
and update steps in Bayesian filtering involve complicated integrals that
lead to a high computational cost. Every time the system to be modelled
is linear and the noise follows a Gaussian distribution the integrals can be
computed analytically and provides the optimal solution; we call it Kalman
filter [47][48]. However, if the system behavior is nonlinear, Extended Kalman
Filter (EKF) [50][51] and Unscented Kalman Filter (UKF) [54][55] are favored
solutions. When non-linearities become huge, EKF provides less accurate
solutions due to the first-order linearization of the system’s equations through
Taylor-series expansion. Conversely, UKF is based on the so-called unscented
transformation, which approximately provides Gaussian distributed outputs
even when dealing with nonlinear transformations. A last category of filters
is particle filters or Sequential Monte Carlo (SMC) [52] that are other variants
of Bayesian Filters that can be used for nonlinear systems and non-Gaussian
Noise Distributions. As the name implies, they use weighted particles, each
represented by possible state estimation and posterior distribution.
The usage of Random Finite Set (RFS) [53] statistics is common in Multi-
Object-Tracking (MOT). In particular, RFS enables MOT without a priori
measurement association through the implementation of recursive Bayes
filtering. When dealing with scenarios in which the birth and death of objects
are regular, with a significant amount of clutter and false positives, the associ-
ation process provided by traditional Bayes filters leads to erroneous results.
Conversely, RFS allows accounting for objects birth (regular or spawning),
occlusions, misdetections, and disappearances by taking the number of ob-
jects under consideration as a stochastic variable. Gaussian Mean-Probability
Hypotheses Density (GM-PHD) Filter [56], Multi-Bernoulli Mixture (MBM)
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Filter, Poisson Multi-Bernoulli Mixture (PMBM) Filter, etc. are other filters
adopted in the literature.
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2.11 datasets

During the years have been collected different databases of drive rounds
both in urban and extra urban areas from different companies and research
groups around the world. Many of them are nowadays freely available
online for research purposes. Here we propose a selection of the currently
most used dataset available online free of charge that we have evaluated
for the training of our model. To train the best segmentation model, the
dataset is fundamental since it contains basic information that the network
implicitly learn. A good dataset makes the difference between good and
bad performance of the network output. All the dataset considered must
have all the sensor data available (Cameras, Radar and LiDAR) and should
be still actively maintained and used. In the evaluation we gave particular
importance to LiDAR data and to the quality of class annotation for vehicles,
pedestrian and other road obstacles since a good machine learning model
starts with a good training dataset.

2.11.1 KITTI

KITTI is the oldest, most famous and used dataset in autonomous driving
field. It has been developed by the Karlsruhe Institute of Technology in 2012

[13]. It contains different cameras and LiDAR data recordings, and it is in
constant grow since the first release. All the data are organized by scenarios
(urban driving, highways etc.) and are manually annotated. Accurate ground
truth is provided by a 64 layers Velodyne laser scanner and a GPS localization
system. The dataset is not extremely heavy and big but covers most of the
scenarios of driving from urban areas to highways. The major drawbacks are
the absence of the radar data and for the thesis purposes the inconsistent
quality of LiDAR annotation that are present but not extremely accurate and
sometimes are missing. Moreover, the LiDAR data are from a high end 64

plane with 4 time the resolution of the final sensor we want to use.

2.11.2 A2D2

This dataset developed by a research group from Audi is very heavy not
only because contains a lot of scenes but also due to the uncommon sensor
setup. The testing vehicle in fact has been equipped with 5 16 layers LiDAR
and multiple cameras and this caused the explosion of the dimension of the
dataset [12]. Moreover, the uncommon sensor positioning, and the cost of so
many LiDAR makes this dataset not so appealing for developing purposes.
The unique point in its favour is the fact that is the only publicly available
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dataset, beyond KITTI, recorded entirely in Europe, in Germany to be exact.
It contains mainly scenes of urban, densely populated areas.

2.11.3 Waymo

This dataset from Google is the most complete and big in terms of scenes and
overall dimension, it contains recordings of all the sensors except the Radar.
All sensors data are high quality and well annotated. The only drawback is
that the main LiDAR sensors is a high end 64 layers LiDAR that is extremely
expensive and far away from our target of low-cost LiDAR sensor. The data
format is custom but well documented and easy to use.

2.11.4 Lyft/NuScenes

The NuScenes dataset is inspired by the pioneering KITTI dataset. NuScenes
is the first large-scale dataset to provide data from the entire sensor suite of an
autonomous vehicle (6 cameras, 1 LIDAR, 5 RADAR, GPS, IMU). Compared
to KITTI, NuScenes includes 7x more object annotations. This dataset has been
recorded during 2019 in the cities of Boston and Singapore, two cities that
are known for their dense traffic and highly challenging driving situations.
The scenes of 20 second length are manually selected to show a diverse
and interesting set of driving maneuvers, traffic situations and unexpected
behaviors. Even though Lyft and NuScenes datasets are different in terms of
data and test vehicles they share the same data structure and sensor suite
thanks to a partnership between the two companies. This makes the dataset
particularly appealing since is not only big and complete with radar and good
LiDAR annotations, even if they are marked automatically by an external
annotation tool made by SCALE that maps the image annotation and builds
a 3D bounding box for the point cloud but is available with different vehicle
setup. The data format is easy to understand, well organized and easy to
replicate. Moreover since 2020 NuScenes developed a specific data collection
with 3D annotation especially built for LiDAR segmentation development.
Last but not least this dataset is recorded using ROS and then converted in
the final data format that makes even easier the data conversion from our
custom dataset to the final target. The full dataset includes approximately
1.4M camera images, 390k LiDAR sweeps, 1.4M RADAR sweeps and 1.4M
object bounding boxes in 40k key frames.
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Dataset Comparison

Dataset Camera Radar LiDAR Size Notes

KITTI 2 Grayscale, 2

Color
X 1 Velodyne HDL

64E
30Gb Quite old. Li-

dar label from
images

Lyft Perception
Dataset

6 Color V 1 Velodyne
HDL32E

120Gb NuScenes for-
mat

NuScenes
Dataset

6 Color V 1 Velodyne
HDL32E

550Gb

A2D2 Dataset 6 Color X 5 Velodyne VLP
16

2.3Tb Uncommon
setup

Waymo Open
Dataset

5 Color X 1 Mid range, 4

short range
2Tb Multiple High-

end LiDARs

Table 2.5: Comparison between different dataset
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3
I M P L E M E N TAT I O N

As we have seen in the state-of-the-art analysis in recent years new approaches
in machine learning unlocked the possibility of segmentation in real time on
3D LiDAR point cloud without any need for data compression. However, we
have found no solution that combine those new techniques with a tracking
layer for further elaboration. The output of the segmentation layer, even if is
good is susceptible to noise, but with the additional filtering layer the aim
is to obtain a stable and safe estimation of the overall environment. More-
over, with the integration with ROS we present a ready to deploy solution
capable of interacting with a real autonomous vehicle and to fully support
self-driving capabilities. Given these observations, we propose the design and
development of a novel perception system capable of detecting, classifying
and tracking active and passive road objects combining different state of the
art techniques and a custom filtering model. To this end, the system should
be able not only to detect the vehicles, other road users, and obstacles but
also to classify them into different categories and keep track of their motion,
estimate speed and heading.
Given also the lack of testing in real-world scenarios for most of tracking
systems, and the availability of a testing vehicle in our Lab, we also require
our work to be evaluated on real-world data, avoiding potentially unrealistic
simulations.

In the following pages we are going to discuss how we designed system
architecture, we present the algorithms and the approaches used and give a
clear explanation of the project choices.

53



54 implementation

3.1 system architecture

The main objective of our system is to track active agents and detect static
obstacles in the road scene around the ego-vehicle starting from LiDAR point
cloud and without any other exteroceptive sensor input.
Given the system constraints we decided to adopt a centralized architecture
where all the data are sent to a central node for elaboration. The system also
falls into the category of systems with independent sensor pipeline as we
have only the LiDAR as perception sensor.

In order to achieve the system objective, we need the list of classified obsta-
cles and the heading, the speed and the steering angle of the ego-vehicle.

For this reason, the system’s first block is a segmentation node. This compo-
nent is meant to identify the position of objects in the point cloud, associate
a class based on object features and determine its dimensions and heading.
Then the system sends the list of objects to a pre-processing algorithm con-
tained in the tracking node that maps objects between frames and filter out
noisy detection. Once the objects are matched are then used as input of the
Extended Kalman Filter. The filter outputs present its final view of the world
by combining the custom model prediction to the actual network detections.
The final estimation provides the controller with accurate highly informative
data that can be later use in the decision-making algorithm. At the beginning
of the project, we fixed some constraint. In pursue of keeping the overall cost
of the system as low as possible, but reliable, we based the detection pipeline
only on LiDAR, being the most adopted sensor in autonomous vehicles and
given that the cost per unit is dropping very fast. Moreover, we decided to be
agnostic on the sensor specification accepting, with small changes to setting
parameters, basically all the LiDAR sensors available on the market. Our
system can accept every point cloud input both from sensors with a limited
FOV and from 360 ° sensors, regardless of the number of Layers and planar
resolution.

Moreover a modular design has been chosen in order to guarantee code
separation for future maintenance, upgrades and to allow for a faster and
easier customization of the system itself.
Another constraint of the project was the use of Robot Operating System
(ROS) as a framework for the integration of the modules since it provides
already a structure that handles communication and integrates multiple data
structure particularly handy for AV and robotic applications.
The ROS system architecture is shown in Figure 3.1. The code-base in his final
form is fully integrated with ROS and is composed by two sub modules. The
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Figure 3.1: System architecture

first one is the inference node that takes as input LiDAR data and outputs
annotated bounding boxes, the second one is the tracking node that takes as
input the list of bounding boxes, kinematics data from the ego-vehicle and
outputs a trajectory of each vehicle, also acting as filtering node to further
improve the inference output.

3.2 data acquisition and conventions

The first and obvious step of the system is data acquisition. To this end, we
expect the acquisition process to be performed with a vehicle, equipped with
the necessary sensors. For the segmentation layer the only required data are
the ones coming from the LiDAR sensor that should be mounted on top of the
vehicle to provide a 360° view around the vehicle itself. For the filtering node
we also require GPS position, steering angle and speed of the ego-vehicle.

For the entire scope of our work, we represent the vehicle following the
coordinate systems indicated by the ISO 8855 [57], with the origin on the
ground below the center of mass of the vehicle, and axis x, y and z pointing
respectively forward, left, and up. The LiDAR reference frame has its origin
set in the sensor center of rotation and with the axis oriented in the same
direction of the one of the ego-vehicle. Every other bounding box will follow
the same standard.

Data coming from the sensor are represented using ROS PointCloud2 mes-
sage, a message type designed specifically for LiDAR sensors. It is composed
by a header that contains metadata regarding the information in the message
body. In the header, we find the number of layers, the name of the fields
available for each point and their bit sizes. The majority of LiDAR sensor,
depending mainly by the vendor and the sensor cost retrieve more informa-
tion than strictly required for our application, like reflectivity, the normal, the
intensity, and many others. To speed up network elaboration and lower the
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Figure 3.2: SECOND network structure

footprint in memory we keep only necessary information representing each
point by means of only x, y and z coordinates and removing the header.

3.3 inference node

To reach optimal performance we started the development of the inference
node following the architecture of the segmentation network proposed in [34].
The network architecture is represented in Figure 3.2. We implemented the
network adapting the structure of SECOND detector to work with NuScenes
dataset as training input. This part of the system has been developed both
as standalone inference system and as ROS node. Any piece of code in ROS
that takes an input and/or publish an output is called node. In both cases we
integrated a visualization tool to help with debug and to visually validate
our results.

In this section, we describe the architecture of the SECOND detector and
present the relevant details regarding training and inference phases peculiar
to our implementation.

3.4 network architecture

The network structure can be split in four macro blocks:

1. Point Cloud preprocessing.

2. Voxel wise feature extractor.

3. Sparse convolutional middle layer.

4. Region Proposal Network (RPN).
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3.4.1 Point Cloud Clustering

Here we describe the followed approach to convert raw input data obtained
from the LiDAR to voxels in the so called voxelization procedure where we
give a physical volume to a-dimensional points. We first pre-allocate buffers
based on the specified limit on the number of voxels set in the configuration
file then, based on the maximum memory available in the system, we iterate
over the points in the cloud and assign each one to a corresponding voxel; we
save the voxel coordinates and the number of points per voxel. We check the
existence of the voxels based on a hash table during the iterative process. If
the voxel related to a point does not yet exist, we set the corresponding value
in the hash table; otherwise, we increment the number of voxels by one.

The iterative process will stop once the number of voxels reaches the specified
limit. Finally, we retrieve all voxels, their coordinates, and the number of
points per voxel. This process is carried out from the closest point outward so
that if the maximum memory limit is reached this happened to point further
away from the ego-vehicle with a high probability that are not relevant for
the analysis.

3.4.2 Feature Extractor

We implemented a voxel feature encoding (VFE) layer, as proposed in Voxel-
Net [24], to extract relevant features from a voxel cloud.
This layer takes all points in the same voxel as input and uses a fully con-
nected network (FCN) consisting of a linear layer, a batch normalization
(BatchNorm) layer and a rectified linear unit (ReLU) layer to extract point-
wise features. Then, it applies max pooling to obtain the locally aggregated
features for each voxel. At the end all the single voxel features are combined
together. The voxelwise feature extractor consists of several VFE layers and
an FCN layer.

3.4.3 Sparse Convolutional Middle Extractor

In spatially sparse convolution, firstly introduced in [54] the output points
are not computed if there is no related input point. This approach offers
computational benefits in LiDAR-based detection because the grouping step
for the point clouds end up with a low sparsity coefficient since LiDAR data
are quite dense. This middle layer extracts region of interest from a simplified
2d bird eye view of the point cloud. In this way the network performs the
segmentation 3D only in areas where interesting features are found saving
resources and greatly speedup the inference process.
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3.4.3.1 Region proposal network

The RPN architecture is composed of three stages. Each stage starts with a
down sampled convolutional layer, which is followed by several convolutional
layers and finally by BatchNorm and ReLU layers. We then up sample the
output of each stage to a feature map of the same size and concatenate these
feature maps into one single map. Finally, three 1 x 1 convolutions are applied
for the prediction of class, regression offsets and direction.

3.4.4 Network Models

The network results are mainly influenced by training data and by the
network model. To obtain best performance we created and tested different
configurations of the network and carried out training on the most promising
4 models that performed the best on average on the 9 classes we want
to identify. The developed model can be easily configured thanks to the
configuration file that contains all the important parameters for general
network structure and for the identification of each class. In there we find
general parameters like the number of iterations, the dimensions of inputs
and outputs, number of workers, data paths for training and testing sets and
class specific parameters that identify the features of each class by means of
maximum and minimum dimensions. We find also strengthen parameters
as noise and data augmentation approaches such as rotations and data
transformation that make the final model better in generalization and reduce
over-fitting.



3.5 tracking node 59

Figure 3.3: Network segmentation results from NuScenes test set data displayed in
KittiWebViewer

3.4.5 Result Visualization

We integrated in both solution tools for showing the outputs of the network
in an easy-to-understand way by means of visual representation. Concerning
the solution without integration with ROS we modified KittiWebViewer, a
web app compatible with KITTI data format that can show the Point Cloud in
input, ground truth bounding boxes and the network outputs boxes, classes,
and confidence in real time. Moreover, it shows the corresponding image
for visual result comparison and a BEV of the point cloud with predicted
and ground truth bounding boxes. This viewer has been modified to show
NuScenes Data and every other custom LiDAR data and the visualization
results have been enriched by adding the class and confidence label for the
predicted boxes and the label for the ground truth. The tool is convenient
for a fast and easy comparison between different models thanks to the fact
that allows for real time model exchange keeping the same data in input. It
has been a fundamental piece of software during the creation of the different
models.

For ROS implementation instead we relied on Rviz, the visualization tool
included in ROS that provides a ready to use, stable and light viewer for the
system.

3.5 tracking node

This feature has been implemented only in ROS version of the system since is
based on data structure and subsystems provided by the Robotic Operating
System. The aim of this module is to filter the output of the network and
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Figure 3.4: Network segmentation results from custom VLP16 data displayed in
Rviz

provide multiple objects tracking ability over time of the agents around the
ego-vehicle. At the system core we developed an Extended Kalman Filter, a
well-known technique used for state estimation. The node implemented in
python subscribes to the bounding boxes topic and to the topics of the steering
angle, speed and position of the ego vehicle, all required data necessary for
the computation of the output.

3.5.1 Data pre-processing

The main code, once it receives all the data pre-process them to obtain the
variables required by the filter.
The first important parameter is the ego-heading. We explored different
approaches during the development of the filter for the computation of the
heading of the vehicle. The only absolute data we have are the front and back
GPS positions. From GPS we decided to try computing the heading as the
angle between two vectors passing through 2 couple of points. At startup,
the systems uses the first 10 measurements, that we will call pf and pb, from
the front and from the back sensor and average them out. The vector passing
between the position of the front sensor and the back sensor becomes the
starting heading or heading 0. From there every new couple of measurements,
called respectively p ′

f and p ′
b, are used, with some trigonometry, to compute
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Figure 3.5: Drawing for ego-vehicle heading computation

the new heading as shown in Figure 3.5 and using the Equation 3.1. The
computation of the heading θwo is done using the formula:

tan θwo =

−
ypf

−ypb

xpf
−xpb

+
yp ′

f
−yp ′

b

xp ′
f
−xp ′

b

1+ (−
ypf

−ypb

xpf
−xpb

)(−
yp ′

f
−yp ′

b

xp ′
f
−xp ′

b

)
(3.1)

This method demonstrated to be quite noisy for our purposes. We decided to
try a simple variation of the previous solution where, instead of using the
front and back position, we compute the second vector using two consecutive
ego-poses obtained as an average of the front and back position. The equation
is identical to the previous one but instead of using p ′

b we will use pold and
instead of p ′

f we will use pnew:

tan θwo =
−

ypf
−ypb

xpf
−xpb

+
ypnew−ypold

xpold
−xpold

1+
(
−

ypf
−ypb

xpf
−xpb

)(
−

ypnew−ypold

xpold
−xpold

) (3.2)

For both methods we find the heading computing the arc-tangent of the
previously found value:

φ = arctan (tan θwo ) (3.3)

Even if the results obtained with this approach are slightly better are still
far from ideal. For this reason another solution has been tested with success.
The method relies on two consecutive poses that we will call pold and pnew

and employs the sine and cosine to estimate the heading. We have:

sin θwo =
ypnew − ypold√

(xpnew − xpold
)2 + (ypnew − ypold

)2
(3.4)
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Figure 3.6: Ego-vehicle heading estimation results from "Filter IMU" and "SinCos
2Poses" methods in degrees on test data

cos θwo =
xpnew − xpold√

(xpnew − xpold
)2 + (ypnew − ypold

)2
(3.5)

the angle is obtained computing the arc sine of the value found:

θwo = arcsin sin θwo (3.6)

Then we evaluate the sine and cosine sign to find in which quadrant we
are and to compensate adding or subtracting π/2 rad to obtain the correct
heading.

This approach demonstrated to be the most accurate and stable when data
from GPS are present. We had also the opportunity to test an external method
for computation of the ego-heading that uses a filter. This filter combines data
from GPS and IMU of the vehicle to obtain a reliable and precise estimation of
the heading as explained in [62]. The filter fills the missing data by estimating
the heading based on IMU input. We used this ideal estimation for all our
tests and as a comparison with our estimation methods. The results from
test data are compared in Figure 3.6. It is important to note that we need a
relative heading and for an easier comparison the graphs has been translated
to match each other. All the estimations are normalized between plus and
minus π rad. In Figure 3.6 it is clear that the heading estimation based on
sine and cosine is quite accurate even if it’s spiky. The Filter IMU as you can
see is more stable and do not have problem in estimating the heading even
when some GPS data are missing. At the beginning of the test run however
GPS signal was low and inaccurate and this lead to unstable and bad heading
estimation. Once we have the heading angle, we still require the wheels angle
which is easily obtained from the steering angle divided by 18, we obtain the
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Figure 3.7: Ackerman steering (bicycle approximation)

ego-vehicle speed directly from the vehicle telemetry and we compute the
angular speed using the approximation of the Ackerman kinematics to the
bicycle model as shown in Figure 3.7.
Bicycle approximation simplify significantly the analysis without introducing
a significant error. Thanks to this simplified model we compute the turning
radius of the vehicle:

R =
d

tanα
(3.7)

We can also compute the ego-vehicle angular speed from the vehicle speed
vwo , vehicle inter axis d and wheels turning angle α, all parameters that we
have. From the bicycle model we know that:

vwo =
ωd

sinα
(3.8)

vwo = ωR (3.9)

Combining those two equations we get:

ωw
o = vwo

tanα
d

(3.10)

In parallel to those computations all the bounding boxes are filter out and
divided into two categories: active objects containing all moving agents (cars,
trucks, pedestrians, cyclists, motorcyclist, construction vehicles, busses) and
static objects (traffic cones and barriers). The filter will be active only on
moving objects that are interesting for situation assessment where else the
static ones will be left unchanged. Now that we have all the data required
for the filter and the active bounding boxes, we can introduce our filter model.

Let us define the notation used for a clearer understanding. In the following
pages we will use the symbol xwt to denote for the position over the abscissa
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of the tracked object with respect to the world and similarly xwo to denote
the abscissa of the observer with respect to the world. All the other notation
follows this rule.

3.5.2 Prediction

From the analysis of the problem, it is clear that we have to model the mo-
tion of a third-party entity, the tracked object from a moving observer, our
ego-vehicle. To do that a simple Kalman Filter is not sufficient for modelling
the complex dynamics so we opted for the Extended version of the Kalman
Filter that uses the trick of linearization by employing the Taylor first order
approximation to deal with nonlinear systems.

We firstly define the position of the tracked object with respect to the world
as:

Xw
t = Xw

o +Xo
t → ˙Xw

t = ˙Xw
o + Ẋo

t (3.11)

We will call θwt simply θ since θwo is equivalent to the heading of the ego-
vehicle that we call φ.

Moving to the cinematic analysis of the motion we can write the following
equations. For the Tracked object we have:{

xwt = xwt + vwt c
w
t ∆t

ywt = ywt + vwt s
w
t ∆t

(3.12)

For the observer ego-vehicle view point instead:{
xwo = xwo + vwo c

w
o ∆t

ywo = ywo + vwo s
w
o ∆t

(3.13)

Focusing the analysis on the speeds and combining the two systems:v
w
t c

w
t

vwt s
w
t

ωw
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v
w
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w
o
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w
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o
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o
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o
t
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t

 (3.14)

From where we derive the following formula:ẋ
o
t

ẏot
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 (3.15)

And extending the solution to a general angle we can write the model like so:ẋ
o
t

ẏot

θ̇ot
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w
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w
o c

o
t − vwt s

w
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 (3.16)
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To double check the solution proposed we can impose θwo = 0 → which is
the case of relative motion in the same direction.ẋ

o
t

ẏot
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 (3.17)

A similar test can be done imposing the observer stationary respect to the
world. In this case we impose vwo = 0 and ωw

o = 0 for an easier analysis we
can also impose the coincidence of the reference system of the world and of
the observer by fixing θwo = 0.ẋ

o
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We obtain the final formulation of the cinematic of the motion:

xot ′
yot ′
θot ′
vot ′
ωo

t ′


= Xo

t +∆t



vwt c
o
t − vwo

vwt s
o
t

ωw
t −ωw

o

0

0


= Fot



xot

yot

θot
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ωo
t


+



−vwo ∆t

0

−ωw
o ∆t

0

0


(3.19)

We can finally compute the matrix Fot :

Fk =
∂f

∂x

∣∣∣∣
x̂k−1|k−1,uk

(3.20)

And we obtain:

Fot =



1 0 −vwt sinθ
o
t∆t cosθot∆t 0

0 1 vwt cosθ
o
t∆t sinθot∆t 0

0 0 1 0 ∆t

0 0 0 1 0

0 0 0 0 1


(3.21)

And the matrix Hk:

Hk =
∂h

∂x

∣∣∣∣
x̂k|k−1

(3.22)

And we obtain:

Hk =

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

 (3.23)
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We can now write the model of the system:

xot ′
yot ′
θot ′
vot ′
ωo

t ′


=



1 0 −vwt sinθ
o
t∆t cosθot∆t 0

0 1 vwt cosθ
o
t∆t sinθot∆t 0

0 0 1 0 ∆t

0 0 0 1 0

0 0 0 0 1
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(3.24)

The filter presented is incorporated in the code in the prediction phase. We
define additional matrices used in the implementation of the filter:

C =



−vwo ∆t

0

−ωw
o ∆t

0

0


(3.25)

The only missing parameter is the speed of the tracked object with respect to
the world that is computed as the sum of ego-speed vector and the estimated
tracked object speed:

vwt = ±
√
(vwo cos θwo + vot

′ cos (θot ′ + θwo ))
2
+ (vwo sin θwo + vwt

′ sin (θot
′ + θwo ))

2

(3.26)
Finally we write the formulation for the prediction:

x̂k|k−1 = f(x̂k−1|k−1,uk) (3.27)

Whit:
f(x̂k−1|k−1,uk) = Fx̂k−1|k−1 +C (3.28)

The predicted error covariance is:

Pk|k−1 = FkPk−1|k−1F
>
k +Qk (3.29)
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3.5.3 Correction

In the correction step the prediction output is adjusted by incorporating the
new knowledge provided by the sensor and all the internal parameters of the
filter are updated accordingly.
Firstly, the near-optimal Kalman gain:

Kk = Pk|k−1H
>
kS

−1
k (3.30)

Where Innovation (or residual) covariance K is computed as the pseudo
inverse of:

Sk = HkPk|k−1H
>
k +Rk (3.31)

Then we obtain the new corrected state as:

x̂k|k = x̂k|k−1 +Kkỹk (3.32)

Where ỹk is:
ỹk = zk − h(x̂k|k−1) (3.33)

and zk is the new measure. Finally, the updated covariance estimate is
computed:

Pk|k = (I−KkHk)Pk|k−1 (3.34)
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3.5.4 Temporal data association

For associating different bounding boxes between frames, we tested different
approaches. The first and the simplest one is the Euclidean distance where
for every element tracked, we compute the geometrical distance to every
new detected bounding box and associate the two if the new one is not yet
associated and its distance is smaller than a given threshold. Even if this
method is quite accurate, it is not optimal for our solution since it does not
consider the uncertainty associated with the filter. In the final solution we
decided to introduce Mahalanobis distance. This approach compares the
position of the vehicle with respect to a given distribution. The distance is
computed using the formula:

DM(~x) =
√
(uk − x̂k|k−1)TS−1(uk − x̂k|k−1). (3.35)

Where S is the covariance matrix computed by the filter. Later we also added
a constraint on the physical dimensions of the bounding box that should be
close to the new one. Last but not least in the final iteration we also use a class
similarity which associates the two bounding boxes only if all the preceding
constraints have been satisfied and the label given by the network to the new
bounding box is, as we have defined it, exchangeable, basically if the tracker
label is a class that for average shape and features can be misclassified by
the network. All those constraints allow for a unique association between
two frames and a couple of bounding boxes resulting in a pretty accurate
matching.

Once we have associated all the new bounding boxes with the old one, we
update all the remaining trackers and boxes. In particular trackers without
any matching will increase the skipped frames counter and the unmatched
boxes will be associated to new trackers.

Then all the trackers with a skipped frame counter greater then a certain
threshold will be killed meaning that the vehicle they are tracking exited the
visible area. On the other side all the trackers with an active history will be
kept alive. Before publishing the results a final check is performed on over-
lapped boxes where for each box we check if its shape lays partially inside
another box volume. If so the box with a lower score is removed leaving only
the best one.
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E X P E R I M E N TA L R E S U LT S

In this chapter we proceed with the evaluation of the proposed solution and
compare the performance with the state-of-the-art currently available. The
validation of a system can in general be done in several ways, according to
the type of problem it solves, the tools available and the nature of the system
to be validated. Given that the problem we are tackling is quite new, when
compared to other engineering fields, and in our solution we extensively use
machine learning processes, in literature has not been defined any standard
procedure for testing. For this reason, we have combined numerical results
and comparison with extensive testing on real world data building statistics
to easily compare our system output with the results presented in papers of
other solution.

At the beginning of the chapter, we will present the two vehicles used for
the development of the solution, then we will go on showing experimental
results obtained and comparisons with other similar systems.

69
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Figure 4.1: NuTonomy autonomous vehicle prototype based on Renault ZOE

4.1 nutonomy av prototype

The base for the NuTonomy experimental vehicle is a Renault Zoe with a
complete and modern sensor suite. As already mentioned above, the vehicle
is equipped with a HDL32 Velodyne LiDAR, 6 high resolution cameras sited
in strategic position to cover the surrounding of the vehicles at 360°, a radar
that points forward, an IMU and a GPS.
This setup is interesting because it is close to the one we have on the experi-
mental vehicle at Politecnico di Milano that is important for a reliable and
safe reuse of the model trained on the data coming from this car.

4.2 data description

The dataset comes in a custom format and contains over 1000 scenes of
20 second each manually selected to show a diverse and interesting set of
driving maneuvers, traffic situations and unexpected behaviors. The data
are in raw format and contains images from the 6 cameras, lidar point
cloud and radar data, GPS and IMU sorted in different folders. All the data
are provided with additional metadata and sensor information. For Neural
Network training purpose data come already annotated and split in a train
and test set randomly selected to avoid biases. Focusing on LiDAR data,
the point clouds are recorded at a frequency of 2Hz and are provided with
the annotation of objects in from of bounding boxes with a center, the 3

dimension and the tree rotation in space with respect to the object center and
a class label.



4.2 data description 71

The classes available are ten identified by a number from 0 to 9 in this
order:

0. Car

1. Bicycle

2. Bus

3. Construction vehicle

4. Motorcycle

5. Pedestrian

6. Traffic cone

7. Trailer

8. Truck

9. Barrier

The data are automatically labelled using a custom software provided by
SCALE, a company specialized in solution for autonomous driving applica-
tion. This software works by extracting the labels from the images using a
neural network image classifier and then applies the labels to the 3D point
cloud reconstructing the 3D shape of vehicles, the dimensions, and the head-
ing combining different consequent images. Before the dataset publication,
all the data annotations have been manually checked and fixed if necessary
leading to an accurate and reliable annotated dataset. The annotation covers
all the objects in the sensor visible area and for every annotation in the point
cloud a corresponding annotation is present on the corresponding images for
visual examination. The only note about this software is that this annotation
algorithm works with the complete scene having a-priori all the images and
point clouds of the 20 second scene therefore tends to produce some bound-
ing boxes with as low as a dozen LiDAR points in some scenes, border line
cases that are discarded in a pre-filtering step before the data are used in the
training procedure.
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Figure 4.2: NuScenes dataset data format
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4.3 polimi av prototype

The experimental vehicle was developed by the Department of Mechanics
and the Department of Computer Science of Politecnico and is specifically
meant as a test platform for experimenting new solutions for autonomous
driving and advance driving assistance solutions. The experimental setup
is built around a ZED One electric car. The vehicle can be either equipped
with a Velodyne VLP16 or with HDL32E lidars mounted on the roof for 360

degrees field of view. The LiDAR is mounted on a slightly tilted forward
support to direct and cover all the area in front of the vehicle. The sensor suite
also includes a Continental Radar, a Leddartech M16 solid state laser and a
Texas Instruments AWR 1642 Radar. On top of the vehicle, facing forward, is
also mounted a Stereolabs ZED stereo camera. The absolute position of the
vehicle is provided by a set of Swiftnav RTK GPS, one mounted on the hood
of the car and one mounted on the roof at the back of the car. Odometry
data like the steering angle and the vehicle speed are provided by the car
telemetry while the IMU provides acceleration and inertial measurements of
the motion.
On the vehicle is installed a Jetson Xavier embedded board built by NVIDIA
corporation that runs ROS and handles data recording and can also support
processing for our system.
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Figure 4.3: Polimi autonomous vehicle prototype

4.4 data format

All listed sensors provide information on the surrounding of the car, but
they differ in precision, field of view, and quality of data. In particular, the
LiDAR is the only sensor retrieving information at 360 degrees, ranging from
3 meters up to 100 meters with centimeter precision on 16 layers for VLP16

model and on 32 layers for HDL32E model. The retrieved data from the
LiDAR is a dense point cloud, a 3D representation of the environment. The
speed data and steering angle are contained in a specific topic called swiftnav
and the GPS information are stored into two custom messages.
The dataset came in the format of a ROS bag. Bags are the primary mechanism
in ROS for file data logging: the bag file tool chain is used to record datasets,
visualize, label and store them for future use. The bag contains many topics,
reflecting all the information stored in it; of these topics, we have been
working mainly on the ones coming from LiDAR, GPS and odometry.

4.5 additional experimental hardware

During the development of the project, to support specific heavy tasks also
external computational resources have been employed. In particular, multiple
slots on the Polimi Westworld server have been used. The server provides
environment with 1 dedicated 12GB GeForce GTX1080Ti out of 8 shared,



4.5 additional experimental hardware 75

40 shared 2.20 GHz Intel Xeon E5 CPU cores, and shared 256 GB of RAM.
Moreover, for testing purposes the entire pipeline was deployed also locally
on a Ubuntu 20.04 machine fitted with an Intel i7 4770K 3.5 GHz 4 core CPU,
a GeForce GTX780 with 3 GB dedicated memory and 16GB RAM.
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4.6 results

We will present here the results obtained during this research work. To make
the evaluation easier and more understandable we will split the analysis into
two parts.

In the first part we will focus on the segmentation results, while in the
second part we will present tracking and filtering results. Even if the two
nodes work also independently and are analyzed here in separate sections
the system has been tested also as a whole and is meant to be deployed
as a unique block. The entire work was carried out in a Dockerized envi-
ronment leveraging the power of containers. The virtual environment has
all the libraries, configurations and software necessary for the training and
the deployment of the system. The great advantage of this technique is the
fact that by paying a little overhead in terms of performance we gain the
possibility of porting the system from a machine to another, in our case from
the Polimi server to a local machine or to the embedded system installed
on the vehicle in matter of minutes without having to reconfigure all the
environment.

4.6.1 Network results analysis

The development of the network was carried out in Python 3 using PyTorch
and CUDA libraries to fully take advantage of NVIDIA hardware available
in the training Polimi Westworld server.
The network was developed on the proposed structure by SECOND paper
and was adapted to use NuTonomy NuScenes dataset as training and test
data. This dataset has been selected for his diverse and complete set of driv-
ing scenarios and interesting sensor setup. After the code implementation
has been completed, we mainly focused on testing different network configu-
ration. Configurations of the networks are the key for good performance of
the classifier. During the testing we notice significant differences in terms of
performance and convergence speed between the tested models. Performance
varied up to 10% in average precision on class bases and the convergence
speed changed quite a lot and was up to double for some solutions.
We can analyze the configuration files by splitting them into three sections:
the network configuration, the class features descriptors, and the training
setup. The main changes between configurations are in the first two sections,
the training setup, as previously mentioned has been kept unchanged for
better comparison on convergence and network performance.
As the name implies the first document section contains the configuration
of the network starting from pre-processing parameters for voxelization and
clustering, continuing on network internal structure and finishing with the
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definitions for initial losses and weights parameters. Here the main changes
are on sample importance that varies between 0 and 1 and influences how
much a new sample modifies the model and influences its output during the
training process. Another relevant parameter is the non-maximum suppres-
sion (NMS) class agnostic that if set to true suppress nested or intersecting
bounding boxes of any class. Even if, for the network output we obtained
better results with this parameter set to false we have seen that having mul-
tiple bounding boxes proposal, even if overlapped, leads to a better result
for the filter stage. In fact, in this way the filter can chose between different
bounding boxes, choose the best matching box and discard all the others.
Regarding the class features descriptors, the main changes are on two pa-
rameters called "matched threshold" and "unmatched threshold". The two
parameters define the acceptance threshold and affect how restrictive we are
on similarity between features. The goal is to find the right value that enable
to match two features if similar and instead discard them if they present
differences. A lower value demonstrated to be more effective, basically we
accept weaker features in exchange for more anchors to evaluate.

4.6.2 Best models

The four more promising models was compared to reach the one used in the
final solution. Here we present and compare them; we have call them multi
head area (mhead), mid area (mida), low area (lowa) and low area improved
(lowa’).
All those configurations were tested at the same training step with the same
reduced dataset input. To speed up this pre analysis phase a subset composed
by 1/8 of complete dataset was created randomly selecting 1 scene every 8

and used for this step. On average the training of each of those models took
around 20h to reach the point of analysis.
For the comparison we have used a metric called Average Precision (AP)
defined as:

AP@k =
1

N (k)

k∑
i=1

TP (i)

i
(4.1)

N (k) = min (k, TPtot) (4.2)

TP(i) =

{
0 ith is False

TPseen to i ith is True
(4.3)

Where k is the number of detections that we consider for the analysis. Once
we have defined this parameter, we can easily compare the partial results
obtained.
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Figure 4.4: Performance comparison of different network models for specific classes

Looking at the graphs for the 4 more relevant classes in urban environment
we can see that lowa configuration excels in the detection of cars and in
general on mid sizes vehicles. Compared to the other three performs slightly
worst on pedestrians but it has the best performance on barrier and traffic
cones. Here are also reported the results for each class obtained by each of
the four models developed. For a faster and easier comprehension each cell is
filled with a different nuance from red to green. Values that are highlighted in
green perform better than all the models in that specific class while the values
highlighted in red perform the worst. It is important to note that reducing
the dataset lead to the poor performance on rare classes like Construction
Vehicles, Bicycles and Motorcycles that do not appear in train and test data
reduced.

Configuration mhead

Class Car Motorcycle Pedestrian Bicycle Bus C. Vehicle Trailer Truck Barrier T. Cone

AP@0.5 59.27 2.58 53.11 0.00 20.09 0.00 1.55 12.37 7.31 11.56

AP@1.0 73.23 3.73 54.84 0.00 40.11 0.00 13.01 23.85 20.7 12.25

AP@2.0 77.15 3.83 56.52 0.00 53.69 0.00 24.93 29.33 27.9 13.79

AP@4.0 79.31 3.9 58.96 0.00 55.76 0.00 33.71 32.01 34.16 17.09

Table 4.1: Network model mhead reduced dataset input performance for each class
AP@k percentage
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Configuration lowa

Class Car Motorcycle Pedestrian Bicycle Bus C. Vehicle Trailer Truck Barrier T. Cone

AP@0.5 60.31 7.19 34.11 0.00 17.85 0.00 1.09 7.71 6.74 10.78

AP@1.0 75.76 12.27 38.8 0.00 37.66 0.00 13.54 20.41 28.79 14.97

AP@2.0 80.67 12.89 41.46 0.00 48.04 0.25 21.74 25.8 38.22 18.86

AP@4.0 82.44 13.19 44.91 0.00 49.84 0.66 28.65 28.74 43.06 24.17

Table 4.2: Network model lowa reduced dataset input performance for each class
AP@k percentage

Configuration mida

Class Car Motorcycle Pedestrian Bicycle Bus C. Vehicle Trailer Truck Barrier T. Cone

AP@0.5 56.30 5.89 42.01 0.00 10.38 0.00 0.03 6.48 4.53 7.49

AP@1.0 71.12 8.98 44.8 0.00 29.24 0.00 5.07 14.94 17.94 8.75

AP@2.0 75.68 9.30 46.62 0.00 42.89 0.00 13.14 19.84 24.65 10.52

AP@4.0 77.9 9.52 49.22 0.00 45.00 0.00 17.08 22.36 29.71 14.23

Table 4.3: Network model mida reduced dataset input performance for each class
AP@k percentage

Configuration larga

Class Car Motorcycle Pedestrian Bicycle Bus C. Vehicle Trailer Truck Barrier T. Cone

AP@0.5 55.36 5.81 36.00 0.00 22.77 0.00 3.15 12.13 7.74 6.48

AP@1.0 71.01 11.08 45.76 0.00 41.42 0.02 17.51 23.31 33.49 11.37

AP@2.0 75.65 11.77 49.57 0.00 51.91 1.41 29.65 30.28 42.59 15.46

AP@4.0 78.06 12.36 53.17 0.00 54.72 2.68 37.09 32.97 47.14 21.56

Table 4.4: Network model larga reduced dataset input performance for each class
AP@k percentage
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Figure 4.5: SECOND inference performance from the paper

After extensive testing we decided to carry on the training of lowa that
has been considered the more promising model and the one that on average
performs the best over the all the classics. The model lowa’ was trained in
its final form with the complete NuScenes dataset for approximately 3 days
equivalent to 234450 iterations on a virtual machine running on Westworld
server with 1 GPU and 10 CPU cores. We trained the model up to the point
where we reached the maximum performance, and the results tend only to
degrade going forward in training.

In Table 4.5 are reported the final lowa’ model AP@k for each class.

Configuration lowa’

Class Car Motorcycle Pedestrian Bicycle Bus C. Vehicle Trailer Truck Barrier T. Cone

AP@0.5 62.36 10.42 37.48 0.00 23.33 0.00 3.79 10.15 9.35 12.42

AP@1.0 77.4 16.26 42.2 0.00 39.47 0.00 15.89 22.27 33.34 17.24

AP@2.0 82.1 16.96 45.09 0.00 49.43 0.78 25.13 28.97 43.03 21.87

AP@4.0 83.74 17.39 48.67 0.00 51.68 1.5 33.78 31.97 47.58 27.42

Table 4.5: Network final model lowa’ performance for each class AP@k percentage

For comparison, even if the SECOND paper present data using a slightly
different metric, on average SECOND paper results obtained by training the
network with KITTI dataset resulted in an accuracy of 75.63% on average on
cars whereas our solution reached 76,4% on the same class while keeping a
similar inference time. On pedestrian instead our solution performed almost
identically to SECOND correctly identifying the 43.36% of the cases, while in
the original paper has been achieved an average precision of 43.64%.
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LiDAR sensors used

Model Manufacturer Layers Range Vertical Scope Layer pitch Price(€)

HDL32E Velodyne 32 80m 10°/-30° 1.33° 30K

VLP16 Velodyne 16 100m 10°/-10° 1.33° 8K

Table 4.6: Comparison between LiDAR sensors used

4.7 lidar comparison

Given that the network has been implemented to be agnostic to the LiDAR
model we took the opportunity to test out different sensors to compare and
understand which are the limits of the trained model in terms of resolution
and number of layers of the sensor. The unit tested had been chosen because
of one or more characteristics like being light, small, cheap, with a good
quality or/and accuracy. All the sensors considered for the analysis are 360°
LiDARs meaning we obtain a point cloud scan of the entire space around
them but again the network can work without retrain also with LiDARs with
a limited field of view, LiDAR from other brand or with different specification
as long as the sensor output is a point cloud.
We had the opportunity to directly compare performance for the two Velo-

dyne LiDARs by using a recorded bag with the more expensive model and
removing the 16th lower layers. Given the similar construction characteristic
we were able to estimate on the same scene the network output. Unfortu-
nately, we do not have any ground truth of the vehicles and object present in
the scene, but we decided to compare the identified objects at each instant
with the two setups. The results demonstrate that the difference in number
between detected objects by VLP16 and HDL32E is extremely small. As
shown in the Figures 4.6 the pattern during the entire session is identical.
Considering the two most common classes in urban environment, cars in
Figure 4.7 and Pedestrian in Figure 4.8 the variation is minimal. The only big
loss of detection happens for small objects closer to the vehicle.

The 32 layers sensor leads to more bounding boxes detections as predictable
however all those boxes are located at the side rear of the vehicle and in the
back. This region is not so critical for the driving task automation. From those
results we can say that the difference in price is not justified by an increase
in performance and this support our thesis objective that 16 layers sensor
provide enough data to detect obstacles in the region of interest. Moreover,
we have to remember that our LiDAR is slightly tilted forward, setup that
somewhat increases the front detection but affects negatively the detection in
the back area of the vehicle.
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Figure 4.6: Performance comparison between detection of all classes: VLP16 in blue
vs HDL32E in orange

4.8 tracking results

The second part of the thesis work has been devoted to the development of
tracking algorithm. We wanted to enrich our network output with temporal
data and link each frame with the past ones to increase accuracy of the
prediction and to develop a better understanding of the drive scene.

During testing on data recorded at Monza we highlighted that our filter
robustly handles noisy detection even in an uncommon driving scenario
like the one found at a racetrack. During the entire run the filter separated
correctly the active and static classes and tracked the technical support van.
The filter has been able to select the correct bounding box between the one
present in the segmentation node output, estimate its position, dimensions
and heading with an acceptable accuracy. Moreover, thanks to the class his-
tory saved in the filter we were able to correctly fix the wrong label assigned
to the van in some frames.

We have demonstrated also the multi object tracking capabilities thanks
to different test run recordings obtained in Milan with the Polimi Car. The
results in this case have been validated visually since we do not have any
ground truth available for our custom data.
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Figure 4.7: Performance comparison between detection of cars: VLP16 in blue vs
HDL32E in orange
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Figure 4.8: Performance comparison between detection of pedestrians: VLP16 in
blue vs HDL32E in orange

(a) VLP16 sensor input (b) HDL32E sensor input

Figure 4.9: Segmentation result comparison: VLP16 vs HDL32E
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4.9 algorithm performance

A strict requirement of every autonomous driving system is time. A good
performing non real time system is totally useless for automating the driving
task. For this reason, our solution has been developed since the beginning as
a real time system with strict time constraint. During the tests on the local
machine system, we were able to detect and track objects in real time at an
average frequency of 5Hz. Considering the sensor data flow that has a rate of
20Hz for the LiDAR we use on average four scans to obtain one view of the
scenes. Of course, the number of layers and resolution of the LiDAR and the
maximum number of detected objects in the scene affects those figures. Those
results are encouraging since showed the potential of those type of CNN for
fast segmentation and a consequent filtering and tracking stage. From a rapid
analysis we identified that the main bottleneck of the system that limits the
performance and does not let the system go faster is the pre-processing over
the row point cloud. This step cycles through the entire point cloud different
times, first to convert the data to a standard format, then to create voxels,
finally to analyze the features inside each voxel.

The filter node on the other side demonstrated to be pretty efficient in
terms of processing and the time it takes to be computed at each step is
negligible when compared to the inference node. We imposed a limit of active
trackable objects of 50 units. The execution time varies proportionally to the
number of active trackers but is never the bottleneck of the system.

4.10 quality of the estimation

In terms of accuracy in the run of Monza we have been able to check multiple
parameters given the availability of the ground truth provided by the GPS
position of the preceding vehicle and its dimensions. Filter performance are
strictly bounded to the goodness of all the input parameters. The images
below show the filter input data of the vehicle kinematics. At the beginning
of the test we encountered noisy measurements that cause an instability of
prediction. For this reason the estimation accuracy analysis has been done on
data from Monza run from time 150 seconds till the end.
The run has been recorded using Polimi car in Autodromo Nazionale Monza.
During all the run a support van moves in front of the vehicle to simulate the
interaction with traffic. The GPS position of the van is recorded and used as
ground truth.
The van, a Fiat Talento, has been detected for all the interval in a position that
on average has an accuracy of plus and minus 0.5m in x and y directions in
the worst case scenario. When all the input data are correct the position error
drops significantly and the position is estimated with an accuracy of plus
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Figure 4.10: Ego-vehicle speed in meter per second of ego-vehicle during Monza
test run

and minus 0.15m. The heading of the tracked object is estimated by the filter
correctly. Given the fact that we do not have a ground truth we had only the
opportunity to compare the heading with the van back side detection from
LiDAR. We can say that the predicted heading is correct with an average
error below 1 degree. The dimensions of the van has been detected by the
network almost perfectly considered that all the input bounding boxes of
the training set has more or less 0.15 m of slack at each side to give a safer
estimation of the vehicle occupancy. On average the network predicted a
vehicle width of 2.258 m, a length of 5.293 m and a height of 2.438 m where
the van data-sheet reports a width of 1.956 m, a length of 5.100 m and height
of 2.493 m. Overall estimations are quite accurate in terms of dimensions
and in any case are over the vehicle size giving a safe view of the scene.
We expect to have similar results on all the other classes segmented by the
network. The filter performed as expected removing noisy detection and
robustly identifying the correct position the preceding vehicle.
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Figure 4.11: Ego-vehicle wheels angle in degrees of ego-vehicle during Monza test
run
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Figure 4.12: Ego-vehicle heading in degrees estimated by Filter IMU during Monza
test run
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Figure 4.13: Filter output compared to sensor detection for x position. Spikes in GT
graph are caused by missing or wrong GPS data.

Figure 4.14: Filter output compared to sensor detection for y position. Spikes in GT
graph are caused by missing or wrong GPS data.
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Figure 4.15: Filter output compared to sensor detection for heading. Spikes in GT
graph are caused by missing or wrong GPS data.

Figure 4.16: System in action during Monza test run. In purple the filter output
corresponding with the preceding van and in light gray the detections coming form
the segmentation network and the ego-vehicle
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Figure 4.17: System in action during Monza test run. In purple the filter output
corresponding with the preceding van and in light gray the detections coming form
the segmentation network and the ego-vehicle





5
C O N C L U S I O N S

5.1 results discussion

The results obtained during this research work highlighted the possibility of
leveraging LiDAR data not only from high level expensive sensors and not
only for the automation of driving task but also for advanced safety systems
implementation. We demonstrated a real time inference on different LiDAR
sensor maintaining the same trained model for the network without loss of
performance even when the resolution of the sensor is as low as 16 layers.
Parallel to this we developed and tested the use of the information obtained
by the network as position, heading, dimensions and class of the vehicles as
input of an Extended Kalman Filter to further improve the final output quality.
Finally, thanks to the filter we also obtained the trajectory and speed of the
vehicles, useful parameters for scene assessment and understanding. We also
tested different configuration of the system thanks to virtualization techniques
guaranteeing real time performance with one GPU and as low as 4 cores
on the Polimi server. Given the particular period we are traversing, working
from home at the thesis gave me the opportunity also of testing the possibility
of outsourcing computation of sensor data outside the vehicle on the Polimi
Westworld server that can be easily handled by ROS and with enough data
throughput can almost match the performance and latency obtained during
local computation. In fact, we have seen that the network latency is hidden
by a faster processing step thanks to more powerful hardware, of course a
uncommon setup for autonomous vehicle but still an interesting test.

91
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5.2 system limitations

As for all the systems, also this one presents some open questions and some
limitations strictly related to the initial research query and to how the project
evolved.

The overall results of the system are encouraging and show the feasibility of
this approach for autonomous driving applications. As explained before the
system has been developed as a path finding solution to demonstrate multi
object real time tracking capabilities stating from raw LiDAR data. For this
reason, the solution was developed using Python, a programming language
particularly suitable for fast prototyping and rapid system iteration which,
however, comes with computational overhead that is reflected in performance
limitations. The system is capable of performing inference and tracking in
real time on a high-performance PC with some limitation on the maximum
input data rate of the LiDAR. To unlock the full performance it is required
a rewriting of the main algorithm in C++, a programming language perfor-
mance oriented and more suitable for embedded real time applications.

Another improvement that can greatly help in terms of performance is
the use of upgraded hardware for inference. Latest graphics card models
and dedicated autonomous vehicle computational hardware from NVIDIA
support the Floating Point on 16 bit (FP16) data format that can speed up
the inference process like demonstrated by those articles [58][59]. The system
already supports this feature thanks to the CUDA libraries but has never
been tested since we do not have the compatible hardware on hand.

As mentioned in the previous chapter we decided to work, during the de-
velopment phase, into a Docker container to be able to fast deploy and test
the system with different configurations and on different machines. This
approach is particularly convenient for testing purposes, but it introduces a
small overhead in terms of performance [60]. To remove the overhead in the
system a native deployment is suggested for maximum performance.
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5.3 segmentation network limitations

For the Inference part of the system, the biggest limitation is the fact that
the network has been trained with NuScenes dataset that, as explained, has
been recorded mainly in Boston, US. The network is able to generalize pretty
well on our data recorded in Milan but sometimes it struggles to identify the
correct class of vehicles and road signs for couple of frames, problem that has
been mitigated with the introduction of the Extended Kalman Filter but can
be addressed also at a step prior retraining the network with a local, maybe
European dataset. This can lead to a performance improvement since the
American vehicles and signs are quite different in terms of sizes and shapes.
For instance even if the bicycle class is present, it is rare to encounter given
the different habits of Americans. The class is so rare that in testing the metric
used resulted in an AP of 0 since no boxes with that class were encountered.
Moreover, during a test run with the Polimi Car we have encountered a tricy-
cle vehicle in use by Poste Italiane for mail delivery that in US does not even
exist and the network sometimes identifies it as a pedestrian sometimes as a
motorcycle and sometimes totally misses it and considers it as noise. Another
example is the fact that small and mid-size vans, particularly common in Italy
are sometimes identified with the class truck and sometimes as cars, problem
that arises in the Monza test run where the Fiat Talento’s label is wrong for a
few instants. The filter covers the problem by fixing the misclassification but
again the problem can be eliminated using a local dataset. Finally, Italian and
in general the European version of traffic cones are usually missed by the
network due to their smaller shape compared to their American counterpart,
since they are half the height and present a different taper angle as you can
see in the Figure 5.1.

Another problem that we encountered with our data is that the configu-
ration of the Polimi Car, with the LiDAR slightly tilted forward of 6 degrees
helps scan the front area of the vehicle but lowers the overall reachable height
and returns data that are not usable for segmentation purposes in the back
part of the vehicle. This explains why trucks and van slightly further than
40m ahead of the ego vehicle are sometimes identified and sometimes not
since the network does not find the top edge of the vehicle shape even if,
from the sensor data-sheet, the sensor is rated for up to 100m detection
distance. Moreover this tilting angle confuses the network in some situation
and leads to misclassification of vehicles due to different pattern of the data
like with road barriers that are identified not planar with the ground but
with a tilt angle. This problem again is related to our setup and can be
solved mounting the sensor in level with the ground. The network is trained
with a similar configuration but with a 32 Layers LiDAR that only increases
the maximum detection distance up to 120m. Experiments were carried out
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(a) Italian Traffic Cones (b) US Traffic Cones

Figure 5.1: Comparison between Italian and US Traffic Cones

by extracting 16 Layer information from the training dataset, reproducing
the Polimi Car LiDAR sensor output but in no tilted configuration and the
problem disappeared resulting in more stable and robust results.
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5.4 filter limitations

Concerning the developed Extended Kalman Filter,it works in tracking multi-
ple objects and predicting correctly the next position of the agent in the scene
within a good accuracy. It shows some limitations when sudden changes to
the system happen, like when the tracked vehicle makes a sharp turn and the
predicted bounding box tends to deviate a bit in respect to the vehicle real
position. Moreover due to the noise data sometimes the filter shows unstable
behaviours. Thanks to the fact that we have classes of each agent as network
output a further development can implement ad hoc kinematic model for
each class that keeps in consideration the different kinematic constraint of
the motion for vehicles, bicycles and motorcycles, trucks and pedestrians
substituting the assumption and kinematic model simplifications we have
done here.

Moreover the filter is strictly bounded to the presence of accurate GPS data
since a fast and simple approach for computing the heading angle has been
implemented. We encountered some problems of GPS accuracy and overall
stability in urban scenarios where high buildings cause a loss of signal and a
consequent worsening of filter accuracy. This problem can be addressed by
employing more refined solutions for the heading estimation that keep in
consideration also the IMU data like we have done during the testing with
Monza test data or by using dedicated sensor for heading measurement.

Another improvement to further ameliorate the final results can be to in-
corporate in the filter the road map or a road line detection algorithm to
remove false positive outside the road scene; sometime in fact happen that
the network recognize some features of building like edges and walls as big
trucks and publish boxes outside the road and outside the area of interest of
the system.
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5.5 future works

This work is only the beginning and multiple expansion can be implemented
to enhance the results. First of all a retraining on an European dataset is
required, a dataset that at the moment of writing does not exist in a form
that we need for training; the one available are far behind NuScenes both in
dimensions, quality of data and completeness. This alone can greatly benefit
the accuracy of the classifier in the prediction of bounding boxes and the
corresponding classes. On top of a regional model, the development of more
refined Extended Kalman Filter for each class can be helpful for a more
stable and precise outcome particularly for the tracking of pedestrian, the
only class that does not have any kinematic constraint. For what concerns
possible improvements based on the path of each vehicle can be predicted
a possible future trajectory that is fundamental for driving task automation
and in particular to the motion planner to choose the best path to be followed
while avoiding other agents and reach the final goal.

To improve system accuracy during the segmentation step an interesting
idea is to combine multiple consequent scans from the LiDAR into one higher
density point cloud and correct for the misalignments between frames by
using odometry data.
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(a) LiDAR installed in Henderson, NV (b) System Rendering

Figure 5.2: Road Crossing Monitoring

5.6 possible applications

This work can be applied to multiple fields and applications, and has been
developed from the beginning to be independent and easy to be transferred
from a system to another, from a sensor to a newer one, from an application
to a different one. It can be integrated in an autonomous vehicle pared with
cameras and radars to provide full self driving capabilities to a vehicle as
the Polimi Car or can work stand alone on a public transportation vehicle
to assist and prevent accidents from happening especially in complex and
chaotic environments in a dense populated area like Milan. Moreover it can
be deployed on a fixed installation, alone or in pair with a security camera,
to monitor and track vehicles and pedestrian in a road cross for security
and monitoring purposes preserving the privacy of the citizen since LiDAR
data are not enough to provide identification or plates numbers. Velodyne
has started just recently in US, in partner with University of Nevada and
Qualcomm, a pilot project that involves the deployment of LiDARs to monitor
traffic and pedestrian and test out new concepts for Smart Cities of the future.
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