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1. Introduction
Topology Optimization (TO) is a powerful
tool in computational design that optimizes
the distribution of material within a specified
domain to create structures that adhere to
prescribed design constraints. The resulting
topology provides an efficient use of material,
leading to cost savings and lightweight struc-
tures, which is valuable for engineers. However,
computing time remains a bottleneck, limiting
its application in real engineering contexts.
To address this challenge, researchers are
exploring the use of artificial intelligence to
accelerate the process. This thesis proposes a
multi-stage machine learning model that aims
to predict an optimal topology in 2D or 3D,
in a single shot without an initial form-finding
process. The proposed method utilizes a com-
bination of machine learning models to solve
distinct parts of the TO problem, resulting
in a near-instantaneous optimization. The
thesis explores three problem cases, and the
results are presented in an interactive computer
application that visualizes and updates the
predicted topology in real-time in response to
user changes of the loading parameters. The
proposed method can generate mean average
error accuracy of less than 0.035 for the density

field for all three test cases, with a predictive
speed that is less than 0.5% that of a traditional
TO algorithm.

2. Topology Optimization for-
mulation

This chapter presents the general formulation
for the topology optimization problem, and the
solution algorithm based on the SIMP method.
This will be adopted for dataset generation pur-
poses, as detailed in the next section. In par-
ticular, we adopt the 88-line MATLAB code
’top88.m’ developed by Andreassen et al. (2010)
[1] for 2D problems, whilst the extension to 3D
is based on the 125-line code proposed in the
paper by Ferrari and Sigmund (2020) [2]. The
focus of the following formulation is restricted to
minimum compliance problems with a statically
applied load.

2.1. 2D TO formulation
By adopting the SIMP approach, the user is first
required to input the number of rectangular fi-
nite element along the x and y directions, in
which the design domain should be discretized.
Each finite element e is characterized by a den-
sity value xe that affect the corresponding value
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of the Young’s Modulus Ee, as follows:

Ee(xe) = Emin + xpe(E0 − Emin), xe ∈ [0, 1]. (1)

The first step is to specify the domain, boundary
conditions and loading conditions of the prob-
lem. Subsequently parameters such as the vol-
ume fraction, filter radius and sensitivity filter-
ing can be adjusted to produce an output as
shown. The aim of the optimization problem is
to find the optimal material distribution within
a given domain that satisfies the minimum com-
pliance problem for a fixed constraint on the
amount of material, expressed as a fraction of
the total design volume.
The mathematical formulation of the TO prob-
lem is given in the following set of equations:

min
x

: c(x) = UTKU =

N∑
e=1

Ee(xe)u
T
e k0ue,

subject to : V (x)/V0 = f,

KU = F ,

0 ≤ x ≤ 1.

(2)

The first line describes the objective function,
the so-called structural compliance. It is de-
fined as the work of external loads at equilib-
rium, providing a measure of the overall stiff-
ness. The minimization problem is subject to a
set of constraints on the optimization variables,
respectively in terms of prescribed volume frac-
tion, global force-displacement relationship, and
admissibility of the element densities. Herein:
adopting a regular mesh of finite elements, x is
the vector of design variables (one per element);
c is the compliance to be minimized; U and F
are the global displacement and force vectors,
respectively; K is the global stiffness matrix, as-
suming a linear elastic isotropic material; ue is
the element displacement vector; and k0 is the
element stiffness matrix for an element of unit
Young’s Modulus; N refers to the number of el-
ements within the discretized domain; f refers
to the prescribed volume fraction; V (x) and V0

refer to the volume of the placed material and
to the target design volume, respectively. The
assumption of small displacement holds.
To update the element density values over
each iteration of the optimization problem, we
adopt the following standard optimality criteria
method with heuristic updating strategy:

xnewe =


max(0, xe −m) if xeBη

e ≤ max(0, xe −m)

min(1, xe +m) if xeBη
e ≥ min(1, xe +m)

xeB
η
e otherwise

, (3)

where m is a suitable threshold on the iteration
step, η (=1/2) is a numerical damping coeffi-
cient, Be is derived from the optimality condi-
tion, as below:

Be =
− ∂c

∂xe

λ ∂V
∂xe

, (4)

with λ being a suitable Lagrangian multiplier
value, selected using a bisection algorithm whilst
still satisfying the volume constraint. Eq.(4) in-
volves the sensitivities of the objective function
c and the material volume V with respect to
the element densities xe, computed under the
assumption that each element has unit volume.
An additional feature is the filtering strategy;
that is, the application of sensitivity filter which
involves a weighted average over different ele-
ments. This is a partially heuristic, yet efficient
solution to the arising of undesired checkerboard
patterns (unphysical minima) and mesh depen-
dence issues.

2.2. Extension to 3D TO formulation
The extension to 3D problems is instead based
on the ’125-line’ code, known as ’top3D125’, and
released in 2020 by Ferrari and Sigmund [2].
This code employs significantly more efficient
filter assembly and implementation procedures
compared to the ’top88’ code, as well as short-
cuts in the design update step. One of the other
main differences employed in the 3D formula-
tion, as opposed to the 2D formulation, is the
filtering of the densities (in the 2D formulation
the filtering is applied only to the sensitivities).
This in turn necessitates a minor reformulation
to the sensitivity equations. The sensitivities
of the objective function c and volume V with
respect to the design variables xj are obtained
through use of the chain rule. The only other
minor modifications from the 2D formulation is
the definition of the elemental stiffness matrix
Ks

e for the 8-node hexahedron, and the addition
of the extra ’space-dimension’ in the necessary
lines to account account for 3D.

3. Matlab Implementation and
Dataset formulation

For both the 2D and 3D cases, it is necessary
to create a robust and large enough dataset to
properly train the machine learning model. We
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define cases here to mean unique sets of bound-
ary conditions, which can be implemented by
means of a suitable parametrization of the MAT-
LAB code. In particular, we consider case stud-
ies involving an MBB beam as 2D example and
a cantilever and a bridge as extension to 3D. In
this executive summary, we include only the 3D
bridge case for conciseness. To properly sample
the parametric input space (which accounts for
the loading conditions, and also the boundary
conditions in the bridge case), a Latin hypercube
sampling (LHS) strategy was employed. LHS
is a statistical method for generating a near-
random sample of parameter values from a mul-
tidimensional distribution and allows a uniform
sampling of the full sample space.

3.1. 2D MBB
The MBB case was discretized in a domain with
size nelx = 120 and nely = 40. The volume
fraction was prescribed as volfrac = 0.5, the
penalization power penal = 3 and the filter ra-
dius r_min = 1.5. The code is split into a main
file which uses a for loop to call the TO algo-
rithm for each unique set of loading parameters.
Each topology optimization loop produces three
outputs; a grey scale optimal topology, a VM
Stress map, and a TorC field. For the 2D MBB
case two loading parameters that are allowed to
vary are the angle = θ, which controls the an-
gle of the force vector, measured anti-clockwise
from the positive x-axis, and the nodeID which
controls the node number onto which the force
vector is applied. As a constraint, the force vec-
tor may be applied only on the nodes on the free
surface boundary, shown in Fig. 1.

Figure 1: Allowable force vector positions in the
MBB case.

The VM stresses were calculated using the fol-
lowing equation:

σVM,e =
√
(σ2

xx + σ2
yy − σxxσyy + 3τ2xy). (5)

The result is shown in Fig. 2, whereby the op-
timal topology is element wise multiplied with
the initial VM stress field to produce the final
VM stress field,

Figure 2: Optimal topology element wise multi-
plied with the initial stress field to produce the
final stress field for both VM and TorC

The TorC zones utilise a similar concept of pass-
ing a stress field through the optimal topology
’masking’ layer. However, in this case, the con-
sidered stress field is characterized by values nor-
malized to range from -1 to 1, with negative and
positive values representing elements mainly in
tension and compression, respectively. This kind
of representation is assumed to incorporate im-
portant information about the dominant prin-
cipal stress acting on each element during the
optimization procedure.

3.2. 3D Bridge
The 3D Bridge case was discretized in a do-
main with size nelx = 60 and nely = 20 and
nelz = 4. The volume fraction was prescribed
as volfrac = 0.12, the penalization power
penal = 3 and the filter radius r_min =

√
3.

The deck is constrained as full material (density
= 1) and has a unit thickness. The void region
located below the deck has a width of 30 units.
The deck region, the void region, and the region
in which the topology is free to develop are high-
lighted in Fig. 3 in red, orange and grey, respec-
tively. The parametric input space accounts for
4 parameters adopted to produce unique topolo-
gies: two control the x-axis position of the acting
loads and the other two control the x-axis posi-
tion of the supports (see Fig. 3).
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Figure 3: 3D Bridge case: schematic represen-
tation of the 4 parameters adopted to create
unique topologies.

A procedure analogous to that adopted for the
2D case is used to map the VM stress field onto
the optimal topology also in the 3D case. This
is computed at the element level as:

σVM,e =

√
1

2
((σxx − σyy)2 + (σxx − σzz)2 + (σyy − σzz)2 + 6 · (τ2xy + τ2xz + τ2yz)).

(6)
Fig. 4 shows a randomly chosen optimal topol-
ogy, as well as the initial VM or TorC stress field,
and the resulting elementwise product; the final
VM or TorC stress field.

Figure 4: Generated optimal topology, initial
VM or TorC stress field and final VM or TorC
stress field.

4. Machine learning formula-
tion

The proposed DL framework is schematized in
Fig. 5. The first two steps of the process con-
sist of training the two DL models, whilst the
final testing step combines the trained models
to predict the optimal topology for a given set
of loading parameters. In particular, the three
steps involve: first, an AE is trained to map opti-
mal topologies into itself; second, a MLP model

is trained to map the input loading parameters
onto the latent space representation of the cor-
responding optimal topology, as provided by the
encoding branch of the trained AE; finally, the
MLP model trained in step 2 and the decoding
branch of the AE trained in step 1 are synergis-
tically exploited to create a DL pipeline capable
of predicting, almost in real-time, the correct
topology for given a set of loading parameters.
These steps will be explained in more detail in
the following sections.

Figure 5: Scheme of the proposed deep learning
pipeline.

5. Results
To evaluate the similarity between the predicted
structures and the optimal topologies produced
using the SIMP algorithm, three accuracy met-
rics are used: the binary accuracy (BA) [3],
the MAE and the root mean squared accuracy
(RMS). The BA metric is given by:

BA =
ω00 + ω11

n0 + n1
. (7)

Herein:, nl with l ∈ {0, 1}, is the total number
of pixels of class l, and ωtp, with t ∈ {0, 1} and
p ∈ {0, 1}, is the total number of pixels of class t
predicted to belong to class p. Because the pre-
dicted structures contained pixel values within
a continuum range (between 0 and 1 for opti-
mal topologies and VM stress, and between -1
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and 1 for TorC zones), a threshold function was
utilised to binarize the predicted outputs.

xi,binary =

{
1, if xi > xthreshold

0, if xi < xthreshold
for i = 1, ..., n. (8)

Herein: xi is the input topology, xi,binary is the
binarized output field, and xthreshold is the bi-
nary threshold value: 0.5 for optimal topologies
and VM stress, and 0 for TorC zones. The MAE
and RMS accuracy metrics are given as follows:

MAE =
1

n

n∑
i=1

|xi − x̂i| for i = 1, ..., n. (9)

RMS =

√√√√ 1

n

n∑
i=1

(xi − x̂i)2 for i = 1, ..., n. (10)

Where xi refers to the density value assumed by
element i, x̂i refers to the predicted density value
assumed by element i, and n is the total number
of elements.

5.1. 2D MBB
The first quantitative evaluation of the benefit of
the proposed method is the comparison between
the time taken to generate the optimal topology
using the SIMP algorithm, and the time taken to
predict the optimal topology using the trained
neural network. This is shown below in table. 1.

Table 1: Comparison of average computational
run-time between SIMP algorithm and proposed
methodology.

SIMP Proposed
Method:
Optimal
Topology

Proposed
Method:
Optimal
topol-
ogy
+ VM
or TorC

Dataset
creation

- 8.10 hours 8.10
hours

Training
DL model

- 0.44 hours 0.88
hours

Average
run-time
(in sec-
onds)

12.00 s 0.08 s 0.16 s

A comparison for the average accuracy metrics
on the test set for the 2D MBB is shown below:
An accuracy comparison between the ground
truth and predicted topology is shown for the
3D bridge case in Fig. 6 below.

Table 2: Comparison of average accuracy met-
rics for the predicted topologies when compared
to the ground truth.

Optimal
Topologies

Initial VM
stress field

Initial TorC
stress field

BA 96.46% 99.29% 95.26%
MAE 0.035 0.018 0.025
RMS 0.107 0.030 0.048

Figure 6: Accuracy comparison of the ground
truth and prediction for two optimal topologies
for the 2D MBB case.

5.2. 3D Bridge
A similar comparison between the average com-
putational run-times between the SIMP algo-
rithm and the proposed methodology is shown
below.

Table 3: Comparison of average computational
run-time between SIMP algorithm and proposed
methodology.

SIMP Proposed
Method:
Optimal
Topology

Proposed
Method:
Optimal topol-
ogy
+ VM or TorC

Dataset
creation

- 25.91 hours 25.91 hours

Training
DL model

- 0.61 hours 1.22 hours

Average
run-time
(in sec-
onds)

37.31 s 0.13 s 0.26 s

A comparison for the average accuracy metrics
on the test set for the 3D bridge is shown below:

Table 4: Comparison of average accuracy met-
rics for the predicted topologies when compared
to the ground truth.

Optimal
Topologies

Initial VM
stress field

Initial TorC
stress field

BA 98.50% 98.27% 88.36%
MAE 0.015 0.037 0.047
RMS 0.051 0.057 0.078

An accuracy comparison between the ground
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truth and predicted topology is shown for the
3D bridge case in Fig. 7 below.

Figure 7: Accuracy comparison of the ground
truth and prediction for six optimal topologies
for the 3D bridge case.

5.3. App: 3D Bridge
Although the traditional SIMP algorithm can
provide very optimized solutions for structural
problems, the long computation times, espe-
cially for increasingly larger domains, has pre-
vented it from developing into a serious and
widespread design tool for structural engineers.
Design tools that can provide solutions with
shorter computation times, and allow an en-
gineer to iterate over many potential solutions
to get an understanding of how the problem
changes with respect to variations in the loading
and boundary conditions can save time and in-
crease efficiency. In the following section an app
is presented, whereby the loading parameters for
each 3D case (explained in detail in chapter 3 is
parametrized and controlled by the user. This
app has been created using the Python pack-
age PyVista [4]. PyVista is a Python library
for 3D visualization and analysis of scientific
datasets such as meshes, point clouds, and vol-
umetric data and provides a user-friendly inter-
face to generate 3D plots and interactive visu-
alizations with advanced rendering capabilities.
In this app, the predicted topology changes in
response to the chosen loading parameters, and
updates almost instantaneously as the loading
parameters are updated. The loading parame-
ters are controlled using a sliding bar with a pre-
defined range. The topology is displayed within
the window of the user interface as a 3D ob-
ject. Fig. 8 shows three screenshots of the app
with randomly chosen loading parameters and
predicted topologies.

Figure 8: PyVista render of three randomly pre-
dicted topologies for (a) optimal topology (b) fi-
nal VM stress and (c) final TorC stress.

6. Conclusions
This thesis proposes an efficient non-iterative
multistage DL model that is capable of predict-
ing a near optimal solution for the topology opti-
mization problem in 2D and 3D. The model con-
sists of two parts; first, an MLP model that takes
as inputs the loading parameters for the specific
problem case and outputs the corresponding la-
tent space representation. Second, the decoder
branch of an autoencoder that takes as input
this previously generated latent space represen-
tation and predicts either the optimal topology,
the VM stress field, or the TorC field. Together,
these two parts combine to produce the final DL
pipeline that is able to predict accurate solutions
almost instantaneously. The final VM or TorC
results, are an element-wise multiplication be-
tween the predicted optimal topology and the
either the predicted VM stress field or predicted
TorC field respectively. The predicted optimal
topology thus acts as a masking layer, and the
predicted VM stress field or predicted TorC field
will be mapped onto those elements with a pos-
itive density value, whilst the elements with a
null value will remain void spaces.
Comparing the total average scores for the pre-
dicted optimal topologies when compared to the
ground truth, the 3D bridge scored the high-
est (98.50%, 0.015, 0.051), and then the 2D
MBB (96.46%, 0.035, 0.107), for the three ac-
curacy metrics (binary accuracy, mean absolute
error, root mean square). Comparing the to-
tal average scores for the predicted initial VM
stress field when compared to the ground truth,
the 2D MBB scored the highest (99.29%, 0.018,
0.030), followed by 3D bridge (98.27%, 96.32%,
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94.28%). Comparing the total average scores for
the predicted initial TorC stress field when com-
pared to the ground truth, the 2D MBB scored
the highest (95.26%, 0.025, 0.048), followed by
3D bridge (88.36%, 0.047, 0.078).
A total training set of 2,500 images was gener-
ated for all three problem cases. The training
time varied depending on the size of the do-
main for each case; for the 2D MBB, and 3D
bridge, the training time was 8.1 hours, and
25,91 hours, respectively. Additionally, time was
required to train the DL models, ranging from
0.44 hours to 0.66 hours for the 2D and 3D cases,
respectively. The one key feature of the pro-
posed method is that it requires a large up front
time investment to create the training dataset
and train the DL model. This training was
all done ’offline’, that is, completed before the
model was deployed. Once the training was com-
pleted however, the prediction times are near-
instantaneous, and achieve near-optimal results
when compared to the traditional SIMP topol-
ogy optimization algorithms.
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