
Executive Summary of the Thesis

Cascading on-device keyword spotting and speaker verification in
TinyML

Laurea Magistrale in Computer Science and Engineering - Ingegneria Informatica

Author: Gioele Mombelli

Advisor: Prof. Manuel Roveri

Co-advisors: Ing. Massimo Pavan, Ing. Marco Cova

Academic year: 2021-2022

1. Introduction
In recent years, there has been an increasing de-
mand for human-machine interfaces that oper-
ate through voice. These interfaces are becom-
ing necessary in a wide range of systems and
are increasingly required in resource-limited de-
vices, and this is why speech processing is a
field that is particularly prone to be analyzed
under the Tiny Machine Learning (Tiny-ML)
domain. This work aims at investigating tech-
niques for integrating speech processing capabil-
ities on ultra-low power microcontrollers, focus-
ing on the tasks of keyword spotting (KWS) and
speaker verification (SV). Research in this field
is essential as memory, computational power,
and energy consumption constraints pose sig-
nificant challenges to the complexity of algo-
rithms that can be executed. While the abil-
ity of recognizing commands has already been
extensively targeted by research, the verifica-
tion of a speaker’s identity through voice is a
needed feature which has not been organically
analyzed in a Tiny-ML context yet; we framed
the speaker verification task in a novel Tiny-ML
oriented one-class few shot classification context.
This has been done to take into account the
real use-cases for a tiny speaker verification sys-

tem: there is the need to perform on-device in-
cremental adaptation to the voice of a speaker
by observing only a limited set of samples from
his/her voice (few shot), and without having
information about other voices as comparison
(one-class). This work demonstrates the possi-
bility of designing a system that combines both
tasks with a request for resources compatible
with the capabilities offered by modern micro-
controllers, proposing a comparison between dif-
ferent approaches: some already present in the
literature, but never used in an organic Tiny-
ML approach, others identified and tested for
the first time in this work.

2. High-level overview
The goal is to develop a speaker verification sys-
tem that can work cascaded with a keyword
spotting system, to provide a sort of personal-
ized user interaction: if a keyword is deemed
coming from the enrolled speaker, a personalized
answer is given. Otherwise, a general answer is
returned by the system. The high-level block
scheme of the application is described in figure
1:

1



Executive summary Gioele Mombelli

Figure 1: High-level scheme of the KWS-SV ap-
plication.

To reach the desired behavior, KWS and SV
blocks must be designed to work together. Given
the Tiny-ML context this work refers to, the
more parts can be shared between the two ap-
plications, the less space and computation will
be required on the microcontroller to run the
system. Regarding the KWS part, we relied on
the implementation described by [4], with some
fine tuning regarding neural network architec-
ture and data preprocessing, porting the system
on the target architecture for the first time.

The SV part was analyzed by comparing differ-
ent algorithms and choosing the most promis-
ing one for on-device implementation. Among
all the algorithms tested, some were never been
used before for speaker verification strictly in a
Tiny-ML context, and one is also proposed for
the first time in this work.

3. KWS system
The core of the KWS system is composed by
a machine learning model that has to pro-
cess audio data to provide a confidence value
on the presence of the chosen keywords. The
model adopted is a Convolutional Neural Net-
work (CNN) that processes input audio data in
the shape of MFCC features:

Figure 2: Steps of the KWS system based on
deep learning.

The following steps are the main transforma-
tions applied to a 1-second long audio window
to obtain the related MFCC spectrogram, in the
shape of a 49x40 matrix:

• Hanning Windowing;

• Fast Fourier Transform;
• Mel-Frequency Downsampling.

The neural network for keyword spotting is
trained on a supervised manner with the target
of recognizing different keywords, but also the
presence of silence in input audio and unknown
speech not associated to a specific keyword. The
training of the model has been performed on
keyword samples from the Google Speech Com-
mands dataset [5], augmented with some addi-
tional noise to make the model more robust to
different environments.

The choice of the CNN architecture has been
guided by the final goal of developing a model
small enough to fit into microcontrollers. This
posed a limitation on deepness and number of
parameters of the models, such as filters’ size
and neurons per layer. For our purposes we
adopted a network with two convolutional lay-
ers, each followed by a maxpooling layer, with a
final softmax classifier with as many neurons as
the desired keywords plus silence and unknown
conditions. Table 1 reports accuracy scored dur-
ing testing according to the number of chosen
keywords of the best performing architecture.

Model: conv-kws-nn
Keywords Accuracy Loss Params

1 0.9450 0.1743 25,971
2 0.9269 0.2319 26,932
3 0.8960 0.2900 27,893

Table 1: Accuracy results for KWS CNN.

Different quantization levels could be applied to
the aforementioned model in order to reduce its
size and fit into the target device, as shown in
table 2. However, the floating point version is
still small enough to be executed on the target
architecture adopted for this work.

Model: conv-kws-nn
Quantization Weights Activations Latency
float 112.5 kB 79.3 kB 0.336 s
int16x16 56.4 kB 45.6 kB 0.268 s
int16x8 28.3 kB 45.6 kB 0.302 s
int8x8 28.3 kB 25.8 kB 0.309 s

Table 2: Memory and latency estimations for
KWS CNN - 3 keywords version.

2



Executive summary Gioele Mombelli

4. SV system
Speaker verification has been tackled coupling a
deep neural network model to be used as feature
extractor for speaker characteristics and a sim-
ilarity algorithm to associate them to a specific
speaker, called enrolled speaker. Speaker fea-
tures extracted by the neural network are called
d-vectors and have been proposed for the first
time in [3].

Speaker verification task is composed by two dis-
tinct phases:

1. Enrollment phase;
2. Verification phase.

During the enrollment phase, a small subset of
speech samples is collected from the enrolled
speaker. The feature extractor neural network
processes them and extracts a set of d-vectors
from such samples, forming the enrollment set.
During verification phase, a similarity algorithm
acts on new input speech by extracting the re-
lated d-vector and comparing it with the enroll-
ment set according to a similarity algorithm.
This particular setting allows us to frame the
speaker verification task into two specific con-
texts:
• One-Class Classification;
• Few-shot Classification.

In one-class classification (OCC), machine learn-
ing algorithms have to learn to distinguish ob-
jects of a specific target class amongst all ob-
jects belonging to all possible existing classes,
by learning from a training set containing only
samples from the target class. Few-shot clas-
sification aims to learn a classifier to recognize
unseen classes during training with limited la-
beled examples. This is what led us to testing
some algorithms specifically designed for such
conditions.

4.1. D-Vector Extractor
The d-vector extractor adopted in this work is
a convolutional neural network trained on a suf-
ficiently large speakers dataset to perform clas-
sification among them. As explained in [3], d-
vectors can be taken as activations of hidden lay-
ers of such a model. The core idea is that each
speaker is able to produce a unique d-vector,
even if the related voice was not present in the

training dataset.
To maintain compatibility with the KWS sys-
tem, we designed the d-vector extractor to be
able to take as inputs the same MFCC spec-
trograms of the KWS model. The neural net-
work adopted is similar but deeper than the
ones used in keyword spotting task. A batch
notmalization layer has been introduced right
after the input layer. The network presents
two 2DConvolutional-maxpooling blocks, end-
ing with two 2DConvolutional layers followed
by a dense layer. Dropout is added to control
overfitting, and the last output layer is a soft-
max classifier with as many nodes as the num-
ber of speakers in the training dataset, which is
92 in the chosen implementation, taken from the
librispeech-train-100 partition of [2]. D-vectors
have been taken as the flattened activation of
the last convolutional block, before the first fully
connected layer of the model.

The full classifier scored an accuracy of 0.5778 on
the testing set, and the d-vector extractor model
contains 24,388 parameters, which make it ex-
tremely lightweight considering the complexity
of the task to be solved. The size of the d-vectors
is 256 elements. In table 3, memory and latency
estimations for the d-vector extractor model are
provided.

Model: d-vector-extractor-256
Quantization Weights Activations Latency
float 98.08 kB 70.5 kB 0.036 s
int16x16 49.2 kB 43.1 kB 0.028 s
int16x8 24.8 kB 43.1 kB 0.032 s
int8x8 24.8 kB 25.5 kB 0.033 s

Table 3: Memory and latency estimations the
d-vector extractor NN.

4.2. SV Classification Approaches
The d-vector extractor backbone must be cou-
pled with a classification or similarity algorithm
that has the burden of actually verifying the
claimed identity of a speaker, via the analysis
of the produced d-vectors. Four different simi-
larity algorithms have been tested.

4.2.1 Mean Cosine Similarity

This approach is the state-of-the-art regarding
speaker verification systems. A pre-determined

3



Executive summary Gioele Mombelli

number of enrollment samples from the enrolled
speaker is obtained, and is processed through the
d-vector extractor to produce a set of enrollment
d-vectors. The element-wise average of the d-
vectors is computed to obtain a mean d-vector
to be used as speaker model.
Every time a new audio utterance is detected,
the system extracts the related d-vector and con-
fronts it with the mean d-vector of the enrolled
speaker via cosine similarity (equation 1):

cossim(x,y) =

∑n
i=1 xiyi√∑n

i=1 (xi)2
√∑n

i=1 (yi)2

(1)

If the similarity is above a certain threshold, de-
termined by the designer in an empirical way
according to sensitivity needs, the utterance is
evaluated as belonging to the enrolled speaker.

4.2.2 Best-Match Cosine Similarity

This is a novel approach to comparing d-vectors
of different speakers. Similarly to the previous
method, a pre-determined number of enrollment
samples from the enrolled speaker is used to pro-
duce a set of d-vectors. This set is kept in mem-
ory and is called enrollment set. During infer-
ence, every time a new audio utterance is re-
ceived, the system extracts the related d-vector
and compares it with each d-vector in the en-
rollment set via cosine similarity. The system
returns the best-matching similarity, i.e. the
highest similarity scored during the one-to-one
comparison. If the similarity is above a certain
threshold, the utterance is attributed to the en-
rolled speaker.

4.2.3 One-Class Neural Networks

This approach has been inspired by the work
done in [1], and is a classification method that
involves training a one-class Neural Network
(OCNN) to distinguish between d-vectors pro-
duced by the authenticated speaker and by other
unknown speakers. The set of enrollment d-
vector is used to produce a small training set
by coupling them with fictitious d-vectors rep-
resenting non-authenticated samples. The archi-
tecture chosen for the one-class neural network
is composed by a batch normalization layer, a
dense layer with as many neurons as the size

of the d-vector and a softmax layer with two
outputs for the enrolled/unknown classes. The
network has a total of 67,330 parameters.

The advantage of this approach is that such an
algorithm could learn to map d-vectors produced
by a tiny feature extractor to the correct speaker
in a more efficient way. However, it requires
to run a full training process directly on-device.
This poses serious limitations on the one-class
neural network architectures that can be built,
both regarding size and type of the adopted
layer.

4.2.4 One-Class SVM

This method involves training a one-class Sup-
port Vector Machine (OC-SVM) to learn a
boundary that separates efficiently d-vectors of
the enrolled speaker from d-vectors of other
speakers. The approach is similar to the One-
Class Neural Network: a set of enrollment d-
vectors is used for fitting the OC-SVM, which
is then used as a discriminator on new sam-
ples. While a more efficient classificator could
be learned with this approach, fitting a one-class
SVM requires heavy computation for solving
their constrained optimization problem, which
may not be feasible in more constrained devices.

4.3. Testing results
Two custom datasets have been collected for
testing the aforementioned classification meth-
ods. Four speakers have been asked to collect
100 text-dependent samples each, pronouncing
the phrase "Hey Cypress", from which 1-second
long utterances containing speech have been ex-
tracted. We also collected a custom Italian text-
independent dataset from the same people, to
have testing benchmarks on both applications of
speaker verification on the same subset of speak-
ers. Each approach proposed has been tested
against the two different datasets.

The one-class condition has been enforced by
enrolling one speaker at a time and using only
samples from that speaker to perform the enroll-
ment. Each speaker in the datasets has played
the part of the enrolled speaker, and each time
samples from other speakers have been used to
build the set of "unknown" speakers. The few-
shot conditions have been enforced by posing a

4



Executive summary Gioele Mombelli

limitation on the number of enrollment samples
to be used. Reasonable samples number for few-
shot classification were deemed to be 8 and 16
samples, but we decided to identify also two cor-
ner cases, i.e. the case with only 1 enrollment
sample and the case with 64 enrollment samples.
Testing and validation datasets are composed by
60 samples each, and have been built by taking
15 samples from the enrolled speaker, and 45
samples by taking 15 samples from all the other
speakers.
Evaluation metrics adopted are accuracy and
F1-Score, because they are the only metrics that
can be applied to all the methods identified in
previous section. Given the fact that testing
datasets are unbalanced, F1-Score is the met-
ric that better represents the performance of the
systems.
In figures 4 and 3, comparison of performance of
different similarity systems in a text-dependent
context is reported.

Figure 3: Testing results on TD dataset - 8 en-
rollment samples.

Figure 4: Testing results on TD dataset - 16
enrollment samples.

OCNN and OC-SVM see an improvement when
the number of enrollment samples is increased,
but mean cosine-similarity based methods tend
to a stabilization in their accuracy the more
enrollment samples are provided. The best
performing method has been the one based
on Best-Match Cosine Similarity, that with 16
enrollment samples obtained a mean F1-score
among speakers equal to 0.878, scoring an ac-
curacy higher than 93%. Performance on text-
independent dataset is significantly worse, with
the peak performance being obtained by the
Mean Cosine Similarity method with 8 enroll-
ment samples, reporting a F1-Score equal to
0.4725.

4.3.1 Improvement on the state-of-the-
art

Cosine similarity based methods outperformed
OCNN and OC-SVM approaches. Our pro-
posed Best-Match Cosine Similarity algorithm
obtained the best result in the text-dependent
context. EER and AUC metrics for cosine sim-
ilarity methods have been confronted, and plots
are reported in figure 5:

Figure 5: Confrontation of EER and AUC met-
rics for cosine similarity methods.

5



Executive summary Gioele Mombelli

In general, preferring the Best-Match cosine sim-
ilarity method instead of Mean Cosine Similarity
allows to obtain a mean improvement of 14.25%
in EER and 8.5% in AUC:

Enrollm. samples EER improv. AUC improv.
8 0,121 0,0625
16 0,1365 0,0725
64 0,17 0,12

Table 4: Improvements in EER and AUC if best-
match cosine similarity is used.

5. On-device implementation
The application as described in section 2 was
developed on the Infineon PSoC 62S2 Wi-Fi BT
Pioneer Board and allows enrolling an authenti-
cated speaker on-device and subsequently per-
forming verification all through voice interac-
tion, thanks to a cascaded execution of KWS
and SV systems. The speaker verification al-
gorithm implemented on the application is the
Best-Match Cosine Similarity, chosen for its low
computational footprint and great performance.
The final application has the following memory
requirements in its floating point version:

Final demo requirements
Flash 354.32 kB
RAM 504.12 kB

Table 5: Final demo memory requirements.

With neural network quantization at 8-bit, flash
memory can be reduced to 196.38 kB and RAM
to 247.68 kB.

6. Conclusions
This work described an organic approach for
combining two fundamental speech processing
tasks in Tiny-ML, namely keyword spotting and
speaker verification. Despite the rising need of
having low-power on-device speaker verification
systems, a top-down analysis of the design pro-
cess for a completely Tiny-ML oriented speaker
verification system was still missing in litera-
ture. We framed the Tiny-ML speaker verifica-
tion task in the novel one-class few-shot classifi-
cation context, highlighting constraints and lim-
itations that have to be faced when developing
such a system and analyzing ways for overcom-

ing them. Moreover, a novel similarity system
for performing speaker verification has been pro-
posed, in some cases outperforming other state-
of-the-art approaches. The KWS demos devel-
oped in this Master Thesis have been deemed
commercially viable by the company that sup-
ported this thesis work, and the SV demo is used
as proof-of-concept to showcase that it is pos-
sible to perform such tasks with an ultra low-
power computer.

References
[1] Poojan Oza and Vishal M. Patel. One-class

convolutional neural network. IEEE Signal
Processing Letters, 26(2):277–281, feb 2019.

[2] Vassil Panayotov, Guoguo Chen, Daniel
Povey, and Sanjeev Khudanpur. Librispeech:
An ASR corpus based on public domain au-
dio books. In 2015 IEEE International Con-
ference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, apr 2015.

[3] Ehsan Variani, Xin Lei, Erik McDermott, Ig-
nacio Lopez Moreno, and Javier Gonzalez-
Dominguez. Deep neural networks for small
footprint text-dependent speaker verifica-
tion. In 2014 IEEE International Conference
on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, may 2014.

[4] P. Warden and D. Situnayake. TinyML: Ma-
chine Learning with TensorFlow Lite on Ar-
duino and Ultra-low-power Microcontrollers.
O’Reilly, 2020.

[5] Pete Warden. Speech commands: A dataset
for limited-vocabulary speech recognition. 4
2018.

6


	Introduction
	High-level overview
	KWS system
	SV system
	D-Vector Extractor
	SV Classification Approaches
	Mean Cosine Similarity
	Best-Match Cosine Similarity
	One-Class Neural Networks
	One-Class SVM

	Testing results
	Improvement on the state-of-the-art


	On-device implementation
	Conclusions

