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Abstract

The work presented in this thesis comprises the elaboration and evaluation of an ECG
automatic classifier, which is able to assign multiple pathologies to recordings with a vari-
able number of leads. The aim is to explore a Neural Network structure and its training
procedure which are able to successfully exploit both Machine Learning and Deep Learn-
ing features in the same model. The data were selected from the multi-source dataset of
the CinC/PhysioNet Challenge 2021, considering only 10 seconds, 500 Hz signals for a
total of 84176 recordings. Up to 26 classes could be assigned to each track simultaneously.
Some pathologies occurred more frequently than others, making the learning of the model
biased towards them. To reduce this unbalancing, three subsets were created by dividing
in three the Normal Sinus Rhythm and Sinus Bradycardia ECGs, which were the most
predominant labels. Such subsets were exploited to train as many different models with
the same architecture, used to create an ensemble which labels the samples by majority
voting. The models comprised a "deep" branch, which extracted the signal’s morpho-
logical features, and a "wide" branch, responsible for compressing and selecting the 20
handcrafted features. The output features of both branches were concatenated and fed
to the final layer to produce 26 predictions, one for each class. A three step training was
employed, inspecting its capability to prevent overfitting in the developed architecture:
at first, only the deep part was trained, secondly the wide branch was instructed taking
the deep features into account during the process, and finally a finetuning of the deep
components was performed considering the wide parameters. The results obtained in the
local test set, measured in terms of Challenge Metric (ranging from -1 to 1, worst to best)
after the three step training, was 0.705 and 0.674 for 12 and 2-lead models respectively.
This evaluation allows to assert that the integration of Deep Learning and handcrafted
features is successful in improving the generalization capability, as well as in making the
classification more explainable with respect to a pure Deep Learning process.

Keywords: ECG classification, Deep Learning, Machine Learning, variable leads, Phys-
ioNet Challenge
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Abstract in lingua italiana

Il lavoro presentato in questa tesi riguarda l’elaborazione e la valutazione di un classifica-
tore automatico di ECG, capace di assegnare più patologie simultaneamente a tracciati con
numero variabile di canali. Lo scopo è l’esplorazione della struttura di una Rete Neurale
e di una procedura di addestramento della stessa tali da riuscire a integrare efficacemente
elementi di Machine Learning e Deep Learning nello stesso modello. I dati usati sono stati
selezionati tra i segnali provenienti dai diversi dataset considerati nella CinC/PhysioNet
Challenge 2021, includendo soltanto le acquisizioni di 10 secondi campionate a 500 Hz,
per un totale di 84176 tracciati. Ad ogni ECG sono state associate fino a 26 classi con-
temporaneamente. Alcune patologie erano presenti più frequentemente di altre, rendendo
l’addestramento del modello sbilanciato verso di esse. Per ridurre tale sbilanciamento,
sono stati realizzati tre sottoinsiemi di dati riducendo a un terzo il numero di segnali as-
sociati al Ritmo Normale Sinusale e alla Bradicardia Sinusale. Tali sottogruppi sono stati
usati per allenare altrettanti modelli diversi con la stessa architettura, così da sfruttarli
per fare un ensemble che assegna l’anomalia cardiaca per "majority voting". Il modello
era formato da un ramo deep, che estrae le caratteristiche morfologiche dell’ECG, e da un
ramo wide, responsabile della compressione e selezione delle 20 proprietà estratte a mano
in precedenza. Gli attributi così identificati e restituiti dalle due parti sono concatenati e
dati al layer finale per produrre 26 predizioni, una per ogni classe. Per allenare la rete è
stata impiegata una procedura a tre fasi, indagandone la capacità di prevenire l’overfitting
nell’architettura sviluppata: per prima cosa, è stato istruito solo il ramo "deep", quindi la
parte "wide" è stata addestrata tenendo conto delle caratteristiche identificate nel ramo
"deep", ed infine è stato eseguito un finetuning delle componenti "deep" considerando i
parametri "wide". I risultati ottenuti sul test set locale, misurati in termini di Metrica
della Challenge (che varia tra -1 e 1, dal peggiore al migliore), sono di 0.705 e 0.674
rispettivamente per i modelli a 12 e 2 canali. Questa valutazione permette di sostenere
il vantaggio apportato dall’integrazione del Deep Learning con delle proprietà estratte a
mano, poiché migliorano le capacità di generalizzazione del modello, e rendono la classi-
ficazione più comprensibile rispetto ad un processo di puro Deep Learning.
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Sommario

Secondo l’Organizzazione Mondiale della Sanità (OMS), le malattie cardiovascolari sono
la prima causa di morte nel mondo [2]. Pertanto individuarle in tempo e agli stadi iniziali
è fondamentale per la loro cura, e può evitare in alcuni casi la morte del paziente.

L’elettrocardiogramma (ECG) viene usato per identificare le anomalie elettriche del cuore
[42]. La sua acquisizione segue delle procedure specifiche, e può variare a seconda del
centro di acquisizione e dei dispositivi usati per eseguirla. Normalmente, un’acquisizione
standard prevede la registrazione di tracciati a 12 canali per 30 secondi. Tuttavia, altri
approcci, come l’uso dell’Holter [16], sono possibili, permettendo per esempio di acquisire
finestre temporali più lunghe e con un numero variabile di canali [8, 48].

In tale contesto si colloca la PhysioNet/CinC Challenge 2021, che si pone l’obiettivo di
studiare le performances dei classificatori automatici di ECG, in cui i segnali utilizzati
possono anche essere acquisiti con un numero di canali ridotto [40]. Tale scopo si propone
come evoluzione della Challenge dell’anno precedente, in cui veniva richiesto lo sviluppo
di algoritmi per la classificazione automatica di tracciati ECG a 12 canali [39]. La comp-
lessità affrontata riguardava l’uso di un dataset eterogeneo, che comprendeva più di 80000
dati con più di 100000 casi, ottenuto raccogliendo campioni da 7 fonti differenti. Il modello
richiesto dovrebbe perciò produrre classificazioni che non sono influenzate dall’origine del
segnale considerato. La ricerca in questo campo è molto importante, poichè il contributo
apportato potrebbe portare ad algoritmi con buone capacità diagnostiche, in grado di
supportare i cardiologi nell’identificazione delle malattie cardiovascolari. In particolare,
tali modelli potrebbero aiutare nello screening di prevenzione, andando a ridurre le temp-
istiche con cui si riceve una diagnosi, spesso molto lunghe per via della carenza di medici
specialisti.

Stato dell’arte

I classificatori automatici possono essere divisi in due categorie: quelli basati sul Machine
Learning (ML) e quelli basati sul Deep Learning (DL) [44].
La differenza principale è che i primi imparano a classificare i dati in ingresso partendo
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da caratteristiche fornite al modello direttamente dal programmatore esterno, dopo una
procedura di estrazione, elaborazione e selezione svolta a priori. Perciò l’addestramento di
tali algoritmi fa si che essi imparino a riconoscere le classi da assegnare all’input partendo
esclusivamente da queste proprietà, andando ad ottimizzare una funzione di costo.
Dall’altro lato, il Deep Learning sfrutta delle strutture matematiche in grado di estrarre
le proprietà dell’input in maniera autonoma: perciò anche l’elaborazione, la selezione e
l’utilizzo di tali caratteristiche è lasciato all’addestramento dell’algoritmo stesso. Questo
può ridurre l’interpretabilità delle caratteristiche e del motivo per cui si raggiunge una
determinata classificazione, ma spesso permette il raggiungimento di risultati più elevati.

Nell’ambito della classificazione degli ECG, il Deep Learning sta iniziando a prendere
piede: numerosi studi che riguardano la classificazione di tale segnale mostrano accu-
ratezze molto elevate. Ciononostante, i casi studio sono sempre stati su campioni ristretti,
su un numero ridotto di patologie e sempre a classificazione singola, senza mai raggiungere
lo stesso grado di complessità richiesto dalla PhysioNet Challenge [12]. Il lavoro proposto
in questa tesi parte dal lavoro svolto dal team PhysioNauts nella Challenge, e lo porta
ulteriormente avanti per migliorare le performances del classificatore di Deep Learning
sviluppato.

L’idea principale attorno a cui ruota l’algoritmo prodotto parte dalla considerazione sec-
ondo cui le manifestazioni dell’attività elettrica del cuore possiedono una doppia natura
implicita: alcune provocano un’alterazione morfologica del segnale ECG, altre influiscono
sulle componenti ritmiche del battito cardiaco; spesso, entrambe le parti sono modificate.
Prendendo spunto dai lavori precedenti di altri gruppi che hanno preso parte alla Challenge
2020, e sfruttando le due alterazioni causate nel segnale ECG dalle patologie cardiache,
la Rete Neurale proposta è stata realizzata in due rami: il primo, in grado di focalizzarsi
sulla morfologia dei tracciati cardiaci, sviluppato partendo da una ResNet con Attention
Mechanism di Zhao et al. [50] e modificato per migliorarne le prestazioni. Il secondo ramo
combina invece Machine Learning e Deep Learning, andando ad utilizzare grandezze rit-
miche estratte dal segnale, e dandole in input ad una rete molto semplice che seleziona e
combina in maniera automatica tali caratteristiche.

Materiali e Metodi

Tutti i partecipanti alla PhysioNet/CinC Challenge 2021 avevano a disposizione 88253
ECG, ciascuno associato ad una o più patologie prese da un bacino di 133 complessive.
Di queste, soltanto 30 erano valutate nella Challenge; inoltre tale numero si riduce a 26 se
si considera che 4 coppie di tali patologie erano considerate equivalenti. I dati considerati
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provenivano da 7 diversi centri di acquisizione, ognuno con le proprie caratteristiche e
configurazioni hardware che hanno influito sulle proprietà del segnale finale. Per questo
motivo sono state svolte una procedura di selezione ed elaborazione dei tracciati cardiaci
prima di poterle dare in ingresso al modello: sono stati mantenuti solamente i segnali
di 10 secondi e campionati a 500 Hz, per garantire degli input omogenei per l’algoritmo.
Inoltre, le due patologie più frequenti, il Ritmo Normale Sinusale (SNR) e la Bradicardia
Sinusale (SB), sono state divise per creare 3 sottogruppi contenenti ciascuno un differente
terzo dei dati classificati con queste anomalie, e mantenendo tutti gli altri tracciati.

A seguire, è stata eseguita l’elaborazione dei dati, diversificata a seconda del blocco del
modello considerato. Per la parte di riconoscimento morfologico, detta anche "deep",
ovvero "profonda" in lingua italiana per richiamare la complessità di questa parte della
rete e il numero di livelli, o "layers", utilizzati, l’elaborazione era volta a standardizzare
e rimuovere le differenze presenti tra i segnali con origini differenti. Prima di tutto è
stato eseguito il resampling a 500Hz di tutti i segnali, poi filtrati con un passabanda
tra 1 e 47 Hz, quindi normalizzati con lo z-score per rimuovere il bias legato a diverse
medie e deviazioni standard. Infine, se la lunghezza del segnale considerato era inferiore
a 5000 campioni, veniva realizzata la tecnica dello zero-padding, altrimenti veniva presa
una finestra casuale di 10 secondi.
Considerando invece la parte di identificazione delle caratteristiche ritmiche, detta blocco
"wide", cioè "ampio" (contrapposto al ramo precedente per la maggiore semplicità della
rete neurale che lo compone), l’elaborazione era volta all’estrazione delle grandezze nu-
meriche temporali da utilizzare nella classificazione. Prima di tutto, è stato estratto il
canale "II" e filtrato con un passabanda nel range [3 − 45] Hz. Dopodichè sono stati
identificati i picchi R per poter quindi calcolare gli intervalli RR e i grafici di Poincaré
relativi a ciascun ECG. Infine, sono state elaborate le 20 grandezze fornite come input a
questa parte del modello.

Guardando nel dettaglio l’architettura della Rete Neurale, il blocco "deep" è fatto da una
Residual Network con Attention Mechanism dato da dei blocchi "Squeeze-and-Excitation"
(blocchi SE). Tale tipo di rete si concentra sull’utilizzo dei cosiddetti "Blocchi Residuali"
[19], grazie ai quali è possibile realizzare reti con molti livelli, necessari per raggiungere
complessità elevate nelle caratteristiche elaborate dal modello. In particolare, le proprietà
estratte si concentrano sulla morfologia degli input ricevuti. L’uso dei blocchi SE ha
permesso di identificare proprietà morfologiche non solo nel singolo canale dell’ECG, ma
anche tra i vari canali, per sfruttarne le interazioni nella classificazione. Inoltre, nei blocchi
residuali sono stati aggiunti meccanismi di convoluzione con dilatazione, che hanno reso
possibile individuare le proprietà morfologiche dei dati a diverse scale temporali.
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Dall’altro lato, il blocco "wide" si sviluppa come una semplice Rete Neurale a imbuto, in
cui ci sono 3 layers con 20, 15 e 10 neuroni, la cui funzione è di selezione e sintesi delle
grandezze numeriche estratte e ricevute come input.

Gli output dei due rami vengono quindi concatenati e dati in pasto all’ultimo livello for-
mato da 26 neuroni, che svolge la funzione di classificatore finale, restituendo le probabilità
di appartenenza a ciascuna classe considerate dalla Challenge.

Un altro aspetto a cui si è data importanza è stato lo sviluppo di una procedura di
addestramento della rete tale da ridurre l’ "overfitting" legato alla differenza nel numero
dei parametri della rete. Il termine "overfitting" identifica il fenomeno che si presenta
quando i modelli imparano a riconoscere perfettamente i dati usati nell’allenamento, ma
hanno poi prestazioni scarse nei confronti di dati diversi. Spesso questo coincide con
il fatto che le caratteristiche individuate riguardo i dati usati nell’addestramento non
sono in grado di generalizzare il problema, ma sono solo specifiche di quel particolare
gruppo di campioni. Un’altra possibile causa può essere la non corretta ottimizzazione
dei parametri nell’architettura. Data la differente complessità dei rami "deep" e "wide"
utilizzati, è possibile che l’overfitting avvenga in tempi diversi tra le due parti, in quanto è
diverso il numero di parametri da ottimizzare. Perciò è stata realizzata una procedura di
addestramento in 3 fasi: le prime due fasi si sono concentrate sul far apprendere a ciascun
blocco le proprietà che gli competevano senza essere disturbato dall’altro. La terza fase era
invece focalizzata sulla sincronizzazione tra i due blocchi, apportando piccole modifiche
ai pesi del blocco "deep" e tenendo in considerazione la parte "wide" addestrata.

Infine, dopo l’addestramento, è stato affrontato il problema dello sbilanciamento dei dati,
considerando il numero di tracciati rispetto alle patologie presenti: essendoci disturbi
che accadono più raramente di altri, la rete li predirrà molto meno di frequente e con
probabilità molto basse, rendendo difficile la loro identificazione. Per compensare questo
effetto è stata ideata una procedura di ottimizzazione delle soglie dei neuroni dell’ultimo
layer, responsabile della produzione delle probabilità di classificazione. Tali soglie giocano
un ruolo fondamentale nella classificazione, poichè sono confrontate con le probabilità fi-
nali per decidere se la classe è presente o meno. Esse sono state ottimizzate rispetto al
valore di metrica della Challenge ottenuto: tale metrica è un’accuratezza generalizzata
che penalizza i falsi positivi, perciò massimizzare questo valore dovrebbe portare ad un
miglioramento delle performances evitando di produrre classificazioni errate. Tale ot-
timizzazione è stata effettuata sul dataset di validazione, distinto da quello di training,
per garantire una generalizzazione maggiore nelle predizioni.

L’architettura proposta è stata quindi allenata con la procedura precedentemente indi-
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cata sui 3 sottoinsiemi identificati nella selezione dei dati, producendo 3 modelli con la
stessa struttura. Essi sono stati poi utilizzati per svolgere una classificazione dei dati di
test nella modalità "ensemble", o "complessiva" in italiano, per voto di maggioranza: i
tre modelli producono ciascuno le proprie probabilità e classificano ogni dato, ma solo se
almeno due algoritmi su tre stabiliscono la presenza di una patologia questa viene effetti-
vamente assegnata a quell’ECG. Questa procedura viene usata per aumentare le capacità
di generalizzazione del modello.

Risultati

La metrica della Challenge è un’accuratezza pesata, in cui anche le predizioni errate
vengono premiate con un punteggio parziale a seconda del tipo di errore effettuato, a
causa della somiglianza dell’effetto di alcune patologie sul tracciato cardiaco. Tuttavia,
un termine di normalizzazione penalizza falsi positivi, perchè con l’aumentare del numero
di malattie assegnate tale valore viene incrementato, riducendo così il punteggio finale.

I risultati di testing del modello finale in termini di metrica della Challenge dopo la
terza fase di addestramento per i 12 e i 2 canali sono rispettivamente 0.705 e 0.674. Le
prestazioni sono discrete in termini di valore assoluto dell’accuratezza, ma se confrontate
con quelle ottenute dai modelli sviluppati durante le altre 2 fasi della Challenge, mostrano
le potenzialità dei miglioramenti apportati. Durante la prima fase "non ufficiale", sono
stati ottenuti punteggi di 0.520 e 0.505 sul test set valutato con un’architettura che in-
cludeva solo il ramo "deep" per i 12 e i 2 canali; quindi, nella seconda fase "ufficiale",
grazie all’introduzione della parte "wide" ma senza la procedura di addestramento a tre
fasi nè le convoluzioni con dilatazione sono stati ottenuti punteggi rispettivamente di
0.643 e 0.633 per i 12 e i 2 canali. Inoltre, nello stato dell’arte rappresentato dai lavori di
altri gruppi che hanno preso parte alla PhysioNet Challenge non si riscontrano valori di
accuratezza che si discostano significativamente da quelli raggiunti. Si invita il lettore a
leggere la sezione "Results" dell’elaborato per poter comprendere a pieno le considerazioni
e i paragoni fatti sui risultati prodotti.

Discussione e Conclusioni

Nello sviluppare il modello, diversi aspetti sono stati presi in considerazione e portati
avanti.

Prima di tutto, la realizzazione di un modello in cui Machine Learning e Deep Learning
fossero integrati aveva un duplice obiettivo: l’incremento delle capacità di riconoscimento
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delle patologie che non alterano la morfologia degli ECG in maniera evidente, e la mag-
giore interpretabilità della classificazione ad un utente esterno tramite l’uso di proprietà
calcolate in maniera esplicita.
Inoltre, secondo le richieste della Challenge è stata esplorata l’efficacia della classificazione
degli input con numero di canali ridotto.
Un’altra novità messa a punto nella stesura dell’algoritmo è stato l’addestramento a fasi
della rete, volto a un incremento delle prestazioni dei singoli blocchi del modello.
Infine, per trattare i problemi di sbilanciamento del dataset, diverse strategie sono state
utilizzate prendendo spunto dai lavori precedenti sulla Challenge, ottimizzando le soglie
dei neuroni nel layer finale e dividendo i gruppi di dati più grandi per realizzare un ensem-
ble di modelli, che è generalmente più performante sul test set rispetto al classificatore
singolo.

Tutti questi aspetti hanno contribuito positivamente, portando il modello a raggiungere
prestazioni paragonabili a quelle presenti nello stato dell’arte, ed hanno aperto a nuovi
possibili approcci nella classificazione degli ECG tramite l’uso di classificatori parzial-
mente espliciti. Inoltre, dai risultati ottenuti si può osservare come il calo di prestazioni
nel caso a canali ridotti non sia eccessivo. Quindi, apportando ulteriori migliorie e au-
mentando la capacità diagnostica del modello, è possibile che si raggiungano livelli tali da
poter impiegare il classificatore anche in ambiti in cui non è possibile registrare un ECG
standard a 12 canali.

I lavori futuri dovrebbero pertanto concentrarsi nell’identificare nuove idee al fine di
migliorare le prestazioni, andando per esempio ad aumentare le caratteristiche usate dal
ramo "wide", o ancora modificandone la struttura per renderla più efficace nella selezione
ed integrazione con il blocco "deep".
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Executive Summary

According to the World Health Organization (WHO), cardiovascular diseases are the
world’s first cause of death [2]. Thus, their early detection is essential for a correct
treatment, allowing in some cases to avoid the patient’s death.

Electrocardiogram (ECG) is exploited to identify the electrical abnormalities of the heart
[42]. Its acquisition follows specific procedures, and varies according to the acquisition
center and the hardware configuration used. A standard acquisition is performed by
acquiring the electrical signal with 12 channels for 30 seconds. However, other approaches,
such as the use of an Holter [16], are possible, allowing for instance to acquire longer
temporal windows with a variable number of leads [8, 48].

In such context, the PhysioNet/CinC Challenge 2021 takes place, with the purpose of
studying the performances of ECG automatic classifiers, in which the used signals may also
present a reduced number of leads [40]. Such objective is the prosecution of the previous
year’s Challenge, where the development of 12 leads ECG classifiers was required [39]. The
complexity faced regarded the heterogeneity of the dataset used, which comprised more
than 80000 samples presenting more than 100000 cases, collected from 7 different sources.
The model required should be able to produce classifications which are not influenced by
the origin of the recording taken into account. Research in this field is very important,
because the new discoveries could bring efficient algorithms, such that they could support
cardiologists in the identification of cardiovascular diseases. In particular, such models
could help in screening for prevention by reducing the diagnostic time, often very long
due to limited availability of expert clinicians.

State of the Art

Automatic classifiers can be divided in two categories: those based on Machine Learning
(ML) and the ones relying on Deep Learning (DL) [44].
The main difference between the two is that the former learns to classify the inputs
starting from features directly given by the programmer to the learner, after an a-priori
procedure of extraction, elaboration and selection. Thus, such algorithms are trained so
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that they recognize the labels of classification exclusively using such features, through the
optimization of a loss function.
On the other hand, Deep Learning exploits mathematical structures which are able to
autonomously extract the input characteristics: so the elaboration, selection and use of
these features is left to be learnt by the algorithm itself. This aspect may reduce the
interpretability of such features, as well as the explainability of the final classification,
but it also allows to reach better results.

In ECG classification, Deep Learning is taking place thanks to the different works propos-
ing classifiers with high accuracy. However, such studies have always been developed on
a small sample size, with a reduced number of pathologies and with single classification,
never reaching the same degree of complexity as the one proposed in the PhysioNet Chal-
lenge [12]. The research proposed in this thesis starts from the work developed by the
team PhysioNauts during the Challenge, pushing it forward to improve the developed
Deep Learning classifier’s performances.

The main idea of the proposed algorithm is that the manifestation of heart electrical
activities have an implicit double nature: some of them induce a morphological alteration
of the ECG signal, while others provoke a rhythmic change in the heartbeat; often, both
are influenced.
Starting from other groups’ works in the previous 2020 Challenge, and exploiting this
double alteration of ECG signal provoked by the pathologies, the provided solution was a
Neural Network composed by two branches: the first one, which focuses on the morphology
of cardiac recordings, was developed starting from a ResNet with Attention Mechanism
of Zhao et al. [50], and further improved. The second branch combines together Machine
Learning and Deep Learning, by employing rhythmic features extracted from the signal,
which are fed to a simple network that automatically selects and combines them.

Materials and Methods

All the participants in the PhysioNet/CinC Challenge 2021 had at their disposal 88253
ECGs, each one associated with one or more pathologies taken from a total of 133. Out
of those, only 30 were evaluated in the Challenge; moreover, this number can be reduced
to 26 considering the fact that 4 couples of such pathologies were considered equivalent.
Such data were originated from 7 different centers of acquisition, each one with its own
characteristics and hardware configurations which influenced over the signal properties.
For this reason a selection and elaboration of ECG recordings was performed before
they were fed to the model: only 10 seconds 500 Hz signals were kept, to guarantee
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homogeneous inputs for the algorithm. Moreover, the two most frequent pathologies, the
Normal Sinus Rhythm (NSR) and the Sinus Bradycardia (SB), were divided to create
3 subsets, each containing a different third of data labelled with such anomalies, and
keeping all the other recordings.

Data processing followed, distinguishing the procedure according to the considered block
of the model. For the morphological branch, also named "deep" to recall the complexity
of this part of the network, as well as the number of layers employed, the processing
was aimed to the standardization and difference removal among the data with different
origin. First of all, all signals were resampled at 500 Hz, then filtered with a passband
filter between 1 and 47 Hz, and normalized with z-score to remove the mean and standard
deviation biases. Finally, if the considered signal was shorter than 5000 samples, zero-
padding was applied, else a random 10 seconds window was taken.
Considering the part of rhythmic identification, called "wide" branch - juxtaposed with
the previous one for the simplicity of the employed Neural Network - the processing of data
was focused on the extraction of the numerical features to be used for the classification.
First of all, the lead "II" was selected and then filtered in range [3−45] Hz with a passband
filter. Then, the R peaks were identified to compute the RR intervals and Poincarè images
of each ECG. Finally, the 20 temporal characteristics were elaborated and fed to this part
of the model.

Watching in details the Neural Network’s architecture, the "deep" part is composed
by a Residual Network with Attention Mechanism implemented through "Squeeze-and-
Excitation" (SE) blocks. Such Network focuses on the use of the so called Residual Blocks
[19], which make it possible to realize structures with numerous layers, necessary to reach
high complexity in the features computed by the model. In particular, the extracted prop-
erties focus on the input morphology. The use of the SE blocks allowed the identification
of morphological attributes not only in the single lead, but also among the channels of an
ECG, to exploit their interactions for the classification. Moreover, dilation mechanisms
in the convolutions performed in the Residual blocks were added, making it possible to
recognize the morphological features at different time scales.

On the other hand, the "wide" block is developed as a simple bottleneck Neural Network,
with its 3 layers made of 20, 15 and 10 neurons, whose function is to select and summarize
the numerical handcrafted features received as input.

The two branches’ outputs were then concatenated and fed to the last layer, made up of
26 neurons, which act as final classifier, returning the probabilities of each class considered
by the Challenge.
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Another important aspect considered was the implementation of the network’s training
procedure such that it would reduce the "overfitting" due to the difference in the dimension
of the model’s parameters. The term "overfitting" identifies the phenomenon of getting
perfect recognition of training data classes, but bad performances on a different datasets.
This often happens when the identified features of data used during training are not able
to generalize the problem, but only mimik the specific group of samples. Another possible
issue could be the not correct optimization of the model’s parameters. Given the different
complexity of the "deep" and "wide" branches exploited, it is possible that overfitting
would take place with different timing in the two parts, because the number of weights to
be optimized changes. Thus a 3 phases procedure was realized: the first two were focused
on making each block learn its parameters without being hintered by the other one. The
third phase was focused on the synchronization of the two blocks, making slight changes
on the "deep" part while taking into account the trained "wide" branch.

At last, after the training, the data unbalancing problem was faced, considering the num-
ber of recordings with respect to the pathologies: some diseases happened less frequently
with respect to others, thus the network would predict them rarely and with very low
probabilities, making them difficult to be identified. To compensate this effect, an op-
timization procedure over the thresholds of the neurons belonging to the final classifier
layer was implemented. These thresholds played a fundamental role in classification, be-
cause they are compared with the final probabilities to decide whether a class is present
or not. They were optimized according to the Challenge Metric obtained: such metric is
a generalized accuracy which penalized false positives, thus maximizing this value would
bring an improvement of performances without producing misclassifications. Such opti-
mization was performed, as part of hyperparameter tuning, over the validation dataset,
distinguished from the training one to guarantee a better generalization in predictions.

The proposed architecture was trained with the previously illustrated procedure over the
3 subsets of data identified during the data selection, producing 3 models with the same
structure. They were used for the classification of test data with an "ensemble" modality
by majority voting: the three models returned their own probability and classified each
ECG, but only if at least 2 out of the 3 algorithms gave the same pathology, the label was
effectively assigned. This last procedure was used to increase the model generalization.

Results

The Challenge Metric is a weighted accuracy, which rewards misclassification with a
partial score according to the error, due to the similiarity of the effect of some pathologies
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on the ECG. However, a normalization term discourages the false positives, because it
increases with the number of diseases assigned, thus reducing the final score.

The testing phase results scored with Challenge Metric after the third step of training
for the 12 and 2-leads models were respectively 0.705 and 0.674. The performances are
discrete in terms of absolute value of accuracy. However, if compared with the results
obtained over the models of the other 2 phases of the Challenge, they show the potentiality
of the introduced improvements. In the first "unofficial" phase, scores of 0.520 and 0.505
were obtained on the test set for the 12 and 2-leads evaluated with an architecture with
only the Deep branch; then, in the second "official" phase, with the introduction of the
wide branch without the three step training nor the dilated convolutions a scoring of
0.643 and 0.633 was achieved. Moreover, by observing the other models which took part
to the PhysioNet Challenge and comparing them with the acquired scores, no particular
discrepancies can be observed. The reader is invited to read the section "Results" of the
elaborate to fully appreciate the considerations done over the obtained results.

Discussions e Conclusions

By developing the model, different aspects were taken into account and brought forth.

First of all, the integration of Machine Learning and Deep Learning in a single model
had a double aim: the increase in the recognition capability of pathologies which do not
explicitly alter only the morphology of an ECG, as well as the better interpretability of
the classification to the external user, thanks to the use of explicit handcrafted features.
Moreover, following the Challenge questions, the effectiveness of classification of inputs
with reduced leads was explored.
Another novelty introduced in the implementation of the algorithm was the training in
steps, which wanted to improve the performances of the single branches of the model.
Finally, to deal with the dataset unbalancing problems, different strategies were exploited
by taking inspiration from previous Challenge works, as the threshold optimization and
the division of the largest group of data for the realization of an ensemble of models,
which usually performs better over the test set with respect to a single classifier.

All these aspects positively contributed to the improvement of model’s performances,
bringing them to a level which is comparable to the state of the art, and opening to new
possible approaches in the ECG classification with the use of partially explicit classifiers.
Moreover, from the obtained results, it can be seen how the drop in performances in
the reduced lead set is not excessive. So, by further improving the model’s diagnostic
capability, it is possible to reach a point in which a classifier can be used also when a



standard 12-leads ECG is not available.

Future works should focus on the identification of new ideas to improve performances, for
instance by increasing the number of features used in the "wide" branch, or also changing
its structure to make the selection more effective and better integrate it with the "deep"
block.
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Introduction

According to the World Health Organization (WHO), cardiovascular diseases (CVDs) are
the first cause of death in the world [2]. Early detection of these pathologies plays a key
role in their treatment, and can avoid fatal situations.

Electrocardiogram (ECG) is used to identify the electrical abnormalities of the heart [42].
Its acquisition follows a specific procedure and depends on the centre of acquisition, as
well as on the device used. Standard clinical ECG consists in 12-leads 30s recording, but
other approaches, such as Holter [16] monitoring, may collect longer time windows with
variable number of leads [8, 48].

In this context fits the PhysioNet/CinC Challenge 2021, whose aim is to explore the
performances of automatic ECG classifiers on reduced sets of leads [40], prosecuting the
previous year Challenge focal points [39]. Over 88000 ECG recordings were available
for the model training, which needs to perform a multi-label classification of 30 different
classes. The research in this field could provide good algorithms which may support
effectively the clinicians and cardiologists in the diagnosis of CVDs, improving the chances
of early detection and screening of such pathologies, and reducing the time required for
such analysis.

Automatic classifiers can be divided in two main categories: Machine Learning (ML) clas-
sifiers and Deep Learning (DL) ones [44]. The main difference is that the first ones learn
from handcrafted features that are elaborated, selected and fed to the algorithm by the
programmer. The training will then make the model recognize the characteristics of each
class using only these elements, through the optimization of a loss function. On the other
hand, Deep Leaning exploits a network that extracts features on its own. This reduces
the interpretability of the features, but also allows the classifier to understand by itself
which features are the most important ones to optimize the parameters of classification.

The Deep Learning approach is starting to take place in the field of ECG classification,
with many successful studies in the classification of different pathologies, but never at the
same level of complexity posed by the Challenge [12]: usually, the research focuses on a
smaller number of pathologies, and the predictions do not give back multiple labels.
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The work presented in this thesis starts from the contribution of the PhysioNauts team
to the PhysioNet Challenge, and tries to further expand the performances of the Deep
Learning classifier developed.

The concept behind the network architecture is based on the consideration that the CVDs
have an implicit double nature: some generate a morphological alteration of the signal,
others affect the rhythmic component of the heartbeat; often, both are influenced. This
idea was exploited by reconstructing a Neural Network made up of two parts: a first one
that would recognize the shape of pathologies exploiting the channel relationships, and
another that is focused on rhythmic characterization of the signal through handcrafted
features. The first part is made of a modified Residual Network with Squeeze and Excita-
tion blocks, as presented in the work by Zhao et al. [50], to which additional changes such
as Dilation convolutions have been performed. This branch should effectively capture the
morphological characteristics in the signal as well as among channels.

The second branch is made of a simple Fully Connected Neural Network made of three
layers which takes as input the handcrafted features and select them. This approach
exploits the ML feature extraction and DL automatic selection thanks to the Dense layers.

Finally, the outputs of the two parts is concatenated and fed to the classifier layer, which
produces 26 probabilities: these probabilities are compared to thresholds computed for
each label, returning the final multiple predictions.

The achieved results show that automatic classifiers can be effective even in complex
problems such as the classification of 26 different pathologies, even though they are not
very accurate. These performances are limited for different factors, such as the quality
and numerosity of data. In fact, the number of samples of a specific class available
in the training phase influences the ability to recognize it, and for some classes there
were not enough data. Moreover, by understanding the nature of specific pathologies
and implementing models which correctly entangles them, they can be better identified
improving the overall performances. Also, to obtain good predictions, the model should
be trained on a dataset where the labeling criterion is homogeneous on all the signals;
in this case this specific requirement did not occur due to the nature of the Challenge
to exploit all the datasets acquired from different centers. Relabelling the signals could
have been useful, as shown by other groups in their work, but is a very time consuming
methodology that requires expert cardiologists, often not available.

The chapters presented in this work are organized as follows:

• Chapter 1 is the analysis of the state of the art, comprising the previous studies
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that tried to approach the problem of automatic multi-label classification of ECGs.
Here is also reported the basis from which this work started.

• Chapter 2 includes the Materials and Methods that were developed to produce the
final classifier.

• Chapter 3 shows the final results, explaining them in details and making hypothesis
on their meaning.

• Chapter 4 comprises the final Conclusions with pros and cons of the considered
model, and expresses some of the future developments that could be followed starting
from this work.
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1| State of the Art

Electrocardiogram (ECG) analysis is one of the most important tools for the diagnosis of
cardiovascular diseases (CVDs), and can be of utmost importance in the early detection
of the pathologies and their treatment, improving the outcome of surgery intervention
and avoiding fatal events [17].

CVD diagnostic is mainly performed by expert physicians who need to take into account
the patient’s status, his medical history as well as the actual ECG signal recording to
understand the overall condition of the subject. This procedure is highly time consuming,
depends on the doctor’s experience and can be susceptible of error if the person is not
a specialist. Moreover, the need of expert physicians makes them overloaded with work,
making it difficult to receive their opinion in time for the early diagnostic [12].

For this reason, automatic ECG classifiers have been developed to support this need
of complex diagnostics and try to automatize the procedure, so that only in the cases
that really need an in-depth analysis the experts are involved, reducing their load and
optimizing the available resources of the hospital.

The history of classifiers begun with Machine Learning methods, that needed handcrafed
features to analyze and classify the recordings. From this starting point Deep Learning
algorithms started to take place in this field, thanks to their automatic and implicit feature
extraction that reduced computational costs and improved the results of classification.
Nowadays these are the most diffused classifiers, that have very good performances in the
simplest cases, reaching an accuracy close to the one of an expert cardiologist [12].

The new frontier is the development of networks that are capable of successfully classify
different and more complex pathologies simultaneously [40]. Multilabel classifiers could
be a further step in the recognition of pathologies that interact with each other modifying
the behavior of the heart.
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1.1. Artificial Neural Networks

Deep Learning is a branch of Machine Learning based on Artificial Neural Networks
(ANNs), mathematical structures inspired by the physiological studies of brain, which try
to mimic its cells’ behavior [6, 25].

1.1.1. Perceptron

The basic unit of an ANN is the Perceptron: this element receives one or multiple inputs
which are weighted and integrated. This weighted sum is fed to an Activation Function,
which is a mathematical function that transforms these inputs, returning the unit output
[41, 45]. The Activation Function can include a Bias, that is a fixed input which modify
the outcome of the neuron (Figure 1.1).

Figure 1.1: A basic Perceptron with 5 inputs Xi: each input is weighted and summed,
then a bias is removed from this integration, and the result is given to the activation
function. The result of these operations is the output of this unit.

The simplest Activation Function is the Step function, which gives a binary output: if
the value fed to the function is smaller than 0.5 the output will be 0; else, it will be 1.
As the function is not defined in 0.5, a convention is to be decided to understand which
output to return if the value is exactly 0.5 (Figure 1.2a). If the range is between -1 and
1, the Signum activation function can be used instead (Figure 1.2b).
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(a) Step Activation Function. (b) Signum Activation Function.

Figure 1.2: Binary Activation Functions of a simple Perceptron.

Starting from the basic binary functions (Figure 1.2), activation functions can be changed
to have continuous nonlinear outputs in the range [0; 1] or [−1; 1] (Figure 1.3), reproduce
complex behavior of the output in any range (Figure 1.4b) or simply return the input as
it is after the integration (Figure 1.4a).

In particular, in Figure 1.3a is shown the Sigmoid activation function, which returns a
continuous output in the range [0; 1] with different slopes: around 0.5 the output follows
almost linearly the input, but as it goes toward the extreme values it will reduce its
speed, until it reaches saturation. The Hyperbolic Tangent activation function (Figure
1.3b) follows the same behavior, but its range is in [−1; 1], so it includes negative values.

(a) Sigmoid Activation Function. (b) Tanh Activation Function.

Figure 1.3: Continuous nonlinear Activation Functions of a simple Perceptron.

Finally, the Perceptron can show a linear behavior (Figure 1.4a), returning as output
the exact value of the integration. Alternatively, the Rectified Linear Unit (ReLU) can
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be used, which returns the value only if positive (Figure 1.4b). This last one activation
function is often used to introduce nonlinear behavior in the elaboration done by the
neuron.

(a) Linear Activation Function. (b) ReLU Activation Function.

Figure 1.4: Linear and ReLU Activation Functions of a simple Perceptron.

1.1.2. Multi-Layer Perceptron

Starting from the Perceptron, multiple units can elaborate the information in series,
composing a Multi-Layer Perceptron, which is the first form of a Neural Network
(NN) [30]. Figure 1.5 represents an example of multiple neurons linked together in a
cascade. Each neuron represents a layer, has its own activation function and elaborates
successively the outputs of the previous ones. The neurons in the middle (N2 and N3
in the figure) are called Hidden Neurons, as their output is elaborated by the successive
layer and is not directly accessible.

Figure 1.5: A stack of 4 perceptrons connected in series: N1 is the input neuron, which
receives the network input and introduces them in the network. The final neuron N4 gives
the output of the network, while the others are Hidden Neurons, as they return an output
that is not directly visible.

1.1.3. Feed-forward Neural Network

Depending on the complexity of the problem that the network needs to solve, the different
layers can be formed by more than one unit, and according to how the neurons are
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connected among themselves, the final purpose of network itself changes. An example is
the Feed-forward Neural Network (FFNN) shown in figure 1.6: the Input Layer is
composed by 4 Input Neurons, as the input vector is made of 4 elements.
The successive Hidden Layer can modify these inputs in different ways according to the
outcome needed: if the number of neurons is reduced with respect to the input, it will
make an automatic selection of the inputs needed to correctly predict the output.
Finally, the output layer will have a number of neurons which depends on the purpose
of the network. For instance, supposing that the network is used for the classification
of three classes, at least three possible outcomes are needed. So if the output layer has
neurons which return binary outputs, only one neuron is not sufficient to reach three final
states: two neurons will be needed to produce at least 3 combinations. In fact, if only
one neuron was used, the possible outcomes would be 0 or 1, which identify two cases.
By adding another neuron, it is possible to create other combinations, up to 4 different
cases: 00, 01, 10, or 11. Thus, two outputs are needed to identify 3 classes.

Figure 1.6: A 4 layers feed-forward Neural Network with 4 inputs and 2 outputs. The
inputs are fed to the Input layer, composed by neurons A1, A2, A3 and A4, then follow a
path which only goes forward to the successive layer. The output layer is composed by 2
neurons, whose activation functions will depend on the complexity of the problem to be
solved.

In the FFNN the information flow is unidirectional, never going back [43]. The FFNN
represented in Figure 1.6 is a Fully Connected Neural Network (FCNN), meaning



1| State of the Art 9

that its neurons are always connected to every other neuron of the successive layer. This
peculiar characteristic make it difficult to increase the number of layers over a certain
number, as the computational cost becomes too high. Also, a FCNN can easily occur in
the problem of overfitting, that is the loss of generalization of the model with respect to
the data. If such thing happens, the network becomes incapable of performing correct
predictions over data which are different from the ones used for its training.

1.1.4. Feedback Neural Networks

Another possible arrangement of neurons can be represented by Feedback Neural Net-
works (FBNN), where information flow can be reverted and go back in loops as input to
other neurons of previous layers (see figure 1.7) [21].

Figure 1.7: A 4 layers feedback Neural Network with 4 inputs and 2 outputs. The
architecure is the same of the previous FFNN in figure 1.6, but two additional links are
present, which make the output of some neurons to go back and influence the outcome of
the elaboration.

In this type of networks time becomes an important element to take into account, due
to the delay introduced with feedbacks: each discrete time step corresponds to a state
of the network. Moreover, the involvement of outputs of previous time steps gives to
these networks the ability to remember what happened before, making them suitable to
recognize patterns in time. This is the reason why these architectures are employed to
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work with signals or, more generally, time series.

1.1.5. Recurrent Neural Networks

A particular case of FBNN are the Recurrent Neural Networks (RNN), in which the
feedback loop may also occur over the same neuron, so that its own output becomes an
input (figure 1.8). These types of networks may be employed as memory networks, thanks
to their capability to store the state of neurons according to the input given [7].

Figure 1.8: A Recurrent Neural Network, where the information is given to the various
units in a series, through the corresponding weights wij, as well as to the same neurons
with weights wii. These networks store a specific state given certain inputs, and can be
used as memory networks, but also to perform predictions in time series.

1.1.6. Convolutional Neural Networks

As explained before, Neural Networks are inspired by the behavior of brain, thus it is
important to understand how complex tasks are performed to be able to mimic them
with an algorithm.

For instance, in the process of image recognition, the brain starts from the input, that
is the image collected by the eye, and elaborates it to identify specific features. The
elaboration corresponds to a gradual abstraction of the initial input: segmentation, local
spatial relationships and modelling are possible operations that can help to picture the
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desired object.

Moreover, when the eye receptors acquire the frame containing a specific object, they
performs a first degree of local elaboration through the so-called "receptive fields": the
receptors of the image are subdivided in microareas that are smaller with respect to the
whole picture, and each neuron focuses only on a part of it. These local receptive fields
allow to understand the local characteristics of the object of interest, such as its contour,
the directionality of its elements, and so on, helping in the identification of the aspects
that portray an object.

The gradual abstraction and elaboration can also be seen as a compression of the infor-
mation: once the final step is reached, the object is labelled with a specific word that
embody all its essence; so with the word "glass" one can identify the shape, the local
spatial relationships with the possible surrounding environment, the functionality and so
on of that specific object. Figure 1.9 shows an example of possible compression performed
by the brain on visual data.

Figure 1.9: This schematic, taken from the notes shared by professor Cerveri of Lecture 4
of his part of the Neuroengineering course, shows the process of information elaboration
followed by the brain, which starts in the retina up to the central brain cells, making a
parallelism between data abstraction and its compression.

Placing these concepts in the framework of a Neural Network, the degree of elaboration
and abstraction is represented by the deepness of the network, which is identified with the
number of layers that manipulate the input. The deeper is a network, the more complex
and unique the features extracted are. The other steps given by the behavior of our brain
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are local feature extraction together with data compression.
Out of these conditions, FCNN may only partially achieve the last one by reducing the
number of neurons of the successive layer. However, it is evident that this type of Net-
work cannot be exploited, as its number of layers should be kept low to have reasonable
computational costs, especially if multidimensional data are considered. Also, the full
connection of one layer with its successive is opposed to the concept of locality of feature
extraction, as in this way the network tries to find a relationship with every other point
given as input.

To overcome this limitation, the Convolutional Neural Networks (CNN) have been
developed [15]. They are Feed Forward Neural Networks which employ the concept of
local receptive field in their architecture: each neuron of a layer is only connected to some
neurons of the successive, the same way of eye receptors which acquire small areas of the
image.

Another idea behind these Networks is weight sharing: when a local feature is extracted,
the weights which identify that feature are fixed and repeated all over the layer, estab-
lishing a so called feature map. This means that a feature map corresponds to a specific
feature that is extracted in the given input, and it will only have a number of parameters
corresponding to the dimension of the local receptive field plus a bias.

These two concepts are represented in figure 1.10, which shows a simplified version of
a feature map with a mono-dimensional input: given an input layer of 5 neurons, the
connections with the successive hidden layer, which is a feature map, are not in the same
number of received input, but consider only 3 inputs per neuron. Also, the 3 weights
identified are kept and repeated in the feature map, so the neurons of the same layer
share their weights.

Figure 1.10: In this figure is shown that CNNs are not Fully Connected, and that feature
maps are layers with shared weights, represented by repeating the same color sequence in
the connections among neurons.
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To obtain a feature map, a convolution of the input with a linear filter is performed. This
operation allows to compress the data while extracting the feature. A common procedure
is to identify different feature maps in the same layer, then proceed to the successive one
and repeat the operations, until the final classifier is reached. This is possible thanks
to the low complexity of feature maps in terms of parameters, that allows to extract
numerous features and create a deep CNN with many layers.

For example, considering a Fully Connected Neural Network with an input layer of size
90x90 and the first hidden layer of size 80x80, the number of connections for that layer
only would be 90x80, because every input neuron need to be connected to the successive
neurons. Moreover, an additional 80 parameters, represented by the biases of each neuron,
should be added. This brings to 7290 parameters that should be identified for a single
layer, that represents a feature.
On the other hand, in a CNN with a convolutional filter of 5x5, the number of parameters
for a single feature map would be only 25 weights + 1 bias. It is clear how the advantage
in terms of computational cost allows to extract a lot of additional features with respect
to the FCNN.

In Figure 1.11 is shown a graphical summary of how a convolution is performed on an
image, obtaining an output known as feature map.

Figure 1.11: In this figure are shown the locality and data compression in convolution:
given a multidimensional input, a linear filter is "slided" over the whole input. The
operation returns an output value which summarizes the group of points used for the
convolution with the filter. So the output image represents a compressed feature of the
input extracted through the convolution.
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Among all the architectures presented, CCNs are very important for the ECG classifi-
cation, as these time series can be considered as multidimensional data thanks to their
channels. By doing so, Convolutional Neural Networks may be exploited to automatically
extract meaningful morphological features of these signals, which can be used for the
classification of diseases [23].

1.1.7. Attention Mechanism

Another mechanism which takes inspiration from human information processing is the
attention mechanism. Attention has not a clear definition, but can be seen as "the
flexible control of limited computational resources" to "dynamically alter and route the
flow of information", gaining benefits to adapt the system to its task [26]. Reporting it
to brain image processing, it can be seen as the focus given over some details of the input
received which are considered more important than others to understand the content of
the picture considered.

In Artificial Neural Networks, the attention mechanism is performed using specific tech-
niques that depend on the Network task: in image classification, an example can be
represented by Class Activation Maps (CAMs), which are heatmaps that shows the most
informative content of the image for the identification of the class. To obtain such maps,
a Global Average Pooling (GAP) layer has been inserted in the last convolutional layer of
the CNN [53], as shown in figure 1.12.

Figure 1.12: The figure, taken from [53], explains the concept of heatmap to focus the
classification on details of the whole picture. As shown in the proposed architecture, the
GAP is placed just before the final classification layer.

Attention mechanism is a very important tool to improve classification performances, as
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it allows to mantain the most informative content of the input only, thus reducing errors.

1.2. Network training

Having seen the possible structures in Neural Networks, in this section it will be illustrated
how their training is performed. As for the architectures, also the learning process of
Neural Networks gets inspiration from brain neurons. In order to modify its connections,
and change their effects on the structure of brain, a neuron needs external stimuli, which
can modify the behavior of a synapses, making them excitatory or inhibitory. Moreover,
the neural cells may generate or remove pathways through which the electric impulses are
sent, depending on the fact that the way is practiced or not. These stimuli are external
factors to which a person needs to adapt, thus specialize toward an ability, or in other
words learn a function [29].

In the context of a Neural Network, the concept of learning is put into practice as the
computation of weights and thresholds that characterize each neuron. Opposed to the
brain, an algorithm cannot change the organizational structure of its neurons, but it can
still modify the behavior of its connections by giving them more or less importance, and
by making them positive (excitatory) or negative (inhibitory). The stimuli exploited to
modify the network parameters are the training data, through which the network learns
to map the data features, or predictors, for a specific task. Thus, training an algorithm
means feeding it with the training data to predict an output that depends on the chosen
task.

The tasks that can be learnt may be of two different kinds: supervised or unsupervised.
The former is performed whenever the training data presents both the predictors and the
desired output. For instance, in classification task, data are given together with their
classes, and the network will learn to recognize which characteristics are typical of each
output (see figure 1.13a for an example).
In the second one, the objective is to find similiarities or patterns among input data
without knowing an a-priori desired output. An example is depicted in figure 1.13b,
where the clustering task is performed: without knowing a grouping criterion, the labels
are crafted automatically by the network itself during the training, so that they can be
identified with a class according to their characteristics. After the procedure, the network
will place the data in clusters.
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(a) Supervised problem - Classification. (b) Unsupervised problem - Clustering.

Figure 1.13: In figure 1.13a is shown classification, where the training data are a-priori
divided in known classes - triangles, circles and squares. Using the predictors Xi and
Xj the algorithm should learn to assign a class to unlabelled data. Figure 1.13b shows
clustering, an unsupervised task where the points have no label - all circles - but simil-
iar subsets can be found. The algorithm learns the clustering criterion and creates the
grouping by itself.

1.2.1. Learning rules

This work will focus on classification, which is a supervised learning problem, so the
network is trained on data whose label is known.

In supervised learning, parameter tuning happens through the computation of an error:
if the network predicts correctly, no changes will be needed; however, if the predicted
label is not correct it means that the parameters are to be modified, and the error will be
used as a correction factor: the bigger the error, the bigger the correction applied on the
network parameters will be.

For error computation and weight correction, the technique implemented in multi-layer
networks is the error backpropagation, which is an extension of the Delta rule used for
single layer networks.

Delta rule is a gradient descent method used in neurons with continuous activation
functions: given an input and knowing the wanted output, the squared error E is computed
and used to correct the weights proportionally. The gradient descent method is chosen
because if the error increases with an increase of the weights, these parameters need to
be reduced, so they need to go in the opposite direction of the error.

This iterative method can be performed as long as an error can be computed. If the
network is made by a single layer, its output can be compared directly with the expected
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label, calculating the error. But as soon as other hidden layers are added to the network,
it will be impossible to know their expected output, thus the hidden parameters cannot
be updated.

The solution for the computation of error in hidden layers is error backpropagation,
which exploits the error of the output layer to compute the one in all the previous hidden
layers [43]. To do so two steps are followed: first, the forward step expresses the outputs
of every neuron in the various hidden layers up to the final output layer. Then, a backward
step is applied, which takes into account the error of the output layer and takes it back
in the previous hidden layer exploiting the derivative of the activation function of the
neuron considered. Error backpropagation allows to train multi-layer networks, which are
needed to perform complex operations.

1.2.2. Overfitting

The main problem in model training is to guarantee the correct generalization, that is
the capability to correctly predict the output of data which do not belong to the training
dataset. The two learning rules shown are iterative, meaning that they are repeated
over all the dataset more than once to reduce the loss function as much as possible. Each
iteration over the dataset is called epoch. Usually, at each new epoch the error is reduced,
but the model will also be inclined toward a loss of generalization, as it focuses too much
on the training data. Thus, a trade-off between the number of epochs and generalization
should be found to have good predictions over unseen data (see figure 1.14a).

To find this optimal point, the metrics computed on the training data are not a good
index of how the Network will perform on unseen recordings. In fact, during the training
over a dataset, the model fits its parameters to identify those specific data. However, if
the model learns to classify only those specific data, it may not be able to predict correctly
different data, causing the so called overfitting.

For this reason, the model performance evaluation occurs over an unseen group of data,
which is called test set. This selection of data is obtained by keeping a part of the initial
training dataset hidden to the model. The separation of training and test data must be
done before any operation on the data, else the model performances would be influenced.
Overfitting may also occur due to an excessive or insufficient complexity of the network
architecture, so another trade-off between model complexity and generalization capability
of a Network has to be identified, as shown in figure 1.14b.
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(a) Tradeoff Error - Epochs. (b) Tradeoff Error - Model Complexity.

Figure 1.14: The graph 1.14b shows the evolution of the error performed in the classifica-
tion of data with the increase of the chosen complexity of model: as the latter increases,
the model will fit better to all the points in the training dataset, resulting in a decrease
of the former, represented with the blue line. However, the model will also lose general-
ization, represented by the increased error performed in the predictions over the test set,
represented with the red line. The optimal point is represented by the minimum identified
in the test set error curve, else it would occur in underfitting or overfitting. The same
considerations can be done observing graph 1.14a, watching how the epochs change the
goodness of the model.

To improve model generalization some operations can be performed. In particular one
can act with data processing, over the model architecture and on the training procedure:

• Data processing can be used to filter, standardize and remove biases, so that
differences in data coming from different sources can be nullified. For example, if
a model is trained with data which have been acquired with different protocols, a
filtering and a standardization may remove the differences in bias and noise affecting
the signals.

Taking as example ECG signals, in figure 1.15a is shown a raw recording where both
the scale and the oscillation in signal are high. After a filtering and z-normalization
procedure (figure 1.15b), the obtained time series has been scaled down and became
more stable.

Data processing is of primary importance for the correct training of a model, because
it enhances the quality of data and ensures that the model inputs have the same
shape, reducing the possible mistakes in learning.
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(a) Raw ECG signal. (b) Processed ECG signal.

Figure 1.15: Considering different sources, the scales may vary according to each center
of acquisition due to differences in hardware and sampling frequencies, thus it is very
important to follow a procedure which brings all the signals on the same level before
feeding them to the model.

• Model architecture can be changed according to the degree of complexity needed
for the correct characterization of the problem. In fact, if the network fits to training
data perfectly but performs poorly on test set, it may be due to the excessive
complexity given to the network itself.
For example, if the points are distributed over a parabolic line, the model needs to
map a quadratic relationship; but if we feed it to a network with a lot of hidden
layers, it may create a complex nonlinear relationship that is far from the wanted
distribution, and predictions over unseen data will be all wrong (see figure 1.16c).
The same thing may happen in the other direction, so also if the model is too simple
it may not generalize well, causing underfitting, as shown in figure 1.16a.
For this reason, sometimes it can be useful to modify the number of layers, or to
change the complexity of model activation functions, to prevent the two phenomena.

(a) Underfitting. (b) Correct Modelization. (c) Overfitting.

Figure 1.16: The three figures explain how important is to identify the optimal model
without occurring in underfitting (figure 1.16a) or overfitting (figure 1.16c): if training
occurs without the right complexity, the predictions (represented by the red line) would
not follow the actual behavior of data, giving misleading outcomes for unseen data.
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Also, Dropout layers can be added in the architecture, which randomly sets the
input of the next layer to 0, making more difficult for the model to overfit on the
training data and correcting possible mistakes of previous layers.

• Training procedure can be also affecting the overfitting, and can be modified to
avoid it and improve generalization. First of all, some regularization terms can be
added to the loss function, making it penalize large weights, which are often cause
of overfitting.
Also, early stopping can be performed during training: after fixing the number of
epochs of training, it can be stopped before according to the performances reached if
they are above or below a certain threshold. For instance, if the loss value variation
is too small between two epochs it means that the model is starting to overfit,
thus its training is not effective anymore and further epochs would only worsen its
generalization capability.
To better understand the generalization capability of the model during training, the
validation set can be employed. This set of data is obtained by further splitting
the training data, as done with the test set, and hidden to the model during training:
after each epoch, an evaluation over the validation set is performed. The metrics
obtained from this hidden group can be used as reference for the early stopping to
have a more reliable index of the generalization capabilities in itinere. This way, as
soon as the model starts to overfit over the training dataset, the training procedure
can be stopped.

1.2.3. Ensemble of models

A methodology employed to improve the generalization of a model in the final predictions
is the ensemble of models [37]. This technique is performed by training different networks
which are then used together to perform the same prediction, as shown in figure 1.17.
There are different methodologies to integrate the outputs of single models to obtain a
final result. One way can be majority voting, so the class assigned is the one selected by
the majority of models. As the models are different from each other, the error on test set
will also change, making different decisions, thus generalizing better.
However, to have different models, one also needs to train them on different data, thus
the ensemble is usually exploited when a large and heterogeneous dataset is available.



1| State of the Art 21

Figure 1.17: Scheme of the ensemble of n models, where each model computes its predic-
tion, contributing to the production of the final output.

1.3. Neural Networks for ECG classification

In the context of ECG classification, several Deep Learning algorithms have been pre-
sented in literature, from simple FCNN, passing through the more structured Long-Short
Term Memory (LSTM) Networks, which are a type of RNNs that exploit the time series
nature of the recordings, up to the CNNs, which take into account relationships among
different portions of the signal [23].
However, these algorithms have been trained and evaluated on small and homogeneous
datasets, learning the classification of a small number of CVDs. Thus, their success can-
not be considered meaningful for the employment in real cardiological diagnosis, as it does
not represent the complexity of ECG interpretation [39].

The PhysioNet/Computing in Cardiology Challenge 2020 takes place in this setting to
address this problem. The participants were asked to come up with an automatic ECG
classifier which has to be trained over a vast dataset coming from several acquisition cen-
ters, with each recording associated to a large number of cardiac abnormalities. Moreover,
the 2021 Challenge posed a further objective, asking to classify the ECG with reduced
lead sets: not only the complete 12-leads, but also 6, 4, 3 and 2-leads subsets classifiers
were required. This was done to understand if the algorithms were able to extract mean-
ingful features within single channels, and whether they can be enough to understand the
abnormalities affecting the subjects [40].

The work presented in this thesis started from the first and second classified in the 2020
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Challenge [34, 50] and Federico Muscato’s Master Thesis [33] to take part in the 2021
Challenge.

The main idea behind the prna team, which arrived 1st in the 2020 Challenge, was to
employ handcrafted features together with a Neural Network in the classification, merging
together Machine Learning and Deep Learning approaches. This was done to improve the
performances of the model with respect to the use of a Network alone, as well as to
create an explainable interpretation of the classification. The signals followed two parallel
pathways before reaching the final classifier, called "Wide" and "Deep" branches.
In the Wide branch the handcrafted features were extracted from the ECGs. These
features were concatenated to the outputs of the other branch before being fed to the
classifier layer. In the Deep branch the actual Neural Network was implemented. This
part of the model was responsible to automatically extract the implicit signal features used
for the prediction. As said before, the outputs of the two branches were concatenated and
used for the final prediction of the 24 classes of the Challenge.

On the other hand, the team between a ROC and a Heart place, ranked 2nd in
the 2020 Challenge, developed a Residual Network, which is a Convolutional Neural
Network, with attention mechanism implemented through Squeeze-and-Excitation (SE)
blocks. Considering the multiple channels recorded in each ECG, the network input
could be considered bidimensional. This allowed to use the Residual Network, typically
exploited in image recognition, to find relationships among the portions of the signal in a
single channel. The attention mechanism represented by the SE blocks allowed to catch
spatial channel interdependencies. Results obtained show how this type of network suc-
cessfully catches the morphological features which characterize each cardiac abnormality.

Federico Muscato’s Master Thesis exploited this last cited work’s network and focused
on the issue of data unbalancing which characterizes the datasets considered: in fact,
the data given by the Challenge presented unbalanced classes, with some predominant
labels which outnumbered by far other rarer ones. To overcome this limitation, he put his
attention on rebalancing and generalizing the model as much as possible in training: first
of all, he identified the most numerous class, represented by the Normal Sinus Rhythm
(NSR). Then he divided the number of recordings which was labelled with this class in
3 subsets and trained three models with the same architecture using all the dataset, but
a different third of NSR. Finally, the predictions were performed by an ensemble of the
three models, which assigned the class by majority voting. The ensemble was used to
improve generalization of predictions.
Another step implemented was a threshold optimization process performed on the final
classifier layer. The procedure found the optimal thresholds for the predictions, reducing
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or increasing them according to the Challenge Metric computed at the end of training.
This measure contributed to the reduction of class unbalancing because, if a label is more
represented than another during training, the algorithm predicts the frequent class more
often than the other, sometimes even neglecting the uncommon ones. Thus, in order
to improve the prediction of the less represented targets, the procedure chose the correct
threshold for the classification. Both the methodologies contributed to improve the results
of the previous work.

This thesis work starts from the background given by these works taking inspiration by
three aspects:

• From the winner of the 2020 Challenge was implemented the integration between
Machine Learning and Deep Learning approaches, trying to identify the rhythmic
and morphological features that characterize each CVD taken into account in the
Challenge.

• The ResNet with Attention Mechanism of Zhao et al. was taken as basis of the Deep
branch network, and further expanded with Dilation Layers in the convolution to
improve generalization of the extracted features.

• The ensemble classification and threshold optimization methodologies were taken
from Muscato’s work to deal with unbalancing of the dataset.

Developing these three points, an algorithm was prepared to take part to the 2021 Phys-
ionet Challenge. The model was trained on the publicly available data and tested in the
Official Phase over the hidden test set. After the Challenge, other changes were intro-
duced, and the performances were evaluated over a stratified local test set kept hidden
during the training of the modified network.
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2| Materials and Methods

This chapter will go through the available data used in this work, and their description
with a focus on the problem of unbalancing. Moreover, a discussion over the labelling
criterion will be done, to understand some of the issues met during the Challenge. Then,
the data processing steps will be shown. Finally, the model architecture and the training
procedure will be described in detail, together with the evaluation methodology which
gave the final results presented in Chapter 3.

2.1. Data description

The PhysioNet/CinC Challenge 2021 main topic was the ECG classification, so the nature
of this signal will be first presented.

2.1.1. Electrocardiogram

The electrocardiogram (ECG) is the recording of the electrical activity of the heart ex-
tracted through the use of various electrodes, whose position over the body has been
studied to obtain the most informative content about the heart’s condition [4, 32, 42]. It
is a quasi-periodic signal whose amplitude is usually in the order of mV . Its morphology
is typically composed by 5 peaks, called fiducial points, appointed with the letters P, Q,
R, S and T.

The fiducial points identify 3 informative regions in the ECG: the P wave, the QRS
complex and the T wave. The first one regards the atrial depolarization event, during
which this part of the heart starts to contract. Then the QRS complex happens, which
is the manifestation of the occurrence of ventricular contraction. Usually the QRS is the
most prominent peak seen in the ECG recording, and it is superimposed to the wave
that represents the atrial repolarization. For this reason, it cannot be noticed in normal
conditions [22]. Finally, the T wave represents the ventricular repolarization.

By taking into account two or more points, peculiar segments can be identified: for ex-
ample, the PR interval represents the time between atrial and ventricular depolarization,
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which are the electrical events that identify the muscular contraction of the heart cham-
bers. In other words, the PR interval is proportional to the velocity of the electric signal
travelling from atrium to ventricle [11].
Another characteristic interval is the QT interval, which represents the time between con-
traction and relaxation of heart ventricular muscle [10]. According to the duration, the
amplitude and the morphology of the waves, the segments and the complex, cardiologists
can determine the health or pathological status of the subject’s heart.

In figure 2.1 is shown the typical morphology of a single beat of the ECG in a healthy
patient, with all the fiducial points and segments highlighted.

Figure 2.1: This figure, taken from [4], represents the template of an heartbeat in an
electrocardiographic recording.

The standard clinical acquisition of an ECG is a 12-leads recording, which represents a 12
channels signal acquired with the use of 10 electrodes [42]. There are 4 standard electrodes,
each placed over one human limb to follow the Einthoven’s Triangle configuration [13].
Out of these four electrodes, one is used as reference and the other three record the
variation of potential of the heart dipole. From the recordings obtained, 6 leads are
extracted: lead I, II, III, or standard limb leads, and aVL, aVR, aVF, which are the
augmented limb leads [13, 14]. These six leads describe the heart activity projection on
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the frontal plane [42].
The other 6 electrodes are placed over the patient’s chest, close to the heart. The obtained
leads are called precordial leads, and their names are V1, V2, V3, V4, V5 and V6. They
describe the projection of the heart dipole on the trasversal plane [5].

Figure 2.2 shows a scheme of ECG clinical recording, representing the approximate po-
sition of the electrodes (without considering the reference electrode of the left leg), and
how the heart electrical dipoles represented by the acquired leads are oriented in space.

Figure 2.2: A scheme of the position of electrodes for ECG acquisition and the space
distribution of leads, taken from [38].

Different factors can influence the acquisition of an ECG: electrode-skin impedance prob-
lems, as well as hardware configuration and environment conditions, can create biases
or changes in the recording. In fact, from person-to-person the skin characteristics may
vary, and the impedance given by the subject can be slightly different, changing the signal
visualized. Also, American power line oscillates at 60Hz, while in most European coun-
tries the power-line frequency is 50Hz, thus the noise superimposition changes frequency
according to the country of origin. Moreover, if a different hardware configuration is used,
the characteristics of the signal can change.

This is the reason why working with data which come from different sources and acquisi-
tion centers can be difficult, and this can bring the necessity to standardize and normalize
data before using them for any elaboration: in particular, during the PhysioNet/CinC
Challenge this effort was required to face the multi-source dataset provided.
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2.1.2. PhysioNet/CinC Challenge Dataset

As just mentioned, the PhysioNet/CinC Challenge 2021 made available a vast dataset
composed of 88253 recordings labelled with 133 different cardiac abnormalities. Specifi-
cally, 7 public databases were the sources of these recordings. They are:

1. The China Physiological Signal Challenge (CPSC) Database and CPSC-Extra Database,
which together contained 13256 signals [27].
Out of these data, only 10330 (distributed as 6877 and 3453 recordings from each
dataset respectively) were shared to the teams as training data, while the remaining
2926 were kept hidden as validation and test for the evaluation of the submissions.
The recordings coming from these datasets were sampled at 500 Hz, and had a
variable length between 6 and 144 seconds.

2. The Institute of Cardiological Technics (INCART) Database from St. Petersburg,
Russia was made up of 75 annotated long recordings [46]. All the signals were 30
minutes long with a sampling frequency of 257 Hz, and were all given as training
data.

3. The Physikalisch-Technische Bundesanstalt (PTB) Database from Berlin, Germany
[9, 47]. It was composed by the PTB and PTB-XL datasets: the first one contained
549 ECGs from 290 patients, while the latter had 21837 clinical recordings from
18885 subjects, for a total of 22,353 signals.
Each recording had a length ranging from 10 to 120 seconds with a sampling fre-
quency between 500 and 1000 Hz. All data were shared as training data.

4. The Georgia 12-leads ECGs Challenge Database, collected in the southeastern state
of the United States of America, contained 20672 recordings. The signals’ length
was between 5 and 10 seconds, sampled at 500 Hz. Only 10344 ECGs were given
as training data, while the remaining 10328 were kept hidden as validation and test
set.

5. The Chapman University (California, USA) collaborated with Shaoxing People’s
Hospital (Chapman-Shaoxing) to create a large public dataset of ECGs [52]. Also,
Ningbo First Hospital (Ningbo) shared other recordings, all coming from Zhejiang,
China [51]. These sources provided together 45,152 ECGs, all with a duration of 10
seconds and a sampling frequency of 500 Hz, shared as training data.

6. An hidden American database, whose geographic provenance differs from the Geor-
gia database, contained 10,000 ECGs, all retained as test data, so their nature and
characteristics are unknown.
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7. The last database comes from University of Michigan (UMich), containing 19,642
ECGs all kept as test set. Their characteristic length is 10 seconds and their sam-
pling frequency is either 250 or 500 Hz.

During the Challenge, the performances of the classifiers presented by the participants
were evaluated only on 30 out of the available 133 pathologies [40]. Moreover, among
the 30 CVDs, there were 4 couples of diseases which were considered equivalent for their
similiar effect on the ECG. This equivalence was expressed by rewarding the couples of
pathologies with the same score during the classification. Specifically, there were:

• Complete Left Bundle Branch Block (CLBBB) scored as Left Bundle Branch Block
(LBBB);

• Complete Right Bundle Branch Block (CRBBB) scored as Right Bundle Branch
Block (RBBB);

• Premature Atrial Contraction (PAC) scored as Supraventricular Premature Beats
(SVPB);

• Premature Ventricular Contraction (PVC) scored as Ventricular Premature Beats
(VPB).

For this reason, the classifiers could focus on the prediction of only 26 classes instead of
the original 30, considering the couples as single labels. In Table 2.1 is presented the
number of labels in each training dataset and the sum of the instances of such classes
among the various databases. The equivalent labels are highlighted with the same colour.
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Labels CPSC CPSC-Extra StPetersburg PTB PTB-XL Georgia Chapman-Shaoxing Ningbo Total

AF 1221 153 2 15 1514 570 1780 0 5255
AFL 0 54 0 1 73 186 445 7615 8374
BBB 0 0 1 20 0 116 0 385 522
Brady 0 271 11 0 0 6 0 7 295
CLBBB 0 0 0 0 0 0 0 213 213
CRBBB 0 113 0 0 542 28 0 1096 1779
IAVB 722 106 0 0 797 769 247 893 3534
IRBBB 0 86 0 0 1118 407 0 246 1857
LAD 0 0 0 0 5146 940 382 1163 7631
LAnFB 0 0 0 0 1626 180 0 380 2186
LBBB 236 38 0 0 536 231 205 35 1281
LQRSV 0 0 0 0 182 374 249 794 1599
NSIVCB 0 4 1 0 789 203 235 536 1768
NSR 918 4 0 80 18092 1752 1826 6299 28971
PAC 616 73 3 0 398 639 258 1054 3041
PR 0 3 0 0 296 0 0 1182 1481
PRWP 0 0 0 0 0 0 0 638 638
PVC 0 188 0 0 0 0 0 1091 1279
LPR 0 0 0 0 340 0 12 40 392
LQT 0 4 0 0 118 1391 57 337 1907
QAb 0 1 0 0 548 464 235 828 2076
RAD 0 1 0 0 343 83 215 638 1280
RBBB 1857 1 2 0 0 542 454 195 3051
SA 0 11 2 0 772 455 0 2550 3790
SB 0 45 0 0 637 1677 3889 12670 18918
STach 0 303 11 1 826 1261 1568 5687 9657
SVPB 0 53 4 0 157 1 0 9 224
TAb 0 22 0 0 2345 2306 1876 5167 11716
TInv 0 5 1 0 294 812 157 2720 3989
VPB 0 8 0 0 0 357 294 0 659

Table 2.1: Label distribution per dataset officially provided by the PhysioNet/CinC Chal-
lenge 2021 [40].

Inhomogeneity in labelling criterion

One of the issues coming from the multiple-source nature of the PhysioNet Challenge
dataset was the non-homogeneous classification criterion for the pathologies: in fact,
from table 2.1, it can be noticed that some of the datasets, such as the CPSC, the
StPetersburg or the PTB, did not present all the labels.
This could be due to the fact that, during the preparation of those databases, certain
diseases were neglected. Also, there is the possibility that some grouping have been
performed: for instance, in the Ningbo dataset the Atrial Flutter (AFL) appears in 7615
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samples, while the Atrial Fibrillation (AF) never occurred. Being the former a rarer CVD
with respect to the latter, probably they were grouped together due to their similarity.

Data selection

This difference in labelling criterion among the datasets brought a problem in training
the algorithm, because it supposedly created a bias towards some pathologies, neglecting
some others. In fact, if a pathology was present in the record, but the ECG was not
labelled with it, it would not be possible to train a model to recognize it. Moreover, if in
some dataset the label is present, while in others is not, this would mislead the network’s
training phase, not allowing it to correctly understand the CVD’s features.

For this reason, a dataset selection was performed before introducing the samples in
the network to maximize the performances of the algorithm as well as its generalization
capability in training.
First of all, the StPetersburg INCART database was excluded for the duration of its
signals, which were far longer (30 minutes) with respect to all the other data, whose length
was in the order of a few seconds. The difference in length could have been troublesome
for the model training: in fact, the input size of the model would have not allowed to
use the whole duration of such signals, thus it would have been necessary to take partial
time windows. Using time windows could be misleading for the training of the network,
because if the recording was labelled with a pathology which occurs in a specific part of
the track, only some segments of the considered signal would actually show it. Thus, the
model would learn to classify wrongly the pathology if the considered segment did not
present it. The PTB dataset was also kept out because of the reduced population size
from which the data were extracted: in fact, the 549 recordings were obtained from 290
subjects only. Moreover, the number of the Challenge pathologies contained was very
small with respect to other datasets.
Finally, the CPSC-Extra was not considered for the poor quality of its data.

After the exclusion of these databases, the rejected data were 4077, thus the dataset
reached 84176 recordings. A further data selection procedure was then applied to make
the signals used as homogeneous as possible: first of all, the ECGs which did not present
any of the Challenge labels were removed, then only 10-seconds long signals sampled
at 500 Hz were included in the final dataset, resulting in 67659 recordings. Finally, a
stratified holdout of 9646 samples was performed to create a local test set upon which
evaluate the performances of the algorithm after the training.
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2.1.3. Cardiac abnormalities in PhysioNet Challenge

Among the various labels assigned to each ECG, the Normal Sinus Rhythm (NSR) is the
control class which shows a regular healthy heartbeat. Any variation from it is considered
a cardiac abnormality, and the alteration caused on the recording can be rhythmic,
morphological or both.
Specifically, if the alteration is focused on the rhythm, it means that the heartbeat track
is almost normal, but it pulses at frequencies which are not in the normal range: this is
the case of Sinus Bradycardia (SB) or Sinus Tachycardia (STach)[18, 20]. There are also
other variations, like Prolonged PR Interval (LPR), which modify the duration of specific
segments of the ECG [3].
On the other hand, if a CVD is focused on the morphological alteration of the heartbeat,
it will mean that there is a conduction alteration in the heart cells which divert the usual
pathway of the electric dipole. Thus, the ECG recording will be altered from the template
track shown in figure 2.1. This is the case of Bundle Branch Block (BBB), where the QRS
complex shape is modified; also the Q wave abnormality (QAb) or the Left Axis Deviation
(LAD) show an alteration of specific parts of the ECG [24, 28, 31].
Naturally, the subtle line which separates the two natures of CVDs makes it difficult
to distinguish them clearly: in fact, some temporal alterations can bring changes to the
morphology of the ECG, but also the other way round is valid. For instance, Atrial
Fibrillation (AF), which shown no P wave and an "irregularly irregular" pattern together
with a fast rhythm [36], has a double nature of being both a rhythmic and morphological
alteration.

Table 2.2 summarizes the hypothesis elaborated over each pathology, after an accurate
analysis of the diseases’ definitions given on the PubMed website [1], to classify their effect
on the ECG.
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Labels Category Observations

AF Atrial Fibrillation Both Irregular rhythm for long time
AFL Atrial Flutter Both Flutter waves and fast rhythm
BBB Bundle Branch Block Morph Affects shape of QRS complex
Brady Bradycardia Time Slow pacing rhythm

CLBBB | LBBB (Complete) Left Bundle Branch Block Morph Widened QRS complex
CRBBB | RBBB (Complete) Right Bundle Branch Block Morph Widened QRS complex

IAVB 1st deg atrioventricular block Time Prolonged PR Interval
IRBBB Incomplete Right Bundle Branch Block Morph Widened QRS complex
LAnFB Left Anterior Fascicular Block Morph Alterated QRS complex
LAD Left Axis Deviation Morph Shift of QRS orientation

LQRSV Low QRS Voltages Morph Altered QRS amplitude
NSIVCB Nonspec. Intraventr. Conduct. Disorder Morph Altered QRS complex

NSR Normal Sinus rhythm Both Normal behavior
PAC Premature Atrial Contraction Both Premature P wave, no QRS
PR Pacing Rhythm Morph Altered shape with PM1

PRWP Poor R wave Progression Morph Altered V1 to V6 R-peak
PVC Premature Ventricular Contraction Morph Altered and wide QRS complex
LPR Prolonged PR Interval Time Longer time btw P and R peak
LQT Prolonged QT Interval Time Longer time btw Q and T-wave
QAb Q Wave Abnormal Morph Altered Q-wave shape
RAD Right Axis Deviation Morph Shift of QRS orientation
SA Sinus Arrhythmia Time Irregular heartbeats
SB Sinus Bradycardia Time Slow pacing rhythm

STach Sinus Tachycardia Time Accelerated pacing rhythm
SVPB Supraventricular Premature Beats Both Same as PAC
TAb T Wave Abnormal Morph Altered T-wave shape
TInv T Wave inversion Morph Shift of T-wave orientation
VPB Ventricular Premature Beats Morph Same as PVC

1. Pacemaker.

Table 2.2: Here is listed the label division in three groups of ECG alteration: morpho-
logical as green, temporal as light blue or both as yellow. NSR is considered the control
class for both the alterations.

These considerations were taken into account to build the model in its two branches
fashion: the idea was that one branch, called Wide branch, would focus on recognizing
the temporal characteristics of the recordings, while the other one, the Deep branch, had
to put its attention over the morphology of the signal, improving the performances with
respect to the use of a single network.
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2.2. Data processing

A separate data processing was designed to extract two distinct inputs to be fed to each
branch, making the same recording to follow a double pathway. Figure 2.3 shows a
summary of the operations conducted over the same signal for the two pathways.

Figure 2.3: A summary of the ECG processing steps operated. Flow A is the path taken
by the recording before feeding it to the Deep branch, while flow B is the one followed for
the parameters extraction given to the Wide branch.

In particular, the pathway A describes the data preparation steps before feeding the signals
to the Deep branch, whose purpose was to recognize the morphological characteristics of
each class. Along the other pathway B, the information flow was designed to extract
the 20 numerical features used as input of the Wide branch. Such features describe the
temporal characteristics of the signal taken into account: in an healthy ECG track they
have standard values, which are altered when a certain pathology affects a subject. So
the network can learn to recognize the values to classify abnormal recordings represented
by the classes of the Challenge.

The Deep branch data processing executed on each signal was performed as follows:

1. Resampling at 500 Hz;

2. Filtering with 3rd order Butterworth filter in the range [1− 47] Hz;
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3. Z-score standardization of each channel of the ECG, expressed as follows:

Z =
x− µ

σ
,

where µ was the mean of each channel and σ was its standard deviation;

4. Either zero-padding for signals shorter than 5000 samples, or random windowing
when their length exceeded 10 seconds.

Even though the data selection procedure explained in section 2.1.2 had already considered
10 seconds 500 Hz signals only, these processing steps were needed to guarantee the
standardization of signal characteristics for a generic test set. Moreover, just before
giving the ECGs as input in the network, a data distortion procedure was applied with
three possible outcomes:

• Random noise addition with a probability of 6%;

• Leads exchange with a probability of 2%;

• Signal inversion over 1, 2 or all the channels with a probability of 2%.

This last strategy was executed to increase the model generalization capabilities, by mak-
ing the classifier deal with noisy signals.

The processing followed for the Deep branch aimed to the standardization and the noise
removal in all the signals, so that even if their origin differed, they would be all simi-
lar in shape when fed to the neural network, allowing it to correctly learn the implicit
morphological features needed for the classification.

The purpose of the processing for the Wide branch was to extract handcrafted features
which would help in the temporal characterization of inputs. To compute them, the lead
"II" was selected: first, it was filtered with a FIR filter in the range [3− 45] Hz, then the
R peaks were extracted for the computation of RR intervals and Poincaré plot for each
recording. Finally, the 20 handcrafted features, listed in table 2.3, were extracted.
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Parameter Description

mean_nni Mean NN interval
sdnn NN interval std 1

sdsd Std of adjacent NN-intervals differences
nni_50 Number of NN exceeding 50ms
pnni_50 Percentual of nni50 over total RR intervals
nni_20 Number of NN exceeding 20ms
pnni 20 Percentual of nni20 over total RR intervals
rmssd RMS 2 of NN differences

median_nni Median NN interval
range_nni Max-Min difference

cvsd CV 3 of successive differences
cvnni Coefficient of Variation

mean_hr Mean Heart Rate
max_hr Max Heart Rate
min_hr Min Heart Rate
std_hr std of Heart Rate
sd1 Std of the major axis of Poincaré plot
sd2 Std of the minor axis of Poincaré plot

sd_ratio Ratio between sd2 and sd1
ellipse_area Area of fitted ellipse of Poincaré plot

1. Standard Deviation, 2. Root Mean Square, 3. Coefficient of Variation.

Table 2.3: List of the 20 handcrafed features fed to the Wide branch.

2.3. Network Architecture

As mentioned before, the structure of the Neural Network exploited for the classification of
an ECG was composed by two branches, a Deep ResNet SE with dilated convolutions and
a Wide Fully Connected Neural Network consisting in 3 sequential layers. The first part
received in input the normalized 12-leads signals, while the second one was fed with the
20 numerical features extracted (respectively, flows A and B of figure 2.3). The complete
model architecture is represented in figure 2.4, and the code is reported in Appendix A.4.
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Figure 2.4: Complete model architecture: block A on the left is the Deep branch, made
up by the modified ResNet SE receiving the normalized 12-leads ECG; block B on the
right is the Wide branch, constituted by the Fully Connected Neural Network that took
as input the numerical features and created an embedding of them. Their outputs are
concatenated and fed to the final sigmoid layer to perform the prediction.

2.3.1. Deep branch

The Deep branch of the model took its foundations on the modified ResNet with
Squeeze-and-Excitation (SE) attention mechanism implemented by Zhao et al. in the
2020 PhysioNet Challenge [50]. Its main use was to extract implicit morphological fea-
tures both in the single channel of an ECG and, thanks to the attention mechanism, also
among the various leads.

The name ResNet stays for Residual Network, because these types of NN are composed
by blocks, called Residual blocks, whose output is fast-forwarded to deeper layers [19]. By
using this type of structures it is possible to create very deep networks, as their optimiza-
tion is very simple from a computational point of view. In this particular Network, the
two Residual Blocks used are called Identity block and Convolutional block; their struc-
ture comprised the Squeeze-and-Excitation (SE) block, which implemented an attention
mechanism to help the network to focus on relationships among the different channels of
the input.
The Identity block was made by two Convolutional layers separated by a Batch Nor-
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malization layer and a Dropout layer. These last two layers have a regularization purpose
to avoid overfitting. Then an SE block was placed just before the final Additional layer,
which summed the original input of the Identity block to the output returned by the SE
block.
The Convolutional block had the same structure of the Identity block, but a further
Convolutional layer was placed after the SE block.
Finally, the SE block implemented an attention mechanism through a Global Average
Pooling layer, which performs a squeezing of the received features, and added nonlinearity
through two Dense layers with ReLU and Sigmoid activation functions.
The structure of these blocks is represented in figure 2.5. A further improvement carried
out over the blocks was the execution of dilated convolutions inside the Identity blocks’
convolutional layers: this adjustment allowed to expand the distance considered by the
kernels in performing the convolutions, which gave the possibility to watch the signal at
different time scales. This way, the ResNet would extract meaningful features in a channel
considering windows of different size.

Figure 2.5: Residual blocks architecture: in all the blocks it can be seen how the received
input is propagated to the last additional or multiply layer to optimize the training process
and allow to increase the number of layers.

From figure 2.4 it can be seen that in block A, which represents the Deep branch, the
ECG was first given to a Convolutional layer, followed by a Batch Normalization and a
Max Pooling layer. Successively, the Network continued its elaboration with two Identity
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blocks and an alternance of a Convolutional and an Identity block for three times. Finally,
the extracted features were fed to a Global Max Pooling layer and then concatenated to
the outputs of the Wide branch.
The first Convolutional layer of the Network presented 64 filters with a kernel size of 15
and a dilation rate of 4. Successively, the 5 following Identity blocks had an increasing
dilation rate of their Convolutional layers with the sequence 4, 8, 16, 32 and 64. Also,
the convolutional filters of both the Identity and Residual blocks had a kernel size of 7,
but their number was increased by going deeper in the network, using 64, 128, 256 and
512 filters each. This allowed to increase the complexity of extracted features.

2.3.2. Wide branch

The Wide branch was implemented to receive in input the 20 numerical handcrafted
features obtained at the end of the path B of data processing (figure 2.3), and make
an automatic selection of the most representative ones. This was done thanks to the
3 sequential Dense layers with ReLU activation functions, composed respectively by 20,
15 and 10 neurons: this bottleneck structured FCNN (see figure 2.6) forced the layers
to synthesize the numerical inputs in the most effective way for the classification of the
signals.

Figure 2.6: Bottleneck architecture of the Wide branch, which forces to learn an embed-
ding of inputs selecting the most significant ones to be returned from the output layer.
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As shown in figure 2.4, the resulting outputs were then concatenated to the extracted fea-
tures of the Deep branch and fed to the final classifier, which consisted in a Dense sigmoid
layer made of 26 neurons, one for each class to predict. The sigmoid activation function
returned probabilities in the range [0, 1] for each class, complying to the requirement of
assigning multiple classes to the same recording.

2.4. Training procedure

Considering the difference in output sizes of the two parts of the model, respectively 512
features for the Deep branch and 10 for the Wide branch, and in the number of trainable
parameters, with the ResNet presenting 1000 times the number of parameters of the Wide
network, it can be understood how the training could be unbalanced toward the Wide
branch. In fact, having much less parameters and being a FCNN, the block B could easily
incur in overfitting, preventing the complete training of the branch A. For this reason, a
three-step training was implemented to allow the two blocks to focus on their training
without interfering with the other.

1. First of all, the ResNet was trained for 30 epochs without considering the Wide
branch in the model architecture. This allowed to extract the meaningful implicit
morphological characteristics of the recordings.

2. Secondly, the previously computed parameters of the Deep branch were loaded in
the model comprising also the Wide network and frozen. The Wide branch was
trained for 20 epochs: by doing so, the final classifier would consider both the
deep morphological features together with the wide numerical ones for the error
computation, but only update of the FCNN’s parameters.

3. As last step, 10 supplementary epochs were used for the fine tuning of the Deep
branch with frozen wide parameters. This ulterior training was done to adapt the
deep features to the fully trained wide model.

For the training, a stratified train-validation split was performed, using 20% of the avail-
able data as validation set. Early stopping over validation loss was implemented, so that
the performances were evaluated on unseen data before choosing to freeze the training.
The learning rate was set to 0.003, with a tenfold decay every 10 epochs, but during the
fine-tuning of step 3, it was reduced every 2 epochs. Adam optimizer was used, together
with binary-crossentropy loss function, particularly indicated for multiclass classification
problems. The chosen batch size was 64.

After the model training, a threshold optimization process was performed to improve the
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classification performances: having an unbalanced dataset, the final classifier returned
higher probabilities to the most numerous classes, predicting with very low values the
rarer ones. If the predictive thresholds were left unchanged for all the labels without any
consideration, the result would be to neglect the uncommon diseases.
For this reason, the threshold was customized for each sigmoid neuron in the classifier
layer so that the predictions would not be affected by the class unbalancing. Two steps
were followed:

1. A grid-search of the best threshold vector which maximizes the Challenge Metric
(CM) in the range [0; 4] with a step of 0.01. The CM was computed on validation
data to keep generality.

2. The application of the Nelder-Mead downhill simplex minimization method over the
negative of CM, using the previously computed threshold vector in step 1 as initial
vector.

The complete algorithm can be found in the Appendix A.5. These newfound thresholds
were useful to obtain more reliable predictions, as well as to maximize the CM score
obtained.
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2.5. Ensemble evaluation

Figure 2.7: Original label distribution in training dataset before reducing NSR and SB.

Figure 2.7 shows the histogram of label distribution in the available training dataset. It is
clear how the number of recordings presenting NSR and SB is overwhelming with respect
to other classes such as Brady or BBB.

To reduce this unbalancing, the two most represented classes, NSR and SB, were re-
moved from the available data and randomly divided in three subgroups. Thanks to this,
three less unbalanced datasets were identified, each containing all the original data, but
a different third of the removed NSR and SB, as shown in figure 2.8.



2| Materials and Methods 42

Figure 2.8: Label distribution in training dataset after the reduction of NSR and SB.

Three distinct models were trained using the presented procedure with the new subsets:
this way, each network could see an improved distribution of the labels. Moreover, the
different thirds of removed labels changed among these models, so during their training
they could see different expressions of the same label. By doing so, the three models had
a better generalization capability when used together in an ensemble classifier.

To evaluate the ensemble over the test set, the same recording was fed to each model, and
the classes were assigned with a majority voting criterion: the class was assigned only if
at least two of the three models returned it.

The complete algorithm of this part can be found in the Appendix A.6. Also, figure
2.9 shows a graphical summary of how the ensemble model is used to produce the final
prediction over a signal.
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Figure 2.9: The same ECG is given to the three models trained over the different datasets,
which will return a prediction each. These predictions will be then used to produce the
final classes according to a majority voting criterion.
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3| Results

In this section, the Challenge Metric score will be presented, and the results obtained for
the 12-lead and 2-lead models during the Challenge and over the local test set will be
reported.

3.1. Challenge Metric

For the PhysioNet Challenge purpose, a new scoring metric which partially rewards mis-
diagnoses has been developed: in fact, even if mis-classified, some pathologies can result
in similiar treatment or outcome with respect to the true diagnosis. This aspect suggests
the fact that mixing up some classes is not as harmful as confusing others, making this
score a generalized accuracy with a focus on the medical diagnosis [40]. For this reason,
even though it is still an error, confusing Bradycardia (Brady) and Sinus Bradycardia
(SB) still rewards the classification of 0.5 points, because it is not as harmful as confusing
it with Qwave Abnormality (QAb) (awarded with only 0.2 points).

To compute the actual Challenge Metric a multi-class confusion matrix was produced by
counting of the number of predictions per class. In the matrix, the rows represented the
true labels, while the columns were the model outputs. The correct diagnoses are placed
on the diagonal of the matrix, while the off-diagonal elements are the mis-classifications.
To give different relevance to mis-classifications, different weights were assigned to off-
diagonal elements as reported in Figure 3.1.



3| Results 45

Figure 3.1: This heatmap shows the weights given to each class when they are used for
the computation of the Challenge Metric.

The computed score was then evaluated as the sum of the normalized instances of a class
multiplied by its weight, according to the following formula:
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CM =

Kclasses∑
i,j=1

aij ∗ wij,

aij = cij/N,

N = max{
∑

(y ∨ ŷ), 1},

(3.1a)

(3.1b)

(3.1c)

where Kclasses is the number of considered classes, in this case 26; aij is the normalized
number of instances of the considered class in all the predictions; wij is the weight as-
signed to that class taken by the matrix of Figure 3.1; cij is the number of instances of
that class before normalization; N is the normalization factor defined as the maximum
between 1 and the total number of labels assigned to a recording being them either the
predicted (ŷ) or the true (y) labels: this was expressed through the "or" (∨) operator
between the Boolean vectors y and ŷ. The normalization factor N was such that if an
algorithm always predicts a wrong class, the score would be decreased, because it would
increase the normalization factor penalizing also the true predictions of that recording.
For instance, if the recording was labelled with 3 diagnoses, and the classifier returned
those 3 classes and 2 additional wrong labels, then N=5. Thus the confusion matrix ele-
ment aij would be divided by 5 and not by 3, thus penalizing also correct classifications.
The Challenge Metric can be thus considered a generalized accuracy for multi-class prob-
lems which focuses on the clinical importance of the predictions.

3.2. PhysioNet Challenge evaluation

Recalling the question posed by the PhysioNet/CinC Challenge 2021: "Will Two do?
Varying Dimensions in Electrocardiography", the objective of the model evaluation was
to understand whether the use of reduced sets of leads for the classification of ECGs
produced predictions comparable to those obtained by the complete 12-leads set.
For this reason, models with 12, 6, 4, 3 and 2-leads subsets were trained and evaluated
in the test phase. For simplicity, the results presented in this section focused only on 12
and 2 leads, making a direct comparison between their results.

There were three phases to be attended by the participants, during which an evaluation
of the algorithms was performed:

1. The Unofficial phase had a smaller dataset available for training, and required to
train the models for all the previously stated leads subsets, excluding the one for
the classification of the 4-leads. The Challenge evaluation was only performed on
a hidden validation set. During this phase our team implemented only the ResNet
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SE, without using dilated convolutions.

2. The Official phase, during which all the available data were given, and all the
5 leads subsets were required. The evaluation was performed on hidden validation
and test sets. At our final official submission, the model included both the Deep and
Wide branch, again without the dilated convolutions. Also, the training procedure
was made of the first two steps, without considering the deep branch finetuning.

3. The Focus Issue submission was the last one, where more freedom was given to the
participants in terms of requirements. The complete model architecture presented
in chapter 2 was developed in this phase and used for the final submission.

The tables with the scores obtained in the different phases are reported in the next
sections. They included the evaluation of the models in the three phases on the test sets,
for both the 12 and 2-leads subsets. While in the Unofficial and Official phases the models
were correctly submitted and the obtained scores are reported in table 3.1 and table 3.2,
during the Focus Issue phase there was not an official evaluation for timing problems. For
this reason, a local test set was used to obtain the results presented in table 3.3.

To achieve a direct comparison among the models developed during the various phases,
the same stratified local test set that was used for the Focus Issue model evaluation was
also exploited as test set of the Unofficial and Official phase models, producing further
results for their evaluation presented in table 3.4. This additional evaluation was use-
ful to understand whether the changes brought to the Focus Issue model improved the
classification capability with respect to the algorithms of the other phases.

3.2.1. Unofficial Phase Results

In table 3.1 are reported the results for the 12 and 2-leads subsets evaluated in the
Unofficial phase. The scores were obtained on the Challenge Validation set, and the
model used only included the Deep ResNet SE without Wide branch and with no dilated
convolutions.

Unofficial Phase submission

Leads Challenge Validation set
12 0.579
2 0.555

Table 3.1: In the table is reported the Challenge Metric evaluated over the Challenge
Validation set during the Unofficial phase.
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These results show that the reduction of the leads brings a slight drop in performances,
meaning that some information is lost when moving from 12 to 2 leads. However, the
score obtained with the 2-leads model is not too far from the one returned by the 12-leads
model. This last consideration gave confidence that the use of the Wide branch could fill
the gap in the information lost in the selection of the lead subset.

3.2.2. Official Phase Results

In table 3.2 the results obtained by the PhysioNauts team, as well as the 1st classified
ISIBrno-AIMT, during the Official Phase are reported. Here our model included the Deep
+ Wide branch, without the dilated convolutions and with only 16 temporal features.
Due to issues with the UMich dataset during testing, our model did not receive an official
ranking. However, different Challenge Test sets were evaluated by using the model. The
results allowed to see how the model behaved by using different sources of data, thus to
see its generalization capabilities. Also, a comparison between the performances of our
model and the ones scored by the winners of the challenge on those Test sets can be
observed.

Official Phase submission - PhysioNauts

Leads Local Cross-validation Challenge Validation set Challenge 1st Test set 1. Challenge 2nd Test set 2.

12 0.689± 0.004 0.613 0.710 0.590
2 0.656± 0.007 0.582 0.630 0.570

1. CPSC Hidden Test set, 2. Georgia 12-leads ECG Hidden Test set.

Official Phase submission - ISIBrno-AIMT (ranked 1st)

Leads Local Cross-validation Challenge Validation set Challenge 1st Test set 1. Challenge 2nd Test set 2.

12 0.69 3 0.640 0.730 0.620
2 NA 3 0.620 0.690 0.600

1. CPSC Hidden Test set, 2. Georgia 12-leads ECG Hidden Test set, 3. Taken from their preprint [35],
only 12-leads available.

Table 3.2: In the table are reported the Challenge scores evaluated with local 5-fold cross-
validation, Challenge Validation and Test sets of our team. The second table shows the
results obtained by the winners of the challenge, allowing to compare the two models
performances.

By comparing the Unofficial and Official results obtained by our model in the Challenge
Validation set, it can be seen how the introduction of the Wide branch brings an improve-
ment in the classification capabilities of all the leads subsets. Even so, this improvement
shows that the Wide branch was not able to compensate the missing information due to
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the reduction of the number of leads, because there is still a drop of performances which
varies according to the used dataset in the 2-leads models.

Still, a good classification capability was obtained by our team, especially if compared
with other submissions in the same test sets. For instance, the first classified team,
ISIBrno-AIMT, obtained for the 12-leads model a score of 0.64 on the Validation set,
0.73 over the CPSC test set, and 0.62 over the Georgia 12-leads test set. This means that
their model was better than the one developed by our team of approximately 0.03 points
on the considered test sets, which is not an excessively large gap. Thus, it can be asserted
that the Deep + Wide model is almost on the same level of the state-of-the-art capability
of pathology recognition, even though there is still space for improvements, some of which
have been performed during the Focus Issue submission phase.

3.2.3. Focus Issue Phase Results

To evaluate the final model developed for the Focus Issue phase, the stratified local test
set extracted at the beginning of data processing was used. In fact, even though the model
was correctly submitted, it did not respect the temporal constrains given to complete the
training phase, thus it did not receive scoring on the Challenge test sets. In table 3.3 are
reported the results obtained evaluating the complete trained model on local validation
and test data.

Focus Issue submission

Leads Local Validation set Local Test set
D D + W D + W + D D D + W D + W + D

12 0.699± 0.004 0.696± 0.003 0.697± 0.003 0.704 0.701 0.705
2 0.672± 0.005 0.670± 0.005 0.674± 0.004 0.674 0.673 0.674

Table 3.3: In the table the Challenge Metric scores of the Focus Issue phase are reported.
They were evaluated considering the three models of the ensemble over the local validation
set and local test set. The three steps of training are also included, showing the first step
of only deep network results (D), the introduction of the wide branch (D + W) and the
finetuning of the ResNet (D + W + D).

From the local validation test, a slight improvement of the model can be seen with re-
spect to the Official phase submission. The main differences between the models of the two
phases was an improved data processing, the use of dilated convolutions, an increase in
the number of wide features and the use of the ensemble trained on the three customized
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datasets. All these elements helped in the increase of generalization of the model, es-
pecially considering the 2-leads improvements. For a direct comparison of the models
developed in the various phases, the same local test set was used to evaluate them. The
results obtained are reported in table 3.4.

Local Test set

Leads Unofficial Phase model Official Phase model Focus Issue model 1

12 0.520 0.643 0.705
2 0.505 0.633 0.674

1. D + W + D model taken as reference.

Table 3.4: In the table are reported the Challenge Metric results obtained with the eval-
uation of the three models over the same Local Test set.

It can be seen that from the Unofficial to the Official phase a clear improvement occurred
thanks to the introduction of the two-branches structure in the model. Also, the changes
brought to the Focus Issue model gave an ulterior boost in the classifier’s performances.

Due to the unavailability of an official scoring, other metrics had to be explored to better
understand the model behavior. Moreover, the Challenge Metric score does not completely
explain the model behavior toward each class, because it is an evaluation of the goodness
of the predictions from a clinical point of view. For this reason, the Positive Predictive
Values (PPV) of each class have been computed to understand the model performances.
The values are reported in table 3.5.
By focusing on some of the pathologies, such as AF or AFL, it can be seen how the use
of the Wide branch slightly increases the predictive capabilities of the algorithm. This
may be due to the double nature of those pathologies, as reported in table 2.2, better
recognized with the use of the temporal features. However, the classification of other
CVDs, such as the BBB, is worsened with the introduction of the Wide branch, probably
due to an incorrect integration of the Wide and the Deep features. To overcome this
limitation was implemented the third step of training, which focuses on the finetuning
of the Deep branch considering also the Wide characteristics. It can be noticed that the
recognition of BBB is improved in the third phase of training, supporting such hypothesis.
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Labels 12-leads 2-leads N. Rec

D D+W D+W+D D D+W D+W+D
AF 0.345 0.361 0.369 0.343 0.370 0.380 554
AFL 0.661 0.670 0.668 0.638 0.640 0.624 1040
BBB 0.276 0.240 0.260 0.242 0.169 0.225 62

CLBBB | LBBB 0.630 0.635 0.574 0.536 0.461 0.423 163
CRBBB | RBBB 0.688 0.697 0.695 0.629 0.609 0.630 453

IAVB 0.504 0.539 0.515 0.501 0.469 0.474 374
IRBBB 0.383 0.357 0.376 0.266 0.238 0.263 220
LAD 0.516 0.532 0.529 0.457 0.492 0.486 954

LAnFB 0.393 0.410 0.428 0.343 0.381 0.378 273
LPR 0.164 0.216 0.200 0.144 0.173 0.181 49

LQRSV 0.262 0.252 0.254 0.186 0.212 0.198 199
LQT 0.317 0.344 0.331 0.255 0.222 0.272 237

NSIVCB 0.328 0.326 0.349 0.242 0.208 0.201 220
NSR 0.901 0.907 0.906 0.885 0.873 0.895 3537

PAC | SVPB 0.515 0.556 0.543 0.496 0.488 0.526 337
PR 0.799 0.740 0.807 0.815 0.856 0.778 185

PRWP 0.151 0.158 0.160 0.125 0.115 0.149 80
PVC | VPB 0.530 0.533 0.463 0.454 0.530 0.483 217

QAb 0.350 0.364 0.356 0.333 0.321 0.342 259
RAD 0.407 0.394 0.386 0.382 0.411 0.410 159
SA 0.531 0.512 0.542 0.510 0.551 0.566 472
SB 0.943 0.927 0.936 0.945 0.938 0.940 2358

STach 0.881 0.875 0.865 0.857 0.852 0.865 1167
TAb 0.410 0.405 0.408 0.377 0.369 0.381 1461
TInv 0.296 0.290 0.297 0.260 0.253 0.255 497

Table 3.5: Here are reported the 12 and 2-leads Positive Predictive Values computed over
each class, distinguishing the Deep branch only, Deep+Wide branches and Deep+Wide
with finetuning of the deep part.
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The following figures 3.2, 3.3, 3.4, 3.5, 3.6 and 3.7 show the confusion matrices obtained
respectively from the first, second and third step of training for both the 12 and 2-leads
subsets. The diagonal represents the true predictions, while the other squares represent
mis-classifications. The rows are the true labels, while the columns represent the pre-
dictions. For this reason, it can be understood that the perfect classifier will present a
confusion matrix in which only the diagonal is visible, while the off-diagonal elements are
null.

Figure 3.2: The 12-leads Confusion Matrix for the deep model evaluated on the test set.
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Figure 3.3: The 2-leads Confusion Matrix for the deep model evaluated on the test set.
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Figure 3.4: The 12-leads Confusion Matrix for the wide model evaluated on the test set.
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Figure 3.5: The 2-leads Confusion Matrix for the wide model evaluated on the test set.
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Figure 3.6: The 12-leads Confusion Matrix for the finetuning model evaluated on the test
set.
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Figure 3.7: The 2-leads Confusion Matrix for the finetuning model evaluated on the test
set.

By comparing the confusion matrices of the models used to evaluate the test set after
each training phase, it is difficult to notice the differences. Among the matrices it can be
seen how most of the predictions are correct, because the diagonals are predominant in
the graphs, meaning that the predictions are overall accurate. However, there are some
areas in which the mis-classifications are more evident: in the upper left corner of the
matrices, and along the first two columns, there is a predominance of light blue squares.
This means that the AFL and AF labels are often mixed up, and also assigned when they
are not present in the ECG. Other classes, such as LAD, NSR, SB, STach, TAb and TInv
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are also frequently chosen, producing mis-classifications.

The confusion matrices can be compared, showing the behavior of the models with each
class during the various phases of the three-step training. To better understand them
in details, the matrices should be considered together with the PPV values: most of the
classes benefited from the introduction of the Wide branch, reducing mis-classifications.
In particular, for the 12-leads Wide+Deep model the PPV increased for 14 classes with
respect to the only Deep branch, while it was reduced in the other cases. Out of those 14
classes, 7 of them were considered as pathologies affecting the heart rhythm, supporting
the hypothesis that this part of the network can increase the predictive capabilities and
increase generalization of the model, especially toward these diseases. Moreover, in 10
out of the 12 remaining classes, even though their PPVs were slightly worsened by the
inclusion of the Wide branch, this trend was corrected and stabilized by the finetuning
performed over the Deep branch during the third phase of training. However, it has to
be noticed that in 8 classes the retraining of the Deep branch reduced the predictive
capability of the model.

By considering the 2-leads, a similiar behavior can be noticed with respect to the 12-leads
model, but the introduction of the Wide model worsened the predictive capability of 15
classes out of the 26. Again, the finetuning of the Deep model helped to correct this
trend in most cases, and for 16 pathologies the recognition capability was improved with
respect to the only Deep model.
These observations support the supposition that the retrain of the ResNet can be useful
after the inclusion of the Wide features in the classification layer to correct the possible
unbalancing of the network toward this last branch.

Combining all the observed results, it is possible to conclude that the model ensemble,
integrating both the Wide and Deep features, if trained with the three-step procedure
can be a good solution for the classification of ECG pathologies, even compared to the
considered state-of-the-art model which won the PhysioNet Challenge 2021. However,
there is still space for further improvements, especially if such models aim to be considered
for clinical screening.
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developments

In this work an algorithm which wanted to face the problem of ECG automatic classi-
fication, combining Machine Learning with the novel techniques of Deep Learning, was
presented. This was done to understand whether the model diagnoses could be brought
to a level comparable to those of an expert cardiologist even in complex cases where the
patient is affected by multiple pathologies. Through the combination of ML and DL,
an aspect considered was the development of an algorithm whose classification criterion
could be understandable by an external user: through the use of ML features, it can be
possible to understand the reason why a certain class was assigned to the ECG.
In particular, the developed Network included a modified ResNet SE, whose usefulness
in multi-lead ECG classification had been already proved in the past studies, thanks to
its capability to extract implicit morphological features along a single channel and among
the various leads [50]. Through this study, it was explored the possibility of improving the
generality of the classifier through the concatenation of handcrafted temporal features,
which are not usually considered in the deep models [49].
Moreover, the model was developed to participate in the PhysioNet Challenge 2021, in
which the impact of the reduction of the leads used for the diagnosis was to be explored.
This other aspect was addressed to understand how much information is not redundant,
but actually useful for the algorithm’s classifications.

The final algorithm encompassed a two-branch Network, combining a modified deep
ResNet SE with dilated convolutions and a wide 3-layers FCNN. This particular two-
sided structure was exploited to tackle the first two objectives: the deep branch was a
purely Deep Learning network, where the feature extraction is completely hidden inside
the computations performed by the neurons; on the other hand, the wide branch exploits
handcrafted features, as in Machine Learning, and used a Deep Learning structure to
perform a selection and combination of the features. Thus, a combination of Machine
Learning together with Deep Learning was performed, and the presented results showed
how this integration successfully improves the classification capabilities of the model. In
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addition, the use of explicit temporal features helps the understanding of classification
criterion of the Network, giong in the direction of the previously stated objective.
Moreover, the changes in the deep branch allowed to extract the morphological features
of ECG at different time scales, while the wide part created an embedding of 20 hand-
crafted temporal features, which were extracted from the RR intervals of lead "II" of each
ECG given in input to the model. The direct combination of morphological and temporal
features was done to compensate the lack of rhythmic description given by the ResNet
SE, improving the recognition of pathologies which affected the rhythm of an ECG, as
shown by the computed PPVs of the model reported in table 3.5.

Another novelty proposed by this work was the three-step training procedure: due to the
FCNN nature and the smaller number of layers and parameters of the Wide branch with
respect to the Deep part of the network, the introduction of the Wide branch pushed the
overall network towards overfitting. For this reason, at first the Deep part was trained
alone, allowing it to extract the morphological features. Then, the Wide branch only was
trained considering the Deep features, and finally a finetuning of the Deep branch was
performed to keep into account the Wide features in the classification together with the
Deep ones. The hypothesis behind this approach was the gradual reduction of overfitting,
because the division in steps allowed the network to focus on each branch separately,
learning their features without interfering with the other part. Also, an increase of gen-
eralization (and thus performances) was expected among the various steps. Regarding
this last aspect, only a slight improvement in the predictive capability of the model in
the various steps of training was reached, with some differences between the 12 and 2-
leads models. However, it can be said that the 3-step training was overall successful
in improving the performances of the algorithm, allowing to correctly integrate deep and
handcrafted features in a balanced way, especially if compared to the models of the Official
Phase and the Unofficial Phase (see tab 3.4).

A further aspect to take into account was the handling of the unbalanced dataset which
was originated by merging recordings coming from different acquisition centers. This
problem was faced in three ways: with data selection, which allowed to create an ensemble
of models; with data processing, to standardize the differences due to the various sources;
and with a threshold customization process for the final classification, allowing to change
the predictive threshold according to the considered class, which could be more or less
frequent. All the three aspects allowed to have good performances in the test set (see
table 3.3): in particular, the use of the ensemble of three models increased the generality
of the model, not allowing it to overfit toward the training data only.

A limitation in the procedure, due to the reduced computational power available in the
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training of the models, was the reduced length of the signals considered in the model:
in fact, 10 seconds signals were used, but such windows may be not long enough for
the extraction of some other temporal features regarding the ECG. However, this was a
good compromise between training time and model performances. Moreover, most of the
signals in the dataset had such length, thus the majority of data were included thanks to
this criterion. Future developments could take into account even the longer signals, so to
expand the horizon of handcrafted characteristics to be taken into account by the model.
Also, another flaw directly regards the dataset: even though the threshold optimization
process helps in the mitigation of class unbalancing, the availability of data of the less
represented pathologies still affects the quality of predictions. Thus, another aim for
future works should be the increase of data presenting the less represented labels.

Considering the objective of leads reduction, the Wide+Deep feature integration was ex-
pected to support and integrate the missing information due to the exclusion of some
channels in the recordings. However, as shown in the PPV table 3.5, the temporal fea-
tures worsened the classification capability of the 2-leads model in 15 labels out of the
26 considered. This could mainly due to overfitting, but the phenomenon should be ex-
plored in future works, because it may help to identify the information’s usefulness for
the pathology characterization.
Only after retraining the Deep branch the performances were improved, showing perfor-
mances for the 2-leads model which are not too far from the complete 12-leads. This last
observation brought to the conclusion that the reduction of leads is possible, and 2-leads
recording may suffice for the classification: in fact the reduced leads algorithm behavior
is similar to a model trained over the complete recording. However, the classifier needs
to improve its pathology recognition power.

Future works should aim to improve the overall classification performances, keeping the
explicit features to make the labelling criterion understandable for an human user. For
instance, the number of explicit handcrafted features fed to the wide branch could be
increased, and a different structure of this part of the network could be developed to better
integrate Wide and Deep blocks. Another possible idea could be to perform a grouping
of the pathologies whose labels were better recognized thanks to the introduction of the
Wide branch, to train two distinct models and create an ensemble of classifiers which
exploits different architectures made by a single Deep network and another one composed
by a Deep + Wide network to predict different classes.
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A| Appendix A - Model code

This appendix shows some extracts of code used for the ECG classification. In particular,
the three elements shown represent:

• The model architecture, explicitly showing the various blocks contained in the
network. In particular, the three submissions codes are shown, highlighting the
differences in code step by step: the unofficial submission included only the Deep
branch, the official submission included also the wide branch with some changes in
the parameters and the focus issue submission has a slightly different structure in
the deep branch and wide branch components.

• The threshold optimization algorithm is reported to show the steps followed in
an important part of the model development.

• The ensemble evaluation by majority voting is also shown, obtained by loading
and exploiting the predictions of the three models per each lead subset.

Model Architecture

First, the Residual Blocks structures are presented, which are the same through all the
phases.

Listing A.1: Model Architecture - Residual Blocks

1 def ResBs_Conv(block_input , num_filters):
2 ’’’
3 Convolutional Residual Block
4 Inputs:
5 block_input: input tensor to the ResNet block
6 num_filters: no. of filters/channels in block_input
7
8 Returns:
9 relu2: activated tensor after addition with original input

10 ’’’
11
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12 # The ResBs block consists of:
13
14 # 0. Filter Block input and BatchNorm
15 block_input = Conv1D(num_filters , kernel_size =7, strides=2, padding

=’same’)(block_input)
16 block_input = BatchNormalization ()(block_input)
17 # 1. First Convolutional Layer
18 conv1 = Conv1D(filters=num_filters , kernel_size =7, padding=’same’)(

block_input)
19 norm1 = BatchNormalization ()(conv1)
20 relu1 = Activation(’relu’)(norm1)
21
22 dropout=Dropout (0.2)(relu1)
23
24 # 2. Second Convolutional Layer
25 conv2 = Conv1D(num_filters , kernel_size =7, padding=’same’)(dropout)
26 norm2 = BatchNormalization ()(conv2)
27
28 # 3. SE block (fucntion defined above)
29 se = se_block(norm2 , num_filters=num_filters)
30
31 # 4. Summing Layer (adding a residual connection)
32 sum = Add()([ block_input , se])
33
34 # 5. Activation Layer
35 relu2 = Activation(’relu’)(sum)
36
37 return relu2
38
39
40 def ResBs_Identity(block_input , num_filters):
41 ’’’
42 Identity Residual Block
43 Inputs:
44 block_input: input tensor to the ResNet block
45 num_filters: no. of filters/channels in block_input
46
47 Returns:
48 relu2: activated tensor after addition with original input
49 ’’’
50
51 # 1. First Convolutional Layer
52 conv1 = Conv1D(filters=num_filters , kernel_size =7, padding=’same’)(

block_input)
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53 norm1 = BatchNormalization ()(conv1)
54 relu1 = Activation(’relu’)(norm1)
55
56 dropout = Dropout (0.2)(relu1)
57
58 # 2. Second Convolutional Layer
59 conv2 = Conv1D(num_filters , kernel_size =7, padding=’same’)(dropout)
60 norm2 = BatchNormalization ()(conv2)
61
62 # 3. SE block
63 se = se_block(norm2 , num_filters=num_filters)
64
65 # 4. Summing Layer (adding a residual connection)
66 sum = Add()([ block_input , se])
67
68 # 5. Activation Layer
69 relu2 = Activation(’relu’)(sum)
70
71 return relu2
72
73
74 def se_block(block_input , num_filters , ratio =16):
75 ’’’
76 Squeeze -and -Excitation Block
77 Inputs:
78 block_input: input tensor to the squeeze and excitation

block
79 num_filters: no. of filters/channels in block_input
80 ratio: a hyperparameter that denotes the ratio by which no.

of channels will be reduced
81
82 Returns:
83 se_scale: scaled tensor after getting multiplied by new

channel weights
84 ’’’
85
86 # 1. Global AVG Pool 1D that computes average on channels
87 se_pool1 = GlobalAveragePooling1D ()(block_input)
88 flat = Reshape ((1, num_filters))(se_pool1)
89 # 2. Fully connected with C//ratio x1 and relu as activation
90 se_dense1 = Dense(num_filters // ratio , activation=’relu’)(flat)
91 # 3. Fully connected with sigmoidal activation Cx1
92 se_dense2 = Dense(num_filters , activation=’sigmoid ’)(se_dense1)
93 # 4. The output of the block is then multiplied with the input
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94 se_scale = multiply ([ block_input , se_dense2 ])
95
96 return se_scale

Then, the structure of the model of the Unofficial Phase is reported.

Listing A.2: Model Architecture - Unofficial Phase Structure

1 def resnet_se_modified(N=8, ch=12, win_len =4096, num_cat_vars= 2,
classes =24):

2 ’’’
3 Inputs:
4 N: number of residual blocks
5 ch: number of channels of the signal
6 win_len: length of signal given in input
7 num_cat_vars: number of categorical variables (sex and age)
8 classes: number of labels to predict
9

10 Returns:
11 model: the complete model ready for training
12 ’’’
13
14 # B. ECG window input of shape (batch_size , WINDOW_LEN , CHANNELS)
15 ecg_input = Input(shape=(win_len , ch), name=’ecg_signal ’)
16 # B.1 Conv
17 ecg_branch = Conv1D(filters =64, kernel_size =15, padding=’same’)(

ecg_input)
18 # B.2 BatchNorm
19 ecg_branch = BatchNormalization ()(ecg_branch)
20 # B.3 Relu
21 ecg_branch = Activation(’relu’)(ecg_branch)
22 # B.4 Max Pool
23 ecg_branch = MaxPooling1D(pool_size =2, strides = 2)(ecg_branch)
24 # B.5 ResBs (x8)
25 # The number of filters starts from 64 and doubles every two blocks
26 # Halving the dimension at the third , fifth and seventh ResBs
27
28 # define ResBs_identity blocks (N = 1, N = 2)
29 ecg_branch = ResBs_Identity(ecg_branch , 64)
30 ecg_branch = ResBs_Identity(ecg_branch , 64)
31
32 filters = 64
33 M= int((N -2 )/2)
34 for i in range(M):
35
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36 filters = filters *2
37 # define N-th ResBs block
38 ecg_branch = ResBs_Conv(ecg_branch , filters)
39 ecg_branch = ResBs_Identity(ecg_branch , filters)
40
41 # Sigmoid activation function on the last layer
42 ecg_branch = GlobalMaxPooling1D ()(ecg_branch)
43 # Flatten
44 ecg_branch = Flatten ()(ecg_branch)
45 # HEAD Classifier
46 ecg_branch = Dense(classes , activation=’sigmoid ’, name=’

sigmoid_classifier ’)(ecg_branch)
47 # Finally the model is composed by connecting inputs to outputs:
48 model = Model(inputs =[ ecg_input],outputs=ecg_branch)
49
50 return model

Here is reported the model structure of the Official Phase, to make a direct comparison
between the two.

Listing A.3: Model Architecture - Official Phase Structure

1 def resnet_se_modified_wide(N=8, ch=12, win_len =4096 , num_wide_features=
16, classes =26):

2 ’’’
3 Inputs:
4 N: number of residual blocks
5 ch: number of channels of the signal
6 win_len: length of signal given in input
7 classes: number of labels to predict
8
9 Returns:

10 model: the complete model ready for training
11 ’’’
12
13 # A. Wide features go into a Fully Connected structure of 10 neurons
14 wide_input = Input(shape= (num_wide_features , ), name = ’

wide_features ’)
15 wide_branch = Dense (10, activation=’relu’)(wide_input)
16 wide_branch = Flatten ()(wide_branch)
17
18 # B. ECG window input of shape (batch_size , WINDOW_LEN , CHANNELS)
19 ecg_input = Input(shape=(win_len , ch), name=’ecg_signal ’)
20 # B.1 Conv
21 ecg_branch = Conv1D(filters =64, kernel_size =15, padding = ’same’)(
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ecg_input)
22 # B.2 BatchNorm
23 ecg_branch = BatchNormalization ()(ecg_branch)
24 # B.3 Relu
25 ecg_branch = Activation(’relu’)(ecg_branch)
26 # B.4 Max Pool
27 ecg_branch = MaxPooling1D(pool_size =2, strides = 2)(ecg_branch)
28 # B.5 ResBs (x8)
29 # Here number of filters starts from 64 and doubles every two blocks
30 # Max pooling is of size 2
31 # Halving the dimension at the third , fifth and seventh ResBs
32
33 # define ResBs_identity blocks (N = 1, N = 2)
34 ecg_branch = ResBs_Identity(ecg_branch , 64)
35 ecg_branch = ResBs_Identity(ecg_branch , 64)
36
37 filters = 64
38 M= int((N -2 )/2)
39 for i in range(M):
40
41 filters = filters *2
42 # define N-th ResBs block
43 ecg_branch = ResBs_Conv(ecg_branch , filters)
44 ecg_branch = ResBs_Identity(ecg_branch , filters)
45
46 # reshape_size=int(np.floor(ch/2) *512)
47 # Sigmoid activation function on the last layer
48 ecg_branch = GlobalMaxPooling1D(name=’gmp_layer ’)(ecg_branch)
49 # Flatten
50 ecg_branch = Flatten ()(ecg_branch)
51 # Concatenate
52 shared_path = concatenate ([ ecg_branch , wide_branch], name=’

concat_layer ’)
53 # HEAD Classifier
54 shared_path = Dense(classes , activation=’sigmoid ’, name=’

sigmoid_classifier ’)(shared_path)
55 # Finally the model is composed by connecting inputs to outputs:
56 model = Model(inputs =[ecg_input , wide_input],outputs=shared_path)
57
58 return model
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Finally, the Focus Issue Phase model is reported.

Listing A.4: Model Architecture - Focus Issue Phase Structure

1 def dilationnet_se_modified_wide(N=8, ch=12, win_len =4096 ,
num_wide_features= 16, classes =26):

2 ’’’
3 Inputs:
4 N: number of residual blocks
5 ch: number of channels of the signal
6 win_len: length of signal given in input
7 classes: number of labels to predict
8
9 Returns:

10 model: the complete model ready for training
11 ’’’
12 # A. Wide features go into a Fully Connected structure of 20-15-10

neurons
13
14 wide_input = Input(shape= (num_wide_features , ), name = ’

wide_features ’)
15 wide_branch = Dense (20, activation=’relu’)(wide_input)
16 wide_branch = Dense (15, activation=’relu’)(wide_branch)
17 wide_branch = Dense (10, activation=’relu’)(wide_branch)
18
19 wide_branch = Flatten ()(wide_branch)
20
21 # B. ECG window input of shape (batch_size , WINDOW_LEN , CHANNELS)
22 ecg_input = Input(shape=(win_len , ch), name=’ecg_signal ’)
23 # B.1 Conv
24 dilation = [4, 4, 8, 16, 32, 64]
25
26 X = Conv1D (64, 15, dilation_rate=dilation [0], strides=1, name=’conv1

’, kernel_initializer=glorot_uniform(seed =0))(ecg_input)
27 X = BatchNormalization(name=’bn_conv1 ’)(X)
28 X = Activation(’relu’)(X)
29 X = MaxPooling1D (2, strides =2)(X)
30
31 X = identity_block(X, 7, [64, 64], dilation=dilation [1], stage=2,

block=’a’)
32 X = identity_block(X, 7, [64, 64], dilation=dilation [2], stage=2,

block=’b’)
33 #(X, kernel , filters , dilation , stage , block , s=2)
34 X = convolutional_block(X, 7, filters =[128, 128], stage=3, block=’a’

, s=2)
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35 X = identity_block(X, 7, [128, 128], dilation=dilation [3], stage=3,
block=’b’)

36
37 X = convolutional_block(X, 7, filters =[256, 256], stage=4, block=’a’

, s=2)
38 X = identity_block(X, 7, [256, 256], dilation=dilation [4], stage=4,

block=’b’)
39
40
41 X = convolutional_block(X, 7, filters =[512, 512], stage=5, block=’a’

, s=2)
42 X = identity_block(X, 7, [512, 512], dilation=dilation [5], stage=5,

block=’b’)
43
44 ecg_branch = tf.keras.layers.GlobalMaxPool1D ()(X)
45 # Concatenate
46 shared_path = concatenate ([ ecg_branch , wide_branch], name=’

concat_layer ’)
47 # HEAD Classifier
48 shared_path = Dense(classes , activation=’sigmoid ’, name=’

sigmoid_classifier ’)(shared_path)
49 # Finally the model is composed by connecting inputs to outputs:
50 model = Model(inputs =[ecg_input , wide_input],outputs=shared_path)
51
52 return model

Threshold Optimization

The threshold optimization algorithm performs an optimization of the thresholds by con-
sidering the Challenge Metric score obtained over the validation set. A direct comparison
between the score obtained by fixing the thresholds at 0.5 and after the optimization is
also performed by printing the results.

Listing A.5: Threshold Optimization algorithm

1 def threshold_optimization(name_valid_list , features_dict , deep_model ,
wide_model , redeep_model , selected_leads):

2 ’’’
3 Inputs:
4 name_valid_list: list of subjects connsidered as validation

set
5 features_dict: dictionary of extracted wide features
6 deep_model: trained deep model
7 wide_model:trained wide+deep model
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8 redeep_model: trained deep+wide+deep model
9 selected_leads: leads subset considered

10 Returns:
11 deep_best_threshold: optimized threshold for the deep model
12 deep_A: confusion matrix over the evaluation set of deep model
13 wide_best_threshold: optimized threshold for the wide+deep

model
14 wide_A: confusion matrix over the evaluation set of wide+deep

model
15 redeep_best_threshold: optimized threshold for the deep+wide+

deep model
16 redeep_A: confusion matrix over the evaluation set of deep+

wide+deep model
17
18 ’’’
19 print(’Optimizing threshold ...’)
20 ### STEP1 ###
21
22 print(’Extracting classes ...’)
23 weights_file = ’./ challengePackage/weights_new.csv’
24 classes , weights = ec.load_weights(weights_file)
25 sinus_rhythm = set([’426783006 ’])
26
27 print("printing type of classes for debug ...")
28 #print(f’Checking that sinus rithm class is correct: {sinus_rhythm}

is equal to 426783006? ’)
29
30 # Get the lists for header and recording files
31 header_files , recording_files = add_extension(name_valid_list)
32 print(’Extension added!’)
33
34 # load the true labels of the validation set
35 labels = ec.load_labels(header_files , classes)
36 print(’True labels loaded!’)
37 #print(f"True labels: {(len(labels))}")
38 ###STEP 2###
39 # We use the for cycles from the first part of run_model to obtain

the predictions and save them in a matrix
40
41 sampling_freq = 500
42 W = 5000
43 # O = 256
44 num_recordings = len(recording_files)
45
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46 # Initialize the matrix probability as an empty matrix
47
48 deep_prob_saved = []
49 wide_prob_saved = []
50 redeep_prob_saved = []
51 # Save the probabilities for each recording
52 for i in tqdm(range(num_recordings)):
53 # Load header and recording.
54 header = load_header(header_files[i])
55 current_signal = load_recording(recording_files[i])
56 leads = get_leads(header)
57 CH = len(selected_leads)
58 # start_window = np.zeros((CH, W))
59 # current_windows = []
60 current_feature_dict = features_dict[name_valid_list[i]]
61 current_features = list(current_feature_dict.values ())
62 # Same preprocessing is applied to the test set
63 # get_frequency is defined inside helper_code.py and provided by

the challenge
64 current_fs = get_frequency(header)
65 current_sig_len = current_signal.shape [1]
66 current_time_sec = current_sig_len / current_fs
67 num_samples_new = int(current_time_sec * sampling_freq)
68 current_signal = signal.resample(current_signal , num_samples_new

, t=None , axis =1)
69
70 #### STEP 2 #### Filtering and normalization
71 filtered_ecg = pc.filtering_deep(current_signal , current_fs)
72 rec_mean = np.nanmean(filtered_ecg , axis =1)
73 rec_std = np.nanstd(filtered_ecg , axis =1)
74 current_signal = pc.normalization_deep(filtered_ecg , rec_mean ,

rec_std)
75
76 current_signal = mtc.subset_ch_recordings(leads , current_signal ,

selected_leads)
77 reshaped_window = np.array(pc.extract_windows(current_signal ,

current_fs , W, CH, mode_use = ’train’))
78 current_features = np.array(current_features)
79 # predictions are performed on all the windows of the signal.
80 deep_preds = deep_model.predict(reshaped_window)
81 wide_preds = wide_model.predict ([ reshaped_window , np.array ([

current_features ])])
82 redeep_preds = redeep_model.predict ([ reshaped_window , np.array([

current_features ])])
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83 # the average is computed
84 deep_probabilities = average_prediction(deep_preds)
85 wide_probabilities = average_prediction(wide_preds)
86 redeep_probabilities = average_prediction(redeep_preds)
87 deep_prob_saved.append(deep_probabilities)
88 wide_prob_saved.append(wide_probabilities)
89 redeep_prob_saved.append(redeep_probabilities)
90
91
92 #### STEP 3 ####
93 print(’CM of deep model with thr at 0.5... ’)
94 ths_half = np.full(26, 0.5)
95 deep_metric_no_opt , cnf_no_opt = ec.compute_challenge_metric(weights

, labels , pred_to_binary(deep_prob_saved , ths_half), classes ,
sinus_rhythm)

96 print(f’{deep_metric_no_opt}’)
97
98 print(’CM of wide model with thr at 0.5... ’)
99 ths_half = np.full(26, 0.5)

100 wide_metric_no_opt , cnf_no_opt = ec.compute_challenge_metric(weights
, labels , pred_to_binary(wide_prob_saved , ths_half), classes ,
sinus_rhythm)

101 print(f’{wide_metric_no_opt}’)
102
103 print(’CM of wide retrain deep model with thr at 0.5... ’)
104 ths_half = np.full(26, 0.5)
105 redeep_metric_no_opt , cnf_no_opt = ec.compute_challenge_metric(

weights , labels , pred_to_binary(redeep_prob_saved , ths_half), classes
, sinus_rhythm)

106 print(f’{redeep_metric_no_opt}’)
107
108 # all attempts in the grid search
109 possible_thrs = np.arange(0, 0.4, 0.01)
110 # initialized vector of thresholds
111 ths_dummy = np.full(26, 0.01)
112 # Calculating metric for each threshold then selecting the threshold

corresponding to the max value of the metric
113 # Initialized list with selected threshold (26,)
114
115 w, h = len(classes), len(possible_thrs)
116
117 print(’Deep optimization ...’)
118 current_metric = np.zeros ([w, h])
119 # all_labels = np.array(all_labels)
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120 #print(possible_thrs)
121 for thrs in tqdm(range(len(classes))):
122 for t in range(len(possible_thrs)):
123 ths_dummy[thrs] = possible_thrs[t]
124 current_metric[thrs , t], A = ec.compute_challenge_metric(

weights , labels , pred_to_binary(deep_prob_saved , ths_dummy), classes ,
sinus_rhythm)

125
126 initialized_thr = np.zeros(len(classes))
127
128 for i in tqdm(range(len(classes))):
129 ix = np.argmax(current_metric[i, :])
130 initialized_thr[i] = possible_thrs[ix]
131
132 print(initialized_thr)
133
134 deep_best_threshold = fmin(thr_to_challenge_metric , args=(weights ,

classes , sinus_rhythm , labels , deep_prob_saved), x0=initialized_thr)
135 #best_threshold = minimize(thr_to_challenge_metric , x0 =

initialized_thr , args=(weights , classes , sinus_rhythm , labels ,
prob_saved),

136 # method=’L-BFGS -B’, options={’disp ’: None , ’maxcor ’: 10, ’ftol ’:
2.220446049250313e-09, ’gtol ’: 1e-05, ’eps ’: 1e-08,

137 # ’maxfun ’: 15000 , ’maxiter ’: 15000 , ’iprint ’: 0, ’maxls ’: 100, ’
finite_diff_rel_step ’: None})

138 print(’The deep model threshold vector is:’)
139 deep_current_metric , deep_A = ec.compute_challenge_metric(weights ,

labels , pred_to_binary(deep_prob_saved , deep_best_threshold), classes
, sinus_rhythm)

140 print(deep_best_threshold)
141 print(f’the deep model current metric is: {deep_current_metric}’)
142
143 print(’Wide optimization ...’)
144 current_metric = np.zeros ([w, h])
145 for thrs in tqdm(range(len(classes))):
146 for t in range(len(possible_thrs)):
147 ths_dummy[thrs] = possible_thrs[t]
148 current_metric[thrs , t], A = ec.compute_challenge_metric(

weights , labels , pred_to_binary(wide_prob_saved , ths_dummy), classes ,
sinus_rhythm)

149
150 initialized_thr = np.zeros(len(classes))
151
152 for i in tqdm(range(len(classes))):



A| Appendix A - Model code 80

153 ix = np.argmax(current_metric[i, :])
154 initialized_thr[i] = possible_thrs[ix]
155
156 print(initialized_thr)
157
158 wide_best_threshold = fmin(thr_to_challenge_metric , args=(weights ,

classes , sinus_rhythm , labels , wide_prob_saved), x0=initialized_thr)
159 #best_threshold = minimize(thr_to_challenge_metric , x0 =

initialized_thr , args=(weights , classes , sinus_rhythm , labels ,
prob_saved),

160 # method=’L-BFGS -B’, options={’disp ’: None , ’maxcor ’: 10, ’ftol ’:
2.220446049250313e-09, ’gtol ’: 1e-05, ’eps ’: 1e-08,

161 # ’maxfun ’: 15000 , ’maxiter ’: 15000 , ’iprint ’: 0, ’maxls ’: 100, ’
finite_diff_rel_step ’: None})

162 print(’The wide threshold vector is:’)
163 wide_current_metric , wide_A = ec.compute_challenge_metric(weights ,

labels , pred_to_binary(wide_prob_saved , wide_best_threshold), classes
, sinus_rhythm)

164 print(wide_best_threshold)
165 print(f’the wide current metric is: {wide_current_metric}’)
166
167 print(’Wide with retrain deep optimization ...’)
168 current_metric = np.zeros ([w, h])
169 # all_labels = np.array(all_labels)
170 #print(possible_thrs)
171 for thrs in tqdm(range(len(classes))):
172 for t in range(len(possible_thrs)):
173 ths_dummy[thrs] = possible_thrs[t]
174 current_metric[thrs , t], A = ec.compute_challenge_metric(

weights , labels , pred_to_binary(redeep_prob_saved , ths_dummy),
classes , sinus_rhythm)

175
176 initialized_thr = np.zeros(len(classes))
177
178 for i in tqdm(range(len(classes))):
179 ix = np.argmax(current_metric[i, :])
180 initialized_thr[i] = possible_thrs[ix]
181
182 print(initialized_thr)
183
184 redeep_best_threshold = fmin(thr_to_challenge_metric , args=(weights ,

classes , sinus_rhythm , labels , redeep_prob_saved), x0=
initialized_thr)
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185 #best_threshold = minimize(thr_to_challenge_metric , x0 =
initialized_thr , args=(weights , classes , sinus_rhythm , labels ,
prob_saved),

186 # method=’L-BFGS -B’, options={’disp ’: None , ’maxcor ’: 10, ’ftol ’:
2.220446049250313e-09, ’gtol ’: 1e-05, ’eps ’: 1e-08,

187 # ’maxfun ’: 15000 , ’maxiter ’: 15000 , ’iprint ’: 0, ’maxls ’: 100, ’
finite_diff_rel_step ’: None})

188 print(’The wide with retrain deep model threshold vector is:’)
189 redeep_current_metric , redeep_A = ec.compute_challenge_metric(

weights , labels , pred_to_binary(redeep_prob_saved ,
redeep_best_threshold), classes , sinus_rhythm)

190 print(redeep_best_threshold)
191 print(f’the deep model current metric is: {redeep_current_metric}’)
192
193 return deep_best_threshold , deep_A , wide_best_threshold , wide_A ,

redeep_best_threshold , redeep_A

Ensemble Evaluation

The algorithm for the ensemble evaluation performs a processing of test data which is the
same one used in training, then loads all the models and makes predictions with majority
voting.

Listing A.6: Ensemble Evaluation algorithm

1 def ensemble_evaluation(all_models , all_json , header , recording ,
thr_opt_models , json_directory):

2 ’’’
3 This function extracts and performs the mean value of the

probability obtained in the test from all the models
4 Should be iteratively applied on a single header -recording

couple each time. Used in run_model ()
5
6 Inputs:
7 all_models: list() containing all LOADED models
8 all_classes: list() containing all LOADED json files

corresponding to the respective model
9 optimal_thr_models: np.array containing the extracted mean

value of threshold of models
10 header: of the signal
11 recording: of the signal
12 Returns:
13 signal_probs: np.array with the MEAN of all the

probabilities estimated from the models taken into account
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14 classes: 26 classes taken from json dictionary
15 labels: predicted labels of the signal
16 ’’’
17 W = 5000
18 resampling_freq = 500
19 pickle_filename = os.path.join(json_directory , ’minmax_scaler.pkl’)
20 # with open(pickle_filename , ’rb ’) as file:
21 # fitted_scaler = pickle.load(open(pickle_filename))
22 fitted_scaler = pickle.load(open(pickle_filename , ’rb’))
23
24 labels = np.zeros(shape =(len(all_models), 26))
25
26 leads = get_leads(header) #seguente parte messa fuori c o s la

esegue una sola volta per segnale e non ad ogni iterazione del for
per ogni modello

27 CH = len(leads)
28 current_fs = get_frequency(header)
29 current_sig_len = get_num_samples(header)
30 current_time_sec = current_sig_len / current_fs
31 num_samples_new = int(current_time_sec * resampling_freq)
32 current_signal = signal.resample(recording , num_samples_new , t=None ,

axis =1)
33 ## STEP 0 - Signal filtering and normalization deep ##
34 filtered_ecg = pc.filtering_deep(current_signal , current_fs)
35 rec_mean = np.nanmean(filtered_ecg , axis =1)
36 rec_std = np.nanstd(filtered_ecg , axis =1)
37 current_signal = pc.normalization_deep(filtered_ecg , rec_mean ,

rec_std)
38 current_signal = mtc.subset_ch_recordings(leads , current_signal ,

leads)
39 reshaped_window = np.array(pc.extract_windows(current_signal ,

current_fs , W, CH, mode_use = ’test’))
40
41
42 #### STEP 1 - WIDE FEATS ####
43 # Extract windows from recording to be predicted
44 my_leads = (’II’)
45 # STEP. Preprocessing of the signal before filtering.
46 # print("the leads obtained from header are :")
47 # print(leads)
48 ecg_ord = mtc.subset_ch_recordings(leads , recording , my_leads)
49 #print(len(ecg_ord))
50 # STEP. Filtering and normalization
51 try:
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52 signal_properties = biosppy.signals.ecg.ecg(ecg_ord [0],
sampling_rate=current_fs , show=False)

53 rpeaks = signal_properties[’rpeaks ’]
54 nnintervals = tools.nn_intervals(rpeaks)
55 # STEP. Feature Extraction
56 current_feature = pd.DataFrame ()
57
58 if len(nnintervals) > 1:
59 # If R peaks are at least 2, we extract features
60 time_features , num_keys = pc.time_domain_features(

nnintervals , ’prediction_code ’)
61 # STEP 10. P o i n c a r plot features
62 pc_features , numerical_columns = pc.new_features(nnintervals

, rpeaks , ’prediction_code ’)
63 numerical_columns = numerical_columns [1:]
64 num_keys = num_keys + numerical_columns
65 feat_dict = {** time_features , ** pc_features}
66 # STEP 11. Nonlinear features - INFINITE VALUES here too
67 del feat_dict[’poincare_plot ’]
68 # STEP 8. Append to Dataframe in every case
69 current_feature = current_feature.append(feat_dict ,

ignore_index=True)
70 else:
71 print(f’Only 1 R peak detected ... NaNs returned ’)
72 feat_dict = {
73 ’mean_nni ’: np.NaN ,
74 ’sdnn’: np.NaN ,
75 ’sdsd’: np.NaN ,
76 ’nni_50 ’: np.NaN ,
77 ’pnni_50 ’: np.NaN ,
78 ’nni_20 ’: np.NaN ,
79 ’pnni_20 ’: np.NaN ,
80 ’rmssd ’: np.NaN ,
81 ’median_nni ’: np.NaN ,
82 ’range_nni ’: np.NaN ,
83 ’cvsd’: np.NaN ,
84 ’cvnni ’: np.NaN ,
85 ’mean_hr ’: np.NaN ,
86 "max_hr": np.NaN ,
87 "min_hr": np.NaN ,
88 "std_hr": np.NaN ,
89 ’name’ : ’prediction_code ’,
90 ’sd1’ : np.nan ,
91 ’sd2’ : np.nan ,
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92 ’sd_ratio ’ : np.NaN ,
93 ’ellipse_area ’ : np.NaN
94 }
95 except:
96 current_feature = pd.DataFrame ()
97 print(f’No R peaks detected ... NaNs returned ’)
98 feat_dict = {
99 ’name’ : ’prediction_code ’,

100 ’mean_nni ’: np.NaN ,
101 ’sdnn’: np.NaN ,
102 ’sdsd’: np.NaN ,
103 ’nni_50 ’: np.NaN ,
104 ’pnni_50 ’: np.NaN ,
105 ’nni_20 ’: np.NaN ,
106 ’pnni_20 ’: np.NaN ,
107 ’rmssd ’: np.NaN ,
108 ’median_nni ’: np.NaN ,
109 ’range_nni ’: np.NaN ,
110 ’cvsd’: np.NaN ,
111 ’cvnni ’: np.NaN ,
112 ’mean_hr ’: np.NaN ,
113 "max_hr": np.NaN ,
114 "min_hr": np.NaN ,
115 "std_hr": np.NaN ,
116 ’sd1’ : np.nan ,
117 ’sd2’ : np.nan ,
118 ’sd_ratio ’ : np.NaN ,
119 ’ellipse_area ’ : np.NaN
120 }
121 current_feature = current_feature.append(feat_dict , ignore_index

=True)
122 num_keys = list(feat_dict.keys())[1:]
123
124 current_feature = current_feature.set_index(’name’)
125 current_feature.fillna(-1, inplace=True)
126
127 #mins = [np.nanmin(current_feature.values[:, i][ current_feature.

values[:, i] != -np.inf]) for i in range(current_feature.shape [1])]
128 #maxs = [np.nanmax(current_feature.values[:, i][ current_feature.

values[:, i] != np.inf]) for i in range(current_feature.shape [1])]
129
130 # go through matrix one column at a time and replace + and -

infinity
131 # with the max or min for that column
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132 for i in range(current_feature.shape [1]):
133 current_feature.values[:, i][ current_feature.values[:, i] == -np

.inf] = 0
134 current_feature.values[:, i][ current_feature.values[:, i] == np.

inf] = 99999
135
136 # print(current_feature [:]. values)
137
138 current_feature [:] = fitted_scaler.transform(current_feature[

num_keys ])
139 feature_dict = current_feature.to_dict(’index ’)
140 feats = list(feature_dict[’prediction_code ’]. values ())
141 # print(f"the leads I want to select are: {dictionary_model[’leads

’]}")
142
143 pred_feats = []
144 for i in range(len(reshaped_window)):
145 pred_feats.append(np.array(feats))
146
147 for model in range(len(all_models)):
148 #print(all_json)
149 # print(all_json[model])
150 # Load info of json file of current model
151 dictionary_model = all_json[model]
152 # need to define varying number of leads depending on model.
153 #CH = len(dictionary_model[’leads ’])
154
155 selected_leads = dictionary_model[’leads’]
156 # print(" printing dictionary model ")
157 # print(dictionary_model[’leads ’])
158 classes = dictionary_model[’classes ’]
159
160
161 #### STEP 2 ####
162 # predictions are performed on all the windows of the signal.
163 #preds = all_models[model]. predict(np.array(reshaped_window))
164 preds = all_models[model]. predict ([np.array(reshaped_window), np

.array(pred_feats)])
165 #### STEP 3 ####
166 probabilities = average_prediction(preds)
167 # print(f’The model {model + 1} performs the following

probabilities on the signal: {probabilities }’)
168 # We take the mean probability of the prediction of all models
169 #signal_probs[model , :] = probabilities
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170 labels[model , :] = pred_to_binary(probabilities , thr_opt_models[
model , :])

171
172 probabilities = np.sum(labels , axis =0)/3 #(labels [0] + labels [1] +

labels [2])/3 #c’ probabilmente modo migliore per selezionare le
prob che 0,1,2.. d prob secondo ensemble quindi 0,0.3 ,0.6 e 1

173 labels = (probabilities >0.5) *1 #per avere poi label binarizzate.
se 2 su 3 danno 1 prob = 0.6

174
175 #signal_probs = np.mean(signal_probs , axis =0)
176 ## print(f’After the average the probability results as: {

signal_probs }’)
177 #labels = pred_to_binary(signal_probs , thr_opt_models)
178
179 return classes , labels , probabilities
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