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Abstract
Landslide hazards are pervasive throughout the world, and landslide susceptibility mapping
(LSM) provides crucial information that aids various authorities in managing landslide-prone
areas. In this study, the performance of various ensemble methods—including stacking,
blending, and soft voting—was evaluated by utilizing the best fundamental classifiers for
LSM in Lombardy, Northern Italy. The first step is to create a spatial database with 11
landslide influencing elements and historical landslide records. Second, five fundamental
classifiers (Bagging, Random Forests, AdaBoost, Gradient Tree Boosting, and Neural
Networks) are built at a basin level (i.e., Val Tartano, Upper Valtellina, and Val Chiavenna)
and later transferred at a regional level for Lombardy. Third, three ensemble models are
created by combining the fundamental classifiers with the greatest ability to generalize and
test again on local basin scale. Further, the constructed ensemble models are assessed in
the same basins as well as Lombardy. Four, the best model is selected as the final model to
produce the LSM for Lombardy. The fundamental classifiers for ensemble models are
chosen to be Random Forest, AdaBoost, and Neural Networks as they outperformed other
models in terms of generalization. The soft voting model exhibits the best generalization
performance when compared to the other ensemble models. The final model to generate the
LSM for Lombardy is a Neural Network model (accuracy=0.93 in whole Lombardy) that was
trained using data gathered from three basins and performs the best in Lombardy. According
to the landslide susceptibility maps created, roughly 37% of the entire Lombardy region fell
into the "very high" and "high" categories.

KEYWORDS

Landslide susceptibility mapping; Ensemble methods; Random Forests; AdaBoost; Bagging;
Neural Network;
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1. Introduction

Landslides are geological events characterized by the downslope movement of various
materials, including rock masses, earth materials, or debris (Cruden, 1991). These
movements can be induced by several factors, such as excessive precipitation, earthquakes,
human activities, or volcanic eruptions (Turner, 2018). Landslides are considered one of the
primary natural hazards (Yordanov and Brovelli, 2021), leading to numerous casualties and
significant economic losses worldwide (Budimir et al., 2015). For this reason, numerous past
and current research endeavors focus on this subject. Identifying landslide-prone areas is
essential for policy-makers, scientists, engineers, and the general public to prevent
catastrophic landslides. A landslide susceptibility map (LSM) can be used for this purpose,
representing the spatial likelihood levels of a specific area being prone (susceptible) to mass
movements based on environmental conditions. The foundational principles and
assumptions of the landslide susceptibility maps are that future slope instabilities are more
probable to occur under the same conditions that led to past and current instabilities and that
the occurrence of landslides in space can be inferred through heuristic investigations,
environmental information analysis, or physical modeling. Additionally, the modeling of
landslide occurrence can be constructed by considering the unstable factors related to slope
failure (Guzzetti et al., 1999).

Research methods for landslide susceptibility assignment can be divided into two primary
categories (Guzzetti et al., 1999). The first category comprises qualitative methods that are
subjective and employ descriptive (qualitative) terminology to express sensitivity levels. The
second category comprises quantitative methods that generate numerical estimations,
specifically probabilities of landslide occurrence in the studied region.

Reichenbach et al. (2018) further classified approaches and techniques suitable for
assigning landslide susceptibility into five categories:

● Geomorphological mapping that relies on the expertise and experience of an
investigator to assess and map the actual and potential slope instability conditions.
The quality of the mapping also depends on the complexity of the study area.

● Analysis of landslide inventories that can be used for modeling future spatial
occurrences of landslides based on the known distribution of past and present
landslides. The quality of the predictions depends on the completeness and quality of
the inventories.

● Heuristic or index-based approaches that rank and weigh known instability factors
based on the investigators' expected or assumed importance in causing landslides.
The quality of the predictions primarily depends on the investigators' understanding
of the real causes and the instability factors causing landslides in a given area.

● Process-based methods that analyze the stability and instability conditions using
simple limit equilibrium models, such as the "infinite slope stability" model, based on
simplified, physically-based landslide modeling schemes.

● Statistically-based modeling methods that analyze the functional relationships
between known or inferred instability factors and the distribution of past and present
landslides. The most widely used statistical techniques for generating maps of
landslide susceptibility encompass logistic regression, neural network analysis, data
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overlay, index-based approaches, and weight of evidence analyses with a growing
trend toward employing machine learning (ML) methods recently.

The objective of the research outlined in this thesis is to employ different ensemble methods
to generate landslide susceptibility maps by utilizing the most suitable base ML estimators
and to validate the results produced by the final model. Initially, this approach is
implemented and evaluated at the basin level in three areas (i.e., Val Tartano, Upper
Valtellina, and Val Chiavenna) located in Northern Lombardy. Subsequently, the
methodology is extended to cover the entire region of Lombardy.

1.1 Thesis outline

The thesis is organized in the following manner:

Chapter 1 presents an introduction to the work.

Chapter 2 offers an overview of state-of-the-art techniques and previous studies on landslide
susceptibility analysis. It outlines the methodology employed and explains the choices made.

Chapter 3 describes the areas of interest and their geomorphic features in detail to provide a
comprehensive study framework. Additionally, it is included a description of the collected
data and the preparatory steps applied to the dataset.

Chapter 4 introduces the software tools and their applications. It also offers a theoretical
explanation of the analytical techniques employed in this study.

Chapter 5 provides a detailed account of the workflow, including the data preprocessing
procedure and the scenarios for processing.

Chapter 6 illustrates the outcomes of the study, including the LSM and its evaluation.

Chapter 7 presents the conclusions derived from the study.
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2. State of the art

The purpose of this section is to review state-of-the-art techniques concerning the use of
machine learning (ML) models in generating LSM.

2.1 Workflow
In the field of landslide susceptibility mapping using ML models, the majority of studies have
adopted a workflow comprising four steps as depicted in Figure 2.1. These steps are as
follows:

1. Data preparation involves creating a geospatial database to be used for model
building. During this process, the relevant influencing factors and landslide inventory
for a study area must be selected and preprocessed. Moreover, a mapping unit
(such as pixels, slope units, or unique condition units) must be determined.

2. Model building typically involves the selection and application of the modeling
methods employed. The selection of a modeling method is influenced by various
factors, such as the availability and quality of data, the complexity of the system
under investigation, and the level of accuracy and precision desired in the model
output. Once a suitable modeling method has been chosen, the model-building
process may include several stages, such as implementing the model, training it
using training data sampled from the obtained database in the former step, and
selecting and adjusting hyperparameters to optimize performance.

3. Model validation evaluates the performance of the building model using different
indices and metrics based on the testing dataset sampled from the obtained
database. Reichenbach et al. (2018) summarized four types of evaluation criteria:

a. Model validation verifies the relationships between dependent and
independent variables using the validation dataset.

b. Model fitting performance is assessed by comparing the model predictions
with the training dataset. This evaluation can be carried out using metrics
such as success rate curve, landslide density or frequency, and Receiver
Operating Characteristic (ROC).

c. Model prediction performance is similar to the evaluation of model fitting
performance but based on the comparison of the model's predictions with the
testing dataset. The most common metric used is the prediction rate curve,
landslide density or frequency, and Receiver Operating Characteristic (ROC).

d. Model uncertainty assessments are the least common.

4. Mapping can serve as an output and evaluation step following the model-building
process. Alternatively, it may occur after model evaluation, with maps generated
based on the models exhibiting the most favorable performance. The resultant map
is then divided into various susceptibility classes to produce a meaningful
susceptibility map.
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Figure 2.1: common workflow for landslide susceptibility mapping

2.2 Review of machine learning methods for susceptibility
mapping

2.2.1 Used factors

The aim of utilizing an ML model for landslide susceptibility mapping (LSM) is to identify a
correlation between landslide occurrence and predisposing factors. Subsequently, these
relationships are employed to create LSM for determining the areas prone to the hazard.

The selection of factors used for the generation of landslide susceptibility maps (LSM) varies
depending on data availability, study area, local setting, and the landslide types to be
modeled. Ado et al. (2022) classified popular landslide influencing factors into five groups,
namely topography (e.g., slope, aspect, elevation, plan curvature, profile curvature, sediment
transport index), hydrology (e.g., rainfall, solar radiation, stream power index, topographic
wetness index, distance to rivers, density of the river), geological (e.g., lithology, distance to
faults, density of fault), land use/cover (e.g., land use/land cover, normalized difference
vegetation index), and man-made factors (e.g., distance to roads and density of the road).
Commonly used factors in LSM include slope, elevation, rainfall, distance to rivers, Land
Use/Land Cover (LULC), Normalized Difference Vegetation Index (NDVI), and distance to
roads.

However, there is no universal standard for selecting influencing factors. To improve the
performance of ML models, many studies have integrated feature selection techniques in
their workflow to filter out irrelevant factors. For instance, Micheletti et al. (2014) explored
three ML models, namely adaptive Support Vector Machines, Random Forests, and
AdaBoost, to perform feature selection for LSM. Wang et al. (2020) applied Random Forest
methods and the Pearson correlation coefficient (PCC) to select landslide-affecting factors.
Yordanov and Brovelli (2021) refined the factors by considering the weights of the input data
derived from a statistical index.

2.2.2 Employed models

Ado et al.(2022) have classified ML models used for landslide susceptibility mapping into
four groups: conventional, hybrid, ensemble, and deep learning methods. Conventional
models are standalone models that can be served as a benchmark for evaluating new
models or combined with other models in hybrid or ensemble methods. The most popular
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conventional methods include Random Forest (RF), Support Vector Machine (SVM), Logistic
Regression (LR), and Artificial Neural Network (ANN).

In a comparative study by Yordanov and Brovelli (2021), Statistical Index, LR, and RF were
evaluated for their effectiveness in generating susceptibility maps. Using 11 predefined
terrain variables and one precipitation variable, the study produced 79 susceptibility maps
with varying ratios between training and validation datasets. The input data was refined to
enhance model performance, and the results indicated that RF and LR are reliable modeling
approaches. However, RF outperformed LR in most of cases.

Amici (2021) explored the use of RF for generating LSM in additional areas with 11
influencing factors and redefined the previously proposed No Landslide zone based on
geological criteria. According to the study's results, The RF method demonstrated
satisfactory accuracy with an AUC value of 0.97.

In another study, Yilmaz (2010) compared conditional probability (CP), LR, ANNs, and SVM
for generating LSM using an 11-factor spatial database. The results showed that ANN had
the highest accuracy, with an AUC value of 0.846.

Hybrid techniques, which integrate feature selection and optimization methods with ML
models, have demonstrated significant performance improvements compared to
conventional ML methods due to their ability to address feature selection challenges (Wang
et al., 2020; Ado et al., 2022).

Zhao et al. (2021) investigated the performance of five models, including a traditional
statistical Certainty Factor (CF) model, Support Vector Machine (SVM), Random Forest
(RF), and two hybrid models: CF-SVM and CF-RF. The researchers selected 10 influencing
factors and used slope units as the basic mapping units. The SVM model, utilizing the
Gaussian radial basis kernel function, achieved a prediction success rate of 71%, while the
RF model outperformed the SVM model with a prediction success rate of 78%. The hybrid
models, constructed by applying SVM or RF on the sample dataset generated by calculating
the CF values of the original training samples, showed further improvement. Specifically, the
CF-RF model achieved a prediction success rate of 81%, slightly outperforming the CF-SVM
model with a prediction success rate of 77.5%.

Ensemble techniques combine multiple conventional ML models using different averaging or
voting methods to produce more accurate predictions than conventional ML methods (Fang
et al., 2021; Li et al., 2022), compensating for the limitations or biases of individual
algorithms with others (Ado et al., 2022).

Kumar et al. (2023) explored the use of ensemble methods for regional landslide
susceptibility modeling (LSM). The researchers evaluated the performance of ten individual
ML models, including linear discriminant analysis, mixture discriminant analysis, Bagged
Cart, Boosted Logistic Regression, K-Nearest Neighbors (KNN), Artificial Neural Network
(ANN), Support Vector Machine (SVM), Random Forest (RF), Rotation Forest, and C5.0,
using different sets of landslide influencing factors ranked by an ensemble feature selection
method. Subsequently, different ensemble ML models were developed and evaluated based
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on the suitable combination of individual ML models. The results indicated that the ensemble
models of KNN+RTF, KNN+ANN, and ANN+RTF performed the best when developed using
the top five landslide influencing factors.

Deep learning methods are representation-learning techniques with multiple layers of
representation that can accurately predict LSM with less uncertainty (Wang et al., 2019; Thi
Ngo et al., 2021; Habumugisha et al., 2022). However, they may have low model variance
and limited generalization capabilities, which can be addressed by using hybrid and
ensemble setups (Kavzoglu et al., 2021). Besides, the combination of hybrid and ensemble
methods with DL models could also increase prediction accuracy (Azarafza et al., 2021; Li et
al., 2022).

2.2.3 Validation metrics

The validation of the model is a crucial step of the modeling process. A common evaluation
method used for classification problems in ML is constructing the confusion matrix using a
testing dataset that model has not been feed with during the training phase (Table 2.1).

Actually Positive Actually Negative

Predicted Positive True Positive (TP) False Positive (FP)

Predicted Negative False Negative (FN) True Negative (TN)

Table 2.1. Confusion Matrix

where True Positive (TP) and False Positive (FP) are the number of samples correctly
classified and misclassified as positive, respectively, while True Negative (TN) and False
Negative (FN) are the number of samples correctly classified and misclassified as negative,
respectively.

From the confusion matrix, the following statistical indexes can be derived and used for
evaluation.

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑂𝐴) =  𝑇𝑃 + 𝑇𝑁
𝑇𝑃+ 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑃

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃
𝑇𝑃+ 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) =  𝑇𝑃
𝑇𝑃 + 𝐹𝑁

𝐹
1
 =  2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

𝐹𝑃𝑅 =  𝐹𝑃
𝐹𝑃 + 𝑇𝑁
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𝑇𝑁𝑅 (𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) =  𝑇𝑁
𝑇𝑁 + 𝐹𝑃

Besides, Receiver Operating Characteristic (ROC) curve (Bradley, 1997) and
Precision-Recall Curve (PRC) are commonly adopted as accuracy statistics for landslide
susceptibility modeling in related studies (Park et al., 2013; Lin et al., 2017; Pourghasemi
and Rahmati, 2018; Yordanov and Brovelli, 2021; Amici, 2021).

The ROC curve is constructed by plotting the true positive rate (TPR, also known as recall)
against the false positive rate (FPR) at various thresholds.

The area under the curve of ROC (AUC-ROC) is widely adopted for model comparison and
considered the best evaluation metric (Ado et al., 2022). This value varies between 0 and 1,
where 0.5 indicates the classifier is uninformative whilst 1 represents perfect performance.

An optimum ROC-based threshold providing the best trade-off between sensitivity and
specificity can be determined by maximizing Youden's J-statistic, a statistic that captures the
performance of dichotomous diagnostic tests and can be calculated using the formula below

𝐽 = 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 +  𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 −  1

PRC is created by plotting the precision against the recall at various threshold settings.
Similar to the ROC curve, the area under the curve of PR (AUC-PR) can be computed to
indicate the model performance with a random classifier has a value close to 0.5.

Another optimum PR-based threshold considering both precision and recall can be
determined by maximizing the F1 score since an F1 score value of 1.0 indicates perfect
precision and recall.
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3. Areas of interest and data

3.1 Areas of interest
Several small basins within the Italian Lombardy region were selected for training, testing,
and validation of the model as shown in Figure 3.1. These models were later applied to a
bigger area, i.e., Lombardy, to generate landslide susceptibility maps.

Figure 3.1: The four areas of interest

3.1.1 Lombardy
Lombardy is an administrative region that spans 23,863 km2 and is situated in the northern
central part of Italy between the Alps mountain range and the flow of the Po river. This region
boasts a populace of roughly 10 million individuals with a population density of 420.2
inhabits/km2 (Istat (Italian National Institute of Statistics), 2020). Lombardy is composed of
11 provinces, 1 metropolitan area (Milan), and 1523 municipalities, with Milan serving as its
capital city, according to Regione Lombardia (2020).

Lombardy's varied landscape can be broadly categorized into three sections: the northern
mountainous region of the Alps, the central foothills, and the southern Lombard portion of
the Bataan Plain. This rich topography has a profound impact on Lombardy's climate, which
is predominantly humid subtropical, particularly in the plains. In the Alpine foothills, the
climate is oceanic, while the climate in the hills and mountains is humid continental.
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The Lombardy region has 141,970 landslides recorded in the most recent version of the IFFI
database (ISPRA, 2014). Among them, the Oltrep Pavese area and the northernmost portion
of the territory have the highest density of the phenomenon (Antonielli et al., 2019). Figure 3
summarizes the frequency of various landslide types in Lombardy. Rapid debris flows, which
account for 41.6% of all landslides in Lombardy, the area affected by numerous
rockfalls/topples, which account for 29.7%, and rotational/translational slides, which account
for 15.2%, are the main types of movement.

Figure 3.2: Landslides type in Lombardy Region (Italy). Data from ISPRA, in the framework
of IFFI project.

3.1.2 Val Tartano

The Tartano Valley, situated in the province of Sondrio in Lombardy, Italy (46.1075° N,
9.6791° E), is an Alpine catchment area characterized by an Alpine continental climate. It
covers an area of 51 km2 and has an elevation range of 250 to 2250 m a.s.l. Due to its
distinctive hydrogeological characteristics, the Tartano Valley has piqued the interest of
numerous authors (Colombera and Bersezio, 2011; Longoni et al., 2016; Yordanov and
Brovelli, 2021; Amici, 2021).

This valley has experienced several flood events, including a catastrophic one in 1987,
caused by heavy rains and snowmelt that triggered flooding, mudslides, and mass
movements, leading to 20 fatalities and significant damage to river bank protection.
Additionally, the landslide inventory of ISPRA (2014) documents over 1000 landslide events
in this basin. The most frequent type of landslide (about 51.2%) in Val Tartano is rapid debris
flow, as displayed in Figure 3.3.
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Figure 3.3: Landslides type in Val Tartano. Data from ISPRA, in the framework of IFFI
project.

3.1.3 Upper Valtellina

The Upper Valtellina Valley, located close to the border of Trentino-Alto Adige, comprises the
second region of interest. Spanning an area of 295 km2 and an elevation range of 900 to
3800 m a.s.l., this area experiences frequent instabilities due to decompression caused by
melting glaciers. According to ISPRA (2014), over 3600 individual landslide events have
been recorded in this region, and the main category of landslides is rapid debris flow which
is about 41% of the total landslides (Figure 3.4).
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Figure 3.4: Landslides type in Upper Valtellina. Data from ISPRA, in the framework of IFFI
project.

3.1.4 Val Chiavenna

The Chiavenna Valley, located in the province of Sondrio, is an alpine valley covering an
area of 578 km2, comprising two orthogonal branches: the San Giacomo valley, oriented
north to south, and the Bregaglia valley, oriented east to west. These two branches converge
near Chiavenna, forming a broader main valley running from north to south. Within these
valleys, cliffs, cirques, and narrow tributary valleys can be found. The Mera River flows
southward through the Bregaglia Valley and Valchiavenna before emptying into Lake Como
at the confluence of the Valtelline and Adda Rivers, the main tributaries of Lake Como. The
complex geography of the valley has attracted the interest of several scholars (Bajni et al.,
2021; Tantardini et al., 2022).

Figure 3.5 illustrates the types of landslides that occurred in Val Chiavenna, with data from
the landslide inventory of ISPRA (2014), where fast debris flows were the main type of
landslides, accounting for 51.6% of the total number of landslides.
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Figure 3.5: Landslides type in Val Chiavenna. Data from ISPRA, in the framework of IFFI
project.

3.2 Data

It is essential to select, explore, download, and organize data before analyzing. In this
section, the data preparation steps are described and the final selected data are presented.

3.2.1 Data Preparation

The data preparation process usually consists of three parts, data acquisition, data
exploration, and data preprocessing. Data acquisition performs data retrieval and obtains
corresponding data with specific spatiotemporal attributes according to research needs. The
two primary types of data are raster and vector data. Data exploration is to visualize the data
through a graphical interface, while the purpose of data preprocessing is to transform the
collected data into a form more suitable for research purposes. This study adopts the
following geospatial operations in data preprocessing:

● Clipping which clips the raw data layers to the areas of interest;
● Reprojection which changes the data reference system. This operation is employed

when the raw data layers are not consistent in the Coordinate Reference System
(CRS). In this study, WGS 84 / UTM zone 32 N (EPSG:32632), the official reference
system for Northern Italy, is selected as the coordinate system.

● Styling that modifies the display form of layers to make them more readable, clear,
and understandable.

This study employed QGIS, a free and open-source Geographic Information System, for
data exploration and data preprocessing.
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3.2.2 Data Overview

The data required in this thesis is free and open source and can be accessed from the web
illustrated in Table 3.1.

Data Source License

GeoPortale Lombardia
(https://www.geoportale.regione.lombardia.it
/)

IODL (Italian Open Data License) 2.0. It
allows the user to use, modify and share
the data with the obligation to cite the
original source.

Istituto Superiore per la Protezione e la
Ricerca Ambientale IdroGEO
(https://idrogeo.isprambiente.it/)

CC BY-SA 4.0 (Attribution-ShareAlike 4.0
International CC BY-SA): It allows the user
to share and adapt the data with the
obligation of attributing and sharing-alike
any work.

Agenzia Regionale per la Protezione
Ambientale ARPA Lombardia
(https://www.arpalombardia.it/)

CC BY 4.0 (Attribution-ShareAlike 4.0
International CC BY): It allows the user to
share and adapt the data with the obligation
of attributing any work.

GeoNode
(https://www.geolmiv-geonode.polimi.it/)

–

Table 3.1: Data source.

3.2.2.1 Vector data

A vector in a geoinformatics context is a coordinated-based data model that presents
discrete geographic features. There are three vector data types: points, lines, and polygons.
In this study, the GeoPackage (GPKG) format, a platform-independent lightweight database
container, is used. Table 3.2 shows all the vector data used in this work.

Data Type Source Description

Area of Interest Polygon Custom made This layer contains the
boundaries of the area of
interest, which can be used to
clip other datasets.

Land Use and Land
Cover

Polygon GeoNode - Val
Tartano, Upper
Valtellina;
GeoPortale
Lombardia - Val
Chiavenna,
Lombardy

This layer contains territory
classification with respect to
the main categories.

Lithology Polygon This layer contains the
lithology classification
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Fault Lines Line This layer contains fault lines.

River Network Polygon This layer shows areas that
contain water and are part of
stream beds. The stability of
slopes can be significantly
affected by water drainage
systems due to their ability to
erode the slope. In the case of
LSM, the slopes can be
categorized into buffer zones,
which aid in assessing the
impact of the drainage system
on slope stability (Ado et al.,
2022).

Road Network Polygon This layer shows the road
network.

Landslide Inventory Multiple
Type

GeoNode - Val
Tartano, Upper
Valtellina;
IFFI (Inventario dei
Fenomeni Franosi
in Italia)
(https://idrogeo.ispr
ambiente.it/app/pag
e/open-data) - Val
Chiavenna,
Lombardy

This layer contains the records
of the landslides for the
corresponding area.

Table 3.2: Vector data

The landslide inventory provided by IFFI is the national and official database on landslides
with a scale of 1:10,000 online since 2005. It was carried out by Institute for Environmental
Protection and Research (ISPRA) in cooperation with the regions and autonomous
provinces and provides a detailed description of the distribution of landslides in Italy.
According to the spatial allocation of existing landslide phenomena, the inventory divided the
data into five types:

● Landslide Identification Points: include georeferenced points located at the highest
point of the landslide crown.

● Linear landslides: consist of landslides whose width can not be mapped, for
example, rapid debris flows.

● Polygonal landslides: contain landslides whose surface can be mapped at the
adopted survey scale. The following definition of landslide types is based on the
multiple landslide classifications developed by Cruden and Varnes (1996) and Hungr
et al.(2001).

○ Rockfall: a very rapid movement of detached materials (soil or rock).
○ Rotational/translational slide: A slide is a downslope movement of mass,

mainly on a ruptured surface or a relatively thin area of intense shear strain.
The surface of rotational slides is curved and concave, whilst the surface of
translational slides is planar or undulating.
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○ Debris flow: a very rapid to extremely rapid (>5m/s) flow of saturated
non-plastic debris in a steep channel (with an angle between 20 and 45
degrees) that was caused by high-intensity rainfall.

○ Complex: a combination of falls, topples, slides, spreads, and flows.
● Landslide areas: include areas with numerous landslide phenomena.
● Deep-seated Gravitational Slope Deformations (DGSDs): slowly developing

phenomena of large ground deformations that are very common in alpine regions.
Their long-term evolution and continued deformation rates may represent natural
hazards capable of endangering various human structures and infrastructures.

3.2.2.2 Raster data

A raster is made up of equally sized pixels (also referred to as grid cells) and is often used to
present continuous data. Raster data utilized in this study are summarized in Table 3.3.

Data Resolution [m] Source

Digital Terrain Model (DTM) 5x5 GeoNode - Val Tartano, Upper Valtellina;
GeoPortale Lombardia - Val Chiavenna，
Lombardy;

Slope 5x5 GeoNode - Val Tartano, Upper Valtellina;
Computed - Val Chiavenna, Lombardy;

Aspect 5x5

Eastness 5x5

Northness 5x5

Plan curvature 5x5

Profile curvature 5x5

Topographic Wetness Index
(TWI)

5x5

Normalized Difference
Vegetation Index (NDVI)

5x5

Precipitation 1500x1500 ARPA Lombardia

Table 3.3: Raster data

Digital Terrain Model (DTM): the 2015 Digital Terrain Model for the Lombardy region is
used. Based on this raster, the following raster data were computed.

● Slope: a map that represents the change rate of elevation for each DTM pixel that
can be used to measure the steepness of the surface. The slope angle is a crucial
parameter in evaluating the resilience of a slope, as it is directly linked to the
likelihood of landslide events (Yordanov and Brovelli, 2021).
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● Aspect: a map that shows the orientation of the slope. It is measured clockwise in
degrees with a range between 0o and 360o, where 0o is north-facing, 90o is
east-facing, 180o is south-facing, and 270o is west-facing.

● Eastness: a map that stresses the east-west gradient, where 1 means a slope facing
the East direction while -1 means the West direction. It can be calculated using the
formula
𝐸𝑎𝑠𝑡𝑛𝑒𝑠𝑠 =  𝑠𝑖𝑛(𝐴𝑠𝑝𝑒𝑐𝑡)

● Northness: a map that indicates the north-south gradient, where 1 means a slope
facing the North direction while -1 means the South direction. It can be calculated
using the formula
𝑁𝑜𝑟𝑡ℎ𝑒𝑠𝑠 =  𝑐𝑜𝑠(𝐴𝑠𝑝𝑒𝑐𝑡)

● Profile curvature: An indicator that is parallel to the slope and represents the
direction of maximum slope. A negative value (Figure 3.6 A) indicates that the cell is
convex upward and the flow velocity will decrease. A positive value (Figure 3.6 B)
indicates that the cell is concave upwards and the flow velocity will increase. A value
of zero indicates that the cell is linear (Figure 3.6 C).

Figure 3.6: Profile curvature

● Plan curvature: An indicator that is perpendicular to the direction of maximum slope
and relates to the convergence and dispersion of flow across a surface, which
influences the characteristics of slope erosion or surface runoff. A positive value
(Figure 3.7 A) indicates that the cell is convex laterally. A negative value (Figure 3.7
B) indicates that the cell is concave laterally. A value of zero indicates that the cell is
linear (Figure 3.7 C).

Figure 3.7: Plan curvature
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● Topographic Wetness Index (TWI): A hydrological index that is commonly used to
quantify topographic control on hydrological processes (Sørensen et al., 2006) and
can be a measurement of the degree of water accumulation at a size. It is calculated
using the formula

𝑇𝑊𝐼 =  𝑙𝑛( α
𝑡𝑎𝑛(β) )

where is the Specific Catchment Area and is the slope in radians.α 𝑡𝑎𝑛(β)

Normalized Difference Vegetation Index (NDVI): a spectral index that is used to quantify
vegetation greenness. I can be computed from the satellite images using the formula

𝑁𝐷𝑉𝐼 =  𝑁𝐼𝑅 − 𝑅𝑒𝑑
𝑁𝐼𝑅 + 𝑅𝑒𝑑

where and are spectral reflectance measured in the Near InfraRed and Red𝑁𝐼𝑅 𝑅𝑒𝑑
(visible) regions, respectively.

Precipitation: This raster was derived using data that was interpolated from hourly
observations made on a 1.5x1.5km grid by the regional meteorological network of ARPA for
the Lombardy region. The data was collected in txt format. The information can be averaged
to get annual average precipitation data, or the 90th percentile of each grid can be
calculated to produce annual 90th percentile precipitation data. The data was afterwards
transformed into a raster for further processing.
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4. Tools and Techniques

This section focuses on the tools and techniques employed for analysis in this study.

4.1 Software tools

High-quality multispectral images are the primary requirement for the analysis in this study.
In addition, software and tools with a high level of robustness and reliability are essential for
the consistent processing of images.

Table 4.1 briefly illustrates the software and tools discussed in this section.

Sofware Purpose License

QGIS Data visualization and
preprocess

Free and Open Source
Software (FOSS). It allows
users to freely run, copy,
distribute, study, modify and
improve the software.

Python Data preprocessing, model
generation, and evaluation

–

Table 4.1: Software tools and programming languages used in this study.

4.1.1 Python

Python is a powerful and friendly open-source programming language (Python, 2023). There
are many libraries and frameworks available in Python that can be used for machine learning
purposes. For example, NumPy adds support for large, multi-dimensional arrays and
matrices, along with a large collection of high-level mathematical functions to operate on
these arrays (Harris et al., 2020). Matplotlib is a plotting library that allows the creation of
visualizations. And the sciki-learn machine learning library (Scikit-learn, 2023) provides
various classification, regression, and clustering algorithms and is designed to interoperate
with the Python numerical and scientific libraries NumPy and SciPy.

Python is used throughout the entire research process, including data preparation, model
training, model evaluation, and LSM generation.

4.1.2 QGIS
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QGIS is a free and open-source cross-platform desktop geographic information system
(GIS) application that supports viewing, editing, printing, and analysis of geospatial data
(QGIS, 2023). With Python, users can automate tasks on QGIS and extend its functionality.

In this study, QGIS was used together with Python to preprocess the initial data and to view
and explore the data at all steps of the analysis.

4.2 Analysis techniques

4.2.1 Base classifiers

4.2.1.1 Bootstrap aggregating (Bagging)

Bootstrap aggregation, also known as bagging, is a machine learning algorithm that
improves the accuracy and stability of machine learning algorithms used in statistical
classification and regression, as well as reducing variance and avoiding overfitting. Various
subsets of the training data are randomly drawn with replacements from the entire training
dataset, and each bootstrap sample is used to train a different classifier with the same type.
The individual classifiers are then combined by taking a simple majority vote on their
decisions to produce the final prediction. (Breiman, 1996)

4.2.1.2 Random Forests

Random Forests (RF) is one of the most widely used machine learning algorithms for
classification and regression, which creates multiple decision trees by introducing
randomness at the training phase. These decision trees are used to determine the final
prediction result by a majority vote.

In practice, the Scikit-learn package implemented in Python was utilized. In contrast to the
original publication (Breiman, 2001), the scikit-learn implementation gives the prediction as
the averaged prediction of the individual classifiers.

4.2.1.3 AdaBoost

AdaBoost, which stands for adaptive boosting, is a statistical classification meta-algorithm
introduced by Yoav Freund and Robert Schapire in 1995. (Freund and Schapire, 1997). The
principle of AdaBoost is to fit a sequence of weak learners which are only slightly better than
random prediction such that subsequent weak learners are tweaked in favor of those
instances misclassified by previous classifiers. Using a weighted majority vote or sum, all the
weak learners' predictions are combined to produce the final prediction.
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4.2.1.4 Gradient Tree Boosting
Gradient Tree Boosting or Gradient Boosted Decision Trees (GBDT) is a generalization of
boosting to arbitrary differentiable loss functions (Friedman, 2001), which can be used for
both regression and classification problems. In this algorithm, the model is built in a forward
stage-wise fashion and it allows for the optimization of arbitrary differentiable loss functions.
In each stage, multiple regression trees are fit on the negative gradient of the loss function.

4.2.1.5 Neural Network

Neural network (NN) algorithms can be used for both classification and regression problems.
It starts with the perceptron. A perceptron takes inputs, multiplies them by some weights,
and passes them to an activation function to produce an output. By adding the layers of
these perceptrons together, a neural network is created, which is known as a multi-layer
perceptron (MLP) model. There are three layers of a neural network - the input, hidden, and
output layers. The input layer receives data directly, whereas the output layer creates the
desired output. The layers in between are known as hidden layers, where the intermediate
computation takes place.

4.2.1.6 Logistic Regression

Logistic Regression (LR), also known as logit regression, is a widely used technique in
landslide susceptibility modeling (Ayalew and Yamagishi, 2005; Park et al., 2013; Lin et al.,
2017). The output prediction of Logistic Regression is defined as follows (King and Zeng,
2001):

𝑝 =  1

1+𝑒𝑧

where is the probability and denotes the linear combination of variables as follows:𝑝 𝑧
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represents the explanatory variables.

4.2.2 Ensemble-learning methods

4.2.2.1 Stacking

Stacking is a method for combining estimators to reduce their biases (Wolpert, 1992). The
flowchart of the stacking ensemble model is shown in Figure 4.1. It contains the following
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steps: (1) using the training dataset to train different base estimators through k-fold
cross-validation; (2) the predictions of each estimator are stacked together and used as input
to a final estimator; (3) train the final estimator through cross-validation.

Figure 4.1 Flowchart of stacking ensemble.

4.2.2.2 Blending

A blending ensemble is a variation of the stacking ensemble originally introduced in the
Netflix competition (Toscher and Jahrer, 2009). The flowchart of the blending ensemble
model is shown in Figure 4.2. It consists of the following steps: (1) split the training dataset
into new training and validation datasets by a hold-out method; (2) train all the base
estimators using the new training dataset and make predictions of the validation dataset to
form training dataset used as input to a final estimator; (3) train the final estimator.
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Figure 4.2 Flowchart of blending ensemble.

4.2.2.3 Voting

The principle of Voting is to combine different estimators and use a majority vote (hard
voting) or the average predicted probabilities (soft voting) to generate the final prediction.

In the study, soft voting (SV) is adopted which makes the prediction based on the maximum
value of the weighted average of predicted probabilities.

4.3 Probability Calibration

Probability calibration is employed when the machine learning model cannot yield good
estimates of the class probabilities or even does not support the class probability prediction.

A calibration plot is an indicator of whether to calibrate the prediction result, which can be
created by plotting the true frequency of the positive label against probabilities predicted by
the classifier, and the diagonal line indicates perfectly calibrated. The close a model’s curve
is to the diagonal line, the better calibrated it is.

There are several ways that can be adopted to do the calibration (Niculescu-Mizil and
Caruana, 2005):

● Signoid regressor based on Platt Calibration:
𝑝(𝑦 = 1|𝑓) =  1

1 + 𝑒𝑥𝑝(𝐴𝑓+𝐵)
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where is the true label and is the output of the uncalibrated classifier. and are𝑦 𝑓 𝐴 𝐵
parameters to be determined when fitting the regressor via maximum likelihood.

● Isotonic Regression has fit the isotonic (monotonically increasing) function such𝑚 
that

𝑚 =  𝑎𝑟𝑔𝑚𝑖𝑛
𝑧
 Σ(𝑦 − 𝑧(𝑓))2

where is the true label and is the output of the uncalibrated classifier. is the𝑦 𝑓 𝑧
calibrated classifier.
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5. Methodology
Figure 5.1 illustrates the study flow in this thesis.

Figure 5.1: Study flow chart.

5.1 Data preprocessing
Creating and preparing the dataset for models is a fundamental step in machine learning
analysis. For Landslide Susceptibility analysis, it is crucial to select a suitable set of
environmental variables that are considered to be related to mass movement, as well as a
sufficiently large list of landslide phenomena inventory.

5.1.1 Factors selection and preparation

In this study, 11 factors were selected according to the previous studies in the similar area
(Yordanov and Brovelli, 2021; Amici, 2021):

● Elevation (Raster Data)
● Eastness (Raster Data)
● Northness (Raster Data)
● Plan curvature (Raster Data)
● Profile curvature (Raster Data)
● Topographic Wetness Index (Raster Data)

28



● NDVI (Raster Data)
● Precipitation (Raster Data)
● Distance from roads (Vector Data)
● Distance from rivers (Vector Data)
● Distance from faults (Vector Data)
● Land use (Vector Data)

Slope and lithology layers were excluded from the factors considered because they were
exploited for the definition of No Landslide zone (NoLS zone). Including them produces
maps with a high prevalence of these factors relative to others (Amici, 2021).

The precipitation information was included as additional variable only to as a last iteration to
the best performing model for Lombardy region. Two-fold modelling was included for the
preciptation - on one hand, was included the average interpolated hourly precipitation for the
year 2020 and on the other, was added only the 90th percentile which is represeting
exceptional intensive events for the same year.

To perform sampling, all of these layers must be in raster format with the same extent, pixel
size, and CRS.

Therefore, vector data should be converted to raster data and used as discrete factors. They
are

● Distance from roads: first buffer the road element layer at 50m, 100m, 250m, 500m,
remaining zone with a distance >500m. Then convert the buffered layer to a raster
using QGIS.

● Distance from rivers: similar to the “distance from roads” factor, the process was
applied to the river network layer.

● Distance from faults: similar to the “distance from roads” factor, the process was
applied to the fault lines layer.

● Land use: rasterize the land use layer directly using the Level 2 classification.

It should be noted that in this study, both discrete and continuous variables were employed.
Table 5.1 describes the categorization of discrete factors. Both Upper Valtellina and Val
Tartano have fewer land-use classes than Val Chiavenna and Lombardy, where “permanent
crops” is absent in Upper Valtellina while “non-agricultural green”, “arable land”, “permanent
crops”, and “inland wetlands” are missing in Val Tartano.

Factor Number of classes Classification parameter

Distance from roads 5 Buffered distance

Distance from rivers 5 Buffered distance

Distance from faults 5 Buffered distance

Land use 11 - Upper Valtellina
8 - Val Tartano

Level 2 classification of land
use
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12 - Val Chiavenna
12 - Lombardy

Table 5.1: Categorical environmental variables.

Selecting a suitable mapping unit is a crucial prerequisite for LSMs (Guzzetti et al., 1999;
Reichenbach et al., 2018). In this study, the pixel size, equivalent to the DTM resolution (5m
× 5m), was employed as the mapping unit since most terrain variables are calculated from
DTM, and this scale is sufficient for local factors such as road and river networks.
Additionally, this scale is appropriate for polygonal landslides and approximated linear
landslides, taking into account the scale of the landslide inventory (1:10,000) (Yordanov and
Brovelli, 2021).

The final preprocessed factors which were used later on in the analysis are shown below.

5.1.1.1 Val Tartano

Figure 5.2 describes 11 factors in Val Tartano.
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(a) Val Tartano DTM

(b) Val Tartano Eastness

(c) Val Tartano Northness
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(d) Val Tartano Distance from roads

(e) Val Tartano Distance from rivers
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(f) Val Tartano Distance from faults

(g) Val Tartano Topographic Wetness Index
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(h) Val Tartano NDVI

(i) Val Tartano Land use
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(j) Val Tartano Plan curvature

(k) Val Tartano Profile curvature
Figure 5.2: Val Tartano terrain variables

5.1.1.2 Upper Valtellina

Figure 5.3 illustrates 11 factors in Upper Valtellina.
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(a) Upper Valtellina DTM

(b) Upper Valtellina Eastness
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(c) Upper Valtellina Northness

(d) Upper Valtellina Distance from roads
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(e) Upper Valtellina Distance from rivers

(f) Upper Valtellina Distance from faults
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(g) Upper Valtellina Topographic Wetness Index

(h) Upper Valtellina NDVI
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(i) Upper Valtellina Land use

(j) Upper Valtellina Plan curvature
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(k) Upper Valtellina Profile curvature
Figure 5.3: Upper Valtellina terrain variables

5.1.1.3 Val Chiavenna

Figure 5.4 shows 11 factors in Val Chiavenna.
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(a) Val Chiavenna DTM

(b) Val Chiavenna Eastness
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(c) Val Chiavenna Northness

(d) Val Chiavenna Distance from roads
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(e) Val Chiavenna Distance from rivers

(f) Val Chiavenna Distance from faults
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(g) Val Chiavenna Topographic Wetness Index

(h) Val Chiavenna NDVI
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(i) Val Chiavenna Land use

(j) Val Chiavenna Plan curvature

(k) Val Chiavenna Profile curvature
Figure 5.4: Val Chiavenna terrain variables

5.1.1.4 Lombardy
Figure 5.5 displays 11 factors in Lombardy.
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(a) Lombardy DTM

(b) Lombardy Eastness
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(c) Lombardy Northness

(d) Lombardy Distance from roads
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(e) Lombardy Distance from rivers

(f) Lombardy Distance from faults
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(g) Lombardy Topographic Wetness Index

(h) Lombardy NDVI
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(i) Lombardy Land use

(j) Lombardy Plan curvature
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(k) Lombardy Profile curvature
Figure 5.5: Lombardy terrain variables

5.1.2 Landslide inventory

According to the preceding section, the landslide inventory established by ISPRA was
utilized, with solely those layers containing polygonal and linear landslides being
incorporated. During this process, an issue that necessitated resolution was that linear
landslides have no area, thereby posing difficulties in the subsequent sampling stage. To
address this concern, it was recognized that all linear landslides fall under the "debris flow"
classification, typically transpiring in narrow valleys and channels. As per the solution
proposed by Yordanov and Brovelli (2021), the width of linear landslides was estimated to be
approximately 10 meters.

5.1.3 Factor sampling

Upon completion of the data preprocessing stage, it is necessary to generate a set of
random data sampling points to sample the terrain variables. This collection comprises two
types of data: one is from locations where landslides have taken place in the past
(designated as the "Landslide zone"), assigned a value of 1; the other is from regions where
the likelihood of landslide incidence is almost negligible (termed as the "No Landslide zone"),
assigned a value of 0. A comprehensive account of this procedure, which encompasses the
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definition of the Landslide zone and No Landslide zone, along with the point sampling
process, is presented in the subsequent section.

5.1.3.1 Landslide zone and No Landslide zone

This study consider only two types of shallow landslides, namely debris flows and
rotational/translational slides, even though there are four types in total. Linear landslides are
categorized as debris flow, and therefore, the LS zone was created by merging polygonal
debris flows, polygonal rotational/translational slides, and buffered linear landslides. Table
5.2 shows some statistics on the type and number of landslides in all studied areas.

Zone Landslide Type Number of features

Val Tartano Polygonal landslides 213

Linear landslides 441

Upper Valtellina Polygonal landslides 637

Linear landslides 1363

Val Chiavenna Polygonal landslides 1,050

Linear landslides 3,641

Lombardy Polygonal landslides 32,849

Linear landslides 54,650

Table 5.2: Statistics on the type and number of landslides in the LS zone.

Figure 5.6 illustrates the LS zones for the studied areas.
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(a) Val Tartano LS zone

(b) Upper Valtellina LS zone
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(c) Val Chiavenna LS zone

(d) Lombardy LS zone
Figure 5.6: Landslide zone of studied areas
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Additionally, the No Landslide zone (or NoLS zone) needs to be defined in order to ensure
data integrity for areas where the probability of landslide occurance is very low. In this case,
previous studies were taken into consideration,such as, Yordanov and Brovelli (2021) stated
the hypothesis that a NoLS zone for shallow landslides should be an area with a slope angle
smaller than 20o or larger than 70o which accounts for a very smooth or very steep slope.
Amici (2021) made further refinement that the areas with very low (i.e. less than 5o) slopes
(e.g. cities) must be included in the NoLS zone definition. Besides, the Intact Uniaxial
Compressive Strength (IUCS) of materials, a value obtained by tests that describes the
maximum stress that a material can take before failing should also be taken into account
based on the terrain lithology. Therefore, the No Landslide zone is defined as follows (Amici,
2021):

(𝑠𝑙𝑜𝑝𝑒 <  5𝑜 ) ∨ [(5𝑜  <  𝑠𝑙𝑜𝑝𝑒 <  20𝑜  ∨  𝑠𝑙𝑜𝑝𝑒 >  70𝑜 ) ∧  (𝐼𝑈𝐶𝑆 >  100 𝑀𝑃𝑎)]

According to Amici (2021), the Upper Valtellina region has an overlapping ratio of 1.7%
between the NoLS zone and the Landslide zone, while Val Tartano has a ratio of 0.5%.
Similarly, Val Chiavenna has a ratio of 1.8% and Lombardy has a ratio of 2.3%. These
overlap areas are negligible and support the NoLS hypothesis. These areas were eliminated
from the NoLS zone before conducting the analysis. Figure 5.7 displays the final maps of the
NoLS zones.
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(a) Val Tartano NoLS zone

(b) Upper Valtellina NoLS zone
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(c) Val Chiavenna NoLS zone

(d) Lombardy NoLS zone
Figure 5.7: NoLS zone of studied areas

5.1.3.2 Point sampling

Having prepared all the necessary layers, the next step is to conduct point sampling. This
procedure involved randomly selecting points at a 1:1 ratio within both the landslide and
no-landslide zones. These points were then enriched with terrain data. Table 5.3 provides
the number of sample points allocated for each area, taking into account the study area's
size. Notably, no training dataset was needed for Lombardy since no model was trained for
the entire region.

Zone Number of sample
points for training

Number of sample
points for Testing

Source

Val Tartano 15,560 3,904 Geonode

Upper Valtellina 79,148 19,793 Geonode

Val Chiavenna 80,000 25,000 Computed

Lombardy — 400,000 Computed

Table 5.3: Information of sampled points for each studied area, including both points for
NoLS (class 0) and LS (class 1) .
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5.2 Processing

To select the most suitable base classifiers, five models (Bagging, Random Forests,
AdaBoost, Gradient Tree Boosting, and Neural Network) are trained and evaluated on
different regions using the Python package scikit-learn. There are several scenarios based
on the different training data sets and test sets used for this process (Table 5.5).

● Val Tartano (VT): train and evaluate five models using the dataset sampled from Val
Tartano;

● Upper Valtellina (UV): train and evaluate five models using the dataset sampled
from Upper Valtellina;

● Val Chiavenna
○ Case 1 (VCC1): train five models using the dataset sampled from Val Tartano

and Upper Valtellina, and evaluate each model using the dataset sampled
from Val Chiavenna;

○ Case 2 (VCC2): train five models using the dataset sampled from Val Tartano,
Upper Valtellina and Val Chiavenna, and evaluate each model using the
dataset sampled from Val Chiavenna;

○ Case 3 (VCC3): train and evaluate five models using the dataset sampled
from Val Chiavenna;

● Lombardy
○ Case 1 (LC1): evaluate each model trained in above five cases (Val Tartano,

Upper Valtellina, Val Chiavenna Case 1, Val Chiavenna Case 2, Val
Chiavenna Case 3) using the dataset that sampled from the northern part of
Lombardy but excluded from Val Tartano, Upper Valtellina, and Val
Chiavenna. Northern Italy was chosen as the validation region because
Lombardy as a whole has a high percentage of flat, NoLZ (about 49.48%),
which biases the validation for class 1 (i.e., LS). Therefore, this portion is
eliminated, leaving only the northern alpine region, which actually contains an
abundance of LS.

○ Case 2 (LC2): evaluate each model trained in the above five cases (Val
Tartano, Upper Valtellina, Val Chiavenna Case 1, Val Chiavenna Case 2, Val
Chiavenna Case 3) using the dataset that sampled from Lombardy but
excluded from Val Tartano, Upper Valtellina, and Val Chiavenna.

Case Trained using data sampled
from

Tested on data sampled
from

Val Tartano (VT) Val Tartano Val Tartano

Upper Valtellina (UV) Upper Valtellina Upper Valtellina

Val Chiavenna Case 1
(VCC1) Val Tartano, Upper Valtellina Val Chiavenna

Val Chiavenna Case 1
(VCC2)

Val Tartano, Upper Valtellin,
Val Chiavenna Val Chiavenna
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Val Chiavenna Case 1
(VCC3) Val Chiavenna Val Chiavenna

Northern Lombardy + Val
Tartano (LC1+VT) Val Tartano Northern Lombardy

Northern Lombardy + Upper
Valtellina (LC1+UV) Upper Valtellina Northern Lombardy

Northern Lombardy + Val
Tartano, Upper Valtellina
(LC1+VT+UV)

Val Tartano, Upper Valtellina Northern Lombardy

Northern Lombardy + Val
Chiavenna Case 2
(LC1+VCC2)

Val Tartano, Upper
Valtellina, Val Chiavenna Northern Lombardy

Northern Lombardy + Val
Chiavenna Case 3
(LC1+VCC3)

Val Chiavenna Northern Lombardy

Lombardy + Val Tartano
(LC2+VT) Val Tartano Lombardy

Lombardy + Upper Valtellina
(LC2+UV) Upper Valtellina Lombardy

Lombardy + Val Tartano,
Upper Valtellina
(LC1+VT+UV)

Val Tartano, Upper Valtellina Lombardy

Lombardy + Val Chiavenna
Case 2 (LC2+VCC2)

Val Tartano, Upper
Valtellina, Val Chiavenna Lombardy

Lombardy + Val Chiavenna
Case 3 (LC2+VCC3) Val Chiavenna Lombardy

Table 5.5: source of training dataset and testing dataset

Then, three selected models based on accuracy are used in different ensemble methods
(stacking, blending, and voting). This process is also based on the scenarios used in model
selection. At the same time, LSMs for different regions will also be generated.

The model with the best performance is chosen after a comparison of all the produced
models, including base models and ensemble models. Then, this model is trained once more
using precipitation data (90th percentile and average) and evaluated.
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6. Results

The initial focus of this section is on the outcomes obtained from both the base classifiers
and the ensemble models, along with the corresponding decision-making process.
Subsequently, the suitability of the models is assessed, and the landslide susceptibility maps
generated using the most appropriate ones are presented and analyzed.

6.1 Performance evaluation

6.1.1 Performance evaluation of base classifiers

Effective selection of optimal base classifiers plays a critical role in achieving successful
Landslide Susceptibility Mapping (LSM) using ensemble models. To assess the performance
of each base classifier, we evaluated its efficacy when applied to different study areas.

Figure 6.1 shows the calibration curves for all base models in Val Tartano, with the average
predicted probability for each bin on the x-axis and the fraction of positive classes in each
bin on the y-axis.
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Figure 6.1: Calibration plots of base classifiers for Val Tartano

Please refer to Appendix A for the calibration plots of all classifiers.

In all cases, Bagging, RF, Gradient Tree Boosting, and NN classifiers exhibit well-calibrated
predictions. This is evidenced by the proximity of all curves generated by these models to
the diagonal line, which represents perfect calibration.

In contrast to other classifiers, AdaBoost exhibits a distinct pattern where the probability
histograms display peaks at around 0.4 and 0.6 probabilities, while probabilities at other
levels are relatively infrequent. A possible explanation for this phenomenon is that AdaBoost
can be viewed as an additive logistic regression model, in which the predictions made by
boosting attempt to fit a logit of the true probabilities instead of the actual probabilities
themselves (Friedman et al., 2000). As a result, it is essential to calibrate this classifier in all
cases. The calibration result of AdaBoost with sigmoid regression is also illustrated in Figure
6.1 and shows well-calibrated behavior.
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Different accuracy statistics (e.g., OA, precision, recall, and F-measure) of ML base
classifiers for different cases were calculated (see Table 6.1 and Figure 6.2). Compared to
the uncalibrated version, the calibrated version of AdaBoost does not significantly alter
prediction accuracy measures. Therefore, the calibrated AdaBoost will be used in place of
the uncalibrated AdaBoost in subsequent analyses.

Cases Bagging
Forests of
randomized
trees

AdaBoost AdaBoost
Calibrated

Gradient
Tree
Boosting

Neural
Network

VT 90.37% 91.44% 85.48% 85.60% 89.75% 78.25%

UV 90.70% 90.89% 88.32% 88.57% 89.54% 87.12%

VCC2 94.36% 94.34% 89.61% 89.64% 93.30% 89.01%

VCC3 94.76% 95.07% 92.22% 92.25% 94.76% 86.33%

VCC1 69.28% 75.16% 78.82% 78.81% 68.41% 79.66%

LC1+VT 80.08% 76.58% 78.68% 79.05% 64.77% 71.99%

LC1+UV 66.92% 76.34% 75.89% 77.18% 60.55% 75.91%

LC1+VT+UV 71.66% 77.33% 84.93% 85.04% 70.07% 75.69%

LC1+VCC2 77.11% 81.31% 80.86% 80.87% 73.34% 85.83%

LC1+VCC3 68.10% 67.97% 60.99% 60.62% 61.68% 90.82%

LC2+VT 83.03% 78.47% 80.34% 80.68% 65.89% 73.24%

LC2+UV 66.00% 78.57% 80.99% 81.70% 66.83% 77.38%

LC2+VT+UV 74.17% 79.53% 87.07% 87.20% 71.00% 77.09%

LC2+VCC2 82.84% 89.67% 87.48% 88.05% 80.91% 93.10%

LC2+VCC3 89.91% 81.77% 55.90% 55.56% 72.13% 97.01%

(a) Overall Accuracy

Cases
Bagging

Forests of
randomized

trees
AdaBoost AdaBoost

Calibrated
Gradient Tree
Boosting Neural Network

OA Thresh
old OA Thresh

old OA Thresh
old OA Thresh

old OA Thresh
old OA Thresh

old

VT
91.78
%

0.4100
92.90
%

0.3700 85.66
% 0.4998

85.86
%

0.4749
90.24
%

0.3343
82.25
%

0.2637

UV
90.93
%

0.4167
91.36
%

0.3900 88.53
% 0.5001

88.57
%

0.5031
89.66
%

0.4525
87.27
%

0.4637

VCC2
94.40
%

0.5500
94.36
%

0.5200 89.81
% 0.5002

89.78
%

0.5282
93.42
%

0.5596
89.05
%

0.4861

VCC3
94.76
%

0.5500
95.15
%

0.5400 92.29
% 0.5001

92.35
%

0.5151
94.82
%

0.5257
86.36
%

0.4574

VCC1
70.50
%

0.5300
75.17
%

0.5000 79.60
% 0.4990

79.58
%

0.2818
69.23
%

0.5899
86.00
%

0.0018
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LC1+V
T

83.06
%

0.4300
80.44
%

0.4250 91.14
% 0.4899

90.91
%

0.0030
80.03
%

0.0005
89.95
%

0.0073

LC1+U
V

71.34
%

0.3725
85.33
%

0.3600 75.90
% 0.5000

77.28
%

0.5615
62.46
%

0.8353
84.95
%

0.0022

LC1+V
T+UV

77.66
%

0.1625
83.39
%

0.3620 91.34
% 0.4839

89.80
%

0.2000
82.69
%

0.0066
92.53
%

0.0307

LC1+V
CC2

82.49
%

0.7195
85.35
%

0.6533 82.64
% 0.5010

82.60
%

0.7043
76.05
%

0.7882
87.11
%

0.6571

LC1+V
CC3

76.22
%

0.8800
82.43
%

0.8000 70.32
% 0.5026

69.56
%

0.9087
64.13
%

0.9196
92.35
%

0.7087

LC2+V
T

88.91
%

0.2000
83.55
%

0.4260 95.03
% 0.4780

94.70
%

0.0015
82.87
%

0.0005
95.84
%

0.0012

LC2+U
V

73.37
%

0.2913
88.12
%

0.3667 81.26
% 0.4995

82.17
%

0.3131
68.93
%

0.7926
93.47
%

0.0017

LC2+V
T+UV

79.06
%

0.3025
87.39
%

0.3560 95.16
% 0.4827

93.40
%

0.0000
86.80
%

0.0036
96.76
%

0.0020

LC2+V
CC2

91.07
%

0.6550
91.48
%

0.6117 88.70
% 0.5004

89.07
%

0.5730
82.53
%

0.7057
93.13
%

0.4843

LC2+V
CC3

90.30
%

0.6100
92.38
%

0.6800 68.71
% 0.5029

67.54
%

0.9199
75.75
%

0.8502
97.02
%

0.5148

(b) Accuracy based on optimum ROC-based thresholds

Cases
Bagging

Forests of
randomized

trees
AdaBoost AdaBoost

Calibrated
Gradient Tree
Boosting Neural Network

OA Thresh
old OA Thresh

old OA Thresh
old OA Thresh

old OA Thresh
old OA Thresh

old

VT
91.78
%

0.3500
92.90
%

0.3700 85.48
% 0.4996

85.84
%

0.4589
90.22
%

0.2942
82.25
%

0.2576

UV
90.86
%

0.3800
91.32
%

0.3800 88.31
% 0.4998

88.33
%

0.3942
89.48
%

0.3774
87.01
%

0.3553

VCC2
94.39
%

0.5300
94.36
%

0.5200 89.81
% 0.5002

89.78
%

0.5282
93.42
%

0.5545
88.96
%

0.4310

VCC3
94.76
%

0.5100
95.15
%

0.5300 92.24
% 0.5000

92.35
%

0.5151
94.82
%

0.5257
86.34
%

0.2818

VCC1
70.50
%

0.5300
74.68
%

0.4620 78.67
% 0.4846

79.20
%

0.2000
66.66
%

0.1860
85.99
%

0.0016

LC1+V
T

82.11
%

0.2000
80.09
%

0.4033
91.13
%

0.4783
90.88
%

0.0022
79.52
%

0.0002
89.90
%

0.0060

LC1+U
V

70.86
%

0.2813
85.33
%

0.3467
75.44
%

0.4995
76.84
%

0.3357
51.32
%

0.0000
84.77
%

0.0019

LC1+V
T+UV 77.55 0.1525 83.26 0.3325 91.33 0.4837 89.78 0.2000 82.57 0.0031 92.52 0.0221
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% % % % % %

LC1+V
CC2

82.21
%

0.6575
85.21
%

0.6333
82.13
%

0.5004
81.99
%

0.5744
75.28
%

0.6544
87.03
%

0.6192

LC1+V
CC3

75.63
%

0.8000
82.18
%

0.7600
68.59
%

0.5018
67.54
%

0.8152
61.25
%

0.4377
92.33
%

0.6911

LC2+V
T

88.90
%

0.1900
83.24
%

0.4060
95.03
%

0.4780
94.67
%

0.0012
82.43
%

0.0002
95.84
%

0.0011

LC2+U
V

73.37
%

0.2913
88.04
%

0.3567
80.89
%

0.4982
81.83
%

0.2002
66.61
%

0.4721
93.45
%

0.0016

LC2+V
T+UV

78.95
%

0.1625
87.23
%

0.3350
95.16
%

0.4825
93.39
%

0.0000
86.79
%

0.0033
96.76
%

0.0020

LC2+V
CC2

91.05
%

0.6450
91.48
%

0.6033
88.66
%

0.5003
89.05
%

0.5600
82.25
%

0.6214
93.10
%

0.4457

LC2+V
CC3

90.28
%

0.5900
92.38
%

0.6700
65.41
%

0.5019
65.17
%

0.8430
75.05
%

0.7317
97.02
%

0.5148

(c) Accuracy based on optimum PR-based thresholds

Cases Bagging
Forests of
randomized

trees
AdaBoost AdaBoost

Calibrated

Gradient
Tree

Boosting

Neural
Network

VT 0.9361 0.9483 0.8507 0.8545 0.9197 0.8482

UV 0.9466 0.9482 0.8944 0.9010 0.9164 0.9033

VCC2 0.9378 0.9361 0.8707 0.8718 0.9273 0.8653

VCC3 0.9441 0.9460 0.9109 0.9111 0.9495 0.7972

VCC1 0.6870 0.7501 0.7856 0.7863 0.6821 0.8419

LC1+VT 0.8918 0.9197 0.9386 0.9394 0.9145 0.9451

LC1+UV 0.7618 0.8958 0.7087 0.7297 0.5777 0.9386

LC1+VT+UV 0.8761 0.9147 0.9324 0.9319 0.8974 0.9412

LC1+VCC2 0.7021 0.7505 0.7504 0.7505 0.6681 0.8206

LC1+VCC3 0.6142 0.6131 0.5643 0.5617 0.5731 0.8611

LC2+VT 0.9657 0.9754 0.9865 0.9867 0.9753 0.9887

LC2+UV 0.7400 0.9588 0.7717 0.7895 0.6368 0.9873

LC2+VT+UV 0.9574 0.9777 0.9855 0.9853 0.9299 0.9879

LC2+VCC2 0.7676 0.8668 0.8401 0.8488 0.7498 0.9424

LC2+VCC3 0.8468 0.7416 0.5326 0.5305 0.6592 0.9664

(d) Precision
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Cases Bagging
Forests of
randomized

trees
AdaBoost AdaBoost

Calibrated

Gradient
Tree

Boosting

Neural
Network

VT 0.8715 0.8810 0.8690 0.8665 0.8765 0.7010

UV 0.8640 0.8662 0.8708 0.8683 0.8716 0.8333

VCC2 0.9502 0.9518 0.9303 0.9294 0.9398 0.9241

VCC3 0.9516 0.9559 0.9361 0.9363 0.9456 0.9746

VCC1 0.7082 0.7544 0.7927 0.7912 0.6896 0.7302

LC1+VT 0.6847 0.5825 0.6139 0.6210 0.3260 0.4669

LC1+UV 0.4923 0.5962 0.8792 0.8633 0.7842 0.5545

LC1+VT+UV 0.5045 0.6029 0.7533 0.7560 0.4534 0.5480

LC1+VCC2 0.9419 0.9379 0.9248 0.9248 0.9279 0.9172

LC1+VCC3 0.9736 0.9743 0.9641 0.9671 0.9162 0.9736

LC2+VT 0.6849 0.5842 0.6153 0.6219 0.3260 0.4702

LC2+UV 0.4933 0.5970 0.8800 0.8646 0.7837 0.5548

LC2+VT+UV 0.5059 0.6045 0.7524 0.7553 0.4543 0.5485

LC2+VCC2 0.9419 0.9375 0.9258 0.9259 0.9278 0.9182

LC2+VCC3 0.9746 0.9750 0.9651 0.9681 0.9164 0.9740

(e) Recall

Cases Bagging
Forests of
randomized

trees
AdaBoost AdaBoost

Calibrated

Gradient
Tree

Boosting

Neural
Network

VT 0.9026 0.9134 0.8598 0.8605 0.8976 0.7676

UV 0.9034 0.9054 0.8825 0.8843 0.8935 0.8669

VCC2 0.9439 0.9439 0.8995 0.8997 0.9335 0.8937

VCC3 0.9478 0.9509 0.9233 0.9235 0.9475 0.8770

VCC1 0.6974 0.7523 0.7892 0.7887 0.6858 0.7821

LC1+VT 0.7746 0.7133 0.7423 0.7477 0.4806 0.6250

LC1+UV 0.5981 0.7159 0.7848 0.7909 0.6653 0.6972

LC1+VT+UV 0.6403 0.7268 0.8333 0.8348 0.6024 0.6927

LC1+VCC2 0.8045 0.8338 0.8286 0.8286 0.7768 0.8662

LC1+VCC3 0.7532 0.7526 0.7119 0.7106 0.7051 0.9139

LC2+VT 0.8014 0.7307 0.7579 0.7629 0.4887 0.6373

LC2+UV 0.5920 0.7358 0.8223 0.8253 0.7026 0.7104

LC2+VT+UV 0.6620 0.7470 0.8533 0.8551 0.6104 0.7054

LC2+VCC2 0.8459 0.9007 0.8809 0.8857 0.8294 0.9301
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LC2+VCC3 0.9062 0.8424 0.6864 0.6854 0.7668 0.9702

(f) F1 score
Table 6.1: Accuracy statistics of base classifiers for different cases. Table cells are colored

based on each region. The darker the color, the higher the value

Please refer to Appendix C for the ROC and PRC of all classifiers.

Bagging, RF, and Gradient Tree Boosting achieved the highest accuracy (i.e. 0.9~0.93 for
VT, 0.9~0.91 for UV, 0.93~0.94 for VCC2, and 0.95 for VCC3) when sampled data from the
relevant area (i.e., VT, UV, VCC2, and VCC3) were included for model training, and the
accuracy of the NN model is the worst (i.e., 0.82 based on an optimum threshold for VT, 0.87
for UV, 0.89 for VCC2, and 0.86 for VCC3). The most accurate model was switched to NN
(i.e., 0.86 for VCC1, 0.85~0.93 for LC1, and 0.93~0.97 for LC2 based on the optimum
threshold), followed by RF (i.e., around 0.75 for VCC1, 0.8～0.85 for LC1 based on optimum
threshold, and 0.83~0.92 for LC2 based on an optimum threshold) when the sampling data
of the pertinent areas (i.e., VCC1, LC1, and LC2) were not used to train the model. The third
model with the best performance in terms of overall accuracy is calibrated AdaBoost with
around 0.79 for VCC1. In the case of Lombardy, the accuracy varies when using calibrated
AdaBoost models, with LC1 having the highest accuracy of 0.91 and LC2 having the highest
accuracy of 0.95.

In Val Tartano and Upper Valtellina, RF generated the highest results (0.93 when using the
best threshold for VT and 0.91 for UV regardless of the threshold selected), but it was only
marginally superior to Bagging (i.e., just a 1% improvement for VT and the maximum
increase of 0.4% for UV). The most accurate models for Val Chiavenna were Bagging, RF,
and Gradient Tree Boosting models trained in VCC3. The accuracy of the three models is
extremely close to 0.95 regardless of the threshold that is chosen. When adopting the
optimum threshold, the NN models trained in VCC3 and VT+UV showed relatively similar
accuracy and the best performance for Lombardy. The NN model that was trained using
VT+UV, however, is predicated on a high accuracy on a threshold that is near 0. As a result,
while taking into account the rationality of the threshold, the NN model trained in VCC3
performs better.
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Figure 6.2: Accuracy statistics of base classifiers for different cases

Compare model evaluation results for specific basins (i.e., VT, UV, VCC3) using the training
dataset with using the test dataset to investigate why Neural Network perform worst when
training models using sampled data from relevant regions but perform best in the opposite
scenario. The evaluation results (Table 6.2) shows that, regardless of the type of dataset
used to conduct the evaluation, the accuracy performance is not significantly different. This
demonstrates that there are no overfitting issues with the trained model.

Cases

Evaluation based on training dataset Evaluation based on testing dataset

Neural Network Neural Network

Base OA
Optimal
ROC OA
(Threshold)

Optimal PRC
OA
(Threshold)

Base OA
Optimal
ROC OA
(Threshold)

Optimal PRC
OA
(Threshold)

VT 86.08% 86.15% 86.01% 78.25% 82.25% 82.25%

UV 87.47% 87.50% 87.38% 87.12% 87.27% 87.01%

VCC3 86.39% 86.45% 86.44% 79.66% 86.00% 85.99%

Table 6.2: Accuracy evaluation for Neural Network on single basin cases

The performance of Valchiavenna case 3 (VCC3) in overall exceeds that of Valchiavenna
case 2 (VCC2), despite the larger sample size of training points in VCC2. To explore this
trend further, we analyzed the distribution of input factors in the training dataset for both
VCC2 (UpperValtellina + ValTartano + ValChiavenna) and VCC3 (ValChiavenna), as well as
in the testing dataset for both cases. It is noteworthy that the testing dataset remains
constant for both cases. We also compared these distributions to the training dataset in
VCC2, excluding the ValChiavenna part (UpperValtellina + ValTartano), which is depicted in
Figure 6.3. For distribution of other factors, refer to Appendix B.
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Figure 6.3: Distribution of DTM in the training dataset and testing dataset for ValChiavenna
Case 1, 2, 3

The heterogeneity in the distribution of input factors observed between the training and
testing datasets of VCC2, as opposed to the homogeneity observed in VCC3, indicates that
the inclusion of additional samples from UpperValtellina and ValTartano introduces some
noise into the training model. This finding helps explain why the data volume increase does
not necessarily lead to improved accuracy.

6.1.2 Performance Evaluation of ensemble models

We intended to achieve the best performance in the unseen areas. Based on this criterion,
the top three performing models (RF, AdaBoost with calibration, and NN) in the cases where
sampled data from the corresponding area were not used for model training were considered
in developing the ensemble ML models. Table 6.3 and Figure 6.4 display the accuracy
statistics of different ensemble ML models.
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Cases Ensemble Stacking Ensemble Blending Ensemble Soft Voting

VT 91.14% 91.32% 88.58%

UV 91.34% 91.32% 89.39%

VCC2 94.57% 94.21% 91.76%

VCC3 95.00% 94.91% 92.86%

VCC1 67.40% 71.31% 77.18%

LC1+VT 71.88% 71.77% 79.93%

LC1+UV 78.33% 79.78% 80.02%

LC1+VT+UV 75.59% 77.97% 81.94%

LC1+VCC2 75.86% 71.69% 85.67%

LC1+VCC3 65.53% 71.83% 77.50%

LC2+VT 73.00% 73.46% 81.44%

LC2+UV 79.43% 82.55% 82.10%

LC2+VT+UV 78.46% 81.53% 83.64%

LC2+VCC2 81.69% 73.91% 92.23%

LC2+VCC3 81.48% 88.20% 92.00%

(a) Overall Accuracy

Cases
Ensemble Stacking Ensemble Blending Ensemble Soft Voting

OA Threshold OA Threshold OA Threshold

VT 92.73% 0.1890 92.52% 0.2374 89.37% 0.4280

UV 91.44% 0.4418 91.45% 0.4624 90.41% 0.3869

VCC2 94.65% 0.5482 94.29% 0.5396 91.88% 0.4822

VCC3 95.01% 0.4996 94.92% 0.4876 93.91% 0.6190

VCC1 70.21% 0.6496 72.47% 0.5889 77.39% 0.4860

LC1+VT 72.59% 0.5117 73.96% 0.3790 88.94% 0.1935

LC1+UV 80.56% 0.3285 81.94% 0.3527 84.20% 0.4307

LC1+VT+UV 76.84% 0.3484 80.99% 0.3536 87.98% 0.3487

LC1+VCC2 83.48% 0.8515 80.70% 0.8597 86.46% 0.6030

LC1+VCC3 81.33% 0.9483 83.30% 0.9044 86.48% 0.7534

LC2+VT 73.99% 0.5117 75.72% 0.3790 92.64% 0.1741

LC2+UV 79.94% 0.3959 83.97% 0.4008 87.25% 0.4205

LC2+VT+UV 79.29% 0.4394 85.53% 0.3064 92.71% 0.2061

LC2+VCC2 90.34% 0.7842 87.56% 0.8324 92.25% 0.4898

LC2+VCC3 91.97% 0.8249 92.78% 0.7787 94.88% 0.6049
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(b) Accuracy based on optimum ROC-based thresholds

Cases
Ensemble Stacking Ensemble Blending Ensemble Soft Voting

OA Threshold OA Threshold OA Threshold

VT 92.73% 0.1850 92.52% 0.2170 89.34% 0.3917

UV 91.38% 0.3000 91.44% 0.3396 90.42% 0.3680

VCC2 94.64% 0.5137 94.29% 0.5396 91.86% 0.4398

VCC3 95.01% 0.4996 94.92% 0.4876 93.91% 0.6190

VCC1 67.31% 0.4629 70.63% 0.4044 77.39% 0.4860

LC1+VT 69.73% 0.3419 73.64% 0.3296 88.94% 0.1932

LC1+UV 79.65% 0.2273 81.69% 0.2854 84.01% 0.4175

LC1+VT+UV 76.40% 0.2863 80.18% 0.2429 87.98% 0.3487

LC1+VCC2 83.22% 0.8012 80.39% 0.8162 86.30% 0.5537

LC1+VCC3 80.94% 0.9204 83.10% 0.8775 86.36% 0.7293

LC2+VT 72.46% 0.4245 75.00% 0.3296 92.64% 0.1739

LC2+UV 79.44% 0.3478 83.64% 0.3525 86.05% 0.2647

LC2+VT+UV 78.16% 0.3270 85.35% 0.2630 92.68% 0.1926

LC2+VCC2 90.31% 0.7708 87.44% 0.8156 92.23% 0.4691

LC2+VCC3 91.96% 0.8111 92.76% 0.7627 94.87% 0.5949

(c) Accuracy based on optimum PR-based thresholds

Cases Ensemble Stacking Ensemble Blending Ensemble Soft Voting

VT 0.9456 0.9472 0.9164

UV 0.9371 0.9394 0.9386

VCC2 0.9354 0.9355 0.9055

VCC3 0.9477 0.9461 0.8973

VCC1 0.6464 0.6805 0.7761

LC1+VT 0.7670 0.8520 0.9457

LC1+UV 0.8539 0.8522 0.9157

LC1+VT+UV 0.8441 0.8613 0.9421

LC1+VCC2 0.6876 0.6495 0.8176

LC1+VCC3 0.5949 0.6447 0.6938

LC2+VT 0.7873 0.8997 0.9882

LC2+UV 0.8776 0.9113 0.9701

LC2+VT+UV 0.9133 0.9462 0.9875

LC2+VCC2 0.7509 0.6699 0.9249

LC2+VCC3 0.7388 0.8230 0.8717
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(d) Precision

Cases Ensemble Stacking Ensemble Blending Ensemble Soft Voting

VT 0.8775 0.8795 0.8550

UV 0.8875 0.8845 0.8443

VCC2 0.9576 0.9498 0.9324

VCC3 0.9525 0.9525 0.9679

VCC1 0.7682 0.8032 0.7640

LC1+VT 0.6284 0.5269 0.6351

LC1+UV 0.6836 0.7205 0.6614

LC1+VT+UV 0.6278 0.6666 0.6806

LC1+VCC2 0.9479 0.9420 0.9181

LC1+VCC3 0.9733 0.9726 0.9843

LC2+VT 0.6302 0.5282 0.6363

LC2+UV 0.6840 0.7212 0.6624

LC2+VT+UV 0.6290 0.6686 0.6815

LC2+VCC2 0.9482 0.9427 0.9193

LC2+VCC3 0.9741 0.9734 0.9850

(e) Recall

Cases Ensemble Stacking Ensemble Blending Ensemble Soft Voting

VT 0.9103 0.9121 0.8846

UV 0.9116 0.9111 0.8890

VCC2 0.9464 0.9426 0.9188

VCC3 0.9501 0.9493 0.9313

VCC1 0.7021 0.7368 0.7700

LC1+VT 0.6908 0.6511 0.7599

LC1+UV 0.7593 0.7808 0.7680

LC1+VT+UV 0.7201 0.7516 0.7903

LC1+VCC2 0.7970 0.7689 0.8650

LC1+VCC3 0.7385 0.7754 0.8139

LC2+VT 0.7000 0.6656 0.7742

LC2+UV 0.7688 0.8052 0.7872

LC2+VT+UV 0.7449 0.7835 0.8064

LC2+VCC2 0.8381 0.7832 0.9221
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LC2+VCC3 0.8403 0.8919 0.9249

(f) F1 score
Table 6.3: Accuracy statistics of ensemble models for different cases. Table cells are colored

based on each region. The darker the color, the higher the value

Disregardign the chosen threshold, stacking and blending methods produced similar
performance and displayed the best accuracy (i.e., 0.91~0.93 for VT, 0.92 for UV, and
0.94~0.95 for both VCC2 and VCC3) compared to SF (i.e., 0.88~0.89 for VT, 0.89~0.9 for
UV, and 0.91~0.94 for both VCC2 and VCC3) when the data sampled in a region was used
to train the model (i.e., VT, UV, VCC2, and VCC3). When the data sampled in an area was
not used to train the model (i.e., VCC1, LC1, and LC2), the SF model outperformed other
models. Blending performed somewhat well in terms of accuracy (i.e., 0.71~0.72 for VCC1,
and 0.72~0.93 for both LC1 and LC2) in this case and was marginally superior to stacking
(i.e., 0.67~0.7 for VCC1, and 0.66~0.92 for both LC1 and LC2).

Both the staking and blending models offered comparable accuracy for Tartano and Upper
Vatellina and outperformed the SF model. With a maximum accuracy of 0.95 when utilizing
the optimum threshold, stacking model training on the dataset only sampled in ValChiavenna
(VCC3) demonstrated the best performance for ValChiavenna. With a maximum accuracy
improvement of 0.12, the SV model trained in VCC3 outperformed the stacking model
trained in VCC3 in Lombardy instances and provided the best performance there.
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Figure 6.4: Accuracy statistics of ensemble models for different cases

The Neural Network outperformed all other models when all evaluation outcomes on
Lombardy cases were compared, with the highest accuracy of 0.97. Since the goal of this
research was to produce LSMs, it was essential to take into account whether the
corresponding model gave a good estimate of the likelihood that a landslide would occur
when deciding on the final model for Lombardy. The calibration plots for the various neural
network models evaluated in Lombardy are depicted in Figure 6.5. This figure shows that
only the neural network model learned in VCC2 displays well calibration behavior. The
Neural Network model trained in VCC2 was therefore chosen as the final model to generate
LSM for Lombardy.

77



Figure 6.5: Calibration plots for Neural Network models applied on Lombardy case.

6.2 Result of introducing precipitation as an environmental
factor

Precipitation was added to the Neural Network as a new factor in VCC2. In this situation,
three additional NN models were trained individually utilizing average precipitation, the 90th
percentile of precipitation, and both average and 90th percentile precipitation. The
performance of the constructed models was then assessed by applying them to the
Lombardy cases (i.e., LC1 and LC2). Table 6.4 showed the accuracy estimation based on
several threshold types with or without input from precipitation.

Cases Neural Network Neural Network with Neural Network with Neural Network with
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without precipitation average precipitation 90th percentile
precipitation

both average and
90th percentile
precipitation

Bas
e
OA

Optim
al
ROC
OA

Optim
al
PRC
OA

Base
OA

Optim
al
ROC
OA

Optim
al
PRC
OA

Base
OA

Optim
al
ROC
OA

Optim
al
PRC
OA

Base
OA

Optim
al
ROC
OA

Optim
al
PRC
OA

VCC2 89.0
1%

89.05
%

88.96
%

87.72
%

88.46
%

88.46
%

87.92
%

88.54
%

88.37
%

87.96
%

88.74
%

88.72
%

LC1+VC
C2

85.8
3%

87.11
%

87.03
%

87.96
%

90.16
%

90.16
%

87.57
%

89.54
%

89.53
%

88.03
%

88.86
%

88.85
%

LC2+VC
C2

93.1
0%

93.13
%

93.10
%

91.08
%

95.93
%

95.93
%

91.04
%

95.29
%

95.29
%

91.80
%

95.77
%

95.77
%

Table 6.4: Accuracy statistic of Neural Network with or without precipitation as input based
on threshold 0.5 and optimum thresholds based on ROC and PRC.

When the built model was applied to the area from which the sampled points were also used
for training (i.e., VCC2), there was no comparable accuracy difference with or without
precipitation as one factor; however, the model trained with precipitation shows an
improvement in accuracy of about 2–3% in the Lombardy case (i.e., LC1 and LC2), and the
maximum accuracy improvement was found in the model trained only with average
precipitation.

6.3 Landslide susceptibility maps

Two different schemas were used to categorize the probability values of ML models into
different classes in QGIS:

● Four classes: low (<=0.25), medium (0.25-0.5), high (0.5-0.75), very high (>0.75);
● Five classes: very low (<=0.2), low (0.2-0.45), medium (0.45-0.55), high (0.55-0.9),

very high (>0.9).

Figure 6.6 displays the landslide susceptibility maps for each basin based on the
top-performing ML models (i.e., Random Forests) for each basin scenario. Figure 6.6(c) also
displays the outcomes of first-time application of a model that was trained on one region to
another (i.e., VCC1). Although the model was not built using any data from this area, the
accuracy for this situation is close to 0.75, demonstrating good generalizability.
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a. LSM for Val Tartano derived from Random Forests model trained in VT without
precipitation data

b. LSM for Upper Valtellina derived from Random Forests model trained in UV without
precipitation data
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c. LSM for Val Chiavenna derived from Random Forests model trained in VCC1 without
precipitation data

d. LSM for Val Chiavenna derived from Random Forests model trained in VCC3 without
precipitation data

Figure 6.6: LSMs for three basins
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The best-performing ML models (i.e., Neural Network) developed in VCC2 with average
precipitation data and without precipitation data were used to map the landslide susceptibility
of Lombardy (Figure 6.7 - 6.8).

a. LSM derived from Neural Network model trained in VCC2 without
precipitation data

b. LSM derived from Neural Network model trained in VCC2 with average
precipitation data
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Figure 6.7: Landslide susceptibility maps of Lombardy using 4-classes schema

a. LSM derived from Neural Network model trained in VCC2 without precipitation data

b. LSM derived from Neural Network model trained in VCC2 with average precipitation
data

Figure 6.8: Landslide susceptibility maps of Lombardy using 5-classes schema
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The resulting LSMs were consistent with the fact that all considered landslides documented
in the landslide inventory occurred north of Lombardy. A high and very high susceptibility is
also present in the south part of Lombardy (the southern part of the Po River), despite the
fact that there are no records of landslides there. The central foothills of Lombardy are in
regions of extremely low or low susceptibility when the precipitation data was not taken into
account in the model. Using the same model, some land parcels in southeast Lombardy are
classed as medium-scale under the 4-classes schema as opposed to the 5-classes schema,
which classifies the region as low susceptibility. Both the central foothills and the southeast
region of Lombardy were classed as very low susceptibility using the 5-classes schema or
low susceptibility under the 4-classes schema and showed no variation when the average
precipitation was included in the model.

In order to evaluate the quality of the LSM, the Pruna landslide, the largest landslide in Val
Tartano, is used. Regardless of the model and schema employed, the region of this landslide
is accurately classified as high and very high risk (Figure 6.9). More area was categorized as
having a high susceptibility when precipitation data was incorporated, particularly when a
5-class schema was used.
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Figure 6.9: Pruna landslides: a is representing the Pruna landslides and the debris flow; b
the LSM derived from the VCC2+NN models without precipitation using a 4-classes schema;
c the LSM derived from same model as b but using a 5-classes schema; d the LSM derived
from the VCC2+NN models with average precipitation using a 4-classes schema; e the LSM

derived from same model as d but using a 5-classes schema.

The spatial statistics of landslide susceptibility and the corresponding precentage of
documented landslide in each susceptibilitiy class derived from these models are presented
in Table 6.5. The spatial statistics of susceptibility maps indicated that when precipitation
data was excluded for model construction, 21.21% (i.e., 5070.66 km2) and 15.46% (i.e.,
3696.34 km2) of the total area fell within very high and high landslide susceptibility
categories, respectively when adopting the 5-classes schema. Under this schema, very low,
low, and medium susceptible zones make up 48.93%, 11.93%, and 2.48%, respectively.
When the 4-class schema was used, Lombardy had a susceptibility to landslides of 52.65%,
which was 13.19% lower than the 4-class schema when taking into account the extremely
low and low categories jointly. Only a little section of the Lombary region was categorized as
medium, with 9.47% of the overall area utilizing a 4-classes schema that was larger than a
5-classes schema and about 37.88% in regions with high and very high susceptibility that
was also somewhat larger than 5-classes schema.

When average precipitation data was taken into account, a larger region was categorized as
low (i.e., 63.78% in 4-classes schema) and very low (i.e., 62.18% in 5-classes schema)
susceptible area. The high and very high susceptible areas, on the other hand, were
reduced (i.e., 5.4% of high susceptible area and 26.41% of very high susceptible area in the
4-classes schema, and 12.93% of very high susceptible area in the 5-classes schema).
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Susceptibilit
y Class

LSM derived using VCC2+NN without
precipitation

LSM derived using VCC2+NN with
average precipitation

Area [km2]
Area

Percentage
[%]

Landslide
Percentage

[%]
Area [km2]

Area
Percentage

[%]

Landslide
Percentage

[%]

Low 12589.93 52.65% 6.03% 15250.58 63.78% 11.43%

Medium 2263.52 9.47% 8.04% 1055.55 4.41% 10.25%

High 1593.00 6.66% 11.71% 1290.97 5.40% 13.21%

Very High 7464.30 31.22% 74.22% 6313.64 26.41% 65.10%

a. using 4-classes schema

Susceptibilit
y Class

LSM derived using VCC2+NN without
precipitation

LSM derived using VCC2+NN with
average precipitation

Area [km2]
Area

Percentage
[%]

Landslide
Percentage

[%]
Area [km2]

Area
Percentage

[%]

Landslide
Percentage

[%]

Very Low 11698.81 48.93% 3.79% 14867.34 62.18% 8.31%

Low 2852.74 11.93% 8.74% 1253.03 5.24% 11.42%

Medium 592.22 2.48% 3.16% 378.88 1.58% 3.92%

High 3696.34 15.46% 35.04% 4320.16 18.07% 45.09%

Very High 5070.66 21.21% 49.27% 3091.34 12.93% 31.26%

b. using 5-classes schema
Table 6.5: Distribution of susceptibility classes and landslides for Lombardy

Almost 94% of the historical landslide points in the 4-classes schema and 87% in the
5-classes schema fall into the range of medium to extremely high landslide susceptibility
derived from the model built without using precipitation data. The percentage dropped to
about 89% in the 4-class schema and 80% in the 5-class schema when average
precipitation data were taken into account.
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7. Conclusions
Identification of landslide-prone areas can be valuable for land use planners or disaster
management agencies in allocating resources to forecast and mitigate landslide impacts.
The presented work covers a wide range of susceptibility modeling scenarios using five base
classification methods and three ensemble techniques on three basins and extends to the
whole Lombardy region. 11 factors (e.g., elevation, eastness, northness, plan curvature,
profile curvature, TWI, NDVI, Distance from roads, distance from rivers, distance from faults,
and land use) were firstly used to train and determine the final model and then the
precipitation data was incorporated into the final model.

Using several validation indices, such as overall accuracy, precision, recall, ROC, and PRC,
the performance of each individual ML model was assessed in a variety of scenarios,
including VT, UV, VCC1, VCC2, VCC3, LC1, and LC2. The models with the best
performance in the cases where sampled data from the corresponding area were not used
for model training (RF, Calibrated AdaBoost, and NN) were chosen as the base classifiers
for ensemble models. When compared to their base classifiers, the ensemble models'
statistical performance did not significantly improve. Although the Neural Network model had
lower performance when training using points from the relevant regions, it outperformed all
other generated models in terms of generalization ability.

When precipitation data was not taken into account, the susceptibility map created using
Neural Network constucted in VCC2 for the Lombardy region indicated that almost 37% of
the whole study area fell between the "very high" and "high" landslide susceptibility
categories. When the average precipitation data were added, this percentage dropped to
31%.

Although only the overall accuracies at various thresholds were taken into account when
choosing base classifiers for ensemble models, future research can look into other
methodologies or indices to determine the best combination of ML models to produce more
robust and accurate ensemble ML models.

In terms of model validation, we evaluated the performance of ML models using a split of
training and testing data. Future research can, however, consider an intensive
iteration-based cross-validation strategy to evaluate the robustness of ML models. This
might reveal further details about the models' robustness and potential for generalization.
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Appendix

A. Calibration plots of all classifiers for different cases

a. Val Tartano (Case: VT)
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b. Upper Valtellina (Case: UV)
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c. ValChiavenna Case 1 (Case: VCC1)
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d. ValChiavenna Case 2 (Case: VCC2)
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e. ValChiavenna Case 3 (Case: VCC3)
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f. Northern Lombardy + Val Tartano (Case: LC1 + VT)
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g. Northern Lombardy + Upper Valtellina (Case: LC1 + UV)
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h. Northern Lombardy + Val Tartano, Upper Valtellina (Case: LC1 + VT+ UV)
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i. Northern Lombardy + ValChiavenna Case 2 (Case: LC1 + VCC2)
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j. Northern Lombardy + ValChiavenna Case 3 (Case: LC1 + VCC3)
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k. Lombardy + Val Tartano (Case: LC2 + VT)
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l. Lombardy + Upper Valtellina (Case: LC2 + UV)
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m. Lombardy + Val Tartano + Upper Valtellina (Case: LC2 + VT+ UV)
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n. Lombardy + ValChiavenna Case 2 (Case: LC2 + VCC2)
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o. Lombardy + ValChiavenna Case 3 (Case: LC2 + VCC3)
Figure A.1 Calibration plots of all classifiers
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B. Distribution of different factors in the training dataset and
testing dataset for ValChiavenna Case 1, 2, 3
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a. east

a. north
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c. north

d. profile
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e. twi
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f. ndvi
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g. dusaf
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h. faults
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g. rivers
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h. roads
Figure B.1: distribution of different factors in the training dataset and testing dataset for
ValChiavenna Case 1, 2, 3
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C. Accuracy statistics of all classifiers

a. Val Tartano (Case: VT)

b. Upper Valtellina (Case: UV)

c. ValChiavenna Case 1 (Case: VCC1)
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d. ValChiavenna Case 2 (Case: VCC2)

e. ValChiavenna Case 3 (Case: VCC3)

f. Northern Lombardy + Val Tartano (Case: LC1 + VT)
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g. Northern Lombardy + Upper Valtellina (Case: LC1 + UV)

h. Northern Lombardy + Val Tartano, Upper Valtellina (Case: LC1 + VT+
UV)

i. Northern Lombardy + ValChiavenna Case 2 (Case: LC1 + VCC2)

j. Northern Lombardy + ValChiavenna Case 3 (Case: LC1 + VCC3)
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k. Lombardy + Val Tartano (Case: LC2 + VT)

l. Lombardy + Upper Valtellina (Case: LC2 + UV)

m. Lombardy + Val Tartano + Upper Valtellina (Case: LC2 + VT+ UV)
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n. Lombardy + ValChiavenna Case 2 (Case: LC2 + VCC2)

o. Lombardy + ValChiavenna Case 3 (Case: LC2 + VCC3)

Figure C.1: ROC curve (left) and PRC curve (right) of all models for different cases
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D. Codes
All the codes used in this thesis can be found at https://github.com/ictar/master_thesis.
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