
Academic Year 2021 - 2022

SCHOOL OF ARCHITECTURE URBAN PLANNING CONSTRUCTION ENGINEERING

Master’s Program Building and Architecture Engineering - Architecture

MASTER’S THESIS

TOWARDS REVIVING THE MASTER BUILDER

Autonomous design and construction using deep
reinforcement learning.

Thesis Submitted by:
Ahmed Elmaraghy

Matricola: 914566

Supervisor: Co-supervisors:
Prof. Pierpaolo Ruttico Prof. Marcello Restelli
 Dr. Jacopo Montali
 Prof. Francesco Causone

i

1.1 Acknowledgment

ii

Acknowledgment

To the love of my life, the only thing that made sense in this life I am living. To
my mentor, my best friend, and my role model, To you Grandpa. Wish you were
here now, yesterday and every single day of my life.

I would like to thank all who helped me with finally finishing this thesis.

I would like to start with thanking my supervisor, Prof. Ruttico for encouraging
and supporting me during that period and for his continuous presence for
advice. The same goes to my co-supervisors Prof. Restelli, Dr. Montali (who
helped me keep going when I was about to bail out), and Prof. Causone. Special
thanks to Prof. Masera for his advice and support during the whole duration of
my program. Prof. Tadi for his instant help when I needed. Thank you all for
your time and consideration.

Thanks to Arcoquattro Family, special thanks to Professors Franck and
Massimo for their support during this period.

I would also like to thank all my friends, brothers, sisters and colleagues who
supported me in that period:

Moustafa, Nadia, Costanza, Omar, Batran, Shoukry, Rashad, Samy, Tugrul,
Mohadaseh, Bahaa, Helia,

Thanks to ETO family, Dearest friends and Principals who supported me for
achieving this while working: Roberta, Roberto and Mr.Franchi (Feltri
Marone), Andrea (IBS), and My Dear Mary from the office.

To my family, I can’t thank you enough for everything. Thanks to my always
supportive Uncle, my parents, my Aunt, my sister (who helped me in proof
reading the Thesis, so please blame her for any mistakes :)), my lovely dog.

Finally, I would like to thank myself for bearing me all this period, for the tons
of working and studying weekends that I had… You deserve some vacation,
whenever possible.

iii

Table of Contents
Acknowledgment ... ii

Table of Contents .. iii

List of Figures .. vi

Sintesi ... xv

Abstract .. xvii

State of the Art ... 1

1.1. Artificial Intelligence and Machine Learning ... 1

1.1.1. Introduction to Artificial Intelligence ... 1

1.1.2. Introduction to Deep Learning ... 4

1.1.3. Deep Learning Algorithms Classification .. 6

1.2. Deep Learning in AEC .. 10

1.3. Reinforcement Learning in AEC .. 16

1.4. Conclusion.. 22

Original Contribution ... 23

2.1. Introduction ... 24

2.2. Real Time Strategy Games vs Design and Construction Projects 24

2.2.1. RTS Games definition and its Characteristics .. 24

2.2.2. Challenges in applying AI in RTS games ... 26

2.2.3. Challenges in applying AI in Design and Construction Projects 29

2.2.4. Applying RL success in RTS games into AEC applications 31

2.3. Revival of the Master Builder ... 32

2.3.1. History behind the master builder .. 32

2.3.2. Introducing the new concept for the Master Builder.. 34

2.4. Proposed Framework for the design and build of structures using RL Agents
(AI- Supported Agents) ... 35

2.4.1. Design Intent ... 35

2.4.2. Site Data Acquisition: ... 36

1.1 Table of Contents

iv

2.4.3. Design and Construction Legislation: ... 37

2.4.4. Design and Construction Learning: .. 39

2.4.5. Robotic Execution: ... 39

2.5. RoBuilDeR – Proof of concept .. 41

2.5.1. Design Intent and Inspiration for RoBuilDeR ... 41

2.6. Game Development in Unity ... 47

2.6.1. Why Unity? .. 47

2.6.2. Component and classes Diagram ... 50

2.7. RoBuilDeR – Human Version (UV) .. 55

2.7.1. User Interface ... 55

2.7.2. Game Play and Functions .. 58

2.7.3. Score and Progress Tracking .. 65

2.7.4. Completion and Game Over Scenarios .. 69

2.7.5. Design and Functional Parameters Influencing the Game 73

2.8. Robot Version (RV) and ML-Agents ... 83

2.8.1. Choice of ML-Agents for Implementing the Game MDP 83

2.8.2. MDP expressed in ML-Agents terms ... 85

2.8.3. Phases ... 88

2.8.4. Actions and Masking ... 92

2.8.5. Observations* .. 101

2.8.6. Goals and Rewards .. 118

2.8.7. Curriculum Learning and Hyperparameters .. 126

2.8.8. Training Vs Inference Mode ... 130

2.9. Discussion of Results ... 132

2.9.1. General View of Statistics Results ... 132

2.9.2. Phase Door Opening Placement... 134

2.9.3. Phase Window Openings Placement .. 138

2.9.4. Phase Window Bricks ... 142

2.9.5. Phase Dome Bricks .. 147

2.9.6. Review of Inference Phase ... 155

2.9.7. Final Notes .. 157

2.10. Conclusion and Future Research ... 159

References .. 162

Appendices .. 171

Table of Contents 1.1

v

Appendix A ... 171

vi

List of Figures
Figure 1: Turing Test Demonstration.. 2

Figure 2: “Deep Dream Generator”, A new form of psychedelic and abstract art being

enabled through the use of deep neural networks [8] ... 3

Figure 3: Refik Anadol, WDCH Dreams, Los Angeles, CA (2018) [9] 4

Figure 4: Visualization of algorithms vs. artificial intelligence vs. machine learning vs.

deep learning as proposed by [12] .. 5

Figure 5: Schematic representation of a neural network according to [13]....................... 6

Figure 6: Tree of Machine Learning Algorithms [15] ... 7

Figure 7: Supervised Learning Workflow, where the algorithm learns from the data

[14] ... 8

Figure 8: Feature Extraction on several layers of the neural network in Unsupervised

Learning [14] ... 9

Figure 9: GANs workflow [14] .. 9

Figure 10: InfoGAN architecture – training three DNNs (D, G and Q) simultaneously

[20]. .. 11

Figure 11: Examples of results of the AttnGANs [21]... 12

Figure 12: Apartment floor plan: recognition and generation using Pix2Pix in [22] 13

Figure 13: Close-up of one of the resulting plans based on the StyleGAN2 process

between Baroque and Modern plans [26]. ... 13

Figure 14: 3D style transfer results through CycleGAN as in [29] ... 14

Figure 15: Systems of biomimetic robotic construction process [33] 15

Figure 16: Input and output images for the four dataset styles in [18]............................. 15

Figure 17: Visual abstractions produced by the 10-actions agent and the 20-actions

agent during the last training iterations using SPIRAL algorithm in[35] … 16

Figure 18: Strategies of Initializing RL Agent and Environment as described in [36] . 17

Figure 19: The diagram of observation, action and reward as depicted in [38] 18

Figure 20: Training Configuration used in [39] .. 18

List of Figures 1.1

vii

Figure 21: Stills from an assembly of an H-shaped (left) and Δ-shaped (right) double-

lap tasks by the real robot as proposed in [42] ... 19

Figure 22: Diagrams: Interelationality between physical robots, simulated robots and

reinforcement learning models as developed in [43] ... 20

Figure 23: Six major types of data are observed by the agent ... 21

Figure 24: A screenshot of an ongoing episode of StarCraft with a battle occurring

between Protoss and Terran .. 25

Figure 25: Protoss Command Center and gathering units are situated as close as

possible to the resources ... 27

Figure 26: Section “blueprint” of Brunelleschi's dome of Florence Cathedral [61] 33

Figure 27: Scheme showing the main idea behind the new concept of "Master

Builder" ... 34

Figure 28:Proposed framework for design and Construction using AI Agents and

Robots .. 40

Figure 29: Scope of Application of RoBuilDeR Versions with respect to the Proposed

Framework ... 41

Figure 30: The Pantheon in Rome from the outside [66] ... 42

Figure 31: The Perfect Circle Inscribed inside the dome of the Pantheon Rotunda

[69] ... 42

Figure 32: (Left) A painting showing how the oculus and the entry door provided light

in ancient times vs a recent picture (top right) showing the sun light entering from the

oculus and reflecting in on the inside of the dome. (Bottom right) is an aerial view of

the pantheon within the surrounding urban context showing the portion of the dome

left open which represents the oculus. .. 43

Figure 33: The Endless Wall, ETH Zurich, 2011 [74] ... 44

Figure 34: Imaginary Visualization Inside of the Brick Pavilion showing the Sunlight

entering from the "oculus" and projecting on the bricks inside .. 45

Figure 35:Imaginary Render of how the Brick Pavilion would look like 45

Figure 36: Unity Logo .. 47

Figure 37: Nvidia Physx-supported Unity 3D environment can simulate complex

behavior robotic tasks with high accuracy [77] .. 48

Figure 38: Different ML-Agents sample environments [79] ... 49

https://polimi365-my.sharepoint.com/personal/10638229_polimi_it/Documents/Polimi/Thesis/Thesis%20book/Thesis-Robuilder_V1.0.docx#_Toc100692674
https://polimi365-my.sharepoint.com/personal/10638229_polimi_it/Documents/Polimi/Thesis/Thesis%20book/Thesis-Robuilder_V1.0.docx#_Toc100692674

1.1 List of Figures

viii

Figure 39: Unity 3D supported platforms [81] ... 50

Figure 40: Components and Classes Diagram RoBuilDeR .. 51

Figure 41: Start Screen in RoBuilDeR .. 55

Figure 42: First Screen Appearing in for Game Tips Provided. It gives brief

explanation of RoBuilDeR.. 56

Figure 43: Tips provided regarding Game Play Canvas Features 56

Figure 44: (1,2 and 3) Rewards Explanation. (4) Game Over scenario Demonstration57

Figure 45: Pause Menu and its components .. 57

Figure 46: Keyboard and Mouse Controllers .. 58

Figure 47: Steps of Insertion of brick: (1 - 2) Moving from random position towards

the desired position, (3) Clicking and Placing, (4) Instantiation of new real brick in the

nearest possible position and transparent dummy brick shift over the newly inserted

brick. .. 59

Figure 48: Dummy brick adjusts its position based on its location on the circular grid.

This helps the player in visualising any “hypothetical” brick position before actual

placement ... 60

Figure 49: Base Sphere placed on the ground ... 60

Figure 50: Insertion Spheres on top of existing bricks are highlighted, the numbers

represent the type of each sphere, namely: Center Point (1), Wide Point (2), Star Point

(3). .. 61

Figure 51: Base spheres inserted on top of Window .. 61

Figure 52: Steps of inserting a brick while focusing on the role of the invisible “Brick

Collider”. It deletes not only white points but also red points that would lead to a clash

of a new brick would be inserted in one of them. ... 62

Figure 53: Window Insertion Steps. (1) All insertion Points are Visible. (2) Converting

to window mode and disappearance of inadequate points. (3) Placement. (4) Brick

mode is automatically recalled .. 64

Figure 54: Door Placement Process ... 64

Figure 55: Window Placement achieving 2 positive rewards for proper sill height and

stack ventilation achievement. .. 66

Figure 56: Reward for consecutive bricks placement .. 66

Figure 57: Penalty for placement of far brick .. 67

List of Figures 1.1

ix

Figure 58: 2 types of Pop-up text are shown. (left) is a reward pop-up while (right) is a

penalty pop-up. ... 67

Figure 59: (1) Design Progress Bar (2) Construction Progress Bar 68

Figure 60: (1 -> 2) & (3 -> 4) Snapshot of before and after completing a Design Task

and Monitoring the increase of progress on the Design Progress Bar 68

Figure 61: (1 -> 2) & (3 -> 4) Snapshot of before and after completing a Construction

Task and Monitoring the increase of progress on the Construction Progress Bar 69

Figure 62: Imaginary render of KMR QUANTEC [82] working on site 71

Figure 63: Game was over due to collapsing of bricks ... 72

Figure 64: Game was over due to absence of a placed door on the ground 72

Figure 65: Different variables presenting identifying bricks and void positions from

angular perspective .. 73

Figure 66: Search Factor Demonstration ... 75

Figure 67: Tilting Value Limit Demonstration ... 76

Figure 68: Opening Colliders (in green) expanding after Insertion................................... 77

Figure 69: Demonstration of the factor “Factor Brick Length Physx Vicinity Below” . 79

Figure 70: Comparison of the effect of different values of "Multiplying Factor" on the

count of ground base points ... 80

Figure 71: Effect of changing the percent of half brick factor for wide points insertion

on the position of wide points (1 & 3). (3 & 4) The effect of this factor can be

significantly witnessed on the “Geometry” of a stack of bricks. .. 81

Figure 72: Evidence of the effect of the exponential equation, used to design the dome,

on the incremental evolution of the section curve of the dome. .. 82

Figure 73: Markov Decision Process (MDP) [84] .. 83

Figure 74: ML-Agents Toolkit high-level components ... 84

Figure 75: Multiple Instances of "Building Area in the current scene of RoBuilDeR ... 85

Figure 76: Example of configuration file (.yaml) .. 86

Figure 77: “Player Agent” Game object Implementing "Agent" Sub Class and

“Behavior Parameters” as a prerequisite for qualifying as an agent 87

Figure 78: Behavior Parameters that it is required to be constant during the learning

and inference process .. 89

Figure 79: Phases Selection "Slider .. 89

1.1 List of Figures

x

Figure 80: Phases Demonstration for RoBuilDeR RV .. 90

Figure 81: General Action Strategy Scheme for placing a brick ... 93

Figure 82: General Action Strategy Scheme for placing a Door Opening 94

Figure 83: General Action Strategy Scheme for placing a Window Opening 95

Figure 84: Discrete Action Branches Values inserted in Behavior Parameters

Component ... 97

Figure 85: Masking of actions throughout the 3 steps leading to an actual Unit

placement ... 99

Figure 86: Decision Requester Component in Unity ... 100

Figure 87: Camera Sensor Component Added to the Agent .. 101

Figure 88: Vector Observations and Stacked Vectors in RV ... 103

Figure 89: Point Angle Calculation as explained in Table 18 .. 105

Figure 90: Different Wind Properties included in the Observation as indicated in Table

23 .. 109

Figure 91: A brick with the local coordinates shown in Unity. Red or "right" Axis is the

X-axis, Green or up vector is indicating the Y-direction, and Blue or forward vector is

in the Z-direction .. 109

Figure 92: Example of a prevailing wind scenario for the calculation of Stack and

Cross Ventilation Normalized Values. Values indicated are used as observation

parameters. .. 110

Figure 93: Naked Bricks Demonstration .. 112

Figure 94: Buffer Sensor Component Parameters and Values used in RoBuilDeR 113

Figure 95: Door Bricks Demonstration .. 116

Figure 96: Window Brick Demonstration .. 116

Figure 97: Flowchart for the game termination step executed every Step 3 Action 120

Figure 98: Demonstration of a hypothetical curriculum training scenario in which a

progressively taller wall obstructs the path to the goal by ML-Agents [78]. 126

Figure 99: Curriculum Learning in Phase 5 (Dome Creation) ... 127

Figure 100: Phase Window Openings Placement, (1-2): Start and Finish in Inference

Mode (3-4): Start and Finish in Training Mode ... 130

Figure 101: Phase Window Openings Placement, (1-2): Start and Finish in Inference

Mode (3-4): Start and Finish in Training Mode ... 131

List of Figures 1.1

xi

Figure 102: Phase Window Openings Placement, (1-2): Start and Finish in Inference

Mode (3-4): Start and Finish in Training Mode ... 131

Figure 103: Cumulative Reward for Phase Door Opening Placement 134

Figure 104: Episode Length per Step for Phase Door Opening Placement 134

Figure 105: (left) Beta Evolution per Step- (right) Entropy Evolution per Step Phase

Door Opening Placement ... 134

Figure 106: (left) Epsilon Evolution per Step- (right) Learning Rate Evolution per Step

Phase Door Opening Placement ... 135

Figure 107: Extrinsic Reward per Step for Phase Door Opening Placement 135

Figure 108: Extrinsic Value Estimate Per Step for Phase Door Opening Placement . 135

Figure 109: Value Loss per Step for Phase Door Opening Placement 136

Figure 110: Policy Loss per Step for Phase Door Opening Placement 136

Figure 111: 12 Building Area Instances where in each one the agent is training to

properly place a door opening. .. 137

Figure 112: Cumulative Reward for Phase Window Openings Placement 138

Figure 113: Episode Length per Step for Phase Window Openings Placement 138

Figure 114: (left) Beta Evolution per Step- (right) Entropy Evolution per Step Phase

Window Openings Placement ... 138

Figure 115: (left) Epsilon Evolution per Step- (right) Learning Rate Evolution per Step

Phase Window Openings Placement ... 139

Figure 116: Extrinsic Reward per Step for Phase Window Openings Placement 139

Figure 117: Extrinsic Value Estimate Per Step for Phase Window Openings

Placement ... 139

Figure 118: Value Loss per Step for Phase Window Openings Placement 140

Figure 119: Policy Loss per Step for Phase Window Openings Placement 140

Figure 120: Building Area Instances with varying wind direction (green arrow) where

in each one the agent is training to properly place 3 window openings 141

Figure 121: Cumulative Reward for Phase Window Bricks .. 142

Figure 122: (left) Episode Length per Step – (right) Lesson number Per step for

Number of Brick Levels for Phase Window Bricks ... 142

Figure 123: (left) Beta Evolution per Step- (right) Entropy Evolution per Step Phase

Window Bricks .. 142

1.1 List of Figures

xii

Figure 124: (left) Epsilon Evolution per Step- (right) Learning Rate Evolution per Step

Phase Window Bricks .. 143

Figure 125: Extrinsic Reward per Step for Phase Window Bricks 143

Figure 126: Extrinsic Value Estimate Per Step for Phase Window Bricks 143

Figure 127: Value Loss per Step for Phase Window Bricks .. 144

Figure 128: Policy Loss per Step for Phase Window Bricks .. 144

Figure 129: 12 Instances of the “Building Area” with agents being trained at the End of

a successful training session for Phase Window Bricks .. 145

Figure 130: Close caption of an agent during training for Phase Window Bricks 146

Figure 131: Cumulative Reward for Phase Dome Bricks ... 147

Figure 132: Episode Length per Step for Phase Dome Bricks .. 147

Figure 133: – Lesson number Per step for Number of Brick Levels for Phase Dome

Bricks ... 147

Figure 134: (left) Beta Evolution per Step- (right) Epsilon Evolution per Step Phase

Dome Bricks .. 148

Figure 135: Entropy Evolution per Step Phase Dome Bricks ... 148

Figure 136: - Learning Rate Evolution per Step for Phase Dome Bricks 148

Figure 137: - Extrinsic Reward per Step for Phase Dome Bricks 149

Figure 138: Extrinsic Value Estimate Per Step for Phase Dome Bricks 149

Figure 139: Value Loss per Step for Phase Dome Bricks ... 149

Figure 140: Policy Loss per Step for Phase Dome Bricks .. 150

Figure 141: Gap Propagation leading to failure in complying with Design

Requirements .. 152

Figure 142: 12 Instances of the “Building Area” with agents being trained at the end of

session 2 .. 153

Figure 143: Close Caption of Simultaneous Training of Agents in phase 5 (Dome

Creation) ... 154

Figure 144: Agents Brick Placement Behavior after the introduction of small

incentives for selecting "Star Points" and its effect on the overall Design of the

Pavilion ... 154

Figure 145: Trained Models Compiled in Inference phase, creating the whole structure

(1/3) ... 155

List of Figures 1.1

xiii

Figure 146: Trained Models Compiled in Inference phase, creating the whole structure

(2/3) ... 155

Figure 147: Trained Models Compiled in Inference phase, creating the whole structure

(3/3) ... 156

Figure 148: Mesh Creation out of brick Pattern (Under Development) 160

xiv

xv

Sintesi

Il Deep Reinforcement Learning ha recentemente iniziato ad essere adottato
nella ricerca architettonica. L'applicazione è stata principalmente focalizzata
sulla risoluzione di compiti specifici sia nella costruzione che
nell'ottimizzazione della progettazione. Data l'unicità di ogni progetto
architettonico e la necessità di adattare diversi parametri di progettazione alle
mutevoli caratteristiche ambientali e ai vincoli del sito, la natura di tali
progetti potrebbe trarre vantaggio su scala più ampia dal successo
dell'apprendimento per Reinforcement Learning nell’ ambiente di complessi
giochi strategici. Questa ricerca sperimenta l'uso di algoritmi di
apprendimento per Reinforcement Learning in un ambiente simulato,
abilitato alla fisica, per manipolare i vincoli di progettazione e sito verso la
realizzazione di una struttura completa.

Questo processo è guidato da obiettivi gerarchici progettati dall'uomo
(architetto) per realizzare un progetto appropriato. L'agente quindi cerca di
capire un metodo appropriato per raggiungere questi obiettivi di
progettazione sulla base dei parametri ambientali, rivedendo
contemporaneamente l'effetto del suo comportamento e delle sue azioni sulla
costruibilità del progetto.

Di conseguenza, questa ricerca introduce un nuovo quadro per la
progettazione e la costruzione autonoma di un progetto. In tale contesto,
l'architetto è disaccoppiato dai compiti di progettazione dettagliata ed è più
sfidato a trasformare la conoscenza architettonica tacita in una sequenza di
obiettivi che sarebbero sfruttati da un agente e implementati da robot di
costruzione per realizzare questi obiettivi in una struttura abitabile reale.
Pertanto, il ruolo dell'architetto si propone di essere spostato verso una forma
rinnovata di " Mastro Costruttore " che si occupa piuttosto della "supervisione"
del comportamento degli agenti e della definizione degli obiettivi strategici
generali per il raggiungimento di un progetto di successo.

Come prova di concetto, questa ricerca dimostra un progetto di padiglione in
mattoni sviluppato in Unity con un ambiente di fisica simulata e utilizza il
framework di apprendimento per Reinforcement Learning abilitato da ML-
Agents. Gli obiettivi sono divisi in obiettivi di progettazione e costruzione. Gli
obiettivi progettuali comprendono, ad esempio, il raggiungimento di una
corretta ventilazione naturale attraverso la scelta della posizione, dell'altezza
e del numero delle aperture e del loro corretto allineamento con la direzione
prevalente del vento o selezionando la giusta porosità o interasse tra i mattoni
in base alle finalità architettoniche richieste in ogni fase. D'altra parte, gli

1.1 Sintesi

xvi

obiettivi di costruzione sono più legati al rispetto delle regole basate sulla fisica
quando si posizionano i mattoni per evitare il collasso e ottimizzare la
sequenza di posizionamento verso un minor consumo di energia da parte
dell'agente.

xvii

Abstract

Deep Reinforcement learning has recently started to be adopted in
Architectural research. The application has been mainly focused on solving
specific tasks whether in construction or in design optimization. Given the
uniqueness of each architectural project and the need to adapt different design
parameters to the changing environmental characteristics and site
constraints, the nature of such projects could benefit on a larger scale from
the success of deep reinforcement learning in playing complex strategic
games. This research experiments the use of state-of the art reinforcement
learning algorithms in a simulated, physics enabled, environment to
manipulate design and site constraints towards realizing a complete structure.

This process is guided by hierarchical goals designed by the human (Architect)
to realize an appropriate design. The agent then tries to figure out an
appropriate method to achieve these design goals based on the environment
parameters while reviewing simultaneously the effect of its behavior and
actions on the constructability of the project.

Accordingly, this research introduces a new framework for autonomously
designing and constructing a project. In such a framework, the architect is
decoupled from detailed design tasks and is more challenged to transform the
tacit architectural knowledge into a sequence of goals that would be exploited
by an agent and implemented by construction robots to realize these goals into
a real habitable structure. Therefore, the architect’s role is proposed to be
shifted towards a newly revived form of a “Master Builder” that is rather
concerned with the “supervision” of the agents’ behavior and laying down the
general strategic goals for achieving a successful design.

As a proof of concept, this research demonstrates a brick pavilion project
developed in Unity with a simulated physics environment and uses the deep
reinforcement learning framework enabled by ML-Agents. The goals are
divided into design and construction driven goals. The design goals include,
for instance, the achievement of proper natural ventilation through the
selection of the position, height and number of openings and their proper
alignment with prevailing wind direction or selecting the right porosity or
spacing between bricks based on the required architectonic purposes in each
phase. On the other hand, construction goals are more related to obeying the
physics-based rules when placing bricks to avoid collapse and optimize the
placement sequence towards less energy consumption by the agent.

xviii

1

Chapter 1

State of the Art

1.1. Artificial Intelligence and Machine Learning
1.1.1. Introduction to Artificial Intelligence

Despite the common use of the term “artificial intelligence” (AI) on many
occasions, it turns out that it is actually difficult to have a consensus on a
precise nature of its subject matter. The problem, in contextual point of view,
could be addressed by stating how we could conceive the 2 words comprising
this term; namely: Artificial and Intelligence [1].

What is considered to be “artificial” about artificial intelligence, has to be
linked with its mode of creation in which a human contrivance has influenced
the existence of such an “intangible form” through the creation and invention
of “tangible” devices. This is opposed to something that is entirely incubated
in nature or as a result of biological and evolutionary influence. These
creatures would then possess a “natural” intelligence rather than an
“artificial” one.

This latter hypothesis would lead to the exclusion of human beings from being
“artificial” machines in case we could consider ourselves as machines in the
first place. This term could fit on ourselves if we simply consider machines as
things that are capable of performing work. Given that humans are able to do
work and perform tasks, then they could be considered as machines as well.

At that point, there should be a distinction between animate and inanimate
machines given that human beings remain biological in their origin. This
would propose a more difficult question whose answer is less evident and is
concerned with the second word of the term AI, namely: “Intelligence”.

The question is: Can “inanimate” or “artificial” machines acquire intelligence
similar to the one exhibited by an “animate” machine (like human beings)? A
great aspect of the difficulty of this question lies in defining the boundaries of
what to counted by human beings as a sign of an “intelligent” behavior.

Therefore, if we start with the definition from the dictionary, according to
Merriam Webster the term “Intelligence” is defined as [2]:

1. “The ability to learn or understand or to deal with new or trying
situations”

2. “The ability to apply knowledge to manipulate one's environment or to
think abstractly as measured by objective criteria”

1.1 State of the Art

2

From the first definition, we could consider Turing Test as a test bed for the
ability of a “machine” to try learning and understanding “human
communication”. It can then use what it learnt to be able to develop sort of
“thinking” and “interaction” similar to that of humans. This is demonstrated
by the ability of a machine to mimic human responses under specific
conditions without getting “caught” or being recognized by a human candidate
as a computer respondent.

During the test, three physically separated terminals are operated by 2
humans and 1 computer respectively. The goal of one of the humans is to
decide, after interrogating both terminals for a sufficient period of time, which
one is the machine, and which one is the human. After repeating the test a
number of times, if the questioner failed to correctly determine on more than
half of the tests who is the human and who is the machine, the machine, or the
used algorithm, is then regarded to have artificial intelligence [3].

Figure 1: Turing Test Demonstration

However, even if we assume that human beings are among the things that is
considered to be intelligent and that they can decide on the intelligence of an
object if it exhibits similar behavior to what they possess, the problem will still
persist in isolating those specific human traits that are supposed to be
“intelligent” from those that are not. For instance, humans exhibit anger, joy,
jealousy, and rage. It might be asked which of these traits are considered as”
signs of intelligence” if found in unanimated objects [1].

If such traits could be included in the AI boundary definition, it would lead to
arising the matter of consciousness and the awareness of these objects with
what’s happening around them. For instance, Neil Leach in his paper “Do

State of the Art 1.1

3

Robots Dream of Digital Sleep?” [4] had discussed the issue of “Robot” or
“Machine” creativity and its ability to “dream”, “hallucinate” and produce
something that may have never existed before.

In his research, he took as a starting point the science fiction movie “Blade
Runner” (1982) [5]. This movie is based on the novel by Philip K Dick, Do
Androids Dream of Electric Sheep [6]? which also inspired him in writing the
title for his paper. The movie depicts a dystopian future world in which robots
no longer possess an evident “artificial” nature but have rather acquired “bio-
engineered” features. These features have rendered them behaving as “human
replicants”.

Therefore, they ended up acquiring sort of consciousness that it became nearly
impossible to distinguish them or their behavior from real human beings.
Although this speculation, coming from sci-fi perspective, is still regarded
farfetched, it does highlight some questions like: Can AI be Creative? Or Can
AI Dream? Or is it only humans that are capable of creating images that does
not exist while machines cant as suggested by [7]?

This farfetched dream of machine consciousness would not be discussed
unless we have seen evidence of “light” at the end of the tunnel. The impact AI
has introduced even in domains that relies on pure “natural” creativity like
design, art and architecture have created this sort of impulse.

Figure 2: “Deep Dream Generator”, A new form of psychedelic and abstract art being enabled

through the use of deep neural networks [8]

An example of current adoption of “deep learning” techniques and methods
in creating works of designs or artworks could be witnessed in the new era of
architects and designers that use algorithms enabled by deep learning

1.1 State of the Art

4

techniques like generative adversarial networks (GANs) and its different
architectures (see Figure 2 and Figure 3).

Figure 3: Refik Anadol, WDCH Dreams, Los Angeles, CA (2018) [9]

On the other hand, in terms of dreams, and despite that many AI applications
introduce the word “dream” in their campaigns, there is still no clear evidence
of the ability of machines to exactly reproduce the actual dreaming process of
a human being. That said, there is no way to have a dream unless the machine
could develop signs of consciousness; a challenge that is not yet entirely
tackled by available algorithms. Despite that, it can be assumed that machines
are currently on the path of developing its own consciousness, with
demonstrations like a robot being able to identify its own reflection providing
an evidence for such an assumption [10].

1.1.2. Introduction to Deep Learning

Over the last few years AI has witnessed a big boom especially since 2015.
Much of that explosion is owed to the wide availability of GPUs that enabled
parallel processing in a faster cheaper and a more powerful way. It also has to
do with the simultaneous one-two punch of practically infinite storage and a
flood of data of every stripe (that whole Big Data movement) – images, text,
transactions, mapping data, etc. [11].

The easiest way to think of the relationship between AI, machine learning and
deep learning is to visualize them in concentric circles (see Figure 4) with AI
as the first circle inside of algorithms. AI is considered that initiated this whole
branch of algorithms. Inside of the circle of AI comes machine learning, which
blossomed later, and finally deep learning, which is driving today’s AI
explosion, fitting inside both.

State of the Art 1.1

5

Figure 4: Visualization of algorithms vs. artificial intelligence vs. machine learning vs. deep

learning as proposed by [12]

In brief, machine learning overarches branch of algorithms that parse data,
learn from it, and then decides on or predicts something based on what was
learnt. Therefore, the term “training” replaced the hard coded routines of
algorithms in which the programmer needs to define each solution for a
scenario of a problem that could happen and literally program a specific set of
instructions to accomplish solving it. This training process is achieved using
large amounts of data and algorithms that give it the ability to learn how to
perform a task [11].

Deep learning was built on the same process of “machine learning” where we
need a special kind of algorithms to be trained on large amount of data that
would eventually lead to deciding on something. However, Deep Learning
specialized in a certain kind of algorithms that depends at its core on neural
networks.

An artificial neural network is a biologically inspired computational model
that is patterned after the network of neurons present in the human brain.

1.1 State of the Art

6

Artificial neural networks can also be thought of as learning algorithms that
model the input-output relationship.

An artificial neural network transforms input data by applying a nonlinear
function to a weighted sum of the inputs. The neural network is comprised of
a consecutive set of neurons knows as “layers”. The intermediate outputs of
one layer, called features, are used as the input into the next layer. The neural
network through repeated transformations learns multiple layers of nonlinear
features (like edges and shapes), which it then combines in a final layer to
create a prediction (of more complex objects). The neural net learns by varying
the weights or parameters of a network so as to minimize the difference
between the predictions of the neural network and the desired values. This
phase where the artificial neural network learns from the data is called
training [13].

Figure 5: Schematic representation of a neural network according to [13]

Neural networks have been around since the earliest days of AI; however it
was not widely spread like nowadays. The main issue was the massive amount
of computation power needed. It wasn’t until GPUs were deployed that “deep”
neural networks finally became popular. The word “deep” describes the use of
multiple layers of neural networks with each layer comprising of several
neurons. This complex architecture is considered a massive leap in the world
of AI.

1.1.3. Deep Learning Algorithms Classification

“Deep” neural networks are currently supporting different kinds of
algorithms. These algorithms fall under diverse branches of learning
paradigms. Generally, learning paradigms can be classified into 3 groups:
Supervised, Unsupervised, and Reinforcement learning. Recently, “Semi
Supervised” leaning can be distinguished as a branch of its own.

Although this classification could be also adopted in general over machine
learning algorithms (see Figure 6), it is widely perceived that the amount of
advancements that deep learning brought to these branches is quite impactful.
This is evident in most of the currently used algorithms that are trained using
one or more deep neural networks. The following lines represent a brief

State of the Art 1.1

7

explanation of the 3 branches added to them “Semi supervised learning” as a
4th branch combining some features from both supervised and unsupervised
learning [14].

Figure 6: Tree of Machine Learning Algorithms [15]

- Supervised Learning

In supervised learning, the training data is fully labelled. Fully labeled means
that each example in the training dataset is tagged with the answer the
algorithm should come up with on its own. This label helps the neural network
during training in adjusting its weights to be able to be able to predict the right
label correctly.

1.1 State of the Art

8

There are two main areas where supervised learning is useful: classification
problems and regression problems.

Classification problems looks at discrete categorical data, where the goal is to
depict the category a certain input data, like an image, belong to. while
regression focuses on continuous data. The simplest example could be
predicting a certain value of variable y given a particular x.

Figure 7: Supervised Learning Workflow, where the algorithm learns from the data [14]

- Unsupervised Learning

Unsupervised learning comes handy to problems where we have the data, but
we don’t know how to benefit from. This could be in the form of finding
implicit patterns among the data, or perhaps clustering them in groups with
similar features, etc.

In unsupervised learning, deep learning model is handed a dataset without
explicitly mentioning what to do. There is no correct outcome or a specific
desired output. The role of the neural network is to automatically find
patterns by extracting useful features and analyzing its structure.

Therefore, the type of the problem could infer what kind of grouping of data
is required. This data organization can take several forms like:

Clustering: The deep neural network tries to find training data having features
similar to each other and groups them together.

Anomaly Detection: Using the deep neural network to detect outliers or very
limited amount of data whose features do not conform with the majority of the
elements in the dataset.

Association: By looking at a couple key attributes of a data point, an
unsupervised learning model can predict the other attributes with which
they’re commonly associated.

Autoencoders: Autoencoders takes input data, compresses it, then try to
recreate the input data from that summarized code. While a neat deep
learning trick, there are fewer real-world cases where a simple auto coder is
useful. But add a layer of complexity and the possibilities multiply: by using
both noisy and clean versions of an image during training, autoencoders can

State of the Art 1.1

9

remove noise from visual data like images, video, or medical scans to improve
picture quality.

Figure 8: Feature Extraction on several layers of the neural network in Unsupervised Learning

[14]

- Semi-Supervised Learning

The input for Semi-supervised learning is, usually comprised of both labeled
and unlabeled data. This method is particularly useful when extracting
relevant features from the data is difficult, and labeling examples is a time-
intensive task for experts.

One of the most popular training algorithms that relies on a fairly small set of
labeled data is general adversarial networks, or GANs. These kinds of
networks and its diverse architectures has contributed to several applications
recently in the AEC industry.

GANs comprises 2 deep neural networks instead of just 1. The first is called
the Generator. It tries to generate data that looks like the training data. While
the other network is called the Discriminator. Its main role is to detect
whether the data it is inspecting is real data from the original dataset or a fake
data created by the generator. At the beginning of training, both the Generator
and the Discriminator are still very poor in doing their jobs.

Figure 9: GANs workflow [14]

By time both of them begin to improve. The generator tries to outsmart the
Discriminator while the Discriminator become more experienced in capturing
the fake data provided by the Generator. In the end, the generator improves
its ability to create convincing fakes. These kinds of fakes, especially when the

1.2 State of the Art

10

data are in the form of images, are regarded as a form of machine creativity,
being able to create images that has never existed before.

- Reinforcement Learning

Reinforcement learning operates on the principle of earning rewards for good
decision and penalties for bad decisions. The entity receiving this reward or
penalty is usually called an AI Agent. The goal of this AI agent is generally
related to finishing a certain task in a correct way without being given proper
instructions or steps on how the goal could be achieved.

To make its choices, the agent relies both on learnings from past feedback and
exploration of new tactics that may present a larger payoff. This involves a
long-term strategy, just as the best immediate move in a chess game may not
help you win in the long run, the agent tries to maximize the cumulative
reward.

It’s an iterative process: the more rounds of feedback, the better the agent’s
strategy becomes. This technique is especially useful for training robots, and
it has also gained huge popularity in achieving noticeable results in RTS and
Turn-based Games as well.

1.2. Deep Learning in AEC
In this sub-section, a few examples of deep learning applications are provided
from literature. The main focus would be on the diverse applications of
Generative Adversarial Networks (GANs) with its varying architectures. It is
noted that in the past years, there is a growing interest in the AEC industry in
using GANs with a special focus on the Design phase of the projects [16]. This
extends from conceptual design automation to design evaluation and detailed
plans or layouts generation [17]. However, GANs architectures were also
witnessed throughout the spectrum of Construction processes as well as early
trials of design and construction processes integration [18].

Starting with the conceptual phase, deep learning has been adopted to assist
in developing conceptual designs. For instance, following the statement of
Louis Sullivan that “form follows function” [19] , researchers in [20] has
decided to evaluate existing buildings through the analysis and development
of interrelated relationships between its building elements.

This was achieved using a graph-based representation instead of analysis of
images and texts. The main goal of the research was to extract the subgraphs
of significant building blocks in order to use them as a tool to create new
conceptual compositions. The research followed Deep Neural Network
(DNN) approach, in order to come up with conceptual function-driven design
using a graph-based approach.

State of the Art 1.2

11

Since this research adopted a graph-based rather than the traditional raster-
based approach adopted in several GANs architectures, their decision was to
use InfoGAN architecture that has the ability to learn latent codes (see Figure
10). This process can be controlled to restrict the Generator to only generate
variations of samples that correspond to the specified code.

This research has demonstrated that a system based on DNNs can use graphs
to generate function-based conceptual designs. The GAN architecture used to
evaluate graph-based samples was able to generate new results not seen in the
training set. However, the research scope focused solely on functional
relationships with no considerations of other parameters like aesthetics,
geometry, environment, or structure.

Figure 10: InfoGAN architecture – training three DNNs (D, G and Q) simultaneously [20].

Adding a new layer of “visual and auditory perception” to graph-based
approaches, [21] explored the use of Attentional Generative Adversarial
Networks (AttnGAN) as a design technique in architecture. The goal was to
experiment with Spoken language and how it can be used to generate
inspirational images for conceptual design purposes. Instead of depicting the
interdependent relationships between building elements, AttnGANs allow
attention driven, multi-stage refinement for fine-grained text-to-image
generation.

The network initially starts from a global sentence vector and uses it to
produce low generation image. Afterwards, the attention layer comes into
action by using the image vector in each sub-region to query word vectors
forming a word-context vector. The regional image vector is then combined
with the corresponding word-context vector to form a multimodal context

1.2 State of the Art

12

vector. These form the basis on which the model generates new image features
in the surrounding sub-regions, which results in higher resolution pictures
with more details at each stage (see Figure 11).

Figure 11: Examples of results of the AttnGANs [21]

Accordingly, despite that such a technique is relatively new in architectural
context, it provides a promising tool for transforming language into shapes
and design. This could be considered a new unique method for design
inspiration with more than just visual senses.

Moving from Conceptual to Detailed Design, GANs architectures have been
successfully implemented in several processes like floor plans [22], elevations
[23] [24] [25], and inspirational layouts generation [26]. For instance, [22]
has implemented a modified version of GANs called Pix2PixHD, to eventually
produce floor plan images based on a coloring scheme.

Pix2Pix architecture is composed of 2 Convolutional Neural Networks since
both the generator and discriminator are dealing with images. The role of the
discriminator is no longer stating whether an image is fake or not but is
actually checking a pair of images for conformity. The authors applied this
method in recognizing and generating architectural plans.

The generation process involves feeding the trained network with a colored
image where each color fills the boundary of a certain room or space, and each
room is given a specific color code. The network then produces an image of a
floor plan based on the boundaries provided by the input image. Each room in
the produced floor plan is furnished based on the color code included in the

State of the Art 1.2

13

input image (see Figure 12). Similarly, regarding floor plan generation,
authors in [25] have used a hybrid method of GANs and case-based reasoning,
for creation of possible evolutions of the current design based on the most
similar previous designs.

Figure 12: Apartment floor plan: recognition and generation using Pix2Pix in [22]

A more artistic approach can be seen in [26], where the authors used a
variation of GAN called StyleGAN2 [27]. This network architecture was
trained on a data set of plans from the baroque era as well as modern floor
plans. The output floor plans “hallucinations” of the algorithm contained a
kind of fusion between these 2 styles. The produced new plans contained
hybrid features of the 2 styles producing images of floor plans that had never
existed before.

Figure 13: Close-up of one of the resulting plans based on the StyleGAN2 process between

Baroque and Modern plans [26].

On the other hand, [26] pinpointed some doubts that could be generalized
among all the outputs by different alternatives of GANs that are generated in
the detailed design phase. This doubt lies in the absence of a direct method
that can bridge the gap between the output images and the 2D CAD-generated
architectural drawings. Despite our visual recognition of the produced
images, the networks don’t really understand the detailed semantic

1.2 State of the Art

14

information of building elements. Perhaps a possible path could be a hybrid
model that relies on graph-based information regarding relationships
between building components and at the same time can link these
relationships with each image vector containing these elements.

Furthermore, the use of GANs in architecture was not only constrained to 2D
design inspirations, but also 3D GANs were experimented to produce a voxel-
based 3D Preliminary Designs [28], [29]. Despite the tremendous amount of
progress being made in the field of deep learning, voxel-based 3D GANs can
be still considered in its infancy stage. Once issues regarding practical
constraints on model resolution and training time are resolved or at least
reduced, this technology would create a major disruption in the design
process.

Figure 14: 3D style transfer results through CycleGAN as in [29]

Moving to the contribution of deep learning in the optimization of
construction processes, there are several applications that spans to include
several activities like construction robots path planning [30] and detection of
building defects [31], [32].

One of the most promising applications is the integration of material
properties with architectural design tools. An example of which is the
experimentation with irregular wood-logs that are always counted as waste
materials. The process thereby gives an example of how the natural forms and
properties of sawlogs can be directly used to generate new structures and
spatial conditions [33], [34].

DNNs are implemented in these processes in order to find proper properties
of sticks to improve selection mechanism of construction process. Such
systems could also be inspired from nature, since animals in nature like
beavers for instance use irregular sticks to build dams [33].

State of the Art 1.2

15

Figure 15: Systems of biomimetic robotic construction process [33]

Furthermore, authors in [18] have used deep learning to automate the pattern
generation of robotically assembled bricks. The main role of the semi-
supervised Pix2Pix algorithm is to generate brick patterns using image pairs
where the input is just a (wall boundary) and target image is the (brick wall).

As explained before, in order to achieve this output, the network has to learn
first through a set of image pairs containing a wall boundary and a solution of
brick wall pattern group. Once learnt, the output 2D image of the network
(brick wall pattern) is then converted into spatial positions for automatic
robotic assembly simulation. This is carried out by an image processing
algorithm.

Figure 16: Input and output images for the four dataset styles in [18]

1.3 State of the Art

16

1.3. Reinforcement Learning in AEC
As discussed before in subsection 2.1.3 (Deep) Reinforcement Learning (RL)
is one of the main branches of deep learning. This sub-section is dedicated to
the sate-of-the-art research regarding the deployment of Deep RL algorithms
in AEC industry.

Generally, Deep RL applications are not yet implemented on a wide scale in
AEC industry. In this sub-section, we will start by mentioning some examples
of RL deployment in conceptual design phase, then ideas regarding detailed
design or design simulations are mentioned. Afterwards, robotic assembly
tasks that benefited from RL are presented. Finally, we will indicate some
trials of combining design and construction goals altogether for an agent to
solve simultaneously using RL algorithms.

To start with, [35] proposed an AI agent that can produce 3D abstraction
representing artificial design habitats. They decided to adopt a RL algorithm
known as Spiral. The decision was to go for Spiral instead of a GAN algorithm
because, unlike GANs, it can autonomously decide the number and
characteristics of the features to reproduce in a synthetic visual abstraction.

Figure 17: Visual abstractions produced by the 10-actions agent and the 20-actions agent

during the last training iterations using SPIRAL algorithm in[35] .

The adopted AI agent can be manipulated through a reward system to support
the design of human habitat that is inspired from natural habitat structures.
This is achieved through the assessment of the AI agent final results of its

State of the Art 1.3

17

actions, which mainly involves the placement of 3D voxels in digital space, by
comparing its geometry with 3D abstract representation of natural trees.

This article primarily investigates the potential of AI in supporting the design
of structures by providing design suggestions aligned with the main goals set
by the designer, which in this case is to capture the essence of arboreal wildlife.
This becomes handy in many situations where incomplete knowledge about
complex natural forms can constrain the design and performance of human-
made artefacts.

Similarly, [36] demonstrated in a 3D voxel representation design
environment the meaningful impact of RL on augmenting generative design
approaches with intuitive capacity and sophisticated control. The agent is
defined as a mesh graph that consists of certain fixed number of vertices and
predefined topology. At the beginning of each episode the vertices are
randomly generated in the 3d voxel environment (see Figure 18)

Figure 18: Strategies of Initializing RL Agent and Environment as described in [36]

The agent actions basically include the possibility of movement of each vertex
one step to one of the adjacent voxels, However, to prevent intersection of the
meshes or falling of more than one vertex in the same voxel, spatial separation
and tension cohesion is controls the available actions at each step. Thus,
individual decisions of agents are also subject to interactive behaviors to abide
by the general behavior of an emergent complex adaptive system.

The RL algorithm used is Proximal policy Optimization (PPO). The
environment was developed in Unity Platform with ML-Agents toolkit. The
demonstrated RL-based generative training experiment has been conducted
with a total episode of 20,000 (500 steps each). The generative training
outcomes are recorded every 200 episodes, as well as the mean-reward
recorded every 500/2000 episodes.

Furthermore, research focusing on implementing RL in generative design
approaches can also be evident in [37] with similar voxel-based 3D
environment. It has to be noted that, the general impression given by these
different implementations of RL algorithms could give a reflection on the
interactive correlation between designers and computational intelligence. It

1.3 State of the Art

18

also provides insights of human-machine collaboration during early design
stages.

On the other hand, moving from the abstract building/pavilion conceptual
designs to generative design on the urban scale, authors in [38] incorporate
deep reinforcement learning (DRL) and computer vision for urban planning
through a case study to generate an urban block based on its direct sunlight
hours, solar heat gains as well as the aesthetics of the layout.

The Deep RL algorithm adopted was deep deterministic policy gradient
(DDPG). It was trained to guide the generation of the urban schemes. In each
episode, the agent could only arrange one building (see Figure 19). The actions
involved controlling the building XY coordinates as well as its Length, Width,
and Height.

Figure 19: The diagram of observation, action and reward as depicted in [38]

Moreover, Deep RL algorithms has been also experimented in generating
spatial configurations as in [39]. In this research, multi-agents deep
reinforcement learning (MADRL) were used to control spatial partitions and
interact in a 2D grid environment. This approach used double deep Q-
network (DDQN) combined with a dynamic convolutional neural-network
(DCNN).

Figure 20: Training Configuration used in [39]

State of the Art 1.3

19

During the experiment, the trained agents has managed successfully to
generalize their knowledge to different settings, consistently explore good
spatial configurations, and quickly recover from perturbations in the action
selection.

Deep RL algorithms were also used in the development of an environment
prototype that is that learns from Electroencephalogram (EEG) feedback in
real-time [40]. Unlike previously mentioned episodic tasks, this is considered
a continuous one. PPO algorithm was adopted for the training of the agent.
The agent’s goal was to keep the subject’s alpha wave stable or decline, which
indicated a more calming state, by intelligent decision of illumination state
according to subject’s EEG.

Moving from design applications to task promoting autonomous construction,
RL algorithms has been deployed in several applications in that context. For
instance, to avoid collision between drones participating in a construction
task, the master’s thesis developed by [41], has provided an RL system that
can control a number of drones for autonomous construction in a dynamic
continuous environment. This system was successfully deployed in 2
experiments regarding brick laying and façade coating.

Furthermore, researchers at ETH Zurich [42] have applied Deep RL on
timber assembly tasks using industrial robots. This solution was introduced
to overcome problems associated with Robotic Assembly in Architectural
context such as small tolerances and complex contact situations, especially in
assembly of elements with form-closure such as timber structures with
integral joints. The researchers have adopted an adapted Ape-X DDPG
algorithm to train the agent in as simulated environment.

Figure 21: Stills from an assembly of an H-shaped (left) and Δ-shaped (right) double-lap tasks

by the real robot as proposed in [42]

Despite that the control policy was trained entirely in simulation, it managed
to overcome tolerances and shape variations that didn’t occur in the
simulation and was witnessed only in real world. This generalization behavior
of the agents is considered to be one of the main powerful points of strength
that training of RL Agents could provide.

Depending also on the proper assumptions of the observations and letting the
agent encounter different situations during training, the Agent can then learn

1.3 State of the Art

20

how to overcome these situations and can use this experience to overcome
real-world situations that may have never occurred during training. This is
achieved by linking the actions taken during learning in similar situations and
applying them on the current real case.

Lastly, we discuss a type of Deep RL applications that had sought to integrate
some design and construction processes together into one problem translated
to a Markov Decision Process (MDP). For instance, authors in [43] developed
a framework for designing and implementing effective autonomous
architecture defined by three key properties: situated and embodied agency,
facilitated variation, and intelligence. PPO algorithm was also used to train an
agent to learn adaptable behaviors related to autonomous mobility, self-
structuring, self-balancing, and spatial reconfiguration.

Physical properties and degrees of freedom were applied as constraints in a
simulated physics-based environment in Unity. ML-Agents toolkit was used
to implement the Deep RL framework. Both single and multi-agent setups
were provided. Topological rules of tensegrity were applied to develop
assemblies with actuated tensile members. After simulation, Physical robotic
prototypes were built and actuated to test simulated results.

Figure 22: Diagrams: Interelationality between physical robots, simulated robots and

reinforcement learning models as developed in [43]

Moreover, research proposed in [44] discusses the capabilities of
reinforcement learning in game engine for integrating design, and
construction processes. The main motivation comes from promoting a circular
strategy by reusing scrap elements as building elements. To proof this
concept, the author developed an application in Unity to train an AI Agent
using PPO algorithm on the proper placement of scanned geometry of wasted
plastic chips objects in a way that can create a stable structure based on
certain criteria set by the designer.

Six major types of data are observed to train ML-Agents to assemble
according to the performance of such priorities. These parameters are lighting
variety, floor area, symmetry, structural stability, and thermal dynamic

State of the Art 1.3

21

variety. The data are obtained via the cross-platform synchronization of shell
model and analysis.

Figure 23: Six major types of data are observed by the agent

The geometries were streamed from Unity to Grasshopper for Karamba
structural analysis. Karamba is a Grasshopper plugin for finite element
analysis that can provide real-time feedback. The analysis result is then
streamed back to Unity through UDP for rewards stating. Other observation
data, such as floor areas and thermal dynamics, are obtained using a camera
within the game and RGB distribution analysis.

Although the research target was to include both design and building
constraints, it was more oriented towards providing design insights on how to
utilize these scrap materials in reconstruction. For instance, the simulation,
despite being developed on a game engine, it didn’t benefit directly from
physics capabilities provided by Unity platform. It rather used an external
structural design check for checking an already placed static version of the
elements without considering the kinematics of the assembly process itself.

The physics capabilities provided by Unity could help in simulating the actual
impact of adding each new scrap element to the rest of the structure. This
could show for example the effect of weight and gravity in the simulation
environment in an accurate way that is close to what could happen in real
world. However, this research could be an encouraging starting point to
explore this concept provided that it could be integrated in a more elaborative
way to expand its applicability.

1.4 State of the Art

22

1.4. Conclusion
In this section, we presented an introduction to artificial intelligence, machine
learning and deep learning. Then, an explanation of different deep learning
algorithms was provided. Afterwards, we demonstrated several applications
of deep learning in the AEC industry. However, reinforcement learning was
discussed as a separate sub-section apart form the other deep learning
algorithms since we wanted to highlight its potential in the AEC industry.

The state-of-the-art applications of reinforcement learning provided has
shown several experiments that benefited from the success achieved through
RL algorithms in different domains away from the AEC sector. Due to the
complexity and unstructured nature of this sector, several external solutions
usually fail to provide similar results when adopted.

However, it was noticed that game engines like Unity and the possibility of
simulating real case scenarios can favor the success of AI agents in learning
design and construction goals and then be implemented by execution robots
in real life. One of the main challenge remains in finding the silver lining
between creating a very abstract version of real life that renders the simulated
environment incompatible with real applications and developing a very
detailed environment that exponentially grows the level of game complexity
to the extent that AI Agents would need a massive amount of time and
computational resources to be trained.

Finally, GANs and AI Agents are regarded as promising tools to help create a
paradigm shift in AEC Industry. Designers could then get assisted throughout
the process and get inspired by innovative solutions. This new paradigm might
also release some daunting work off the shoulders of designers and builders
through automating different processes. The role of designers and builders
however would shift more towards fine tuning the proper incentives and
reward systems for the agents to help reach the goals required from them.

23

Chapter 3

Original Contribution

2.1 Original Contribution

24

2.1. Introduction
This section represents the “original contribution” that this thesis postulates.
It starts with the explanation of how AI challenges in Real Time Strategy
(RTS) games have an influence in the better implementation of AI in AEC
Industry. Then, the new framework is introduced that revives the ancient
term “Master Builder” in a rather compatible way to the digital tools available
nowadays.

Afterwards, the section continues with explaining the game that was
developed as a proof-of concept to the framework proposed. Both human
version and Robot version of the game are exposed. The way agents learn the
design and construction goals are then explained thoroughly. In the end, the
results achieved by the agents are demonstrated and discussed.

2.2. Real Time Strategy Games vs Design and
Construction Projects

In this section we try answering the following questions:

- What are RTS games and what differs them from other games?
- What are the characteristics of RTS games that makes them a perfect

candidate to be compared to the process of Design and Construction of a
building?

- Why an algorithm succeeding in achieving high results in RTS games can
be a good candidate to be applied in construction industry?

2.2.1. RTS Games definition and its Characteristics

- RTS Games Definition

Real Time Strategy Games (RTS) is a sub-genre of strategy games in which a
player needs to build an economy (gathering resources, building and training
units, and researching technologies), and sometimes need to also develop
military power to defeat an opponent [45] . The difference between RTS
games and Turn-Based Strategy games is that in the latter, each player has
enough time to carefully think and consider the next move while the opponent
would not be able to take any actions during this period. However, in RTS
games, players must attempt to work on all aspects of the game
simultaneously while knowing that the opponent is expected to be doing the
same thing. Even in RTS games where the focus is only on the prosperity of
the player’s people or “citizens”, the player should always be able to be “multi-
task” and take diverse actions simultaneously, to ensure all the needs required
by the “citizens” are being met. Therefore, time is a crucial factor to be
considered in RTS games, thus an additional level of complexity is being
introduced [46].

Original Contribution 2.2

25

- RTS Games Characteristics

Accordingly, RTS games are characterized by the following [45]:

• They are simultaneous move games, where several players can
perform actions at the same time. These actions are mostly durative,
i.e., a series of actions is required in order to be completed or to witness
some sort of impact on the game.

• RTS games are “real time”, which means that the time to take an action
is very limited. For example, in the game Starcraft, the game is
executed at a framerate of 24 frames/sec. Thus, theoretically, a player
can take an action every 42 ms before the game state is changed.
However, for a “human” player this rate is practically impossible.

• RTS games are partially observable, so players can only the part of the
map they actually have units in it. This is known as “fog of war”.

• RTS games are nondeterministic. Thus, there is never only “one way”
to succeed or win in an episode, and a serious of actions might not yield
the exactly the same results every time they are executed.

• The game complexity is quite large in terms of state-space size and
number of actions available at each state. For instance, the state space
of Starcraft is estimated to be many numbers of magnitude larger than
a typical Turn-Based Games like GO (10170) or Texas Holdem Poker
(1080).

Figure 24: A screenshot of an ongoing episode of StarCraft with a battle occurring between

Protoss and Terran

Based on these characteristics, the traditional methods that were used in the
past for solving classic board games such as Game-Tree Search for example,
wouldn’t be as effective if applied to RTS games, without introducing a
sufficient level of abstraction to the game. The application of AI techniques
and specifically Deep RL has proven to yield very promising results in both

2.2 Original Contribution

26

genres of games [47]. The complexity of RTS games still enforced the
engagement of some level of abstraction and hierarchy during the learning
process. However, results obtained by applying deep RL algorithms were able
to beat records reached by top human players in famous RTS games (like
StarCraft) without any game restrictions [48].

2.2.2. Challenges in applying AI in RTS games

Unlike other genres of games, RTS games are a fertilized land for AI research
due to the challenges they impose. These challenges were early summarized
by [49] as the following:

• Resource management
• Decision making under uncertainty
• Spatial and temporal reasoning
• Collaboration
• Opponent modeling
• Adversarial real-time planning

Later on, [45] built on the previously mentioned challenges, but regrouped
them under six different areas namely:

• Planning: Given the extremely large state-space in RTS games,
planning for moves (series of actions) during the game should be
executed with multiple levels of abstraction. At the macro level, the
agent (player) needs to plan on the long-term to develop strong
economy. At a micro-level, short term planning could be evident in
optimizing the movement and positioning of units in coordination with
each other to win over an opponent in a certain battle that may arise.
Or in case of gathering of resources, “gathering units” should be
deployed in an efficient way. Such a deployment has also an impact on
the long-term as well (Figure 25). Thus a hierarchical decomposition
could be a solution to address such planning issues as in [50].

• Learning: Learning could be divided into 3 types:

o Prior learning: This learning relies on existing replays of
previous games, recently this term can be referred to as
“Imitation Learning”. An example could be that of “Alpha Star”
[48] which is now ranked above 99.8% of active players on
Battle.net (the online platform for playing StarCraft). It has
initially learnt from previous games recorded for top players to
accelerate the learning process.

o In-game Learning: In RL terms, it could also be referred to as
“Online learning”. In RL, some algorithms rely on such a
method directly for learning while other relies on an in-
between approach in which an experience replay for example

Original Contribution 2.2

27

can be used to store experiences necessary to fully train an
agent.

o Inter-game Learning: It refers to applying what an agent
learnt in one environment into another environment. This
could increase the chance of victory in the next game.

Figure 25: Protoss Command Center and gathering units are situated as close as possible to the

resources

• Uncertainty: Adversarial Planning under uncertainty is a complex
challenge in RTS games. Two main examples of uncertainty can be
found in the partially observed map of the game and in predicting what
action the opponent can take at a certain point in time.

• Spatial and temporal Learning:
o Spatial learning in RTS games is related to terrain

exploration. For example, the positioning of building units
should be done in a way that from one hand can form a
defensive mechanism that protects more important building
units through forming a fake “wall” around them, while on the
other hand the position of buildings shall not be an obstacle for
a player’s own units, so it shall secure a smooth movement of
large tactical units in between them.

o Temporal Learning could be evident in RTS games, for
instance, in the adjustment of the timing of an attack on an
opponent by trying to enforce this attack when the opponent is
not giving full attention to defensive mechanisms or focusing

2.2 Original Contribution

28

too much on economic prosperity. Another example for
economy based RTS games could be on a higher strategic level,
where a player needs to decide how to plan, in the long-term,
the priorities for resources investment. This shall be done in a
way that secures the appropriate deployment of services to the
“citizens” and that the funding should be properly distributed
between fast-track projects that render direct impact on the
citizens and long-term projects that need a continuous flow of
investment, and their results shall appear after a relatively
longer period of time.

• Domain knowledge Exploitation: Domain knowledge could be
acquired by two methods. The first is to rely on experts in the domain
that somehow could fine-tune the reward system to be used as an
interim-guide for the agents during the learning process to follow. The
second method could be “Imitation Learning” as discussed before. The
latter approach was early proposed by [51] and [52] even before the
exploitation of this option by recent algorithms like the ones adopted
by AlphaStar.

• Task Decomposition: Given all the previous challenges, a reasonable
approach would be to decompose the problem of winning an episode
in an RTS game into a set of smaller sub-problems. A common sub-
division suggested in [45] could be to subdivide the big task into 5 sub-
divisions namely: Strategy, Tactics, Reactive Control, and Terrain
Analysis.

It has to be noted that there are many forms for categorizing these challenges
apart from the one adopted above. However, those different categorizations
share together one general idea, namely, an AI perspective of challenges in
RTS games should be addressed in a completely different and much more
detailed manner with respect to how a human player could perceive and
categorize them. The other observation is that any AI supported solution
adopted should consider the interrelations between each category and try to
detect patterns that can help generalize the problem and reduce the required
time for exploring the state-space as much as possible.

Original Contribution 2.2

29

2.2.3. Challenges in applying AI in Design and Construction
Projects

Building on the applications of AI in design and construction already
discussed in (sub-sections 2.2 and 2.3), this section concludes the challenges
mentioned in literature that face the proper exploitation of AI. It also
demonstrates probable suggestions for better reaping the benefits of AI.

Given today’s practices in AEC industry, [53] have imposed that direct
application of AI might even increase uncertainties, unreliable predictions
and poor management decisions. The researchers owed such a negative
assessment to the lack of proper understanding the true benefit of AI tools and
inability to translate their impact into real dimensions. Research of [54] has
focused on the reason behind the uncertainties in these AI applications in
AEC industry.

However, the research only focused on 5 types of AI algorithms namely:
Primary Component Analysis, Multilayer Perceptron, Fuzzy Logic, Support
Vector Machine and Genetic Algorithm. Causes of uncertainty mentioned
varied according to the type of algorithm under investigation. Reasons for
uncertainties included:

• Subjective assumption that the relationship between different input
(observed) features is linear.

• Applying AI for optimizing a specific task in AEC industry might
sometimes yield a limited data set for training. In case of neural
networks, a limited dataset could lead to an unreliable output and
perhaps overfitting of the problem in case of inability to expand the
input to samples from different situations.

• Applying AI for solving larger complex problems, on the contrary to
point 2, may be too challenging if not properly generalized, and in case
of a neural network, underfitting might occur.

• Subjective assignment of values to an expert system might yield
inconsistent systems where each one is based on the expert’s personal
judgment of the problem.

To mitigate such uncertainties, several assumptions and considerations could
be used according to [54]. These assumptions were inspired by scholars from
other disciplines apart from AEC industry and included: the consideration
that there is a “black box” and the fusion of more than one system together.
The first one meant the contribution of designers and engineers’ intuition
where such a tacit knowledge could be considered a “black box” where
algorithms need to take that into consideration.

While an example of the second could be the use of a least square support
vector machine optimized by particle swarm optimization (PSO-LSSVM) or
the use of a hybridized fuzzy logic with supported neural network. Despite not

2.2 Original Contribution

30

being directly mentioned, Deep RL algorithms could also be considered an
improved “hybrid” model.

Eventually, the authors have reached an important conclusion. This
conclusion is considered one of the important pillars this research is built on.
They have mentioned that given the particularity of AEC industry, where not
only theoretical knowledge is required, but also design, engineering
experience and intuition, the uncertainty of AI can’t only be solved by a single
certain algorithm.

However, the solution must include the proper capturing of the tacit
knowledge; hence a technique similar to fuzzy logic should be introduced to
reduce the uncertainty of algorithms. In addition, due to the complexity of
AEC projects, game playing techniques could be a solution to capture
contributions from different stakeholders. Also, interdependent relationships
between different technologies/phases in AEC industry should be taken into
consideration. Lastly, the authors highlighted the absence of a detailed
framework for the employment of heuristic algorithms in the context of AEC
industry.

Similarly, other scholars in [55] have stated some conclusions when it comes
to the implementation of deep neural networks applications in AEC industry.
They explicitly indicated that there is a lack of using Deep learning
architectures that implement reinforcement learning like deep Q-networks.
[56] added that RL-applications were identified in AEC, but they are either
still in experimentation phase or isolated into specific tasks that still need to
be integrated into BIM workflow.

Moreover, [55] also mentioned that adopting AI in AEC industry requires
“embracement of change” and “re-engineering” of the processes in order to
reap the full benefits of AI on a proper scale. These changes should be applied
on all possible levels such as organizational, technological, mindset and even
cultural. To reach this, AEC organizations should invest in establishing AI
methodologies and prioritize education and training of their employees on AI
and the subsequent change in the work environment and tasks needed.

Finally, the same research also draws the attention that a large portion of AI
research in AEC tends not to implement ideas and theories from other research
fields but tends to build up on AI-related work within their own specific area
of expertise.

Original Contribution 2.2

31

2.2.4. Applying RL success in RTS games into AEC applications

The previous 2 sections have concluded, separately, the challenges towards
the application of AI in RTS games and AEC industry respectively. It has been
evident that most of the challenges derive from the complexity of both fields.
Given the similar characteristics and challenges involved in the 2 fields, this
research will benefit from the success achieved in adopting RL algorithms in
RTS games and try applying it, in a similar approach, in a design and
construction application.

This process shall also benefit from the advancements in game engines and
the ability to integrate on-site characteristics into a simulated environment
through IoT infrastructure. Therefore, RL-training can be accurately
executed without any effect or damage in the real world, and once the training
has reached a satisfactory level, it can easily be employed to real “robots” or
other tools on site for actual implementation.

In order to apply this idea, the traditional “human” perspective in which the
design and construction processes are regarded as 2 discrete processes shall
be rethought. Now it is needed to wear an oculus but jump in a world where
we put ourselves in the shoes of an AI agent. Once we do so some questions
would pop out like:

• Could lessons learnt from AI in RTS games be implemented in AEC
industry, thus introducing a new framework?

• Do we need then to “rethink” the whole design building problem not
from the perspective of a “human Player” but rather from a
perspective of an “AI Agent”?

• In that case, do we still need the segregation of the design-construction
process into 2 separate stages from an AI perspective?

• Are the currently available computational tools, digital fabrication
methods, and construction robotics capable of supporting this
paradigm-shift and realizing it in real word?

In the following sections we will start to find answers to those preceding
questions, but first we need to find answers from history.

2.3 Original Contribution

32

2.3. Revival of the Master Builder
2.3.1. History behind the master builder

According to University of Colorado’s design-build glossary, the definition of
master builder is [57]:

“A term historically applied to an “Individual” who was responsible for both
the design and construction of a project. During the Renaissance, a divergence
appeared between the individual who prepared the project’s design, and the
individual who was responsible for its construction. With the rise of design
professionals in the late 19th century, the term fell out of favor and is used
infrequently today in reference to design/build firms.”

Therefore, before this “separation”, a Master builder was the designer and
constructor at the same time. In antiquity, unskilled labor used to haul the
materials, which could be large blocks of stones to the construction site. The
skilled craftsmen would then transform them into artistic and structural
components of the structure. The direction that they had to follow was
controlled by the individual knowledgeable person who was responsible for
the building design. At that time, the design would not be more than a mental
“image” in the designer’s mind.

Accordingly, the designer essentially had to be the builder in order to be able
to direct his skilled craftsmen during actual construction on what they are
supposed to do. This means that, the design and construction of a project were
basically inseparable, and so the Master Builder would think during the
design of a certain element, how would this element be realized on-site. If
there is a difficulty in achieving that, he would also have to design the tools
that could facilitate the construction of his masterpiece.

From the point during the Renaissance Period where the Architect and
Engineer Filippo Brunelleschi has succeeded in using the camera obscura to
copy architectural details from classical ruins, what we know now as
“blueprints” was officially born [58]. Consequently, a “master builder”
wouldn’t need to travel from Florence to Rome for instance just to be present
every single moment in the construction site. With the help of well explained
drawings, he can then delegate his on-site duty to someone else.

Thus, by time, the designer’s main aim became focused on the ability to
express his ideas coherently in paper, and then a builder can take charge of
the construction process. Therefore, the designer has no longer need to worry
about the task of finding the convenient tools and methods for building
realization. Instead, this task became completely assigned to the builder [59].
Nowadays, the term “designer” and “builder” refer to groups of hierarchical
teams that collaborate together.

Ahmed Mohamed Ahmed Lotfy Elmaraghy
Do not forget to wrap the chart with legal liabilities etc..

Original Contribution 2.3

33

Recently, the term “Master Builder” was seemingly revived in the term
“design build” [60]. This term defines a method of project delivery where one
entity is responsible for both design and construction of a project. However, if
we notice the internal process itself, it remained the same: 2 separated teams,
one for design who delivers the work first and then hand it over to the
Construction team that finds the optimum ways to properly execute the
project on-site. Therefore, the “design-build” process hardly coincides with
the core concepts of a “master builder”.

Figure 26: Section “blueprint” of Brunelleschi's dome of Florence Cathedral [61]

2.3 Original Contribution

34

2.3.2. Introducing the new concept for the Master Builder

Inspired from the old term “Master Builder”,
and by the inclusion of AI, the new version of
“Master Builder” could finally see the light.
Instead of discretizing the design and
construction process, they are now united into
one process. The resemblance of the new and old
version can be explained further in the following
lines.

As for the main “Master Builder”, it could refer
to the team that possess design and construction
knowledge. The team could be seen as a
“puppeteer” who has in hands the tools
necessary to control or guide multi-agents to
achieve

the final goal; namely the proper design and
construction of a building (Figure 27).

The “Master builder” can start a project by an
idea or a sketch of what he/she wants to achieve.
Afterwards, it is required to come up with certain rules/guidelines that
enlightens the “agents” during their learning journey. Thus as in old times, the
“Master Builder” would act as a “Supervisor” making sure that his craftsmen
undersood the design he has in mind. With proper insturctions from the
“Master Builder”, these “Agents” can receive proper training and can then
transfrom a simple idea in the head of the Designer into an actual functional
building in real world. This can be done by the actual deployment of robots,
the real world agents, that can carry out what they learnt in the simulated
environment. Thus robots are practically our modern day “workforce”.

Figure 27: Scheme showing the main
idea behind the new concept of
"Master Builder"

Original Contribution 2.4

35

2.4. Proposed Framework for the design and build
of structures using RL Agents (AI- Supported
Agents)

In this section, the proposed framework is introduced, where AI, construction
robotics and digital fabrication are situated in the core of the proposed
workflow. As explained earlier, this framework revives the concept of “Master
Builder” and initially speculates that an AI-centered design can inspire a new
paradigm shift that redefines how we design and construct our buildings.

In Figure 28, the proposed framework is composed of 5 phases: Design Intent,
Site Data Acquisition, Legislation, Learning and finally Robotic Execution.
These phases can be explained as the following:

2.4.1. Design Intent

This is simply the initial phase of the project where a designer starts to
brainstorm about an initial idea to start the project design. As a source of
inspiration, the framework proposes some methods:

• Sketches – Main Contributor: Designer
In this traditional solution, the designer holds a pencil in
his/her hand and starts to brainstorm an idea and think about
an inspiration after studying project details.

• Machine Hallucinations – Main Contributor: Designer + Agent
(Machine):

o In this solution, the machine, or an “AI Agent”, acts as a
catalyst for inspiration. Part of the idea evolution will be
initiated by the designer and then by the help of one of the
forms of machine “Hallucination”, the designer can get
inspired by what a machine can produce. For instance, style
GANs (Generative Adversarial Networks) can be used to come
up with “new” images based on a certain architectural style, or
a mix of styles, that the designer initially trains the machine on.
After proper training the Network can produce images that
have never existed before yet follow in their form the input
“style” or mix of “styles”.

o This solution is thus considered one of the forms of human –
machine collaboration in the early phases of design. The AI
agent is thus acting as a designer assistant.

• Only functional Structure – Main Contributor: AI Agent
o In case the focus is more on a functional structure more than

the aesthetics or uniqueness of the building, the solution could
be carried out entirely from an AI Agent database. In other

2.4 Original Contribution

36

words, the design intent can be directly formulated in the
succeeding legislations phase set by the designer and followed
by the AI Agent to achieve the building requirements.

o This solution relies, more than the others mentioned, on the AI
Agent so the design intent mentioned in the framework from a
human designer perspective could be skipped.

2.4.2. Site Data Acquisition:

This phase is the pivot to jump from the real world into the simulated one. The
accuracy of the data retrieved on-site is crucial to ensure a proper training of
the agents on the “actual” site conditions. There are many advanced data
acquisition technologies nowadays that can capture site details with high level
of precision. Examples of site data acquisition types could be:

• Site Topology:
o The forms and feature of site surfaces are variables that needs

to be captured with a considerable number of details. Later, in
execution phase, when actual robots can be deployed, if an
error has occurred from the beginning in the site topology,
misalignment of elements could occur relative to the proposed
position in the simulated environment. In all cases, there is
always a room for error, however this precision error should be
carefully controlled so that on a larger perspective it won’t
affect the project realization.

o This site Parameter can be considered, a variable parameter
that is never similar from one site to another. It can just be
considered as a constant parameter if the focus is the site itself.
This means that before any intervention on site, the parameter
values remain almost the same. However, during execution,
site modifications occurred but due to the actual activities done
on-site and not because of an external parameter.

o In most cases, site topological data is captured using laser
scanners. These can vary from mobile scanners mounted on
devices to fixed scanners mounted on tripods on site.

o Similar parameters could include: Soil Layering and Scanning
the surrounding elements around the construction
(deployment) site.

• Prevailing Wind:
o Prevailing wind is wind that blows consistently in a given

direction over a particular region on Earth [62]. Due to factors
such as uneven heating from the Sun and the Earth's rotation,
this wind varies at different latitudes on Earth.

o In dense urban areas, wind blowing on site becomes less reliant
on prevailing wind direction. The parameter that becomes

Original Contribution 2.4

37

more crucial is the distribution of the buildings surrounding
our site. This building configuration determines how the wind
flows in and out of the construction site.

o Therefore, prevailing wind data needs to be combined with
accurate data on the surrounding structure in case of
constructing in a dense urban area.

2.4.3. Design and Construction Legislation:

The phase is considered the starting point for revolutionizing the traditional
workflow currently adopted. First, there is no more separation between design
and construction, so both are regarded as one complete objective that is
completed once an AI Agent succeeds in building an entire structure. The
main responsible for this phase is the “Master Builder”, and the AI Agents are
considered as the students or the “Craftsmen”. Thus, the process can be
divided into the following:

• Simulation Environment Check:
The designer has to initially make sure that the simulated
environment parameters are well aligned with the actual site
conditions.

• MDP Definition and Rewards/Penalties Assignment:
This is considered the core of the legislation phase. The
designer should first define how the “Real” Design and
Construction Problem will be translated into a Markov
Decision Process (MDP). MDP is the way we could describe the
environment in RL terms for the agent to Understand [63].

Then the designer needs to set the rules through which he/she
can find it appropriate for helping the Agents succeed in the
learning process and completing the tasks required from them.

The rules can be translated in Reinforcement Learning terms
as Rewards and Penalties; rewards being positive incentives
given when the agent accomplishes a certain task and penalties
being a form of punishment that indirectly informs the agent
that it did something wrong or failed to achieve a certain task.
Both rewards and penalties are considered a form of
translating the tacit knowledge that the designer “Human”
possess into certain criteria that the agent uses as its main
guide during the learning process.

• RL Algorithm Selection:
o The designer needs to consider the RL Algorithm(s) convenient

for the tasks required to be solved by the agent. The proper
selection of the learning algorithm, as well as the

2.4 Original Contribution

38

hyperparameters, could help in speeding up the learning
process of the Agents. This process requires some knowledge to
be acquired by future architects/designers in order to easily
adapt to this new paradigm shift.

o The process of RL Algorithm selection implicitly includes the
whole planning process that is accompanied by the selection
process. For instance, issues to be discussed and planned
includes, but not limited to:
 Hierarchical division of the RL-Problem into sub

problems to facilitate better learning process for the
Agents.

 Combination of more than one algorithm to solve
discrete parts of the problem.

 Selection and Adjustment of the type of the algorithm
to fit the MDP definition and the type of Agents
involved (single vs Multi-Agent, Competitive vs
Collaborative Agents ..etc.)

• Hyper Parameters Adjustment:
This task is executed in parallel with the Agent Learning phase
(the succeeding phase). Since the relation between Legislation
and Learning phase is iterative (as shown in Figure 28), there
is a need to monitor the learning process and the ability of the
agents to pick up the lessons “quickly”. Based on the
performance of the agents in the simulated environment, the
designer needs to fine tune, every now and then, the
“hyperparameters” to make sure that the learning process is
running smoothly.

• 3D GANs:
An additional feature that can be deployed in the future is 3D
GANS. The actual application in the workflow remains flexible
depending on how quick the advancement in this branch would
evolve.

3D GANs could eventually contribute to not just a conceptual
“machine hallucination” but it could create a 3d-voxel-based
detailed design. Although such a refined level of outcome is not
yet reached, there could be a future potential in the
development of 3D GANs. The main obstacle remains the
massive number of voxels required for an architectural product
and the complex interdependent relationships involved
between different building elements that need to be respected
in the design.

Original Contribution 2.4

39

2.4.4. Design and Construction Learning:

This phase represents the time required for the agents to proceed from “Zero”
to “Hero” in terms of experience and knowledge of performing the task
allocated to them. To ensure the effective training, several procedures could
be adopted, this includes:

• Initializing multiple environments with Agents learning in parallel.
This procedure helps speed up the learning process.

• Variation of Environment Parameters to ensure that the agent can face
several circumstances during the learning process. This procedure
ensures that the agent, or the executing robot in real world, would be
able to adapt to variations in the environment and can be familiar with
these changes and be equipped with enough knowledge in the learning
process to be able to take the proper action in real world.

2.4.5. Robotic Execution:

Once the designer has seen that the agents have learned enough and that they
can perform the tasks required in a satisfactory way, the time comes to deploy
the learnt lessons in real world. The executing robots would then be equipped
with the “agents’ brain”. This would help translate the data perceived by the
robot sensors into the values understood by the agents in the “simulated
environment”. The agent would use the embedded Neural network model to
feed the right action to the robot based on the observed input data. The robot
would finally translate the perceived order from the agent’s brain into an
actual step or an action in the real world

Figure 28:Proposed framework for design and Construction using AI Agents and Robots

Original Contribution 2.5

41

2.5. RoBuilDeR – Proof of concept
“The Circle implies an idea of movement, and symbolizes the cycle of time,
the perpetual motion of everything that moves, the planets’ journey around

the sun (the circle of the zodiac), the great rhythm of the universe. The
circle is also zero in our system of numbering, and symbolizes potential, or
the embryo. It has a magical value as a protective agent, … and indicates

the end of the process of individuation, of striving towards a psychic
wholeness and self-realization” (Julien, 71).

RoBuilDeR is a developed application that works as a proof of concept for the
framework proposed. The application is developed in 2 versions namely:
“Human Version” (UV) and “Robot Version” (RV). The first is concerned with
providing an experimentation playground for the designers to evaluate
different game parameters as well as assessing the design and construction
rewards and penalties. On the other hand, the Robot Version represents the
learning environment for the Agents.

In accordance with the framework, the scope of the application is focused on
the Design and Construction Legislation phase and the Learning of Agents
phase. The Robotics Execution phase is regarded out of this research scope,
however there are many complimentary Literature that has investigated
Robotic Execution whether on or off-site. Accordingly, RoBuilder focuses on
the 2 phases that mainly differentiate the proposed framework from
traditional workflow and are considered the real paradigm shift.

Figure 29: Scope of Application of RoBuilDeR Versions with respect to the Proposed Framework

2.5.1. Design Intent and Inspiration for RoBuilDeR

The initial design idea that will be developed in this research is inspired by a
Roman miracle structure and one of the most conserved monuments of this
era [64], namely the Pantheon. The pantheon was initially constructed as a
temple in Rome dedicated to the Twelve Gods and to the Living Sovran [65].
Its present form is rebuilt by the emperor Hadrian (between 120-124 AD)

2.5 Original Contribution

42

[64]. The structure can be divided into 2 parts: the portico and the rotunda
(dome) (Figure 30). The dome of what is now serving as a church is the part
of interest in this research.

Figure 30: The Pantheon in Rome from the outside [66]

- The Rotunda (Dome) - Pantheon

The Rotunda is the spherical shaped dome structure. The height to
the oculus and the diameter of the interior circle are the same, 43.3 meters
(Figure 31) [67]. Almost two thousand years after it was built, the Pantheon's
dome is still the world's largest unreinforced concrete dome [68].

Figure 31: The Perfect Circle Inscribed inside the dome of the Pantheon Rotunda [69]

The uniqueness of the Pantheon in Roman Architecture as well as being highly
conserved due to its continuous use, yielded this building as a standard

https://dogedaos.com/wiki/Oculus.html

Original Contribution 2.5

43

exemplar of classical style revival. Hence, it has been copied several times in
modern times. The central hall of the U.S. Capitol in Washington, D.C., and
the rotunda of the General Grant National Memorial (Grant's Tomb) in New
York City are examples of modern architects replication of the Pantheon [70].

There are still ongoing studies regarding the mathematical, astronomical and
structural miracles conveyed in this monument. For instance, the structural
integrity of the dome was secured by a series of massive, concentric stepped
rings and the lightening of the dome by coffering and gradated, light-weight
aggregates [71].

At the very top, where the dome would be at its weakest and vulnerable to
collapse, the oculus actually lightens the load [72]. The oculus at the dome's
apex and the entry door are the only natural sources of light in the interior.
Throughout the day, the light from the oculus moves around this space in a
reverse sundial effect [73]. The oculus also serves as a cooling and ventilation
method. During storms, a drainage system below the floor handles the rain
that falls through the oculus (Figure 32).

Figure 32: (Left) A painting showing how the oculus and the entry door provided light in

ancient times vs a recent picture (top right) showing the sun light entering from the oculus and
reflecting in on the inside of the dome. (Bottom right) is an aerial view of the pantheon within
the surrounding urban context showing the portion of the dome left open which represents the

oculus.

2.5 Original Contribution

44

- The Endless Wall – Gramazio Kohler Research

On the other hand, this research project is also inspired, from the execution
side, by the project of Gramazio Kohler Research named “The Endless Wall”
and realized in 2011 [74]. This project is regarded among the very early
investigations of the capability of industrial robots to be mounted and
deployed in construction sites for building purposes. The mounted robot was
equipped with an end effector that can perform “pick and place” of concrete
bricks. The initial position of the brick supplies as well as the final position of
each brick in the “circular wall” (Figure 33) was designed and checked by the
responsible architects prior to execution by the help of a simulated
environment. This environment replicated the actual site where the robot had
been assigned to.

The main challenge in this task was to develop a “cognitive” language between
the real “imperfect” world and the counterpart “perfect” simulated
environment. A feedback loop was continuously checking the data retrieved
from sensors and laser scanners. Given the complexity and unpredictability of
a real construction environment the robot must be able to recognize its own
position, the surroundings, and its components with regard to the material
tolerances. Consequently, the robotic system has to respond to actual
tolerances and be able to adapt to changing conditions autonomously [74].
The robot unit employed an innovative scanning system which enables it to
orient itself and at the same time to process the information gained from
different materials and surrounding environment.

Figure 33: The Endless Wall, ETH Zurich, 2011 [74]

Accordingly, the 2 inspirational examples, combined, had a significant
contribution to the initial preliminary design of the proposed Brick Pavilion.

Original Contribution 2.5

45

Where the pavilion takes the “brick” nature of the “the Endless Wall” project,
backed up by the success in robotic execution, and combines it with the oculus-
dome inspired by the Pantheon’s “Rotunda” design.

This design also fits perfectly with the nature of bricks assembly with little to
none mortar or adhesive involved. The presence of an open-ended dome
would reduce the risk of falling bricks compared to the situation where the
dome has been completely closed with mounted bricks. This benefit is also
added to natural sunlight (Figure 34), stack ventilation and all the other
benefits previously mentioned regarding the role of the oculus in the
Pantheon’s design.

Figure 34: Imaginary Visualization Inside of the Brick Pavilion showing the Sunlight entering

from the "oculus" and projecting on the bricks inside

Figure 35:Imaginary Render of how the Brick Pavilion would look like

2.5 Original Contribution

46

Starting from a circle, the idea of one of the most remarkable monuments in
ancient times was born, and recently, from the simplest building unit; brick,
placed accumulated in a circular manner, one of the earliest modern
experiments of full robotic execution was rendered successful. Consequently,
the robotic brick placement and the design of curved oculus dome, combined,
are regarded as a perfect inspiration to the Brick Pavilion. This pavilion is
sought to one of the earliest trials for the design and construction of a building
executed by RL-Agents.

In the following sections, more details will be discussed regarding the design
parameters involved in the Brick Pavilion, as well as how these parameters
were employed within the game mechanics. In addition, a focus on the human
version of the game (UVersion) will highlight how the designer can visualize
the impact of changing one of the design parameters directly on the execution
of the pavilion.

Original Contribution 2.6

47

2.6. Game Development in Unity

Figure 36: Unity Logo

This section provides a brief explanation for the Choice of Unity platform for
the application development. It also provides an explained diagram of the
components and classes implemented in RoBuilDeR and the connections
involved between them. This diagram was initially based on the Human
Version (UV) of the game. The Robot Version (RV), however, has been
tweaked to accommodate the different methods and classes provided by ML-
Agents to allow for the proper external connection to the RL Algorithms
necessary for the training of the Agents.

2.6.1. Why Unity?

To answer this question, first it is needed to briefly explain what Unity is.
Unity is a cross-platform game engine developed by Unity Technologies. The
engine can be used to create three-dimensional (3D) and two-dimensional
(2D) games, as well as interactive simulations and other experiences. The
engine has been adopted by industries outside video gaming, such as film,
automotive, architecture, engineering, construction, and the United States
Armed Forces [75].

Given the successful simulations carried out on this engine in the AEC
industry, this game engine has also specific characteristics that is compatible
with the nature of simulation required by this research. These characteristics
could be summarized to the following:

• Physics-enabled environment.
o Unity helps in simulating physics in a proper way to correctly

accelerate and respond to collisions, gravity, and many other
forces [76]. Regarding the 3D physics, Unity integrates and
relies on Nvidia Physx engine. This allows for an efficient quasi

2.6 Original Contribution

48

realistic response to all physics behaviors for an object. This
allows for the automatic linking of an object response based on
the material it was assigned to. In this research, the building
bricks were modelled in Concrete. However, by changing the
material type and properties the physics engine will handle all
the changes implicitly and there would be no need to change
any other thing from the user side.

o Nvidia Physx helps as well in simulating gravity for when the
bricks fall. The gravity effect can also be witnessed when
stacking a high pile of bricks on top of each other, where some
tilting and slight variation in the original position could occur.
These variations greatly help the agent in understanding some
of the imperfections that occur in the real world.

o It also detects and simulates collisions between bricks and even
the effect heavy wind blowing on the stability of binder-free
stacked bricks.

Figure 37: Nvidia Physx-supported Unity 3D environment can simulate complex behavior

robotic tasks with high accuracy [77]

• Reinforcement learning compatible environment (ML-Agents):
o The Unity Machine Learning Agents Toolkit (ML-Agents) is an

open-source project that enables games and simulations to
serve as environments for training intelligent agents. The
toolkit provides implementations of the of state-of-the-art
algorithms to train intelligent agents for 2D, 3D and VR/AR
games. Toolkit is mutually beneficial for both game developers
and AI researchers as it provides a central platform where
advances in AI can be evaluated on Unity’s rich environments
and then made accessible to the wider research and game
developer communities [78].

Original Contribution 2.6

49

o This facilitates the direct transformation of an application
manipulated by human users into a learning environment for
Reinforcement Learning (RL) Agents to train. In addition,
imitation learning could also be easily integrated by recording
human players’ moves in the game and providing these
recordings for the agents to learn from.

Figure 38: Different ML-Agents sample environments [79]

• Time Manipulation:
o Along with the previously mentioned 2 factors, time or frame

manipulation of physics effects are a crucial factor in the
learning of the agents. For instance, given that the time speed
during the learning process could learn 10x to 20x the normal
time speed in real life, the effect of physics simulation should
also be configurable to cope with such a change in the speed.

o For instance, if a brick takes 1 second to fall from a certain
height in real world and in normal times, such an effect should
be reduced to 0.1-0.05 seconds during the agent learning
process depending exactly on the value of “time scale” in which
such simulation is running on. Otherwise, bricks falling, or any
other PhysX process will be too slow compared to the current
time speed the simulation is running on and hence there will be
a major discrepancy in the agents’ behavior when applied in the
normal time scale and in the real actual situations.

2.6 Original Contribution

50

• Interoperability
o This feature allows the smooth transfer of data of any source

and integrating it with the model developed in Unity. Examples
of interest could include point cloud data from laser scanners,
data from different sensors, and geometry from CAD
environments like (Rhino, Autodesk Revit, ArchiCAD..etc.).

• Supporting almost all available platforms.
o The developed application especially for the UV can be easily

exported and launched on any platform like IOs, Android,
Windows Desktop, Mac OS, Linux, and WebGL [80].

Figure 39: Unity 3D supported platforms [81]

2.6.2. Component and classes Diagram

Given the explanation of the reasons behind the development of the
application in Unity, the following sub-section demonstrates how the game, in
its 2 versions, is divided in terms of components (game objects) and classes
attached to them. This is explained in the form of Components and Classes
diagram as in (Figure 40).

This diagram identifies the main Game objects which are the term used in
Unity for referring to elements or units deployed in a game scene in the
application. For each Game object there could be a script class attached to it.
This C# script defines a certain behavior to the attached Game Object. Unity
allows the attachment of the same script to multiple Game Objects and allows
the attachment of several scripts to one Game Object as well.

Therefore, the visualization of such complex relations in an abstract way like
in a diagram could easily help understand the main scripts and game objects
involved in the application. Such a demonstration tool helps also during the
actual development itself of the game.

Figure 40: Components and Classes Diagram RoBuilDeR

2.6 Original Contribution

52

In the following table (Table 1), a more detailed explanation of the important
Game Objects and Scripts is demonstrated as well as the indication of whether
this class is only available in UV of the game or is also present in the RV.

Table 1: Explanation of Main Game Objects and their attached scripts (if any)

Game
object

Explanation Attached
Script

Explanation Available
in

UV RV
Main
Camera

Controls the main Camera
deployed in the Scene

CameraCont
roller.cs

In UV, keyboard and mouse
controls are enabled to allow
for the ease navigation of the
scene and visibility of all sides
of the pavilion during
construction.

Y Y

Building
Area
(Environ
ment)

Each Instance of a "Building
Area" GameObject includes
all Active Gameobjects
required during gameplay.
In case of the instantiation of
bricks, windows, or doors,
they will also be inserted in
the hierarchy under the
“Building Area” they were
instantiated in.
In case of UV, there is
generally only 1
Environment, however in
RV, multiple environments
are instantiated in the same
scene, during training
process, to allow for parallel
learning of the agents in
different environments
simultaneously. Thus, this
configuration yields a more
effective learning.

None Y Y

Player Parent ->
Environment(Building
Area)
The GameObject has no
physical existence. However,
it is considered as the player
that manipulates the design
and building process with

Robuilder.cs Main script in the game that
takes control of the game
mechanics during "Game Play
Mode" and handles all the
processes like:
Instantiating bricks, Windows,
or Doors
Instantiation, and the update
of "Insertion Spheres". These

Y N

Original Contribution 2.6

53

the help of the script
attached

spheres are potential points for
inserting bricks, doors or
windows later on in the game.
Handling the change of
decision between inserting
brick, door or window.
Handling the physics behavior
of the bricks and controlling
when to disable this
parameter.
Checking the success or failure
of a game episode and
reporting to the game manager
Updating the score with the
help of methods from external
static classes.

RobuilderAg
ent.cs

This script is only used in the
RV of the game and in addition
to all the processes already
executed by the Robuilder.cs
script, it also acts as the
GameManager and implies all
the methods needed to be
implemented by ML-Agents
toolkit in order to be able to
convert the problem into a
Markov Decision Process
(MDP) necessary for training
the Agents.

N Y

Circle
Gird

Parent ->
Environment(Building
Area)
This GameObject includes
the "building ring territory"
attached to it. This ring
represents the available
initial circular boundary
available for brick insertion
at the beginning of each
episode.

CircleGrid.cs This script has all the
functions needed to calculate
the initial "base sphere points".
These are the points that are
instantiated only at the
beginning of each episode to
represent the allowable
insertion points for new bricks
or door.
It also contains several static
functions that are concerned
with the translation from one
point on the circle to another,
dealing with angles, and
vectors at various heights.

Y Y

Ground Parent ->
Environment(Building
Area)

GroundColli
sion.cs

The script has only one
function "OnCollisionEnter"
that detects whenever a brick

Y Y

2.6 Original Contribution

54

The available Ground "Land"
in each environment
instance.

has fallen and collided with the
ground at any point. Thus,
only when the collision has
been detected, the method
would report this event to the
"Listeners" in order to take the
appropriate actions (ending
the game or showing the Game
Over GUI in case of UV).

Brick Actual Brick instantiated
during game play

Brick.cs Brick-Specific methods and
variables that differs from one
brick to the other.

Y Y

Window Actual Window Opening
instantiated during game
play

Opening.cs Depending on the type of the
Opening and its insertion
location, each instance would
have its own specific values for
different variables.

Y Y

Door Actual Door Opening
instantiated during game
play

Moreover, Table 2 provides an explanation of the static independent classes
that contain different methods used inside of the main scripts.

Table 2:Explanation of the Main Independent Static Classes

Independent
Script

Explanation

ScoreUtil Contains all the static methods for the calculation of rewards/penalties based on the
current action taken. For example, if a brick is inserted, the "Robuilder.cs" script recalls
the static functions from "ScoreUtil.cs" that would eventually calculate if this brick at
this position generates any kind of reward or penalty. If yes, such a value would be
reported to the score manager, cumulated to the current total score and appears on the
screen (in case UV). In case RV, the score reported from a "ScoreUtil.cs" method is
directly inserted in a method called "AddReward()" which is responsible for collecting
and accumulating rewards and penalties for each agent in each episode.

BrickLogic Contains all the static methods related to the insertion of brick and its relationship
with the surroundings. It also contains methods for:
- Generating insertion points above each new brick
- Checking the possibility of clash if a brick would be inserted in one of these points
later.
- Generating Insertion points for bricks on the top of any Window or Door Openings
and methods for performing same safety checks for regular bricks insertion.

Original Contribution 2.7

55

2.7. RoBuilDeR – Human Version (UV)
In this section, UV is explained in more detail. It starts with a demonstration
of the User Interface (UI) and the illustration of different GUI objects on the
screen. Then, a brief walk-through of the several actions that could be taken
during gameplay and possible consequences are presented. Afterwards,
different scenarios leading to ending game or to game completion is discussed.
Finally, the section ends with a list of all properties that can be controlled by
the designer to adjust different design and construction parameters. These
parameters are then utilized for the learning process of the RL-Agents.

2.7.1. User Interface

- Start Menu
In this sub-section, different canvases of the game will be displayed and briefly
explained. The game starts with the preparation guide with optional tips
regarding game mechanics is offered. Afterwards, the game play features start
to appear on canvas once the actual game starts. Depending on the progress
in the game, “Game Completion” or “Game Over” screen would eventually
appear. In case of pausing the game, the pause menu appears.

To start with, once the HV game is open, the following screen appears:

Figure 41: Start Screen in RoBuilDeR

Figure 41 is the start screen where it shows in the background an imaginary
render of the Brick Pavilion in addition to the highlighted items, namely:

1. Start Tips (Button): On clicking, a series of game tips is shown.
2. The Game name is shown on the bottom left side of the screen
3. Skip Tips (Button): On clicking, the game moves immediately to game

play canvas and the game starts.

2.7 Original Contribution

56

Figure 42: First Screen Appearing in for Game Tips Provided. It gives brief explanation of

RoBuilDeR

Figure 42 is the first screen appearing after clicking on “Start Tips” Button.
This first screen provides a brief explanation of RoBuilDeR and the
motivation behind developing this application.

Afterwards the following series of screens are shown consecutively (Figure
43). These screens explain each icon featured during game play, and how they
get updated or changed based on the performance of the player and achieving
certain milestones during game play.

Figure 43: Tips provided regarding Game Play Canvas Features

Original Contribution 2.7

57

Following the explanation of different Game Canvas features, the last group
of game tips are shown. These tips explain how rewards/penalties work during
gameplay as well as demonstrating a game over scenario (see Figure 44).

Figure 44: (1,2 and 3) Rewards Explanation. (4) Game Over scenario Demonstration

- Pause Menu

Finally, during gameplay, once the “Esc” button is clicked, the Pause Menu
appears. It includes the following:

1. Resume (Button): Resumes the game
2. Restart (Button): Restarts the game turning back to the first screen.
3. Quit (Button): Exits the Application.

Figure 45: Pause Menu and its components

2.7 Original Contribution

58

2.7.2. Game Play and Functions

In this sub-section, the game controllers and navigation keys are introduced,
followed by a demonstration of possible actions taken during gameplay.

- Game Play Navigation Keys

Figure 46: Keyboard and Mouse Controllers

Figure 46 shows the keyboard and mouse buttons highlighted in different
colors. Their functions can also be summarized in the following table:

Table 3: Summary of different keys/buttons used in the game and their corresponding functions

Keyboard /
Mouse Button

Function

Esc Pausing / unpausing the game

W / A / S / D Navigation Forward - Left - Backward - Right

Q / E Rotation Clockwise/Anticlockwise

F Changing between brick and window mode

G Changing between brick and door mode

Left Mouse Button Insertion of the Current Unit in the nearest
possible position (if exists)

Scroll (Mouse) Zooming

Original Contribution 2.7

59

- Game Play Actions:

Since the goal of the game is to realize the Brick Pavilion, the main game
actions can thus be summarized into: Brick, Window and Door Placement.

A. Brick Placement:

Brick is the fundamental building unit in the pavilion. Once a brick
is inserted in one of the available positions it becomes instantly
part of the structure, i.e.: the player can no longer move the brick
from its place, and its color changes from transparent to its own
material (ex: concrete). Once the player clicks and the brick is
inserted, another new “transparent brick” is instantiated at the
cursor’s current position on screen (see Figure 47).

Figure 47: Steps of Insertion of brick: (1 - 2) Moving from random position towards the desired

position, (3) Clicking and Placing, (4) Instantiation of new real brick in the nearest possible
position and transparent dummy brick shift over the newly inserted brick.

This “fake” brick directly follows the point at which the cursor is
pointing on the screen translated to actual 3d position in the
environment. The motivation behind the transparent dummy brick
is to give the player a chance to evaluate the possible placement
positions for the next brick before actual placement takes place
(see Figure 48).

2.7 Original Contribution

60

Figure 48: Dummy brick adjusts its position based on its location on the circular grid. This

helps the player in visualising any “hypothetical” brick position before actual placement

Moreover, the action of placing a brick can be categorized into 3
scenarios:

o Brick Placement on the base ground: The bricks are based
directly on the ground by selecting one of the available “base
spheres” points. This term comes from the fact that these are
insertion points lying on the base ground.

Figure 49: Base Sphere placed on the ground

o Brick Placement on top of existing bricks: These bricks are
placed on safe positions that are available on the exposed face
of the existing brick structure. These safe positions are
represented by circular spheres as in Figure 50.

The sphere points and their location depend on many factors.
For example, one factor is the proximity and actual location of
bricks, doors, and windows in the vicinity of this brick which
could cause clash with the newly inserted brick. Another factor

Original Contribution 2.7

61

is the value of a parameter adjusted by the designer that
controls the abundance of these points. Also, the current phase
of construction, i.e., dome construction, base construction,
windows insertion etc., could directly affect the number of
points due to geometry variations occurring in the structure.

Figure 50: Insertion Spheres on top of existing bricks are highlighted, the numbers represent the

type of each sphere, namely: Center Point (1), Wide Point (2), Star Point (3).

o Brick Placement on top of window or door lintel: Once the bricks
confining the window or door opening on both sides, reach the
upper level (lintel) of such opening, a new set of insertion points
are enabled on the opening. These new points allow bricks to
be built on top of the opening. As for their type, they fall under
the category of “base points”. Accordingly, these points follow
the same rate of distribution and angle separation of base
points initiated on the ground (see Figure 51).

Figure 51: Base spheres inserted on top of Window

2.7 Original Contribution

62

Independent of the type of insertion point, once a brick is placed, a “Virtual”
brick collider captures all the existing insertion points being occupied by the
physical volume of the new brick. It also captures and deletes “nearby
insertion points that if, afterwards, a brick is to be inserted in one of them, it
would coincide with the volume of the newly inserted brick. This would lead
to the creation of a crash and perhaps a collapse in the brick structure if such
an event occurred during gameplay. Therefore, the role of a “brick collider” is
to prevent the occurrence of such an event before happening by performing
this quick check every time a new brick is to be placed (Figure 52).

Figure 52: Steps of inserting a brick while focusing on the role of the invisible “Brick Collider”.

It deletes not only white points but also red points that would lead to a clash of a new brick
would be inserted in one of them.

This kind of assumption could be replicated in real world with the help of
visual sensors. These sensors could give instant feedback to the simulator
about the current “geometry” of the structure and then the “brick collider”
could perform a “clash detection” check on the real current structure
information that were transformed to the virtual world.

To sum up, there are 4 types of insertion points that may appear:

Table 4: Insertion Sphere Points Summary

Insertion
Sphere

Position When it is generated

Center
Point

Exactly on top of the centroid
of a newly placed brick (see
Figure 50)

On new Brick Insertions

Original Contribution 2.7

63

Wide Point On top of a newly inserted
brick on both sides of Centre
Point (if possible) (see Figure
50)

On new Brick Insertions

Star Point In between two Bricks, being
one of them the newly
inserted brick, on condition
that there is enough
"support" that could be
provided on both sides for
any brick to be later inserted
in that point (see Figure 50)

On new Brick Insertions on the
condition that there exists a
brick next to it, that is close
enough to provide a simply
supported beam effect on any
future brick inserted in that
point.

Base Point On the ground / On top of
Window/ Door Openings (see
Figure 49

At the beginning of the Game /
When 2 sides of bricks
surrounding an Opening reach
the same level as the top of the
opening.

B. Window Placement:

Same as the conceptual sequence for adding a brick, the window
can be added in the same manner. However, the window “Box”,
differs from the placed brick since it is not considered as “Physical
Element”, rather than a “Void” space that is open to the outside.
Inside this “Void” it is not possible to have any brick insertion
points.

A ‘Window Collider” is equipped with some sequential rules to
define the time at which the bricks from both sides of the
“Window” have reached the top height of the box. In this case the
cursor can hover over the top of the box and additional insertion
points become available on top. This procedure allows the closure
of the Window Void by bricks from top. It approximates the
presence of a “Window Lintel” in real world.

In this version of the game, windows are programmed to only be
inserted on “Centre Points” or “Star Points”. Therefore, it is not
possible to place windows on “Base Points”. This prevents the
occurrence of situations like the insertion of a window on the
ground or the placement of a window opening exactly on top of
another one. However, prevention of inserting windows on “Wide
Points” is a design choice. Therefore, it is an option that can be
altered by the designer based on the needs and has only an
aesthetic effect.

2.7 Original Contribution

64

Figure 53: Window Insertion Steps. (1) All insertion Points are Visible. (2) Converting to
window mode and disappearance of inadequate points. (3) Placement. (4) Brick mode is

automatically recalled

C. Door Placement

Placing a door has almost similar properties as that of windows, in
terms of possibility of adding new “base points” on top of the Door
Opening once bricks from both sides reach that level. However,
door insertion differs in the logical functional property as an
“opening” for people to enter the pavilion. Accordingly, door
insertion is allowed to be inserted only on the ground. Thus, it can
be deployed on “Base Points” that lie on the ground.

Figure 54: Door Placement Process

Original Contribution 2.7

65

2.7.3. Score and Progress Tracking

Since the first aim of UV is to let the designers test the conformity of the game
against the real process, once the functional properties are approved, the
second objective comes into action. This second objective focuses on 2 main
iterative tasks. The first one is adjusting and fine-tuning the rewards the agent
relies on for a smooth learning path. The second is adjusting the methodology
of progress evaluation.

This later process could help in the appropriate division of the complex goal
of designing and constructing the pavilion into sub-tasks, making it easier for
the agents to learn. In case of using multiple robots, each having a different
capability on-site, this task division could also help in distributing these tasks
among them, hence, working with a multi-agent environment.

Accordingly, UV provides 4 “visual” metrics to track the Score and Progress
instantly during game play. These metrics are: Total Score, Instant
Achievement, Design Progress and Construction Progress. They are visually
tracked through a score counter, an achievement pop-up, progress bar design
and another for construction respectively.

- Cumulative Score Counter

It is a counter located on the top center part of the game screen that
accumulates the rewards received during a certain episode of the game. The
score can also be negative if the total sum of penalties are more than the
rewards achieved during an episode.

Example of rewards experimented:

Table 5: Examples of Rewards/Penalties experimented in UV

Unit Reward / Penalty Explanation
Brick Consecutive Bricks Inserting bricks in series on

the same level
Far Bricks Inserting bricks far away

from each other
High Bricks Inserting bricks at a higher

level from the current lowest
incomplete level

Window Sill Height Placement of window on an
appropriate height from the
ground

Cross Ventilation Benefit from wind direction
in a way to maximize this
effect

Stack Ventilation

Door Minimize Wind
Capture

Placing the door away from
prevailing wind direction

2.7 Original Contribution

66

In the following images from the game, there are some examples of rewards
achieved or penalties received among the ones included in Table 5. The
rewards are eventually summed up on the Score counter on the top of the
screen.

Figure 55: Window Placement achieving 2 positive rewards for proper sill height and stack

ventilation achievement.

Figure 56: Reward for consecutive bricks placement

Original Contribution 2.7

67

Figure 57: Penalty for placement of far brick

- Achievements Pop-Up

Achievements Pop-ups gives instant feedback to the user if a certain action, or
set of actions, led to a positive reward or a negative penalty. Each pop-up is
composed of 2 parts: a text representing the kind of reward/penalty given and
a numerical value for such a reward/penalty. Positive rewards are shown in
black color while negative rewards are shown in a red color, as shown in
Figure 58.

Figure 58: 2 types of Pop-up text are shown. (left) is a reward pop-up while (right) is a penalty

pop-up.

2.7 Original Contribution

68

- Design and Construction Progress bars

Figure 59: (1) Design Progress Bar (2) Construction Progress Bar

Design and Construction Progress Bars can be considered as a visual tool to
highlight benchmarks achieved during gameplay. These benchmarks could be
related to carrying out a certain number of actions that eventually leads to the
completion of a design or a construction task (see Table 6, Figure 60, and
Figure 61).

Table 6: Examples of tasks that contribute to making progress in their relevant Design or
Construction progress bars

Bar Type Achievements contributing to the Progress

Design Stack Ventilation
Cross Ventilation
Windows having adequate Sill height
Adequate Placement of Door Opening
Consistent Brick Perforations

Construction Each completion of a full level of bricks

Figure 60: (1 -> 2) & (3 -> 4) Snapshot of before and after completing a Design Task and

Monitoring the increase of progress on the Design Progress Bar

Original Contribution 2.7

69

Figure 61: (1 -> 2) & (3 -> 4) Snapshot of before and after completing a Construction Task and

Monitoring the increase of progress on the Construction Progress Bar

2.7.4. Completion and Game Over Scenarios

Succeeding in reaching the required height of the building while achieving
satisfactory results in design and construction tasks during game play are the
main indicators of “Success”. This achievement signals the entire completion
of the Brick Pavilion. To reach this goal, converted to numerical values, the
player must have a positive total cumulative score and with no more
“Insertion Points” available in the game while having reached already the
required final height of the “Oculus”.

On the other hand, failure could occur for many reasons, some of which were
already mentioned in the previous sub-sections. The following table
summarizes the different scenarios, that are present in the current version of
the game, that leads to failure in finishing the game successfully. Each scenario
is classified based on whether it is related to an inadequate design aspect or
improper construction execution sequence.

Table 7: Summary of Probable Game Over Scenarios

Type of
Failure

Cause of Failure Possible occurrence Scenario

Design No Door Placement Consuming all sphere-insertion
points available on the ground level
in placing bricks, which makes it no
more possible to place a door
opening on the ground in the game

2.7 Original Contribution

70

Another Scenario could be the
insertion of windows in a way that
doesn’t give a space anymore for
inserting a door. *

Inadequate Door
Placement

Placing the entrance door to be
facing prevailing wind direction.

No Window
Placement

Reaching the starting height of the
dome (point at which the radius of
placement circle starts to shrink),
with no windows inserted yet.

Inadequate Sill
Height for Windows

Placement of windows either very
close to the ground or higher than
the average height at which a normal
window would be placed

Poor Cross
Ventilation

Rearrangement of Windows in a
poor way in terms of benefiting from
Cross Ventilation Effect.

Poor Stack
Ventilation

None of the Windows inserted in the
game are facing the prevailing wind
direction.

Uneven large gaps
in the design

Having uneven, discrete, large gaps
in the overall shape of the pavilion.

Construction Poor Brick
Placement
Technique**

Getting a consecutive penalty due to
the insertion of bricks in a sequence
that has fewer consecutive bricks
and more "far" or "distant" bricks.
Far and distant bricks were
explained in Section 3.7.3.

 Brick Collapse Falling of bricks on the ground or
even the tilting of a brick more than
a certain threshold after its
placement. This threshold is part of
the parameters defined by the
designer before the start of a game
episode.

Notes

* During the placement of a window or a door opening, the game is
programmed to leave an obligatory space between this opening and any
future openings. This obligatory distance is one of the parameters that
the designer shall decide on its value before the game starts. The reason
for leaving this space is to allow for adequate brick separation between
any 2 openings and provides a structural support as well for the

Original Contribution 2.7

71

placement of the lintel for different openings, and for the support of the
upper dome.

** Placement of a sequence of bricks in such a way that consumes more
"energy" by the executing robot or may increase the obstacles in the
robot paths caused by the placed bricks themselves. First, in this game
it was assumed that there is only one "hypothetical" mobile robot
equipped with a crane system that allows the robot base to be elevated
upwards when needed (see Figure 62).

Therefore, the optimum goal is to insert the bricks in a way that
reduces the practical distance between the supply and demand points
and to always try to provide more "freed-space" for the robot arm to
move. Since this tool path planning is out of the scope of this research
and many efficient solutions to solve this issue were already provided
and tested in both research and practice, it was still necessary to
include its "Core concept" in the execution process. So, to translate this
issue into tangible simple values, 3 parameters were assessed:
Consecutive placement of Bricks, High Placement and Far Placement.

Optimum placement strategies were regarded as the one in which
bricks are inserted consecutively one after the other and avoiding as
much as possible placement of bricks at much higher levels than the
lowest incomplete current one. However, this aspect was overlooked in
the dome construction phase. During that phase, much priority was
given to inserting the bricks in whichever way that maintains stability
of the structure during and after placement.

Figure 62: Imaginary render of KMR QUANTEC [82] working on site

2.7 Original Contribution

72

The following 2 figures provides actual screenshots from the game where
“Game Over” menu is present, as the gameplay was rendered unsuccessful.

 The reason of failure in Figure 63 is due to the collapsing of bricks due to the
consecutive placement of bricks vertically over each other in one column. This
series of actions has led to instability in the structure and eventual collapse of
top bricks due to gravitational forces.

Figure 63: Game was over due to collapsing of bricks

In Figure 64, failure in completing the game was due to the consumption of all
ground points in placing bricks, that there is no more room for adding a door.

Figure 64: Game was over due to absence of a placed door on the ground

Original Contribution 2.7

73

2.7.5. Design and Functional Parameters Influencing the Game

This sub-section provides an overview of some of the main parameters
included in the application. These parameters are classified according to their
type of contribution into: Angular-Driven Parameters, Dimension-related,
Functionality-driven, Design-driven, and Physics-related respectively.

- Angular-Driven Parameters

Since the pavilion is built on a “circular” concept at its core, all geometric
values need to be “translated” to values easily interpreted in a “circular
environment”. For instance, space occupied by bricks and void left between
them can be easily expressed using angular values referencing the center of
the building; the point where everything revolves around. Such a translation
helps reducing the complexity of comparing different measurements and
provides a common ground for all terms.

The following figure (Figure 65) shows an example of different angles
calculated for voids and spaces on one level of bricks.

Figure 65: Different variables presenting identifying bricks and void positions from angular

perspective

These angles and their corresponding variable names are presented in the
following table. These variables are thoroughly used in game-calculations.

Table 8: Angular-driven Parameters Definition

Letter Variable Name Value*
A Half Brick Angle** 7.31
A' Half Brick Angle on Center Line*** 6.89
B (Full) Brick Angle 14.61
B' (Full) Brick Angle 13.78

2.7 Original Contribution

74

C A Space between 2 bricks -
C' A Space between 2 bricks on the Center Line -
* This value is based on the default circle radius. Any reduction in the radius

of the circle at later stages of dome creation, results in an increase in all
these values.

** Any letter ending without (') means that this value is calculated based on
the end tip of the unit in consideration

*** Any letter ending with (') means that this value is calculated on the circle
passing through the centroid of the examined unit.

- Dimension-related Parameters:

They represent the dimensions of the main units involved in the design,
namely: Brick, Window and Door Openings. These parameters give flexibility
to the Designer in visualizing how different options would look like.

The following table represents the actual dimensions used in both UV and RV.

Table 9: Dimensions of building units

Unit Length Width Height

Brick 1.2 0.64 0.24

Door 2 1.5 2.4
Window 2 1.5 1.44

- Functionality-driven Parameters

These group of parameters are more driven towards adjusting game-
mechanics and making sure that the logic behinds the game itself runs
smoothly. They are related to different logical aspects and may also contribute
to changing how the pavilion would look like. However, their impact on
functionality of the game could be seen as more dominant than their other
contributions.

These parameters are sub-classified based on their specific role they
contribute to. Some examples of these parameters are presented. Each sub-
group of parameters is shown in a separate table, where each parameter is
defined and explained.

Table 10: Group 1: Brick Related Parameters

Brick-related Parameters

Parameter Definition Function Default
Value

Range

Original Contribution 2.7

75

Offset
Distance
Percentage
of Brick
Factor

A percentage
multiplied by
half extents
of a certain
brick collider

Factor that contributes to
the detection of sphere
points needed to be deleted
once a new brick is
inserted. This value is
adjusted based on other
design parameters in order
to capture all points needed
to be deleted. This would
avoid a clash potential if a
point was missed, and
another brick was inserted
in that point afterwards
(see Figure 52).

1.04 [1.03-
1.3]

Search
Factor

It is a factor
multiplied by
half brick
angle at the
horizontal
level under
study.

Factor that contributes to
detecting nearby bricks on
both sides and on the same
level of the brick inserted.
The overall process
eventually helps in:
1. Assignment of star
points
2. Detection of gaps in
bricks for Design
Evaluation.

6 [1-10]

Figure 66: Search Factor Demonstration

2.7 Original Contribution

76

Table 11: Early Collapse Detection Parameters

Early Collapse Detection

Parameter Definition Function Default
Value

Range

Tilting
Limit
Factor of
Safety

Minimum
Value that the
dot product
between the
normalized y-
vector of a
specific brick
and the
normalized
global y-vector
(0,1,0) should
not exceed.

(Note: Y is the
Upper
direction in
unit, instead
of the
commonly
used Z)

This Crucial factor
determines the tilting of any
brick by comparing its
upwards unit vector to the
normalized Y axis vector of
the game using dot product.
The more the brick tilts, the
less the value of dot product
shall be. Therefore, this
Tilting Limit is an early
alarm in which once
exceeded, there is no need to
wait till a fallen brick
touches the ground to end
the game.
This factor is also crucial in
putting more constraints on
the instability of bricks. This
would encourage the player
to follow a more
conservative approach when
placing bricks, to avoid any
kind of instabilities even if
they might not lead to an
event of brick collapse.

0.9936 [0.97-
0.995]

Figure 67: Tilting Value Limit Demonstration

Original Contribution 2.7

77

Table 12: Opening Related Parameters

Openings related Parameters

Parameter Definition Function Default
Value

Range

xFactor
Half Brick

Factor greater
than 1 that is
multiplied by
the length and
width of the
original size of
an opening
collider.

 Factor that vertically
expands the collider
attached to an Opening
after it is placed. This
would help in any
upcoming step in capturing
the bricks on both sides of
such an opening. This
process is crucial to keep
track of bricks that
surround openings. For
instance, capturing those
bricks helps in determining
when the 2 brick-sides of
an Opening have been fully
completed This would
allow for the addition of
basepoints on top of the
Opening lentil for brick
placement. Therefore, this
factor helps in creating a
geometric trigger for any
brick insertion next to
Openings.

1.1 [1.1-
1.5]

Figure 68: Opening Colliders (in green) expanding after Insertion

2.7 Original Contribution

78

- Physics Related Parameters:

These parameters are mainly concerned with the periodic check of the
stability of the placed bricks. Since Nvidia PhysX engine is enabled, all bricks
will always have a “live instance” in the scene. Increasing the number of
bricks placed, is coupled with an increase in the computational power
required to keep track of the behavior of each brick.

To overcome this issue, a process named “Stability Check” is carried out
every “Late Update”. This test includes all bricks inserted and then several
incremental tests are enforced on each brick. If a brick is proven stable for a
“sufficient” amount of time. It will no longer be “alive” in the scene and will
considered static in its place.

Proper fine tuning of these parameters guarantees an evident boost in the
performance of the game with very limited effect on its real dimensionality.
In the following table, an example of these parameters is introduced.

Table 13: Physics-related Parameters

Parameter Definition Function Default
Value

Range

Stability
Counter
Threshold

Minimum
Integer
threshold
against which
each brick
stability counter
is compared to.
If the number
exceeds this
threshold, the
brick is
considered
stable.

Factor contributes to
assessing the stability of a
brick for a continuous
period after it was
already placed. It
eventually determines the
number of counts in
which the up unitary
vector of a brick remains
constant or within a very
narrow range of
movement.

10 [2-20]

Factor
Brick
Length
Physx
Vicinity
Below

A Factor
multplied by
brick length to
be compared
against the
horizontal
projected
distance
between 2 bricks
above each other

Factor contributing to
one of the stability
assessment checks
carried out during the
game. It would compare
the shifting distance of
the centroid of the tested
brick to the centroid of
the brick below. This
determines if they can be
considered almost below
each other or way shifted
and hence high

0.1 [0.01-
0.2]

Original Contribution 2.7

79

eccentricity could exist.
Other checks are
executed afterwards to
explore other factors that
could improve the tested
brick stability if they
existed.

Figure 69: Demonstration of the factor “Factor Brick Length Physx Vicinity Below”

- Design-driven Parameters:

This cluster of parameters directly affects the final design aspects of the
pavilion. The designer should decide, based on experimenting in the UV
environment, definite values to help train the agents at a later stage.

Table 14: Building Height Parameters and Ground Base Points Parameters

Building Height

Parameter Definition Function Default
Value

Range

TotalHeight Absolute total
height of the
pavilion required

- 8.4 [7.2-
9.12]

Ground Base Points Parameters:

2.7 Original Contribution

80

Parameter Definition Function Default
Value

Range

Multiplyer
Factor

A factor that is
multiplied by the
default number of
base points that
gets initialized at
the beginning of
the game

Factor that controls the
number of points
available at the the
ground base level for
bricks/door insertion.
Increasing this factor,
increases the amount of
placement choices
available at the ground
level.

1 [0.25-
2]

Figure 70: Comparison of the effect of different values of "Multiplying Factor" on the count of

ground base points

Table 15: Wide Angles Positioning Parameters

Wide Angles Positioning
Parameter Definition Function Default

Value
Range

Percent of
half Brick
Wide
Point
Insertion
(not used
in RV)

A
percentage
multiplied
by half of
brick angle

Factor used to determine the
position of wide angles on any
new inserted brick.
Increasing this value widens
the angle, calculated from the
center of the circle, between
the center Point and any of
the wide points. Maximum
limit is assigned to ensure
that the centroid of any new
brick inserted at that point
would be a sufficient distance
away from the tip of the
current brick. Since there is a

0.5 [0.4-
0.8]

Original Contribution 2.7

81

chance that the new brick will
be only supported on the
current brick only, this limit
prevents the new brick from
falling if its centroid is almost
on the edge of the lower
(current) brick.

Figure 71: Effect of changing the percent of half brick factor for wide points insertion on the

position of wide points (1 & 3). (3 & 4) The effect of this factor can be significantly witnessed on
the “Geometry” of a stack of bricks.

Table 16: Sill Height-related Parameters

Sill Height Related Parameters
Parameter Definition Function Range
Eligible Sill
Height
(Upper and
Lower
Bounds)

2 values in which the
sill height of a
window is compared
to.

If the sill height of window is
within these bounds, the
player is then eligible for a
positive reward, or at least it is
considered that this design
parameter has been addressed
properly. However, the more
the actual sill height value
would be further away from
the bounds (towards the
center value), the more
rewarding and acceptable this
process would be.

[0.48-
1.44]

2.7 Original Contribution

82

Table 17: Dome Design-Related Parameters

Dome Design-Related Parameters

Parameter Definition Function Range

Inward
step
(Upper
and
Lower
Bound)

2 values lower than
half of Brick Width,
that gets multiplied by
this width. This
results in upper and
lower bounds function
in the brick width.

These upper and lower bounds
are used in a “slerp” function to
determine the distance needed
to be moved towards the center
of the building once a new level
in the closure dome has been
reached (see Equation below).

[0.1-
0.4]

The following Equation demonstrates how the Inward Step Factor is
calculated depending on the height of the current brick:

𝐼𝐼𝐼𝐼𝐼𝐼 = 𝐼𝐼𝑆𝑆𝑙𝑙𝑙𝑙 × �
1
𝐼𝐼𝑆𝑆𝑙𝑙𝑙𝑙

𝐼𝐼𝑆𝑆𝑢𝑢𝑙𝑙�
𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟

Where:
ISF: Inward Step Factor
𝐼𝐼𝑆𝑆𝑙𝑙𝑙𝑙: Inward Step Value Lower bound (designer parameter)
𝐼𝐼𝑆𝑆𝑢𝑢𝑙𝑙: Inward Step Value Upper bound (designer parameter)
𝑆𝑆𝑟𝑟𝑟𝑟𝑙𝑙: Ratio between relative height from start of dome to the maximum dome height

𝑆𝑆𝑟𝑟𝑟𝑟𝑙𝑙 =
ℎ𝑎𝑎𝑙𝑙𝑎𝑎,𝑐𝑐𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑡𝑡 − ℎ𝑎𝑎𝑡𝑡𝑎𝑎𝑟𝑟𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟

ℎ𝑎𝑎𝑙𝑙𝑎𝑎,𝑠𝑠𝑎𝑎𝑚𝑚 − ℎ𝑎𝑎𝑡𝑡𝑎𝑎𝑟𝑟𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟

Where:
ℎ𝑎𝑎𝑙𝑙𝑎𝑎,𝑐𝑐𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑡𝑡: Absolute Current Brick Height
ℎ𝑎𝑎𝑡𝑡𝑎𝑎𝑟𝑟𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟: Absolute starting height of the dome
ℎ𝑎𝑎𝑙𝑙𝑎𝑎,𝑠𝑠𝑎𝑎𝑚𝑚: Absolute maximum height of the pavilion

Figure 72: Evidence of the effect of the exponential equation, used to design the dome, on the

incremental evolution of the section curve of the dome.

Original Contribution 2.8

83

2.8. Robot Version (RV) and ML-Agents
In this section, the Robot Version (RV) of the game is introduced. As discussed
earlier in the framework, this version of the game covers the “learning” part
of the agents and how such an environment could be created. The section
starts with a brief explanation of the MDP (Markov Decision Process) that
the agents need to be deployed within and train on solving. This is
demonstrated along with the translation of MDP into C# code, using the
methods and classes provided by ML-Agents. Then, a review is provided on
how the problem was decomposed into simpler problems “phases” to
overcome the game complexity

This is followed by a detailed explanation of how each different process
included in the MDP is being implemented using ML-Agents in the unity
environment. These processes start by stating the Actions taken in the
environment and how “Masking of Actions” was utilized. Afterwards,
Observations captured in each phase are demonstrated, along with
observables included in the changing-sized Buffer Sensor. The Reward System
for the agents is then provided for each phase.

Once the MDP key components are covered, a sub-section including all the
hyper-parameters used for training is provided. The hyperparameters for
each learning phase are presented separately. Finally, the section ends with
showcasing the Inference Mode of the game. This mode represents a
compilation of all the “separate” experiences gained by the agents in each
phase combined to form one complete structure.

2.8.1. Choice of ML-Agents for Implementing the Game MDP

In a typical Reinforcement Learning (RL) problem, there is a learner and a
decision maker called agent and the surrounding with which it interacts is
called environment. The environment, in return, provides rewards and a new
state based on the actions of the agent [83].

Figure 73: Markov Decision Process (MDP) [84]

2.8 Original Contribution

84

So, in reinforcement learning there is no direct orders given to the agent on
how to solve the problem, but rather, rewards are presented to the agent based
on the actions or series of actions taken throughout the learning process.
These rewards, whether positive or negative, help guide the agents on figuring
out what is the optimum “policy” that could be adopted in order to maximize
the cumulative rewards earned during gameplay.

To help achieve this optimum policy, we used the Proximal Policy
Optimization Algorithm (PPO) . PPO is an on-policy reinforcement learning
algorithm that uses a neural network to approximate the ideal function that
maps an agent's observations to the best action an agent can take in a given
state. It is motivated by the question: how can we take the biggest possible
improvement step on a policy using the data we currently have, without
stepping so far that we accidentally cause performance collapse?

There are several reasons behind the adoption of PPO, for instance:

• ML-Agents provides an implementation of PPO out-of-the-box. It is
considered the default algorithm in this toolkit. The ML-Agents PPO
algorithm is implemented in Pytorch and runs in a separate Python
process (communicating with the running Unity application over a
socket) [78] (see Figure 74).

• It is a method that has been shown to be more general purpose and
stable than many other RL algorithms [78].

• PPO can be used for environments with either discrete or continuous
action spaces [85]. This gave us the flexibility to experiment both
action spaces, however in the presented version of the game a
“discrete” action space is eventually adopted.

Figure 74: ML-Agents Toolkit high-level components

Original Contribution 2.8

85

2.8.2. MDP expressed in ML-Agents terms

As discussed in Figure 73, to formulate an MDP, we need to define the
required processes in terms of actual components interpreted from the game.
These components are then translated into a functional MDP through the
implementation of ML-Agents’ methods and classes.

- Environment

Our Environment in RV is considered the “Building Area” in which all the
“actions” take place. This “Building Area” is expressed in Unity as a game
object that contains all the other “Children” game objects involved in the
design and construction process. To maximize the training process, several
instances of “Building Area” were instantiated before training (see Figure 75).

Figure 75: Multiple Instances of "Building Area in the current scene of RoBuilDeR

Training using Concurrent Unity Instances is one of the features provided by
ML-Agents. Instantiating several environment instances allows the parallel
training of agents [86]. This process enhances the learning process in two
ways. First, it increases the learning speed, and second, it allows for better
encounter of different game scenarios based on some varying parameters in
each environment. This eventually yields an agent capable of adapting itself to
more diverse situations than an agent being trained only in one environment.

However, regarding the acceleration of the learning process, there is a
necessity to find the optimum maximum number of instances at which the
maximum learning speed limit is reached. This number depends on the
performance of the device on which the learning process is running on.

2.8 Original Contribution

86

Therefore, if the number of instances increases more than a certain threshold,
the speed is hindered, and the learning pace starts to slow down.

On the other hand, in ML-Agents, the word “Environment” has a larger scope.
The “Learning Environment” actually refers to the whole Unity Scene that
contains all game characters. This environment is linked to an external
Python Trainer that deploys the machine learning algorithm needed. This is
done through a communicator on the “Game Side” and the python low level
API from the Trainer side (see Figure 74).

The communicator on the game side is managed by Class Academy. This is a
singleton that manages agent training and decision making. On the other
hand, since we chose PPO as the learning algorithm, the access to the “built-
in” code settings, is accessible through the adjustment of the algorithm’s
“Hyper Parameters”. This adjustment takes place in an external configuration
file. This file specifies the hyperparameters used during training and it can be
edited with a text editor to add a specific configuration for each Agent’s
“Brain”. This file serves also as a container for the “Environment Parameters”
that might need to be modified during training (see Figure 76).

Figure 76: Example of configuration file (.yaml)

Original Contribution 2.8

87

- Agent(s)

In MDPs, the agent is the one who takes the decisions inside of the
environment. In other words, the agent uses the currently adopted policy to
decide on what next step it shall take. Therefore, during the learning process,
the Agent is the “student” that takes notice of the state it is in and starts to
learn based on the rewards and penalties received.

Similarly, in ML-Agents terms, an agent is an actor that can observe its
environment, decide on the best course of action using those observations, and
execute those actions within the environment [87]. The Agent
Implementation in Unity is accomplished by adding an implemented version
of the subclass (Class Agent) to a game object inside Unity.

In RV, the game object to which the (Class Agent) script will be attached to
is the “Player”. This Game object was previously receiving the input from the
Human User and handling the execution of these “actions” internally.
However, in order to be qualified as an agent, the “Player” has to implement
the Class Agent in one of its attached scripts and consequently the “Behavior
Parameters” component would be automatically added to the game object. In
our case, the class inheriting from Class Agent is “Robuilder Agent” (see
Figure 77).

Figure 77: “Player Agent” Game object Implementing "Agent" Sub Class and “Behavior

Parameters” as a prerequisite for qualifying as an agent

Regarding the behavior parameters, they are specific attributes of the agent
such as the number of actions that an agent can take, whether they are discrete
or continuous, the number of observations and their stacking, etc. A behavior
can be thought of as the function that receives the observation and rewards
and then decides which “Brain” will be fed by this information to come up
with an action [78].

2.8 Original Contribution

88

Accordingly, there 3 types of brains or “Inference Devices”, namely, Heuristic,
Learning or Inference.

• Heuristic Behavior: Is a behavior defined by hard coded rules, these
rules could also be adapted to receive input from the Human User. The
implementation function that should be filled with such a code is called
“ Heuristic(in ActionBuffers actionsOut) ”. It monitors the
Observations and Rewards and feeds the ActionBuffers with the final
actions. In our case, this function was primarily used as a debugging
tool, where mouse and keyboard inputs were allowed in order to test
and debug the new implementation of Class Agent before the actual
starting of the learning process.

• Learning Behavior: It is one that is not, yet, defined but about to be
trained. So, it means that once there is a valid external connection with
the Python Trainer, the Neural Network of the algorithm will be the
one in charge of the actions.

• Inference Behavior: Once we are satisfied with the learning behavior of
the agents, the training could be stopped. Then, the neural network file
(.onnx) containing the most updated weights can be placed in the
“Model Parameter” and thus the Behavior is inferred directly to this
Neural Network File without any training involved in the process.

To sum up, this sub-section provided an overall explanation of how MDP can
be implemented in Unity using ML-Agent’s toolkit. The transformation from
a UV to RV with the main “brain” being the neural network instead of the
human player has been briefly discussed.

2.8.3. Phases

In order to demonstrate how the Rewards, Observations and Actions of a
MDP has been formulated in our game and how they were implemented in
the language of “ML-Agents”, we need first to define what is the episode or
episodes that the agent will train on.

Due to the game complexity and to accelerate the learning process of the
agents, the decision was to break down the main objective into a set of
consecutive goals. These goals, or phases, are considered as a division and
separation of the design and construction of the brick pavilion into smaller
tasks.

The agent is exploring each of these tasks separately without any interference
with the other tasks or phases. Therefore, these phases are considered “stand-
alone” episodes that has its own rewards, observations, and actions. The main
challenge relies in 2 aspects: constraining the number of observations and
actions to the same number along all phases and finding a way to assemble
these discrete phases in inference mode in order to be able to build the pavilion.

Original Contribution 2.8

89

In this sub-section we will be confronting the first challenge, while the second
challenge regarding the way of combining the phases together after learning
is discussed in sub-section 3.8.8.

As for the first challenge, the reason we needed to maintain a constant number
of actions and observations in each phase is mainly because it is not possible
to change these parameters “automatically” when changing from one phase to
the other according to ML-Agents. Therefore, this concept would not be
violated by the proposed “phases” solution as long as each phase maintains
the same number of observations and the same “type”, branch sizes and
number of branches of actions as in Figure 78.

Figure 78: Behavior Parameters that it is required to be constant during the learning and

inference process

Regarding the training phase, an integer input parameter was added, within
the settings script, ranging between [0,4]. These values represent the 5 phases
that we decided to split the game into for training purposes. Before the
training of a certain phase, the gauge is set up by the human “Supervisor” on
the specific phase the agents are needed to learn. However, during the
inference phase these values are internally controlled to ensure an automatic
sequential transition of phases with no human interference. In the following
figure, a scheme of what kind of learning is involved in each phase is
demonstrated.

Figure 79: Phases Selection "Slider

Figure 80: Phases Demonstration for RoBuilDeR RV

Original Contribution 2.8

91

Based on the scheme provided in Figure 80, the phases provided can be
perceived and explained as follows:

- Door Insertion Phase:

In this phase, the main concern of the agent is the proper placement of the
door opening. The optimum placement of the door is to insert it as far away
from prevailing wind direction as it was previously explained in Table 5.

- Base Bricks Phase:

This phase is concerned with laying the bricks from the ground till reaching
the sill height for inserting windows. The main goal for the agent in these
phases is to keep the structure as sturdy as possible. This could be achieved by
the proper packing of bricks as close as possible to each other. This is
considered the “foundation” upon which all loads form the upper bricks will
be transferred to.

- Window Insertion Phase:

This phase involved the proper placement of window openings in such a way
that optimizes the natural ventilation strategies. This would include the
proper achievement of both cross and natural ventilation. Cross ventilation
would be realized through the alignment of 2 windows: one directly facing the
wind direction and the other one on the opposite side of it. On the other hand,
stack ventilation can be best captured by the placement of only one window
facing the wind direction and benefiting from the original dome design in
which there is an oculus (opening) that permits air ventilation.
- Window Bricks Phase:

After the placement of the “openings” for windows, the aim is to strengthen
around the surrounding area around them. This would be done using the same
methodology as in the first brick placement phase, namely: trying to pack the
bricks as close as possible to support the bricks on the dome above and to
mitigate the impact of the void openings present in the structure.

Therefore, we would eventually observe that training an agent on the first
phase of bricks can be helpful in speeding up the learning process in the
window bricks phase. This could be done, by initializing the learning process,
from where the neural network of the previous brick placement phase has
stopped. This could only be realized since both phases opt for the same
“general” goals to be achieved.

- Dome Bricks Phase

This represents the final phase to be realized in order to achieve the full
structure of the building when combining all phases. The main priority in this

2.8 Original Contribution

92

phase is to abide by the design rules in terms of limited unnecessary gaps
between bricks while at the same time ensure the proper placement of bricks
to avoid collapse. This is considered the most critical phase among the 5
phases included in the project.

2.8.4. Actions and Masking

In this sub-section we will first visualize the general action strategy adopted
for inserting a unit (brick, window or door). Then, the general procedure for
action masking will be explained. Afterwards, phase-specific requirements
that would lead to masking of additional actions shall be provided.

- General Actions Strategy

Actions taken can either be discrete or continuous, depending on the nature
of the environment [78]. In RoBuilDeR, the action needed could be briefly
explained as the process of selecting an appropriate position for a “Unit” to be
inserted in one of the available positions along the circular ring. This unit
could be a door or window opening or the Brick itself. In the current UV that
was previously demonstrated, the decision was to go for a specified number of
“insertion points” available for placing the appropriate unit.

Therefore, the decision was to use a discrete number of insertion points rather
than a more complicated continuous area. The reason for this approach, is to
reduce the significant amount of learning needed in such an environment if it
was regarded as a continuous canvas for unit insertion. This was realized from
the early trials on the use of continuous actions in the game.

One of these early trials involved the use of 1 continuous action branch with 1
variable. This float variable generally generates an output from the PPO
algorithm pre-clamped between [-1,1]. This range was remapped into [0, 360]
which represents the degrees in a circle. A selected angle by the agent was then
transformed into a unit vector that point towards a location on the circle gird
in which the Agent has decided to place the brick on. This approach required
a massive amount of learning time for the Agent to make a simple progress.

Accordingly, it was then decided to opt for a discrete set of actions. The
current action schemes rely on 3-level-action branches. However, any unit
placement activity would need the execution of this action scheme in 3
separate consecutive steps before actually being inserted in the required
position.

 The first set of actions is focused on selecting the appropriate level for the unit
placement, the second involves dividing the circle into 12 segments, hence,
selecting one of them. Finally, the last action branch contains 6 indices
representing the division of the selected segment into 6 equally sized portions.

Figure 81: General Action Strategy Scheme for placing a brick

Figure 82: General Action Strategy Scheme for placing a Door Opening

Figure 83: General Action Strategy Scheme for placing a Window Opening

2.8 Original Contribution

96

As anticipated from Figure 81, Figure 82, and Figure 83 respectively, the
action scheme for placement of brick, door or window unit passes by a 3-
branch-action levels. Since the first action level is concerned with selecting the
appropriate “height” for unit placement, there is a slight difference between
brick placement versus window or door placement.

This difference comes from the way the phases were divided. For instance, for
door placement, the insertion is constrained only to the ground floor.
Therefore, there is this *fixed annotation in the scheme in Figure 82.
Similarly, for windows phase windows placement are tied to a specific level
that is determined by the designer for deciding on the appropriate sill height.
This also led to “fixing” the placement to just one level as in Figure 83.

Theoretically, this difference in number of actions in the first action branch
should not be allowed as per ML-Agents’ procedures, otherwise it would not
be possible to “assemble” the 5 phases together if they don’t have identical
action-branch size. However, using the ability to mask actions provided by
ML-Agents, it would be possible to “pretend” that a level selection option does
exist in the first action branch, for door and window phases.

This would mean that the neural network shall always pick the option of
inserting the brick on the lowest incomplete level in both window and door
placement phases. So, we would just “mask” the upper levels from the action
choices for the agent. This procedure will be explained in more details in the
next sub-section.

- General and Phase-Specific Masking Schemes

To implement the proposed scheme shown for discrete action branches, we
need to understand the general concept of masking provided by ML-Agents.
This procedure secures a smooth flow from one branch level to the other.

For the General scheme, in the first action branch there were 2 actions which
involved choosing between lowest incomplete level or upper levels. Once
selected, it leads to the second branch that contains 12 segments dividing the
circle and once a segment is selected the third branch is activated and a max
of 6 indices appear to select from. Selecting one of those indices then leads to
picking up the insertion point available in this index and the unit could finally
be placed as part of the pavilion structure.

However, by observing the values inserted in “Behavior Parameters” for the
sizes of the 3 discrete action branches (Figure 84), it is noticed that there is
always an additional (+1) action added in each branch. This additional action
option is added to represent the “do nothing” option. This could be optional
in case of 1 discrete action branches, however, the addition of this option is
obligatory when dealing with multiple branches, as it is required that for each

Original Contribution 2.8

97

action taken, the neural network needs to have at least one option provided in
each level to select from.

Figure 84: Discrete Action Branches Values inserted in Behavior Parameters Component

For example, if we are now at the point of selection of the action of whether to
build on the lowest available incomplete level (indicated by 1) or any other
higher levels (indicated by 2), the first thing that we have to do is to mask the
“do nothing” option at that level. This makes sense, as we don’t want the
neural network to “do nothing” at that current level.

On the other hand, during that same decision, there is a need to “mask” all the
segments and indices in the branches below. In case this is not done, the
neural network would select a segment from second branch and an index from
the third. This would not be accurate as we still don’t know whether there is
an actual point at this segment or not.

In case no point exists, the network would still choose a segment and then an
index where there is no point in. This inaccurate behavior would later on affect
the learning process and makes it harder for the agent to link the actions taken
with the consequences provided. This chaotic scenario can be avoided by the
“do nothing” option available at each branch.

Turning back to our example, if the agent decides, based on its policy, to place
a brick on the lowest incomplete level (indicated by 1), the final result of the
first step taken could be :

First Branch: 1 = Lowest Incomplete Level
Second Branch: 0 = do nothing
Third Branch 0 = do nothing

This indicates that the Agent has executed an actual step in the environment
independent of whether a brick was placed or not. Based on the output given
from that step, it is now possible to observe the environment, and be ready for
the next action to take. Inside of the game mechanics, the masking function is
also utilized for another purpose, namely, blocking the segments in which
there are no points in them, since we are now considering the selection of the
appropriate segment to place the brick in.

Intuitively, this procedure wouldn’t have been possible if we didn’t know from
the beginning on which level the agent would place the brick, perhaps if it had
chosen to build on upper levels, a segment in which there are available points
on the lowest level, may happen that its indices doesn’t contain any points on
the upper levels and vice versa.

2.8 Original Contribution

98

Consequently, based on the masked actions fed to the network, it would select
a certain index based on its policy currently adopted, so let’s say the final
action branches for step 2 would be as follows:

First Branch: 0 = do nothing
Second Branch: 5 = Segment 5 (arbitrary number just for demonstration)
Third Branch 0 = do nothing

The latter would be the final output of step 2. Finally, to prepare for step 3,
the masking method again becomes handy, blocking the indices that doesn’t
contain any points and showing only the ones that does. So, eventually the
output of the neural network could be as follows:

First Branch: 0 = do nothing
Second Branch: 0 = do nothing
Third Branch: 3 = Index 3 (arbitrary number just for demonstration)

After executing these 3 steps, the actions received may now be sufficient for
placing a desired unit. From the index number, the point lying in that index is
selected and then the unit is finally inserted at that point. It has to be noted
that, before the selection of an action when the game as at Step 1, there is also
a procedural check that is carried out to makes sure that there are points
available in both options provided.

Logically, in all cases and unless the game is finished, there is always at least
one insertion point available at the lowest incomplete level. However, at some
circumstance, like when there is only one level remaining for episode
completion, the availability of points on upper levels may not be present and
hence the network would be already blocked from picking this option from the
beginning and practically has only 1 option in Step 1. This is actually the case
for door or window insertion phases, since the placement is only allowed in
one single level.

Accordingly, provides a schematic explanation of the 3 steps for placing a
brick along with the action masking role in blocking the other “actual” options
on the other levels except the current required one. The scheme notes that the
in door and window insertion phases, the option of “upper levels” is always
masked. Thus, at Step 1 the neural network always choses the “Lowest
incomplete level” option only.

Eventually, masking of actions is regarded to be beneficial in 3 aspects:
1. General masking of “actual” options in all branches other than the one we

are currently choosing from.
2. Specific masking of options on the current branch. This could turn off all

options that doesn’t contain any available insertion points.
3. Specific masking of options throughout the whole phase. This is the case

for window and door insertion phases that are deployed only on one level.

Figure 85: Masking of actions throughout the 3 steps leading to an actual Unit placement

2.8 Original Contribution

100

It has to be noted that, for ML-Agents, the method needed to be overridden in
order to disallow an action(s) is called Agent.WriteDiscreteActionMask().
Inside of which the method SetActionEnabled() is called on the provided
IDiscreteActionMask as follows:

public override void WriteDiscreteActionMask(IDiscreteActionMask
actionMask)
{
 actionMask.SetActionEnabled(branch, actionIndex, isEnabled);
}

Therefore, in order to disable an action we need to specify in the
SetActionEnabled() method: the action branch, its index and in the third
parameter we need to specify “false”. This indicates that we want this action
to be disabled.

- Decision Request Adjustment

The last piece in the action scheme configuration is the “decision requester”.
This component is generally added to the game object acting as the agent in
Unity along with the other components mentioned before. This component
implements (Class DecisionRequester). Its main objective is to automatically
request decisions for an Agent instance at regular intervals (see Figure
86)[88].

Figure 86: Decision Requester Component in Unity

However, due to the nature of our game, there is no possible way to define the
time at which the agent should take a decision only by setting a time interval.
Therefore, the automatic request of decisions was disabled. In return, the
method itself responsible for taking decisions namely RequestDecision() was
directly deployed within “RobuilderAgent” script, itself.

This solution has provided us with a control on when to allow the agent to
make a decision. This function was linked to a Boolean parameter, that makes
sure that all the procedures needed after taking a decision is completed before
allowing the agent to take a new action. For instance, at branch 3 action level,
once the agent takes an action and decides on a certain index in a Segment,
the agent is kept blocked from taking any decision till the unit is placed in the
designated point, and all insertion points are properly updated. Afterwards,
the agent is allowed to take a new decision for Step 1. This important update
ensures the presence of reliable data about the actual insertion points
available in the scene. This would eventually help in masking empty branches
that has no points inside of them.

https://docs.unity3d.com/Packages/com.unity.ml-agents@1.0/api/Unity.MLAgents.Agent.html

Original Contribution 2.8

101

2.8.5. Observations

Observations are the most crucial factor for proper training of agents [78].
The observations have to include all the information needed by an agent to
accomplish a task. In case of insufficient, irrelevant, or inaccurate
information, the agent may take longer time to learn or may not learn at all.
In order to include the necessary information, the human “designer” should
think thoroughly about all the information he/she would need to solve such a
problem and try to enable the agent access to such information in each step
taken in the environment.

To achieve this, ML-Agents has provided several tools to convey information
to the agents. The main method used for that purpose is
Agent.CollectObservations() where all observations are passed inside of its
implementation. It is considered the best used way for aspects of the
environment which are numerical and non-visual. In our case, we have
translated all “visual” and non-visual observations into numerical values. This
decision was taken due to the complexity accompanied by feeding the network
with different kinds of observations at the same time.

For instance, the use of visual observations was experimented in RoBuilDeR.
One of the early trials has involved the use of static camera in each “Building
Area” that captures an orthogonal picture of progress on-site at each step. The
picture resolution can be adjusted before training through the “Camera
Sensor” component attached to the Agent game object in Unity. Based on the
width and height of the picture in pixels, the RGB values of each pixel or only
a Grayscale value in case selected, will be reported as observations to the
network. Therefore, a picture of 84 x 84 pixels would report 7056 observations
in case gray scale and tripe this number in case of RGB (see Figure 87).

Figure 87: Camera Sensor Component Added to the Agent

The main issue results from the massive number of pixels that convey useless
information to the network. These pixels represent all the empty fields away
from the circular ring patch in which all bricks and other units are being
placed. This was evident in the slow and at some points no learning acquired
by the agents using this method for capturing observations.

2.8 Original Contribution

102

Accordingly, it was regarded that the optimum solution is convey all geometric
values, locations, and other seemingly visual aspects into numerical values
without the need to capture visual images of the scene.

- Maintaining Vector Observation Size throughout all phases

As previously discussed in earlier sub-sections, once of the main challenges
encountered when dividing the complex problem into sub-tasks that an agent
with a single behavior is working on, is that the number of observations should
remain constant throughout all phases of the project. To tackle this issue the
following procedures has been adopted:

• Analyzing the observations needed in each phase and separating
common parameters among various phases that would contain the
same number of elements in each phase.

• Working on minimizing the gap between the number of observations
in the phase with the maximum number of them, and the phase with
the lowest number.

• Once the difference is not that significant, the number of observations
will be governed by the phase with the highest number of them.

• The observations will be ordered in an order that reports the common
parameters first to the neural network, followed by phase-specific
observations. The values of these observations will be reported based
on the current active phase.

• The phases with total number of observations lower than the
maximum governing one, will be padded with zeros in place of the
missing entities.

- Vector Observations

Agent.CollectObservations() produces vector observations, which are
represented at lists of floats. Despite that the final output reported to the
neural network is in the form of floats, it is essential to differentiate the initial
type of an observation that is being reported. For instance, if the value of the
observation is Boolean, this means that the network would always receive
either 0 or 1. In that case it would be translated to floats but still it would
always receive just to values from this observation parameter.

One-hot encoding categorical information

On the other hand, to report categorical observations or enumerations,
especially when there are several values, one-hot style can be used. That is,
adding an element to the feature vector for each element in the categorical or
enumeration list, setting the element representing the observed member to
one and set the rest to zero. For example, in case of reporting the index of an
already placed brick, there are 6 indices. If the brick’s index is 3, then we
would add to the observation a one-hot observation of 6 possibilities with 1 at

Original Contribution 2.8

103

the third index and zeros in the rest of the indices. So, this list would be
something like [0, 0, 10, 0, 0, 0].

Normalization

Furthermore, for the best results when training, the components in the vector
observation are normalized to the range [-1, +1] or [0, 1]. It is regarded that
when the values are normalized in this manner, the PPO neural network can
often converge to a solution faster. Since the greater the variation in ranges
between the components of observation, the more likely that training will be
affected.

Stacking of vectors

Stacking refers to repeating observations from previous steps as part of a
larger observation. In our case, this feurture is og great impoertance, since it
acts as a “memory” of past actions and observations and include them in the
observations provided to the Agent in the current state. This shall help the
neural network in developing a sequential relationship between several steps
and relate between a series of different actions and their combinations.

However, the drawback of such a parameter is the additional amounts of
observations that needs to be fed into the neural network. Increasing this
value significantly may lead to a slower learning rate and an adverse effect to
that intended from the beginning from using such a feature.

Accordingly, in RoBuilDeR (RV), the value that was selected for stack vectors
is 12. Practically, it means tracking the last 3 units (bricks, door, or windows)
that were placed in the game, since 3 steps are required for each unit
placement. On the other hand, the total number of observations are set to 45
different variables (Figure 88). As discussed earlier, this is the maximum value
that is only reached in the phases with maximum number of observations
compared to the other ones.

Figure 88: Vector Observations and Stacked Vectors in RV

The following tables provide a detailed explanation of each observation
included in all 5 phases. The tables start by showing common parameters that
were observed among all phases. Afterwards, parameters that are common in
all 3 brick placement phases are brick placement. Finally, phase-specific
observations are introduced.

It has to be noted that, in order to better capture observations related to
variable game units that gets instantiated during gameplay, an additional

2.8 Original Contribution

104

method of observation collection was also integrated. This method is called
“buffer Sensor” and the observation captured through this component is also
combined with other vector observations in the same
Agent.CollectObservations() method. More detailed information regarding
this method is explained afterwards separately.

Table 18: General Observations included in All Phases

General for ALL Phases

Observation Explanation Norm-
alize

Type

Type of Point
Array Normalized

Only activated at Step 3*
An Array of Point Types

array

Point Type Type of the insertion point available in

a specific index of a segment
Eq1 float

Angle of Points
Array Normalized

Only activated at Step 3*
An Array of Point Angles

array

 Point Angle Difference between 2 angles:
1. Angle between a vector from the
center of the building to the insertion
point that is projected on the XZ plane
and the global X-axis

2. The Starting angle of the segment in
which this point is present. (Calculated
from the X-axis)

See Figure 89

Eq 2 float

Notes

* Step 3 was previously demonstrated in the Actions and Masking sub-
section. It indicates the third step before inserting a unit. This step
involves the selection of one of the available indices in a certain
segment.

Eq 1 Point Type∗∗

Count of Point Types in the Game (4− 5)

** Point Types is of type enumeration that contains all types of points.
Therefore, the used value in the normalization process is the integer
value that represents the order of that point in the enumeration.

Eq 2 Point Angle
Angle of 1 segment (= 360/Total Number of Segments)

Original Contribution 2.8

105

Figure 89: Point Angle Calculation as explained in Table 18

Table 19: Common Observations among all 3 Brick placement Phases

General for All Brick Phases

Observation Explanation Norm. Type

Lowest Height In
segment

array

Lowest Height In
Each Segment

Detects the lowest insertion point
available in a given segment

Eq 3 float

Highest Height In
segments

array

Highest Height In
Each Segment

Detects the highest insertion point
available in a given segment

Eq 4 float

Height of Points
Array Normalized

Only activated at Step 3 array

 Height of point at
index of a Segment

Detects in a certain index in a
segment the relative height of the
point situated within this index (if a
point is available)

Eq 5 float

Notes

2.8 Original Contribution

106

Eq 3 (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑆𝑆 𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻ℎ𝑆𝑆 𝐼𝐼𝐼𝐼 𝑎𝑎 𝐼𝐼𝐿𝐿𝐻𝐻𝑆𝑆𝐿𝐿𝐼𝐼𝑆𝑆)𝑎𝑎𝑎𝑎𝐿𝐿 − (𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻ℎ𝑆𝑆 𝑎𝑎𝑆𝑆 𝑝𝑝ℎ𝑎𝑎𝐿𝐿𝐿𝐿 𝐿𝐿𝑆𝑆𝑎𝑎𝑠𝑠𝑆𝑆)𝑎𝑎𝑎𝑎𝐿𝐿
(𝑀𝑀𝑎𝑎𝑀𝑀 𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿𝐻𝐻𝑎𝑎𝑝𝑝𝐿𝐿 𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻ℎ𝑆𝑆 𝑑𝑑𝑑𝑑𝑠𝑠𝐻𝐻𝐼𝐼𝐻𝐻 𝑐𝑐𝑑𝑑𝑠𝑠𝑠𝑠𝐿𝐿𝐼𝐼𝑆𝑆 𝑝𝑝ℎ𝑎𝑎𝐿𝐿𝐿𝐿)𝑠𝑠𝐿𝐿𝑝𝑝𝑎𝑎𝑆𝑆𝐻𝐻𝑟𝑟𝐿𝐿 𝑆𝑆𝐿𝐿 𝑝𝑝ℎ𝑎𝑎𝐿𝐿𝐿𝐿 𝐿𝐿𝑆𝑆𝑎𝑎𝑠𝑠𝑆𝑆

Eq 4 (𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝐿𝐿𝐿𝐿𝑆𝑆 𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻ℎ𝑆𝑆 𝐼𝐼𝐼𝐼 𝑎𝑎 𝐼𝐼𝐿𝐿𝐻𝐻𝑆𝑆𝐿𝐿𝐼𝐼𝑆𝑆)𝑎𝑎𝑎𝑎𝐿𝐿 − (𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻ℎ𝑆𝑆 𝑎𝑎𝑆𝑆 𝑝𝑝ℎ𝑎𝑎𝐿𝐿𝐿𝐿 𝐿𝐿𝑆𝑆𝑎𝑎𝑠𝑠𝑆𝑆)𝑎𝑎𝑎𝑎𝐿𝐿
(𝑀𝑀𝑎𝑎𝑀𝑀 𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿𝐻𝐻𝑎𝑎𝑝𝑝𝐿𝐿 𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻ℎ𝑆𝑆 𝑑𝑑𝑑𝑑𝑠𝑠𝐻𝐻𝐼𝐼𝐻𝐻 𝑐𝑐𝑑𝑑𝑠𝑠𝑠𝑠𝐿𝐿𝐼𝐼𝑆𝑆 𝑝𝑝ℎ𝑎𝑎𝐿𝐿𝐿𝐿)𝑠𝑠𝐿𝐿𝑝𝑝𝑎𝑎𝑆𝑆𝐻𝐻𝑟𝑟𝐿𝐿 𝑆𝑆𝐿𝐿 𝑝𝑝ℎ𝑎𝑎𝐿𝐿𝐿𝐿 𝐿𝐿𝑆𝑆𝑎𝑎𝑠𝑠𝑆𝑆

Eq 5 (𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻ℎ𝑆𝑆 𝐿𝐿𝑜𝑜 𝑝𝑝𝑆𝑆 𝑎𝑎𝑆𝑆 𝐻𝐻𝐼𝐼𝑑𝑑𝐿𝐿𝑀𝑀 𝐿𝐿𝑜𝑜 𝑎𝑎 𝐼𝐼𝐿𝐿𝐻𝐻𝑆𝑆𝐿𝐿𝐼𝐼𝑆𝑆)𝑎𝑎𝑎𝑎𝐿𝐿 − (ℎ𝐿𝐿𝐻𝐻𝐻𝐻ℎ𝑆𝑆 𝑎𝑎𝑆𝑆 𝑝𝑝ℎ𝑎𝑎𝐿𝐿𝐿𝐿 𝐿𝐿𝑆𝑆𝑎𝑎𝑠𝑠𝑆𝑆)𝑎𝑎𝑎𝑎𝐿𝐿
(𝑀𝑀𝑎𝑎𝑀𝑀 𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿𝐻𝐻𝑎𝑎𝑝𝑝𝐿𝐿 𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻ℎ𝑆𝑆 𝑑𝑑𝑑𝑑𝑠𝑠𝐻𝐻𝐼𝐼𝐻𝐻 𝑐𝑐𝑑𝑑𝑠𝑠𝑠𝑠𝐿𝐿𝐼𝐼𝑆𝑆 𝑝𝑝ℎ𝑎𝑎𝐿𝐿𝐿𝐿)𝑠𝑠𝐿𝐿𝑝𝑝𝑎𝑎𝑆𝑆𝐻𝐻𝑟𝑟𝐿𝐿 𝑆𝑆𝐿𝐿 𝑝𝑝ℎ𝑎𝑎𝐿𝐿𝐿𝐿 𝐿𝐿𝑆𝑆𝑎𝑎𝑠𝑠𝑆𝑆

Table 20: Phase-Specific Observation Parameters for Brick Placement

Phase 1 Base Bricks / Phase 3 Window Bricks

Observation Explanation Norm. Type

Consecutive Bricks
Array

array

Consecutive
Bricks
Count

Counts the number of consecutive
bricks inserted in sequence after each
other on the same level. If the streak
is interrupted the counter turns to 0
and it starts counting from the
beginning.
If the level is full, the counter value
remains constant and continues to
count again if the bricks were to be
inserted in the same manner on the
next level (the lowest incomplete
level).

Eq 6 float

Consecutive
Bricks On
Top of Each
Other
Counter

Counts the number of consecutive
bricks that are inserted on top of each
other. The counter restarts if this
behavior is interrupted.

Eq 7 float

Notes

Eq 6 ConsecutiveBricksCount
Constant (= 0.014667f)

Eq 7 Case Counter == 0: 1

Case Counter > 0: Counter ∗ factor (− 1)

Original Contribution 2.8

107

Table 21: Phase 5 (Dome Creation) specific observation parameters

Phase 5 Dome

Observation Explanation Norm. Type

Consecutive Bricks
Array

array

Consecutive
Bricks
Count

Counter that adds +1 if the most
recently placed brick is inserted directly
adjacent to existing bricks, on either
side of them on the same level. If the
streak is interrupted the counter turns
to 0 and it starts counting from the
beginning.
If the current level is full, the counter
value remains constant and is increased
if the bricks were continued to be
inserted in the same manner on the
next level (the lowest incomplete level).

Eq 8 float

 Consecutive
Bricks On
Top of Each
Other
Counter

Counts the number of consecutive
bricks that are inserted on top of each
other. The counter restarts if this
behavior is interrupted.

Eq 9 float

Notes

Eq 8 ConsecutiveBricksCount
Constant (= 0.01f)

Eq 9 -1 * Brick Counter
ConsecutiveBricsdOnTopEchOtherThreshold∗

 * Consecutive Bricks on Top of Each Other Threshold (integer)
is a fixed number (adjusted before learning starts) that when
reached, the game is over (this function could be disabled so as
not to contribute to game over scenarios). However, if game is
allowed to continue, the maximum value remains at (-1) so as
not to disrupt the range of observation values inserted to the
Neural Network for training [78], even if the number of
consecutive bricks over each other exceeds this threshold.

Table 22: Common Observation Parameters in both Door and Window Placement Phases

Common Observation Parameters for Phase 0 and 2 in general (Windows /
Door)

Observation Explanation Norm. Type

2.8 Original Contribution

108

"All Wind Info"

array

Wind Segment No.
(Continuous)

Segment in which the
direction from which
the prevailing wind is
blowing is situated
inside it.

Eq 10 float

Wind Segment No.
(Discrete)

Bool One-Hot

Wind Index in
Segment No.
(Continuous)

The closer Index of
the Segment that best
represents the
direction from which
the prevailing wind is
blowing

Eq 11 float

Wind Index in
Segment No.
(Discrete)

Bool One-hot

Wind Unit Vector
Angle

Angle in degrees of
the Unit Vector
representing wind
direction. The angle is
calculated from the X-
Axis

Eq 12 float

Wind Unit Vector
(X value)

X - component of the
Wind Unit Vector

Already
Norm.
[0, 1]

float

Wind Unit Vector
(Z value)

Z - component of the
Wind Unit Vector

[0, 1] float

 Wind Unit Vector
Dot X

Dot product between
the wind unit vector
and the right* vector
(unit vector in X
direction)

[-1, 1] float

Notes

* Right side refers to the red axis in Unity which is a unitary vector
in the X-axis direction (see Figure 91).

Eq 10 𝑊𝑊𝐻𝐻𝐼𝐼𝑑𝑑 𝐼𝐼𝐿𝐿𝐻𝐻𝑆𝑆𝐿𝐿𝐼𝐼𝑆𝑆 𝑁𝑁𝐿𝐿.
𝑇𝑇𝐿𝐿𝑆𝑆𝑎𝑎𝑝𝑝 𝑁𝑁𝑑𝑑𝑆𝑆𝑎𝑎𝐿𝐿𝑠𝑠 𝐿𝐿𝑜𝑜 𝐼𝐼𝐿𝐿𝐻𝐻𝑆𝑆𝐿𝐿𝐼𝐼𝑆𝑆𝐿𝐿 (12)

Eq 11 𝑊𝑊𝐻𝐻𝐼𝐼𝑑𝑑 𝐼𝐼𝐼𝐼𝑑𝑑𝐿𝐿𝑀𝑀 𝑁𝑁𝐿𝐿.
𝑇𝑇𝐿𝐿𝑆𝑆𝑎𝑎𝑝𝑝 𝑁𝑁𝑑𝑑𝑆𝑆𝑎𝑎𝐿𝐿𝑠𝑠 𝐿𝐿𝑜𝑜 𝐼𝐼𝐼𝐼𝑑𝑑𝐿𝐿𝑐𝑐𝐿𝐿𝐿𝐿 𝐻𝐻𝐼𝐼 𝐼𝐼𝐿𝐿𝐻𝐻𝑆𝑆𝐿𝐿𝐼𝐼𝑆𝑆 (6)

Eq 12 𝑊𝑊𝐻𝐻𝐼𝐼𝑑𝑑 𝑈𝑈𝐼𝐼𝐻𝐻𝑆𝑆 𝑉𝑉𝐿𝐿𝑐𝑐𝑆𝑆𝐿𝐿𝑠𝑠 𝐴𝐴𝐼𝐼𝐻𝐻𝑝𝑝𝐿𝐿
360

Original Contribution 2.8

109

Figure 90: Different Wind Properties included in the Observation as indicated in Table 23

Figure 91: A brick with the local coordinates shown in Unity. Red or "right" Axis is the X-axis,

Green or up vector is indicating the Y-direction, and Blue or forward vector is in the Z-direction

Table 23: Specific Observation Paramters for Windows and Door placement respectivley

Windows and Doors Specific Observations

Observation Explanation Norm. Type

Windows:

2.8 Original Contribution

110

Windows
Count

Number of Window Openings
Inserted

Eq 13 float

Window Wind
Cross Vent
Product

Value of Success achieved so
far in Cross Ventilation
Assessment.

[-1, 1] float

Max Window
Wind Dot
Product

Dot Product between
(normalized vector from
center of the building to the
insertion point of the Window
projected on the horizontal
plane) and the unit Wind
Vector.

[-1, 1] float

Doors:

 Door Count Checks if the door is inserted
or not

Bool int

Notes

Eq 13 𝑊𝑊𝐻𝐻𝐼𝐼𝑑𝑑𝐿𝐿𝐿𝐿𝐿𝐿 𝐶𝐶𝐿𝐿𝑑𝑑𝐼𝐼𝑆𝑆
𝑇𝑇𝐿𝐿𝑆𝑆𝑎𝑎𝑝𝑝 𝐼𝐼𝑑𝑑𝑆𝑆.𝐿𝐿𝐻𝐻𝐼𝐼𝑑𝑑𝐿𝐿𝐿𝐿𝐿𝐿 𝑠𝑠𝐿𝐿𝑟𝑟𝑑𝑑𝐻𝐻𝑠𝑠𝐿𝐿𝑑𝑑

Figure 92: Example of a prevailing wind scenario for the calculation of Stack and Cross
Ventilation Normalized Values. Values indicated are used as observation parameters.

Original Contribution 2.8

111

- Buffer Sensor

Buffer sensors enables the collection of observation data from a varying
number of Game Objects. It differs from traditional vector observations in
cases when it is not possible to determine the actual number of observables
that will be present in the scene. On the trainer side, the BufferSensor is
processed using an attention module.

The BufferSensor can be useful in situations in which the Agent must pay
attention to a varying number of entities. For instance, in games industry, this
could be evident in observing enemies that are spawn during gameplay and
their number does not remain constant nor can be determined prior to the
beginning of the episode. Since some might be killed, others would be
instantiated and so on.

Similarly, in RoBuilDeR the game object that perfectly fits with these
conditions is the brick game-object. First, no bricks are instantiated at the
beginning of the game. Then, during game play, several bricks are
instantiated. Based on the behavior of the policy adopted, the structure can be
stable or may collapse and fall. Therefore, in each episode it is not possible to
determine the actual maximum number of bricks that will be instantiated.

In addition, if enemies could be killed during game play and their game object
gets destroyed, we can compare this situation to the “sleeping” of stable bricks.
These bricks are the ones that are proven to be stable for enough time that
they get fixed to their position and no more physics check are carried on them.
So, conceptually speaking they could be counted as not participating anymore
in the actual game events and hence could be considered like a killed enemy.

Moreover, one of the great advantages of attention modules architecture is
that attention layers are invariant to the order of the entities, so there is no
need to properly "order" the entities before feeding them into the BufferSensor
[78]. However, for implementing them 2 challenges arise. First, training or
doing inference with variable length observations can be slower than using a
flat vector observation. Second, even though the BufferSensor can process a
variable number of entities, it is still needed to define a maximum number of
entities.

This is because the network architecture implemented by ML-Agents requires
to know what the shape of the observations will be. If fewer entities are
observed than the maximum, the observation will be padded with zeros and
the trainer will ignore the padded observations.

To overcome both challenges, and to reduce the minimum number of
observables, we introduced the concept of “naked bricks”. These bricks are
regarded as the most “active” bricks in the game, as they are bricks that it is
possible to place a new brick directly above them (see Figure 93). Among those

2.8 Original Contribution

112

group of bricks lies the most unstable, less supported ones. However, it was
decided to increase the number of observables more than the maximum
number of naked bricks a game could witness. This slight increase in the
maximum number of observables is intended to capture also vulnerable bricks
on the lower fully covered levels. This additional layer of information is sought
to give more insights to the neural network on the quick evolution of instability
among bricks.

Figure 93: Naked Bricks Demonstration

Accordingly, Figure 94 demonstrates the maximum number of observables
used during training for the 5 phases. The figure also shows another
parameter called Observable size. This parameter indicates the length of the
vector observation that each observable would contribute to. To optimize this
number, we adopted the same strategy we mentioned before regarding the

Original Contribution 2.8

113

trails to reduce the difference between the observable with maximum features
and the one with less features needed to be reported.

Figure 94: Buffer Sensor Component Parameters and Values used in RoBuilDeR

Logically, the brick is the observable game object during all brick placement
phases while the door and window openings are the observables in door and
window placement phases respectively.

In the following table the features linked with each observable is provided.
Similar to the tables showing vector observations earlier, the presentation of
the features here are also classified with respect to common features among
different phases first and then regarding specific features found in specific
phases.

Table 24: General Observations included in All Phases and for all types of observable-game
objects

General for ALL Phases

Observation Explanation Norma
lization

Type

Variables
(∑ = 12)

Segment
number

It is the segment of the
insertion point on which the
observable unit was placed.

Bool One-
hot

Variable
(∑ = 6)

Index in a
Segment of the
Observable unit
(Brick/Door/Wi
ndow)

It is the index number
(inside a segment) of the
insertion point on which the
observable unit was placed.
(Brick/Door/Window)

Bool One-
hot

General for All Brick Phases

Observation Explanation Norm. Type

Variable 1 Relative Height Relative Height of the
observable brick with respect
to the starting height of the
current phase

Eq 14 float

Variable 2 Point Type The insertion points on which
the observable brick was
placed. It is one of the variables

Eq 15 float

2.8 Original Contribution

114

that each brick has and it is set
to a value once a brick is placed
in the structure of the pavilion.

Variable 3 Normalized
Tilting Value
(Dot product)

Measure of how much a brick
is "Tilting". It is a brick
property. If the "tilting value"
decreases, it means that the
instability of the brick
increases, therefore the
observation value reported to
the neural network shall
always be negative in case of
tilting.

Eq 16 int/
float

Variable 4 Is Last Brick? Checks whether this brick
observable is the last brick
placed in the game or not.

Bool int

Notes

Eq 14 (Current Brick Height)𝑎𝑎𝑙𝑙𝑎𝑎 − (Height at phase start)𝑎𝑎𝑙𝑙𝑎𝑎
(Max possible Height during current phase)𝑟𝑟𝑟𝑟𝑙𝑙𝑎𝑎𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑠𝑠 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑟𝑟 𝑎𝑎𝑡𝑡𝑎𝑎𝑟𝑟𝑡𝑡

Eq 15 𝑃𝑃𝐿𝐿𝐻𝐻𝐼𝐼𝑆𝑆 𝑇𝑇𝑇𝑇𝑝𝑝𝐿𝐿
𝑇𝑇𝐿𝐿𝑆𝑆𝑎𝑎𝑝𝑝 𝑁𝑁𝑑𝑑𝑆𝑆𝑎𝑎𝐿𝐿𝑠𝑠 𝐿𝐿𝑜𝑜 𝑃𝑃𝐿𝐿𝐻𝐻𝐼𝐼𝑆𝑆 𝑆𝑆𝑇𝑇𝑝𝑝𝐿𝐿𝐿𝐿

Eq 16 Case No tilting: 0

Case Tilting Value < Threshold*: -1

Case Tilting Value > Threshold: �(−1) � 1

1+ 𝑟𝑟
1−𝑇𝑇𝑇𝑇𝑟𝑟𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑉𝑉𝑉𝑉𝑟𝑟𝑉𝑉𝑟𝑟
1−𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑟𝑟𝑜𝑜

��
∗∗

* Tilting Threshold is a factor with a value less than one. If
tilting value gets lower than this value, it indicates that
brick instability has reached its maximum allowable value
and hence game is terminated (see Figure 67)

** The reason for using a “sigmoid function” is to increase the
negative value fed to the neural network once half of the allowable
threshold has been reached. This is expected to give signals to the
neural network that we are in a critical situation, given that
suddenly there is a sudden increase in negative value input.

Table 25: Common Parameters for Brick Observables in Phases 1 and 3

Phase 1 Base Bricks / Phase 3 Window Bricks

Observation Explanation Norm. Type

Variable 5 Is Opening
brick

Checks whether this brick is
directly placed next to an

Bool int

Original Contribution 2.8

115

Opening (Door or Window) or
not.

Variable 6 Angle
between
Opening
Brick and
the Opening

Only has a value if the Brick is an
Opening Brick. It calculates the
angle between the tip of the brick
and the tip of the Opening on the
Center Line. If the angle is
negative, it means that the brick
tip is inside the volume of the
Opening.

Eq 17 int/

float

Variable 7 Angle

between
Consecutive
Bricks

Consecutive Brick Definition in
Lower Brick Insertion Phases:
Any 2 bricks placed consecutively
next each other on the same level,
given that the void space between
them doesn’t allow the placement
of a third brick at the same level.

Eq 18 float

Case the observable brick is
consecutive: This parameter will
measure the angle between the
observable brick and the closest
brick to it from the consecutive
series. The more the angle
increase, the more negative value
this observation will report to the
neural network. This approach is
adopted to encourage the bricks
at the lower levels to be closer to
each other as much as possible.

 Case the observable brick is not
consecutive: This parameter will
be 0 as there is no consecutive
brick already

Notes

Eq 17 Case Angle < 0: 1

Case Angle ≥ 0: 𝐴𝐴𝑐𝑐𝐴𝐴𝑙𝑙𝑟𝑟 𝑙𝑙𝑟𝑟𝑡𝑡𝑏𝑏𝑟𝑟𝑟𝑟𝑐𝑐 𝐵𝐵𝑟𝑟𝑟𝑟𝑐𝑐𝐵𝐵 𝑎𝑎𝑐𝑐𝑎𝑎 𝑂𝑂𝑝𝑝𝑟𝑟𝑐𝑐𝑟𝑟𝑐𝑐𝐴𝐴
𝑂𝑂𝑝𝑝𝑟𝑟𝑐𝑐𝑟𝑟𝑐𝑐𝐴𝐴 𝑓𝑓𝑢𝑢𝑙𝑙𝑙𝑙 𝐴𝐴𝑐𝑐𝐴𝐴𝑙𝑙𝑟𝑟 𝑠𝑠𝑐𝑐 𝑡𝑡ℎ𝑟𝑟 𝐶𝐶𝑟𝑟𝑐𝑐𝑡𝑡𝑟𝑟𝑟𝑟 𝐿𝐿𝑟𝑟𝑐𝑐𝑟𝑟

Eq 18 Case Consecutive Bricks: (−1) �𝐴𝐴𝑐𝑐𝐴𝐴𝑙𝑙𝑟𝑟 𝑙𝑙𝑟𝑟𝑡𝑡𝑏𝑏𝑟𝑟𝑟𝑟𝑐𝑐 𝐶𝐶𝑠𝑠𝑐𝑐𝑎𝑎𝑟𝑟𝑐𝑐𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 𝐵𝐵𝑟𝑟𝑟𝑟𝑐𝑐𝐵𝐵𝑎𝑎
180

�

Case Non-Consecutive Bricks: 0

2.8 Original Contribution

116

Figure 95: Door Bricks Demonstration

Figure 96: Window Brick Demonstration

Table 26: Brick Observable specific parameters for Dome Phase

Phase 5 Dome

Observation Explanation Norm. Type

Variable 5 Brick
Radius

Current Radius of the level on which
this observable brick was placed.

Eq 19 float

Variable 6 Adjacent
Angle

The angle between the observable
brick and the closest brick on the
“right” side of it, given that there are

Eq 20 float
/int

Original Contribution 2.8

117

no insertion points between them.
This angle is used to check if there
are unnecessary gaps between a brick
and its adjacent one.

Variable 7 Angle
between
Consecuti
ve Bricks

Consecutive Brick Definition in
Dome phase:
Any brick placed on the right or left
side of an existing brick.

Eq 21 float

Case the observable brick is
consecutive: This parameter will
measure the angle between the
observable brick and the closest brick
to it from the consecutive series.

 Case the observable brick is not
consecutive: This parameter will
measure the angle between the
observable brick and the previous
brick inserted before it.

Notes

Eq 19 𝐶𝐶𝑑𝑑𝑠𝑠𝑠𝑠𝐿𝐿𝐼𝐼𝑆𝑆 𝑅𝑅𝑎𝑎𝑑𝑑𝐻𝐻𝑑𝑑𝐿𝐿
𝐷𝐷𝐿𝐿𝑜𝑜𝑎𝑎𝑑𝑑𝑝𝑝𝑆𝑆 𝑅𝑅𝑎𝑎𝑑𝑑𝐻𝐻𝑑𝑑𝐿𝐿

Eq 20 Case existence of Adjacent Brick: −1 �𝐴𝐴𝑎𝑎𝐴𝐴𝑎𝑎𝑐𝑐𝑟𝑟𝑐𝑐𝑡𝑡 𝐴𝐴𝑐𝑐𝐴𝐴𝑙𝑙𝑟𝑟
𝐹𝐹𝑎𝑎𝑐𝑐𝑡𝑡𝑠𝑠𝑟𝑟∗

�

 Case non-existence of Adjacent Brick: 0

* Changeable factor based on the current level, due to the variation in
radius.

Eq 21 Case Consecutive Bricks: 𝐴𝐴𝑐𝑐𝐴𝐴𝑙𝑙𝑟𝑟 𝑙𝑙𝑟𝑟𝑡𝑡𝑏𝑏𝑟𝑟𝑟𝑟𝑐𝑐 𝐶𝐶𝑠𝑠𝑐𝑐𝑎𝑎𝑟𝑟𝑐𝑐𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 𝐵𝐵𝑟𝑟𝑟𝑟𝑐𝑐𝐵𝐵𝑎𝑎
𝐶𝐶𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑡𝑡 𝑓𝑓𝑢𝑢𝑙𝑙𝑙𝑙 𝐵𝐵𝑟𝑟𝑟𝑟𝑐𝑐𝐵𝐵 𝐴𝐴𝑐𝑐𝐴𝐴𝑙𝑙𝑟𝑟 𝐹𝐹𝑎𝑎𝑐𝑐𝑡𝑡𝑠𝑠𝑟𝑟

 Case non-consecutive Bricks: (−1) �𝐴𝐴𝑐𝑐𝐴𝐴𝑙𝑙𝑟𝑟 𝑙𝑙𝑟𝑟𝑡𝑡𝑏𝑏𝑟𝑟𝑟𝑟𝑐𝑐 𝐶𝐶𝑠𝑠𝑐𝑐𝑎𝑎𝑟𝑟𝑐𝑐𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 𝐵𝐵𝑟𝑟𝑟𝑟𝑐𝑐𝐵𝐵𝑎𝑎
180

�

Table 27: Specific Parameters for Door and Windows game objects respectively

Windows and Doors Specific Observations

Observation Explanation Norm. Type

Windows:

Variable 1 Insertion
Point Type

It is the type of the insertion point on
which the Window was placed

Eq 22 float

2.8 Original Contribution

118

Variable 2 Dot Product
Window and
Wind

The dot product value between:
(unitized vector projected on the
horizontal plane form the center of
the building pointing at the insertion
point of the current observable
window) and (the prevailing wind
unit vector)

 [-1,1] float

Variable
3+

Dot Product Window and other Windows

arra
y

Dot Product
Window /
Window

The dot product value between 2
unitized vectors projected on the
horizontal plane form the center of
the building, 1 is pointing at the
insertion point of the current
observable window while the other is
pointing at the insertion point of the
"Selected Window" from windows list

 [-1,1] float

Doors

Variable 1 Dot Product
door and
Wind

The dot product value between:
(unitized vector projected on the
horizontal plane form the center of
the building pointing at the insertion
point of the door) and (the prevailing
wind unit vector)

 [-1,1] float

Notes

Eq 22 𝐼𝐼𝐼𝐼𝐿𝐿𝐿𝐿𝑠𝑠𝑆𝑆𝐻𝐻𝐿𝐿𝐼𝐼 𝑃𝑃𝐿𝐿𝐻𝐻𝐼𝐼𝑆𝑆 𝑇𝑇𝑇𝑇𝑝𝑝𝐿𝐿 (𝐿𝐿𝐼𝐼𝑑𝑑𝑆𝑆 𝑆𝑆𝐿𝐿 𝐻𝐻𝐼𝐼𝑆𝑆)
Total Number of Point Types in the Game (4− 5)

2.8.6. Goals and Rewards

Original Contribution 2.8

119

In reinforcement learning, the reward is a signal that the agent has done
something right. While a penalty, or a negative value reward, is a signal that
the agent has done something wrong. The PPO reinforcement learning
algorithm works by optimizing the choices an agent makes such that the agent
earns the highest cumulative reward over time. The better the reward
mechanism, the better the agent will learn [78].

As mentioned before in UV, the rewards are the main channel of
communication between the teacher and the agent student that learns based
on the rewards received based on its behavior. Therefore, UV provides the
designer, which in this case is the teacher setting the rules, a trial environment
for experimenting with different rewards and goals before settling on the
appropriate reward system for optimizing the training process of the agents.

It is common practice that the agent receives a positive reward when it
completes a certain task during the episode, and a maximum reward value on
episode completion. The same concept goes for penalties, where the agent gets
the maximum negative penalty value when it doesn’t achieve the final goal.
This event could happen after completion of all tasks but with a poor
performance or when the agent does a fatal error that it becomes not possible
to complete the episode till the end.

In RV, we identified 6 game termination cases where the game is ended, and
the agent receives the maximum reward or penalty. Each time after the
execution of step 3 Action, a function named EndGameInspection() is executed.
This method checks whether any of the game ending scenarios has been
reached or not. If one of these events was triggered, the method freezes the
game and signals that the game is finished, otherwise the game is normally
resumed till the next time it reaches step 3 action and the cycle is repeated.

On signaling that the game is finished, a new method named
ConstitutionLawApplication()is being called. This method is named in that
way because it conveys a rule-based reward system. These rules are enforced
based on the game termination case it has ended with. Table xx provides a
scheme for the regular end game check that is executed every time step 3
action is implemented.

This scheme generalizes the 6 cases into 4 main scenarios. The first 3 namely
“Goal Accomplished”, “All Building Completed” and “Brick Collapse” are
referring to exact scenarios happening, while in the last scenario in the scheme
“Fatal Design Error” conveys 3 possible scenarios. These cases are related to
not accomplishing design goals in either Door Placement, Window Placement
or Brick Placement.

Figure 97: Flowchart for the game termination step executed every Step 3 Action

Original Contribution 2.8

121

The following table explains each of these 6 game ending scenarios. It
indicates how the game proceeds afterwards in both Training and Inference
Modes. It also demonstrates the calculation of the final reward received by the
agent as per each scenario.

Table 28: Game Termination Cases and the Corresponding Final Rewards

General Game Termination Cases:

Game Termination
Case

Reward Explanation

Goal Accomplished Eq A It is achieved when the goal required
from the Agent is achieved in a certain
episode.

Inference Mode: The Episode is
completed, and the next phase starts

Training Mode: The Episode is
completed, and the agent is
instantiated in the same phase again
for training.

Deployed In Phase(s):
Phases (1,2,3,4)

All Building
Completed

Eq A It is achieved when the whole pavilion
is completed. It is only applicable in
Inference Phase as during training,
each phase it trained separately.

Deployed In Phase(s):
Dome Creation Phase (Phase 5) and
Only in Inference Mode.

Brick Collapse Eq B It occurs whenever any brick falls off
the structure and hits the ground or
when the tilting value of a certain brick
falls below the stated threshold.

The Episode is

Inference Mode: The Episode is
terminated and the whole structure is
destroyed. Hence the game starts again
from first phase.

Training Mode: The Episode is
terminated, and the agent is

2.8 Original Contribution

122

instantiated in the same phase again
for training.

Deployed In Phase(s):
All Brick Phases (Phases 2, 4, 5)

Design Error Eq C It occurs whenever a criterion related
to the design goals has been breached
or poorly met. It may occur in 3
different scenarios.

Inference Mode: The Episode is
terminated and the whole structure is
incomplete. Hence the game starts
again from the first phase.

Training Mode: The Episode is
terminated, and the agent is
instantiated in the same phase again
for training.

Design Brick
Goal Not
Accomplished

It occurs when a design criterion is not
met during brick placement.

Deployed In Phase(s):
All Brick Phases (Phases 2, 4, 5)

Example Case 1: Window Bricks
(Phase 4)

Number of bricks on the highest level
has not exceeded a certain threshold*

Example Case 2: Dome Bricks (Phase
4)

Number of large, void, unnecessary
gaps between bricks exceeds a certain
threshold*

Design Door
Goal Not
Accomplished

Occurs when final placement of the
door is not far enough from prevailing
wind direction.

Deployed In Phase(s):
Door Placement (Phase 1)

Design
Window Goal
Not
Accomplished

Occurs when final placement of the
windows configuration is not entirely
benefiting from Cross and Stack
Ventilation

Original Contribution 2.8

123

 Deployed In Phase(s):
Window Placement (Phase 3)

Notes

Eq A Reward+= 1

Eq B Step1: Calculate Excessive Height Penalty = −1− 0.1 ∗
𝐻𝐻𝑟𝑟𝑟𝑟𝐴𝐴ℎ𝑟𝑟𝑎𝑎𝑡𝑡 𝐻𝐻𝑟𝑟𝑟𝑟𝐴𝐴ℎ𝑡𝑡 𝑅𝑅𝑟𝑟𝑎𝑎𝑐𝑐ℎ𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑉𝑉𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟 𝑐𝑐𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑇𝑇𝑇𝑇 𝑝𝑝ℎ𝑉𝑉𝑟𝑟𝑟𝑟 − 𝐻𝐻𝑟𝑟𝑟𝑟𝐴𝐴ℎ𝑡𝑡 𝑠𝑠𝑓𝑓 𝑓𝑓𝑢𝑢𝑙𝑙𝑙𝑙𝑓𝑓 𝑐𝑐𝑠𝑠𝑠𝑠𝑝𝑝𝑙𝑙𝑟𝑟𝑡𝑡𝑟𝑟𝑎𝑎 𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙

𝐵𝐵𝑟𝑟𝑟𝑟𝑐𝑐𝐵𝐵 𝐻𝐻𝑟𝑟𝑟𝑟𝐴𝐴ℎ𝑡𝑡

Step2: Calculate Final Reward:

𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑+= −1 ∗ |𝐶𝐶𝑑𝑑𝑆𝑆𝑑𝑑𝑝𝑝𝑎𝑎𝑆𝑆𝐻𝐻𝑟𝑟𝐿𝐿 𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑| + 𝐸𝐸𝑀𝑀𝑐𝑐𝐿𝐿𝐿𝐿𝐿𝐿𝐻𝐻𝑟𝑟𝐿𝐿 ℎ𝐿𝐿𝐻𝐻𝐻𝐻ℎ𝑆𝑆 𝑃𝑃𝐿𝐿𝐼𝐼𝑎𝑎𝑝𝑝𝑆𝑆𝑇𝑇

Eq C Case Phase 5 and Gaps Count > Threshold:

𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑+= −1 ∗ 𝐶𝐶𝑑𝑑𝑆𝑆𝑑𝑑𝑝𝑝𝑎𝑎𝑆𝑆𝐻𝐻𝑟𝑟𝐿𝐿 𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑

All other Cases:

𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑+= −1

On the other hand, the following table provides all the possible rewards that
the agent can get throughout each phase.

Table 29: Various Possible in Game Rewards

In Game Agent Reward Functions

Reward Trigger Behavior Reward Value Notes

Phase 1:

Door Insertion Position
Reward

Eq 1 See Table 5

Phase 2:

Consecutive Brick
Placement

Eq 2 See Table 20

Non-Continuous Brick Eq 3

 Far Brick Eq 4 See Table 5

Phase 3:

Windows Instance
Evaluation

Eq 5 Evaluation of a window
placement directly

2.8 Original Contribution

124

Windows Interim
Evaluation

Eq 6 Evaluation of Cross
Ventilation After the total
number of Windows
Required is Achieved.

No Available Position
for Window Penalty

Table 30 When there is no more
room for additional
window opening and the
existing number of
windows hasn’t reached
the total required target.

Phase 4:

Consecutive Brick
Placement

Eq 2

Non-Continuous Brick Eq 3

Far Brick Eq 4

Counter Bricks on
Recent Finished Level

Eq 7 Checks that the number of
bricks at each level has
surpassed a certain
threshold. The function is
called once a level is
completed.

Phase 5:

Consecutive Brick
Placement

Eq 2

Gap Between Bricks Eq 8

Far Brick Eq 9

High Brick Eq 10

 Star Point Table 30 optional reward that
encourages the use of
Bricks inserted at Star
Points

Notes

Eq 1 𝐼𝐼𝑆𝑆𝐿𝐿𝑝𝑝1:𝐷𝐷𝐿𝐿𝑆𝑆 𝑃𝑃𝑠𝑠𝐿𝐿𝑑𝑑𝑑𝑑𝑐𝑐𝑆𝑆 �𝐷𝐷𝐿𝐿𝐿𝐿𝑠𝑠 𝐼𝐼𝐿𝐿𝑠𝑠𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑 𝐼𝐼𝐻𝐻𝑆𝑆 𝑉𝑉𝐿𝐿𝑐𝑐𝑆𝑆𝐿𝐿𝑠𝑠
𝑎𝑎𝐼𝐼𝑑𝑑 𝑊𝑊𝐻𝐻𝐼𝐼𝑑𝑑 𝑈𝑈𝐼𝐼𝐻𝐻𝑆𝑆 𝑉𝑉𝐿𝐿𝑐𝑐𝑆𝑆𝐿𝐿𝑠𝑠 �

Case Dot Product < Threshold:

Original Contribution 2.8

125

𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑 = (1 − 𝑑𝑑𝐿𝐿𝑆𝑆𝑃𝑃𝑠𝑠𝐿𝐿𝑑𝑑𝑑𝑑𝑐𝑐𝑆𝑆)
∗ 𝐷𝐷𝐿𝐿𝐿𝐿𝑠𝑠 𝐴𝐴𝐿𝐿𝑎𝑎𝑇𝑇 𝑜𝑜𝑠𝑠𝐿𝐿𝑆𝑆 𝑊𝑊𝐻𝐻𝐼𝐼𝑑𝑑 𝐸𝐸𝑜𝑜𝑜𝑜𝐿𝐿𝑐𝑐𝑆𝑆 𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑

Case Dot Product > Threshold:

𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑 = (−1) ∗ (𝑑𝑑𝐿𝐿𝑆𝑆𝑃𝑃𝑠𝑠𝐿𝐿𝑑𝑑𝑑𝑑𝑐𝑐𝑆𝑆)
∗ 𝐷𝐷𝐿𝐿𝐿𝐿𝑠𝑠 𝐴𝐴𝐿𝐿𝑎𝑎𝑇𝑇 𝑜𝑜𝑠𝑠𝐿𝐿𝑆𝑆 𝑊𝑊𝐻𝐻𝐼𝐼𝑑𝑑 𝐸𝐸𝑜𝑜𝑜𝑜𝐿𝐿𝑐𝑐𝑆𝑆 𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑

Eq 2 𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑 = 𝐶𝐶𝐿𝐿𝐼𝐼𝑆𝑆𝐻𝐻𝐼𝐼𝑑𝑑𝐿𝐿𝑑𝑑𝐿𝐿 𝐵𝐵𝑠𝑠𝐻𝐻𝑐𝑐𝐵𝐵 𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑
∗ 𝐶𝐶𝐿𝐿𝑑𝑑𝐼𝐼𝑆𝑆 𝐿𝐿𝑜𝑜 𝐶𝐶𝐿𝐿𝐼𝐼𝐿𝐿𝐿𝐿𝑐𝑐𝑑𝑑𝑆𝑆𝐻𝐻𝑟𝑟𝐿𝐿 𝐵𝐵𝑠𝑠𝐻𝐻𝑐𝑐𝐵𝐵𝐿𝐿

Eq 3 𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑 = 𝐵𝐵𝑠𝑠𝐻𝐻𝑐𝑐𝐵𝐵𝐿𝐿 𝑁𝑁𝐿𝐿𝑆𝑆 𝐼𝐼𝐼𝐼 𝐼𝐼𝐿𝐿𝑟𝑟𝑑𝑑𝐿𝐿𝐼𝐼𝑐𝑐𝐿𝐿 𝐶𝐶𝐿𝐿𝑑𝑑𝐼𝐼𝑆𝑆𝐿𝐿𝑠𝑠
∗ 𝑁𝑁𝐿𝐿𝐼𝐼 𝐶𝐶𝐿𝐿𝐼𝐼𝑆𝑆𝐻𝐻𝐼𝐼𝑑𝑑𝐿𝐿𝑑𝑑𝐿𝐿 𝐵𝐵𝑠𝑠𝐻𝐻𝑐𝑐𝐵𝐵 𝑃𝑃𝐿𝐿𝐼𝐼𝑎𝑎𝑝𝑝𝑆𝑆𝑇𝑇

Eq 4 𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑 = 𝐿𝐿𝐿𝐿𝐼𝐼𝑆𝑆𝑎𝑎𝐼𝐼𝑎𝑎 𝑃𝑃𝐿𝐿𝐼𝐼𝑎𝑎𝑝𝑝𝑆𝑆𝑇𝑇 ∗ 10 ∗
1

𝐴𝐴𝐼𝐼𝐻𝐻𝑝𝑝𝐿𝐿 𝑎𝑎𝐿𝐿𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿𝐼𝐼 𝐵𝐵𝑠𝑠𝐻𝐻𝑐𝑐𝐵𝐵𝐿𝐿 / 180

Eq 5 𝐼𝐼𝑆𝑆𝐿𝐿𝑝𝑝1:𝐷𝐷𝐿𝐿𝑆𝑆 𝑃𝑃𝑠𝑠𝐿𝐿𝑑𝑑𝑑𝑑𝑐𝑐𝑆𝑆 �𝑊𝑊𝐻𝐻𝐼𝐼𝑑𝑑𝐿𝐿𝐿𝐿 𝐼𝐼𝐿𝐿𝑠𝑠𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑 𝑑𝑑𝐼𝐼𝐻𝐻𝑆𝑆 𝑉𝑉𝐿𝐿𝑐𝑐𝑆𝑆𝐿𝐿𝑠𝑠
𝑎𝑎𝐼𝐼𝑑𝑑 𝑊𝑊𝐻𝐻𝐼𝐼𝑑𝑑 𝑈𝑈𝐼𝐼𝐻𝐻𝑆𝑆 𝑉𝑉𝐿𝐿𝑐𝑐𝑆𝑆𝐿𝐿𝑠𝑠 �

𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑 = (𝑑𝑑𝐿𝐿𝑆𝑆𝑃𝑃𝑠𝑠𝐿𝐿𝑑𝑑𝑑𝑑𝑐𝑐𝑆𝑆) ∗ 𝐼𝐼𝑆𝑆𝑎𝑎𝑐𝑐𝐵𝐵 𝑉𝑉𝐿𝐿𝐼𝐼𝑆𝑆𝐻𝐻𝑝𝑝𝑎𝑎𝑆𝑆𝐻𝐻𝐿𝐿𝐼𝐼 𝑀𝑀𝑎𝑎𝑀𝑀 𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑

Add 𝐷𝐷𝐿𝐿𝑆𝑆 𝑃𝑃𝑠𝑠𝐿𝐿𝑑𝑑𝑑𝑑𝑐𝑐𝑆𝑆 𝑆𝑆𝐿𝐿 𝐿𝐿𝐻𝐻𝐼𝐼𝑑𝑑𝐿𝐿𝐿𝐿𝐿𝐿 "𝐷𝐷𝐿𝐿𝑆𝑆 𝐿𝐿𝐻𝐻𝐿𝐿𝑆𝑆"

Eq 6 Step1: From 𝐿𝐿𝐻𝐻𝐼𝐼𝑑𝑑𝐿𝐿𝐿𝐿𝐿𝐿 “𝐷𝐷𝐿𝐿𝑆𝑆 𝐿𝐿𝐻𝐻𝐿𝐿𝑆𝑆”: Pick the Maximum Value

Step2: Pick furthest window from window with Max Value in Dot
List

Step3: Calculate Dot Product between Both Windows

Step4:

𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑 = 𝑀𝑀𝑎𝑎𝑀𝑀 𝐷𝐷𝐿𝐿𝑆𝑆 𝑃𝑃𝑠𝑠𝐿𝐿𝑑𝑑𝑑𝑑𝑐𝑐𝑆𝑆 𝐻𝐻𝐼𝐼 𝐿𝐿𝐻𝐻𝐿𝐿𝑆𝑆 ∗ 𝐷𝐷𝐿𝐿𝑆𝑆 𝑃𝑃𝑠𝑠𝐿𝐿𝑑𝑑𝑑𝑑𝑐𝑐𝑆𝑆 2 𝑊𝑊𝐻𝐻𝐼𝐼𝑑𝑑𝐿𝐿𝐿𝐿𝐿𝐿
∗ 𝐶𝐶𝑠𝑠𝐿𝐿𝐿𝐿𝐿𝐿 𝑉𝑉𝐿𝐿𝐼𝐼𝑆𝑆𝐻𝐻𝑝𝑝𝑎𝑎𝑆𝑆𝐻𝐻𝐿𝐿𝐼𝐼 𝑀𝑀𝑎𝑎𝑀𝑀 𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑

Eq 7 Case Count of Bricks on Recent Finished Level < Threshold:

Trigger a game termination Scenario.

Case Count of Bricks on Recent Finished Level ≥ Threshold:

𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑 = 𝐶𝐶𝐿𝐿𝑑𝑑𝐼𝐼𝑆𝑆𝐿𝐿𝑠𝑠 𝐵𝐵𝑠𝑠𝐻𝐻𝑐𝑐𝐵𝐵𝐿𝐿 𝐸𝐸𝑀𝑀𝑐𝑐𝐿𝐿𝐿𝐿𝑑𝑑𝐿𝐿𝑑𝑑 𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑

Eq 8 𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑 = 𝐺𝐺𝑎𝑎𝑝𝑝 𝐵𝐵𝐿𝐿𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿𝐼𝐼 𝐵𝐵𝑠𝑠𝐻𝐻𝑐𝑐𝐵𝐵𝐿𝐿 𝑃𝑃𝐿𝐿𝐼𝐼𝑎𝑎𝑝𝑝𝑆𝑆𝑇𝑇 ∗ 𝐴𝐴𝑎𝑎𝑝𝑝 𝑎𝑎𝑐𝑐𝐴𝐴𝑙𝑙𝑟𝑟
𝑓𝑓𝑢𝑢𝑙𝑙𝑙𝑙 𝑙𝑙𝑟𝑟𝑟𝑟𝑐𝑐𝐵𝐵 𝑎𝑎𝑐𝑐𝐴𝐴𝑙𝑙𝑟𝑟

∗
𝐶𝐶𝐿𝐿𝑑𝑑𝐼𝐼𝑆𝑆𝐿𝐿𝑠𝑠 𝑜𝑜𝐿𝐿𝑠𝑠 𝐼𝐼𝑑𝑑𝑆𝑆𝑎𝑎𝐿𝐿𝑠𝑠 𝐿𝐿𝑜𝑜 𝐻𝐻𝑎𝑎𝑝𝑝𝐿𝐿 𝑐𝑐𝑑𝑑𝑠𝑠𝑠𝑠𝐿𝐿𝐼𝐼𝑆𝑆𝑝𝑝𝑇𝑇 𝐻𝐻𝐼𝐼 𝑆𝑆ℎ𝐿𝐿 𝐻𝐻𝑎𝑎𝑆𝑆𝐿𝐿

Eq 9 Case Angle Between Bricks > Threshold:

𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑 =
𝐴𝐴𝐼𝐼𝐻𝐻𝑝𝑝𝐿𝐿 𝐵𝐵𝐿𝐿𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿𝐼𝐼 𝐵𝐵𝑠𝑠𝐻𝐻𝑐𝑐𝐵𝐵𝐿𝐿

180
∗ 𝑝𝑝𝐿𝐿𝐼𝐼𝑆𝑆𝑎𝑎𝐼𝐼𝑎𝑎𝑃𝑃𝐿𝐿𝐼𝐼𝑎𝑎𝑝𝑝𝑆𝑆𝑇𝑇 ∗ 2 ∗

∗ 𝐶𝐶𝐿𝐿𝑑𝑑𝐼𝐼𝑆𝑆 𝐿𝐿𝑜𝑜 𝑁𝑁𝐿𝐿𝐼𝐼 𝐶𝐶𝐿𝐿𝐼𝐼𝐿𝐿𝐿𝐿𝑐𝑐𝑑𝑑𝑆𝑆𝐻𝐻𝑟𝑟𝐿𝐿 𝐵𝐵𝑠𝑠𝐻𝐻𝑐𝑐𝐵𝐵𝐿𝐿

Eq 10 Case Brick height relative to current lowest incomplete level >
Threshold:

𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑 = 𝐶𝐶𝐿𝐿𝑑𝑑𝐼𝐼𝑆𝑆 𝐿𝐿𝑜𝑜 𝐶𝐶𝐿𝐿𝐼𝐼𝐿𝐿𝐿𝐿𝑐𝑐𝑑𝑑𝑆𝑆𝐻𝐻𝑟𝑟𝐿𝐿 𝐵𝐵𝑠𝑠𝐻𝐻𝑐𝑐𝐵𝐵𝐿𝐿 𝐿𝐿𝑟𝑟𝐿𝐿𝑠𝑠 𝐸𝐸𝑎𝑎𝑐𝑐ℎ 𝐿𝐿𝑆𝑆ℎ𝐿𝐿𝑠𝑠2
∗ 𝐻𝐻𝐻𝐻𝐻𝐻ℎ 𝐵𝐵𝑠𝑠𝐻𝐻𝑐𝑐𝐵𝐵 𝑃𝑃𝐿𝐿𝐼𝐼𝑎𝑎𝑝𝑝𝑆𝑆𝑇𝑇 ∗ 2

2.8 Original Contribution

126

Finally, the previously mentioned rewards calculation, are calculated based
on the input of the designer to the following rewards parameters:

Table 30: Rewards Parameters and the corresponding Values used for Training Agents in RV

Input Reward Parameters Initial Reward Value

Continuous Brick Reward +0.001

Non-Continuous Brick Penalty -0.002
Gap Between Bricks Penalty -0.1*
Star Point (optional) +0.01
Lontana Penalty -0.001
High Brick Penalty -0.0005
Sturdy Brick Level +0.1
Maximum Number of Gaps Count 10
Cross Ventilation Max Reward +0.1
Stack Ventilation Max Reward +0.1
Door Away from Wind Effect
Reward

+0.1

Counter Bricks Exceeded Reward +0.1

2.8.7. Curriculum Learning and Hyperparameters

- Curriculum Learning

Curriculum learning is a way of decomposing a difficult task into subtasks
starting from a simple level and increasing difficulty till reaching exactly what
is required in the main task. This idea has been around for a long time, and it
is how we humans typically learn [78]. It is a form of prerequisites that a
student needs to learn one after the other so he/she can reach the hardest
lesson with all the previous courses in mind. The same principle can be
applied to machine learning, where training on easier tasks can provide a
scaffolding for harder tasks in the future.

Figure 98: Demonstration of a hypothetical curriculum training scenario in which a

progressively taller wall obstructs the path to the goal by ML-Agents [78].

Original Contribution 2.8

127

The following figure shows a scheme of how the Phase of Dome Bricks has
been divided into curriculum lessons.

Figure 99: Curriculum Learning in Phase 5 (Dome Creation)

For each “lesson” there are some parameters that needs to be defined, for
example:

• measure: What to measure learning progress, and advancement in
lessons by.

o reward: Uses as a measure the received reward.
• thresholds: (float array) - Points in value of measure where lesson

should be increased. In other words, since we decided that the measure

2.8 Original Contribution

128

of success of a lesson is through calculating the reward, the threshold
is the value that is needed to be reached so that the agent can be
promoted to the next lesson.

• min_lesson_length (int) - The minimum number of episodes that
should be completed before the lesson can change. If measure is set to
reward, the average cumulative reward of the last min_lesson_length
episodes will be used to determine if the lesson should change. Must
be nonnegative.

• Value: Value of the environment parameter selected to have changing
values based on the Lesson Number. In our case was the maximum
number of levels allowed to be reached in each lesson.

Curriculum learning was also used in Window Bricks phase, where the phase
was divided into 3 lessons. Each lesson had a maximum level constraint that
increased by proceeding to the succeeding lesson. The first lesson had a
maximum level (4) and reward threshold of 1.5, the second lesson had a
maximum level of (7) with reward threshold of 2.8 and the final lesson had a
maximum constraint on the level of bricks equals to 8. It has to be noted that
in the final lesson there is normally no threshold needed since it is already the
final lesson.

- Hyperparameters

The following table demonstrates the final hyperparameters used to train the
agents in each of the 5 phases. These hyperparameters are the ones related to
training configurations and doesn’t include any environment parameters as
we already discussed that part in the curriculum sub-section above.

Table 31: Comparison of Configuration file Hyperparameters for Different
Phases

Hyper Parameter

Phases

Phase
1

(Door)

Phase 3
(Windows)

Phase
4*

Phase 5**

Session 1 Session 2

Behaviors: Robuilder

trainer_type: PPO

Hyperparameters:

batch_size: 512 512 512 1024 1024

buffer_size 4096 4096 10240 20480 40960

learning_rate 0.0003

Original Contribution 2.8

129

beta 0.005 0.005 0.01 0.01 0.001

epsilon 0.2 0.2 0.2 0.2 0.2

lambd 0.9 0.9 0.9 0.9 0.9

num_epoch: 3 3 3 3 3

learning_rate_schedule: linear linear linear linear linear

network_settings:

normalize: FALSE FALSE FALSE FALSE FALSE

hidden_units: 512 512 512 512 512

num_layers: 2 2 3 3

vis_encode_type: simple simple simple simple simple

reward_signals:

extrinsic:

gamma: 0.99 0.99 0.99 0.99 0.99

strength: 1 1 1 1 1

network settings

normalize FALSE FALSE FALSE FALSE FALSE

hidden_units 512 512 512 512

num_layers 2 2 3 3

max_steps: 150000 500000 1E+08 3.6E+08 10000000

time_horizon: 3 9 512 1024

 threaded TRUE TRUE TRUE TRUE TRUE

Notes

Phase 4* During Training of Phase 4 (Window Bricks), the
trained outcome was working perfectly in Phase 2

(Base Bricks) as well. Therefore, the training outcome
in this phase was used in inference mode of both

phases. (See sub-section 3.9.4)

Phase 5** Phase 5 was trained along 2 consecutive sessions,
where session 2 was initialized from where session 1

has ended.

2.8 Original Contribution

130

2.8.8. Training Vs Inference Mode

Once training concludes, the learned policy for each phase can be exported as
a model file. Then during inference phase, the environment will still continue
to generate observation, but instead of being sent to Python API, they will be
fed directly into the (internal, embedded) model to generate the optimal action
for each medic to take at every point in time.

Since the decision to divide the pavilion into 5 separate phases, it meant that
we have 5 separate models that needs to be trained and the same number
needed to be run consecutively during the inference phase. For training each
episode, in theory, we need to have all the previous phases existing in the scene
so that the bricks, or other units, placed in this phase will be placed on top of
the previous phases.

However, to speed up the learning process, it was decided to create a sort of
“fake” base for each phase that relies on having an existing structure to start
from. The reason for doing this is to reduce the computation power and time
wasted at the beginning of each episode to place the existing structure before
the start of the current phase training.

Accordingly, the following pictures represent the differences between the
training mode and inference mode in every phase that relied on the structure
of previous phases. In most of the cases where the previous “Brick” structure
was required, a single layer of bricks was placed at the beginning of each
episode. This brick layer was altered in position randomly every episode start
to ensure that the agent wouldn’t get stuck if during inference mode the below
layer of an existing structure doesn’t exactly conform to the one it was used to
train on.

Figure 100: Phase Window Openings Placement, (1-2): Start and Finish in Inference Mode (3-

4): Start and Finish in Training Mode

Original Contribution 2.8

131

Figure 101: Phase Window Openings Placement, (1-2): Start and Finish in Inference Mode (3-
4): Start and Finish in Training Mode

Figure 102: Phase Window Openings Placement, (1-2): Start and Finish in Inference Mode (3-
4): Start and Finish in Training Mode

2.9 Original Contribution

132

2.9. Discussion of Results
In this section we first present the results of the training sessions of the
phases. These results are demonstrated using the training statistics and a brief
discussion follows the statistics of each phase. It has to be noted that regarding
Phase 2 (Base Bricks), its results were not mentioned in this section as
eventually the trained model for phase 4 (Window Bricks), was proven to be
efficient for being used as the main brain in inference mode for both phases.

After discussion of the training results and showing images of the training
process, the section ends with illustrating the compilation of the trained
models together in the inference phase. The last subsection, thus, shows
several pictures from the final inference phase as well as discussing the final
observations regarding the structure assembly.

2.9.1. General View of Statistics Results

Parameter Explanation

Environment

Cumulative Reward The mean cumulative episode reward over all
agents. Should increase during a successful
training session.

Lesson Only interesting when performing curriculum
training. Provides at which number of steps a
change in the lesson number occurs

Episode Length The mean length of each episode in the
environment for all agents.

Losses

Policy Loss The mean loss of the policy function update.
Correlates to how much the policy (process for
deciding actions) is changing. The magnitude of
this should decrease during a successful training
session.
These values will oscillate during training.
Generally, they should be less than 1.0.

Value Loss The mean loss of the value function update.
Correlates to how well the model is able to predict
the value of each state. This should decrease
during a successful training session.
These values will increase as the reward increases,
and then should decrease once reward becomes
stable.

Ahmed Mohamed Ahmed Lotfy Elmaraghy
Talk about generalziation and give examples like realtive height (in observation side)2 pages explaining what we could expect in the graphs (tomorrow) – what to expect inside themAfter each phase 1-2 pages explanation of all results + images of trainingAll phases Inference explanation Addtionla Discussion/Comments:Ex: Step and adjusting time speed wit the frame + give snapshot image Etc..

Original Contribution 2.9

133

Policy

Value Estimate The mean value estimate for all states visited by
the agent. Should increase during a successful
training session.
These values should increase as the cumulative
reward increases. They correspond to how much
future reward the agent predicts itself receiving at
any given point.

Extrinsic Reward Represents the rewards defined in the
environment, and is enabled by default

Learning Rate How large a step the training algorithm takes as it
searches for the optimal policy. Should decrease
over time.

Epsilon corresponds to the acceptable threshold of
divergence between the old and new policies
during gradient descent updating. Setting this
value small will result in more stable updates but
will also slow the training process.

Entropy How random the decisions of the model are?
Should slowly decrease during a successful
training process. If it decreases too quickly,
the beta hyperparameter should be increased.
This corresponds to how random the decisions of a
Brain are. This should consistently decrease during
training. If it decreases too soon or not at all, beta
should be adjusted (when using discrete action
space).

Beta Corresponds to the strength of the entropy
regularization, which makes the policy "more
random." This ensures that agents properly explore
the action space during training. Increasing this
will ensure more random actions are taken. This
should be adjusted such that the entropy
(measurable from TensorBoard) slowly decreases
alongside increases in reward. If entropy drops too
quickly, increase beta. If entropy drops too slowly,
decrease beta.

2.9 Original Contribution

134

2.9.2. Phase Door Opening Placement

- Graphical Statistics on Training behavior

The following graphs represent summary statistics for “Phase Door
Placement”

Figure 103: Cumulative Reward for Phase Door Opening Placement

Figure 104: Episode Length per Step for Phase Door Opening Placement

Figure 105: (left) Beta Evolution per Step- (right) Entropy Evolution per Step Phase Door Opening Placement

Original Contribution 2.9

135

Figure 106: (left) Epsilon Evolution per Step- (right) Learning Rate Evolution per Step Phase Door Opening

Placement

Figure 107: Extrinsic Reward per Step for Phase Door Opening Placement

Figure 108: Extrinsic Value Estimate Per Step for Phase Door Opening Placement

2.9 Original Contribution

136

Figure 109: Value Loss per Step for Phase Door Opening Placement

Figure 110: Policy Loss per Step for Phase Door Opening Placement

- Summary Points of Statistics Output

By observing the statistical results, it can be concluded the following main
points:

• The training maximum cumulative reward reached has been 1.097 at
step 670k in 55 minutes and 3 seconds.

• The average episode length was 2 steps overall.
• No curriculum learning was used therefore there was only one “lesson”

involved with no environment parameters changing throughout the
training process.

• Policy loss (the mean loss of the policy function update) values were
oscillating throughout the training session with an overall “healthy”
downward slope towards the end of training session.

• Entropy was consistently decreasing throughout the training session.
• The chosen option for “Learning rate” hyperparameter was selected to

linearly decay on the span of the maximum steps.

Original Contribution 2.9

137

- Discussion of the Training Summary and hyperparameters

Given the training time was approximately one hour, this is considered the
fastest training session (along with windows placement phase). It makes sense
as it is the simplest phase, comprising only of the placement of one unit (door
opening).

The average range of 2 steps which didn’t change throughout the training
time, is in indicator that the 3-step action needed to place a unit was
considered as a 2-step process by the network. This is because the last action
was not counted among the calculated steps during the game since it led
directly to game completion.

Regarding hyperparameters chosen, time horizon was set at 3 because the
whole episode is technically made of 3 steps. We didn’t need to reach the
maximum steps of 1500000, as indicated above. Buffer size was set to 4096
which is on the low side of the typical range (2048 - 409600), as there was no
need to collect more experiences before updating the model. However, Batch-
size was chosen to be 512 (typical range for discrete actions is between 32 -
512) to capture, in each iteration of the gradient descent update, a diversity of
game situations.

The use of 12 instances of the “Building Area”, ensured that the agent has
witnessed several values of wind direction vector. Even in each episode on the
same “building area”, there was a continuous change in the wind direction by
the continuous random generation of its unit vector x and z components. This
would ensure that the link between the door opening position and the wind
direction is always linked in every possible wind direction.

Figure 111: 12 Building Area Instances where in each one the agent is training to properly place

a door opening.

2.9 Original Contribution

138

2.9.3. Phase Window Openings Placement

The following graphs represent summary statistics for “Phase Windows
Placement”

Figure 112: Cumulative Reward for Phase Window Openings Placement

Figure 113: Episode Length per Step for Phase Window Openings Placement

Figure 114: (left) Beta Evolution per Step- (right) Entropy Evolution per Step Phase Window Openings Placement

Original Contribution 2.9

139

Figure 115: (left) Epsilon Evolution per Step- (right) Learning Rate Evolution per Step Phase Window

Openings Placement

Figure 116: Extrinsic Reward per Step for Phase Window Openings Placement

Figure 117: Extrinsic Value Estimate Per Step for Phase Window Openings Placement

2.9 Original Contribution

140

Figure 118: Value Loss per Step for Phase Window Openings Placement

Figure 119: Policy Loss per Step for Phase Window Openings Placement

- Summary Points of Statistics Output

By observing the statistical results, it can be concluded the following main
points:

• The training maximum cumulative reward reached has been 1.099 at
step 490k in 50 minutes and 12 seconds.

• The average episode length was 8 steps overall.
• No curriculum learning was used therefore there was only one “lesson”

involved with no environment parameters changing throughout the
training process.

• Policy loss (the mean loss of the policy function update) values were
oscillating throughout the training session with an overall “healthy”
downward slope towards the end of training session.

• Entropy was consistently decreasing throughout the training session.
• The chosen option for “Learning rate” hyperparameter was selected to

linearly decay on the span of the maximum steps.

Original Contribution 2.9

141

- Discussion of the Training Summary and hyperparameters

The training for both phases of windows and door opening placement were
executed in less than an hour. This is because for window openings the average
number of steps was 8 and it involved only the placement of maximum 3
windows.

Both batch size (512) and buffer size (4096) were kept the same as the one
used for door placement since the average steps per episode remains still
below 10. Therefore, there is no significant change. Only the value for the
hyper parameter “time horizon” was adjusted to account for 3 window
instances per episode, i.e., 3 window placement * 3 action steps = 9.

The use of 12 instances of the “Building Area”, ensured that the agent has
witnessed several values of wind direction vector. Even in each episode on the
same “building area”, there was a continuous change in the wind direction by
the continuous random generation of its unit vector x and z components. This
would imply a better learning and adaptation of the agents to changing wind
directions to achieve stack and cross ventilation requirements.

To sum up, both phases for window and door placement had achieved the
same results with almost similar hyper parameters. There was no complexity
in them that would require more advanced features on the neural network
side to be adjusted. The padding of zeros in the vector observation, didn’t
affect the performance of the neural network. This padding was done because
the number of observations was governed by the brick phases that required a
higher number compared to the ones essentially needed in both door and
windows placement phases.

Figure 120: Building Area Instances with varying wind direction (green arrow) where in each

one the agent is training to properly place 3 window openings

2.9 Original Contribution

142

2.9.4. Phase Window Bricks

The following graphs represent summary statistics for “Phase Window Bricks”

Figure 121: Cumulative Reward for Phase Window Bricks

Figure 122: (left) Episode Length per Step – (right) Lesson number Per step for Number of Brick Levels for Phase
Window Bricks

Figure 123: (left) Beta Evolution per Step- (right) Entropy Evolution per Step Phase Window Bricks

Original Contribution 2.9

143

Figure 124: (left) Epsilon Evolution per Step- (right) Learning Rate Evolution per Step Phase Window

Bricks

Figure 125: Extrinsic Reward per Step for Phase Window Bricks

Figure 126: Extrinsic Value Estimate Per Step for Phase Window Bricks

2.9 Original Contribution

144

Figure 127: Value Loss per Step for Phase Window Bricks

Figure 128: Policy Loss per Step for Phase Window Bricks

- Summary Points of Statistics Output

By observing the statistical results, it can be concluded the following main
points:

• The training maximum cumulative reward reached has been 3.713 at
step 32.96 million.

• This phase was trained using curriculum learning of 3 lessons as
discussed before. In each lesson the number of allowable level
maximum level to be reached is elevated. It started at 4 levels then 6
and finally 7 levels.

• Policy loss (the mean loss of the policy function update) values were
oscillating throughout the training session with an overall “slight”
downward slope towards the end of training session.

• Entropy was consistently decreasing throughout the training session,
apart from a minor period that coincides with the shifting from Lesson
1 to Lesson 2.

• The chosen option for “Learning rate” hyperparameter was selected to
linearly decay on the span of the maximum steps.

Original Contribution 2.9

145

• Epsilon, Beta and learning rate values were decreasing at a fixed rate
until step 32.37 million, a sudden drop occurred then they continued
to decrease at a slope steeper than the period before the sudden drop.

• Time horizon was raised from window bricks phase to be 1024 instead
of 512. This value remained constant for both sessions 1 and 2.

- Discussion of the Training Summary and hyperparameters

This phase is the first one to adopt curriculum learning in its training routine.
Practically, Phase “Base Bricks” was supposed to include also curriculum
training but given that the trained model of this phase was eligible for direct
use in the inference phase of Phase “Base Bricks”, we neglected the training
results of that earlier phase.

The curriculum, despite being divided into 3 lessons in this phase, basically
has 2 different types of levels if they are to be classified according to the
maximum capacity for brick placement. The first phase which includes lesson
1 and 2 are the Bricks surrounding the window openings all around the
pavilion. The second phase comprises only 1 level which what is called the
“Lentil Level for window openings”. In the latter, the main goal was to place
as much bricks as possible to create a good base for the upper bricks of the
dome phase.

Epsilon, and learning rate were supposed to be decaying with a constant slope,
however the sudden drop in the values is due to a change midst training of the
maximum number of steps allocated for training. Reducing the number of
steps led to the recalibration of both parameters so that they would decay and
reach zero by the end of the allowed maximum steps of 50 million. Previously,
it was set at 200 million steps.

Figure 129: 12 Instances of the “Building Area” with agents being trained at the End of a

successful training session for Phase Window Bricks

2.9 Original Contribution

146

Figure 130: Close caption of an agent during training for Phase Window Bricks

On the other hand, during this episode, a curiosity reward was among the
modules experimented. Curiosity works best in environments where the agent
receives rare or infrequent rewards (i.e. sparse-reward), an agent may never
receive a reward signal on which to bootstrap its training process. This is a
scenario where the use of an intrinsic reward signals can be valuable.
Curiosity is one such signal which can help the agent explore when extrinsic
rewards are sparse.

Accordingly, during the adjustment of the training model, all of the
instantaneous rewards were removed from the game and only rewards
resulting from a game termination scenario where kept. The curiosity Reward
Signal enables the Intrinsic Curiosity Module. This is an implementation of
the approach described in Curiosity-driven Exploration by Self-supervised
Prediction by Pathak, et al [89]. It trains two networks [78]:

1. an inverse model, which takes the current and next observation of the
agent, encodes them, and uses the encoding to predict the action that
was taken between the observations

2. a forward model, which takes the encoded current observation and
action, and predicts the next encoded observation.

The loss of the forward model (the difference between the predicted and actual
encoded observations) is used as the intrinsic reward, so the more surprised
the model is, the larger the reward will be.

Original Contribution 2.9

147

2.9.5. Phase Dome Bricks

Phase Dome Bricks was trained on 2 consecutive runs. Thus, the second run
was initialized from where the first run has stopped. The difference is updates
added to the curriculum training as well as some hyperparameters. The first
run is indicated in (Cyan) while the second is in (Green).

Figure 131: Cumulative Reward for Phase Dome Bricks

Figure 132: Episode Length per Step for Phase Dome Bricks

Figure 133: – Lesson number Per step for Number of Brick Levels for Phase Dome Bricks

2.9 Original Contribution

148

Figure 134: (left) Beta Evolution per Step- (right) Epsilon Evolution per Step Phase Dome Bricks

Figure 135: Entropy Evolution per Step Phase Dome Bricks

Figure 136: - Learning Rate Evolution per Step for Phase Dome Bricks

Original Contribution 2.9

149

Figure 137: - Extrinsic Reward per Step for Phase Dome Bricks

Figure 138: Extrinsic Value Estimate Per Step for Phase Dome Bricks

Figure 139: Value Loss per Step for Phase Dome Bricks

2.9 Original Contribution

150

Figure 140: Policy Loss per Step for Phase Dome Bricks

- Summary Points of Statistics Output

By observing the statistical results, it can be concluded the following main
points:

• The first training session has started till reaching 30.46 million steps
reaching an average cumulative reward of 2.63. Afterwards session 2
has been initialized by the weights developed during the training of the
neural network of session 1. The training has continued till reaching
3.036 as an average cumulative reward after training for 15 million
steps.

• Both sessions have been trained using curriculum learning (see section
3.8.7). Session 1 has succeeded in reaching the third lesson in its
designated curriculum, ending with an average episode length of 403.1
steps. Session 2 however has started with what session 1 has ended
with (Lesson Three), that has fixed the maximum dome height
required at 8 levels. However, the threshold for passing to the next
lesson was lowered to be 1.0 as an average cumulative reward instead
of 2.7 that was previously set as the threshold in session 1. The agent
has successfully surpassed all the lessons assigned to in session 2,
reaching the final lesson (9th Lesson) with a maximum dome height of
25 levels. It finishes with an average episode length of 959.3.

• Policy loss (the mean loss of the policy function update) values were
oscillating throughout the training session with the absence of a clear
downward slope towards the end of training session.

• Entropy was consistently decreasing throughout the training session
for session 1, while session 2 entropy was more or less stable around
zero.

• Epsilon, and learning rate values were decreasing more rapidly in
session 2.

Original Contribution 2.9

151

• The chosen option for “Learning rate” hyperparameter was selected to
linearly decay on the span of the maximum steps, reaching zero at the
end of the steps.

• Hyper parameter “Beta” has been decreased from 0.01 in session 1 to
0.001 in session 2 training.

• Time horizon was raised from window bricks phase to be 1024 instead
of 512. This value remained constant for both sessions 1 and 2.

- Discussion of the Training Summary and hyperparameters

This session is considered the most challenging one. Given its added
complexity with the introduction of the reduced radius on each newer upper
level in order to create the dome. This has led to several challenges during the
training process.

Regarding the first point in the summary, it is noticeable that the first training
session has taken much more time than the second one, however it has only
reached level 8 as the maximum dome height. On the other hand, session 2
has reached a final dome height of 25 levels in nearly half of the time of session
1. On the contrary, there is not much improvement regarding the rewards
achieved in session 2. Though it has managed to reach 17 extra levels, the
average cumulative reward has increased by only 15% compared to what
session 1 has ended with.

This is mainly because each session had a diverse goal to achieve. As for the
first session, it took more time and the promotion from one lesson to the other
required a heigh reward to achieve it. This has an impact on achieving a sturdy
dome base in the beginning. This is a crucial part in withstanding all the upper
loads. It also focused on the proper placement of bricks in an arranged
consecutive way that was explained earlier. This arrangement was taken into
consideration in the reward system to mimic an optimized strategy for energy
management on site by reducing the transition distance between supply and
demand points and reduce risks associated to path planning issues.

On the other hand, after achieving high rewards on the first 8 levels, it was
sought to give priority to the crucial aspects of stability in the higher levels and
turn a blind eye on the complementary tasks. The motivation behind that was
to accelerate the speed of learning and reduce the level of complexity in an
already challenging task.

This was evident when the agent was able in session 2 to successfully complete
the assigned lessons in a quick pace till reaching the final lesson, however at
the expense of some other aspects. One of these major aspects that raised our
concern was mainly design related. A source of this design failure is the
increased number of gaps between bricks that eventually got wider by
increasing heights and led to the split of the brick fabric making it impossible

2.9 Original Contribution

152

to reconnect bricks on top one more time till the upper oculus (see Figure
141). This would consequently jeopardize the initial design idea.

Figure 141: Gap Propagation leading to failure in complying with Design Requirements

The intervention we have proposed was an introduction of the “Gap Check”
and setting a maximum number of allowable gaps. This threshold, if exceeded,
would directly lead to game termination due to design failure (as explained in
rewards sub-section 3.8.6). In addition, the penalty for such an error was quite
large with respect to other errors. The training was then restarted with the
new addition to the reward system and the final results has shown a great
improvement in that manner.

This also explains the limited increase of rewards in session 2. In some cases,
the agent would create an empty gap, thus is penalized. However, it has learnt
how to recover from this mistake and to prevent gap propagation by adjusting
the bricks to be placed on top of such gap.

The additional step that was also introduced was a small incentive rewarded
to inserting bricks in “Star Points”. This reward was turned on and
experimented on higher levels in the dome (for instance from level 5 from
dome start and then upwards). This incentive has also indirectly contributed
to the reduction of gaps between bricks.

Regarding “Beta Parameter”, its definition in [90] states that it ensures that
agents properly explore the action space during training. Increasing this will
ensure more random actions are taken. Accordingly, this explains why it had
was set to a large value in Session 1 and a very low value in Training Session
2. The main goal was to let the agent “explore” as much as possible different

Original Contribution 2.9

153

scenarios in order to eventually find its way to the optimum strategy to be
used. While in session 2, once we initialize it from the “more experienced”
agent from session 1, we don’t want it to explore more, but rather keep the
“rhythm” acquired from training session 2 and try to maintain the same
approach as much as possible in Session 2.

Furthermore, this phase has witnessed the highest value for time horizon.
Since time horizon corresponds to how many steps of experience to collect
per-agent before adding it to the experience buffer. When this limit is reached
before the end of an episode, a value estimate is used to predict the overall
expected reward from the agent's current state.

Accordingly, after many trials, the most convenient solution was to increase
the time horizon to capture as much events as possible. This case differs
greatly from other phases including window bricks and phase base bricks
because of the incompatibility of applying the repetitive concept. In other
words, at lower levels and since the radius remains constant it is possible to
consider that once a brick level is completed in sequence, there is less urge to
capture all succeeding actual rewards from the game.

This approach could be convenient if what occurs on one level can be just
“repeated” on all upper levels afterwards. This strategy is sought to be
inefficient in the changing radius dome. Despite the effort to try generalizing
observations, especially when it comes to height calculations, it is still not
possible to assume that a brick placed on a radius of 5 meters has the same
circumstances as another one placed at a radius of 4 meters or less.

Finally, the following images are some screenshots of the training sessions for
Dome phase. These shots were taken at the final steps of both training
sessions.

Figure 142: 12 Instances of the “Building Area” with agents being trained at the end of session 2

2.9 Original Contribution

154

Figure 143: Close Caption of Simultaneous Training of Agents in phase 5 (Dome Creation)

Figure 144: Agents Brick Placement Behavior after the introduction of small incentives for

selecting "Star Points" and its effect on the overall Design of the Pavilion

Original Contribution 2.9

155

2.9.6. Review of Inference Phase

Once all phases were trained, comes the turn of inference phase. All trained
models are then connected to the game object with the Agent component
attached to it (Robuilder Agent). Despite the training of the models was
executed in simplified configuration regarding the absence of a complete
lower structure for phases built on existing bricks, the inference phase was
carried out successfully.

Figure 145: Trained Models Compiled in Inference phase, creating the whole structure (1/3)

Figure 146: Trained Models Compiled in Inference phase, creating the whole structure (2/3)

2.9 Original Contribution

156

Figure 147: Trained Models Compiled in Inference phase, creating the whole structure (3/3)

One of the main reasons that needed to be optimized in order to guarantee
this smooth connection between different phases during inference mode is the
generalization of Observations. This issue was creating problems in the
beginning of the early trials. From one point most of the upper brick phases
were trained with only one level of bricks below, while in the actual scenario
these bricks should have been placed above several brick layers.

This issue has created a discrepancy for observations related to height
calculations. The solution that we decided to follow was to use relative height
definitions instead of absolute ones. For instance, a brick height to be used for
observation variable is given as the height calculated from the beginning of the
phase and not from the ground. In that case, no matter how many brick levels
are present below the current phase, the observation will have the same value
in both inference and training modes.

Original Contribution 2.9

157

2.9.7. Final Notes

This sub-section is dedicated to some final bullet points regarding RV and the
training of the agents.

- Time Speed:

During the training of the agents, the speed of the game goes multiple times
faster than the actual (real) speed. At one point, this is very crucial method to
reduce the amount of time consumed in the learning process. However, it
creates a drastic effect on the physics behavior of the game objects.

For example, if a brick was starting to tilt at a normal speed, the brick might
reach the maximum threshold and the game could terminate. But, at 10x the
average speed of the game, and the tilting is still happening at the normal
speed, there is a high chance that a new brick will be placed to stabilize it
before even starting to tilt. This creates fake situations and when the game is
played in the normal speed after training, the Agent might not be able to react
correctly to this behavior.

Therefore, the solution was to link the physics behavior speed with the current
training speed used. This would simulate movements at the same high speed
of the training process.

- One hot Observations

One hot style was used in describing categorical information that are fed to
the observation vectors. During the initial trials, float values were also tried in
replacement of One hot style. For instance, to represent the selection of the
2nd Segment of the 12 Segments in the observation vector, there are 2 possible
ways:

1. By using One-hot Style (This consumes 12 variables in the Observation
Vector). The Vector will contain all zeroes except for the value of 1 at
position 2.

2. By using 1 float value. This can be done by dividing the value 2 (second
segment) by 12 (total number of segments). In this case, no matter which
segment is chosen, it will be divided by the total number of segments and
will only consume 1 position in the Observation Vector.

Despite that the second option may seem more intuitive to reduce the
complexity of the problem, it turned out during training that the neural
network can identify in an easier way categorical information when conveyed
in one-hot style. Of course, when we only have 3 categories for example instead
of 12, there wouldn’t be great difference between both representations.
Therefore, Categorical information in the range of (10-20) items, is best
represented in the observation vector using One-hot style.

2.9 Original Contribution

158

- Time Horizon Hyper parameter

During the several trials done throughout the training of agents, finetuning
the hyperparameters was regarded a crucial factor to success. One of these
important hyperparameters was time_horizon. According to ML—Agents the
definition of time-horizon is: How many steps of experience to collect per-
agent before adding it to the experience buffer [90].

When this limit is reached before the end of an episode, a value estimate is
used to predict the overall expected reward from the agent's current state. As
such, this parameter trades off between a less biased, but higher variance
estimate (long time horizon) and more biased, but less varied estimate (short
time horizon).

It turned out that, it is possible to adjust this parameter to lower its value in
repetitive processes. On the contrary, in phases that have too many details
that aren’t replicated, it is required to increase its value as much as possible
in order to capture all these events during training.

For instance, in lower bricks phases, since the radius remains constant, it is
possible to consider each brick level as an event that is repeated along the
episode several times. Therefore, value of time horizon could be equal to the
number of steps needed to complete only one level of bricks.

On the other hand, in Phase Dome Creation, since every level has its own
unique properties, it is required to increase the time horizon to a much larger
value.

Original Contribution 2.10

159

2.10. Conclusion and Future Research
In this research, a proposed framework for automating design and
construction processes has been presented. This framework was inspired by
the achievements of RL Algorithms in gaming industry as well as the modern
advancements in simulation environments supported by game engines.

Through the proper transformation of real case constraints into the
simulation environment, the designer could have a new role in this
framework. This role is mainly concerned with supervising the training
process of AI agents that learn how to execute this project through exploring
the simulated environment.

These agents by the help of RL Algorithms could learn simultaneously the
design and construction of structures in the simulated environment. This
learning process is directed by a reward system that is set by the designers
prior to the training process. Once trained properly, the agents are able to
deploy their experience on site by the help of robotic execution. These AI-
Agents then become the brain that directs these robots on site on what to do.

Eventually, the team of designers and engineers would form a new
modernized “Master Builder”, that supervises his crafts men on site (agents
in the simulation environment) in order to later convey the proper
instructions to the labor force (the execution robots).

As a proof of concept, RoBuilDeR application was developed in Unity
Platform and ML-Agents framework was used for RL training of the agents.
The Game objective is 2 design and construct a Brick Pavilion inspired by the
pantheon’s dome.

2 Versions of the game were provided. The UV (Human Version) is for the
designer to check the simulated environment and adjust its parameters and
the RV (Robot Version) that is considered the learning playground for the AI-
Agents.

Proximal Policy Algorithm (PPO) was used to train the Agents. The complete
project was divided into 5 phases to reduce its complexity for the Agents.
During the training process, several methods were adopted to facilitate the
learning process of the Agents. Examples of these processes include:
curriculum learning, curiosity module, parallel training of several instances,
random generation of environment parameters, generalization of observation
parameters etc. Finally, the 5 phases were integrated together in the inference
phase and the results were discussed.

There are several topics in this research that are still open for development
and improvement. For instance, regarding the division of the project into
phases, perhaps with bigger scale projects the use of hierarchical

2.10 Original Contribution

160

reinforcement learning could be a solution instead of the “manual" process
that has been done here.

Hierarchical Reinforcement Learning (HRL) enables autonomous
decomposition of challenging long-horizon decision-making tasks into
simpler subtasks. During the past years, the landscape of HRL research has
grown profoundly, resulting in copious approaches. [91].

Furthermore, there are some additional design parameters that were not
included in this research but are still under development. An example is
sunlight analysis and better checking of “design gaps” through mesh analysis
and calculations of normal vectors to mesh faces. This method could
transform the bricks into meshes. Then a plenty of analysis can be executed
based on the rich data that meshes convey,

Figure 148: Mesh Creation out of brick Pattern (Under Development)

Accordingly, this research has drawn the attention to some points that would
eventually lead in the near future to major disruptions in the AEC industry.
The following points summarizes some of these ideas:

• ML-Agents is still in its primary stage, however with increased
implementation of RL state-of-the-art algorithms, many applications
could be built up on top of it. Eventually, it would become as
“grasshopper” is to “Rhino” but for deploying deep RL algorithms.

• The continuous development of game-engines as well as the new
direction towards the “Meta Verse” would drastically improve the
qualities present in simulated environments and increase the “real”
essence of them. Thus, less discrepancy would be found between what
the Agent learns in the simulation and what it could face in real world

• 3D GANs is also regarded as a new tool, that once properly developed,
it is expected to significantly contribute to the faster development of
new design ideas. It could also be linked with Agent-Based Learning
methods like Deep RL.

Original Contribution 2.10

161

To sum up, this new paradigm shift would essentially require in the first place
a change in the mindset of modern designer and architects and rearrangement
for their learning priorities. By acquiring the needed skills for these new tools
and techniques they could lead the transformation process of our AEC
Industry into a more modern version that is built on sustainability and agility.

References

[1] J. H. Fetzer, “What is Artificial Intelligence?,” in Artificial
Intelligence: Its Scope and Limits, J. H. Fetzer, Ed. Dordrecht: Springer
Netherlands, 1990, pp. 3–27. doi: 10.1007/978-94-009-1900-6_1.

[2] “Definition of INTELLIGENCE.” https://www.merriam-
webster.com/dictionary/intelligence (accessed Apr. 09, 2022).

[3] “What is the Turing Test?,” SearchEnterpriseAI.
https://www.techtarget.com/searchenterpriseai/definition/Turing-test
(accessed Apr. 09, 2022).

[4] N. Leach, “Do Robots Dream of Digital Sleep?,” 2019. Accessed: Apr.
09, 2022. [Online]. Available: http://papers.cumincad.org/cgi-
bin/works/paper/acadia19_298

[5] “Blade Runner (1982) - IMDb.”
https://www.imdb.com/title/tt0083658/ (accessed Apr. 09, 2022).

[6] “Recordings,” Intelligent Machinery, Identity and Ethics, Oct. 04,
2018. https://intelligentmachinerycourse.com/recordings/ (accessed Apr.
09, 2022).

[7] “MAKOTO SEI WATANABE | 渡辺 誠.” https://www.makoto-
architect.com/aitect.html (accessed Apr. 10, 2022).

[8] “Deep Dream Generator.” https://deepdreamgenerator.com/#gallery
(accessed Apr. 10, 2022).

[9] C. Y, “Creating Art with Generative Adversarial Network,” Medium,
Mar. 01, 2022. https://medium.com/@ymingcarina/creating-art-with-
generative-adversarial-network-refik-anadols-wdch-dreams-159a6eac762d
(accessed Apr. 10, 2022).

[10] J. Takeno, Self-Aware Robots: On the Path to Machine Consciousness.
CRC Press, 2022.

[11] “The Difference Between AI, Machine Learning, and Deep
Learning?,” NVIDIA Blog, Jul. 29, 2016.
https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-
intelligence-machine-learning-deep-learning-ai/ (accessed Apr. 10, 2022).

[12] J. Vrana and R. Singh, The NDE 4.0: Key Challenges, Use Cases, and
Adaption. 2020.

References 2.10

163

[13] “Artificial Neural Network,” NVIDIA Developer, Apr. 23, 2018.
https://developer.nvidia.com/discover/artificial-neural-network (accessed
Apr. 10, 2022).

[14] “NVIDIA Blog: Supervised Vs. Unsupervised Learning,” NVIDIA
Blog, Aug. 02, 2018. https://blogs.nvidia.com/blog/2018/08/02/supervised-
unsupervised-learning/ (accessed Apr. 10, 2022).

[15] “The Tree of Machine Learning Algorithms | Teradata Blog.”
https://www.teradata.com/Blogs/The-Tree-of-Machine-Learning-
Algorithms (accessed Apr. 10, 2022).

[16] T. Hong, Z. Wang, X. Luo, and W. Zhang, “State-of-the-art on
research and applications of machine learning in the building life cycle,”
Energy Build., vol. 212, p. 109831, Apr. 2020, doi:
10.1016/j.enbuild.2020.109831.

[17] S. Blundell, “Making a foray into AI for applications in the AEC
industry,” Planning, BIM & Construction Today, May 24, 2021.
https://www.pbctoday.co.uk/news/construction-technology-news/ai-in-
aec/93782/ (accessed Apr. 10, 2022).

[18] B. and J. G. Andrade Zandavali, “Automated Brick Pattern
Generator for Robotic Assembly using Machine Learning and Images,”
2019. Accessed: Apr. 10, 2022. [Online]. Available:
http://papers.cumincad.org/cgi-bin/works/paper/ecaadesigradi2019_605

[19] “Form Follows Function, Function Follows Form : Journal of
Craniofacial Surgery.”
https://journals.lww.com/jcraniofacialsurgery/Citation/2020/04000/Form_
Follows_Function,_Function_Follows_Form.4.aspx (accessed Apr. 10, 2022).

[20] I. S. P. and P. B. As, “Artificial intelligence in architecture:
Generating conceptual design via deep learning,” 2018. Accessed: Apr. 10,
2022. [Online]. Available: http://papers.cumincad.org/cgi-
bin/works/paper/ijac201816406

[21] M. del Campo, “Architecture,Language and AI -
Language,Attentional Generative Adversarial Networks (AttnGAN) and
Architecture Design,” 2021. Accessed: Apr. 10, 2022. [Online]. Available:
http://papers.cumincad.org/cgi-bin/works/paper/caadria2021_389

[22] W. Z. Huang, “Architectural Drawings Recognition and Generation
through Machine Learning,” 2018. Accessed: Apr. 10, 2022. [Online].
Available: http://papers.cumincad.org/cgi-bin/works/paper/acadia18_156

[23] A. B. Mohammad, “Hybrid Elevations using GAN Networks,” 2019.
Accessed: Apr. 10, 2022. [Online]. Available:
http://papers.cumincad.org/cgi-bin/works/paper/acadia19_370

2.10 References

164

[24] L. Brown, “Drawing Recognition - Integrating Machine Learning
Systems into Architectural Design Workflows,” 2020. Accessed: Apr. 10,
2022. [Online]. Available: http://papers.cumincad.org/cgi-
bin/works/paper/ecaade2020_047

[25] V. Eisenstadt, “Generation of Floor Plan Variations with
Convolutional Neural Networks and Case-based Reasoning - An approach
for transformative adaptation of room configurations within a framework for
support of early conceptual design phases,” 2019. Accessed: Apr. 10, 2022.
[Online]. Available: http://papers.cumincad.org/cgi-
bin/works/paper/ecaadesigradi2019_648

[26] M. C. del Campo, “How Machines Learn to Plan,” 2020. Accessed:
Apr. 10, 2022. [Online]. Available: http://papers.cumincad.org/cgi-
bin/works/paper/acadia20_272

[27] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila,
“Analyzing and Improving the Image Quality of StyleGAN,”
ArXiv191204958 Cs Eess Stat, Mar. 2020, Accessed: Apr. 10, 2022. [Online].
Available: http://arxiv.org/abs/1912.04958

[28] K.-H. Chang, C.-Y. Cheng, J. Luo, S. Murata, M. Nourbakhsh, and Y.
Tsuji, “Building-GAN: Graph-Conditioned Architectural Volumetric Design
Generation,” 2021, pp. 11956–11965. Accessed: Apr. 10, 2022. [Online].
Available:
https://openaccess.thecvf.com/content/ICCV2021/html/Chang_Building-
GAN_Graph-
Conditioned_Architectural_Volumetric_Design_Generation_ICCV_2021_pa
per.html

[29] H. and B. Zhang, “3D Architectural Form Style Transfer through
Machine Learning,” 2020. Accessed: Apr. 10, 2022. [Online]. Available:
http://papers.cumincad.org/cgi-bin/works/paper/caadria2020_234

[30] G. and N. Rossi, “Haptic Learning - Towards Neural-Network-based
adaptive Cobot Path-Planning for unstructured spaces,” 2019. Accessed:
Apr. 11, 2022. [Online]. Available: http://papers.cumincad.org/cgi-
bin/works/paper/ecaadesigradi2019_280

[31] J. Bard, A. Bidgoli, and W. W. Chi, “Image Classification for Robotic
Plastering with Convolutional Neural Network,” in Robotic Fabrication in
Architecture, Art and Design 2018, Cham, 2019, pp. 3–15. doi: 10.1007/978-
3-319-92294-2_1.

[32] H. Perez, J. H. M. Tah, and A. Mosavi, “Deep Learning for Detecting
Building Defects Using Convolutional Neural Networks,” Sensors, vol. 19,
no. 16, p. 3556, Aug. 2019, doi: 10.3390/s19163556.

References 2.10

165

[33] C.-L. and H. Cheng, “Biomimetic Robotic Construction Process - An
approach for adapting mass irregular-shaped natural materials,” 2016.
Accessed: Apr. 10, 2022. [Online]. Available:
http://papers.cumincad.org/cgi-bin/works/paper/ecaade2016_079

[34] N. M. A. K. A. Larsen, “Exploring Natural Wood,” 2019. Accessed:
Apr. 10, 2022. [Online]. Available: http://papers.cumincad.org/cgi-
bin/works/paper/acadia19_500

[35] G. Mirra, A. Holland, S. Roudavski, J. S. Wijnands, and A. Pugnale,
“An Artificial Intelligence Agent That Synthesises Visual Abstractions of
Natural Forms to Support the Design of Human-Made Habitat Structures,”
Front. Ecol. Evol., vol. 10, 2022, Accessed: Mar. 21, 2022. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fevo.2022.806453

[36] D. Wang and R. Snooks, “INTUITIVE BEHAVIOR The Operation of
Reinforcement Learning in Generative Design Processes,” 2021.

[37] D. Wang and R. Snooks, “Artificial Intuitions of Generative Design:
An Approach Based on Reinforcement Learning,” in Proceedings of the 2020
DigitalFUTURES, Singapore, 2021, pp. 189–198. doi: 10.1007/978-981-33-
4400-6_18.

[38] Z. Han, W. Yan, and G. Liu, “A Performance-Based Urban Block
Generative Design Using Deep Reinforcement Learning and Computer
Vision,” in Proceedings of the 2020 DigitalFUTURES, Singapore, 2021, pp.
134–143. doi: 10.1007/978-981-33-4400-6_13.

[39] P. Veloso and R. Krishnamurti, “An Academy of Spatial Agents
Generating spatial configurations with deep reinforcement learning.”

[40] T. Xu, D. Wang, M. Yang, X. You, and W. Huang, “AN EVOLVING
BUILT ENVIRONMENT PROTOTYPE A Prototype of Adaptive Built
Environment Interacting with Electroencephalogram Supported by
Reinforcement Learning,” 2018.

[41] Z. Fang, “Towards multi-drone autonomous construction via deep
reinforcement learning,” thesis, Carnegie Mellon University, 2021. doi:
10.1184/R1/14138024.v1.

[42] A. A. Apolinarska et al., “Robotic assembly of timber joints using
reinforcement learning,” Autom. Constr., vol. 125, May 2021, doi:
10.1016/J.AUTCON.2021.103569.

[43] T. T. Hosmer, “Deep Reinforcement Learning for Autonomous
Robotic Tensegrity (ART),” 2019. Accessed: Apr. 11, 2022. [Online].
Available: http://papers.cumincad.org/cgi-bin/works/paper/acadia19_16

2.10 References

166

[44] C.-H. Huang, “REINFORCEMENT LEARNING FOR
ARCHITECTURAL DESIGN-BUILD Opportunity of Machine Learning in
a Material-informed Circular Design Strategy,” 2021.

[45] S. Ontañón, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill, and
M. Preuss, “A Survey of Real-Time Strategy Game AI Research and
Competition in StarCraft,” IEEE Trans. Comput. IN℡LIGENCE AI GAMES,
vol. 5, no. 4, p. 293, 2013, doi: 10.1109/TCIAIG.2013.2286295.

[46] “What is Real-Time Strategy (RTS)? - Definition from Techopedia,”
Techopedia.com. http://www.techopedia.com/definition/1923/real-time-
strategy-rts (accessed Mar. 10, 2022).

[47] “Current AI in games : a review | QUT ePrints.”
https://eprints.qut.edu.au/45741/ (accessed Apr. 11, 2022).

[48] “AlphaStar: Grandmaster level in StarCraft II using multi-agent
reinforcement learning,” Deepmind.
https://deepmind.com/blog/article/AlphaStar-Grandmaster-level-in-
StarCraft-II-using-multi-agent-reinforcement-learning (accessed Mar. 10,
2022).

[49] M. Buro, “Real-Time Strategy Gaines: A New AI Research
Challenge”.

[50] Z.-J. Pang, R.-Z. Liu, Z.-Y. Meng, Y. Zhang, Y. Yu, and T. Lu, “On
Reinforcement Learning for Full-length Game of StarCraft,”
ArXiv180909095 Cs Stat, Feb. 2019, Accessed: Mar. 10, 2022. [Online].
Available: http://arxiv.org/abs/1809.09095

[51] B. Weber and M. Mateas, A data mining approach to strategy
prediction. 2009, p. 147. doi: 10.1109/CIG.2009.5286483.

[52] G. Synnaeve and P. Bessiere, “A Dataset for StarCraft AI & an
Example of Armies Clustering,” in Artificial Intelligence in Adversarial Real-
Time Games 2012, Palo Alto, United States, Oct. 2012, p. pp 25-30.
Accessed: Mar. 11, 2022. [Online]. Available: https://hal.archives-
ouvertes.fr/hal-00752893

[53] “Towards digital architecture, engineering, and construction (AEC)
industry through virtual design and construction (VDC) and digital twin |
Elsevier Enhanced Reader.”
https://reader.elsevier.com/reader/sd/pii/S266612332100060X?token=F46
6FCE668CCD24EF1C2ABE90120E83FCEF96FBB515DAFB9DEE2AD9F
AD61840683EA2E372B54900B31F4225EB6FA40CD&originRegion=eu-
west-1&originCreation=20220311032230 (accessed Mar. 11, 2022).

[54] Y. An, H. Li, T. Su, and Y. Wang, “Determining Uncertainties in AI
Applications in AEC Sector and their Corresponding Mitigation Strategies,”

References 2.10

167

Autom. Constr., vol. 131, p. 103883, Nov. 2021, doi:
10.1016/j.autcon.2021.103883.

[55] A. Darko, A. P. C. Chan, M. A. Adabre, D. J. Edwards, M. R.
Hosseini, and E. E. Ameyaw, “Artificial intelligence in the AEC industry:
Scientometric analysis and visualization of research activities,” Autom.
Constr., vol. 112, p. 103081, Apr. 2020, doi: 10.1016/j.autcon.2020.103081.

[56] A. Zabin, V. A. González, Y. Zou, and R. Amor, “Applications of
machine learning to BIM: A systematic literature review,” Adv. Eng. Inform.,
vol. 51, p. 101474, Jan. 2022, doi: 10.1016/j.aei.2021.101474.

[57] “College of Engineering & Applied Science,” College of Engineering &
Applied Science. https://www.colorado.edu/engineering/ (accessed Mar. 15,
2022).

[58] PlanGrid, “The History of Blueprints,” PlanGrid Construction
Productivity Blog, Apr. 12, 2016. https://blog.plangrid.com/2016/04/the-
history-of-blueprints/ (accessed Mar. 15, 2022).

[59] E. L. Flavell, “Master Builder: Historical Icon?,” Leadersh. Manag.
Eng., vol. 11, no. 2, pp. 78–79, Apr. 2011, doi: 10.1061/(ASCE)LM.1943-
5630.0000105.

[60] V. (Vincenzo M. Emprin-Gilardini, “Master builder of the Middle
Ages and design build of today : an analysis and comparison,” Thesis,
Massachusetts Institute of Technology, 2000. Accessed: Mar. 15, 2022.
[Online]. Available: https://dspace.mit.edu/handle/1721.1/8976

[61] “(200) Pinterest,” Pinterest.
https://www.pinterest.it/pin/329536897704842012/ (accessed Mar. 15,
2022).

[62] “Prevailing winds - Energy Education.”
https://energyeducation.ca/encyclopedia/Prevailing_winds#cite_note-env-1
(accessed Mar. 16, 2022).

[63] “Reinforcement Learning via Markov Decision Process,” Analytics
Vidhya, Nov. 28, 2020.
https://www.analyticsvidhya.com/blog/2020/11/reinforcement-learning-
markov-decision-process/ (accessed Mar. 17, 2022).

[64] H. com Editors, “Pantheon,” HISTORY.
https://www.history.com/topics/ancient-greece/pantheon (accessed Mar.
18, 2022).

[65] “Pantheon,” Pantheon Rome.
https://www.pantheonroma.com/en/pantheon-history/ (accessed Mar. 18,
2022).

2.10 References

168

[66] “Pantheon di Roma: 3 curiosità che non tutti conoscono!,” Ristorante
Grano, Jun. 29, 2016. https://www.ristorantegrano.it/blog/pantheon-roma/
(accessed Mar. 18, 2022).

[67] G. R. H. Wright, Chapter Seven: Roman Concrete Construction. Brill,
2009, pp. 269–283. doi: 10.1163/9789047430896_008.

[68] “The Pantheon by David Moore.”
http://www.romanconcrete.com/docs/chapt01/chapt01.htm (accessed Mar.
18, 2022).

[69] “Il Pantheon, storia e segreti,” ItalyGuides.it.
https://www.italyguides.it/it/lazio/roma/antica-roma/pantheon (accessed
Mar. 18, 2022).

[70] “rotunda | architecture | Britannica.”
https://www.britannica.com/technology/rotunda-architecture (accessed
Mar. 18, 2022).

[71] R. Mark and P. Hutchinson, “On the Structure of the Roman
Pantheon,” Art Bull., Aug. 2014, Accessed: Mar. 18, 2022. [Online].
Available:
https://www.tandfonline.com/doi/abs/10.1080/00043079.1986.10788309

[72] “Principles of Roman Architecture: Wilson Jones, Mark:
9780300102024: Amazon.com: Books.”
https://www.amazon.com/Principles-Roman-Architecture-Wilson-
Jones/dp/030010202X (accessed Mar. 18, 2022).

[73] T. A. Marder and M. W. Jones, The Pantheon: From Antiquity to the
Present. Cambridge University Press, 2015.

[74] “Gramazio Kohler Research.”
https://gramaziokohler.arch.ethz.ch/web/e/forschung/216.html (accessed
Mar. 18, 2022).

[75] “Unity (game engine),” Wikipedia. Mar. 11, 2022. Accessed: Mar. 21,
2022. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Unity_(game_engine)&oldid=10
76485156

[76] U. Technologies, “Unity - Manual: Physics.”
https://docs.unity3d.com/Manual/PhysicsSection.html (accessed Mar. 21,
2022).

[77] “Anyone can use NVIDIA’s physics simulation engine,” Engadget.
https://www.engadget.com/2018-12-03-nvidia-physx-open-source.html
(accessed Mar. 21, 2022).

References 2.10

169

[78] Unity ML-Agents Toolkit. Unity Technologies, 2022. Accessed: Mar.
21, 2022. [Online]. Available: https://github.com/Unity-Technologies/ml-
agents

[79] M. Saroufim, “Building your own game simulations for
Reinforcement Learning with Unity ML agents — A code deep…,” Medium,
Oct. 30, 2019. https://marksaroufim.medium.com/building-your-own-game-
simulations-for-reinforcement-learning-with-unity-ml-agents-a-code-deep-
e69a7bbc601e (accessed Mar. 21, 2022).

[80] U. Technologies, “Unity - Manual: Supported platforms.”
https://docs.unity3d.com/2018.2/Documentation/Manual/UnityCloudBuild
SupportedPlatforms.html (accessed Mar. 21, 2022).

[81] N. Vishwakarma, “How Unity Supports Cross Platform Feature,”
Medium, Apr. 20, 2018. https://niraj-vishwakarma.medium.com/how-unity-
supports-cross-platform-feature-ae722321cfa (accessed Mar. 25, 2022).

[82] “KMR QUANTEC,” KUKA AG. https://www.kuka.com/en-
de/products/mobility/mobile-robots/kmr-quantec (accessed Mar. 25, 2022).

[83] blackburn, “Introduction to Reinforcement Learning : Markov-
Decision Process,” Medium, Jul. 25, 2021.
https://towardsdatascience.com/introduction-to-reinforcement-learning-
markov-decision-process-44c533ebf8da (accessed Mar. 31, 2022).

[84] EBatlleP, Català: Diagrama d’un procés de decisió de Markov en
aprenentatge per reforç basat en una figura del llibre “Reinforcement
Learning An Introduction” segona edició de Sutton and Barto. 2020.
Accessed: Mar. 31, 2022. [Online]. Available:
https://commons.wikimedia.org/wiki/File:Markov_diagram_v2.svg

[85] “Proximal Policy Optimization — Spinning Up documentation.”
https://spinningup.openai.com/en/latest/algorithms/ppo.html#quick-facts
(accessed Mar. 31, 2022).

[86] R. M. Kretchmar, “Parallel Reinforcement Learning,” 2002.

[87] “Class Agent | ML Agents | 1.0.8.”
https://docs.unity3d.com/Packages/com.unity.ml-
agents@1.0/api/Unity.MLAgents.Agent.html (accessed Mar. 31, 2022).

[88] “Class DecisionRequester | ML Agents | 1.0.8.”
https://docs.unity3d.com/Packages/com.unity.ml-
agents@1.0/api/Unity.MLAgents.DecisionRequester.html (accessed Apr. 02,
2022).

[89] “Curiosity-driven Exploration by Self-supervised Prediction.”
https://pathak22.github.io/noreward-rl/ (accessed Apr. 12, 2022).

2.10 References

170

[90] AlexZou, Unity ML-Agents Toolkit (Beta). 2020. Accessed: Apr. 08,
2022. [Online]. Available: https://github.com/gzrjzcx/ML-
agents/blob/476504b547b39e0bd6974d4b2951dd0e97c95f79/docs/Trainin
g-PPO.md

[91] B. Hengst, “Hierarchical Reinforcement Learning,” in Encyclopedia
of Machine Learning, C. Sammut and G. I. Webb, Eds. Boston, MA: Springer
US, 2010, pp. 495–502. doi: 10.1007/978-0-387-30164-8_363.

Appendices

Appendix A
This Appendix includes video links for the RoBuilDeR:

1. Human Version Explanation:

https://youtu.be/banTFV1uat8

2. Robot Version Training Steps

https://youtu.be/CaVdg1k1oTQ

https://youtu.be/banTFV1uat8
https://youtu.be/CaVdg1k1oTQ

	Cover Page.pdf
	Thesis-Robuilder_5ara.pdf
	Acknowledgment
	Table of Contents
	List of Figures
	Sintesi
	Abstract
	State of the Art
	1.
	1.1. Artificial Intelligence and Machine Learning
	1.1.1. Introduction to Artificial Intelligence
	1.1.2. Introduction to Deep Learning
	1.1.3. Deep Learning Algorithms Classification
	- Supervised Learning
	- Unsupervised Learning
	- Semi-Supervised Learning
	- Reinforcement Learning

	1.2. Deep Learning in AEC
	1.3. Reinforcement Learning in AEC
	1.4. Conclusion

	Original Contribution
	2.
	2.1. Introduction
	2.2. Real Time Strategy Games vs Design and Construction Projects
	2.2.1. RTS Games definition and its Characteristics
	- RTS Games Definition
	- RTS Games Characteristics

	2.2.2. Challenges in applying AI in RTS games
	2.2.3. Challenges in applying AI in Design and Construction Projects
	2.2.4. Applying RL success in RTS games into AEC applications

	2.3. Revival of the Master Builder
	2.3.1. History behind the master builder
	2.3.2. Introducing the new concept for the Master Builder

	2.4. Proposed Framework for the design and build of structures using RL Agents (AI- Supported Agents)
	2.4.1. Design Intent
	2.4.2. Site Data Acquisition:
	2.4.3. Design and Construction Legislation:
	2.4.4. Design and Construction Learning:
	2.4.5. Robotic Execution:

	2.5. RoBuilDeR – Proof of concept
	2.5.1. Design Intent and Inspiration for RoBuilDeR
	- The Rotunda (Dome) - Pantheon
	- The Endless Wall – Gramazio Kohler Research

	2.6. Game Development in Unity
	2.6.1. Why Unity?
	2.6.2. Component and classes Diagram

	2.7. RoBuilDeR – Human Version (UV)
	2.7.1. User Interface
	- Start Menu
	- Pause Menu

	2.7.2. Game Play and Functions
	- Game Play Navigation Keys
	- Game Play Actions:
	A. Brick Placement:
	B. Window Placement:
	C. Door Placement

	2.7.3. Score and Progress Tracking
	- Cumulative Score Counter
	- Achievements Pop-Up
	- Design and Construction Progress bars

	2.7.4. Completion and Game Over Scenarios
	2.7.5. Design and Functional Parameters Influencing the Game
	- Angular-Driven Parameters
	- Dimension-related Parameters:
	- Functionality-driven Parameters
	- Physics Related Parameters:
	- Design-driven Parameters:

	2.8. Robot Version (RV) and ML-Agents
	2.8.1. Choice of ML-Agents for Implementing the Game MDP
	2.8.2. MDP expressed in ML-Agents terms
	- Environment
	- Agent(s)

	2.8.3. Phases
	- Door Insertion Phase:
	- Base Bricks Phase:
	- Window Insertion Phase:
	- Window Bricks Phase:
	- Dome Bricks Phase

	2.8.4. Actions and Masking
	- General Actions Strategy
	- General and Phase-Specific Masking Schemes
	- Decision Request Adjustment

	2.8.5. Observations
	- Maintaining Vector Observation Size throughout all phases
	- Vector Observations
	- Buffer Sensor

	2.8.6. Goals and Rewards
	2.8.7. Curriculum Learning and Hyperparameters
	- Curriculum Learning
	- Hyperparameters

	2.8.8. Training Vs Inference Mode

	2.9. Discussion of Results
	2.9.1. General View of Statistics Results
	2.9.2. Phase Door Opening Placement
	- Graphical Statistics on Training behavior
	- Summary Points of Statistics Output
	- Discussion of the Training Summary and hyperparameters

	2.9.3. Phase Window Openings Placement
	- Summary Points of Statistics Output
	- Discussion of the Training Summary and hyperparameters

	2.9.4. Phase Window Bricks
	- Summary Points of Statistics Output
	- Discussion of the Training Summary and hyperparameters

	2.9.5. Phase Dome Bricks
	- Summary Points of Statistics Output
	- Discussion of the Training Summary and hyperparameters

	2.9.6. Review of Inference Phase
	2.9.7. Final Notes
	- Time Speed:
	- One hot Observations
	- Time Horizon Hyper parameter

	2.10. Conclusion and Future Research

	References
	Appendices
	Appendix A

