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Sintesi 
 

Il Deep Reinforcement Learning ha recentemente iniziato ad essere adottato 
nella ricerca architettonica. L'applicazione è stata principalmente focalizzata 
sulla risoluzione di compiti specifici sia nella costruzione che 
nell'ottimizzazione della progettazione. Data l'unicità di ogni progetto 
architettonico e la necessità di adattare diversi parametri di progettazione alle 
mutevoli caratteristiche ambientali e ai vincoli del sito, la natura di tali 
progetti potrebbe trarre vantaggio su scala più ampia dal successo 
dell'apprendimento per Reinforcement Learning nell’ ambiente di complessi 
giochi strategici. Questa ricerca sperimenta l'uso di algoritmi di 
apprendimento per Reinforcement Learning in un ambiente simulato, 
abilitato alla fisica, per manipolare i vincoli di progettazione e sito verso la 
realizzazione di una struttura completa. 

Questo processo è guidato da obiettivi gerarchici progettati dall'uomo 
(architetto) per realizzare un progetto appropriato. L'agente quindi cerca di 
capire un metodo appropriato per raggiungere questi obiettivi di 
progettazione sulla base dei parametri ambientali, rivedendo 
contemporaneamente l'effetto del suo comportamento e delle sue azioni sulla 
costruibilità del progetto. 

Di conseguenza, questa ricerca introduce un nuovo quadro per la 
progettazione e la costruzione autonoma di un progetto. In tale contesto, 
l'architetto è disaccoppiato dai compiti di progettazione dettagliata ed è più 
sfidato a trasformare la conoscenza architettonica tacita in una sequenza di 
obiettivi che sarebbero sfruttati da un agente e implementati da robot di 
costruzione per realizzare questi obiettivi in una struttura abitabile reale. 
Pertanto, il ruolo dell'architetto si propone di essere spostato verso una forma 
rinnovata di " Mastro Costruttore " che si occupa piuttosto della "supervisione" 
del comportamento degli agenti e della definizione degli obiettivi strategici 
generali per il raggiungimento di un progetto di successo. 

Come prova di concetto, questa ricerca dimostra un progetto di padiglione in 
mattoni sviluppato in Unity con un ambiente di fisica simulata e utilizza il 
framework di apprendimento per Reinforcement Learning abilitato da ML-
Agents. Gli obiettivi sono divisi in obiettivi di progettazione e costruzione. Gli 
obiettivi progettuali comprendono, ad esempio, il raggiungimento di una 
corretta ventilazione naturale attraverso la scelta della posizione, dell'altezza 
e del numero delle aperture e del loro corretto allineamento con la direzione 
prevalente del vento o selezionando la giusta porosità o interasse tra i mattoni 
in base alle finalità architettoniche richieste in ogni fase. D'altra parte, gli 
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obiettivi di costruzione sono più legati al rispetto delle regole basate sulla fisica 
quando si posizionano i mattoni per evitare il collasso e ottimizzare la 
sequenza di posizionamento verso un minor consumo di energia da parte 
dell'agente. 
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Abstract 
 

Deep Reinforcement learning has recently started to be adopted in 
Architectural research. The application has been mainly focused on solving 
specific tasks whether in construction or in design optimization. Given the 
uniqueness of each architectural project and the need to adapt different design 
parameters to the changing environmental characteristics and site 
constraints, the nature of such projects could benefit on a larger scale from 
the success of deep reinforcement learning in playing complex strategic 
games. This research experiments the use of state-of the art reinforcement 
learning algorithms in a simulated, physics enabled, environment to 
manipulate design and site constraints towards realizing a complete structure. 

This process is guided by hierarchical goals designed by the human (Architect) 
to realize an appropriate design. The agent then tries to figure out an 
appropriate method to achieve these design goals based on the environment 
parameters while reviewing simultaneously the effect of its behavior and 
actions on the constructability of the project.  

Accordingly, this research introduces a new framework for autonomously 
designing and constructing a project. In such a framework, the architect is 
decoupled from detailed design tasks and is more challenged to transform the 
tacit architectural knowledge into a sequence of goals that would be exploited 
by an agent and implemented by construction robots to realize these goals into 
a real habitable structure. Therefore, the architect’s role is proposed to be 
shifted towards a newly revived form of a “Master Builder” that is rather 
concerned with the “supervision” of the agents’ behavior and laying down the 
general strategic goals for achieving a successful design.  

As a proof of concept, this research demonstrates a brick pavilion project 
developed in Unity with a simulated physics environment and uses the deep 
reinforcement learning framework enabled by ML-Agents. The goals are 
divided into design and construction driven goals. The design goals include, 
for instance, the achievement of proper natural ventilation through the 
selection of the position, height and number of openings and their proper 
alignment with prevailing wind direction or selecting the right porosity or 
spacing between bricks based on the required architectonic purposes in each 
phase. On the other hand, construction goals are more related to obeying the 
physics-based rules when placing bricks to avoid collapse and optimize the 
placement sequence towards less energy consumption by the agent. 
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Chapter 1 

State of the Art 

1.1. Artificial Intelligence and Machine Learning  
1.1.1. Introduction to Artificial Intelligence 

Despite the common use of the term “artificial intelligence” (AI) on many 
occasions, it turns out that it is actually difficult to have a consensus on a 
precise nature of its subject matter. The problem, in contextual point of view, 
could be addressed by stating how we could conceive the 2 words comprising 
this term; namely: Artificial and Intelligence [1].  

What is considered to be “artificial” about artificial intelligence, has to be 
linked with its mode of creation in which a human contrivance has influenced 
the existence of such an “intangible form” through the creation and invention 
of “tangible” devices. This is opposed to something that is entirely incubated 
in nature or as a result of biological and evolutionary influence. These 
creatures would then possess a “natural” intelligence rather than an 
“artificial” one.  

This latter hypothesis would lead to the exclusion of human beings from being 
“artificial” machines in case we could consider ourselves as machines in the 
first place. This term could fit on ourselves if we simply consider machines as 
things that are capable of performing work. Given that humans are able to do 
work and perform tasks, then they could be considered as machines as well.  

At that point, there should be a distinction between animate and inanimate 
machines given that human beings remain biological in their origin. This 
would propose a more difficult question whose answer is less evident and is 
concerned with the second word of the term AI, namely: “Intelligence”. 

The question is: Can “inanimate” or “artificial” machines acquire intelligence 
similar to the one exhibited by an “animate” machine (like human beings)? A 
great aspect of the difficulty of this question lies in defining the boundaries of 
what to counted by human beings as a sign of an “intelligent” behavior. 

Therefore, if we start with the definition from the dictionary, according to 
Merriam Webster the term “Intelligence” is defined as [2]:  

1.  “The ability to learn or understand or to deal with new or trying 
situations” 

2. “The ability to apply knowledge to manipulate one's environment or to 
think abstractly as measured by objective criteria” 
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From the first definition, we could consider Turing Test as a test bed for the 
ability of a “machine” to try learning and understanding “human 
communication”. It can then use what it learnt to be able to develop sort of 
“thinking” and “interaction” similar to that of humans. This is demonstrated 
by the ability of a machine to mimic human responses under specific 
conditions without getting “caught” or being recognized by a human candidate 
as a computer respondent.  

During the test, three physically separated terminals are operated by 2 
humans and 1 computer respectively. The goal of one of the humans is to 
decide, after interrogating both terminals for a sufficient period of time, which 
one is the machine, and which one is the human. After repeating the test a 
number of times, if the questioner failed to correctly determine on more than 
half of the tests who is the human and who is the machine, the machine, or the 
used algorithm, is then regarded to have artificial intelligence [3]. 

 
Figure 1: Turing Test Demonstration 

However, even if we assume that human beings are among the things that is 
considered to be intelligent and that they can decide on the intelligence of an 
object if it exhibits similar behavior to what they possess, the problem will still 
persist in isolating those specific human traits that are supposed to be 
“intelligent” from those that are not. For instance, humans exhibit anger, joy, 
jealousy, and rage. It might be asked which of these traits are considered as” 
signs of intelligence” if found in unanimated objects [1]. 

If such traits could be included in the AI boundary definition, it would lead to 
arising the matter of consciousness and the awareness of these objects with 
what’s happening around them. For instance, Neil Leach in his paper “Do 
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Robots Dream of Digital Sleep?” [4] had discussed the issue of “Robot” or 
“Machine” creativity and its ability to “dream”, “hallucinate” and produce 
something that may have never existed before. 

In his research, he took as a starting point the science fiction movie “Blade 
Runner” (1982) [5]. This movie is based on the novel by Philip K Dick, Do 
Androids Dream of Electric Sheep [6]? which also inspired him in writing the 
title for his paper. The movie depicts a dystopian future world in which robots 
no longer possess an evident “artificial” nature but have rather acquired “bio-
engineered” features. These features have rendered them behaving as “human 
replicants”.  

Therefore, they ended up acquiring sort of consciousness that it became nearly 
impossible to distinguish them or their behavior from real human beings. 
Although this speculation, coming from sci-fi perspective, is still regarded 
farfetched, it does highlight some questions like: Can AI be Creative? Or Can 
AI Dream? Or is it only humans that are capable of creating images that does 
not exist while machines cant as suggested by [7]?  

This farfetched dream of machine consciousness would not be discussed 
unless we have seen evidence of “light” at the end of the tunnel. The impact AI 
has introduced even in domains that relies on pure “natural” creativity like 
design, art and architecture have created this sort of impulse. 

  
Figure 2: “Deep Dream Generator”, A new form of psychedelic and abstract art being enabled 

through the use of deep neural networks [8] 

An example of current adoption of “deep learning” techniques and methods 
in creating works of designs or artworks could be witnessed in the new era of 
architects and designers that use algorithms enabled by deep learning 
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techniques like generative adversarial networks (GANs) and its different 
architectures (see Figure 2 and Figure 3). 

 
Figure 3: Refik Anadol, WDCH Dreams, Los Angeles, CA (2018) [9] 

On the other hand, in terms of dreams, and despite that many AI applications 
introduce the word “dream” in their campaigns, there is still no clear evidence 
of the ability of machines to exactly reproduce the actual dreaming process of 
a human being. That said, there is no way to have a dream unless the machine 
could develop signs of consciousness; a challenge that is not yet entirely 
tackled by available algorithms. Despite that, it can be assumed that machines 
are currently on the path of developing its own consciousness, with 
demonstrations like a robot being able to identify its own reflection providing 
an evidence for such an assumption [10]. 

1.1.2. Introduction to Deep Learning  

Over the last few years AI has witnessed a big boom especially since 2015. 
Much of that explosion is owed to the wide availability of GPUs that enabled 
parallel processing in a faster cheaper and a more powerful way. It also has to 
do with the simultaneous one-two punch of practically infinite storage and a 
flood of data of every stripe (that whole Big Data movement) – images, text, 
transactions, mapping data, etc. [11]. 

The easiest way to think of the relationship between AI, machine learning and 
deep learning is to visualize them in concentric circles (see Figure 4) with AI 
as the first circle inside of algorithms. AI is considered that initiated this whole 
branch of algorithms. Inside of the circle of AI comes machine learning, which 
blossomed later, and finally deep learning, which is driving today’s AI 
explosion, fitting inside both.  
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Figure 4: Visualization of algorithms vs. artificial intelligence vs. machine learning vs. deep 

learning as proposed by [12] 

In brief, machine learning overarches branch of algorithms that parse data, 
learn from it, and then decides on or predicts something based on what was 
learnt. Therefore, the term “training” replaced the hard coded routines of 
algorithms in which the programmer needs to define each solution for a 
scenario of a problem that could happen and literally program a specific set of 
instructions to accomplish solving it. This training process is achieved using 
large amounts of data and algorithms that give it the ability to learn how to 
perform a task [11]. 

Deep learning was built on the same process of “machine learning” where we 
need a special kind of algorithms to be trained on large amount of data that 
would eventually lead to deciding on something. However, Deep Learning 
specialized in a certain kind of algorithms that depends at its core on neural 
networks. 

An artificial neural network is a biologically inspired computational model 
that is patterned after the network of neurons present in the human brain. 
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Artificial neural networks can also be thought of as learning algorithms that 
model the input-output relationship.  

An artificial neural network transforms input data by applying a nonlinear 
function to a weighted sum of the inputs. The neural network is comprised of 
a consecutive set of neurons knows as “layers”. The intermediate outputs of 
one layer, called features, are used as the input into the next layer. The neural 
network through repeated transformations learns multiple layers of nonlinear 
features (like edges and shapes), which it then combines in a final layer to 
create a prediction (of more complex objects). The neural net learns by varying 
the weights or parameters of a network so as to minimize the difference 
between the predictions of the neural network and the desired values. This 
phase where the artificial neural network learns from the data is called 
training [13].  

 
Figure 5: Schematic representation of a neural network according to [13] 

Neural networks have been around since the earliest days of AI; however it 
was not widely spread like nowadays. The main issue was the massive amount 
of computation power needed. It wasn’t until GPUs were deployed that “deep” 
neural networks finally became popular. The word “deep” describes the use of 
multiple layers of neural networks with each layer comprising of several 
neurons. This complex architecture is considered a massive leap in the world 
of AI. 

1.1.3. Deep Learning Algorithms Classification 

“Deep” neural networks are currently supporting different kinds of 
algorithms. These algorithms fall under diverse branches of learning 
paradigms. Generally, learning paradigms can be classified into 3 groups: 
Supervised, Unsupervised, and Reinforcement learning. Recently, “Semi 
Supervised” leaning can be distinguished as a branch of its own. 

Although this classification could be also adopted in general over machine 
learning algorithms (see Figure 6), it is widely perceived that the amount of 
advancements that deep learning brought to these branches is quite impactful. 
This is evident in most of the currently used algorithms that are trained using 
one or more deep neural networks. The following lines represent a brief 
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explanation of the 3 branches added to them “Semi supervised learning” as a 
4th branch combining some features from both supervised and unsupervised 
learning [14].  

 
Figure 6: Tree of Machine Learning Algorithms [15] 

- Supervised Learning 

In supervised learning, the training data is fully labelled. Fully labeled means 
that each example in the training dataset is tagged with the answer the 
algorithm should come up with on its own. This label helps the neural network 
during training in adjusting its weights to be able to be able to predict the right 
label correctly. 



1.1 State of the Art 
 

 
8 

There are two main areas where supervised learning is useful: classification 
problems and regression problems. 

Classification problems looks at discrete categorical data, where the goal is to 
depict the category a certain input data, like an image, belong to. while 
regression focuses on continuous data. The simplest example could be 
predicting a certain value of variable y given a particular x.  

 
Figure 7: Supervised Learning Workflow, where the algorithm learns from the data [14] 

- Unsupervised Learning 

Unsupervised learning comes handy to problems where we have the data, but 
we don’t know how to benefit from. This could be in the form of finding 
implicit patterns among the data, or perhaps clustering them in groups with 
similar features, etc. 

In unsupervised learning, deep learning model is handed a dataset without 
explicitly mentioning what to do. There is no correct outcome or a specific 
desired output. The role of the neural network is to automatically find 
patterns by extracting useful features and analyzing its structure. 

Therefore, the type of the problem could infer what kind of grouping of data 
is required. This data organization can take several forms like: 

Clustering: The deep neural network tries to find training data having features 
similar to each other and groups them together. 

Anomaly Detection: Using the deep neural network to detect outliers or very 
limited amount of data whose features do not conform with the majority of the 
elements in the dataset.  

Association: By looking at a couple key attributes of a data point, an 
unsupervised learning model can predict the other attributes with which 
they’re commonly associated. 

Autoencoders: Autoencoders takes input data, compresses it, then try to 
recreate the input data from that summarized code. While a neat deep 
learning trick, there are fewer real-world cases where a simple auto coder is 
useful. But add a layer of complexity and the possibilities multiply: by using 
both noisy and clean versions of an image during training, autoencoders can 
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remove noise from visual data like images, video, or medical scans to improve 
picture quality. 

 
Figure 8: Feature Extraction on several layers of the neural network in Unsupervised Learning 

[14] 

- Semi-Supervised Learning 

The input for Semi-supervised learning is, usually comprised of both labeled 
and unlabeled data. This method is particularly useful when extracting 
relevant features from the data is difficult, and labeling examples is a time-
intensive task for experts. 

One of the most popular training algorithms that relies on a fairly small set of 
labeled data is general adversarial networks, or GANs. These kinds of 
networks and its diverse architectures has contributed to several applications 
recently in the AEC industry.  

GANs comprises 2 deep neural networks instead of just 1. The first is called 
the Generator. It tries to generate data that looks like the training data. While 
the other network is called the Discriminator. Its main role is to detect 
whether the data it is inspecting is real data from the original dataset or a fake 
data created by the generator. At the beginning of training, both the Generator 
and the Discriminator are still very poor in doing their jobs.  

 
Figure 9: GANs workflow [14] 

By time both of them begin to improve. The generator tries to outsmart the 
Discriminator while the Discriminator become more experienced in capturing 
the fake data provided by the Generator. In the end, the generator improves 
its ability to create convincing fakes. These kinds of fakes, especially when the 
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data are in the form of images, are regarded as a form of machine creativity, 
being able to create images that has never existed before. 

- Reinforcement Learning 

Reinforcement learning operates on the principle of earning rewards for good 
decision and penalties for bad decisions. The entity receiving this reward or 
penalty is usually called an AI Agent. The goal of this AI agent is generally 
related to finishing a certain task in a correct way without being given proper 
instructions or steps on how the goal could be achieved.  

To make its choices, the agent relies both on learnings from past feedback and 
exploration of new tactics that may present a larger payoff. This involves a 
long-term strategy, just as the best immediate move in a chess game may not 
help you win in the long run, the agent tries to maximize the cumulative 
reward. 

It’s an iterative process: the more rounds of feedback, the better the agent’s 
strategy becomes. This technique is especially useful for training robots, and 
it has also gained huge popularity in achieving noticeable results in RTS and 
Turn-based Games as well. 

1.2. Deep Learning in AEC 
In this sub-section, a few examples of deep learning applications are provided 
from literature. The main focus would be on the diverse applications of 
Generative Adversarial Networks (GANs) with its varying architectures. It is 
noted that in the past years, there is a growing interest in the AEC industry in 
using GANs with a special focus on the Design phase of the projects [16]. This 
extends from conceptual design automation to design evaluation and detailed 
plans or layouts generation [17]. However, GANs architectures were also 
witnessed throughout the spectrum of Construction processes as well as early 
trials of design and construction processes integration [18]. 

Starting with the conceptual phase, deep learning has been adopted to assist 
in developing conceptual designs. For instance, following the statement of 
Louis Sullivan that “form follows function” [19] , researchers in [20] has 
decided to evaluate existing buildings through the analysis and development 
of interrelated relationships between its building elements. 

This was achieved using a graph-based representation instead of analysis of 
images and texts. The main goal of the research was to extract the subgraphs 
of significant building blocks in order to use them as a tool to create new 
conceptual compositions. The research followed Deep Neural Network 
(DNN) approach, in order to come up with conceptual function-driven design 
using a graph-based approach. 
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Since this research adopted a graph-based rather than the traditional raster-
based approach adopted in several GANs architectures, their decision was to 
use InfoGAN architecture that has the ability to learn latent codes (see Figure 
10). This process can be controlled to restrict the Generator to only generate 
variations of samples that correspond to the specified code.  

This research has demonstrated that a system based on DNNs can use graphs 
to generate function-based conceptual designs. The GAN architecture used to 
evaluate graph-based samples was able to generate new results not seen in the 
training set. However, the research scope focused solely on functional 
relationships with no considerations of other parameters like aesthetics, 
geometry, environment, or structure.  

 
Figure 10: InfoGAN architecture – training three DNNs (D, G and Q) simultaneously [20]. 

Adding a new layer of “visual and auditory perception” to graph-based 
approaches, [21] explored the use of Attentional Generative Adversarial 
Networks (AttnGAN) as a design technique in architecture. The goal was to 
experiment with Spoken language and how it can be used to generate 
inspirational images for conceptual design purposes. Instead of depicting the 
interdependent relationships between building elements, AttnGANs allow 
attention driven, multi-stage refinement for fine-grained text-to-image 
generation. 

The network initially starts from a global sentence vector and uses it to 
produce low generation image. Afterwards, the attention layer comes into 
action by using the image vector in each sub-region to query word vectors 
forming a word-context vector. The regional image vector is then combined 
with the corresponding word-context vector to form a multimodal context 
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vector. These form the basis on which the model generates new image features 
in the surrounding sub-regions, which results in higher resolution pictures 
with more details at each stage (see Figure 11). 

 
Figure 11: Examples of results of the AttnGANs [21] 

Accordingly, despite that such a technique is relatively new in architectural 
context, it provides a promising tool for transforming language into shapes 
and design. This could be considered a new unique method for design 
inspiration with more than just visual senses. 

Moving from Conceptual to Detailed Design, GANs architectures have been 
successfully implemented in several processes like floor plans [22], elevations 
[23] [24] [25], and inspirational layouts generation [26]. For instance, [22] 
has implemented a modified version of GANs called Pix2PixHD, to eventually 
produce floor plan images based on a coloring scheme.  

Pix2Pix architecture is composed of 2 Convolutional Neural Networks since 
both the generator and discriminator are dealing with images. The role of the 
discriminator is no longer stating whether an image is fake or not but  is 
actually checking a pair of images for conformity. The authors applied this 
method in recognizing and generating architectural plans.  

The generation process involves feeding the trained network with a colored 
image where each color fills the boundary of a certain room or space, and each 
room is given a specific color code. The network then produces an image of a 
floor plan based on the boundaries provided by the input image. Each room in 
the produced floor plan is furnished based on the color code included in the 
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input image (see Figure 12). Similarly, regarding floor plan generation, 
authors in [25] have used a hybrid method of GANs and case-based reasoning, 
for creation of possible evolutions of the current design based on the most 
similar previous designs. 

 
Figure 12: Apartment floor plan: recognition and generation using Pix2Pix in [22] 

A more artistic approach can be seen in [26], where the authors used a 
variation of GAN called StyleGAN2 [27]. This network architecture was 
trained on a data set of plans from the baroque era as well as modern floor 
plans. The output floor plans “hallucinations” of the algorithm contained a 
kind of fusion between these 2 styles. The produced new plans contained 
hybrid features of the 2 styles producing images of floor plans that had never 
existed before.  

 
Figure 13: Close-up of one of the resulting plans based on the StyleGAN2 process between 

Baroque and Modern plans [26]. 

On the other hand, [26] pinpointed some doubts that could be generalized 
among all the outputs by different alternatives of GANs that are generated in 
the detailed design phase. This doubt lies in the absence of a direct method 
that can bridge the gap between the output images and the 2D CAD-generated 
architectural drawings.  Despite our visual recognition of the produced 
images, the networks don’t really understand the detailed semantic 
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information of building elements. Perhaps a possible path could be a hybrid 
model that relies on graph-based information regarding relationships 
between building components and at the same time can link these 
relationships with each image vector containing these elements. 

Furthermore, the use of GANs in architecture was not only constrained to 2D 
design inspirations, but also 3D GANs were experimented to produce a voxel-
based 3D Preliminary Designs [28], [29]. Despite the tremendous amount of 
progress being made in the field of deep learning, voxel-based 3D GANs can 
be still considered in its infancy stage. Once issues regarding practical 
constraints on model resolution and training time are resolved or at least 
reduced, this technology would create a major disruption in the design 
process. 

 
Figure 14: 3D style transfer results through CycleGAN as in [29] 

Moving to the contribution of deep learning in the optimization of 
construction processes, there are several applications that spans to include 
several activities like construction robots path planning [30] and detection of  
building defects [31], [32]. 

One of the most promising applications is the integration of material 
properties with architectural design tools. An example of which is the 
experimentation with irregular wood-logs that are always counted as waste 
materials. The process thereby gives an example of how the natural forms and 
properties of sawlogs can be directly used to generate new structures and 
spatial conditions [33], [34].  

DNNs are implemented in these processes in order to find proper properties 
of sticks to improve selection mechanism of construction process. Such 
systems could also be inspired from nature, since animals in nature like 
beavers for instance use irregular sticks to build dams [33].  



State of the Art 1.2  
 

 
15 

 
Figure 15: Systems of biomimetic robotic construction process [33] 

Furthermore, authors in [18] have used deep learning to automate the pattern 
generation of robotically assembled bricks. The main role of the semi-
supervised Pix2Pix algorithm is to generate brick patterns using image pairs 
where the input is just a (wall boundary) and target image is the (brick wall).  

As explained before, in order to achieve this output, the network has to learn 
first through a set of image pairs containing a wall boundary and a solution of 
brick wall pattern group. Once learnt, the output 2D image of the network 
(brick wall pattern) is then converted into spatial positions for automatic 
robotic assembly simulation. This is carried out by an image processing 
algorithm.  

 
Figure 16: Input and output images for the four dataset styles in [18] 
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1.3. Reinforcement Learning in AEC 
As discussed before in subsection 2.1.3 (Deep) Reinforcement Learning (RL) 
is one of the main branches of deep learning. This sub-section is dedicated to 
the sate-of-the-art research regarding the deployment of Deep RL algorithms 
in AEC industry.  

Generally, Deep RL applications are not yet implemented on a wide scale in 
AEC industry. In this sub-section, we will start by mentioning some examples 
of RL deployment in conceptual design phase, then ideas regarding detailed 
design or design simulations are mentioned. Afterwards, robotic assembly 
tasks that benefited from RL are presented. Finally, we will indicate some 
trials of combining design and construction goals altogether for an agent to 
solve simultaneously using RL algorithms.  

To start with, [35] proposed an AI agent that can produce 3D abstraction 
representing artificial design habitats. They decided to adopt a RL algorithm 
known as Spiral. The decision was to go for Spiral instead of a GAN algorithm 
because, unlike GANs, it can autonomously decide the number and 
characteristics of the features to reproduce in a synthetic visual abstraction.  

 
Figure 17: Visual abstractions produced by the 10-actions agent and the 20-actions agent 

during the last training iterations using SPIRAL algorithm in[35] . 

The adopted AI agent can be manipulated through a reward system to support 
the design of human habitat that is inspired from natural habitat structures. 
This is achieved through the assessment of the AI agent final results of its 
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actions, which mainly involves the placement of 3D voxels in digital space, by 
comparing its geometry with 3D abstract representation of natural trees. 

This article primarily investigates the potential of AI in supporting the design 
of structures by providing design suggestions aligned with the main goals set 
by the designer, which in this case is to capture the essence of arboreal wildlife. 
This becomes handy in many situations where incomplete knowledge about 
complex natural forms can constrain the design and performance of human-
made artefacts. 

Similarly, [36] demonstrated in a 3D voxel representation design 
environment the meaningful impact of RL on augmenting generative design 
approaches with intuitive capacity and sophisticated control. The agent is 
defined as a mesh graph that consists of certain fixed number of vertices and 
predefined topology. At the beginning of each episode the vertices are 
randomly generated in the 3d voxel environment (see Figure 18) 

 
Figure 18: Strategies of Initializing RL Agent and Environment as described in [36] 

The agent actions basically include the possibility of movement of each vertex 
one step to one of the adjacent voxels, However, to prevent intersection of the 
meshes or falling of more than one vertex in the same voxel, spatial separation 
and tension cohesion is controls the available actions at each step. Thus, 
individual decisions of agents are also subject to interactive behaviors to abide 
by the general behavior of an emergent complex adaptive system. 

The RL algorithm used is Proximal policy Optimization (PPO). The 
environment was developed in Unity Platform with ML-Agents toolkit. The 
demonstrated RL-based generative training experiment has been conducted 
with a total episode of 20,000 (500 steps each). The generative training 
outcomes are recorded every 200 episodes, as well as the mean-reward 
recorded every 500/2000 episodes. 

Furthermore, research focusing on implementing RL in generative design 
approaches can also be evident in  [37] with similar voxel-based 3D 
environment. It has to be noted that, the general impression given by these 
different implementations of RL algorithms could give a reflection on the 
interactive correlation between designers and computational intelligence. It 
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also provides insights of human-machine collaboration during early design 
stages. 

On the other hand, moving from the abstract building/pavilion conceptual 
designs to generative design on the urban scale, authors in [38] incorporate 
deep reinforcement learning (DRL) and computer vision for urban planning 
through a case study to generate an urban block based on its direct sunlight 
hours, solar heat gains as well as the aesthetics of the layout. 

The Deep RL algorithm adopted was deep deterministic policy gradient 
(DDPG). It was trained to guide the generation of the urban schemes. In each 
episode, the agent could only arrange one building (see Figure 19). The actions 
involved controlling the building XY coordinates as well as its Length, Width, 
and Height. 

 
Figure 19: The diagram of observation, action and reward as depicted in [38] 

Moreover, Deep RL algorithms has been also experimented in generating 
spatial configurations as in [39]. In this research, multi-agents deep 
reinforcement learning (MADRL) were used to control spatial partitions and 
interact in a 2D grid environment. This approach used double deep Q-
network (DDQN) combined with a dynamic convolutional neural-network 
(DCNN).  

 
Figure 20: Training Configuration used in [39] 
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During the experiment, the trained agents has managed successfully to 
generalize their knowledge to different settings, consistently explore good 
spatial configurations, and quickly recover from perturbations in the action 
selection. 

Deep RL algorithms were also used in the development of an environment 
prototype that is that learns from Electroencephalogram (EEG) feedback in 
real-time [40]. Unlike previously mentioned episodic tasks, this is considered 
a continuous one. PPO algorithm was adopted for the training of the agent. 
The agent’s goal was to keep the subject’s alpha wave stable or decline, which 
indicated a more calming state, by intelligent decision of illumination state 
according to subject’s EEG. 

Moving from design applications to task promoting autonomous construction, 
RL algorithms has been deployed in several applications in that context. For 
instance, to avoid collision between drones participating in a construction 
task, the master’s thesis developed by [41], has provided an RL system that 
can control a number of drones for autonomous construction in a dynamic 
continuous environment. This system was successfully deployed in 2 
experiments regarding brick laying and façade coating. 

Furthermore, researchers at ETH Zurich [42] have applied Deep RL on 
timber assembly tasks using industrial robots. This solution was introduced 
to overcome problems associated with Robotic Assembly in Architectural 
context such as small tolerances and complex contact situations, especially in 
assembly of elements with form-closure such as timber structures with 
integral joints. The researchers have adopted an adapted Ape-X DDPG 
algorithm to train the agent in as simulated environment.  

 
Figure 21: Stills from an assembly of an H-shaped (left) and Δ-shaped (right) double-lap tasks 

by the real robot as proposed in [42] 

Despite that the control policy was trained entirely in simulation, it managed 
to overcome tolerances and shape variations that didn’t occur in the 
simulation and was witnessed only in real world. This generalization behavior 
of the agents is considered to be one of the main powerful points of strength 
that training of RL Agents could provide.  

Depending also on the proper assumptions of the observations and letting the 
agent encounter different situations during training, the Agent can then learn 
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how to overcome these situations and can use this experience to overcome 
real-world situations that may have never occurred during training. This is 
achieved by linking the actions taken during learning in similar situations and 
applying them on the current real case. 

Lastly, we discuss a type of Deep RL applications that had sought to integrate 
some design and construction processes together into one problem translated 
to a Markov Decision Process (MDP). For instance, authors in [43] developed 
a framework for designing and implementing effective autonomous 
architecture defined by three key properties: situated and embodied agency, 
facilitated variation, and intelligence. PPO algorithm was also used to train an 
agent to learn adaptable behaviors related to autonomous mobility, self-
structuring, self-balancing, and spatial reconfiguration.   

Physical properties and degrees of freedom were applied as constraints in a 
simulated physics-based environment in Unity. ML-Agents toolkit was used 
to implement the Deep RL framework. Both single and multi-agent setups 
were provided. Topological rules of tensegrity were applied to develop 
assemblies with actuated tensile members. After simulation, Physical robotic 
prototypes were built and actuated to test simulated results. 

 
Figure 22: Diagrams: Interelationality between physical robots, simulated robots and 

reinforcement learning models as developed in [43] 

Moreover, research proposed in [44] discusses the capabilities of 
reinforcement learning in game engine for integrating design, and 
construction processes. The main motivation comes from promoting a circular 
strategy by reusing scrap elements as building elements.  To proof this 
concept, the author developed an application in Unity to train an AI Agent 
using PPO algorithm on the proper placement of scanned geometry of wasted 
plastic chips objects in a way that can create a stable structure based on 
certain criteria set by the designer.  

Six major types of data are observed to train ML-Agents to assemble 
according to the performance of such priorities. These parameters are lighting 
variety, floor area, symmetry, structural stability, and thermal dynamic 
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variety. The data are obtained via the cross-platform synchronization of shell 
model and analysis. 

 
Figure 23: Six major types of data are observed by the agent 

The geometries were streamed from Unity to Grasshopper for Karamba 
structural analysis. Karamba is a Grasshopper plugin for finite element 
analysis that can provide real-time feedback. The analysis result is then 
streamed back to Unity through UDP for rewards stating. Other observation 
data, such as floor areas and thermal dynamics, are obtained using a camera 
within the game and RGB distribution analysis. 

Although the research target was to include both design and building 
constraints, it was more oriented towards providing design insights on how to 
utilize these scrap materials in reconstruction. For instance, the simulation, 
despite being developed on a game engine, it didn’t benefit directly from 
physics capabilities provided by Unity platform. It rather used an external 
structural design check for checking an already placed static version of the 
elements without considering the kinematics of the assembly process itself. 

The physics capabilities provided by Unity could help in simulating the actual 
impact of adding each new scrap element to the rest of the structure. This 
could show for example the effect of weight and gravity in the simulation 
environment in an accurate way that is close to what could happen in real 
world. However, this research could be an encouraging starting point to 
explore this concept provided that it could be integrated in a more elaborative 
way to expand its applicability. 
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1.4. Conclusion  
In this section, we presented an introduction to artificial intelligence, machine 
learning and deep learning. Then, an explanation of different deep learning 
algorithms was provided. Afterwards, we demonstrated several applications 
of deep learning in the AEC industry. However, reinforcement learning was 
discussed as a separate sub-section apart form the other deep learning 
algorithms since we wanted to highlight its potential in the AEC industry. 

The state-of-the-art applications of reinforcement learning provided has 
shown several experiments that benefited from the success achieved through 
RL algorithms in different domains away from the AEC sector. Due to the 
complexity and unstructured nature of this sector, several external solutions 
usually fail to provide similar results when adopted.  

However, it was noticed that game engines like Unity and the possibility of 
simulating real case scenarios can favor the success of AI agents in learning 
design and construction goals and then be implemented by execution robots 
in real life. One of the main challenge remains in finding the silver lining 
between creating a very abstract version of real life that renders the simulated 
environment incompatible with real applications and developing a very 
detailed environment that exponentially grows the level of game complexity 
to the extent that AI Agents would need a massive amount of time and 
computational resources to be trained. 

Finally, GANs and AI Agents are regarded as promising tools to help create a 
paradigm shift in AEC Industry. Designers could then get assisted throughout 
the process and get inspired by innovative solutions. This new paradigm might 
also release some daunting work off the shoulders of designers and builders 
through automating different processes. The role of designers and builders 
however would shift more towards fine tuning the proper incentives and 
reward systems for the agents to help reach the goals required from them.  
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2.1. Introduction 
This section represents the “original contribution” that this thesis postulates. 
It starts with the explanation of how AI challenges in Real Time Strategy 
(RTS) games have an influence in the better implementation of AI in AEC 
Industry. Then, the new framework is introduced that revives the ancient 
term “Master Builder” in a rather compatible way to the digital tools available 
nowadays.  

Afterwards, the section continues with explaining the game that was 
developed as a proof-of concept to the framework proposed. Both human 
version and Robot version of the game are exposed. The way agents learn the 
design and construction goals are then explained thoroughly. In the end, the 
results achieved by the agents are demonstrated and discussed.  

2.2. Real Time Strategy Games vs Design and 
Construction Projects 

In this section we try answering the following questions:  

- What are RTS games and what differs them from other games? 
- What are the characteristics of RTS games that makes them a perfect 

candidate to be compared to the process of Design and Construction of a 
building? 

- Why an algorithm succeeding in achieving high results in RTS games can 
be a good candidate to be applied in construction industry?  

2.2.1. RTS Games definition and its Characteristics 

- RTS Games Definition 

Real Time Strategy Games (RTS) is a sub-genre of strategy games in which a 
player needs to build an economy (gathering resources, building and training 
units, and researching technologies), and sometimes need to also develop 
military power to defeat an opponent [45]  . The difference between RTS 
games and Turn-Based Strategy games is that in the latter, each player has 
enough time to carefully think and consider the next move while the opponent 
would not be able to take any actions during this period. However, in RTS 
games, players must attempt to work on all aspects of the game 
simultaneously while knowing that the opponent is expected to be doing the 
same thing. Even in RTS games where the focus is only on the prosperity of 
the player’s people or “citizens”, the player should always be able to be “multi-
task” and take diverse actions simultaneously, to ensure all the needs required 
by the “citizens” are being met. Therefore, time is a crucial factor to be 
considered in RTS games, thus an additional level of complexity is being 
introduced [46]. 
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- RTS Games Characteristics 

Accordingly, RTS games are characterized by the following [45]: 

• They are simultaneous move games, where several players can 
perform actions at the same time. These actions are mostly durative, 
i.e., a series of actions is required in order to be completed or to witness 
some sort of impact on the game. 

• RTS games are “real time”, which means that the time to take an action 
is very limited. For example, in the game Starcraft, the game is 
executed at a framerate of 24 frames/sec. Thus, theoretically, a player 
can take an action every 42 ms before the game state is changed. 
However, for a “human” player this rate is practically impossible.  

• RTS games are partially observable, so players can only the part of the 
map they actually have units in it. This is known as “fog of war”.  

• RTS games are nondeterministic. Thus, there is never only “one way” 
to succeed or win in an episode, and a serious of actions might not yield 
the exactly the same results every time they are executed. 

• The game complexity is quite large in terms of state-space size and 
number of actions available at each state. For instance, the state space 
of Starcraft is estimated to be many numbers of magnitude larger than 
a typical Turn-Based Games like GO (10170) or Texas Holdem Poker 
(1080).  

 
Figure 24: A screenshot of an ongoing episode of StarCraft with a battle occurring between 

Protoss and Terran  

Based on these characteristics, the traditional methods that were used in the 
past for solving classic board games such as Game-Tree Search for example, 
wouldn’t be as effective if applied to RTS games, without introducing a 
sufficient level of abstraction to the game. The application of AI techniques 
and specifically Deep RL has proven to yield very promising results in both 
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genres of games [47]. The complexity of RTS games still enforced the 
engagement of some level of abstraction and hierarchy during the learning 
process. However, results obtained by applying deep RL algorithms were able 
to beat records reached by top human players in famous RTS games (like 
StarCraft) without any game restrictions [48].  

2.2.2. Challenges in applying AI in RTS games 

Unlike other genres of games, RTS games are a fertilized land for AI research 
due to the challenges they impose. These challenges were early summarized 
by [49] as the following: 

• Resource management 
• Decision making under uncertainty 
• Spatial and temporal reasoning  
• Collaboration  
• Opponent modeling 
• Adversarial real-time planning 

Later on, [45] built on the previously mentioned challenges, but regrouped 
them under six different areas namely: 

• Planning: Given the extremely large state-space in RTS games, 
planning for moves (series of actions) during the game should be 
executed with multiple levels of abstraction. At the macro level, the 
agent (player) needs to plan on the long-term to develop strong 
economy. At a micro-level, short term planning could be evident in 
optimizing the movement and positioning of units in coordination with 
each other to win over an opponent in a certain battle that may arise. 
Or in case of gathering of resources, “gathering units” should be 
deployed in an efficient way. Such a deployment has also an impact on 
the long-term as well (Figure 25).  Thus a hierarchical decomposition 
could be a solution to address such planning issues as in [50]. 

 
• Learning: Learning could be divided into 3 types:  

o Prior learning: This learning relies on existing replays of 
previous games, recently this term can be referred to as 
“Imitation Learning”. An example could be that of “Alpha Star” 
[48] which is now ranked above 99.8% of active players on 
Battle.net (the online platform for playing StarCraft). It has 
initially learnt from previous games recorded for top players to 
accelerate the learning process.  

o In-game Learning: In RL terms, it could also be referred to as 
“Online learning”. In RL, some algorithms rely on such a 
method directly for learning while other relies on an in-
between approach in which an experience replay for example 
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can be used to store experiences necessary to fully train an 
agent.  

o Inter-game Learning: It refers to applying what an agent 
learnt in one environment into another environment. This 
could increase the chance of victory in the next game.  

 

 
Figure 25: Protoss Command Center and gathering units are situated as close as possible to the 

resources 

• Uncertainty: Adversarial Planning under uncertainty is a complex 
challenge in RTS games. Two main examples of uncertainty can be 
found in the partially observed map of the game and in predicting what 
action the opponent can take at a certain point in time.  

• Spatial and temporal Learning:  
o Spatial learning in RTS games is related to terrain 

exploration. For example, the positioning of building units 
should be done in a way that from one hand can form a 
defensive mechanism that protects more important building 
units through forming a fake “wall” around them, while on the 
other hand the position of buildings shall not be an obstacle for 
a player’s own units, so it shall secure a smooth movement of 
large tactical units in between them.  

o Temporal Learning could be evident in RTS games, for 
instance, in the adjustment of the timing of an attack on an 
opponent by trying to enforce this attack when the opponent is 
not giving full attention to defensive mechanisms or focusing 
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too much on economic prosperity. Another example for 
economy based RTS games could be on a higher strategic level, 
where a player needs to decide how to plan, in the long-term, 
the priorities for resources investment. This shall be done in a 
way that secures the appropriate deployment of services to the 
“citizens” and that the funding should be properly distributed 
between fast-track projects that render direct impact on the 
citizens and long-term projects that need a continuous flow of 
investment, and their results shall appear after a relatively 
longer period of time. 

• Domain knowledge Exploitation: Domain knowledge could be 
acquired by two methods. The first is to rely on experts in the domain 
that somehow could fine-tune the reward system to be used as an 
interim-guide for the agents during the learning process to follow. The 
second method could be “Imitation Learning” as discussed before. The 
latter approach was early proposed by [51] and [52] even before the 
exploitation of this option by recent algorithms like the ones adopted 
by AlphaStar. 

• Task Decomposition: Given all the previous challenges, a reasonable 
approach would be to decompose the problem of winning an episode 
in an RTS game into a set of smaller sub-problems. A common sub-
division suggested in [45] could be to subdivide the big task into 5 sub-
divisions namely: Strategy, Tactics, Reactive Control, and Terrain 
Analysis.  

It has to be noted that there are many forms for categorizing these challenges 
apart from the one adopted above. However, those different categorizations 
share together one general idea, namely, an AI perspective of challenges in 
RTS games should be addressed in a completely different and much more 
detailed manner with respect to how a human player could perceive and 
categorize them. The other observation is that any AI supported solution 
adopted should consider the interrelations between each category and try to 
detect patterns that can help generalize the problem and reduce the required 
time for exploring the state-space as much as possible. 
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2.2.3. Challenges in applying AI in Design and Construction 
Projects 

Building on the applications of AI in design and construction already 
discussed in (sub-sections 2.2 and 2.3), this section concludes the challenges 
mentioned in literature that face the proper exploitation of AI. It also 
demonstrates probable suggestions for better reaping the benefits of AI.  

Given today’s practices in AEC industry, [53] have imposed that direct 
application of AI might even increase uncertainties, unreliable predictions 
and poor management decisions. The researchers owed such a negative 
assessment to the lack of proper understanding the true benefit of AI tools and 
inability to translate their impact into real dimensions. Research of [54] has 
focused on the reason behind the uncertainties in these AI applications in 
AEC industry.  

However, the research only focused on 5 types of AI algorithms namely: 
Primary Component Analysis, Multilayer Perceptron, Fuzzy Logic, Support 
Vector Machine and Genetic Algorithm. Causes of uncertainty mentioned 
varied according to the type of algorithm under investigation. Reasons for 
uncertainties included:  

• Subjective assumption that the relationship between different input 
(observed) features is linear.  

• Applying AI for optimizing a specific task in AEC industry might 
sometimes yield a limited data set for training. In case of neural 
networks, a limited dataset could lead to an unreliable output and 
perhaps overfitting of the problem in case of inability to expand the 
input to samples from different situations. 

• Applying AI for solving larger complex problems, on the contrary to 
point 2, may be too challenging if not properly generalized, and in case 
of a neural network, underfitting might occur. 

• Subjective assignment of values to an expert system might yield 
inconsistent systems where each one is based on the expert’s personal 
judgment of the problem. 

To mitigate such uncertainties, several assumptions and considerations could 
be used according to [54]. These assumptions were inspired by scholars from 
other disciplines apart from AEC industry and included: the consideration 
that there is a “black box” and the fusion of more than one system together. 
The first one meant the contribution of designers and engineers’ intuition 
where such a tacit knowledge could be considered a “black box” where 
algorithms need to take that into consideration.  

While an example of the second could be the use of a least square support 
vector machine optimized by particle swarm optimization (PSO-LSSVM) or 
the use of a hybridized fuzzy logic with supported neural network. Despite not 
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being directly mentioned, Deep RL algorithms could also be considered an 
improved “hybrid” model.  

Eventually, the authors have reached an important conclusion. This 
conclusion is considered one of the important pillars this research is built on. 
They have mentioned that given the particularity of AEC industry, where not 
only theoretical knowledge is required, but also design, engineering 
experience and intuition, the uncertainty of AI can’t only be solved by a single 
certain algorithm.  

However, the solution must include the proper capturing of the tacit 
knowledge; hence a technique similar to fuzzy logic should be introduced to 
reduce the uncertainty of algorithms. In addition, due to the complexity of 
AEC projects, game playing techniques could be a solution to capture 
contributions from different stakeholders. Also, interdependent relationships 
between different technologies/phases in AEC industry should be taken into 
consideration. Lastly, the authors highlighted the absence of a detailed 
framework for the employment of heuristic algorithms in the context of AEC 
industry. 

Similarly, other scholars in [55] have stated some conclusions when it comes 
to the implementation of deep neural networks applications in AEC industry. 
They explicitly indicated that there is a lack of using Deep learning 
architectures that implement reinforcement learning like deep Q-networks. 
[56] added that RL-applications were identified in AEC, but they are either 
still in experimentation phase or isolated into specific tasks that still need to 
be integrated into BIM workflow. 

Moreover, [55] also mentioned that adopting AI in AEC industry requires 
“embracement of change” and “re-engineering” of the processes in order to 
reap the full benefits of AI on a proper scale. These changes should be applied 
on all possible levels such as organizational, technological, mindset and even 
cultural. To reach this, AEC organizations should invest in establishing AI 
methodologies and prioritize education and training of their employees on AI 
and the subsequent change in the work environment and tasks needed. 

Finally, the same research also draws the attention that a large portion of AI 
research in AEC tends not to implement ideas and theories from other research 
fields but tends to build up on AI-related work within their own specific area 
of expertise. 
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2.2.4. Applying RL success in RTS games into AEC applications 

The previous 2 sections have concluded, separately, the challenges towards 
the application of AI in RTS games and AEC industry respectively. It has been 
evident that most of the challenges derive from the complexity of both fields. 
Given the similar characteristics and challenges involved in the 2 fields, this 
research will benefit from the success achieved in adopting RL algorithms in 
RTS games and try applying it, in a similar approach, in a design and 
construction application. 

This process shall also benefit from the advancements in game engines and 
the ability to integrate on-site characteristics into a simulated environment 
through IoT infrastructure. Therefore, RL-training can be accurately 
executed without any effect or damage in the real world, and once the training 
has reached a satisfactory level, it can easily be employed to real “robots” or 
other tools on site for actual implementation. 

In order to apply this idea, the traditional “human” perspective in which the 
design and construction processes are regarded as 2 discrete processes shall 
be rethought. Now it is needed to wear an oculus but jump in a world where 
we put ourselves in the shoes of an AI agent. Once we do so some questions 
would pop out like: 

• Could lessons learnt from AI in RTS games be implemented in AEC 
industry, thus introducing a new framework? 

• Do we need then to “rethink” the whole design building problem not 
from the perspective of a “human Player” but rather from a 
perspective of an “AI Agent”?  

• In that case, do we still need the segregation of the design-construction 
process into 2 separate stages from an AI perspective?  

• Are the currently available computational tools, digital fabrication 
methods, and construction robotics capable of supporting this 
paradigm-shift and realizing it in real word? 

In the following sections we will start to find answers to those preceding 
questions, but first we need to find answers from history. 
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2.3. Revival of the Master Builder 
2.3.1. History behind the master builder 

According to University of Colorado’s design-build glossary, the definition of 
master builder is [57]: 

“A term historically applied to an “Individual” who was responsible for both 
the design and construction of a project. During the Renaissance, a divergence 
appeared between the individual who prepared the project’s design, and the 
individual who was responsible for its construction. With the rise of design 
professionals in the late 19th century, the term fell out of favor and is used 
infrequently today in reference to design/build firms.” 

Therefore, before this “separation”, a Master builder was the designer and 
constructor at the same time. In antiquity, unskilled labor used to haul the 
materials, which could be large blocks of stones to the construction site. The 
skilled craftsmen would then transform them into artistic and structural 
components of the structure. The direction that they had to follow was 
controlled by the individual knowledgeable person who was responsible for 
the building design. At that time, the design would not be more than a mental 
“image” in the designer’s mind.  

Accordingly, the designer essentially had to be the builder in order to be able 
to direct his skilled craftsmen during actual construction on what they are 
supposed to do. This means that, the design and construction of a project were 
basically inseparable, and so the Master Builder would think during the 
design of a certain element, how would this element be realized on-site. If 
there is a difficulty in achieving that, he would also have to design the tools 
that could facilitate the construction of his masterpiece.  

From the point during the Renaissance Period where the Architect and 
Engineer Filippo Brunelleschi has succeeded in using the camera obscura to 
copy architectural details from classical ruins, what we know now as 
“blueprints” was officially born [58]. Consequently, a “master builder” 
wouldn’t need to travel from Florence to Rome for instance just to be present 
every single moment in the construction site. With the help of well explained 
drawings, he can then delegate his on-site duty to someone else.  

Thus, by time, the designer’s main aim became focused on the ability to 
express his ideas coherently in paper, and then a builder can take charge of 
the construction process. Therefore, the designer has no longer need to worry 
about the task of finding the convenient tools and methods for building 
realization. Instead, this task became completely assigned to the builder [59]. 
Nowadays, the term “designer” and “builder” refer to groups of hierarchical 
teams that collaborate together.  

Ahmed Mohamed Ahmed Lotfy Elmaraghy
Do not forget to wrap the chart with legal liabilities etc..
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Recently, the term “Master Builder” was seemingly revived in the term 
“design build” [60]. This term defines a method of project delivery where one 
entity is responsible for both design and construction of a project. However, if 
we notice the internal process itself, it remained the same: 2 separated teams, 
one for design who delivers the work first and then hand it over to the 
Construction team that finds the optimum ways to properly execute the 
project on-site. Therefore, the “design-build” process hardly coincides with 
the core concepts of a “master builder”. 

 

 
Figure 26: Section “blueprint” of Brunelleschi's dome of Florence Cathedral [61] 
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2.3.2. Introducing the new concept for the Master Builder 

Inspired from the old term “Master Builder”, 
and by the inclusion of AI, the new version of 
“Master Builder” could finally see the light. 
Instead of discretizing the design and 
construction process, they are now united into 
one process. The resemblance of the new and old 
version can be explained further in the following 
lines. 

As for the main “Master Builder”, it could refer 
to the team that possess design and construction 
knowledge. The team could be seen as a 
“puppeteer” who has in hands the tools 
necessary to control or guide multi-agents to 
achieve  

the final goal; namely the proper design and 
construction of a building (Figure 27).  

The “Master builder” can start a project by an 
idea or a sketch of what he/she wants to achieve. 
Afterwards, it is required to come up with certain rules/guidelines that 
enlightens the “agents” during their learning journey. Thus as in old times, the 
“Master Builder” would act as a “Supervisor” making sure that his craftsmen 
undersood the design he has in mind. With proper insturctions from the 
“Master Builder”, these “Agents” can receive proper training and can then 
transfrom a simple idea in the head of the Designer into an actual functional 
building in real world. This can be done by the actual deployment of robots, 
the real world agents, that can carry out what they learnt in the simulated 
environment. Thus robots are practically our modern day “workforce”.  

 

 

 

 

 

 

 

Figure 27: Scheme showing the main 
idea behind the new concept of 
"Master Builder" 
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2.4. Proposed Framework for the design and build 
of structures using RL Agents (AI- Supported 
Agents) 

In this section, the proposed framework is introduced, where AI, construction 
robotics and digital fabrication are situated in the core of the proposed 
workflow. As explained earlier, this framework revives the concept of “Master 
Builder” and initially speculates that an AI-centered design can inspire a new 
paradigm shift that redefines how we design and construct our buildings.  

In Figure 28, the proposed framework is composed of 5 phases: Design Intent, 
Site Data Acquisition, Legislation, Learning and finally Robotic Execution. 
These phases can be explained as the following: 

2.4.1. Design Intent 

This is simply the initial phase of the project where a designer starts to 
brainstorm about an initial idea to start the project design. As a source of 
inspiration, the framework proposes some methods: 

• Sketches – Main Contributor: Designer 
In this traditional solution, the designer holds a pencil in 
his/her hand and starts to brainstorm an idea and think about 
an inspiration after studying project details. 

• Machine Hallucinations – Main Contributor: Designer + Agent 
(Machine): 

o In this solution, the machine, or an “AI Agent”, acts as a 
catalyst for inspiration. Part of the idea evolution will be 
initiated by the designer and then by the help of one of the 
forms of machine “Hallucination”, the designer can get 
inspired by what a machine can produce. For instance, style 
GANs (Generative Adversarial Networks) can be used to come 
up with “new” images based on a certain architectural style, or 
a mix of styles, that the designer initially trains the machine on. 
After proper training the Network can produce images that 
have never existed before yet follow in their form the input 
“style” or mix of “styles”.  

o This solution is thus considered one of the forms of human – 
machine collaboration in the early phases of design. The AI 
agent is thus acting as a designer assistant. 

• Only functional Structure – Main Contributor: AI Agent  
o In case the focus is more on a functional structure more than 

the aesthetics or uniqueness of the building, the solution could 
be carried out entirely from an AI Agent database. In other 
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words, the design intent can be directly formulated in the 
succeeding legislations phase set by the designer and followed 
by the AI Agent to achieve the building requirements. 

o This solution relies, more than the others mentioned, on the AI 
Agent so the design intent mentioned in the framework from a 
human designer perspective could be skipped. 

2.4.2. Site Data Acquisition: 

This phase is the pivot to jump from the real world into the simulated one. The 
accuracy of the data retrieved on-site is crucial to ensure a proper training of 
the agents on the “actual” site conditions. There are many advanced data 
acquisition technologies nowadays that can capture site details with high level 
of precision. Examples of site data acquisition types could be:  

• Site Topology: 
o The forms and feature of site surfaces are variables that needs 

to be captured with a considerable number of details. Later, in 
execution phase, when actual robots can be deployed, if an 
error has occurred from the beginning in the site topology, 
misalignment of elements could occur relative to the proposed 
position in the simulated environment. In all cases, there is 
always a room for error, however this precision error should be 
carefully controlled so that on a larger perspective it won’t 
affect the project realization. 

o This site Parameter can be considered, a variable parameter 
that is never similar from one site to another. It can just be 
considered as a constant parameter if the focus is the site itself. 
This means that before any intervention on site, the parameter 
values remain almost the same. However, during execution, 
site modifications occurred but due to the actual activities done 
on-site and not because of an external parameter.  

o In most cases, site topological data is captured using laser 
scanners. These can vary from mobile scanners mounted on 
devices to fixed scanners mounted on tripods on site.  

o Similar parameters could include: Soil Layering and Scanning 
the surrounding elements around the construction 
(deployment) site.  

• Prevailing Wind:   
o Prevailing wind is wind that blows consistently in a given 

direction over a particular region on Earth [62]. Due to factors 
such as uneven heating from the Sun and the Earth's rotation, 
this wind varies at different latitudes on Earth. 

o In dense urban areas, wind blowing on site becomes less reliant 
on prevailing wind direction. The parameter that becomes 
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more crucial is the distribution of the buildings surrounding 
our site. This building configuration determines how the wind 
flows in and out of the construction site.  

o Therefore, prevailing wind data needs to be combined with 
accurate data on the surrounding structure in case of 
constructing in a dense urban area.  

2.4.3. Design and Construction Legislation: 

The phase is considered the starting point for revolutionizing the traditional 
workflow currently adopted. First, there is no more separation between design 
and construction, so both are regarded as one complete objective that is 
completed once an AI Agent succeeds in building an entire structure. The 
main responsible for this phase is the “Master Builder”, and the AI Agents are 
considered as the students or the “Craftsmen”. Thus, the process can be 
divided into the following: 

• Simulation Environment Check:  
The designer has to initially make sure that the simulated 
environment parameters are well aligned with the actual site 
conditions.  

• MDP Definition and Rewards/Penalties Assignment: 
This is considered the core of the legislation phase. The 
designer should first define how the “Real” Design and 
Construction Problem will be translated into a Markov 
Decision Process (MDP). MDP is the way we could describe the 
environment in RL terms for the agent to Understand [63].  

Then the designer needs to set the rules through which he/she 
can find it appropriate for helping the Agents succeed in the 
learning process and completing the tasks required from them.  

The rules can be translated in Reinforcement Learning terms 
as Rewards and Penalties; rewards being positive incentives 
given when the agent accomplishes a certain task and penalties 
being a form of punishment that indirectly informs the agent 
that it did something wrong or failed to achieve a certain task. 
Both rewards and penalties are considered a form of 
translating the tacit knowledge that the designer “Human” 
possess into certain criteria that the agent uses as its main 
guide during the learning process. 

• RL Algorithm Selection: 
o The designer needs to consider the RL Algorithm(s) convenient 

for the tasks required to be solved by the agent. The proper 
selection of the learning algorithm, as well as the 
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hyperparameters, could help in speeding up the learning 
process of the Agents. This process requires some knowledge to 
be acquired by future architects/designers in order to easily 
adapt to this new paradigm shift.  

o The process of RL Algorithm selection implicitly includes the 
whole planning process that is accompanied by the selection 
process. For instance, issues to be discussed and planned 
includes, but not limited to: 
 Hierarchical division of the RL-Problem into sub 

problems to facilitate better learning process for the 
Agents. 

 Combination of more than one algorithm to solve 
discrete parts of the problem.  

 Selection and Adjustment of the type of the algorithm 
to fit the MDP definition and the type of Agents 
involved (single vs Multi-Agent, Competitive vs 
Collaborative Agents ..etc.) 

• Hyper Parameters Adjustment: 
This task is executed in parallel with the Agent Learning phase 
(the succeeding phase). Since the relation between Legislation 
and Learning phase is iterative (as shown in Figure 28), there 
is a need to monitor the learning process and the ability of the 
agents to pick up the lessons “quickly”. Based on the 
performance of the agents in the simulated environment, the 
designer needs to fine tune, every now and then, the 
“hyperparameters” to make sure that the learning process is 
running smoothly. 

• 3D GANs:  
An additional feature that can be deployed in the future is 3D 
GANS. The actual application in the workflow remains flexible 
depending on how quick the advancement in this branch would 
evolve.  

3D GANs could eventually contribute to not just a conceptual 
“machine hallucination” but it could create a 3d-voxel-based 
detailed design. Although such a refined level of outcome is not 
yet reached, there could be a future potential in the 
development of 3D GANs. The main obstacle remains the 
massive number of voxels required for an architectural product 
and the complex interdependent relationships involved 
between different building elements that need to be respected 
in the design. 
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2.4.4. Design and Construction Learning: 

This phase represents the time required for the agents to proceed from “Zero” 
to “Hero” in terms of experience and knowledge of performing the task 
allocated to them. To ensure the effective training, several procedures could 
be adopted, this includes: 

• Initializing multiple environments with Agents learning in parallel. 
This procedure helps speed up the learning process.  

• Variation of Environment Parameters to ensure that the agent can face 
several circumstances during the learning process. This procedure 
ensures that the agent, or the executing robot in real world, would be 
able to adapt to variations in the environment and can be familiar with 
these changes and be equipped with enough knowledge in the learning 
process to be able to take the proper action in real world.  

2.4.5. Robotic Execution: 

Once the designer has seen that the agents have learned enough and that they 
can perform the tasks required in a satisfactory way, the time comes to deploy 
the learnt lessons in real world. The executing robots would then be equipped 
with the “agents’ brain”. This would help translate the data perceived by the 
robot sensors into the values understood by the agents in the “simulated 
environment”. The agent would use the embedded Neural network model to 
feed the right action to the robot based on the observed input data. The robot 
would finally translate the perceived order from the agent’s brain into an 
actual step or an action in the real world



 

 
Figure 28:Proposed framework for design and Construction using AI Agents and Robots 
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2.5. RoBuilDeR – Proof of concept 
“The Circle implies an idea of movement, and symbolizes the cycle of time, 
the perpetual motion of everything that moves, the planets’ journey around 

the sun (the circle of the zodiac), the great rhythm of the universe. The 
circle is also zero in our system of numbering, and symbolizes potential, or 
the embryo. It has a magical value as a protective agent, … and indicates 

the end of the process of individuation, of striving towards a psychic 
wholeness and self-realization” (Julien, 71).  

RoBuilDeR is a developed application that works as a proof of concept for the 
framework proposed. The application is developed in 2 versions namely: 
“Human Version” (UV) and “Robot Version” (RV). The first is concerned with 
providing an experimentation playground for the designers to evaluate 
different game parameters as well as assessing the design and construction 
rewards and penalties. On the other hand, the Robot Version represents the 
learning environment for the Agents.  

In accordance with the framework, the scope of the application is focused on 
the Design and Construction Legislation phase and the Learning of Agents 
phase. The Robotics Execution phase is regarded out of this research scope, 
however there are many complimentary Literature that has investigated 
Robotic Execution whether on or off-site. Accordingly, RoBuilder focuses on 
the 2 phases that mainly differentiate the proposed framework from 
traditional workflow and are considered the real paradigm shift. 

 
Figure 29: Scope of Application of RoBuilDeR Versions with respect to the Proposed Framework 

2.5.1. Design Intent and Inspiration for RoBuilDeR 

The initial design idea that will be developed in this research is inspired by a 
Roman miracle structure and one of the most conserved monuments of this 
era [64], namely the Pantheon. The pantheon was initially constructed as a 
temple in Rome dedicated to  the Twelve Gods and to the Living Sovran [65]. 
Its present form is rebuilt by the emperor Hadrian (between 120-124 AD) 
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[64]. The structure can be divided into 2 parts: the portico and the rotunda 
(dome) (Figure 30). The dome of what is now serving as a church is the part 
of interest in this research. 

 
Figure 30: The Pantheon in Rome from the outside [66] 

- The Rotunda (Dome) - Pantheon 

The Rotunda is the spherical shaped dome structure. The height to 
the oculus and the diameter of the interior circle are the same, 43.3 meters 
(Figure 31)  [67]. Almost two thousand years after it was built, the Pantheon's 
dome is still the world's largest unreinforced concrete dome [68].  

 
Figure 31: The Perfect Circle Inscribed inside the dome of the Pantheon Rotunda [69] 

The uniqueness of the Pantheon in Roman Architecture as well as being highly 
conserved due to its continuous use, yielded this building as a standard 

https://dogedaos.com/wiki/Oculus.html
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exemplar of classical style revival. Hence, it has been copied several times in 
modern times. The central hall of the U.S. Capitol in Washington, D.C., and 
the rotunda of the General Grant National Memorial (Grant's Tomb) in New 
York City are examples of modern architects replication of the Pantheon [70].  

There are still ongoing studies regarding the mathematical, astronomical and 
structural miracles conveyed in this monument. For instance, the structural 
integrity of the dome was secured by a series of massive, concentric stepped 
rings and the lightening of the dome by coffering and gradated, light-weight 
aggregates [71].  

At the very top, where the dome would be at its weakest and vulnerable to 
collapse, the oculus actually lightens the load [72]. The oculus at the dome's 
apex and the entry door are the only natural sources of light in the interior. 
Throughout the day, the light from the oculus moves around this space in a 
reverse sundial effect [73]. The oculus also serves as a cooling and ventilation 
method. During storms, a drainage system below the floor handles the rain 
that falls through the oculus (Figure 32). 

 

 
Figure 32: (Left) A painting showing how the oculus and the entry door provided light in 

ancient times vs a recent picture (top right) showing the sun light entering from the oculus and 
reflecting in on the inside of the dome. (Bottom right) is an aerial view of the pantheon within 
the surrounding urban context showing the portion of the dome left open which represents the 

oculus. 
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- The Endless Wall – Gramazio Kohler Research 

On the other hand, this research project is also inspired, from the execution 
side, by the project of Gramazio Kohler Research named “The Endless Wall” 
and realized in 2011 [74]. This project is regarded among the very early 
investigations of the capability of industrial robots to be mounted and 
deployed in construction sites for building purposes. The mounted robot was 
equipped with an end effector that can perform “pick and place” of concrete 
bricks. The initial position of the brick supplies as well as the final position of 
each brick in the “circular wall” (Figure 33) was designed and checked by the 
responsible architects prior to execution by the help of a simulated 
environment. This environment replicated the actual site where the robot had 
been assigned to.  

The main challenge in this task was to develop a “cognitive” language between 
the real “imperfect” world and the counterpart “perfect” simulated 
environment. A feedback loop was continuously checking the data retrieved 
from sensors and laser scanners. Given the complexity and unpredictability of 
a real construction environment the robot must be able to recognize its own 
position, the surroundings, and its components with regard to the material 
tolerances. Consequently, the robotic system has to respond to actual 
tolerances and be able to adapt to changing conditions autonomously [74]. 
The robot unit employed an innovative scanning system which enables it to 
orient itself and at the same time to process the information gained from 
different materials and surrounding environment. 

 
Figure 33: The Endless Wall, ETH Zurich, 2011 [74] 

Accordingly, the 2 inspirational examples, combined, had a significant 
contribution to the initial preliminary design of the proposed Brick Pavilion. 



Original Contribution 2.5  
 

 
45 

Where the pavilion takes the “brick” nature of the “the Endless Wall” project, 
backed up by the success in robotic execution, and combines it with the oculus-
dome inspired by the Pantheon’s “Rotunda” design.  

This design also fits perfectly with the nature of bricks assembly with little to 
none mortar or adhesive involved. The presence of an open-ended dome 
would reduce the risk of falling bricks compared to the situation where the 
dome has been completely closed with mounted bricks. This benefit is also 
added to natural sunlight (Figure 34), stack ventilation and all the other 
benefits previously mentioned regarding the role of the oculus in the 
Pantheon’s design. 

 

 
Figure 34: Imaginary Visualization Inside of the Brick Pavilion showing the Sunlight entering 

from the "oculus" and projecting on the bricks inside 

 
Figure 35:Imaginary Render of how the Brick Pavilion would look like 



2.5 Original Contribution 
 

 
46 

Starting from a circle, the idea of one of the most remarkable monuments in 
ancient times was born, and recently, from the simplest building unit; brick, 
placed accumulated in a circular manner, one of the earliest modern 
experiments of full robotic execution was rendered successful. Consequently, 
the robotic brick placement and the design of curved oculus dome, combined, 
are regarded as a perfect inspiration to the Brick Pavilion. This pavilion is 
sought to one of the earliest trials for the design and construction of a building 
executed by RL-Agents. 

In the following sections, more details will be discussed regarding the design 
parameters involved in the Brick Pavilion, as well as how these parameters 
were employed within the game mechanics. In addition, a focus on the human 
version of the game (UVersion) will highlight how the designer can visualize 
the impact of changing one of the design parameters directly on the execution 
of the pavilion.  
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2.6. Game Development in Unity 

 
Figure 36: Unity Logo 

This section provides a brief explanation for the Choice of Unity platform for 
the application development. It also provides an explained diagram of the 
components and classes implemented in RoBuilDeR and the connections 
involved between them. This diagram was initially based on the Human 
Version (UV) of the game. The Robot Version (RV), however, has been 
tweaked to accommodate the different methods and classes provided by ML-
Agents to allow for the proper external connection to the RL Algorithms 
necessary for the training of the Agents. 

2.6.1. Why Unity? 

To answer this question, first it is needed to briefly explain what Unity is. 
Unity is a cross-platform game engine developed by Unity Technologies. The 
engine can be used to create three-dimensional (3D) and two-dimensional 
(2D) games, as well as interactive simulations and other experiences. The 
engine has been adopted by industries outside video gaming, such as film, 
automotive, architecture, engineering, construction, and the United States 
Armed Forces [75]. 

Given the successful simulations carried out on this engine in the AEC 
industry, this game engine has also specific characteristics that is compatible 
with the nature of simulation required by this research. These characteristics 
could be summarized to the following: 

• Physics-enabled environment.  
o Unity helps in simulating physics in a proper way to correctly 

accelerate and respond to collisions, gravity, and many other 
forces [76]. Regarding the 3D physics, Unity integrates and 
relies on Nvidia Physx engine. This allows for an efficient quasi 
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realistic response to all physics behaviors for an object. This 
allows for the automatic linking of an object response based on 
the material it was assigned to. In this research, the building 
bricks were modelled in Concrete. However, by changing the 
material type and properties the physics engine will handle all 
the changes implicitly and there would be no need to change 
any other thing from the user side.  

o Nvidia Physx helps as well in simulating gravity for when the 
bricks fall. The gravity effect can also be witnessed when 
stacking a high pile of bricks on top of each other, where some 
tilting and slight variation in the original position could occur. 
These variations greatly help the agent in understanding some 
of the imperfections that occur in the real world. 

o It also detects and simulates collisions between bricks and even 
the effect heavy wind blowing on the stability of binder-free 
stacked bricks. 

 
Figure 37: Nvidia Physx-supported Unity 3D environment can simulate complex behavior 

robotic tasks with high accuracy [77] 

• Reinforcement learning compatible environment (ML-Agents): 
o The Unity Machine Learning Agents Toolkit (ML-Agents) is an 

open-source project that enables games and simulations to 
serve as environments for training intelligent agents. The 
toolkit provides implementations of the of state-of-the-art 
algorithms to train intelligent agents for 2D, 3D and VR/AR 
games. Toolkit is mutually beneficial for both game developers 
and AI researchers as it provides a central platform where 
advances in AI can be evaluated on Unity’s rich environments 
and then made accessible to the wider research and game 
developer communities [78]. 
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o This facilitates the direct transformation of an application 
manipulated by human users into a learning environment for 
Reinforcement Learning (RL) Agents to train. In addition, 
imitation learning could also be easily integrated by recording 
human players’ moves in the game and providing these 
recordings for the agents to learn from. 

 
Figure 38: Different ML-Agents sample environments [79] 

• Time Manipulation: 
o Along with the previously mentioned 2 factors, time or frame 

manipulation of physics effects are a crucial factor in the 
learning of the agents. For instance, given that the time speed 
during the learning process could learn 10x to 20x the normal 
time speed in real life, the effect of physics simulation should 
also be configurable to cope with such a change in the speed.  

o For instance, if a brick takes 1 second to fall from a certain 
height in real world and in normal times, such an effect should 
be reduced to 0.1-0.05 seconds during the agent learning 
process depending exactly on the value of “time scale” in which 
such simulation is running on. Otherwise, bricks falling, or any 
other PhysX process will be too slow compared to the current 
time speed the simulation is running on and hence there will be 
a major discrepancy in the agents’ behavior when applied in the 
normal time scale and in the real actual situations. 
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• Interoperability 
o This feature allows the smooth transfer of data of any source 

and integrating it with the model developed in Unity. Examples 
of interest could include point cloud data from laser scanners, 
data from different sensors, and geometry from CAD 
environments like (Rhino, Autodesk Revit, ArchiCAD..etc.). 

• Supporting almost all available platforms.  
o The developed application especially for the UV can be easily 

exported and launched on any platform like IOs, Android, 
Windows Desktop, Mac OS, Linux, and WebGL [80]. 

 
Figure 39: Unity 3D supported platforms [81] 

2.6.2. Component and classes Diagram 

Given the explanation of the reasons behind the development of the 
application in Unity, the following sub-section demonstrates how the game, in 
its 2 versions, is divided in terms of components (game objects) and classes 
attached to them. This is explained in the form of Components and Classes 
diagram as in (Figure 40).  

This diagram identifies the main Game objects which are the term used in 
Unity for referring to elements or units deployed in a game scene in the 
application. For each Game object there could be a script class attached to it. 
This C# script defines a certain behavior to the attached Game Object. Unity 
allows the attachment of the same script to multiple Game Objects and allows 
the attachment of several scripts to one Game Object as well.  

Therefore, the visualization of such complex relations in an abstract way like 
in a diagram could easily help understand the main scripts and game objects 
involved in the application. Such a demonstration tool helps also during the 
actual development itself of the game.



 

 

 
Figure 40: Components and Classes Diagram RoBuilDeR 
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In the following table (Table 1), a more detailed explanation of the important 
Game Objects and Scripts is demonstrated as well as the indication of whether 
this class is only available in UV of the game or is also present in the RV. 

 

Table 1: Explanation of Main Game Objects and their attached scripts (if any) 

Game 
object  

Explanation Attached 
Script  

Explanation Available 
in   

UV RV 
Main 
Camera 

Controls the main Camera 
deployed in the Scene 

CameraCont
roller.cs 

In UV, keyboard and mouse 
controls are enabled to allow 
for the ease navigation of the 
scene and visibility of all sides 
of the pavilion during 
construction. 

Y Y 

Building 
Area 
(Environ
ment) 

Each Instance of a "Building 
Area" GameObject includes 
all Active Gameobjects 
required during gameplay. 
In case of the instantiation of 
bricks, windows, or doors, 
they will also be inserted in 
the hierarchy under the 
“Building Area” they were 
instantiated in.  
In case of UV, there is 
generally only 1 
Environment, however in 
RV, multiple environments 
are instantiated in the same 
scene, during training 
process, to allow for parallel 
learning of the agents in 
different  environments 
simultaneously. Thus, this 
configuration yields a more 
effective learning. 

None   Y Y 

Player  Parent -> 
Environment(Building 
Area) 
The GameObject has no 
physical existence. However, 
it is considered as the player 
that manipulates the design 
and building process with 

Robuilder.cs Main script in the game that 
takes control of the game 
mechanics during "Game Play 
Mode" and handles all the 
processes like: 
Instantiating bricks, Windows, 
or Doors 
Instantiation, and the update 
of "Insertion Spheres". These 

Y N 
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the help of the script 
attached 

spheres are potential points for 
inserting bricks, doors or 
windows later on in the game. 
Handling the change of 
decision between inserting 
brick, door or window. 
Handling the physics behavior 
of the bricks and controlling 
when to disable this 
parameter. 
Checking the success or failure 
of a game episode and 
reporting to the game manager  
Updating the score with the 
help of methods from external 
static classes. 

RobuilderAg
ent.cs  

This script is only used in the 
RV of the game and in addition 
to all the processes already 
executed by the Robuilder.cs 
script, it also acts as the 
GameManager and implies all 
the methods needed to be 
implemented by ML-Agents 
toolkit in order to be able to 
convert the problem into a 
Markov Decision Process 
(MDP) necessary for training 
the Agents.  

N Y 

Circle 
Gird 

Parent -> 
Environment(Building 
Area) 
This GameObject includes 
the "building ring territory" 
attached to it. This ring 
represents the available 
initial circular boundary 
available for brick insertion 
at the beginning of each 
episode. 

CircleGrid.cs This script has all the 
functions needed to calculate 
the initial "base sphere points". 
These are the points that are 
instantiated only at the 
beginning of each episode to 
represent the allowable 
insertion points for new bricks 
or door.  
It also contains several static 
functions that are concerned 
with the translation from one 
point on the circle to another, 
dealing with angles, and 
vectors at various heights.  

Y Y 

Ground  Parent -> 
Environment(Building 
Area) 

GroundColli
sion.cs 

The script has only one 
function "OnCollisionEnter" 
that detects whenever a brick 

Y Y 



2.6 Original Contribution 
 

 
54 

The available Ground "Land" 
in each environment 
instance. 

has fallen and collided with the 
ground at any point. Thus, 
only when the collision has 
been detected, the method 
would report this event to the 
"Listeners" in order to take the 
appropriate actions (ending 
the game or showing the Game 
Over GUI in case of UV). 

Brick Actual Brick instantiated 
during game play 

Brick.cs Brick-Specific methods and 
variables that differs from one 
brick to the other.  

Y Y 

Window  Actual Window Opening 
instantiated during game 
play 

Opening.cs Depending on the type of the 
Opening and its insertion 
location, each instance would 
have its own specific values for 
different variables. 

Y Y 

Door Actual Door Opening 
instantiated during game 
play 

 

 

Moreover, Table 2 provides an explanation of the static independent classes 
that contain different methods used inside of the main scripts. 

 

Table 2:Explanation of the Main Independent Static Classes 

Independent 
Script 

Explanation 

ScoreUtil Contains all the static methods for the calculation of rewards/penalties based on the 
current action taken. For example, if a brick is inserted, the "Robuilder.cs" script recalls 
the static functions from "ScoreUtil.cs" that would eventually calculate if this brick at 
this position generates any kind of reward or penalty. If yes, such a value would be 
reported to the score manager, cumulated to the current total score and appears on the 
screen (in case UV). In case RV, the score reported from a "ScoreUtil.cs" method is 
directly inserted in a method called "AddReward()" which is responsible for collecting 
and accumulating rewards and penalties for each agent in each episode.   

BrickLogic  Contains all the static methods related to the insertion of brick and its relationship 
with the surroundings. It also contains methods for:  
- Generating insertion points above each new brick  
- Checking the possibility of clash if a brick would be inserted in one of these points 
later. 
- Generating Insertion points for bricks on the top of any Window or Door Openings 
and methods for performing same safety checks for regular bricks insertion. 
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2.7. RoBuilDeR – Human Version (UV) 
In this section, UV is explained in more detail. It starts with a demonstration 
of the User Interface (UI) and the illustration of different GUI objects on the 
screen. Then, a brief walk-through of the several actions that could be taken 
during gameplay and possible consequences are presented. Afterwards, 
different scenarios leading to ending game or to game completion is discussed. 
Finally, the section ends with a list of all properties that can be controlled by 
the designer to adjust different design and construction parameters. These 
parameters are then utilized for the learning process of the RL-Agents.  

2.7.1. User Interface 

- Start Menu  
In this sub-section, different canvases of the game will be displayed and briefly 
explained. The game starts with the preparation guide with optional tips 
regarding game mechanics is offered. Afterwards, the game play features start 
to appear on canvas once the actual game starts. Depending on the progress 
in the game, “Game Completion” or “Game Over” screen would eventually 
appear. In case of pausing the game, the pause menu appears. 

To start with, once the HV game is open, the following screen appears: 

 
Figure 41: Start Screen in RoBuilDeR 

Figure 41 is the start screen where it shows in the background an imaginary 
render of the Brick Pavilion in addition to the highlighted items, namely: 

1. Start Tips (Button): On clicking, a series of game tips is shown.  
2. The Game name is shown on the bottom left side of the screen 
3. Skip Tips (Button): On clicking, the game moves immediately to game 

play canvas and the game starts. 
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Figure 42: First Screen Appearing in for Game Tips Provided. It gives brief explanation of 

RoBuilDeR 

Figure 42 is the first screen appearing after clicking on “Start Tips” Button. 
This first screen provides a brief explanation of RoBuilDeR and the 
motivation behind developing this application. 

Afterwards the following series of screens are shown consecutively (Figure 
43). These screens explain each icon featured during game play, and how they 
get updated or changed based on the performance of the player and achieving 
certain milestones during game play.  

 
Figure 43: Tips provided regarding Game Play Canvas Features 
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Following the explanation of different Game Canvas features, the last group 
of game tips are shown. These tips explain how rewards/penalties work during 
gameplay as well as demonstrating a game over scenario (see Figure 44). 

 
Figure 44: (1,2 and 3) Rewards Explanation. (4) Game Over scenario Demonstration 

- Pause Menu  

Finally, during gameplay, once the “Esc” button is clicked, the Pause Menu 
appears. It includes the following: 

1. Resume (Button): Resumes the game 
2. Restart (Button): Restarts the game turning back to the first screen. 
3. Quit (Button): Exits the Application. 

 
Figure 45: Pause Menu and its components 



2.7 Original Contribution 
 

 
58 

2.7.2. Game Play and Functions 

In this sub-section, the game controllers and navigation keys are introduced, 
followed by a demonstration of possible actions taken during gameplay.  

- Game Play Navigation Keys 

 
Figure 46: Keyboard and Mouse Controllers 

Figure 46 shows the keyboard and mouse buttons highlighted in different 
colors. Their functions can also be summarized in the following table: 

 

Table 3: Summary of different keys/buttons used in the game and their corresponding functions 

Keyboard /  
Mouse Button 

Function 

Esc Pausing / unpausing the game  

W / A / S / D  Navigation Forward - Left - Backward - Right 

Q / E Rotation Clockwise/Anticlockwise 

F Changing between brick and window mode 

G Changing between brick and door mode  

Left Mouse Button  Insertion of the Current Unit in the nearest 
possible position (if exists) 

Scroll (Mouse) Zooming 
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- Game Play Actions: 

Since the goal of the game is to realize the Brick Pavilion, the main game 
actions can thus be summarized into: Brick, Window and Door Placement. 

A. Brick Placement: 

Brick is the fundamental building unit in the pavilion. Once a brick 
is inserted in one of the available positions it becomes instantly 
part of the structure, i.e.: the player can no longer move the brick 
from its place, and its color changes from transparent to its own 
material (ex: concrete). Once the player clicks and the brick is 
inserted, another new “transparent brick” is instantiated at the 
cursor’s current position on screen (see Figure 47).  

 

 
Figure 47: Steps of Insertion of brick: (1 - 2) Moving from random position towards the desired 

position, (3) Clicking and Placing, (4) Instantiation of new real brick in the nearest possible 
position and transparent dummy brick shift over the newly inserted brick. 

 

This “fake” brick directly follows the point at which the cursor is 
pointing on the screen translated to actual 3d position in the 
environment. The motivation behind the transparent dummy brick 
is to give the player a chance to evaluate the possible placement 
positions for the next brick before actual placement takes place 
(see Figure 48).  
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Figure 48: Dummy brick adjusts its position based on its location on the circular grid. This 

helps the player in visualising any “hypothetical” brick position before actual placement 

Moreover, the action of placing a brick can be categorized into 3 
scenarios: 

o Brick Placement on the base ground: The bricks are based 
directly on the ground by selecting one of the available “base 
spheres” points.  This term comes from the fact that these are 
insertion points lying on the base ground. 

 
Figure 49: Base Sphere placed on the ground 

o Brick Placement on top of existing bricks: These bricks are 
placed on safe positions that are available on the exposed face 
of the existing brick structure. These safe positions are 
represented by circular spheres as in Figure 50.  

The sphere points and their location depend on many factors. 
For example, one factor is the proximity and actual location of 
bricks, doors, and windows in the vicinity of this brick which 
could cause clash with the newly inserted brick. Another factor 
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is the value of a parameter adjusted by the designer that 
controls the abundance of these points. Also, the current phase 
of construction, i.e., dome construction, base construction, 
windows insertion etc., could directly affect the number of 
points due to geometry variations occurring in the structure.  

 
Figure 50: Insertion Spheres on top of existing bricks are highlighted, the numbers represent the 

type of each sphere, namely: Center Point (1), Wide Point (2), Star Point (3). 

o Brick Placement on top of window or door lintel: Once the bricks 
confining the window or door opening on both sides, reach the 
upper level (lintel) of such opening, a new set of insertion points 
are enabled on the opening. These new points allow bricks to 
be built on top of the opening. As for their type, they fall under 
the category of “base points”. Accordingly, these points follow 
the same rate of distribution and angle separation of base 
points initiated on the ground (see Figure 51). 

 
Figure 51: Base spheres inserted on top of Window 
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Independent of the type of insertion point, once a brick is placed, a “Virtual” 
brick collider captures all the existing insertion points being occupied by the 
physical volume of the new brick. It also captures and deletes “nearby 
insertion points that if, afterwards, a brick is to be inserted in one of them, it 
would coincide with the volume of the newly inserted brick. This would lead 
to the creation of a crash and perhaps a collapse in the brick structure if such 
an event occurred during gameplay. Therefore, the role of a “brick collider” is 
to prevent the occurrence of such an event before happening by performing 
this quick check every time a new brick is to be placed (Figure 52).   

 
Figure 52: Steps of inserting a brick while focusing on the role of the invisible “Brick Collider”. 

It deletes not only white points but also red points that would lead to a clash of a new brick 
would be inserted in one of them.  

This kind of assumption could be replicated in real world with the help of 
visual sensors. These sensors could give instant feedback to the simulator 
about the current “geometry” of the structure and then the “brick collider” 
could perform a “clash detection” check on the real current structure 
information that were transformed to the virtual world.  

To sum up, there are 4 types of insertion points that may appear: 

Table 4: Insertion Sphere Points Summary 

Insertion 
Sphere  

Position When it is generated 

Center 
Point 

Exactly on top of the centroid 
of a newly placed brick (see 
Figure 50) 

On new Brick Insertions 
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Wide Point On top of a newly inserted 
brick on both sides of Centre 
Point (if possible) (see Figure 
50) 

On new Brick Insertions 

Star Point In between two Bricks, being 
one of them the newly 
inserted brick, on condition 
that there is enough 
"support" that could be 
provided on both sides for 
any brick to be later inserted 
in that point (see Figure 50) 

On new Brick Insertions on the 
condition that there exists a 
brick next to it, that is close 
enough to provide a simply 
supported beam effect on any 
future brick inserted in that 
point. 

Base Point On the ground / On top of 
Window/ Door Openings (see 
Figure 49 

At the beginning of the Game / 
When 2 sides of bricks 
surrounding an Opening reach 
the same level as the top of the 
opening.   

 

B. Window Placement:  

Same as the conceptual sequence for adding a brick, the window 
can be added in the same manner. However, the window “Box”, 
differs from the placed brick since it is not considered as “Physical 
Element”, rather than a “Void” space that is open to the outside. 
Inside this “Void” it is not possible to have any brick insertion 
points. 

A ‘Window Collider” is equipped with some sequential rules to 
define the time at which the bricks from both sides of the 
“Window” have reached the top height of the box. In this case the 
cursor can hover over the top of the box and additional insertion 
points become available on top. This procedure allows the closure 
of the Window Void by bricks from top. It approximates the 
presence of a “Window Lintel” in real world.  

In this version of the game, windows are programmed to only be 
inserted on “Centre Points” or “Star Points”. Therefore, it is not 
possible to place windows on “Base Points”. This prevents the 
occurrence of situations like the insertion of a window on the 
ground or the placement of a window opening exactly on top of 
another one. However, prevention of inserting windows on “Wide 
Points” is a design choice. Therefore, it is an option that can be 
altered by the designer based on the needs and has only an 
aesthetic effect.  
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Figure 53: Window Insertion Steps. (1) All insertion Points are Visible. (2) Converting to 
window mode and disappearance of inadequate points. (3) Placement. (4) Brick mode is 

automatically recalled 

 

C. Door Placement 

Placing a door has almost similar properties as that of windows, in 
terms of possibility of adding new “base points” on top of the Door 
Opening once bricks from both sides reach that level. However, 
door insertion differs in the logical functional property as an 
“opening” for people to enter the pavilion. Accordingly, door 
insertion is allowed to be inserted only on the ground. Thus, it can 
be deployed on “Base Points” that lie on the ground. 

 
Figure 54: Door Placement Process 
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2.7.3. Score and Progress Tracking 

Since the first aim of UV is to let the designers test the conformity of the game 
against the real process, once the functional properties are approved, the 
second objective comes into action. This second objective focuses on 2 main 
iterative tasks. The first one is adjusting and fine-tuning the rewards the agent 
relies on for a smooth learning path. The second is adjusting the methodology 
of progress evaluation.  

This later process could help in the appropriate division of the complex goal 
of designing and constructing the pavilion into sub-tasks, making it easier for 
the agents to learn. In case of using multiple robots, each having a different 
capability on-site, this task division could also help in distributing these tasks 
among them, hence, working with a multi-agent environment.  

Accordingly, UV provides 4 “visual” metrics to track the Score and Progress 
instantly during game play. These metrics are: Total Score, Instant 
Achievement, Design Progress and Construction Progress. They are visually 
tracked through a score counter, an achievement pop-up, progress bar design 
and another for construction respectively. 

- Cumulative Score Counter  

It is a counter located on the top center part of the game screen that 
accumulates the rewards received during a certain episode of the game. The 
score can also be negative if the total sum of penalties are more than the 
rewards achieved during an episode.  

Example of rewards experimented: 

Table 5: Examples of Rewards/Penalties experimented in UV 

Unit  Reward / Penalty Explanation 
Brick  Consecutive Bricks Inserting bricks in series on 

the same level   
Far Bricks  Inserting bricks far away 

from each other  
High Bricks Inserting bricks at a higher 

level from the current lowest 
incomplete level 

Window  Sill Height Placement of window on an 
appropriate height from the 
ground  

Cross Ventilation  Benefit from wind direction 
in a way to maximize this 
effect 

 
Stack Ventilation  

Door Minimize Wind 
Capture 

Placing the door away from 
prevailing wind direction 
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In the following images from the game, there are some examples of rewards 
achieved or penalties received among the ones included in  Table 5. The 
rewards are eventually summed up on the Score counter on the top of the 
screen.  

 
Figure 55: Window Placement achieving 2 positive rewards for proper sill height and stack 

ventilation achievement. 

 
Figure 56: Reward for consecutive bricks placement 



Original Contribution 2.7  
 

 
67 

 
Figure 57: Penalty for placement of far brick 

- Achievements Pop-Up 

Achievements Pop-ups gives instant feedback to the user if a certain action, or 
set of actions, led to a positive reward or a negative penalty. Each pop-up is 
composed of 2 parts: a text representing the kind of reward/penalty given and 
a numerical value for such a reward/penalty. Positive rewards are shown in 
black color while negative rewards are shown in a red color, as shown in 
Figure 58. 

 
Figure 58: 2 types of Pop-up text are shown. (left) is a reward pop-up while (right) is a penalty 

pop-up. 
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- Design and Construction Progress bars 

 
Figure 59: (1) Design Progress Bar (2) Construction Progress Bar 

Design and Construction Progress Bars can be considered as a visual tool to 
highlight benchmarks achieved during gameplay. These benchmarks could be 
related to carrying out a certain number of actions that eventually leads to the 
completion of a design or a construction task (see Table 6, Figure 60, and 
Figure 61).  

Table 6: Examples of tasks that contribute to making progress in their relevant Design or 
Construction progress bars 

Bar Type Achievements contributing to the Progress 

Design Stack Ventilation   
Cross Ventilation  
Windows having adequate Sill height  
Adequate Placement of Door Opening  
Consistent Brick Perforations  

Construction Each completion of a full level of bricks  
 

 
Figure 60: (1 -> 2) & (3 -> 4) Snapshot of before and after completing a Design Task and 

Monitoring the increase of progress on the Design Progress Bar 
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Figure 61: (1 -> 2) & (3 -> 4) Snapshot of before and after completing a Construction Task and 

Monitoring the increase of progress on the Construction Progress Bar 

2.7.4. Completion and Game Over Scenarios 

Succeeding in reaching the required height of the building while achieving 
satisfactory results in design and construction tasks during game play are the 
main indicators of “Success”. This achievement signals the entire completion 
of the Brick Pavilion. To reach this goal, converted to numerical values, the 
player must have a positive total cumulative score and with no more 
“Insertion Points” available in the game while having reached already the 
required final height of the “Oculus”.  

On the other hand, failure could occur for many reasons, some of which were 
already mentioned in the previous sub-sections. The following table 
summarizes the different scenarios, that are present in the current version of 
the game, that leads to failure in finishing the game successfully. Each scenario 
is classified based on whether it is related to an inadequate design aspect or 
improper construction execution sequence.  

Table 7: Summary of Probable Game Over Scenarios 

Type of 
Failure 

Cause of Failure Possible occurrence Scenario 

Design No Door Placement Consuming all sphere-insertion 
points available on the ground level 
in placing bricks, which makes it no 
more possible to place a door 
opening on the ground in the game  
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Another Scenario could be the 
insertion of windows in a way that 
doesn’t give a space anymore for 
inserting a door. * 

  
Inadequate Door 
Placement 

Placing the entrance door to be 
facing prevailing wind direction. 

  
No Window 
Placement 

Reaching the starting height of the 
dome (point at which the radius of 
placement circle starts to shrink), 
with no windows inserted yet. 

  
Inadequate Sill 
Height for Windows 

Placement of windows either very 
close to the ground or higher than 
the average height at which a normal 
window would be placed 

  
Poor Cross 
Ventilation  

Rearrangement of Windows in a 
poor way in terms of benefiting from 
Cross Ventilation Effect. 

  
Poor Stack 
Ventilation  

None of the Windows inserted in the 
game are facing the prevailing wind 
direction. 

  
Uneven large gaps 
in the design  

Having uneven, discrete, large gaps 
in the overall shape of the pavilion. 

Construction Poor Brick 
Placement 
Technique**  

Getting a consecutive penalty due to 
the insertion of bricks in a sequence 
that has fewer consecutive bricks 
and more "far" or "distant" bricks. 
Far and distant bricks were 
explained in Section 3.7.3. 

    Brick Collapse Falling of bricks on the ground or 
even the tilting of a brick more than 
a certain threshold after its 
placement. This threshold is part of 
the parameters defined by the 
designer before the start of a game 
episode. 

Notes     

* During the placement of a window or a door opening, the game is 
programmed to leave an obligatory space between this opening and any 
future openings. This obligatory distance is one of the parameters that 
the designer shall decide on its value before the game starts. The reason 
for leaving this space is to allow for adequate brick separation between 
any 2 openings and provides a structural support as well for the 
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placement of the lintel for different openings, and for the support of the 
upper dome. 

** Placement of a sequence of bricks in such a way that consumes more 
"energy" by the executing robot or may increase the obstacles in the 
robot paths caused by the placed bricks themselves.  First, in this game 
it was assumed that there is only one "hypothetical" mobile robot 
equipped with a crane system that allows the robot base to be elevated 
upwards when needed (see Figure 62).  

Therefore, the optimum goal is to insert the bricks in a way that 
reduces the practical distance between the supply and demand points 
and to always try to provide more "freed-space" for the robot arm to 
move. Since this tool path planning is out of the scope of this research 
and many efficient solutions to solve this issue were already provided 
and tested in both research and practice, it was still necessary to 
include its "Core concept" in the execution process. So, to translate this 
issue into tangible simple values, 3 parameters were assessed: 
Consecutive placement of Bricks, High Placement and Far Placement.  

Optimum placement strategies were regarded as the one in which 
bricks are inserted consecutively one after the other and avoiding as 
much as possible placement of bricks at much higher levels than the 
lowest incomplete current one. However, this aspect was overlooked in 
the dome construction phase. During that phase, much priority was 
given to inserting the bricks in whichever way that maintains stability 
of the structure during and after placement.  

 

 
Figure 62: Imaginary render of KMR QUANTEC [82] working on site 
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The following 2 figures provides actual screenshots from the game where 
“Game Over” menu is present, as the gameplay was rendered unsuccessful. 

 The reason of failure in Figure 63 is due to the collapsing of bricks due to the 
consecutive placement of bricks vertically over each other in one column. This 
series of actions has led to instability in the structure and eventual collapse of 
top bricks due to gravitational forces. 

 
Figure 63: Game was over due to collapsing of bricks 

In Figure 64, failure in completing the game was due to the consumption of all 
ground points in placing bricks, that there is no more room for adding a door. 

 
Figure 64: Game was over due to absence of a placed door on the ground 
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2.7.5. Design and Functional Parameters Influencing the Game  

This sub-section provides an overview of some of the main parameters 
included in the application. These parameters are classified according to their 
type of contribution into: Angular-Driven Parameters, Dimension-related, 
Functionality-driven, Design-driven, and Physics-related respectively.  

- Angular-Driven Parameters 

Since the pavilion is built on a “circular” concept at its core, all geometric 
values need to be “translated” to values easily interpreted in a “circular 
environment”. For instance, space occupied by bricks and void left between 
them can be easily expressed using angular values referencing the center of 
the building; the point where everything revolves around. Such a translation 
helps reducing the complexity of comparing different measurements and 
provides a common ground for all terms. 

The following figure (Figure 65) shows an example of different angles 
calculated for voids and spaces on one level of bricks.  

 
Figure 65: Different variables presenting identifying bricks and void positions from angular 

perspective 

These angles and their corresponding variable names are presented in the 
following table. These variables are thoroughly used in game-calculations.  

Table 8: Angular-driven Parameters Definition 

Letter Variable Name  Value* 
A Half Brick Angle** 7.31 
A' Half Brick Angle on Center Line*** 6.89 
B (Full) Brick Angle 14.61 
B' (Full) Brick Angle 13.78 
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C A Space between 2 bricks - 
C' A Space between 2 bricks on the Center Line - 
* This value is based on the default circle radius. Any reduction in the radius 

of the circle at later stages of dome creation, results in an increase in all 
these values. 

** Any letter ending without (') means that this value is calculated based on 
the end tip of the unit in consideration 

*** Any letter ending with (') means that this value is calculated on the circle 
passing through the centroid of the examined unit. 

 

- Dimension-related Parameters: 

They represent the dimensions of the main units involved in the design, 
namely: Brick, Window and Door Openings. These parameters give flexibility 
to the Designer in visualizing how different options would look like. 

The following table represents the actual dimensions used in both UV and RV. 

Table 9: Dimensions of building units 

Unit Length  Width  Height 

Brick  1.2 0.64 0.24 

Door 2 1.5 2.4 
Window 2 1.5 1.44 

 

- Functionality-driven Parameters 

These group of parameters are more driven towards adjusting game-
mechanics and making sure that the logic behinds the game itself runs 
smoothly. They are related to different logical aspects and may also contribute 
to changing how the pavilion would look like. However, their impact on 
functionality of the game could be seen as more dominant than their other 
contributions.  

These parameters are sub-classified based on their specific role they 
contribute to. Some examples of these parameters are presented. Each sub-
group of parameters is shown in a separate table, where each parameter is 
defined and explained.  

Table 10: Group 1: Brick Related Parameters 

Brick-related Parameters 
  

Parameter  Definition Function Default 
Value  

Range  
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Offset 
Distance 
Percentage 
of Brick 
Factor 

A percentage 
multiplied by 
half extents 
of a certain 
brick collider  

Factor that contributes to 
the detection of sphere 
points needed to be deleted 
once a new brick is 
inserted. This value is 
adjusted based on other 
design parameters in order 
to capture all points needed 
to be deleted. This would 
avoid a clash potential if a 
point was missed, and 
another brick was inserted 
in that point afterwards 
(see Figure 52). 

1.04 [1.03-
1.3] 

Search 
Factor 

It is a factor 
multiplied by 
half brick 
angle at the 
horizontal 
level under 
study. 

Factor that contributes to 
detecting nearby bricks on 
both sides and on the same 
level of the brick inserted.  
The overall process 
eventually helps in: 
1. Assignment of star 
points  
2. Detection of gaps in 
bricks for Design 
Evaluation.  

6 [1-10] 

 

 

Figure 66: Search Factor Demonstration 
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Table 11: Early Collapse Detection Parameters 

Early Collapse Detection 

Parameter  Definition Function Default 
Value  

Range  

Tilting 
Limit 
Factor of 
Safety 

Minimum 
Value that the 
dot product 
between the 
normalized y-
vector of a 
specific brick 
and the 
normalized 
global y-vector 
(0,1,0) should 
not exceed.   

(Note: Y is the 
Upper 
direction in 
unit, instead 
of the 
commonly 
used Z) 

This Crucial factor 
determines the tilting of any 
brick by comparing its 
upwards unit vector to the 
normalized Y axis vector of 
the game using dot product.  
The more the brick tilts, the 
less the value of dot product 
shall be. Therefore, this 
Tilting Limit is an early 
alarm in which once 
exceeded, there is no need to 
wait till a fallen brick 
touches the ground to end 
the game.  
This factor is also crucial in 
putting more constraints on 
the instability of bricks. This 
would encourage the player 
to follow a more 
conservative approach when 
placing bricks, to avoid any 
kind of instabilities even if 
they might not lead to an 
event of brick collapse. 

0.9936 [0.97-
0.995] 

 

 
Figure 67: Tilting Value Limit Demonstration 
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Table 12: Opening Related Parameters 

Openings related Parameters 

Parameter  Definition Function Default 
Value  

Range  

xFactor 
Half Brick  

Factor greater 
than 1 that is 
multiplied by 
the length and 
width of the 
original size of 
an opening 
collider. 

 Factor that vertically 
expands the collider 
attached to an Opening 
after it is placed. This 
would help in any 
upcoming step in capturing 
the bricks on both sides of 
such an opening. This 
process is crucial to keep 
track of bricks that 
surround openings. For 
instance, capturing those 
bricks helps in determining 
when the 2 brick-sides of 
an Opening have been fully 
completed This would 
allow for the addition of 
basepoints on top of the 
Opening lentil for brick 
placement. Therefore, this 
factor helps in creating a 
geometric trigger for any 
brick insertion next to 
Openings. 

1.1 [1.1-
1.5] 

 

 
Figure 68: Opening Colliders (in green) expanding after Insertion 
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- Physics Related Parameters: 

These parameters are mainly concerned with the periodic check of the 
stability of the placed bricks. Since Nvidia PhysX engine is enabled, all bricks 
will always have a “live instance” in the scene. Increasing the number of 
bricks placed, is coupled with an increase in the computational power 
required to keep track of the behavior of each brick.  

To overcome this issue, a process named “Stability Check” is carried out 
every “Late Update”. This test includes all bricks inserted and then several 
incremental tests are enforced on each brick. If a brick is proven stable for a 
“sufficient” amount of time. It will no longer be “alive” in the scene and will 
considered static in its place.  

Proper fine tuning of these parameters guarantees an evident boost in the 
performance of the game with very limited effect on its real dimensionality. 
In the following table, an example of these parameters is introduced. 

Table 13: Physics-related Parameters 

Parameter  Definition Function Default 
Value  

Range  

Stability 
Counter 
Threshold 

Minimum 
Integer 
threshold 
against which 
each brick 
stability counter 
is compared to. 
If the number 
exceeds this 
threshold, the 
brick is 
considered 
stable. 

Factor contributes to 
assessing the stability of a 
brick for a continuous 
period after it was 
already placed. It 
eventually determines the 
number of counts in 
which the up unitary 
vector of a brick remains 
constant or within a very 
narrow range of 
movement.  

10 [2-20] 

Factor 
Brick 
Length 
Physx 
Vicinity 
Below  

A Factor 
multplied by 
brick length to 
be compared 
against the 
horizontal 
projected 
distance 
between 2 bricks 
above each other  

Factor contributing to 
one of the stability 
assessment checks 
carried out during the 
game. It would compare 
the shifting distance of 
the centroid of the tested 
brick to the centroid of 
the brick below. This 
determines if they can be 
considered almost below 
each other or way shifted 
and hence high 

0.1 [0.01-
0.2] 
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eccentricity could exist. 
Other checks are 
executed afterwards to 
explore other factors that 
could improve the tested 
brick stability if they 
existed. 

 

 
Figure 69: Demonstration of the factor “Factor Brick Length Physx Vicinity Below” 

- Design-driven Parameters: 

This cluster of parameters directly affects the final design aspects of the 
pavilion. The designer should decide, based on experimenting in the UV 
environment, definite values to help train the agents at a later stage.  

Table 14: Building Height Parameters and Ground Base Points Parameters 

Building Height 

Parameter  Definition Function Default 
Value  

Range  

TotalHeight Absolute total 
height of the 
pavilion required  

- 8.4 [7.2-
9.12] 

     

Ground Base Points Parameters: 
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Parameter  Definition Function Default 
Value  

Range  

Multiplyer 
Factor 

A factor that is 
multiplied by the 
default number of 
base points that 
gets initialized at 
the beginning of 
the game 

Factor that controls the 
number of points 
available at the the 
ground base level for 
bricks/door insertion. 
Increasing this factor, 
increases the amount of 
placement choices 
available at the ground 
level.  

1 [0.25-
2] 

 

 
Figure 70: Comparison of the effect of different values of "Multiplying Factor" on the count of 

ground base points 

Table 15: Wide Angles Positioning Parameters 

Wide Angles Positioning 
Parameter  Definition Function Default 

Value  
Range  

Percent of 
half Brick 
Wide 
Point 
Insertion 
(not used 
in RV) 

A 
percentage 
multiplied 
by half of 
brick angle  

Factor used to determine the 
position of wide angles on any 
new inserted brick. 
Increasing this value widens 
the angle, calculated from the 
center of the circle, between 
the center Point and any of 
the wide points. Maximum 
limit is assigned to ensure 
that the centroid of any new 
brick inserted at that point 
would be a sufficient distance 
away from the tip of the 
current brick. Since there is a 

0.5 [0.4-
0.8] 
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chance that the new brick will 
be only supported on the 
current brick only, this limit 
prevents the new brick from 
falling if its centroid is almost 
on the edge of the lower 
(current) brick. 

 

 
Figure 71: Effect of changing the percent of half brick factor for wide points insertion on the 

position of wide points (1 & 3). (3 & 4) The effect of this factor can be significantly witnessed on 
the “Geometry” of a stack of bricks.  

Table 16: Sill Height-related Parameters 

Sill Height Related Parameters 
Parameter  Definition Function Range  
Eligible Sill 
Height 
(Upper and 
Lower 
Bounds) 

2 values in which the 
sill height of a 
window is compared 
to.  

If the sill height of window is 
within these bounds, the 
player is then eligible for a 
positive reward, or at least it is 
considered that this design 
parameter has been addressed 
properly. However, the more 
the actual sill height value 
would be further away from 
the bounds (towards the 
center value), the more 
rewarding and acceptable this 
process would be. 

[0.48-
1.44] 
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Table 17: Dome Design-Related Parameters 

Dome Design-Related Parameters 

Parameter  Definition Function Range  

Inward 
step 
(Upper 
and 
Lower 
Bound) 

2 values lower than 
half of Brick Width, 
that gets multiplied by 
this width. This 
results in upper and 
lower bounds function 
in the brick width. 

These upper and lower bounds 
are used in a “slerp” function to 
determine the distance needed 
to be moved towards the center 
of the building once a new level 
in the closure dome has been 
reached (see Equation below).  

[0.1-
0.4] 

The following Equation demonstrates how the Inward Step Factor is 
calculated depending on the height of the current brick: 

𝐼𝐼𝐼𝐼𝐼𝐼 = 𝐼𝐼𝑆𝑆𝑙𝑙𝑙𝑙  × �
1
𝐼𝐼𝑆𝑆𝑙𝑙𝑙𝑙

𝐼𝐼𝑆𝑆𝑢𝑢𝑙𝑙�
𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟

 

Where:  
ISF: Inward Step Factor 
𝐼𝐼𝑆𝑆𝑙𝑙𝑙𝑙: Inward Step Value Lower bound (designer parameter) 
𝐼𝐼𝑆𝑆𝑢𝑢𝑙𝑙: Inward Step Value Upper bound (designer parameter) 
𝑆𝑆𝑟𝑟𝑟𝑟𝑙𝑙: Ratio between relative height from start of dome to the maximum dome height 

𝑆𝑆𝑟𝑟𝑟𝑟𝑙𝑙 =
ℎ𝑎𝑎𝑙𝑙𝑎𝑎,𝑐𝑐𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑡𝑡 − ℎ𝑎𝑎𝑡𝑡𝑎𝑎𝑟𝑟𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟

ℎ𝑎𝑎𝑙𝑙𝑎𝑎,𝑠𝑠𝑎𝑎𝑚𝑚 −  ℎ𝑎𝑎𝑡𝑡𝑎𝑎𝑟𝑟𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟
 

Where:  
ℎ𝑎𝑎𝑙𝑙𝑎𝑎,𝑐𝑐𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑡𝑡:  Absolute Current Brick Height 
ℎ𝑎𝑎𝑡𝑡𝑎𝑎𝑟𝑟𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟: Absolute starting height of the dome 
ℎ𝑎𝑎𝑙𝑙𝑎𝑎,𝑠𝑠𝑎𝑎𝑚𝑚: Absolute maximum height of the pavilion 
 

 
Figure 72: Evidence of the effect of the exponential equation, used to design the dome, on the 

incremental evolution of the section curve of the dome.  
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2.8. Robot Version (RV) and ML-Agents 
In this section, the Robot Version (RV) of the game is introduced. As discussed 
earlier in the framework, this version of the game covers the “learning” part 
of the agents and how such an environment could be created. The section 
starts with a brief explanation of the MDP (Markov Decision Process) that 
the agents need to be deployed within and train on solving. This is 
demonstrated along with the translation of MDP into C# code, using the 
methods and classes provided by ML-Agents. Then, a review is provided on 
how the problem was decomposed into simpler problems “phases” to 
overcome the game complexity 

This is followed by a detailed explanation of how each different process 
included in the MDP is being implemented using ML-Agents in the unity 
environment. These processes start by stating the Actions taken in the 
environment and how “Masking of Actions” was utilized. Afterwards, 
Observations captured in each phase are demonstrated, along with 
observables included in the changing-sized Buffer Sensor. The Reward System 
for the agents is then provided for each phase.  

Once the MDP key components are covered, a sub-section including all the 
hyper-parameters used for training is provided. The hyperparameters for 
each learning phase are presented separately. Finally, the section ends with 
showcasing the Inference Mode of the game. This mode represents a 
compilation of all the “separate” experiences gained by the agents in each 
phase combined to form one complete structure.   

2.8.1. Choice of ML-Agents for Implementing the Game MDP 

In a typical Reinforcement Learning (RL) problem, there is a learner and a 
decision maker called agent and the surrounding with which it interacts is 
called environment. The environment, in return, provides rewards and a new 
state based on the actions of the agent [83].  

 
Figure 73: Markov Decision Process (MDP) [84] 
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So, in reinforcement learning there is no direct orders given to the agent on 
how to solve the problem, but rather, rewards are presented to the agent based 
on the actions or series of actions taken throughout the learning process. 
These rewards, whether positive or negative, help guide the agents on figuring 
out what is the optimum “policy” that could be adopted in order to maximize 
the cumulative rewards earned during gameplay. 

To help achieve this optimum policy, we used the Proximal Policy 
Optimization Algorithm (PPO) . PPO is an on-policy reinforcement learning 
algorithm that uses a neural network to approximate the ideal function that 
maps an agent's observations to the best action an agent can take in a given 
state. It is motivated by the question: how can we take the biggest possible 
improvement step on a policy using the data we currently have, without 
stepping so far that we accidentally cause performance collapse? 

There are several reasons behind the adoption of PPO, for instance:  

• ML-Agents provides an implementation of PPO out-of-the-box. It is 
considered the default algorithm in this toolkit. The ML-Agents PPO 
algorithm is implemented in Pytorch and runs in a separate Python 
process (communicating with the running Unity application over a 
socket) [78] (see Figure 74).  

• It is a method that has been shown to be more general purpose and 
stable than many other RL algorithms [78]. 

• PPO can be used for environments with either discrete or continuous 
action spaces [85]. This gave us the flexibility to experiment both 
action spaces, however in the presented version of the game a 
“discrete” action space is eventually adopted. 

 
Figure 74: ML-Agents Toolkit high-level components 
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2.8.2. MDP expressed in ML-Agents terms 

As discussed in Figure 73, to formulate an MDP, we need to define the 
required processes in terms of actual components interpreted from the game. 
These components are then translated into a functional MDP through the 
implementation of ML-Agents’ methods and classes. 

- Environment 

Our Environment in RV is considered the “Building Area” in which all the 
“actions” take place. This “Building Area” is expressed in Unity as a game 
object that contains all the other “Children” game objects involved in the 
design and construction process. To maximize the training process, several 
instances of “Building Area” were instantiated before training (see Figure 75).  

 
Figure 75: Multiple Instances of "Building Area in the current scene of RoBuilDeR 

Training using Concurrent Unity Instances is one of the features provided by 
ML-Agents. Instantiating several environment instances allows the parallel 
training of agents [86]. This process enhances the learning process in two 
ways. First, it increases the learning speed, and second, it allows for better 
encounter of different game scenarios based on some varying parameters in 
each environment. This eventually yields an agent capable of adapting itself to 
more diverse situations than an agent being trained only in one environment. 

However, regarding the acceleration of the learning process, there is a 
necessity to find the optimum maximum number of instances at which the 
maximum learning speed limit is reached. This number depends on the 
performance of the device on which the learning process is running on. 
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Therefore, if the number of instances increases more than a certain threshold, 
the speed is hindered, and the learning pace starts to slow down.   

On the other hand, in ML-Agents, the word “Environment” has a larger scope. 
The “Learning Environment” actually refers to the whole Unity Scene that 
contains all game characters. This environment is linked to an external 
Python Trainer that deploys the machine learning algorithm needed. This is 
done through a communicator on the “Game Side” and the python low level 
API from the Trainer side (see Figure 74).  

The communicator on the game side is managed by Class Academy. This is a 
singleton that manages agent training and decision making. On the other 
hand, since we chose PPO as the learning algorithm, the access to the “built-
in” code settings, is accessible through the adjustment of the algorithm’s 
“Hyper Parameters”. This adjustment takes place in an external configuration 
file. This file specifies the hyperparameters used during training and it can be 
edited with a text editor to add a specific configuration for each Agent’s 
“Brain”. This file serves also as a container for the “Environment Parameters” 
that might need to be modified during training (see Figure 76).  

 
Figure 76: Example of configuration file (.yaml) 
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- Agent(s) 

In MDPs, the agent is the one who takes the decisions inside of the 
environment. In other words, the agent uses the currently adopted policy to 
decide on what next step it shall take. Therefore, during the learning process, 
the Agent is the “student” that takes notice of the state it is in and starts to 
learn based on the rewards and penalties received.  

Similarly, in ML-Agents terms, an agent is an actor that can observe its 
environment, decide on the best course of action using those observations, and 
execute those actions within the environment [87]. The Agent 
Implementation in Unity is accomplished by adding an implemented version 
of the subclass (Class Agent) to a game object inside Unity.  

In RV, the game object to which the (Class Agent) script will be attached to 
is the “Player”. This Game object was previously receiving the input from the 
Human User and handling the execution of these “actions” internally. 
However, in order to be qualified as an agent, the “Player” has to implement 
the Class Agent in one of its attached scripts and consequently the “Behavior 
Parameters” component would be automatically added to the game object. In 
our case, the class inheriting from Class Agent is “Robuilder Agent” (see 
Figure 77). 

 
Figure 77: “Player Agent” Game object Implementing "Agent" Sub Class and “Behavior 

Parameters” as a prerequisite for qualifying as an agent 

Regarding the behavior parameters, they are specific attributes of the agent 
such as the number of actions that an agent can take, whether they are discrete 
or continuous, the number of observations and their stacking, etc. A behavior 
can be thought of as the function that receives the observation and rewards 
and then decides which “Brain” will be fed by this information to come up 
with an action [78].  
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Accordingly, there 3 types of brains or “Inference Devices”, namely, Heuristic, 
Learning or Inference.  

• Heuristic Behavior: Is a behavior defined by hard coded rules, these 
rules could also be adapted to receive input from the Human User. The 
implementation function that should be filled with such a code is called 
“ Heuristic(in ActionBuffers actionsOut) ”. It monitors the 
Observations and Rewards and feeds the  ActionBuffers with the final 
actions. In our case, this function was primarily used as a debugging 
tool, where mouse and keyboard inputs were allowed in order to test 
and debug the new implementation of  Class Agent before the actual 
starting of the learning process. 

• Learning Behavior: It is one that is not, yet, defined but about to be 
trained. So, it means that once there is a valid external connection with 
the Python Trainer, the Neural Network of the algorithm will be the 
one in charge of the actions.  

• Inference Behavior: Once we are satisfied with the learning behavior of 
the agents, the training could be stopped. Then, the neural network file 
(.onnx) containing the most updated weights can be placed in the 
“Model Parameter” and thus the Behavior is inferred directly to this 
Neural Network File without any training involved in the process.  

To sum up, this sub-section provided an overall explanation of how MDP can 
be implemented in Unity using ML-Agent’s toolkit. The transformation from 
a UV to RV with the main “brain” being the neural network instead of the 
human player has been briefly discussed.  

2.8.3. Phases 

In order to demonstrate how the Rewards, Observations and Actions of a 
MDP has been formulated in our game and how they were implemented in 
the language of “ML-Agents”, we need first to define what is the episode or 
episodes that the agent will train on. 

Due to the game complexity and to accelerate the learning process of the 
agents, the decision was to break down the main objective into a set of 
consecutive goals. These goals, or phases, are considered as a division and 
separation of the design and construction of the brick pavilion into smaller 
tasks.  

The agent is exploring each of these tasks separately without any interference 
with the other tasks or phases. Therefore, these phases are considered “stand-
alone” episodes that has its own rewards, observations, and actions. The main 
challenge relies in 2 aspects:  constraining the number of observations and 
actions to the same number along all phases and finding a way to assemble 
these discrete phases in inference mode in order to be able to build the pavilion.  
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In this sub-section we will be confronting the first challenge, while the second 
challenge regarding the way of combining the phases together after learning 
is discussed in sub-section 3.8.8.  

As for the first challenge, the reason we needed to maintain a constant number 
of actions and observations in each phase is mainly because it is not possible 
to change these parameters “automatically” when changing from one phase to 
the other according to ML-Agents. Therefore, this concept would not be 
violated by the proposed “phases” solution as long as each phase maintains 
the same number of observations and the same “type”, branch sizes and 
number of branches of actions as in Figure 78. 

 
Figure 78: Behavior Parameters that it is required to be constant during the learning and 

inference process 

Regarding the training phase, an integer input parameter was added, within 
the settings script, ranging between [0,4]. These values represent the 5 phases 
that we decided to split the game into for training purposes. Before the 
training of a certain phase, the gauge is set up by the human “Supervisor” on 
the specific phase the agents are needed to learn. However, during the 
inference phase these values are internally controlled to ensure an automatic 
sequential transition of phases with no human interference. In the following 
figure, a scheme of what kind of learning is involved in each phase is 
demonstrated. 

 
Figure 79: Phases Selection "Slider



 

 
Figure 80: Phases Demonstration for RoBuilDeR RV 
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Based on the scheme provided in Figure 80, the phases provided can be 
perceived and explained as follows: 

- Door Insertion Phase:  

In this phase, the main concern of the agent is the proper placement of the 
door opening. The optimum placement of the door is to insert it as far away 
from prevailing wind direction as it was previously explained in Table 5. 

- Base Bricks Phase: 

This phase is concerned with laying the bricks from the ground till reaching 
the sill height for inserting windows. The main goal for the agent in these 
phases is to keep the structure as sturdy as possible. This could be achieved by 
the proper packing of bricks as close as possible to each other. This is 
considered the “foundation” upon which all loads form the upper bricks will 
be transferred to.  

- Window Insertion Phase: 

This phase involved the proper placement of window openings in such a way 
that optimizes the natural ventilation strategies. This would include the 
proper achievement of both cross and natural ventilation. Cross ventilation 
would be realized through the alignment of 2 windows:  one directly facing the 
wind direction and the other one on the opposite side of it. On the other hand, 
stack ventilation can be best captured by the placement of only one window 
facing the wind direction and benefiting from the original dome design in 
which there is an oculus (opening) that permits air ventilation. 
- Window Bricks Phase: 

After the placement of the “openings” for windows, the aim is to strengthen 
around the surrounding area around them. This would be done using the same 
methodology as in the first brick placement phase, namely: trying to pack the 
bricks as close as possible to support the bricks on the dome above and to 
mitigate the impact of the void openings present in the structure.  

Therefore, we would eventually observe that training an agent on the first 
phase of bricks can be helpful in speeding up the learning process in the 
window bricks phase. This could be done, by initializing the learning process, 
from where the neural network of the previous brick placement phase has 
stopped. This could only be realized since both phases opt for the same 
“general” goals to be achieved.  

- Dome Bricks Phase 

This represents the final phase to be realized in order to achieve the full 
structure of the building when combining all phases. The main priority in this 
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phase is to abide by the design rules in terms of limited unnecessary gaps 
between bricks while at the same time ensure the proper placement of bricks 
to avoid collapse. This is considered the most critical phase among the 5 
phases included in the project.  

2.8.4. Actions and Masking  

In this sub-section we will first visualize the general action strategy adopted 
for inserting a unit (brick, window or door). Then, the general procedure for 
action masking will be explained. Afterwards, phase-specific requirements 
that would lead to masking of additional actions shall be provided. 

- General Actions Strategy 

Actions taken can either be discrete or continuous, depending on the nature 
of the environment [78]. In RoBuilDeR, the action needed could be briefly 
explained as the process of selecting an appropriate position for a “Unit” to be 
inserted in one of the available positions along the circular ring. This unit 
could be a door or window opening or the Brick itself. In the current UV that 
was previously demonstrated, the decision was to go for a specified number of 
“insertion points” available for placing the appropriate unit.  

Therefore, the decision was to use a discrete number of insertion points rather 
than a more complicated continuous area. The reason for this approach, is to 
reduce the significant amount of learning needed in such an environment if it 
was regarded as a continuous canvas for unit insertion. This was realized from 
the early trials on the use of continuous actions in the game. 

One of these early trials involved the use of 1 continuous action branch with 1 
variable. This float variable generally generates an output from the PPO 
algorithm pre-clamped between [-1,1]. This range was remapped into [0, 360] 
which represents the degrees in a circle. A selected angle by the agent was then 
transformed into a unit vector that point towards a location on the circle gird 
in which the Agent has decided to place the brick on. This approach required 
a massive amount of learning time for the Agent to make a simple progress. 

Accordingly, it was then decided to opt for a discrete set of actions. The 
current action schemes rely on 3-level-action branches. However, any unit 
placement activity would need the execution of this action scheme in 3 
separate consecutive steps before actually being inserted in the required 
position. 

 The first set of actions is focused on selecting the appropriate level for the unit 
placement, the second involves dividing the circle into 12 segments, hence, 
selecting one of them. Finally, the last action branch contains 6 indices 
representing the division of the selected segment into 6 equally sized portions.  



 

 
Figure 81: General Action Strategy Scheme for placing a brick  



 

 

 
Figure 82: General Action Strategy Scheme for placing a Door Opening 



 

 

 
Figure 83: General Action Strategy Scheme for placing a Window Opening  
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As anticipated from Figure 81, Figure 82, and Figure 83 respectively, the 
action scheme for placement of brick, door or window unit passes by a 3-
branch-action levels. Since the first action level is concerned with selecting the 
appropriate “height” for unit placement, there is a slight difference between 
brick placement versus window or door placement.  

This difference comes from the way the phases were divided. For instance, for 
door placement, the insertion is constrained only to the ground floor.  
Therefore, there is this *fixed annotation in the scheme in Figure 82. 
Similarly, for windows phase windows placement are tied to a specific level 
that is determined by the designer for deciding on the appropriate sill height. 
This also led to “fixing” the placement to just one level as in Figure 83.  

Theoretically, this difference in number of actions in the first action branch 
should not be allowed as per ML-Agents’ procedures, otherwise it would not 
be possible to “assemble” the 5 phases together if they don’t have identical 
action-branch size. However, using the ability to mask actions provided by 
ML-Agents, it would be possible to “pretend” that a level selection option does 
exist in the first action branch, for door and window phases.  

This would mean that the neural network shall always pick the option of 
inserting the brick on the lowest incomplete level in both window and door 
placement phases. So, we would just “mask” the upper levels from the action 
choices for the agent. This procedure will be explained in more details in the 
next sub-section. 

- General and Phase-Specific Masking Schemes  

To implement the proposed scheme shown for discrete action branches, we 
need to understand the general concept of masking provided by ML-Agents. 
This procedure secures a smooth flow from one branch level to the other.  

For the General scheme, in the first action branch there were 2 actions which 
involved choosing between lowest incomplete level or upper levels. Once 
selected, it leads to the second branch that contains 12 segments dividing the 
circle and once a segment is selected the third branch is activated and a max 
of 6 indices appear to select from. Selecting one of those indices then leads to 
picking up the insertion point available in this index and the unit could finally 
be placed as part of the pavilion structure.  

However, by observing the values inserted in “Behavior Parameters” for the 
sizes of the 3 discrete action branches (Figure 84), it is noticed that there is 
always an additional (+1) action added in each branch. This additional action 
option is added to represent the “do nothing” option. This could be optional 
in case of 1 discrete action branches, however, the addition of this option is 
obligatory when dealing with multiple branches, as it is required that for each 
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action taken, the neural network needs to have at least one option provided in 
each level to select from.  

 
Figure 84: Discrete Action Branches Values inserted in Behavior Parameters Component 

For example, if we are now at the point of selection of the action of whether to 
build on the lowest available incomplete level (indicated by 1) or any other 
higher levels (indicated by 2), the first thing that we have to do is to mask the 
“do nothing” option at that level. This makes sense, as we don’t want the 
neural network to “do nothing” at that current level.  

On the other hand, during that same decision, there is a need to “mask” all the 
segments and indices in the branches below. In case this is not done, the 
neural network would select a segment from second branch and an index from 
the third. This would not be accurate as we still don’t know whether there is 
an actual point at this segment or not.  

In case no point exists, the network would still choose a segment and then an 
index where there is no point in. This inaccurate behavior would later on affect 
the learning process and makes it harder for the agent to link the actions taken 
with the consequences provided. This chaotic scenario can be avoided by the 
“do nothing” option available at each branch.  

Turning back to our example, if the agent decides, based on its policy, to place 
a brick on the lowest incomplete level (indicated by 1), the final result of the 
first step taken could be : 

First Branch: 1 = Lowest Incomplete Level 
Second Branch: 0 = do nothing 
Third Branch 0 = do nothing 

This indicates that the Agent has executed an actual step in the environment 
independent of whether a brick was placed or not. Based on the output given 
from that step, it is now possible to observe the environment, and be ready for 
the next action to take. Inside of the game mechanics, the masking function is 
also utilized for another purpose, namely, blocking the segments in which 
there are no points in them, since we are now considering the selection of the 
appropriate segment to place the brick in.  

Intuitively, this procedure wouldn’t have been possible if we didn’t know from 
the beginning on which level the agent would place the brick, perhaps if it had 
chosen to build on upper levels, a segment in which there are available points 
on the lowest level, may happen that its indices doesn’t contain any points on 
the upper levels and vice versa.  
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Consequently, based on the masked actions fed to the network, it would select 
a certain index based on its policy currently adopted, so let’s say the final 
action branches for step 2 would be as follows: 

First Branch: 0 = do nothing 
Second Branch: 5 = Segment 5 (arbitrary number just for demonstration) 
Third Branch 0 = do nothing 

The latter would be the final output of step 2. Finally, to prepare for step 3, 
the masking method again becomes handy, blocking the indices that doesn’t 
contain any points and showing only the ones that does. So, eventually the 
output of the neural network could be as follows: 

First Branch: 0 = do nothing 
Second Branch: 0 = do nothing 
Third Branch: 3 = Index 3 (arbitrary number just for demonstration) 

After executing these 3 steps, the actions received may now be sufficient for 
placing a desired unit. From the index number, the point lying in that index is 
selected and then the unit is finally inserted at that point. It has to be noted 
that, before the selection of an action when the game as at Step 1, there is also 
a procedural check that is carried out to makes sure that there are points 
available in both options provided.  

Logically, in all cases and unless the game is finished, there is always at least 
one insertion point available at the lowest incomplete level. However, at some 
circumstance, like when there is only one level remaining for episode 
completion, the availability of points on upper levels may not be present and 
hence the network would be already blocked from picking this option from the 
beginning and practically has only 1 option in Step 1. This is actually the case 
for door or window insertion phases, since the placement is only allowed in 
one single level.  

Accordingly, provides a schematic explanation of the 3 steps for placing a 
brick along with the action masking role in blocking the other “actual” options 
on the other levels except the current required one. The scheme notes that the 
in door and window insertion phases, the option of “upper levels” is always 
masked. Thus, at Step 1 the neural network always choses the “Lowest 
incomplete level” option only.  

Eventually, masking of actions is regarded to be beneficial in 3 aspects: 
1. General masking of “actual” options in all branches other than the one we 

are currently choosing from. 
2. Specific masking of options on the current branch. This could turn off all 

options that doesn’t contain any available insertion points. 
3. Specific masking of options throughout the whole phase. This is the case 

for window and door insertion phases that are deployed only on one level. 



 

 

 
Figure 85: Masking of actions throughout the 3 steps leading to an actual Unit placement 
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It has to be noted that, for ML-Agents, the method needed to be overridden in 
order to disallow an action(s) is called Agent.WriteDiscreteActionMask(). 
Inside of which the method SetActionEnabled() is called on the provided 
IDiscreteActionMask as follows: 

public override void WriteDiscreteActionMask(IDiscreteActionMask 
actionMask) 
{ 
   actionMask.SetActionEnabled(branch, actionIndex, isEnabled); 
} 

Therefore, in order to disable an action we need to specify in the 
SetActionEnabled() method: the action branch, its index and in the third 
parameter we need to specify “false”. This indicates that we want this action 
to be disabled. 

- Decision Request Adjustment 

The last piece in the action scheme configuration is the “decision requester”. 
This component is generally added to the game object acting as the agent in 
Unity along with the other components mentioned before. This component 
implements (Class DecisionRequester). Its main objective is to automatically 
request decisions for an Agent instance at regular intervals (see Figure 
86)[88]. 

 
Figure 86: Decision Requester Component in Unity 

However, due to the nature of our game, there is no possible way to define the 
time at which the agent should take a decision only by setting a time interval. 
Therefore, the automatic request of decisions was disabled. In return, the 
method itself responsible for taking decisions namely RequestDecision() was 
directly deployed within “RobuilderAgent” script, itself.  

This solution has provided us with a control on when to allow the agent to 
make a decision. This function was linked to a Boolean parameter, that makes 
sure that all the procedures needed after taking a decision is completed before 
allowing the agent to take a new action. For instance, at branch 3 action level, 
once the agent takes an action and decides on a certain index in a Segment, 
the agent is kept blocked from taking any decision till the unit is placed in the 
designated point, and all insertion points are properly updated. Afterwards, 
the agent is allowed to take a new decision for Step 1. This important update 
ensures the presence of reliable data about the actual insertion points 
available in the scene. This would eventually help in masking empty branches 
that has no points inside of them.   

https://docs.unity3d.com/Packages/com.unity.ml-agents@1.0/api/Unity.MLAgents.Agent.html
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2.8.5. Observations 

Observations are the most crucial factor for proper training of agents [78]. 
The observations have to include all the information needed by an agent to 
accomplish a task. In case of insufficient, irrelevant, or inaccurate 
information, the agent may take longer time to learn or may not learn at all. 
In order to include the necessary information, the human “designer” should 
think thoroughly about all the information he/she would need to solve such a 
problem and try to enable the agent access to such information in each step 
taken in the environment. 

To achieve this, ML-Agents has provided several tools to convey information 
to the agents. The main method used for that purpose is 
Agent.CollectObservations() where all observations are passed inside of its 
implementation. It is considered the best used way for aspects of the 
environment which are numerical and non-visual. In our case, we have 
translated all “visual” and non-visual observations into numerical values. This 
decision was taken due to the complexity accompanied by feeding the network 
with different kinds of observations at the same time.  

For instance, the use of visual observations was experimented in RoBuilDeR. 
One of the early trials has involved the use of static camera in each “Building 
Area” that captures an orthogonal picture of progress on-site at each step. The 
picture resolution can be adjusted before training through the “Camera 
Sensor” component attached to the Agent game object in Unity. Based on the 
width and height of the picture in pixels, the RGB values of each pixel or only 
a Grayscale value in case selected, will be reported as observations to the 
network. Therefore, a picture of 84 x 84 pixels would report 7056 observations 
in case gray scale and tripe this number in case of RGB (see Figure 87).  

 
Figure 87: Camera Sensor Component Added to the Agent 

The main issue results from the massive number of pixels that convey useless 
information to the network. These pixels represent all the empty fields away 
from the circular ring patch in which all bricks and other units are being 
placed. This was evident in the slow and at some points no learning acquired 
by the agents using this method for capturing observations. 



2.8 Original Contribution 
 

 
102 

Accordingly, it was regarded that the optimum solution is convey all geometric 
values, locations, and other seemingly visual aspects into numerical values 
without the need to capture visual images of the scene.  

- Maintaining Vector Observation Size throughout all phases 

As previously discussed in earlier sub-sections, once of the main challenges 
encountered when dividing the complex problem into sub-tasks that an agent 
with a single behavior is working on, is that the number of observations should 
remain constant throughout all phases of the project. To tackle this issue the 
following procedures has been adopted: 

• Analyzing the observations needed in each phase and separating 
common parameters among various phases that would contain the 
same number of elements in each phase. 

• Working on minimizing the gap between the number of observations 
in the phase with the maximum number of them, and the phase with 
the lowest number.  

• Once the difference is not that significant, the number of observations 
will be governed by the phase with the highest number of them.  

• The observations will be ordered in an order that reports the common 
parameters first to the neural network, followed by phase-specific 
observations. The values of these observations will be reported based 
on the current active phase.  

• The phases with total number of observations lower than the 
maximum governing one, will be padded with zeros in place of the 
missing entities. 

- Vector Observations 

Agent.CollectObservations() produces vector observations, which are 
represented at lists of floats. Despite that the final output reported to the 
neural network is in the form of floats, it is essential to differentiate the initial 
type of an observation that is being reported. For instance, if the value of the 
observation is Boolean, this means that the network would always receive 
either 0 or 1. In that case it would be translated to floats but still it would 
always receive just to values from this observation parameter.  

One-hot encoding categorical information 

On the other hand, to report categorical observations or enumerations, 
especially when there are several values, one-hot style can be used. That is, 
adding an element to the feature vector for each element in the categorical or 
enumeration list, setting the element representing the observed member to 
one and set the rest to zero. For example, in case of reporting the index of an 
already placed brick, there are 6 indices. If the brick’s index is 3, then we 
would add to the observation a one-hot observation of 6 possibilities with 1 at 
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the third index and zeros in the rest of the indices. So, this list would be 
something like [0, 0, 10, 0, 0, 0]. 

Normalization 

Furthermore, for the best results when training, the components in the vector 
observation are normalized to the range [-1, +1] or [0, 1]. It is regarded that 
when the values are normalized in this manner, the PPO neural network can 
often converge to a solution faster. Since the greater the variation in ranges 
between the components of observation, the more likely that training will be 
affected. 

Stacking of vectors  

Stacking refers to repeating observations from previous steps as part of a 
larger observation. In our case, this feurture is og great impoertance, since it 
acts as a “memory” of past actions and observations and include them in the 
observations provided to the Agent in the current state. This shall help the 
neural network in developing a sequential relationship between several steps 
and relate between a series of different actions and their combinations.  

However, the drawback of such a parameter is the additional amounts of 
observations that needs to be fed into the neural network. Increasing this 
value significantly may lead to a slower learning rate and an adverse effect to 
that intended from the beginning from using such a feature.  

Accordingly, in RoBuilDeR (RV), the value that was selected for stack vectors 
is 12. Practically, it means tracking the last 3 units (bricks, door, or windows) 
that were placed in the game, since 3 steps are required for each unit 
placement. On the other hand, the total number of observations are set to 45 
different variables (Figure 88). As discussed earlier, this is the maximum value 
that is only reached in the phases with maximum number of observations 
compared to the other ones.  

 
Figure 88: Vector Observations and Stacked Vectors in RV 

The following tables provide a detailed explanation of each observation 
included in all 5 phases. The tables start by showing common parameters that 
were observed among all phases. Afterwards, parameters that are common in 
all 3 brick placement phases are brick placement. Finally, phase-specific 
observations are introduced.  

It has to be noted that, in order to better capture observations related to 
variable game units that gets instantiated during gameplay, an additional 
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method of observation collection was also integrated. This method is called 
“buffer Sensor” and the observation captured through this component is also 
combined with other vector observations in the same  
Agent.CollectObservations() method. More detailed information regarding 
this method is explained afterwards separately.  

Table 18: General Observations included in All Phases 

General for ALL Phases 
  

Observation Explanation Norm- 
alize 

Type  

Type of Point 
Array Normalized 

Only activated at Step 3* 
An Array of Point Types 

 
array 

 
Point Type  Type of the insertion point available in 

a specific index of a segment 
Eq1 float 

     
Angle of Points 
Array Normalized 

Only activated at Step 3* 
An Array of Point Angles 

 
array 

  Point Angle  Difference between 2 angles: 
1. Angle between a vector from the 
center of the building to the insertion 
point that is projected on the XZ plane 
and the global X-axis  

2. The Starting angle of the segment in 
which this point is present. (Calculated 
from the X-axis) 

See Figure 89 

Eq 2  float 

Notes 
 

* Step 3 was previously demonstrated in the Actions and Masking sub-
section. It indicates the third step before inserting a unit. This step 
involves the selection of one of the available indices in a certain 
segment. 

Eq 1 Point Type∗∗

Count of Point Types in the Game (4− 5)
 

** Point Types is of type enumeration that contains all types of points. 
Therefore, the used value in the normalization process is the integer 
value that represents the order of that point in the enumeration. 

Eq 2 Point Angle 
Angle of 1 segment (= 360/Total Number of Segments)

 

 

 



Original Contribution 2.8  
 

 
105 

 
Figure 89: Point Angle Calculation as explained in Table 18 

 

Table 19: Common Observations among all 3 Brick placement Phases 

General for All Brick Phases 

Observation Explanation Norm. Type  

Lowest Height In 
segment 

  
array 

 
Lowest Height In 
Each Segment 

Detects the lowest insertion point 
available in a given segment  

Eq 3 float 

Highest Height In 
segments 

  
array 

 
Highest Height In 
Each Segment 

Detects the highest insertion point 
available in a given segment  

Eq 4 float 

Height of Points 
Array Normalized 

Only activated at Step 3 array 
 

  Height of point at 
index of a Segment 

Detects in a certain index in a 
segment the relative height of the 
point situated within this index (if a 
point is available) 

Eq 5 float 

Notes 
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Eq 3 (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑆𝑆 𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻ℎ𝑆𝑆 𝐼𝐼𝐼𝐼 𝑎𝑎 𝐼𝐼𝐿𝐿𝐻𝐻𝑆𝑆𝐿𝐿𝐼𝐼𝑆𝑆)𝑎𝑎𝑎𝑎𝐿𝐿 −  (𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻ℎ𝑆𝑆 𝑎𝑎𝑆𝑆 𝑝𝑝ℎ𝑎𝑎𝐿𝐿𝐿𝐿 𝐿𝐿𝑆𝑆𝑎𝑎𝑠𝑠𝑆𝑆)𝑎𝑎𝑎𝑎𝐿𝐿 
(𝑀𝑀𝑎𝑎𝑀𝑀 𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿𝐻𝐻𝑎𝑎𝑝𝑝𝐿𝐿 𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻ℎ𝑆𝑆 𝑑𝑑𝑑𝑑𝑠𝑠𝐻𝐻𝐼𝐼𝐻𝐻 𝑐𝑐𝑑𝑑𝑠𝑠𝑠𝑠𝐿𝐿𝐼𝐼𝑆𝑆 𝑝𝑝ℎ𝑎𝑎𝐿𝐿𝐿𝐿)𝑠𝑠𝐿𝐿𝑝𝑝𝑎𝑎𝑆𝑆𝐻𝐻𝑟𝑟𝐿𝐿 𝑆𝑆𝐿𝐿 𝑝𝑝ℎ𝑎𝑎𝐿𝐿𝐿𝐿 𝐿𝐿𝑆𝑆𝑎𝑎𝑠𝑠𝑆𝑆

 

Eq 4 (𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝐿𝐿𝐿𝐿𝑆𝑆 𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻ℎ𝑆𝑆 𝐼𝐼𝐼𝐼 𝑎𝑎 𝐼𝐼𝐿𝐿𝐻𝐻𝑆𝑆𝐿𝐿𝐼𝐼𝑆𝑆)𝑎𝑎𝑎𝑎𝐿𝐿 −  (𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻ℎ𝑆𝑆 𝑎𝑎𝑆𝑆 𝑝𝑝ℎ𝑎𝑎𝐿𝐿𝐿𝐿 𝐿𝐿𝑆𝑆𝑎𝑎𝑠𝑠𝑆𝑆)𝑎𝑎𝑎𝑎𝐿𝐿 
(𝑀𝑀𝑎𝑎𝑀𝑀 𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿𝐻𝐻𝑎𝑎𝑝𝑝𝐿𝐿 𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻ℎ𝑆𝑆 𝑑𝑑𝑑𝑑𝑠𝑠𝐻𝐻𝐼𝐼𝐻𝐻 𝑐𝑐𝑑𝑑𝑠𝑠𝑠𝑠𝐿𝐿𝐼𝐼𝑆𝑆 𝑝𝑝ℎ𝑎𝑎𝐿𝐿𝐿𝐿)𝑠𝑠𝐿𝐿𝑝𝑝𝑎𝑎𝑆𝑆𝐻𝐻𝑟𝑟𝐿𝐿 𝑆𝑆𝐿𝐿 𝑝𝑝ℎ𝑎𝑎𝐿𝐿𝐿𝐿 𝐿𝐿𝑆𝑆𝑎𝑎𝑠𝑠𝑆𝑆

 

Eq 5 (𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻ℎ𝑆𝑆 𝐿𝐿𝑜𝑜 𝑝𝑝𝑆𝑆 𝑎𝑎𝑆𝑆 𝐻𝐻𝐼𝐼𝑑𝑑𝐿𝐿𝑀𝑀 𝐿𝐿𝑜𝑜 𝑎𝑎 𝐼𝐼𝐿𝐿𝐻𝐻𝑆𝑆𝐿𝐿𝐼𝐼𝑆𝑆 )𝑎𝑎𝑎𝑎𝐿𝐿 −  (ℎ𝐿𝐿𝐻𝐻𝐻𝐻ℎ𝑆𝑆 𝑎𝑎𝑆𝑆 𝑝𝑝ℎ𝑎𝑎𝐿𝐿𝐿𝐿 𝐿𝐿𝑆𝑆𝑎𝑎𝑠𝑠𝑆𝑆 )𝑎𝑎𝑎𝑎𝐿𝐿 
(𝑀𝑀𝑎𝑎𝑀𝑀 𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿𝐻𝐻𝑎𝑎𝑝𝑝𝐿𝐿 𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻ℎ𝑆𝑆 𝑑𝑑𝑑𝑑𝑠𝑠𝐻𝐻𝐼𝐼𝐻𝐻 𝑐𝑐𝑑𝑑𝑠𝑠𝑠𝑠𝐿𝐿𝐼𝐼𝑆𝑆 𝑝𝑝ℎ𝑎𝑎𝐿𝐿𝐿𝐿)𝑠𝑠𝐿𝐿𝑝𝑝𝑎𝑎𝑆𝑆𝐻𝐻𝑟𝑟𝐿𝐿 𝑆𝑆𝐿𝐿 𝑝𝑝ℎ𝑎𝑎𝐿𝐿𝐿𝐿 𝐿𝐿𝑆𝑆𝑎𝑎𝑠𝑠𝑆𝑆

 

 

Table 20: Phase-Specific Observation Parameters for Brick Placement 

 
 

Phase 1 Base Bricks / Phase 3 Window Bricks 
  

Observation Explanation Norm. Type  

Consecutive Bricks 
Array 

  
array 

 
Consecutive 
Bricks 
Count 

Counts the number of consecutive 
bricks inserted in sequence after each 
other on the same level. If the streak 
is interrupted the counter turns to 0 
and it starts counting from the 
beginning. 
If the level is full, the counter value 
remains constant and continues to 
count again if the bricks were to be 
inserted in the same manner on the 
next level (the lowest incomplete 
level). 

Eq 6 float 

 
Consecutive 
Bricks On 
Top of Each 
Other 
Counter 

Counts the number of consecutive 
bricks that are inserted on top of each 
other. The counter restarts if this 
behavior is interrupted. 

Eq 7 float 

       

Notes 
    

Eq 6 ConsecutiveBricksCount
Constant  (= 0.014667f)

 

Eq 7 Case Counter == 0: 1 

Case Counter > 0:   Counter ∗  factor ( − 1) 
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Table 21: Phase 5 (Dome Creation) specific observation parameters 

Phase 5 Dome  
   

Observation Explanation Norm. Type  

Consecutive Bricks 
Array 

  
array 

 
Consecutive 
Bricks 
Count 

Counter that adds +1 if the most 
recently placed brick is inserted directly 
adjacent to existing bricks, on either 
side of them on the same level. If the 
streak is interrupted the counter turns 
to 0 and it starts counting from the 
beginning. 
If the current level is full, the counter 
value remains constant and is increased 
if the bricks were continued to be 
inserted in the same manner on the 
next level (the lowest incomplete level). 

Eq 8 float 

  Consecutive 
Bricks On 
Top of Each 
Other 
Counter 

Counts the number of consecutive 
bricks that are inserted on top of each 
other. The counter restarts if this 
behavior is interrupted. 

Eq 9 float 

Notes 
 

Eq 8 ConsecutiveBricksCount
Constant  (= 0.01f)

 

Eq 9 -1 * Brick Counter
ConsecutiveBricsdOnTopEchOtherThreshold∗

 

 * Consecutive Bricks on Top of Each Other Threshold (integer) 
is a fixed number (adjusted before learning starts) that when 
reached, the game is over (this function could be disabled so as 
not to contribute to game over scenarios). However, if game is 
allowed to continue, the maximum value remains at (-1) so as 
not to disrupt the range of observation values inserted to the 
Neural Network for training [78], even if the number of 
consecutive bricks over each other exceeds this threshold.   

 

Table 22: Common Observation Parameters in both Door and Window Placement Phases 

Common Observation Parameters for Phase 0 and 2 in general (Windows / 
Door) 

Observation Explanation Norm. Type  



2.8 Original Contribution 
 

 
108 

"All Wind Info" 
  

array 
 

Wind Segment No. 
(Continuous) 

Segment in which the 
direction from which 
the prevailing wind is 
blowing is situated 
inside it. 

Eq 10 float 

 
Wind Segment No. 
(Discrete) 

Bool One-Hot  

 
Wind Index in 
Segment No. 
(Continuous) 

The closer Index of 
the Segment that best 
represents the 
direction from which 
the prevailing wind is 
blowing 

Eq 11      float 

 
Wind Index in 
Segment No. 
(Discrete) 

Bool One-hot 

 
Wind Unit Vector 
Angle 

Angle in degrees of 
the Unit Vector 
representing wind 
direction. The angle is 
calculated from the X-
Axis  

Eq 12 float 

 
Wind Unit Vector 
(X value) 

X - component of the 
Wind Unit Vector 

Already 
Norm.      
[0, 1] 

float 

 
Wind Unit Vector 
(Z value) 

Z - component of the 
Wind Unit Vector 

[0, 1] float 

  Wind Unit Vector 
Dot X 

Dot product between 
the wind unit vector 
and the right* vector 
(unit vector in X 
direction) 

[-1, 1] float 

Notes 
   

* Right side refers to the red axis in Unity which is a unitary vector 
in the X-axis direction (see Figure 91). 

Eq 10 𝑊𝑊𝐻𝐻𝐼𝐼𝑑𝑑 𝐼𝐼𝐿𝐿𝐻𝐻𝑆𝑆𝐿𝐿𝐼𝐼𝑆𝑆 𝑁𝑁𝐿𝐿.
𝑇𝑇𝐿𝐿𝑆𝑆𝑎𝑎𝑝𝑝 𝑁𝑁𝑑𝑑𝑆𝑆𝑎𝑎𝐿𝐿𝑠𝑠 𝐿𝐿𝑜𝑜 𝐼𝐼𝐿𝐿𝐻𝐻𝑆𝑆𝐿𝐿𝐼𝐼𝑆𝑆𝐿𝐿 (12)

 

Eq 11 𝑊𝑊𝐻𝐻𝐼𝐼𝑑𝑑 𝐼𝐼𝐼𝐼𝑑𝑑𝐿𝐿𝑀𝑀 𝑁𝑁𝐿𝐿.
𝑇𝑇𝐿𝐿𝑆𝑆𝑎𝑎𝑝𝑝 𝑁𝑁𝑑𝑑𝑆𝑆𝑎𝑎𝐿𝐿𝑠𝑠 𝐿𝐿𝑜𝑜 𝐼𝐼𝐼𝐼𝑑𝑑𝐿𝐿𝑐𝑐𝐿𝐿𝐿𝐿 𝐻𝐻𝐼𝐼 𝐼𝐼𝐿𝐿𝐻𝐻𝑆𝑆𝐿𝐿𝐼𝐼𝑆𝑆 (6)

 

Eq 12 𝑊𝑊𝐻𝐻𝐼𝐼𝑑𝑑 𝑈𝑈𝐼𝐼𝐻𝐻𝑆𝑆 𝑉𝑉𝐿𝐿𝑐𝑐𝑆𝑆𝐿𝐿𝑠𝑠 𝐴𝐴𝐼𝐼𝐻𝐻𝑝𝑝𝐿𝐿
360
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Figure 90: Different Wind Properties included in the Observation as indicated in Table 23 

 

 

 
Figure 91: A brick with the local coordinates shown in Unity. Red or "right" Axis is the X-axis, 

Green or up vector is indicating the Y-direction, and Blue or forward vector is in the Z-direction 

 

Table 23: Specific Observation Paramters for Windows and Door placement respectivley 

Windows and Doors Specific Observations 
 

Observation Explanation Norm. Type  

Windows: 
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Windows 
Count 

Number of Window Openings 
Inserted  

Eq 13 float 

 
Window Wind 
Cross Vent 
Product 

Value of Success achieved so 
far in Cross Ventilation 
Assessment. 

[-1, 1] float 

 
Max Window 
Wind Dot 
Product 

Dot Product between 
(normalized vector from 
center of the building to the 
insertion point of the Window 
projected on the horizontal 
plane) and the unit Wind 
Vector.  

[-1, 1] float 

Doors: 
   

  Door Count Checks if the door is inserted 
or not 

Bool int  

Notes 
 

Eq 13 𝑊𝑊𝐻𝐻𝐼𝐼𝑑𝑑𝐿𝐿𝐿𝐿𝐿𝐿 𝐶𝐶𝐿𝐿𝑑𝑑𝐼𝐼𝑆𝑆
𝑇𝑇𝐿𝐿𝑆𝑆𝑎𝑎𝑝𝑝 𝐼𝐼𝑑𝑑𝑆𝑆.𝐿𝐿𝐻𝐻𝐼𝐼𝑑𝑑𝐿𝐿𝐿𝐿𝐿𝐿 𝑠𝑠𝐿𝐿𝑟𝑟𝑑𝑑𝐻𝐻𝑠𝑠𝐿𝐿𝑑𝑑

 

 

 

 
Figure 92: Example of a prevailing wind scenario for the calculation of Stack and Cross 
Ventilation Normalized Values. Values indicated are used as observation parameters. 
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- Buffer Sensor 

Buffer sensors enables the collection of observation data from a varying 
number of Game Objects. It differs from traditional vector observations in 
cases when it is not possible to determine the actual number of observables 
that will be present in the scene. On the trainer side, the BufferSensor is 
processed using an attention module.  

The BufferSensor can be useful in situations in which the Agent must pay 
attention to a varying number of entities. For instance, in games industry, this 
could be evident in observing enemies that are spawn during gameplay and 
their number does not remain constant nor can be determined prior to the 
beginning of the episode. Since some might be killed, others would be 
instantiated and so on.  

Similarly, in RoBuilDeR the game object that perfectly fits with these 
conditions is the brick game-object. First, no bricks are instantiated at the 
beginning of the game. Then, during game play, several bricks are 
instantiated. Based on the behavior of the policy adopted, the structure can be 
stable or may collapse and fall. Therefore, in each episode it is not possible to 
determine the actual maximum number of bricks that will be instantiated.  

In addition, if enemies could be killed during game play and their game object 
gets destroyed, we can compare this situation to the “sleeping” of stable bricks. 
These bricks are the ones that are proven to be stable for enough time that 
they get fixed to their position and no more physics check are carried on them. 
So, conceptually speaking they could be counted as not participating anymore 
in the actual game events and hence could be considered like a killed enemy.  

Moreover, one of the great advantages of attention modules architecture is 
that attention layers are invariant to the order of the entities, so there is no 
need to properly "order" the entities before feeding them into the BufferSensor 
[78]. However, for implementing them 2 challenges arise. First, training or 
doing inference with variable length observations can be slower than using a 
flat vector observation. Second, even though the BufferSensor can process a 
variable number of entities, it is still needed to define a maximum number of 
entities.  

This is because the network architecture implemented by ML-Agents requires 
to know what the shape of the observations will be. If fewer entities are 
observed than the maximum, the observation will be padded with zeros and 
the trainer will ignore the padded observations. 

To overcome both challenges, and to reduce the minimum number of 
observables, we introduced the concept of “naked bricks”. These bricks are 
regarded as the most “active” bricks in the game, as they are bricks that it is 
possible to place a new brick directly above them (see Figure 93). Among those 
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group of bricks lies the most unstable, less supported ones. However, it was 
decided to increase the number of observables more than the maximum 
number of naked bricks a game could witness. This slight increase in the 
maximum number of observables is intended to capture also vulnerable bricks 
on the lower fully covered levels. This additional layer of information is sought 
to give more insights to the neural network on the quick evolution of instability 
among bricks.  

 
Figure 93: Naked Bricks Demonstration 

Accordingly, Figure 94 demonstrates the maximum number of observables 
used during training for the 5 phases. The figure also shows another 
parameter called Observable size. This parameter indicates the length of the 
vector observation that each observable would contribute to. To optimize this 
number, we adopted the same strategy we mentioned before regarding the 
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trails to reduce the difference between the observable with maximum features 
and the one with less features needed to be reported.  

 
Figure 94: Buffer Sensor Component Parameters and Values used in RoBuilDeR 

Logically, the brick is the observable game object during all brick placement 
phases while the door and window openings are the observables in door and 
window placement phases respectively.  

In the following table the features linked with each observable is provided. 
Similar to the tables showing vector observations earlier, the presentation of 
the features here are also classified with respect to common features among 
different phases first and then regarding specific features found in specific 
phases. 

 

Table 24: General Observations included in All Phases and for all types of observable-game 
objects 

General for ALL Phases 

Observation Explanation Norma
lization 

Type  

Variables 
(∑ = 12) 

Segment 
number  

It is the segment of the 
insertion point on which the 
observable unit was placed. 

Bool  One-
hot 

Variable 
(∑ = 6) 

Index in a 
Segment of the 
Observable unit 
(Brick/Door/Wi
ndow) 

It is the index number 
(inside a segment) of the 
insertion point on which the 
observable unit was placed. 
(Brick/Door/Window)  

Bool  One-
hot 

 

General for All Brick Phases 

Observation Explanation Norm. Type  

Variable 1 Relative Height Relative Height of the 
observable brick with respect 
to the starting height of the 
current phase 

Eq 14 float 

Variable 2 Point Type  The insertion points on which 
the observable brick was 
placed. It is one of the variables 

Eq 15 float 
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that each brick has and it is set 
to a value once a brick is placed 
in the structure of the pavilion. 

Variable 3 Normalized 
Tilting Value 
(Dot product) 

Measure of how much a brick 
is "Tilting". It is a brick 
property. If the "tilting value" 
decreases, it means that the 
instability of the brick 
increases, therefore the 
observation value reported to 
the neural network shall 
always be negative in case of 
tilting. 

Eq 16 int/ 
float  

Variable 4 Is Last Brick? Checks whether this brick 
observable is the last brick 
placed in the game or not. 

Bool int 

Notes 
    

Eq 14 (Current Brick Height)𝑎𝑎𝑙𝑙𝑎𝑎 −  (Height at phase start)𝑎𝑎𝑙𝑙𝑎𝑎
(Max possible Height during current phase)𝑟𝑟𝑟𝑟𝑙𝑙𝑎𝑎𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑠𝑠 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑟𝑟 𝑎𝑎𝑡𝑡𝑎𝑎𝑟𝑟𝑡𝑡

 

Eq 15 𝑃𝑃𝐿𝐿𝐻𝐻𝐼𝐼𝑆𝑆 𝑇𝑇𝑇𝑇𝑝𝑝𝐿𝐿
𝑇𝑇𝐿𝐿𝑆𝑆𝑎𝑎𝑝𝑝 𝑁𝑁𝑑𝑑𝑆𝑆𝑎𝑎𝐿𝐿𝑠𝑠 𝐿𝐿𝑜𝑜 𝑃𝑃𝐿𝐿𝐻𝐻𝐼𝐼𝑆𝑆 𝑆𝑆𝑇𝑇𝑝𝑝𝐿𝐿𝐿𝐿

 

Eq 16 Case No tilting: 0 

Case Tilting Value < Threshold*: -1 

Case Tilting Value > Threshold: �(−1) � 1

1+ 𝑟𝑟
1−𝑇𝑇𝑇𝑇𝑟𝑟𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑉𝑉𝑉𝑉𝑟𝑟𝑉𝑉𝑟𝑟
1−𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑟𝑟𝑜𝑜

��
∗∗

  

* Tilting Threshold is a factor with a value less than one. If 
tilting value gets lower than this value, it indicates that 
brick instability has reached its maximum allowable value 
and hence game is terminated (see Figure 67) 

** The reason for using a “sigmoid function” is to increase the 
negative value fed to the neural network once half of the allowable 
threshold has been reached. This is expected to give signals to the 
neural network that we are in a critical situation, given that 
suddenly there is a sudden increase in negative value input.    

 

Table 25: Common Parameters for Brick Observables in Phases 1 and 3 

Phase 1 Base Bricks / Phase 3 Window Bricks 
  

Observation Explanation Norm. Type  

Variable 5 Is Opening 
brick  

Checks whether this brick is 
directly placed next to an 

Bool int 
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Opening (Door or Window) or 
not. 

Variable 6 Angle 
between 
Opening 
Brick and 
the Opening 

Only has a value if the Brick is an 
Opening Brick. It calculates the 
angle between the tip of the brick 
and the tip of the Opening on the 
Center Line. If the angle is 
negative, it means that the brick 
tip is inside the volume of the 
Opening.  

Eq 17 int/ 

float 

     
Variable 7 Angle 

between 
Consecutive 
Bricks 

Consecutive Brick Definition in 
Lower Brick Insertion Phases:  
Any 2 bricks placed consecutively 
next each other on the same level, 
given that the void space between 
them doesn’t allow the placement 
of a third brick at the same level. 

Eq 18 float 

  
Case the observable brick is 
consecutive: This parameter will 
measure the angle between the 
observable brick and the closest 
brick to it from the consecutive 
series. The more the angle 
increase, the more negative value 
this observation will report to the 
neural network. This approach is 
adopted to encourage the bricks 
at the lower levels to be closer to 
each other as much as possible. 

  

    Case the observable brick is not 
consecutive: This parameter will 
be 0 as there is no consecutive 
brick already 

  

Notes 
    

Eq 17 Case Angle < 0: 1 

Case Angle ≥ 0: 𝐴𝐴𝑐𝑐𝐴𝐴𝑙𝑙𝑟𝑟 𝑙𝑙𝑟𝑟𝑡𝑡𝑏𝑏𝑟𝑟𝑟𝑟𝑐𝑐 𝐵𝐵𝑟𝑟𝑟𝑟𝑐𝑐𝐵𝐵 𝑎𝑎𝑐𝑐𝑎𝑎 𝑂𝑂𝑝𝑝𝑟𝑟𝑐𝑐𝑟𝑟𝑐𝑐𝐴𝐴
𝑂𝑂𝑝𝑝𝑟𝑟𝑐𝑐𝑟𝑟𝑐𝑐𝐴𝐴 𝑓𝑓𝑢𝑢𝑙𝑙𝑙𝑙 𝐴𝐴𝑐𝑐𝐴𝐴𝑙𝑙𝑟𝑟 𝑠𝑠𝑐𝑐 𝑡𝑡ℎ𝑟𝑟 𝐶𝐶𝑟𝑟𝑐𝑐𝑡𝑡𝑟𝑟𝑟𝑟 𝐿𝐿𝑟𝑟𝑐𝑐𝑟𝑟

 

Eq 18 Case Consecutive Bricks: (−1) �𝐴𝐴𝑐𝑐𝐴𝐴𝑙𝑙𝑟𝑟 𝑙𝑙𝑟𝑟𝑡𝑡𝑏𝑏𝑟𝑟𝑟𝑟𝑐𝑐 𝐶𝐶𝑠𝑠𝑐𝑐𝑎𝑎𝑟𝑟𝑐𝑐𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 𝐵𝐵𝑟𝑟𝑟𝑟𝑐𝑐𝐵𝐵𝑎𝑎
180

� 

Case Non-Consecutive Bricks: 0 
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Figure 95: Door Bricks Demonstration 

 
Figure 96: Window Brick Demonstration 

 

Table 26: Brick Observable specific parameters for Dome Phase 

Phase 5 Dome  
   

Observation Explanation Norm. Type  

Variable 5 Brick 
Radius  

Current Radius of the level on which 
this observable brick was placed. 

Eq 19 float 

Variable 6 Adjacent 
Angle  

The angle between the observable 
brick and the closest brick on the 
“right” side of it, given that there are 

Eq 20 float
/int 
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no insertion points between them. 
This angle is used to check if there 
are unnecessary gaps between a brick 
and its adjacent one.  

Variable 7 Angle 
between 
Consecuti
ve Bricks 

Consecutive Brick Definition in 
Dome phase:  
Any brick placed on the right or left 
side of an existing brick. 

Eq 21 float 

  
Case the observable brick is 
consecutive: This parameter will 
measure the angle between the 
observable brick and the closest brick 
to it from the consecutive series. 

 
 

    Case the observable brick is not 
consecutive: This parameter will 
measure the angle between the 
observable brick and the previous 
brick inserted before it. 

 
 

Notes 
    

Eq 19 𝐶𝐶𝑑𝑑𝑠𝑠𝑠𝑠𝐿𝐿𝐼𝐼𝑆𝑆 𝑅𝑅𝑎𝑎𝑑𝑑𝐻𝐻𝑑𝑑𝐿𝐿
𝐷𝐷𝐿𝐿𝑜𝑜𝑎𝑎𝑑𝑑𝑝𝑝𝑆𝑆 𝑅𝑅𝑎𝑎𝑑𝑑𝐻𝐻𝑑𝑑𝐿𝐿 

 

Eq 20 Case existence of Adjacent Brick: −1 �𝐴𝐴𝑎𝑎𝐴𝐴𝑎𝑎𝑐𝑐𝑟𝑟𝑐𝑐𝑡𝑡 𝐴𝐴𝑐𝑐𝐴𝐴𝑙𝑙𝑟𝑟
𝐹𝐹𝑎𝑎𝑐𝑐𝑡𝑡𝑠𝑠𝑟𝑟∗

� 

     Case non-existence of Adjacent Brick: 0 

* Changeable factor based on the current level, due to the variation in 
radius. 

Eq 21     Case Consecutive Bricks: 𝐴𝐴𝑐𝑐𝐴𝐴𝑙𝑙𝑟𝑟 𝑙𝑙𝑟𝑟𝑡𝑡𝑏𝑏𝑟𝑟𝑟𝑟𝑐𝑐 𝐶𝐶𝑠𝑠𝑐𝑐𝑎𝑎𝑟𝑟𝑐𝑐𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 𝐵𝐵𝑟𝑟𝑟𝑟𝑐𝑐𝐵𝐵𝑎𝑎
𝐶𝐶𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑡𝑡 𝑓𝑓𝑢𝑢𝑙𝑙𝑙𝑙 𝐵𝐵𝑟𝑟𝑟𝑟𝑐𝑐𝐵𝐵 𝐴𝐴𝑐𝑐𝐴𝐴𝑙𝑙𝑟𝑟 𝐹𝐹𝑎𝑎𝑐𝑐𝑡𝑡𝑠𝑠𝑟𝑟

 

   Case non-consecutive Bricks: (−1) �𝐴𝐴𝑐𝑐𝐴𝐴𝑙𝑙𝑟𝑟 𝑙𝑙𝑟𝑟𝑡𝑡𝑏𝑏𝑟𝑟𝑟𝑟𝑐𝑐 𝐶𝐶𝑠𝑠𝑐𝑐𝑎𝑎𝑟𝑟𝑐𝑐𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 𝐵𝐵𝑟𝑟𝑟𝑟𝑐𝑐𝐵𝐵𝑎𝑎
180

� 

 

 

 

Table 27: Specific Parameters for Door and Windows game objects respectively 

Windows and Doors Specific Observations 

Observation Explanation Norm. Type  

Windows: 

Variable 1 Insertion 
Point Type  

It is the type of the insertion point on 
which the Window was placed  

Eq 22 float 
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Variable 2 Dot Product 
Window and 
Wind 

The dot product value between: 
(unitized vector projected on the 
horizontal plane form the center of 
the building pointing at the insertion 
point of the current observable 
window) and (the prevailing wind 
unit vector)  

 [-1,1] float 

Variable 
3+ 

Dot Product Window and other Windows 
 

arra
y 

 
Dot Product 
Window / 
Window 

The dot product value between 2 
unitized vectors projected on the 
horizontal plane form the center of 
the building, 1 is pointing at the 
insertion point of the current 
observable window while the other is 
pointing at the insertion point of the 
"Selected Window" from windows list 

 [-1,1] float 

Doors 

Variable 1 Dot Product 
door and 
Wind 

The dot product value between: 
(unitized vector projected on the 
horizontal plane form the center of 
the building pointing at the insertion 
point of the door) and (the prevailing 
wind unit vector)  

 [-1,1] float 

Notes 
    

Eq 22 𝐼𝐼𝐼𝐼𝐿𝐿𝐿𝐿𝑠𝑠𝑆𝑆𝐻𝐻𝐿𝐿𝐼𝐼 𝑃𝑃𝐿𝐿𝐻𝐻𝐼𝐼𝑆𝑆 𝑇𝑇𝑇𝑇𝑝𝑝𝐿𝐿 (𝐿𝐿𝐼𝐼𝑑𝑑𝑆𝑆 𝑆𝑆𝐿𝐿 𝐻𝐻𝐼𝐼𝑆𝑆)
Total Number of Point Types in the Game (4− 5)

 

 

 

 

 

 

 

 

 

 

2.8.6. Goals and Rewards 
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In reinforcement learning, the reward is a signal that the agent has done 
something right. While a penalty, or a negative value reward, is a signal that 
the agent has done something wrong. The PPO reinforcement learning 
algorithm works by optimizing the choices an agent makes such that the agent 
earns the highest cumulative reward over time. The better the reward 
mechanism, the better the agent will learn [78]. 

As mentioned before in UV, the rewards are the main channel of 
communication between the teacher and the agent student that learns based 
on the rewards received based on its behavior. Therefore, UV provides the 
designer, which in this case is the teacher setting the rules, a trial environment 
for experimenting with different rewards and goals before settling on the 
appropriate reward system for optimizing the training process of the agents.  

It is common practice that the agent receives a positive reward when it 
completes a certain task during the episode, and a maximum reward value on 
episode completion. The same concept goes for penalties, where the agent gets 
the maximum negative penalty value when it doesn’t achieve the final goal. 
This event could happen after completion of all tasks but with a poor 
performance or when the agent does a fatal error that it becomes not possible 
to complete the episode till the end. 

In RV, we identified 6 game termination cases where the game is ended, and 
the agent receives the maximum reward or penalty. Each time after the 
execution of step 3 Action, a function named EndGameInspection() is executed. 
This method checks whether any of the game ending scenarios has been 
reached or not. If one of these events was triggered, the method freezes the 
game and signals that the game is finished, otherwise the game is normally 
resumed till the next time it reaches step 3 action and the cycle is repeated. 

On signaling that the game is finished, a new method named 
ConstitutionLawApplication()is being called. This method is named in that 
way because it conveys a rule-based reward system. These rules are enforced 
based on the game termination case it has ended with.  Table xx provides a 
scheme for the regular end game check that is executed every time step 3 
action is implemented.  

This scheme generalizes the 6 cases into 4 main scenarios. The first 3 namely 
“Goal Accomplished”, “All Building Completed” and “Brick Collapse” are 
referring to exact scenarios happening, while in the last scenario in the scheme 
“Fatal Design Error” conveys 3 possible scenarios. These cases are related to 
not accomplishing design goals in either Door Placement, Window Placement 
or Brick Placement.  

 
 



 

 
Figure 97: Flowchart for the game termination step executed every Step 3 Action
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The following table explains each of these 6 game ending scenarios. It 
indicates how the game proceeds afterwards in both Training and Inference 
Modes. It also demonstrates the calculation of the final reward received by the 
agent as per each scenario. 

 

Table 28: Game Termination Cases and the Corresponding Final Rewards 

General Game Termination Cases: 

Game Termination 
Case 

Reward  Explanation 

Goal Accomplished Eq A It is achieved when the goal required 
from the Agent is achieved in a certain 
episode. 

   
Inference Mode: The Episode is 
completed, and the next phase starts 

   
Training Mode: The Episode is 
completed, and the agent is 
instantiated in the same phase again 
for training.  

   
Deployed In Phase(s): 
Phases (1,2,3,4) 

All Building 
Completed 

Eq A It is achieved when the whole pavilion 
is completed. It is only applicable in 
Inference Phase as during training, 
each phase it trained separately. 

   
Deployed In Phase(s): 
Dome Creation Phase (Phase 5) and 
Only in Inference Mode. 

Brick Collapse Eq B It occurs whenever any brick falls off 
the structure and hits the ground or 
when the tilting value of a certain brick 
falls below the stated threshold. 

   
The Episode is  

   
Inference Mode: The Episode is 
terminated and the whole structure is 
destroyed. Hence the game starts again 
from first phase. 

   
Training Mode: The Episode is 
terminated, and the agent is 
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instantiated in the same phase again 
for training.  

   
Deployed In Phase(s): 
All Brick Phases (Phases 2, 4, 5) 

Design Error  Eq C It occurs whenever a criterion related 
to the design goals has been breached 
or poorly met.  It may occur in 3 
different scenarios. 

   
Inference Mode: The Episode is 
terminated and the whole structure is 
incomplete. Hence the game starts 
again from the first phase. 

   
Training Mode: The Episode is 
terminated, and the agent is 
instantiated in the same phase again 
for training.  

 
Design Brick 
Goal Not 
Accomplished 

 
It occurs when a design criterion is not 
met during brick placement.  

   
Deployed In Phase(s): 
All Brick Phases (Phases 2, 4, 5) 

   
Example Case 1: Window Bricks 
(Phase 4) 

   
Number of bricks on the highest level 
has not exceeded a certain threshold* 

   
Example Case 2: Dome Bricks (Phase 
4) 

   
Number of large, void, unnecessary 
gaps between bricks exceeds a certain 
threshold*  

 
Design Door 
Goal Not 
Accomplished 

 
Occurs when final placement of the 
door is not far enough from prevailing 
wind direction. 

   
Deployed In Phase(s): 
Door Placement (Phase 1) 

 
Design 
Window Goal 
Not 
Accomplished 

 
Occurs when final placement of the 
windows configuration is not entirely 
benefiting from Cross and Stack 
Ventilation 
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      Deployed In Phase(s): 
Window Placement (Phase 3) 

Notes 
  

Eq A Reward+= 1  

Eq B Step1: Calculate Excessive Height Penalty = −1−  0.1 ∗
𝐻𝐻𝑟𝑟𝑟𝑟𝐴𝐴ℎ𝑟𝑟𝑎𝑎𝑡𝑡 𝐻𝐻𝑟𝑟𝑟𝑟𝐴𝐴ℎ𝑡𝑡 𝑅𝑅𝑟𝑟𝑎𝑎𝑐𝑐ℎ𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑉𝑉𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟 𝑐𝑐𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑇𝑇𝑇𝑇 𝑝𝑝ℎ𝑉𝑉𝑟𝑟𝑟𝑟 − 𝐻𝐻𝑟𝑟𝑟𝑟𝐴𝐴ℎ𝑡𝑡 𝑠𝑠𝑓𝑓 𝑓𝑓𝑢𝑢𝑙𝑙𝑙𝑙𝑓𝑓 𝑐𝑐𝑠𝑠𝑠𝑠𝑝𝑝𝑙𝑙𝑟𝑟𝑡𝑡𝑟𝑟𝑎𝑎 𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙 

𝐵𝐵𝑟𝑟𝑟𝑟𝑐𝑐𝐵𝐵 𝐻𝐻𝑟𝑟𝑟𝑟𝐴𝐴ℎ𝑡𝑡
 

Step2: Calculate Final Reward: 

𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑+= −1 ∗ |𝐶𝐶𝑑𝑑𝑆𝑆𝑑𝑑𝑝𝑝𝑎𝑎𝑆𝑆𝐻𝐻𝑟𝑟𝐿𝐿 𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑| + 𝐸𝐸𝑀𝑀𝑐𝑐𝐿𝐿𝐿𝐿𝐿𝐿𝐻𝐻𝑟𝑟𝐿𝐿 ℎ𝐿𝐿𝐻𝐻𝐻𝐻ℎ𝑆𝑆 𝑃𝑃𝐿𝐿𝐼𝐼𝑎𝑎𝑝𝑝𝑆𝑆𝑇𝑇 

Eq C Case Phase 5 and Gaps Count > Threshold: 

𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑+=  −1 ∗ 𝐶𝐶𝑑𝑑𝑆𝑆𝑑𝑑𝑝𝑝𝑎𝑎𝑆𝑆𝐻𝐻𝑟𝑟𝐿𝐿 𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑  

All other Cases: 

𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑+=  −1 

 
On the other hand, the following table provides all the possible rewards that 
the agent can get throughout each phase. 

 
Table 29: Various Possible in Game Rewards 

In Game Agent Reward Functions 

Reward Trigger Behavior Reward Value  Notes 

Phase 1:  
  

 
Door Insertion Position 
Reward 

Eq 1 See Table 5 

    

Phase 2:  
  

 
Consecutive Brick 
Placement 

Eq 2 See Table 20  

 
Non-Continuous Brick  Eq 3 

 

       Far Brick Eq 4 See Table 5 
    

Phase 3:  
  

 
Windows Instance 
Evaluation 

Eq 5 Evaluation of a window 
placement directly 
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Windows Interim 
Evaluation 

Eq 6 Evaluation of Cross 
Ventilation After the total 
number of Windows 
Required is Achieved. 

 
No Available Position 
for Window Penalty 

Table 30 When there is no more 
room for additional 
window opening and the 
existing number of 
windows hasn’t reached 
the total required target. 

    

Phase 4:  
  

 
Consecutive Brick 
Placement 

Eq 2 
 

 
Non-Continuous Brick  Eq 3 

 

 
Far Brick Eq 4 

 

 
Counter Bricks on 
Recent Finished Level 

Eq 7 Checks that the number of 
bricks at each level has 
surpassed a certain 
threshold. The function is 
called once a level is 
completed. 

    

Phase 5:  
  

 
Consecutive Brick 
Placement 

Eq 2 
 

 
Gap Between Bricks Eq 8 

 

 
Far Brick Eq 9 

 

 
High Brick Eq 10 

 

  Star Point Table 30 optional reward that 
encourages the use of 
Bricks inserted at Star 
Points 

Notes 
  

Eq 1 𝐼𝐼𝑆𝑆𝐿𝐿𝑝𝑝1:𝐷𝐷𝐿𝐿𝑆𝑆 𝑃𝑃𝑠𝑠𝐿𝐿𝑑𝑑𝑑𝑑𝑐𝑐𝑆𝑆 �𝐷𝐷𝐿𝐿𝐿𝐿𝑠𝑠 𝐼𝐼𝐿𝐿𝑠𝑠𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑 𝐼𝐼𝐻𝐻𝑆𝑆 𝑉𝑉𝐿𝐿𝑐𝑐𝑆𝑆𝐿𝐿𝑠𝑠 
𝑎𝑎𝐼𝐼𝑑𝑑 𝑊𝑊𝐻𝐻𝐼𝐼𝑑𝑑 𝑈𝑈𝐼𝐼𝐻𝐻𝑆𝑆 𝑉𝑉𝐿𝐿𝑐𝑐𝑆𝑆𝐿𝐿𝑠𝑠 � 

Case Dot Product < Threshold:  



Original Contribution 2.8  
 

 
125 

𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑 = (1 −  𝑑𝑑𝐿𝐿𝑆𝑆𝑃𝑃𝑠𝑠𝐿𝐿𝑑𝑑𝑑𝑑𝑐𝑐𝑆𝑆)  
∗  𝐷𝐷𝐿𝐿𝐿𝐿𝑠𝑠 𝐴𝐴𝐿𝐿𝑎𝑎𝑇𝑇 𝑜𝑜𝑠𝑠𝐿𝐿𝑆𝑆 𝑊𝑊𝐻𝐻𝐼𝐼𝑑𝑑 𝐸𝐸𝑜𝑜𝑜𝑜𝐿𝐿𝑐𝑐𝑆𝑆 𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑 

Case Dot Product > Threshold:  

𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑 = (−1) ∗ (𝑑𝑑𝐿𝐿𝑆𝑆𝑃𝑃𝑠𝑠𝐿𝐿𝑑𝑑𝑑𝑑𝑐𝑐𝑆𝑆)  
∗  𝐷𝐷𝐿𝐿𝐿𝐿𝑠𝑠 𝐴𝐴𝐿𝐿𝑎𝑎𝑇𝑇 𝑜𝑜𝑠𝑠𝐿𝐿𝑆𝑆 𝑊𝑊𝐻𝐻𝐼𝐼𝑑𝑑 𝐸𝐸𝑜𝑜𝑜𝑜𝐿𝐿𝑐𝑐𝑆𝑆 𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑 

Eq 2 𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑 =  𝐶𝐶𝐿𝐿𝐼𝐼𝑆𝑆𝐻𝐻𝐼𝐼𝑑𝑑𝐿𝐿𝑑𝑑𝐿𝐿 𝐵𝐵𝑠𝑠𝐻𝐻𝑐𝑐𝐵𝐵 𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑 
∗  𝐶𝐶𝐿𝐿𝑑𝑑𝐼𝐼𝑆𝑆 𝐿𝐿𝑜𝑜 𝐶𝐶𝐿𝐿𝐼𝐼𝐿𝐿𝐿𝐿𝑐𝑐𝑑𝑑𝑆𝑆𝐻𝐻𝑟𝑟𝐿𝐿 𝐵𝐵𝑠𝑠𝐻𝐻𝑐𝑐𝐵𝐵𝐿𝐿 

Eq 3 𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑 =   𝐵𝐵𝑠𝑠𝐻𝐻𝑐𝑐𝐵𝐵𝐿𝐿 𝑁𝑁𝐿𝐿𝑆𝑆 𝐼𝐼𝐼𝐼 𝐼𝐼𝐿𝐿𝑟𝑟𝑑𝑑𝐿𝐿𝐼𝐼𝑐𝑐𝐿𝐿 𝐶𝐶𝐿𝐿𝑑𝑑𝐼𝐼𝑆𝑆𝐿𝐿𝑠𝑠
∗  𝑁𝑁𝐿𝐿𝐼𝐼 𝐶𝐶𝐿𝐿𝐼𝐼𝑆𝑆𝐻𝐻𝐼𝐼𝑑𝑑𝐿𝐿𝑑𝑑𝐿𝐿 𝐵𝐵𝑠𝑠𝐻𝐻𝑐𝑐𝐵𝐵 𝑃𝑃𝐿𝐿𝐼𝐼𝑎𝑎𝑝𝑝𝑆𝑆𝑇𝑇 

Eq 4 𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑 =  𝐿𝐿𝐿𝐿𝐼𝐼𝑆𝑆𝑎𝑎𝐼𝐼𝑎𝑎 𝑃𝑃𝐿𝐿𝐼𝐼𝑎𝑎𝑝𝑝𝑆𝑆𝑇𝑇 ∗  10 ∗  
1

𝐴𝐴𝐼𝐼𝐻𝐻𝑝𝑝𝐿𝐿 𝑎𝑎𝐿𝐿𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿𝐼𝐼 𝐵𝐵𝑠𝑠𝐻𝐻𝑐𝑐𝐵𝐵𝐿𝐿 / 180
 

Eq 5 𝐼𝐼𝑆𝑆𝐿𝐿𝑝𝑝1:𝐷𝐷𝐿𝐿𝑆𝑆 𝑃𝑃𝑠𝑠𝐿𝐿𝑑𝑑𝑑𝑑𝑐𝑐𝑆𝑆 �𝑊𝑊𝐻𝐻𝐼𝐼𝑑𝑑𝐿𝐿𝐿𝐿 𝐼𝐼𝐿𝐿𝑠𝑠𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑 𝑑𝑑𝐼𝐼𝐻𝐻𝑆𝑆 𝑉𝑉𝐿𝐿𝑐𝑐𝑆𝑆𝐿𝐿𝑠𝑠 
𝑎𝑎𝐼𝐼𝑑𝑑 𝑊𝑊𝐻𝐻𝐼𝐼𝑑𝑑 𝑈𝑈𝐼𝐼𝐻𝐻𝑆𝑆 𝑉𝑉𝐿𝐿𝑐𝑐𝑆𝑆𝐿𝐿𝑠𝑠 � 

𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑 =  (𝑑𝑑𝐿𝐿𝑆𝑆𝑃𝑃𝑠𝑠𝐿𝐿𝑑𝑑𝑑𝑑𝑐𝑐𝑆𝑆)  ∗  𝐼𝐼𝑆𝑆𝑎𝑎𝑐𝑐𝐵𝐵 𝑉𝑉𝐿𝐿𝐼𝐼𝑆𝑆𝐻𝐻𝑝𝑝𝑎𝑎𝑆𝑆𝐻𝐻𝐿𝐿𝐼𝐼 𝑀𝑀𝑎𝑎𝑀𝑀 𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑  

Add 𝐷𝐷𝐿𝐿𝑆𝑆 𝑃𝑃𝑠𝑠𝐿𝐿𝑑𝑑𝑑𝑑𝑐𝑐𝑆𝑆 𝑆𝑆𝐿𝐿 𝐿𝐿𝐻𝐻𝐼𝐼𝑑𝑑𝐿𝐿𝐿𝐿𝐿𝐿 "𝐷𝐷𝐿𝐿𝑆𝑆 𝐿𝐿𝐻𝐻𝐿𝐿𝑆𝑆" 

Eq 6 Step1: From 𝐿𝐿𝐻𝐻𝐼𝐼𝑑𝑑𝐿𝐿𝐿𝐿𝐿𝐿 “𝐷𝐷𝐿𝐿𝑆𝑆 𝐿𝐿𝐻𝐻𝐿𝐿𝑆𝑆”: Pick the Maximum Value 

Step2: Pick furthest window from window with Max Value in Dot 
List 

Step3: Calculate Dot Product between Both Windows 

Step4:  

𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑 = 𝑀𝑀𝑎𝑎𝑀𝑀 𝐷𝐷𝐿𝐿𝑆𝑆 𝑃𝑃𝑠𝑠𝐿𝐿𝑑𝑑𝑑𝑑𝑐𝑐𝑆𝑆 𝐻𝐻𝐼𝐼 𝐿𝐿𝐻𝐻𝐿𝐿𝑆𝑆 ∗  𝐷𝐷𝐿𝐿𝑆𝑆 𝑃𝑃𝑠𝑠𝐿𝐿𝑑𝑑𝑑𝑑𝑐𝑐𝑆𝑆 2 𝑊𝑊𝐻𝐻𝐼𝐼𝑑𝑑𝐿𝐿𝐿𝐿𝐿𝐿
∗  𝐶𝐶𝑠𝑠𝐿𝐿𝐿𝐿𝐿𝐿 𝑉𝑉𝐿𝐿𝐼𝐼𝑆𝑆𝐻𝐻𝑝𝑝𝑎𝑎𝑆𝑆𝐻𝐻𝐿𝐿𝐼𝐼 𝑀𝑀𝑎𝑎𝑀𝑀 𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑 

Eq 7 Case Count of Bricks on Recent Finished Level < Threshold:  

Trigger a game termination Scenario. 

Case Count of Bricks on Recent Finished Level ≥ Threshold:  

𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑 = 𝐶𝐶𝐿𝐿𝑑𝑑𝐼𝐼𝑆𝑆𝐿𝐿𝑠𝑠 𝐵𝐵𝑠𝑠𝐻𝐻𝑐𝑐𝐵𝐵𝐿𝐿 𝐸𝐸𝑀𝑀𝑐𝑐𝐿𝐿𝐿𝐿𝑑𝑑𝐿𝐿𝑑𝑑 𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑 

Eq 8 𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑 =  𝐺𝐺𝑎𝑎𝑝𝑝 𝐵𝐵𝐿𝐿𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿𝐼𝐼 𝐵𝐵𝑠𝑠𝐻𝐻𝑐𝑐𝐵𝐵𝐿𝐿 𝑃𝑃𝐿𝐿𝐼𝐼𝑎𝑎𝑝𝑝𝑆𝑆𝑇𝑇 ∗  𝐴𝐴𝑎𝑎𝑝𝑝 𝑎𝑎𝑐𝑐𝐴𝐴𝑙𝑙𝑟𝑟
𝑓𝑓𝑢𝑢𝑙𝑙𝑙𝑙 𝑙𝑙𝑟𝑟𝑟𝑟𝑐𝑐𝐵𝐵 𝑎𝑎𝑐𝑐𝐴𝐴𝑙𝑙𝑟𝑟

∗
𝐶𝐶𝐿𝐿𝑑𝑑𝐼𝐼𝑆𝑆𝐿𝐿𝑠𝑠 𝑜𝑜𝐿𝐿𝑠𝑠 𝐼𝐼𝑑𝑑𝑆𝑆𝑎𝑎𝐿𝐿𝑠𝑠 𝐿𝐿𝑜𝑜 𝐻𝐻𝑎𝑎𝑝𝑝𝐿𝐿 𝑐𝑐𝑑𝑑𝑠𝑠𝑠𝑠𝐿𝐿𝐼𝐼𝑆𝑆𝑝𝑝𝑇𝑇 𝐻𝐻𝐼𝐼 𝑆𝑆ℎ𝐿𝐿 𝐻𝐻𝑎𝑎𝑆𝑆𝐿𝐿  

Eq 9 Case Angle Between Bricks > Threshold:  

𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑 =
𝐴𝐴𝐼𝐼𝐻𝐻𝑝𝑝𝐿𝐿 𝐵𝐵𝐿𝐿𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿𝐼𝐼 𝐵𝐵𝑠𝑠𝐻𝐻𝑐𝑐𝐵𝐵𝐿𝐿  

180
∗  𝑝𝑝𝐿𝐿𝐼𝐼𝑆𝑆𝑎𝑎𝐼𝐼𝑎𝑎𝑃𝑃𝐿𝐿𝐼𝐼𝑎𝑎𝑝𝑝𝑆𝑆𝑇𝑇 ∗  2 ∗ 

∗  𝐶𝐶𝐿𝐿𝑑𝑑𝐼𝐼𝑆𝑆 𝐿𝐿𝑜𝑜 𝑁𝑁𝐿𝐿𝐼𝐼 𝐶𝐶𝐿𝐿𝐼𝐼𝐿𝐿𝐿𝐿𝑐𝑐𝑑𝑑𝑆𝑆𝐻𝐻𝑟𝑟𝐿𝐿 𝐵𝐵𝑠𝑠𝐻𝐻𝑐𝑐𝐵𝐵𝐿𝐿 

Eq 10 Case Brick height relative to current lowest incomplete level > 
Threshold:  

𝑅𝑅𝐿𝐿𝐿𝐿𝑎𝑎𝑠𝑠𝑑𝑑 = 𝐶𝐶𝐿𝐿𝑑𝑑𝐼𝐼𝑆𝑆 𝐿𝐿𝑜𝑜 𝐶𝐶𝐿𝐿𝐼𝐼𝐿𝐿𝐿𝐿𝑐𝑐𝑑𝑑𝑆𝑆𝐻𝐻𝑟𝑟𝐿𝐿 𝐵𝐵𝑠𝑠𝐻𝐻𝑐𝑐𝐵𝐵𝐿𝐿 𝐿𝐿𝑟𝑟𝐿𝐿𝑠𝑠 𝐸𝐸𝑎𝑎𝑐𝑐ℎ 𝐿𝐿𝑆𝑆ℎ𝐿𝐿𝑠𝑠2
∗  𝐻𝐻𝐻𝐻𝐻𝐻ℎ 𝐵𝐵𝑠𝑠𝐻𝐻𝑐𝑐𝐵𝐵 𝑃𝑃𝐿𝐿𝐼𝐼𝑎𝑎𝑝𝑝𝑆𝑆𝑇𝑇 ∗  2 
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Finally, the previously mentioned rewards calculation, are calculated based 
on the input of the designer to the following rewards parameters: 

Table 30: Rewards Parameters and the corresponding Values used for Training Agents in RV 

Input Reward Parameters  Initial Reward Value 

Continuous Brick Reward +0.001 

Non-Continuous Brick Penalty -0.002 
Gap Between Bricks Penalty -0.1* 
Star Point (optional) +0.01 
Lontana Penalty -0.001 
High Brick Penalty -0.0005 
Sturdy Brick Level +0.1 
Maximum Number of Gaps Count 10 
Cross Ventilation Max Reward +0.1 
Stack Ventilation Max Reward  +0.1 
Door Away from Wind Effect 
Reward 

+0.1 

Counter Bricks Exceeded Reward +0.1 

 

2.8.7. Curriculum Learning and Hyperparameters 

- Curriculum Learning 

Curriculum learning is a way of decomposing a difficult task into subtasks 
starting from a simple level and increasing difficulty till reaching exactly what 
is required in the main task. This idea has been around for a long time, and it 
is how we humans typically learn [78]. It is a form of prerequisites that a 
student needs to learn one after the other so he/she can reach the hardest 
lesson with all the previous courses in mind. The same principle can be 
applied to machine learning, where training on easier tasks can provide a 
scaffolding for harder tasks in the future.  

 
Figure 98: Demonstration of a hypothetical curriculum training scenario in which a 

progressively taller wall obstructs the path to the goal by ML-Agents [78]. 
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The following figure shows a scheme of how the Phase of Dome Bricks has 
been divided into curriculum lessons.  

 
Figure 99: Curriculum Learning in Phase 5 (Dome Creation) 

For each “lesson” there are some parameters that needs to be defined, for 
example: 

• measure: What to measure learning progress, and advancement in 
lessons by. 

o reward: Uses as a measure the received reward. 
• thresholds: (float array) - Points in value of measure where lesson 

should be increased. In other words, since we decided that the measure 
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of success of a lesson is through calculating the reward, the threshold 
is the value that is needed to be reached so that the agent can be 
promoted to the next lesson. 

• min_lesson_length (int) - The minimum number of episodes that 
should be completed before the lesson can change. If measure is set to 
reward, the average cumulative reward of the last min_lesson_length 
episodes will be used to determine if the lesson should change. Must 
be nonnegative. 

• Value: Value of the environment parameter selected to have changing 
values based on the Lesson Number. In our case was the maximum 
number of levels allowed to be reached in each lesson.  

Curriculum learning was also used in Window Bricks phase, where the phase 
was divided into 3 lessons. Each lesson had a maximum level constraint that 
increased by proceeding to the succeeding lesson. The first lesson had a 
maximum level (4) and reward threshold of 1.5, the second lesson had a 
maximum level of (7) with reward threshold of 2.8 and the final lesson had a 
maximum constraint on the level of bricks equals to 8. It has to be noted that 
in the final lesson there is normally no threshold needed since it is already the 
final lesson. 

- Hyperparameters 

The following table demonstrates the final hyperparameters used to train the 
agents in each of the 5 phases. These hyperparameters are the ones related to 
training configurations and doesn’t include any environment parameters as 
we already discussed that part in the curriculum sub-section above. 

 

Table 31: Comparison of Configuration file Hyperparameters for Different 
Phases 

Hyper Parameter 

Phases 

Phase 
1 

(Door)  

Phase 3  
(Windows) 

Phase 
4* 

  

Phase 5** 

Session 1 Session 2 

Behaviors: Robuilder 

trainer_type:  PPO 

Hyperparameters: 
     

 
batch_size:  512 512 512 1024 1024 

 
buffer_size 4096 4096 10240 20480 40960 

 
learning_rate 0.0003 
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beta 0.005 0.005 0.01 0.01 0.001 

 
epsilon 0.2 0.2 0.2 0.2 0.2 

 
lambd 0.9 0.9 0.9 0.9 0.9 

 
num_epoch:  3 3 3 3 3 

 
learning_rate_schedule:  linear linear linear linear linear 

 
network_settings: 

     

  
normalize:  FALSE FALSE FALSE FALSE FALSE 

  
hidden_units:  512 512 512 512 512 

  
num_layers:  2 2 3 3 

 
vis_encode_type:  simple simple simple simple simple 

 
reward_signals: 

     

  
extrinsic: 

     

   
gamma:  0.99 0.99 0.99 0.99 0.99 

   
strength:  1 1 1 1 1 

   
network settings 

     

    
normalize FALSE FALSE FALSE FALSE FALSE 

    
hidden_units 512 512 512 512 

    
num_layers 2 2 3 3 

 
max_steps:  150000 500000 1E+08 3.6E+08 10000000 

 
time_horizon:  3 9 512 1024 

  threaded TRUE TRUE TRUE TRUE TRUE 

Notes 
     

Phase 4* During Training of Phase 4 (Window Bricks), the 
trained outcome was working perfectly in Phase 2 

(Base Bricks) as well. Therefore, the training outcome 
in this phase was used in inference mode of both 

phases. (See sub-section 3.9.4) 

Phase 5** Phase 5 was trained along 2 consecutive sessions, 
where session 2 was initialized from where session 1 

has ended. 
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2.8.8. Training Vs Inference Mode 

Once training concludes, the learned policy for each phase can be exported as 
a model file. Then during inference phase, the environment will still continue 
to generate observation, but instead of being sent to Python API, they will be 
fed directly into the (internal, embedded) model to generate the optimal action 
for each medic to take at every point in time. 

Since the decision to divide the pavilion into 5 separate phases, it meant that 
we have 5 separate models that needs to be trained and the same number 
needed to be run consecutively during the inference phase. For training each 
episode, in theory, we need to have all the previous phases existing in the scene 
so that the bricks, or other units, placed in this phase will be placed on top of 
the previous phases.  

However, to speed up the learning process, it was decided to create a sort of 
“fake” base for each phase that relies on having an existing structure to start 
from. The reason for doing this is to reduce the computation power and time 
wasted at the beginning of each episode to place the existing structure before 
the start of the current phase training.  

Accordingly, the following pictures represent the differences between the 
training mode and inference mode in every phase that relied on the structure 
of previous phases. In most of the cases where the previous “Brick” structure 
was required, a single layer of bricks was placed at the beginning of each 
episode. This brick layer was altered in position randomly every episode start 
to ensure that the agent wouldn’t get stuck if during inference mode the below 
layer of an existing structure doesn’t exactly conform to the one it was used to 
train on. 

 
Figure 100: Phase Window Openings Placement, (1-2): Start and Finish in Inference Mode (3-

4): Start and Finish in Training Mode 
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Figure 101: Phase Window Openings Placement, (1-2): Start and Finish in Inference Mode (3-
4): Start and Finish in Training Mode 

 

 

Figure 102: Phase Window Openings Placement, (1-2): Start and Finish in Inference Mode (3-
4): Start and Finish in Training Mode 
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2.9. Discussion of Results 
In this section we first present the results of the training sessions of the 
phases. These results are demonstrated using the training statistics and a brief 
discussion follows the statistics of each phase. It has to be noted that regarding 
Phase 2 (Base Bricks), its results were not mentioned in this section as 
eventually the trained model for phase 4 (Window Bricks), was proven to be 
efficient for being used as the main brain in inference mode for both phases.  

After discussion of the training results and showing images of the training 
process, the section ends with illustrating the compilation of the trained 
models together in the inference phase. The last subsection, thus, shows 
several pictures from the final inference phase as well as discussing the final 
observations regarding the structure assembly.  

2.9.1. General View of Statistics Results 

Parameter Explanation 

Environment 

Cumulative Reward The mean cumulative episode reward over all 
agents. Should increase during a successful 
training session. 

Lesson Only interesting when performing curriculum 
training. Provides at which number of steps a 
change in the lesson number occurs 

Episode Length The mean length of each episode in the 
environment for all agents. 

Losses 
 

Policy Loss The mean loss of the policy function update. 
Correlates to how much the policy (process for 
deciding actions) is changing. The magnitude of 
this should decrease during a successful training 
session. 
These values will oscillate during training. 
Generally, they should be less than 1.0. 

Value Loss The mean loss of the value function update. 
Correlates to how well the model is able to predict 
the value of each state. This should decrease 
during a successful training session. 
These values will increase as the reward increases, 
and then should decrease once reward becomes 
stable. 

Ahmed Mohamed Ahmed Lotfy Elmaraghy
Talk about generalziation and give examples like realtive height (in observation side)2 pages explaining what we could expect in the graphs (tomorrow) – what to expect inside themAfter each phase 1-2 pages explanation of all results + images of trainingAll phases Inference explanation Addtionla Discussion/Comments:Ex: Step and adjusting time speed wit the frame + give snapshot image Etc..
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Policy  

Value Estimate The mean value estimate for all states visited by 
the agent. Should increase during a successful 
training session. 
These values should increase as the cumulative 
reward increases. They correspond to how much 
future reward the agent predicts itself receiving at 
any given point. 

Extrinsic Reward Represents the rewards defined in the 
environment, and is enabled by default 

Learning Rate How large a step the training algorithm takes as it 
searches for the optimal policy. Should decrease 
over time. 

Epsilon   corresponds to the acceptable threshold of 
divergence between the old and new policies 
during gradient descent updating. Setting this 
value small will result in more stable updates but 
will also slow the training process. 

Entropy How random the decisions of the model are? 
Should slowly decrease during a successful 
training process. If it decreases too quickly, 
the beta hyperparameter should be increased. 
This corresponds to how random the decisions of a 
Brain are. This should consistently decrease during 
training. If it decreases too soon or not at all, beta 
should be adjusted (when using discrete action 
space). 

Beta Corresponds to the strength of the entropy 
regularization, which makes the policy "more 
random." This ensures that agents properly explore 
the action space during training. Increasing this 
will ensure more random actions are taken. This 
should be adjusted such that the entropy 
(measurable from TensorBoard) slowly decreases 
alongside increases in reward. If entropy drops too 
quickly, increase beta. If entropy drops too slowly, 
decrease beta. 
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2.9.2. Phase Door Opening Placement 

- Graphical Statistics on Training behavior 

The following graphs represent summary statistics for “Phase Door 
Placement” 

 
Figure 103: Cumulative Reward for Phase Door Opening Placement 

 
Figure 104: Episode Length per Step for Phase Door Opening Placement 

 

 
Figure 105: (left) Beta Evolution per Step- (right) Entropy Evolution per Step Phase Door Opening Placement 
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Figure 106: (left) Epsilon Evolution per Step- (right) Learning Rate Evolution per Step Phase Door Opening 

Placement 

 

 
Figure 107: Extrinsic Reward per Step for Phase Door Opening Placement 

 

 
Figure 108: Extrinsic Value Estimate Per Step for Phase Door Opening Placement 

 



2.9 Original Contribution 
 

 
136 

 

 
Figure 109: Value Loss per Step for Phase Door Opening Placement 

 
Figure 110: Policy Loss per Step for Phase Door Opening Placement 

- Summary Points of Statistics Output  

By observing the statistical results, it can be concluded the following main 
points: 

• The training maximum cumulative reward reached has been 1.097 at 
step 670k in 55 minutes and 3 seconds. 

• The average episode length was 2 steps overall.  
• No curriculum learning was used therefore there was only one “lesson” 

involved with no environment parameters changing throughout the 
training process.  

• Policy loss (the mean loss of the policy function update) values were 
oscillating throughout the training session with an overall “healthy” 
downward slope towards the end of training session. 

• Entropy was consistently decreasing throughout the training session. 
• The chosen option for “Learning rate” hyperparameter was selected to 

linearly decay on the span of the maximum steps.  
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- Discussion of the Training Summary and hyperparameters 

Given the training time was approximately one hour, this is considered the 
fastest training session (along with windows placement phase). It makes sense 
as it is the simplest phase, comprising only of the placement of one unit (door 
opening).  

The average range of 2 steps which didn’t change throughout the training 
time, is in indicator that the 3-step action needed to place a unit was 
considered as a 2-step process by the network. This is because the last action 
was not counted among the calculated steps during the game since it led 
directly to game completion.  

Regarding hyperparameters chosen, time horizon was set at 3 because the 
whole episode is technically made of 3 steps. We didn’t need to reach the 
maximum steps of 1500000, as indicated above. Buffer size was set to 4096 
which is on the low side of the typical range (2048 - 409600), as there was no 
need to collect more experiences before updating the model. However, Batch-
size was chosen to be 512 (typical range for discrete actions is between 32 - 
512) to capture, in each iteration of the gradient descent update, a diversity of 
game situations. 

The use of 12 instances of the “Building Area”, ensured that the agent has 
witnessed several values of wind direction vector. Even in each episode on the 
same “building area”, there was a continuous change in the wind direction by 
the continuous random generation of its unit vector x and z components. This 
would ensure that the link between the door opening position and the wind 
direction is always linked in every possible wind direction. 

 
Figure 111: 12 Building Area Instances where in each one the agent is training to properly place 

a door opening. 
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2.9.3. Phase Window Openings Placement 

The following graphs represent summary statistics for “Phase Windows 
Placement” 

 

 
Figure 112: Cumulative Reward for Phase Window Openings Placement 

 
Figure 113: Episode Length per Step for Phase Window Openings Placement 

 
Figure 114: (left) Beta Evolution per Step- (right) Entropy Evolution per Step Phase Window Openings Placement 
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Figure 115: (left) Epsilon Evolution per Step- (right) Learning Rate Evolution per Step Phase Window 

Openings Placement 

 

 
Figure 116: Extrinsic Reward per Step for Phase Window Openings Placement 

 

 
Figure 117: Extrinsic Value Estimate Per Step for Phase Window Openings Placement 
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Figure 118: Value Loss per Step for Phase Window Openings Placement 

 
Figure 119: Policy Loss per Step for Phase Window Openings Placement 

- Summary Points of Statistics Output  

By observing the statistical results, it can be concluded the following main 
points: 

• The training maximum cumulative reward reached has been 1.099 at 
step 490k in 50 minutes and 12 seconds. 

• The average episode length was 8 steps overall.  
• No curriculum learning was used therefore there was only one “lesson” 

involved with no environment parameters changing throughout the 
training process.  

• Policy loss (the mean loss of the policy function update) values were 
oscillating throughout the training session with an overall “healthy” 
downward slope towards the end of training session. 

• Entropy was consistently decreasing throughout the training session. 
• The chosen option for “Learning rate” hyperparameter was selected to 

linearly decay on the span of the maximum steps.  
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- Discussion of the Training Summary and hyperparameters 

The training for both phases of windows and door opening placement were 
executed in less than an hour. This is because for window openings the average 
number of steps was 8 and it involved only the placement of maximum 3 
windows. 

Both batch size (512) and buffer size (4096) were kept the same as the one 
used for door placement since the average steps per episode remains still 
below 10. Therefore, there is no significant change. Only the value for the 
hyper parameter “time horizon” was adjusted to account for 3 window 
instances per episode, i.e., 3 window placement * 3 action steps = 9. 

The use of 12 instances of the “Building Area”, ensured that the agent has 
witnessed several values of wind direction vector. Even in each episode on the 
same “building area”, there was a continuous change in the wind direction by 
the continuous random generation of its unit vector x and z components. This 
would imply a better learning and adaptation of the agents to changing wind 
directions to achieve stack and cross ventilation requirements.  

To sum up, both phases for window and door placement had achieved the 
same results with almost similar hyper parameters. There was no complexity 
in them that would require more advanced features on the neural network 
side to be adjusted. The padding of zeros in the vector observation, didn’t 
affect the performance of the neural network. This padding was done because 
the number of observations was governed by the brick phases that required a 
higher number compared to the ones essentially needed in both door and 
windows placement phases.  

 
Figure 120: Building Area Instances with varying wind direction (green arrow) where in each 

one the agent is training to properly place 3 window openings 
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2.9.4. Phase Window Bricks 

The following graphs represent summary statistics for “Phase Window Bricks” 

 

 
Figure 121: Cumulative Reward for Phase Window Bricks 

 

Figure 122: (left) Episode Length per Step – (right) Lesson number Per step for Number of Brick Levels for Phase 
Window Bricks  

 

Figure 123: (left) Beta Evolution per Step- (right) Entropy Evolution per Step Phase Window Bricks 
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Figure 124: (left) Epsilon Evolution per Step- (right) Learning Rate Evolution per Step Phase Window 

Bricks 

 
Figure 125: Extrinsic Reward per Step for Phase Window Bricks 

 

 
Figure 126: Extrinsic Value Estimate Per Step for Phase Window Bricks 
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Figure 127: Value Loss per Step for Phase Window Bricks  

 

Figure 128: Policy Loss per Step for Phase Window Bricks 

- Summary Points of Statistics Output  

By observing the statistical results, it can be concluded the following main 
points: 

• The training maximum cumulative reward reached has been 3.713 at 
step 32.96 million. 

• This phase was trained using curriculum learning of 3 lessons as 
discussed before. In each lesson the number of allowable level 
maximum level to be reached is elevated. It started at 4 levels then 6 
and finally 7 levels.  

• Policy loss (the mean loss of the policy function update) values were 
oscillating throughout the training session with an overall “slight” 
downward slope towards the end of training session. 

• Entropy was consistently decreasing throughout the training session, 
apart from a minor period that coincides with the shifting from Lesson 
1 to Lesson 2. 

• The chosen option for “Learning rate” hyperparameter was selected to 
linearly decay on the span of the maximum steps.  
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• Epsilon, Beta and learning rate values were decreasing at a fixed rate 
until step 32.37 million, a sudden drop occurred then they continued 
to decrease at a slope steeper than the period before the sudden drop.  

• Time horizon was raised from window bricks phase to be 1024 instead 
of 512. This value remained constant for both sessions 1 and 2. 

- Discussion of the Training Summary and hyperparameters 

This phase is the first one to adopt curriculum learning in its training routine. 
Practically, Phase “Base Bricks” was supposed to include also curriculum 
training but given that the trained model of this phase was eligible for direct 
use in the inference phase of Phase “Base Bricks”, we neglected the training 
results of that earlier phase.  

The curriculum, despite being divided into 3 lessons in this phase, basically 
has 2 different types of levels if they are to be classified according to the 
maximum capacity for brick placement. The first phase which includes lesson 
1 and 2 are the Bricks surrounding the window openings all around the 
pavilion. The second phase comprises only 1 level which what is called the 
“Lentil Level for window openings”. In the latter, the main goal was to place 
as much bricks as possible to create a good base for the upper bricks of the 
dome phase. 

Epsilon, and learning rate were supposed to be decaying with a constant slope, 
however the sudden drop in the values is due to a change midst training of the 
maximum number of steps allocated for training. Reducing the number of 
steps led to the recalibration of both parameters so that they would decay and 
reach zero by the end of the allowed maximum steps of 50 million. Previously, 
it was set at 200 million steps. 

 
Figure 129: 12 Instances of the “Building Area” with agents being trained at the End of a 

successful training session for Phase Window Bricks 
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Figure 130: Close caption of an agent during training for Phase Window Bricks 

On the other hand, during this episode, a curiosity reward was among the 
modules experimented. Curiosity works best in environments where the agent 
receives rare or infrequent rewards (i.e. sparse-reward), an agent may never 
receive a reward signal on which to bootstrap its training process. This is a 
scenario where the use of an intrinsic reward signals can be valuable. 
Curiosity is one such signal which can help the agent explore when extrinsic 
rewards are sparse.  

Accordingly, during the adjustment of the training model, all of the 
instantaneous rewards were removed from the game and only rewards 
resulting from a game termination scenario where kept. The curiosity Reward 
Signal enables the Intrinsic Curiosity Module. This is an implementation of 
the approach described in Curiosity-driven Exploration by Self-supervised 
Prediction by Pathak, et al [89]. It trains two networks [78]: 

 

1. an inverse model, which takes the current and next observation of the 
agent, encodes them, and uses the encoding to predict the action that 
was taken between the observations 

2. a forward model, which takes the encoded current observation and 
action, and predicts the next encoded observation. 

The loss of the forward model (the difference between the predicted and actual 
encoded observations) is used as the intrinsic reward, so the more surprised 
the model is, the larger the reward will be. 
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2.9.5. Phase Dome Bricks  

Phase Dome Bricks was trained on 2 consecutive runs. Thus, the second run 
was initialized from where the first run has stopped. The difference is updates 
added to the curriculum training as well as some hyperparameters. The first 
run is indicated in (Cyan) while the second is in (Green).  

 
Figure 131: Cumulative Reward for Phase Dome Bricks 

 

Figure 132: Episode Length per Step for Phase Dome Bricks  

 

Figure 133: – Lesson number Per step for Number of Brick Levels for Phase Dome Bricks 
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Figure 134: (left) Beta Evolution per Step- (right) Epsilon Evolution per Step Phase Dome Bricks 

 
Figure 135: Entropy Evolution per Step Phase Dome Bricks 

 
Figure 136: - Learning Rate Evolution per Step for Phase Dome Bricks 
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Figure 137: - Extrinsic Reward per Step for Phase Dome Bricks 

 

 
Figure 138: Extrinsic Value Estimate Per Step for Phase Dome Bricks 

 

 
Figure 139: Value Loss per Step for Phase Dome Bricks  
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Figure 140: Policy Loss per Step for Phase Dome Bricks 

- Summary Points of Statistics Output  

By observing the statistical results, it can be concluded the following main 
points: 

• The first training session has started till reaching 30.46 million steps 
reaching an average cumulative reward of 2.63. Afterwards session 2 
has been initialized by the weights developed during the training of the 
neural network of session 1. The training has continued till reaching 
3.036 as an average cumulative reward after training for 15 million 
steps.  

• Both sessions have been trained using curriculum learning (see section 
3.8.7). Session 1 has succeeded in reaching the third lesson in its 
designated curriculum, ending with an average episode length of 403.1 
steps. Session 2 however has started with what session 1 has ended 
with (Lesson Three), that has fixed the maximum dome height 
required at 8 levels. However, the threshold for passing to the next 
lesson was lowered to be 1.0 as an average cumulative reward instead 
of 2.7 that was previously set as the threshold in session 1. The agent 
has successfully surpassed all the lessons assigned to in session 2, 
reaching the final lesson (9th Lesson) with a maximum dome height of 
25 levels. It finishes with an average episode length of 959.3. 

• Policy loss (the mean loss of the policy function update) values were 
oscillating throughout the training session with the absence of a clear 
downward slope towards the end of training session. 

• Entropy was consistently decreasing throughout the training session 
for session 1, while session 2 entropy was more or less stable around 
zero. 

• Epsilon, and learning rate values were decreasing more rapidly in 
session 2. 
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• The chosen option for “Learning rate” hyperparameter was selected to 
linearly decay on the span of the maximum steps, reaching zero at the 
end of the steps.  

• Hyper parameter “Beta” has been decreased from 0.01 in session 1 to 
0.001 in session 2 training.  

• Time horizon was raised from window bricks phase to be 1024 instead 
of 512. This value remained constant for both sessions 1 and 2. 

- Discussion of the Training Summary and hyperparameters 

This session is considered the most challenging one. Given its added 
complexity with the introduction of the reduced radius on each newer upper 
level in order to create the dome. This has led to several challenges during the 
training process.  

Regarding the first point in the summary, it is noticeable that the first training 
session has taken much more time than the second one, however it has only 
reached level 8 as the maximum dome height. On the other hand, session 2 
has reached a final dome height of 25 levels in nearly half of the time of session 
1. On the contrary, there is not much improvement regarding the rewards 
achieved in session 2. Though it has managed to reach 17 extra levels, the 
average cumulative reward has increased by only 15% compared to what 
session 1 has ended with.  

This is mainly because each session had a diverse goal to achieve. As for the 
first session, it took more time and the promotion from one lesson to the other 
required a heigh reward to achieve it. This has an impact on achieving a sturdy 
dome base in the beginning. This is a crucial part in withstanding all the upper 
loads. It also focused on the proper placement of bricks in an arranged 
consecutive way that was explained earlier. This arrangement was taken into 
consideration in the reward system to mimic an optimized strategy for energy 
management on site by reducing the transition distance between supply and 
demand points and reduce risks associated to path planning issues.  

On the other hand, after achieving high rewards on the first 8 levels, it was 
sought to give priority to the crucial aspects of stability in the higher levels and 
turn a blind eye on the complementary tasks. The motivation behind that was 
to accelerate the speed of learning and reduce the level of complexity in an 
already challenging task.  

This was evident when the agent was able in session 2 to successfully complete 
the assigned lessons in a quick pace till reaching the final lesson, however at 
the expense of some other aspects. One of these major aspects that raised our 
concern was mainly design related. A source of this design failure is the 
increased number of gaps between bricks that eventually got wider by 
increasing heights and led to the split of the brick fabric making it impossible 
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to reconnect bricks on top one more time till the upper oculus (see Figure 
141). This would consequently jeopardize the initial design idea. 

 
Figure 141: Gap Propagation leading to failure in complying with Design Requirements 

The intervention we have proposed was an introduction of the “Gap Check” 
and setting a maximum number of allowable gaps. This threshold, if exceeded, 
would directly lead to game termination due to design failure (as explained in 
rewards sub-section 3.8.6). In addition, the penalty for such an error was quite 
large with respect to other errors. The training was then restarted with the 
new addition to the reward system and the final results has shown a great 
improvement in that manner.  

This also explains the limited increase of rewards in session 2. In some cases, 
the agent would create an empty gap, thus is penalized. However, it has learnt 
how to recover from this mistake and to prevent gap propagation by adjusting 
the bricks to be placed on top of such gap.  

The additional step that was also introduced was a small incentive rewarded 
to inserting bricks in “Star Points”. This reward was turned on and 
experimented on higher levels in the dome (for instance from level 5 from 
dome start and then upwards). This incentive has also indirectly contributed 
to the reduction of gaps between bricks. 

Regarding “Beta Parameter”, its definition in [90] states that it ensures that 
agents properly explore the action space during training. Increasing this will 
ensure more random actions are taken. Accordingly, this explains why it had 
was set to a large value in Session 1 and a very low value in Training Session 
2. The main goal was to let the agent “explore” as much as possible different 
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scenarios in order to eventually find its way to the optimum strategy to be 
used. While in session 2, once we initialize it from the “more experienced” 
agent from session 1, we don’t want it to explore more, but rather keep the 
“rhythm” acquired from training session 2 and try to maintain the same 
approach as much as possible in Session 2. 

Furthermore, this phase has witnessed the highest value for time horizon. 
Since time horizon corresponds to how many steps of experience to collect 
per-agent before adding it to the experience buffer. When this limit is reached 
before the end of an episode, a value estimate is used to predict the overall 
expected reward from the agent's current state.  

Accordingly, after many trials, the most convenient solution was to increase 
the time horizon to capture as much events as possible. This case differs 
greatly from other phases including window bricks and phase base bricks 
because of the incompatibility of applying the repetitive concept. In other 
words, at lower levels and since the radius remains constant it is possible to 
consider that once a brick level is completed in sequence, there is less urge to 
capture all succeeding actual rewards from the game.  

This approach could be convenient if what occurs on one level can be just 
“repeated” on all upper levels afterwards. This strategy is sought to be 
inefficient in the changing radius dome. Despite the effort to try generalizing 
observations, especially when it comes to height calculations, it is still not 
possible to assume that a brick placed on a radius of 5 meters has the same 
circumstances as another one placed at a radius of 4 meters or less. 

Finally, the following images are some screenshots of the training sessions for 
Dome phase. These shots were taken at the final steps of both training 
sessions. 

 
Figure 142: 12 Instances of the “Building Area” with agents being trained at the end of session 2 
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Figure 143: Close Caption of Simultaneous Training of Agents in phase 5 (Dome Creation) 

 
Figure 144: Agents Brick Placement Behavior after the introduction of small incentives for 

selecting "Star Points" and its effect on the overall Design of the Pavilion 
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2.9.6. Review of Inference Phase 

Once all phases were trained, comes the turn of inference phase. All trained 
models are then connected to the game object with the Agent component 
attached to it (Robuilder Agent). Despite the training of the models was 
executed in simplified configuration regarding the absence of a complete 
lower structure for phases built on existing bricks, the inference phase was 
carried out successfully. 

 

 
Figure 145: Trained Models Compiled in Inference phase, creating the whole structure (1/3) 

 
Figure 146: Trained Models Compiled in Inference phase, creating the whole structure (2/3) 
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Figure 147: Trained Models Compiled in Inference phase, creating the whole structure (3/3) 

One of the main reasons that needed to be optimized in order to guarantee 
this smooth connection between different phases during inference mode is the 
generalization of Observations. This issue was creating problems in the 
beginning of the early trials. From one point most of the upper brick phases 
were trained with only one level of bricks below, while in the actual scenario 
these bricks should have been placed above several brick layers.  

This issue has created a discrepancy for observations related to height 
calculations. The solution that we decided to follow was to use relative height 
definitions instead of absolute ones. For instance, a brick height to be used for 
observation variable is given as the height calculated from the beginning of the 
phase and not from the ground. In that case, no matter how many brick levels 
are present below the current phase, the observation will have the same value 
in both inference and training modes. 
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2.9.7. Final Notes  

This sub-section is dedicated to some final bullet points regarding RV and the 
training of the agents. 

- Time Speed: 

During the training of the agents, the speed of the game goes multiple times 
faster than the actual (real) speed. At one point, this is very crucial method to 
reduce the amount of time consumed in the learning process. However, it 
creates a drastic effect on the physics behavior of the game objects.  

For example, if a brick was starting to tilt at a normal speed, the brick might 
reach the maximum threshold and the game could terminate. But, at 10x the 
average speed of the game, and the tilting is still happening at the normal 
speed, there is a high chance that a new brick will be placed to stabilize it 
before even starting to tilt. This creates fake situations and when the game is 
played in the normal speed after training, the Agent might not be able to react 
correctly to this behavior. 

Therefore, the solution was to link the physics behavior speed with the current 
training speed used. This would simulate movements at the same high speed 
of the training process. 

- One hot Observations 

One hot style was used in describing categorical information that are fed to 
the observation vectors. During the initial trials, float values were also tried in 
replacement of One hot style. For instance, to represent the selection of the 
2nd Segment of the 12 Segments in the observation vector, there are 2 possible 
ways: 

1. By using One-hot Style (This consumes 12 variables in the Observation 
Vector). The Vector will contain all zeroes except for the value of 1 at 
position 2.  

2. By using 1 float value. This can be done by dividing the value 2 (second 
segment) by 12 (total number of segments). In this case, no matter which 
segment is chosen, it will be divided by the total number of segments and 
will only consume 1 position in the Observation Vector. 

Despite that the second option may seem more intuitive to reduce the 
complexity of the problem, it turned out during training that the neural 
network can identify in an easier way categorical information when conveyed 
in one-hot style. Of course, when we only have 3 categories for example instead 
of 12, there wouldn’t be great difference between both representations. 
Therefore, Categorical information in the range of (10-20) items, is best 
represented in the observation vector using One-hot style. 
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- Time Horizon Hyper parameter  

During the several trials done throughout the training of agents, finetuning 
the hyperparameters was regarded a crucial factor to success. One of these 
important hyperparameters was time_horizon. According to ML—Agents the 
definition of time-horizon is: How many steps of experience to collect per-
agent before adding it to the experience buffer [90].  

When this limit is reached before the end of an episode, a value estimate is 
used to predict the overall expected reward from the agent's current state. As 
such, this parameter trades off between a less biased, but higher variance 
estimate (long time horizon) and more biased, but less varied estimate (short 
time horizon).  

It turned out that, it is possible to adjust this parameter to lower its value in 
repetitive processes. On the contrary, in phases that have too many details 
that aren’t replicated, it is required to increase its value as much as possible 
in order to capture all these events during training.  

For instance, in lower bricks phases, since the radius remains constant, it is 
possible to consider each brick level as an event that is repeated along the 
episode several times. Therefore, value of time horizon could be equal to the 
number of steps needed to complete only one level of bricks.  

On the other hand, in Phase Dome Creation, since every level has its own 
unique properties, it is required to increase the time horizon to a much larger 
value. 
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2.10. Conclusion and Future Research 
In this research, a proposed framework for automating design and 
construction processes has been presented. This framework was inspired by 
the achievements of RL Algorithms in gaming industry as well as the modern 
advancements in simulation environments supported by game engines.  

Through the proper transformation of real case constraints into the 
simulation environment, the designer could have a new role in this 
framework. This role is mainly concerned with supervising the training 
process of AI agents that learn how to execute this project through exploring 
the simulated environment.  

These agents by the help of RL Algorithms could learn simultaneously the 
design and construction of structures in the simulated environment. This 
learning process is directed by a reward system that is set by the designers 
prior to the training process. Once trained properly, the agents are able to 
deploy their experience on site by the help of robotic execution. These AI-
Agents then become the brain that directs these robots on site on what to do. 

Eventually, the team of designers and engineers would form a new 
modernized “Master Builder”, that supervises his crafts men on site (agents 
in the simulation environment) in order to later convey the proper 
instructions to the labor force (the execution robots). 

As a proof of concept, RoBuilDeR application was developed in Unity 
Platform and ML-Agents framework was used for RL training of the agents. 
The Game objective is 2 design and construct a Brick Pavilion inspired by the 
pantheon’s dome.    

2 Versions of the game were provided. The UV (Human Version) is for the 
designer to check the simulated environment and adjust its parameters and 
the RV (Robot Version) that is considered the learning playground for the AI-
Agents.  

Proximal Policy Algorithm (PPO) was used to train the Agents. The complete 
project was divided into 5 phases to reduce its complexity for the Agents. 
During the training process, several methods were adopted to facilitate the 
learning process of the Agents. Examples of these processes include: 
curriculum learning, curiosity module, parallel training of several instances, 
random generation of environment parameters, generalization of observation 
parameters etc. Finally, the 5 phases were integrated together in the inference 
phase and the results were discussed. 

There are several topics in this research that are still open for development 
and improvement. For instance, regarding the division of the project into 
phases, perhaps with bigger scale projects the use of hierarchical 
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reinforcement learning could be a solution instead of the “manual" process 
that has been done here. 

Hierarchical Reinforcement Learning (HRL) enables autonomous 
decomposition of challenging long-horizon decision-making tasks into 
simpler subtasks. During the past years, the landscape of HRL research has 
grown profoundly, resulting in copious approaches. [91]. 

Furthermore, there are some additional design parameters that were not 
included in this research but are still under development. An example is 
sunlight analysis and better checking of “design gaps” through mesh analysis 
and calculations of normal vectors to mesh faces. This method could 
transform the bricks into meshes. Then a plenty of analysis can be executed 
based on the rich data that meshes convey, 

 
Figure 148: Mesh Creation out of brick Pattern (Under Development) 

Accordingly, this research has drawn the attention to some points that would 
eventually lead in the near future to major disruptions in the AEC industry. 
The following points summarizes some of these ideas: 

• ML-Agents is still in its primary stage, however with increased 
implementation of RL state-of-the-art algorithms, many applications 
could be built up on top of it. Eventually, it would become as 
“grasshopper” is to “Rhino” but for deploying deep RL algorithms. 

• The continuous development of game-engines as well as the new 
direction towards the “Meta Verse” would drastically improve the 
qualities present in simulated environments and increase the “real” 
essence of them. Thus, less discrepancy would be found between what 
the Agent learns in the simulation and what it could face in real world 

• 3D GANs is also regarded as a new tool, that once properly developed, 
it is expected to significantly contribute to the faster development of 
new design ideas. It could also be linked with Agent-Based Learning 
methods like Deep RL. 
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To sum up, this new paradigm shift would essentially require in the first place 
a change in the mindset of modern designer and architects and rearrangement 
for their learning priorities. By acquiring the needed skills for these new tools 
and techniques they could lead the transformation process of our AEC 
Industry into a more modern version that is built on sustainability and agility. 
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Appendices 

Appendix A 
This Appendix includes video links for the RoBuilDeR: 

1. Human Version Explanation: 

https://youtu.be/banTFV1uat8 

2. Robot Version Training Steps  

https://youtu.be/CaVdg1k1oTQ 
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https://youtu.be/CaVdg1k1oTQ
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