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Introduction
Over 1 billion people in the world are estimated
to live with some form of disability, about 15%
of the global population [10]. People with dis-
ability experience poorer health outcomes, have
less access to education and work opportunities
and are more likely to live in poverty than those
without a disability [10]. There are two main in-
terventions to contrast the impact of disability
in daily life: rehabilitation and/or assistance.

Rehabilitation is a field that favors the devel-
opment of the potential of people with disabil-
ity and its main goal is the recovery of a phys-
iological function. When coming to motor re-
habilitation, the effectiveness of a rehabilitation
treatment and the consequent motor relearning
depend on several factors [5], such as repeatabil-
ity of the exercises, intensity and dosage of the
training, adaptation of the treatment to the pa-
tient (needs, status, recovery stage), customiza-
tion of the therapy and individualization, direct
involvement of the patient and motivation.

The purpose of assistance is complementary,
as it regards the support in activities of daily liv-
ing [8]. This introduces another important topic

in the context of disability: autonomy. The lack
of assistive services can make people with dis-
ability overly dependent on family members and
caregivers, causing economical and social inclu-
sion difficulties[3].

The continuous increase of people with dis-
abilities results in higher requests for rehabili-
tation and assistance [10]. Although the help
of specialists and caregivers for the care of peo-
ple with disability is always needed, the work-
load and cost required for rehabilitation and as-
sistance can be reduced through technological
support. Assistive technology has been demon-
strated to significantly improve the ability to
perform activity of daily living [3] alleviating
the issue of lacking autonomy. Rehabilitation
can benefit of technology as well, since it allows
to assess patients’ performances more accurately
than standard therapy, while providing a poten-
tially adaptable and repeatable environment [5].
Particularly for motor disabilities, rehabilitative
and assistive robots are increasingly integrated
into clinics [12] and industrially produced. In
fact, robots can be designed in order to adapt
to the patient needs while providing an effective
treatment and support.
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Figure 1: Human-exoskeleton system [5]

In medical robotics, exoskeletons are of par-
ticular interest, since they enable users to per-
form an action with their own body. An ex-
oskeleton system is a complex human-robot cou-
pled system (Figure 1) in which the wearer and
its exoskeleton interact both physically (physical
human-robot interaction) and cognitively (cog-
nitive human-robot interaction) [4].
There are many elements that compose an ex-
oskeleton system, depending on how much com-
plexity is considered in the design phase.

The hardware of an exoskeleton system is
mainly composed by actuators, sensors, passive
components and transmissions. Actuators are
the effectors of the system, and the means by
which exoskeletons are able to actively move.
Sensors constitute the perceptual interface be-
tween the exoskeleton and its environment. The
selection of hardware elements can be highly
user-specific [4], depending on users’ biomechan-
ics, financial resources and even their preference.

To make the exoskeleton perform as expected,
control solutions are implemented. Controllers
represent one of the cores of a robot: they en-
able the system to compensate for errors and
also act as an interface between physical hard-
ware and higher-level functions, such as plan-
ning. Many different controllers are used in re-
habilitation and assistance, both at low and high
level, and their implementation should adapt to
the user progress [5].

User interfaces and intention-detection strate-
gies are other crucial elements of an exoskeleton.

Interfaces enable users to interact with the sys-
tem, while intention detection strategies repre-
sent what is used by the exoskeleton control core
to derive the willingness of the user to perform a
task [7]. Both these functionalities come with a
great variety of alternatives, depending on user
capabilities and preferences.

Finally, higher-level control systems are nec-
essary for more complex functions. One exam-
ple is motion planning and execution of planned
trajectories in the workspace of the exoskeleton,
which are useful for repeated tasks like eating or
rehabilitation exercises [11][9]. However, when
possible, users often prefer to directly control
their actions, and this can be achieved by cou-
pling intention detection mechanisms and end-
effector or single joint control. These function-
alities require kinematic algorithms to pass be-
tween an environmental or user-centered refer-
ence system and a joint-space reference (config-
uration space).

To merge all these functionalities, a com-
plex architecture is required, often built on top
of a specific robotic platform. Architectures
for human-robot systems are usually considered
fixed and implemented as a whole for the par-
ticular scenario. However, this design practice
can load the development process, making it
hard to use already implemented solutions or
to select technologies from different manufactur-
ers. Completely custom solutions may also lower
the compatibility of the system with mainstream
and widespread technologies for people with dis-
ability, like smartphones and the internet. More-
over, both in rehabilitation and assistance, an
high level of customization of the human-robot
system is needed to adapt or update a previ-
ously implemented functionality to the evolution
of user needs.

Aim and structure of the work
The purpose of this work is to provide a proof
of concept for the construction of a modular
and adaptable software architecture, in partic-
ular addressed to an upper-limb assistive ex-
oskeleton.
First, the requirements of such architecture
will be described (Materials), focusing on how
they can be accomplished using standard and
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Figure 2: Robotic system architecture

widespread robotic frameworks. The architec-
ture will then be implemented (Methods) using
the described materials, and each of its elements
will be tested to assess its modularity, both in-
dependently and collectively, using a test-bench
and the BRIDGE exoskeleton (Results).

Materials
One of the cores of a modular architecture is the
software: a software architecture is a methodol-
ogy to structure, organize and assemble all el-
ements that compose a system. A software ar-
chitecture for robots interacting with people has
many requirements: i) it must be able to provide
an abstract description of the physical world of
the exoskeleton system, ii) to connect hardware
with different characteristics, iii) to switch be-
tween different control modalities, iv) to pro-
vide planning functionalities, v) to be able to
implement several different user interfaces and
intention - detection mechanisms, and vi) to
be able to easily allow adaptation to different
and changing user’s conditions. The architec-
ture should allow to run all these components
independently, in parallel and asynchronously.
That’s why, rather than a simple messaging pro-
tocol, a robust high level framework has been
selected: ROS2.

ROS is an open-source collection of libraries,
drivers and tools for building robot applications
[6]. Each single module of the ROS infrastruc-
ture constitutes a node: nodes are processes

that perform computation and that can be dy-
namically reconfigured by means of parameters.
Nodes communicate with one another through
ROS interfaces, that work by exchanging mes-
sages.

The general software architecture can be di-
vided into different elements and layers of ab-
straction (Figure 2).
First, a robot description is required to general-
ize the physical model of the robot (Figure 2,
on the right), providing information that can
be interpreted at all levels of the architecture
– from low-level to derive the single-joint spec-
ifications, to high-level where kinematic chains,
joint groups or visual information are used. In
ROS2, the description is arranged using the Uni-
fied Robotic Description Format (URDF), which
consists of a set of link and joint elements with
kinematic and dynamic properties, geometrical
information and collision models.

At the lowest level of the software architec-
ture, the hardware abstraction layer – imple-
mented by the ROS2 control framework – trans-
lates information at the control level to hard-
ware instructions and vice-versa (Figure 2, in
blue). The hardware abstraction consists of sev-
eral abstract components running in parallel:
each component interacts with a set of hardware
elements that must be made compatible with the
architecture, ensuring hardware modularity.

To achieve modularity and adaptation of the
control modality, also controllers’ implementa-
tion should be system-independent (Figure 2, in
yellow). Controllers in ROS2 communicate with
the hardware abstraction layer through special-
ized interfaces. Internally, they perform the
operations that implement the required trans-
fer function (e.g., PID control) between inputs
and outputs, as in a theoretical control sys-
tem. A controller manager node synchronizes
the different controllers by maintaining a unique
clock that determines the control-loop update
frequency; also, it manages the controller access
to hardware interfaces.

The higher-level control functionalities (Fig-
ure 2, in green) like planning and kinematic
transformations are provided by MoveIt2 [1],

3



Executive summary Dario Comini, Daniele d’Arenzo

which is compatible with ROS2 out of the
box. MoveIt functionalities include local min-
ima avoidance for planning, kinematic solvers,
collision and singularities checking and time-
parameterization of trajectories.
MoveIt2 architecture is composed by a central
node which can access environment character-
istics and its constraints, but can be extended
with plugins thus giving modularity to the ar-
chitecture.
The first high-level control modality is offline
planning, that is performed before the move-
ment execution. To demand an offline plan-
ning, a motion request is sent through user inter-
faces (GUIs or external hardware inputs). The
motion plan request includes planner preference
and parameters, motion constraints and final
pose of the robot. Offline planning is imple-
mented with a specialized node which combines
a path with planner adapters; the result is a
trajectory – a path bound by specific time con-
straints, joints velocity and acceleration for each
way-point (single trajectory points in the joints
space).
Another high-level control method is online
planning, which attempts to solve dynamic plan-
ning problems during movement execution. It
is implemented through an hybrid planning ar-
chitecture, combining a pair of global and local
planners that run in parallel and recurrently.
The global planner builds an offline trajectory
and shares the solution with the local planner
for further processing; the local planner manages
the offline trajectory, extracting way-points and,
with a local constraint solver, it tries to identify
obstacles. If no constraint is detected, the move-
ment toward the current way-point is assigned to
low-level controllers. Otherwise, the logic con-
sists in asking the global planner to calculate a
new trajectory.
A third method consists in the direct control of
the exoskeleton. This is done with a specialized
ROS node, which allows to stream end-effector
cartesian paths or joint space movements. Other
features include collision checking and singular-
ity avoidance.

Using ROS interfaces, users can interact with
the robotic system through a variety of human-
machine interfaces, such as robot visualizations,
simulations, GUIs and physical inputs.
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Figure 3: Overall architecture implementation

Methods
A software architecture was implemented from
the selected materials to satisfy the requirements
of assistive and rehabilitative robotics (Figure
3). We verified our designed architecture by
means of two sets of tests.

1. Horizontal experiments – designed on a
test-bench with three actuators (Figure 3,
bottom-right), or a simulation environment
(Figure 3, top-right) – consist in test-
ing each layer of the architecture indepen-
dently. The aim is to verify the ability of the
architecture to customize and adapt each of
its primary components (robot description,
hardware, controllers, planning, human-
machine interfaces...), while still conserving
the remaining functionality of the system.

2. Vertical experiments, designed on an assis-
tive exoskeleton (Figure 3, bottom-left) [3]
to test the whole architecture at once.
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tal experiments

Two abstract robotic descriptions were im-
plemented (Figure 3, top-right): i) a simple 1-
degree-of-freedom URDF model consisting of a
single continuous rotational joint has been used
to represent each stepper of the test-bench, used
for experiments on the hardware and control lay-
ers; ii) the BRIDGE upper-limb assistive ex-
oskeleton description, used for high-level con-
trol experiments. It has four revolute joints:
shoulder horizontal abduction/adduction (Joint
- J1), shoulder vertical flexion/extension (Joint
- J2), humeral rotation (Joint - J3) and elbow
flexion/extension (Joint - J4). Each joint has
also software-based customizable ranges of mo-
tion (position limits) and velocity limits, plus
reduction ratios and offsets which will be inter-
preted and used by the hardware abstraction.

Hardware abstraction Two different types
of drivers were used as interface with the hard-
ware: a Nanotec driver and an Arduino driver
[2]. Therefore, two abstract components were
designed to enable the architecture to commu-
nicate with the drivers, by means of USB serial
protocol (Figure 4).
The first horizontal experiments assess whether
the software architecture is able to support all
two drivers and three steppers, even in parallel,
demonstrating hardware modularity. Four ex-
periments were chosen for this purpose - control-
ling the actuators at equal or different velocities
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Figure 5: Control layer – horizontal experiments

and at equal or different positions. The evalu-
ation consists in assessing the outcome qualita-
tively: the focus is not on performances but on
the correctness of the execution.

Control layer Horizontal experiments for the
control layer aim at verifying if different control
modalities and schemes can be implemented. In
particular two main control modalities are ex-
amined: i) an open-loop controller (Figure 5,
forward controller) with position control; ii) a
closed-loop controller (Figure 5, PID controller)
with velocity control ẋ(t) and position error
feedback e(t):

ẋ(t) = Kp e(t) +Ki

∫ t

0
e(τ) dτ +Kd

de(t)

dt

Open/closed loop are tested with a single actu-
ator (Figure 5, Nanotec stepper), keeping the
hardware and hardware-abstraction fixed.

Planning layer For horizontal and vertical
experiments on planning functions, MoveIt2
operating parameters have been set: i) the
direct/inverse kinematic solver (KDL library,
using a joint-limit-constrained pseudoinverse
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Jacobian method); ii) the planning method
(OMPL library, an open source implementa-
tion of more than 40 different sampling-based
algorithms [13]); iii) planning adapters, which
fix start state bounds and time-parameterize
paths. Semantic description is then built with
joint groups, virtual joints, Collision Matrix
and robot poses.

All horizontal experiments for high-level
control modalities (planning layer) implement a
virtual robot (Figure 6, with fake hardware)

Offline planning tests are conducted re-
ceiving plan requests from user interfaces and
calculating trajectories considering collisions
and other constraints given by adapters. The
trajectory is then sent to controllers and vi-
sualization tools which display the path in a
three-dimensional virtual space. For the tests
to be successful, the virtual robot must reach
the correct end-configuration.

In direct control tests, a joystick is integrated in
the architecture by means of a software driver
that converts hardware inputs to adimensional
commands in the range [-1,1]. Before converting
Cartesian/joint commands from the joystick to
states in the joints space, a ROS node deals
with obstacles checking, singularity avoidance
and joint limits by accessing the planning scene
and joints current states. If everything checks
out, the resulting joints configuration is sent to
controllers as desired state. Finally, soft and
hard thresholds ensure that the exoskeleton
starts decelerating when a limit is about to
be reached. Direct control horizontal test are
passed if the joystick commands correspond to
the correct virtual robot movements.

Online planning tests are done with a cus-
tom local constraint solver: the implemented
new behaviour is comparable to a "fast switch"
system. The new logic consists in switching
from the execution of a planned movement
to joystick commands if the local constraint
solver detects a joystick input. Once joystick
commands end, the global planner re-plans
a trajectory from where the exoskeleton is
located. The logic is implemented with three
ROS nodes: two for motion planning (local
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Figure 6: Architecture for vertical and high-level
experiments

and global planner nodes) and one for handling
joystick commands. Online horizontal tests are
successful if the end-configuration is reached
and the joystick successfully deviates the
optimal trajectory as expected.

Vertical experiments In the vertical exper-
iments all layers of the architecture are inte-
grated (Figure 6, with real hardware). The
BRIDGE robot description is selected; hard-
ware abstraction layer implements four abstract
components for the exoskeleton; low-level con-
trol uses a close-loop controller with position
feedback, velocity/position commands, trajec-
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Figure 7: Control of different hardware, different
commanded velocities

tory interpolation capabilities and PID trans-
fer function (if required); all high-level control
modalities are used for the vertical experiments.

Results
Hardware abstraction Horizontal experi-
ments on hardware abstraction layer consist
in controlling the different actuators of the
test-bench with velocity or position commands.
The collected data shows that the 3 actuators
were able to successfully reach the correct com-
manded velocities or positions, whether giving
same signals to all actuators or a different signal
for each of them (Figure 7).
Hardware layer results demonstrate how multi-
ple hardware from different manufacturers can
be connected and controlled in parallel by the
same system.

Control layer To demonstrate the modular-
ity of control approaches, two different control
modalities, one open-loop and one close-loop,
have been tested.
The first test is done with a feed-forward posi-
tion controller and a temporary obstacle during
the movement; since the controller cannot re-
ceive feedbacks from the physical layer, the ac-
tuator couldn’t reach the proper position.
Subsequently, a feed-back PID controller is im-

Figure 8: Close-loop control using PID transfer
function, with an obstacle around 9.42 rad

plemented, which sends a velocity command
proportional to the error between current and
reference positions. In this case, the actuator
correctly continued the execution up to the de-
sired position despite the obstacle (Figure 8).
These qualitative results demonstrate the possi-
bility to modulate the control strategy according
to the choice and requirements of the applica-
tion.

Planning layer For horizontal planning and
direct control experiments, the hardware was
simulated and it behaves as an ideal sensor and
actuator. In offline planning and direct con-
trol modalities, the attempts in achieving a goal
state with and without an obstacle were all suc-
cessful (Figure 9-A). For online planning, the
correctness of switching between planning and
direct control is evaluated. Tests show that,
even with joystick and planner concurrency (fig.
9-B), the goal state is correctly reached.
In horizontal experiments on the direct control
modality, results point out that the Cartesian
path of the end effector (fig. 9-C) lies on the
same vertical plane, even though in some exper-
iments, the path deviates from the fixed coordi-
nate. This behaviour can occur due to singular-
ities avoidance. Indeed, in some situations the
system seems to try bending the elbow to avoid
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Figure 9: A: Offline planning; B: online planning
with planner - joystick concurrency; C: direct
control with joystick

outstretching the arm. Tests are performed both
with keyboard and joystick, with similar perfor-
mances.

Vertical experiments Vertical validation in-
volves the use of the whole architecture on the
BRIDGE exoskeleton, worn by a subject of 80
Kg. The subject was requested to interact with a
computer running virtual environment, and with
a joystick to directly control the exoskeleton.
Vertical experiments include: i) offline planning
with physical obstacles (table or bottle); ii) on-
line planning with direct subject intervention
through joystick; iii) drawing of a quadrilateral
in the plane Y-Z with direct control modality.
All previous high-level control tests had posi-
tive results: in all experiments the goal state is
reached or the movement functionality operates
correctly.

Discussion
This project demonstrates the possibility to im-
plement an architecture for exoskeletons, ei-
ther rehabilitative or assistive, following recent
robotic standards and an overall philosophy of
system modularity. All concepts were followed
while keeping the overall analysis tied to the
biomedical field, in particular the topic of motor
disability.
Specifically, this project focused on the cus-

tomization and cooperation capabilities of the
different elements that compose an exoskeleton
or human-robot system, such as decision system,
hardware, control system, high-level function-
alities and planning, intention-detection mech-
anisms, human-machine interfaces and user-
feedback. Qualitative results demonstrated that
an overall customization is possible to obtain,
still preserving a robust functionality for each of
the modules of the system.

The adoption of a standard software and a
modular design philosophy in rehabilitation and
assistance can help different realities and fields
of study to come together for a common ob-
jective; indeed, partitioning a complex problem
into simpler subsystems allows people with dif-
ferent backgrounds and knowledge to work sep-
arately and concentrate their expertise on tasks
they are proficient in.
The concept of a modular architecture is to fuse
all these individual elements into a single system
where they can be easily switched, composed to-
gether, customized and re-used, avoiding to re-
design the whole system over and over, and to
waste physical and mental resources.
However, systems that are designed to stay fixed
may display a greater connection between the
system components, as they can be optimally
designed for that particular instance. In many
cases, an integrated design can also help lower-
ing the prices, mostly for hardware, and this is
one of the main factors in the assistive scenario.
Therefore, some trade-offs are always present be-
tween the different design philosophies, and the
choice on how to implement each functionality
should depend on the context.

In the future, this proof of concept and ar-
chitecture design will be used by the Neuro-
Engineering And medical Robotic Laboratory
(NEARLab) for projects currently under devel-
opment. The final hope is that this work could
be an useful starting point for a more outlined
methodology on how to construct a modular
human-robot system, for both clinical and as-
sistive scenarios.
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