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ABSTRACT 

State of art and aims 

The interest in space exploration of the past 60 years has proven how humanity 

always tries to reach the impossible. Even though studying another planet different 

from Earth seemed unfeasible, nowadays the possibility of landing on Mars is 

becoming a concrete reality. However, such ambitious project comes together with 

unpleasant downsides, in terms of human’s health and adaptation in a microgravity 

environment. Of all the drawbacks while living in a place lacking gravity, we could 

list cardiovascular, respiratory, visual and musculoskeletal issues. Among these, for 

instance, many side effects regard Space Adaptation Syndrome, uneven ventilation, 

irregular perfusion, muscle deconditioning, atrophy and bone demineralization. For 

research purposes, a lot of projects tried to replicate and study the same specific 

environmental conditions found by the space travelers. Initially, the immersion in 

water was thought to be a logical model for reducing the pull of gravity on the body 

mass, but it soon resulted an impractical and inefficient method. Bed rest, whose 

longevity predates space exploration, later became a practical application to simulate 

the weightlessness conditions on ground. With the progress of Computer Science, 

also simulations via software (e.g., OpenSim) became a fundamental pillar in this 

context.  

 

To prevent deconditioning in future long-duration missions (LDMs), crewmembers 

still follow a specific training protocol pre-, in- and post-flight. Indeed, NASA is 

using the International Space Station (ISS) to learn more about physiological 

countermeasures. Both cardiovascular and resistive training are performed with 

specific exercise devices: CEVIS (Cycle Ergometer with Vibration Isolation and 
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Stabilization) and treadmill COLBERT are exploited for cardiovascular system 

health; the Advance Resistive Exercise Device (ARED) is used, instead, to prevent 

muscle atrophy and bone mineral loss. It simulates the use of free weights in 

microgravity by generating a constant load, which can be changed from 0 to 272.5 

Kg. ARED allows to carry out up to 29 exercises including Normal Stance Squat, 

Wide Stance Squat and Deadlift. This mechanical architecture is also combined with 

a brand-new motion capture system (MOCAP), namely BTS SMART-DX. The latter 

is going to collect kinematic data basing on passive markers placed on the 

cosmonauts’ body. 

 

This thesis is inserted in both research projects “MARcatori biologici e funzionali 

per la biomedicina aStronautica di PREcisione – MARS-PRE”, proposed by Italian 

Space Agency (ASI) and “ARED Kinematics – Biomechanical quantification of 

bone and muscle loading to improve the quality of microgravity countermeasure 

prescription for resistive exercise”, which involves European Space Agency (ESA), 

Neuroengineering and Medical Robotics Laboratory (NearLab) of Politecnico di 

Milano, Johnson Space Center (JSC) of National Aeronautics and Space 

Administration (NASA) and Kayser Italia. The first project aims to find biological 

and functional anticipatory makers of musculo-skeletal damage, which can occur 

while performing inaccurately the daily workout routine on ISS. Then, a real time 

system will interact and provide information/warnings on correct/incorrect 

performance execution. The second project, ARED-K, plans on improving the 

subject specific effectiveness of daily exercises on flight by estimating internal body 

loads.  

To reach these purposes, data collection using motion capture system and force 

plates during pre-, in- and post-flight is needed, as well as biomechanical analysis 

and statistical comparison of data collected. 

 

Currently, no inertial sensor data of exercises performed with ARED are available, 

but only kinematic ones (obtained by using the MOCAP system). For this reason, a 
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biomechanical model is needed to simulate sensors placement on body and extract 

analogues data. 

 

The present work hence focused on the following aims: (1) improvement of a model 

useful to conduct a biomechanical analysis of the human motion in microgravity 

conditions on ISS; (2) simulation of inertial sensors in different body points, thus 

obtaining acceleration signals related to correct and incorrect exercise executions; (3) 

the realization of a system based on machine learning classification that will interact 

and provide information/warnings on correct/incorrect performance during typical 

workout routine (e.g. when performing Normal Squat, Wide Squat and Deadlift); (4) 

Once chosen the most suitable ML algorithm, validation of a customized and subject-

specific classifier to recognize correct/incorrect exercise executions.  

 

Inertial sensors simulation, IMU data and experimental protocol  

OpenSim is the open-source software exploited to conduct the biomechanical 

analysis and the microgravity simulations. The platform allows, through to the 

“Analyze” tool, to simulate sensors placement on specific body points. The body 

points chosen were Sternum, Sacrum, Right Upper Thigh, Left Upper Thigh, Right 

Upper Shank and Left Upper Shank. In this way, simulated acceleration data can be 

extracted. The musculoskeletal model generally used for gait and running tasks is 

“Gait2392” but is not suitable for deep squatting exercises. In literature, the already 

validated “Catelli” model demonstrated to increase the ROMs especially for the knee 

joint, thus implying its usability for the motions considered in the current project. In 

particular, this model has been validated specifically for Squat exercises, which 

require higher ROMs for the knee joint with respect to gait and running. We also 

decided to verify the “Catelli” model validation of the research paper, successfully. 

To reach this purpose, we considered the simulated data coming from 6 subjects (3 

Males, Mean: 32.33 ± 3.06 years old, 79.96 ± 10.84 kg, 174.67 ± 8,50 cm height; 3 

Females, Mean: 31.33 ± 6.80 years old, 60.20 ± 7.56 kg, 161.83 ± 7.21 cm height) 

recruited at NASA JSC who performed 4 repetitions for each movement (Normal 

Squat, Wide Squat and Deadlift) using ARED.  
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As regards the real accelerations acquired through IMU sensors, instead, we started 

from the raw data (collected in Pavia) of another parallel thesis project inserted in the 

MARS-PRE research. From the work of Ravizza et al. (2020), no statistical 

differences are observed between kinematics of exercises performed with ARED and 

barbell. Consequently, the current thesis project relied on this pillar to conduct the 

acquisition step. The Electronic system used is made up of 6 different accelerometers 

(XSENS) placed in specific human body locations (1 on each thigh, 1 on each shank, 

1 on sternum and 1 on sacrum). Only 17 subjects were involved (9 Males, Mean: 

26.89 ± 5.73 years old, 64.22 ± 7.14 kg, 173.44 ± 4.25 cm height; 8 Females, Mean: 

25.38 ± 3.77 years old, 56 ± 6.31 kg, 163,14 ± 6.52 cm height). They performed a 

different number of repetitions (the range varies from 5 to 20, according to their 

physical capabilities) of Normal Squat, Wide Squat and Deadlift (similarly to those 

executed at NASA JSC) using barbell and weights (load within 50-75% of ISO-

MAX). These collected data were not simply referred to correct exercise execution, 

but also to a dataset of incorrect ones (always avoiding harming permanently or 

temporarily the physiological structures of the subjects recruited) which are approved 

by specialists of NASA JSC and by the Etic Committee of Politecnico di Milano. 

 

Data processing and classifier development  

Matlab R2019b was used to pre-process the IMU acceleration data. Raw data were 

initially filtered with a sixth-order Butterworth low pass filter, with a cut-off 

frequency of 5 Hz. After the removal of outliers and the extrapolation of only the 

meaningful data, every single exercise repetition was isolated and resized to an 

average value. These steps allow a quicker usage for the next part: Google Colab 

(based on python scripts) was employed to normalize, apply an algorithm able to 

solve imbalance classification issues and, eventually, to perform feature extraction 

and selection (PCA). The latter enables to reduce the feature set and it is applied to 

all the algorithms explored in this study (e.g., SVM, KNN, Decision Tree, XGBoost, 

MLP) except for the Convolutional Neural Network (CNN), which simply employed 

the already pre-processed data. These supervised learning approaches were 

developed and tested to perform a multi-label classification, in order to discriminate 
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correct and incorrect exercises (5 and 3 different inaccurate motions were classified 

for Normal/Wide Squat and Deadlift, respectively).  

 

Results and conclusions  

Biomechanical model suitable for ISS training exercise - The “Catelli” OpenSim 

biomechanical model, differently from “gait2392”, demonstrated to be a valid 

candidate in the ARED-K research project since it allows to reach, especially for the 

Knee joint, those Range of Motions (ROM) suitable for the specific training 

exercises (Normal Squat, Wide Squat, Deadlift) on ISS. 

 

Performance classification based on acceleration signals - The original dataset, 

containing 1314 features for six sensors (hence, 219 features for each of them), is 

reduced with PCA to 198, 216 and 152 features for Normal Squat, Wide Squat and 

Deadlift, respectively (thus describing at least 90% of data variance). SVM and CNN 

allowed, respectively, to reach discrete and reliable results in terms of accuracy: 

87.79% and 84.30% for Normal Squat; 86.38% and 86.91 % for Wide Squat; 83.76% 

and 82.05% for Deadlift. Further investigations are needed to enlarge the dataset and 

refine the classifier, but these preliminary results could be seen as an incentive to 

consider this approach a working solution. We strongly believe that augmenting the 

acceleration data collection, CNN would play a key role for real time biofeedback on 

ISS. Using Convolutional Neural Networks, different outputs coming from several 

combination of sensors were tested. Discrete outcomes were reached even with 

sensors placed in homolateral position (in particular, related to Sacrum, Left Thigh, 

Left Shank and Sternum body points). However, the final goal regard the 

introduction of IMU sensors to be used with ARED on ISS. In this case, the 

homolateral solution is not recommended since the asymmetry would imply the 

exclusion of feedbacks related to one body side (left or right, depending on the 

sensors placement). Anyway, discrete results in terms of accuracy using CNN have 

been observed with IMUs on the lower limbs (84.29% for NS, 81.68% for WS and 

76.92% for DL). Since customization is one of the MARS-PRE project’s aims, the 

current thesis isolated three subjects (among the 17 available of the IMU acquisition) 
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who performed the highest number of repetitions and studied them separately. 

Hence, the ML algorithms previously mentioned were employed to build a 

customized classifier suited for a single person and good accuracy results were 

obtained (3 Female subjects, mean: 25.00 ± 3.61 years old, 58.00 ± 6.08 kg, 166.33 ± 

3.21 cm height. Mean of accuracy for SVM and CNN, respectively: 98.61% ± 2.41% 

and 95.83% ± 4.17% for NS; 98.61% ± 2.41% and 87.5 % ± 4.17% for WS; 91.67% 

± 3.61% and 87.5% ± 10.83% for DL). In addition, IMU and simulated data show 

visible differences: training ML algorithms with the former and testing with the latter 

(and viceversa) is not a reliable approach. Consequently, training and testing steps 

have been conducted only on the simulated accelerations (with discrete accuracy 

results for both SVM and CNN: 90.00% and 80.00% for Normal Squat; 85.71% and 

71.43 % for Wide Squat; 75.00% and 75.00% for Deadlift), but the number of 

observations (almost 30 repetitions in total for each exercise) is too little, especially 

for the neural network. Unfortunately, the spread of Covid-19 virus imposed strict 

limitations thus excluding the possibility to increase the acquisitions for both IMU 

and simulated data.  

 

Outlines of Thesis  

The present work is structured as follow:  

• Chapter 1: description of physiological adaptations that occur during space 

missions; review and state of art of countermeasures and motion capture 

systems used on ISS.   

• Chapter 2: aim of the thesis.  

• Chapter 3: description of the software used for biomechanical modeling and 

to conduct the simulations.  

• Chapter 4: description of the set-up data collection and their processing; 

development and validation of a multi-label classifier.  

• Chapter 5: results and discussions.  

• Chapter 6: conclusions and future works.  

• Appendix A.  

• Appendix B.  
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SOMMARIO 

Stato dell'arte e obiettivi 

L'interesse per l'esplorazione spaziale relativa agli ultimi 60 anni ha dimostrato come 

l'umanità cerchi sempre di raggiungere l'impossibile. Nonostante lo studio di altri 

pianeti differenti dalla Terra sembrasse irrealizzabile, oggigiorno la possibilità di 

raggiungere Marte sta diventando una realtà sempre più concreta. Tuttavia, un 

progetto così ambizioso è imprescindibilmente legato a spiacevoli svantaggi, in 

termini di salute e adattamento ad un ambiente in microgravità. Tra tutti gli svantaggi 

nel vivere in un luogo privo di gravità, potremmo elencare: problemi cardiovascolari, 

respiratori, visivi e muscolo-scheletrici. Fra questi, ad esempio, molti effetti 

collaterali riguardano la Sindrome da Adattamento Spaziale, la ventilazione non 

uniforme, la perfusione irregolare, il decondizionamento muscolare, l'atrofia e la 

demineralizzazione ossea. Per scopi di ricerca, molti progetti hanno cercato di 

replicare e studiare le stesse condizioni ambientali trovate dai viaggiatori spaziali. 

Inizialmente, si pensava che l'immersione in acqua fosse un modello logico per 

ridurre l'attrazione di gravità sulla massa corporea, ma presto si è rivelata un metodo 

poco pratico e inefficiente. Il riposo forzato a letto, la cui longevità precede 

l'esplorazione spaziale, è diventato in seguito un'applicazione pratica per simulare le 

condizioni di assenza di gravità sulla Terra. Con il progresso dell'Informatica, anche 

le simulazioni via software (e.g. OpenSim) sono diventate un pilastro fondamentale 

in questo contesto. 

 

Per prevenire il decondizionamento nelle future missioni di lunga durata (LDM), i 

membri dell'equipaggio seguono perciò uno specifico protocollo di addestramento 

pre-, durante e post-volo. In effetti, la NASA sta utilizzando la Stazione Spaziale 
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Internazionale (ISS) per ottenere più informazioni riguardo le contromisure 

fisiologiche da adottare. Sia l'allenamento cardiovascolare sia quello resistivo 

vengono eseguiti con specifici dispositivi: sono a disposizione un cicloergometro, 

CEVIS (Cycle Ergometer with Vibration Isolation and Stabilization), ed un 

treadmill, COLBERT, per il mantenimento della salute del sistema cardio vascolare; 

l'Advance Resistive Exercise Device (ARED) viene invece utilizzato per prevenire 

l'atrofia muscolare e la perdita di minerali ossei. ARED simula l'uso di pesi esterni 

generando un carico costante, che può variare da 0 a 272,5 Kg. Consente inoltre di 

eseguire fino a 29 esercizi tra cui Normal Stance Squat, Wide Stance Squat e 

Deadlift. Tale architettura si integra anche con un nuovissimo sistema di acquisizione 

del movimento (MOCAP), ovvero BTS SMART-DX. Quest'ultimo raccoglierà dati 

cinematici sulla base di sensori passivi posizionati sul corpo dei cosmonauti.  

 

Questa tesi è inserita in entrambi i progetti di ricerca “MARcatori biologici e 

funzionali per la biomedicina aStronautica di PREcisione - MARS-PRE”, proposti 

dall'Agenzia Spaziale Italiana (ASI) e “ARED Kinematics – Biomechanical 

quantification of bone and muscle loading to improve the quality of microgravity 

countermeasure prescription for resistive exercise”, che coinvolge Agenzia Spaziale 

Europea (ESA), Neuroengineering and Medical Robotics Laboratory (NearLab) del 

Politecnico di Milano, Jhonson Space Center (JSC) of National Aeronautics and 

Space Administration (NASA) e Kayser Italia. Il primo progetto presenta come 

obbiettivo quello di trovare indicatori biologici e funzionali del danno muscolo-

scheletrico, che può verificarsi durante una imprecisa esecuzione della routine di 

allenamento quotidiana sulla ISS. Quindi, un sistema in tempo reale interagirà e 

fornirà informazioni/avvisi sull'esecuzione delle prestazioni corrette/non corrette. Il 

secondo progetto, ARED-K, prevede di migliorare l'efficacia degli allenamenti 

quotidiani individuali sulla ISS in modo soggetto-specifico, stimando le forze interne 

in gioco. Per raggiungere questi scopi, è necessaria la raccolta di dati utilizzando un 

sistema di acquisizione del movimento e piattaforme di forza (pre-, durante e post- 

volo). Verranno poi condotte delle analisi biomeccaniche e dei confronti statistici tra 

i risultati ottenuti. 
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Attualmente, dati provenienti da sensori inerziali (collezionati durante gli esercizi 

eseguiti con ARED) non sono disponibili, ma in compenso vi sono quelli cinematici 

(ottenuti utilizzando il sistema MOCAP). Per questo motivo, è necessario sviluppare 

un modello biomeccanico per simulare il posizionamento dei sensori sul corpo ed 

estrarre dati analoghi. 

 

Questo lavoro, perciò, si è quindi concentrato sui seguenti obiettivi: (1) 

miglioramento di un modello utile per condurre un'analisi biomeccanica del 

movimento umano in condizioni di microgravità sulla ISS; (2) simulazione di sensori 

inerziali in diversi punti del corpo, ottenendo perciò segnali di accelerazione relativi 

a corrette e scorrette esecuzioni di esercizi; (3) la realizzazione di un sistema basato 

sulla classificazione tramite algoritmi di Machine Learning che interagirà e fornirà 

informazioni/avvertimenti su performance corrette/non corrette durante la tipica 

routine di allenamento (e.g., quando si eseguono Normal Squat, Wide Squat e 

Deadlift), (4) Una volta scelto l'algoritmo di ML più adatto, validazione di un 

classificatore personalizzato e specifico per soggetto atto a riconoscere esecuzioni di 

esercizi corrette/non corrette. 

 

Simulazione sensori inerziali, dati IMU e protocollo sperimentale  

OpenSim è il software open-source utilizzato per condurre l'analisi biomeccanica e le 

simulazioni in microgravità. La piattaforma permette, grazie allo strumento 

“Analyze”, di simulare il posizionamento dei sensori su specifici punti del corpo. 

Quest’ultimi sono: sterno, sacro, coscia superiore destra, coscia superiore sinistra, 

stinco superiore destro e stinco superiore sinistro. In questo modo, è possibile 

estrarre i dati di accelerazione simulati. Il modello muscolo-scheletrico generalmente 

utilizzato per le attività di cammino e corsa è il "Gait2392", ma non è adatto ad 

esercizi quali lo squat profondo. In letteratura, il modello “Catelli” (già validato) ha 

dimostrato di aumentare i ROM articolari, soprattutto quelli relativi alla articolazione 

del ginocchio, permettendo così di sfruttarlo per i movimenti considerati in questo 

progetto di tesi. In particolare, questo modello è stato validato specificatamente per 

esercizi di Squat, i quali richiedono ROM più elevati per l'articolazione del 
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ginocchio, differentemente dal cammino e dalla corsa. Abbiamo anche deciso di 

verificarne la validazione, ottenendo esito positivo e conforme a quanto esposto nel 

paper di ricerca. Per raggiungere tale obbiettivo, sono stati considerati dati simulati 

provenienti da 6 soggetti reclutati al NASA JSC (3 Uomini, Media: 32.33 ± 3.06 età, 

79.96 ± 10.84 kg, 174.67 ± 8,50 cm altezza; 3 Donne, Media: 31.33 ± 6.80 età, 60.20 

± 7.56 kg, 161.83 ± 7.21 cm altezza), i quali hanno eseguito 4 ripetizioni per ogni 

tipologia di movimento (Nromal Squat, Wide Squat e Deadlift) usando ARED.  

 

Per quanto concerne le accelerazioni reali acquisite mediante sensori IMU, invece, 

abbiamo cominciato ad analizzare dati grezzi (raccolti a Pavia) di un altro progetto di 

tesi svolto in parallelo a questo ed inserito nella ricerca MARS-PRE. Dal lavoro di 

Ravizza et al. (2020), nessuna differenza statistica è stata osservata tra la cinematica 

degli esercizi eseguiti con ARED e quelli condotti con bilanciere. Di conseguenza, 

questo progetto di tesi si è basato su tale consapevolezza per condurre lo step relativo 

alle acquisizioni. Il sistema elettronico utilizzato (marca XSENS) per collezionare i 

dati di accelerazione è composto da 6 differenti accelerometri posti in differenti parti 

del corpo umano (1 su ogni coscia, 1 su ogni polpaccio, 1 sullo sterno. 1 sul sacro). 

Sono stati coinvolti solo 17 soggetti (9 Uomini, Media: 26.89 ± 5.73 età, 64.22 ± 

7.14 kg, 173.44 ± 4.25 cm altezza; 8 Donne, Media: 25.38 ± 3.77 età, 56 ± 6.31 kg, 

163.14 ± 6.52 cm altezza). Questi hanno eseguito un numero diverso di ripetizioni (il 

range varia da 5 a 20, in base alle loro capacità fisiche) di Normal Squat, Wide Squat 

e Deadlift (analogamente a quelli eseguiti al NASA JSC) usando bilanciere e pesi 

(con carico nel range 50-75% di ISO-MAX). I dati in questione non si riferiscono 

semplicemente alla corretta esecuzione degli esercizi, ma anche ad un dataset di 

allenamenti scorretti (evitando sempre di danneggiare in modo permanente o 

temporaneo le strutture fisiologiche dei soggetti reclutati), i quali sono stati approvati 

dagli specialisti della NASA JSC e dal Comitato Etico del Politecnico di Milano. 

 

Elaborazione dati e sviluppo classificatore 

Matlab R2019b è stato in seguito adoperato per pre-elaborare i dati IMU di 

accelerazione. I dati grezzi sono stati inizialmente filtrati con un filtro Butterworth 
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passa basso di sesto ordine, con una frequenza di taglio di 5 Hz. Dopo la rimozione 

di outlier e la considerazione di soli dati significativi, ogni singola ripetizione degli 

esercizi è stata isolata e ridimensionata a un valore di tempo medio. Questi passaggi 

consentono un utilizzo più rapido per la sezione successiva: Google Colab (basato su 

script python) è stata scelta come piattaforma candidata per normalizzare, applicare 

un algoritmo in grado di risolvere problemi di classificazione sbilanciati e, infine, per 

eseguire estrazione e selezione delle feature (PCA). Quest'ultimo step consente di 

ridurre il set delle feature ed è stato applicato a tutti gli algoritmi esplorati in questo 

studio (e.g., SVM, KNN, Decision Tree, XGBoost, MLP) ad eccezione della 

Convolutional Neural Network (CNN), che ha semplicemente utilizzato i dati pre-

elaborati. Tutti gli approcci di apprendimento supervisionato sono stati poi sviluppati 

e testati per eseguire una classificazione multi-label, al fine di discriminare esercizi 

corretti e scorretti (rispettivamente 5 e 3 movimenti imprecisi sono stati classificati 

per Normal/Wide Squat e Deadlift). 

 

Risultati e conclusioni  

Modello biomeccanico idoneo agli esercizi dell’allenamento sulla ISS - Il modello 

biomeccanico OpenSim “Catelli”, a differenza di “gait2392”, si è dimostrato un 

valido candidato nel progetto di ricerca ARED-K in quanto permette di raggiungere 

quei Range di Movimento articolari (ROM), in particolare per la articolazione del 

ginocchio, adatti per gli esercizi specifici di allenamento (Normal Squat, Wide Squat, 

Deadlift) sulla ISS.  

 

Classificazione delle prestazioni in base ai segnali di accelerazione - Il set di dati 

originale, contenente 1314 feature per sei sensori (quindi 219 feature per ognuno), 

viene ridotto con la PCA a 198, 216 e 152 feature, rispettivamente per Normal Squat, 

Wide Squat e Deadlift (descrivendo così per ognuno almeno il 90% della varianza 

dei dati). SVM e CNN hanno permesso, rispettivamente, di raggiungere risultati 

ammissibili e affidabili in termini di accuratezza: 87.79% e 84.30% per il Normal 

Squat; 86.38% e 86.91% per il Wide Squat; 83.76% e 82.05% per il Deadlift. Sono 

necessarie ulteriori indagini per ampliare il dataset e perfezionare il classificatore, ma 
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questi risultati preliminari potrebbero essere visti come un incentivo a considerare 

tale approccio una soluzione tangibile. Crediamo fermamente che ampliando la 

quantità di dati di accelerazione a disposizione, la CNN assumerà un ruolo chiave per 

un biofeedback in tempo reale sulla ISS. Utilizzando reti neurali convoluzionali, 

sono stati testati inoltre diversi output provenienti da svariate combinazioni di 

sensori. Risultati accettabili sono stati raggiunti anche con sensori posti in posizione 

omolaterale (in particolare, relativi ai punti del corpo dell'osso sacro, della coscia 

sinistra, dello stinco sinistro e dello sterno). Comunque, l’obbiettivo finale riguarda 

l’introduzione di un set-up composto da sensori inerziali IMU utilizzabili in 

combinazione con ARED. In tale scenario, la soluzione omolaterale è sconsigliata in 

quanto l'asimmetria comporterebbe l'esclusione dei feedback relativi ad un lato del 

corpo (sinistro o destro, a seconda del posizionamento dei sensori). Inoltre, usando la 

CNN, sono stati osservati risultati discreti in termini di accuratezza considerando 

sensori IMU posti sugli arti inferiori (84.29% per NS, 81.68% per WS e 76.92% per 

DL). Poiché la personalizzazione è uno degli obiettivi del progetto MARS-PRE, tre 

soggetti (fra i 17 disponibili) che hanno eseguito il maggior numero di ripetizioni 

sono stati isolati e studiati separatamente. Pertanto, gli algoritmi di ML 

precedentemente citati sono stati utilizzati per costruire un classificatore 

personalizzato adatto a una singola persona e buoni risultati di accuratezza sono stati 

ottenuti (3 Donne, Media: 25.00 ± 3.61 età, 58.00 ± 6.08 kg, 166.33 ± 3.21 cm 

altezza. Media di accuratezza per SVM e CNN, rispettivamente: 98.61% ± 2.41% e 

95.83% ± 4.17% per NS; 98.61% ± 2.41% e 87.5% ± 4.17% per WS; 91.67% ± 

3.61% e  87.5% ± 10.83% per DL). Inoltre, i dati IMU e quelli simulati mostrano 

differenze visibili: addestrare algoritmi di machine learning con il primo e testare con 

il secondo (e viceversa) non è un approccio affidabile. Di conseguenza, le fasi di 

training e test sono state condotte solo sulle accelerazioni simulate (con risultati di 

accuratezza discreti sia per SVM sia per CNN: 90.00% e 80.00% per il Normal 

Squat; 85.71% e 71.43 % per il Wide Squat; 75.00% e 75.00% per il Deadlift), ma il 

numero di osservazioni (in totale circa 30 ripetizioni per ogni tipologia di esercizio) è 

troppo basso, specialmente per la rete neurale. Sfortunatamente, la diffusione del 
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virus Covid-19 ha imposto rigide costrizioni escludendo così la possibilità di 

espandere il dataset sia relativo ai sensori inerziali sia a quello dei dati simulati. 

 

Struttura della tesi  

Il presente lavoro è strutturato come segue:  

• Capitolo 1: descrizione degli adattamenti fisiologici che si verificano durante le 

missioni spaziali; revisione e stato dell'arte delle contromisure e dei sistemi di 

motion capture utilizzati sulla ISS.  

• Capitolo 2: scopo della tesi.  

• Capitolo 3: descrizione del software utilizzato per la modellazione biomeccanica 

e per condurre le simulazioni.  

• Capitolo 4: descrizione del set-up adottato per la raccolta dei dati e loro 

successiva elaborazione; sviluppo e validazione di un classificatore multi-label.  

• Capitolo 5: risultati e discussioni.  

• Capitolo 6: conclusioni e sviluppi futuri. 

• Appendice A.  

• Appendice B. 



LIST OF CONTENTS 
 

XVII 

LIST OF CONTENTS 

ACKNOWLEDGEMENT ................................................................................................... III 

ABSTRACT .......................................................................................................................... IV 

SOMMARIO ......................................................................................................................... X 

LIST OF CONTENTS .................................................................................................... XVII 

LIST OF FIGURES ........................................................................................................... XX 

LIST OF TABLES ......................................................................................................... XXIX 

LIST OF ABBREVIATIONS...................................................................................... XXXII 

CHAPTER 1 STATE OF THE ART .................................................................................... 1 

1.1 PHYSIOLOGICAL ADAPTATIONS DURING LONG-TERM SPACE MISSION ............................................ 1 

1.2 SPACE ENVIRONMENT SIMULATION ON GROUND ............................................................................ 5 

Bed rest ........................................................................................................................................... 6 

Simulation of a LEAD for resistance training in microgravity environment via software .............. 8 

1.3 IN-FLIGHT COUNTERMEASURES ON ISS ........................................................................................ 10 

Target exercises on ISS ................................................................................................................. 15 

1.4 THE IMPORTANCE OF HAVING A REAL-TIME FEEDBACK ............................................................... 18 

Motion Capture (Mocap) System on ISS ....................................................................................... 22 

CHAPTER 2 AIM OF THE THESIS................................................................................. 31 

CHAPTER 3 OPENSIM 4.1 ®............................................................................................ 35 

3.1 FEATURES .................................................................................................................................... 37 

3.2 FILE MARKER (.TRC) .................................................................................................................... 37 

3.3 FILE .MOT .................................................................................................................................... 39 



LIST OF CONTENTS 
 

XVIII 

3.4 OPENSIM WORKFLOW .................................................................................................................. 40 

3.5 SCALING ...................................................................................................................................... 41 

3.6 INVERSE KINEMATIC .................................................................................................................... 45 

3.7 INVERSE DYNAMIC ...................................................................................................................... 48 

3.8 RESIDUALS REDUCTION ALGORITHM ........................................................................................... 50 

3.9 COMPUTERIZED MUSCLE CONTROL .............................................................................................. 55 

3.10 ANALYZE TOOL ......................................................................................................................... 60 

CHAPTER 4 MATERIALS AND METHODS ................................................................. 65 

4.1 EXERCISES ................................................................................................................................... 65 

Incorrectness of exercises executions ........................................................................................... 65 

4.2 OPENSIM MODELS USED ............................................................................................................... 69 

4.3 INERTIAL SENSORS SIMULATION .................................................................................................. 71 

4.4 IMU HARDWARE SET-UP ............................................................................................................. 74 

4.5 DATA COLLECTION AND DATA PROCESSING ................................................................................ 75 

4.6 METHODS CHOSEN IN THIS WORK ................................................................................................ 78 

Feature extraction ........................................................................................................................ 80 

Principal Component Analysis ..................................................................................................... 82 

Smote algorithm ........................................................................................................................... 87 

Support Vector Machine ............................................................................................................... 89 

K-Nearest Neighbors (KNN) algorithm ........................................................................................ 91 

Classification trees ....................................................................................................................... 94 

eXtreme Gradient Boosting (XGBoost) ........................................................................................ 96 

Feed-forward Artificial Neural Network (MLP, Multi-layer perceptron) .................................... 97 

Convolutional Neural Networks (CNN)...................................................................................... 101 

CHAPTER 5 RESULTS AND DISCUSSION ................................................................. 113 

5.1 OPENSIM MODEL COMPARISON ....................................................................................... 114 

5.2 IMU DATA ANALYSIS AND RESULTS ............................................................................... 123 

5.2.1 NORMAL SQUAT .............................................................................................................. 123 

Support vector machine (SVM) results.................................................................................................... 124 

Convolutional Neural Network (CNN) results ........................................................................................ 125 

5.2.2 WIDE SQUAT .................................................................................................................... 126 

Support vector machine (SVM) results.................................................................................................... 126 

Convolutional Neural Network (CNN) results ........................................................................................ 127 

5.2.3 DEADLIFT ........................................................................................................................ 128 

Support vector machine (SVM) results.................................................................................................... 129 

Convolutional Neural Network (CNN) results ........................................................................................ 130 



LIST OF CONTENTS 
 

XIX 

5.3 DIFFERENT SENSORS COMBINATIONS ............................................................................ 131 

5.4 CUSTOMIZED CLASSIFIER FOR SINGLE SUBJECT – EXAMPLES .................................... 133 

5.5 SIMULATED DATA ANALYSIS AND RESULTS ................................................................ 134 

5.5.1 NORMAL SQUAT .............................................................................................................. 137 

Support vector machine (SVM) results ................................................................................................... 137 

Convolutional Neural Network (CNN) results ........................................................................................ 137 

5.5.2 WIDE SQUAT .................................................................................................................... 138 

Support vector machine (SVM) results ................................................................................................... 138 

Convolutional Neural Network (CNN) results ........................................................................................ 138 

5.5.3 DEADLIFT......................................................................................................................... 139 

Support vector machine (SVM) results ................................................................................................... 139 

Convolutional Neural Network (CNN) results ........................................................................................ 139 

CHAPTER 6 CONCLUSIONS & FUTURE WORKS ................................................... 140 

6.1 FUTURE WORKS ......................................................................................................................... 143 

BIBLIOGRAPHY .............................................................................................................. 147 

APPENDIX A ..................................................................................................................... 155 

APPENDIX B ..................................................................................................................... 159 



LIST OF FIGURES 
 

XX 

LIST OF FIGURES 

Figure 1: fluid shift from the lower to the upper part of the body in weightlessness 

environment. This thoraco-cephalic fluid shift stimulates central volume carotid, 

aortic and cardiac receptors inducing an increase in diuresis and natriuresis and a 

decrease in plasma volume (Narici et al. 2007). On Earth, the arterial pressure is 

higher in the feet and lower in the head, 200 mmHg and 70 mmHg respectively. In 

orbit, instead, the situation changes: the gradient of pressure is almost absent, hence 

the brain is subjected to a higher pressure with respect to the one present in normal 

conditions (Hargens et al., 2012).................................................................................. 2 

Figure 2: astronaut is preparing to train underwater. Credits: NASA. ......................... 6 

Figure 3: fluid shift from the lower to the upper part of the body induced by real (a) 

and simulated weightlessness (b). As in spaceflight, cardiovascular deconditioning 

characterized by orthostatic intolerance is observed at the end of bed rest (Narici et 

al. 2007). ....................................................................................................................... 8 

Figure 4: image taken from the research paper. It shows the processes used in 

OpenSim and Matlab (a) Process for obtaining tracking objective data. (b) 

Optimization process using Matlab and OpenSim (Jong In Han, 2020). ..................... 9 

Figure 5: a photograph of the International Space Station (ISS). Credits: NASA. .... 10 

Figure 6: at the end of October 2020, 240 people from 19 countries have been on the 

International Space Station. More than 2,800 experiments have been conducted in 

space. Credits: NASA. ................................................................................................ 11 

Figure 7: node 3 configuration with the Advanced Resistive Exercises Devices 

(ARED) system. ......................................................................................................... 12 



LIST OF FIGURES 
 

XXI 

Figure 8: on the left, ARED/VIS module (Image Credit: NASA). The foot platform 

provides a support for the astronauts to perform their physical exercises and it is 

assembled with two force plates used to measure the Ground Reaction Forces 

(GRFs). Vacuum cylinders embedded in the system provide the force to the 

adjustable exercise bar, which includes the wishbone arm and the lift bar 

components. The load adjustment mechanism allows to simply modify the loads 

according to the needs of the space travelers. Vibration Isolation System (VIS) 

avoids any transmission of vibrations to the ISS by means of absorbing shocks. On 

the right, an astronaut is performing his own exercises using ARED (Image Credit: 

NASA). ...................................................................................................................... 13 

Figure 9: frontal (a) and lateral (b) views of correct squat position. Dashed green 

vertical lines originate from the toes. In frontal plane, knee joints remain laterally 

with respect to the lines; in sagittal plane, they stay behind the lines. The solid green 

line highlights the natural lordotic lumbar curve, which has to be maintained during 

squatting. Knee angle should be ≥ 90°. ..................................................................... 16 

Figure 10: lateral view of correct starting (a) and ending (b) positions of Deadlift. 

Dashed green vertical line originates from the shoulder: the bar must not pass that 

boundary line. Solid green line shows the correct upright position of trunk to be 

maintained during lifting. Dashed orange line, instead, points out the correct 

alignment of shoulder, hip and knee at the end of exercise. ...................................... 17 

Figure 11: standard ARED Photo/TV system field of view on ISS (from Ferchette et 

al., 2017). ................................................................................................................... 18 

Figure 12: processes used to train classification models (random forest and 

convolutional neural network–long short-term memory (CNN–LSTM)) via 

segmented repetitions of squats. ................................................................................ 20 

Figure 13: detailed map of convolution neural network (CNN) architecture for time 

series vibration classification. .................................................................................... 21 



LIST OF FIGURES 
 

XXII 

Figure 14: example of motion capture system used in filmography. ......................... 22 

Figure 15: TVCs cameras allow to recognize in a three-dimensional way the 

markers’ position in space. ......................................................................................... 23 

Figure 16: example of active and passive markers. .................................................... 24 

Figure 17: TVC of BTS-SMART system. .................................................................. 25 

Figure 18: kinect image processing example. Starting from the left: RGB image, the 

corresponding Depth-Map (center) and eventually the representation of the stick 

figure generated after the tracking phase (right). ....................................................... 26 

Figure 19: example of Depth Map representation. ..................................................... 27 

Figure 20: inertial Measurement Units (IMUs) can be considered a combination of 

these three devices: accelerometers, gyroscopes and magnetometers (left). An 

example of 9-axis IMU (Motion Tracking device) used for smartphones, tablets, 

wearable sensors, and other consumer markets (right)............................................... 27 

Figure 21: previous Elite-S2 camera placement (TVC1, TVC2, TVC3, TVC4) and 

available HD cameras (New Camera 1, New Camera 2, New Camera 3). (Ravizza, 

2018) ........................................................................................................................... 29 

Figure 22: layout of Node 3 with ARED and the Toilet Stall Deployed (Borrego et 

al., 2019) ..................................................................................................................... 30 

Figure 23: toilet Stall deployed in ISS Node 3 (Borrego et al., 2019). The second half 

of the toilet reached the ISS in October 2020.Its features and improvement will help 

NASA preparing for future missions, including those to the Moon and Mars. .......... 30 

Figure 24: thesis workflow. ........................................................................................ 34 

Figure 25: example of OpenSim model displayed via software. ................................ 36 

Figure 26: example of .trc file. ................................................................................... 38 



LIST OF FIGURES 
 

XXIII 

Figure 27: example of .mot file. ................................................................................ 39 

Figure 28: brief OpenSim workflow. ......................................................................... 40 

Figure 29: experimental marker positions are computed with MOCAP system (blue 

markers); virtual markers are placed manually on biomechanical model in anatomical 

correspondence (pink markers). Distances between experimental markers (ei) relative 

to the distances between virtual markers (mi) are used to compute scale factors. ..... 42 

Figure 30: inputs and outputs of the Scale tool. Experimental data are in green, 

OpenSim files (.osim). ............................................................................................... 43 

Figure 31: examples of the Scale interface used in the OpenSim Software. ............. 45 

Figure 32: input and output of IK tool. Experimental data in green; OpenSim files are 

in red; setting file are in blue; output of IK is in purple. Names are as example. ..... 47 

Figure 33: example of the Inverse Kinematic (IK) interface used in the OpenSim 

Software. .................................................................................................................... 47 

Figure 34: inputs and output of the ID tool. Experimental data in green; OpenSim 

files are in red; setting file are in blue; output of IK and ID are in purple. Name are as 

example. ..................................................................................................................... 49 

Figure 35: example of the Inverse Dynamics (ID) interface used in the OpenSim 

Software. .................................................................................................................... 49 

Figure 36: input and output of RRA tool. Experimental data are in green; OpenSim 

files are in red; setting file are in blue; output of IK and RRA are in purple. Names 

are as example. ........................................................................................................... 53 

Figure 37: examples of the Scale interface used in the OpenSim Software. ............. 54 

Figure 38: conceptual scheme explaining the CMC algorithm. ................................ 56 



LIST OF FIGURES 
 

XXIV 

Figure 39: from left to right it is shown the workflow to obtain muscle forces starting 

from data acquisition using MOCAP system and force plates. Kinematics data 

measured with MOCAP system (markers’ coordinates over time) are in light blue 

and they are used to compute IK, so that joint angles are obtained. Force data (GRFs 

and external forces) utilized to resolve the ID problem, which needs also joint 

angular accelerations obtained by deriving twice joint angles, are in green. In the 

end, complex algorithms estimate control actuators (muscle forces) using data 

obtained in the step before. ......................................................................................... 57 

Figure 40: inputs and outputs regarding the CMC tool. Experimental data are in 

green; OpenSim files are in red; setting file are in blue; output of IK and RRA are in 

purple. Names are as example. ................................................................................... 58 

Figure 41: examples of the CMC Tool interface used in the OpenSim Software. ..... 59 

Figure 42: example of set-up file for analyzing kinematics of desired points. Circled 

in black, specification of selected point on pelvis whose coordinates relative to global 

reference frame are specified. ..................................................................................... 63 

Figure 43: examples of the Analyze Tool interface used in the OpenSim Software.. 64 

Figure 44: incorrectness of squat. (a) Trunk is not kept straight, and this leads to 

bring the bar over the vertical lines of toes; dotted line projects shoulder joint on 

ground highlighting that the line ends in front of the toe. (b) Knees are brought 

closer; dotted lines show that knees and toes are not aligned. (c) Knees go over toes 

and heels are raised. Dotted line points out as knee overcomes toe. .......................... 67 

Figure 45: incorrectness of deadlift. (a) Trunk is rounded and this leads to start the 

exercise with hip and shoulder at the same level instead of having shoulder higher 

than hip. (b) Dotted line shows the vertical line passing from the shoulder; it is 

evident that the exercise start with bar in front of that line. (c) At the end of lifting, 

an excessive lumbar extension is performed, thus shoulder, hip and ankle are not 

aligned. ....................................................................................................................... 68 



LIST OF FIGURES 
 

XXV 

Figure 46: screenshot of ‘Catelli’ (left) and ‘gait2392_simbody’ (right) models 

performing a quat motion. ......................................................................................... 70 

Figure 47: lateral view of the Catelli model with virtual inertial sensors (pointed by 

the green arrows) placed on Sternum, Sacrum, Right Upper Thigh, Left Upper Thigh, 

Right Upper Shank and Left Upper Shank. ............................................................... 72 

Figure 48: accelerations along the three axes of the simulated inertial sensor placed 

on the Left Upper Thigh. ........................................................................................... 73 

Figure 49: IMU sensors placement for data collection. From left to right, 

respectively, we have lateral, back and frontal views. ............................................... 74 

Figure 50: raw acceleration data (x, y, z axis) WITH GRAVITY (just for filter 

explanation and clarity) coming from the IMU sensor placed on Sacrum (above) and 

filtered acceleration data (below). ............................................................................. 76 

Figure 51: outliers removed; only the meaningful data related to the repetitions of the 

same exercise have been considered. Initial and final static positions have been cut 

off. The figure represents, just for explanation clarity, an example of acceleration 

data WITH GRAVITY. ............................................................................................. 77 

Figure 52: plot showing detection of peak, start, and end points of repetitions through 

identifying neighboring zero-crossing values to the peak locations. The signal shown 

is the gyroscope Z signal from the left thigh during a Normal Squat exercise. ......... 78 

Figure 53: brief schematic explanation of the methods chosen for this work. .......... 79 

Figure 54:  example of the result of PCA in which the first two PCs are plotted; it is 

clearly visible how the data are mainly distributed along the first Principal 

component. Moreover, one can also observe how the two PCs are orthogonal. ....... 86 

Figure 55: example of the SMOTE algorithm functioning. ....................................... 88 



LIST OF FIGURES 
 

XXVI 

Figure 56: example of the separation surface of the maximum margin obtained with 

SVM applied for linearly separable data. The optimal hyperplane is shown in red; the 

maximum margin is represented in yellow; black dotted lines identify the support 

vectors for linearly separable data, whose formulas are expressed in blue and green. 

The two colors distinguish data belonging to the two classes. ................................... 89 

Figure 57: example of KNN. A bunch of already classified data (yellow and violet 

ones) are used by the algorithm to determine the classification of the new data 

considered (red star). In this example, if we choose K = 3 the star will join the Class 

B dataset; considering K = 6, instead, the new point will belong to Class A. ............ 92 

Figure 58: difference between Euclidean (full line) and Manhattan distance (dotted 

line), between two point in a plane. ............................................................................ 93 

Figure 59: example of Decision Tree structure. ......................................................... 95 

Figure 60: operation of a single unit in a neural network. .......................................... 98 

Figure 61: example of MLP. We can clearly observe the presence of input vectors, 

input nodes, hidden nodes and output nodes. ........................................................... 100 

Figure 62: example of CNN wiring exploiting spatially-local correlation. .............. 102 

Figure 63: three hidden units belonging to the same feature map. Weights of the 

same color are shared – constrained to be identical. ................................................ 103 

Figure 64: considering a filter size of 3x3x2 with no padding and stride of 2 along all 

the three directions, the complete feature map will consist of 15x15x2 neurons, i.e. 

450 neurons in total. Each neuron therefore will have ‘(3x3x2) x n +1’ free 

parameters. ................................................................................................................ 106 

Figure 65: max pooling example considering 2x2 filters and stride 2. .................... 106 

Figure 66: equations and graphical representation of ReLU. ................................... 107 



LIST OF FIGURES 
 

XXVII 

Figure 67: (Upper panel) Example of a classifier built using multi‐layer 

convolutional neural network. The last layer consists of a fully connected FFNN 

shaped as a cluster network (e.g., softmax). (Lower panel) Softmax connectivity. It 

“maps" a N‐dimensional vector of arbitrary real values to a N‐dimensional vector of 

real values in the range (0, 1) that add up to 1. This is obtained using normalized 

exponential activation as: zi = ePi/ ∑ ePj. ................................................................ 108 

Figure 68: the two graphs above show respectively the variation of both the left and 

right Hip joint angle with respect to the repetition progression of the Normal Deadlift 

(ND) exercise. In particular, the blue and orange lines represent the mean based on 4 

repetitions of the same motion, while the orange and blue ranges correspond to the 

standard deviation. The figure also shows the Maximum value of the two curves. 

This approach highlights the differences between the ‘Catelli’ and 

‘gait2392_simbody’. ................................................................................................ 117 

Figure 69: the two graphs above show respectively the variation of both the left and 

right Knee joint angle with respect to the repetition progression of the Normal 

Deadlift (ND) exercise. In particular, the blue and orange lines represent the mean 

based on 4 repetitions of the same motion, while the orange and blue ranges 

correspond to the standard deviation. The figure also shows the Maximum value of 

the two curves. This approach highlights the differences between the ‘Catelli’ and 

‘gait2392_simbody’ models. ................................................................................... 118 

Figure 70: the two graphs above show respectively the variation of both the left and 

right Ankle joint angle with respect to the repetition progression of the Normal 

Deadlift (ND) exercise. In particular, the blue and orange lines represent the mean 

based on 4 repetitions of the same motion, while the orange and blue ranges 

correspond to the standard deviation. The figure also shows the Maximum value of 

the two curves. This approach highlights the differences between the ‘Catelli’ and 

‘gait2392_simbody’ models. ................................................................................... 119 

Figure 71: the two graphs above show respectively the variation of both the left and 

right Hip joint angle with respect to the repetition progression of the Normal Squat 



LIST OF FIGURES 
 

XXVIII 

(NS) exercise. In particular, the blue and orange lines represent the mean based on 4 

repetitions of the same motion, while the orange and blue ranges correspond to the 

standard deviation. The figure also shows the Maximum value of the two curves. 

This approach highlights the differences between the ‘Catelli’ and 

‘gait2392_simbody’ models. .................................................................................... 120 

Figure 72: the two graphs above show respectively the variation of both the left and 

right Knee joint angle with respect to the repetition progression of the Normal Squat 

(NS) exercise. In particular, the blue and orange lines represent the mean based on 4 

repetitions of the same motion, while the orange and blue ranges correspond to the 

standard deviation. The figure also shows the Maximum value of the two curves. 

This approach highlights the differences between the ‘Catelli’ and 

‘gait2392_simbody’ models. .................................................................................... 121 

Figure 73: the two graphs above show respectively the variation of both the left and 

right Ankle joint angle with respect to the repetition progression of the Normal Squat 

(NS) exercise. In particular, the blue and orange lines represent the mean based on 4 

repetitions of the same motion, while the orange and blue ranges correspond to the 

standard deviation. The figure also shows the Maximum value of the two curves. 

This approach highlights the differences between the ‘Catelli’ and 

‘gait2392_simbody’ models. .................................................................................... 122 

Figure 74: IMU data with gravity of a Normal Squat exercise based on a sensor 

placed on the Sacrum (left). Corresponding IMU data without gravity (right). ....... 135 

Figure 75: example of OpenSim simulated data without gravity related to a Normal 

Squat exercise based on a biomarker positioned on the Sacrum. ............................. 135 

Figure 76: ‘Catelli’ model (upper left panel) and CAD of ARED (upper left panel) by 

Fregly et al. (2015). Our primitive version of their combination is shown in the lower 

part of the figure. ...................................................................................................... 144 

 



LIST OF TABLES 
 

XXIX 

LIST OF TABLES 

Table 1: lung function measurements performed in zero gravity (Prisk, 2019). ......... 3 

Table 2: historical overview of exercise countermeasure hardware available on ISS 

for ESA's eight long-duration missions to the International Space Station (ISS) (from 

Petersen et al., 2016). iRED: interim resistive exercise device; ARED: advanced 

resistive exercise device; TVIS: treadmill with vibration isolation and stabilization 

system; T2: 2nd generation treadmill; CEVIS: cycle ergometer with vibration 

isolation and stabilization system; VELO: Russian cycle ergometer. ....................... 12 

Table 3: table taken from the Jaehyun Lee’s research. It shows the squat 

classification performance of conventional machine learning (CML) and deep 

learning (DL) when considering five IMUs, two IMUs and one IMU. ..................... 19 

Table 4: table taken from the Ashish Shrestha and Ji Dang’s research. It shows 

specifically how the network is composed. ............................................................... 21 

Table 5: includes the most used MoCap systems together with their characteristics. 

Here we compare IMUs (e.g., XsensMVN), marker-based or marker-less (e.g., 

Kinect) camera systems, their advantages and disadvantages in order to evaluate how 

each sensors type is appropriate to the different applications. .................................. 28 

Table 6: example of threshold values used to evaluate RRA results for full body walk 

and run simulations. ................................................................................................... 53 

Table 7: example of threshold values used to evaluate CMC results for full-body 

walk and run simulations. .......................................................................................... 60 

Table 8: list of all the features extracted; each feature is related to one axis of a single 

sensor. ........................................................................................................................ 81 



LIST OF TABLES 
 

XXX 

Table 9: comparison of the different tree algorithms according to the studies and 

works headed by Chen and Guestin (2016. p.7, Table 1). .......................................... 97 

Table 10: the CNN was created ad-hoc to elaborate singularly the input coming from 

the different sensors and then combining all the results to classify the motion. The 

table shows the network parameters. ........................................................................ 111 

Table 11: each line of this numeric table shows the anonymous reference of a single 

subject recruited at NASA JSC. Each column refers to a specific right or left joint. 

The numbers refer to the ROM mean based on 4 repetitions of the same movement. 

In particular, here we consider the Deadlift (ND) exercise performed by the ‘Catelli’ 

model. ....................................................................................................................... 114 

Table 12: each line of this numeric table shows the anonymous reference of a single 

subject recruited at NASA JSC. Each column refers to a specific right or left joint. 

The numbers refer to the ROM mean based on 4 repetitions of the same movement. 

In particular, here we consider the Deadlift (ND) exercise performed by the 

‘gait2392_simbody’ model. The numbers circled in red represent ROMs that derive 

from MAXIMUM and/or MINIMUM values associable with OUTLIERS. ........... 114 

Table 13: each line of this numeric table shows the anonymous reference of a single 

subject recruited at NASA JSC. Each column refers to a specific right or left joint. 

The numbers refer to the ROM mean based on 4 repetitions of the same movement. 

In particular, here we consider the Wide Squat (WS) exercise performed by the 

‘Catelli’ model. ......................................................................................................... 115 

Table 14: each line of this numeric table shows the anonymous reference of a single 

subject recruited at NASA JSC. Each column refers to a specific right or left joint. 

The numbers refer to the ROM mean based on 4 repetitions of the same movement. 

In particular, here we consider the Wide Squat (WS) exercise performed by the 

‘gait2392_simbody’ model. The numbers circled in red represent ROMs that derive 

from MAXIMUM and/or MINIMUM values associable with OUTLIERS. ........... 115 



LIST OF TABLES 
 

XXXI 

Table 15: each line of this numeric table shows the anonymous reference of a single 

subject recruited at NASA JSC. Each column refers to a specific right or left joint. 

The numbers refer to the ROM mean based on 4 repetitions of the same movement. 

In particular, here we consider the Normal Squat (NS) exercise performed by the 

‘Catelli’ model. The value circled in red is due to a lack of data associated with the 

ankle. ........................................................................................................................ 116 

Table 16: each line of this numeric table shows the anonymous reference of a single 

subject recruited at NASA JSC. Each column refers to a specific right or left joint. 

The numbers refer to the ROM mean based on 4 repetitions of the same movement. 

In particular, here we consider the Normal Squat (NS) exercise performed by the 

‘gait2392_simbody’ model. The numbers circled in red represent ROMs that derive 

from MAXIMUM and/or MINIMUM values associable with OUTLIERS............ 116 

Table 17: summary containing all the accuracies obtained by the six different 

Machine Learning approaches. In general, SVM and CNN reached better results with 

respect to the other methods chosen. ....................................................................... 123 

Table 18: CNN accuracy results obtained by different combination of sensors when 

performing Normal Squat exercise. ......................................................................... 131 

Table 19: CNN accuracy results obtained by different combination of sensors when 

performing Wide Squat exercise. ............................................................................. 132 

Table 20: CNN accuracy results obtained by different combination of sensors when 

performing Deadlift exercise. .................................................................................. 132 

Table 21: number of single subjects’ observations. ................................................. 133 

Table 22: accuracy results summary for customized classifiers on single subjects. 134 

Table 23: number of simulated data observations. .................................................. 136 

Table 24: summary containing all the accuracies obtained by CNN and SVM 

algorithms when training and testing only with simulated OpenSim data. ............. 136



LIST OF ABBREVIATIONS 
 

XXXII 

LIST OF ABBREVIATIONS 

ANN    Artificial Neural Network 

ARED   Advanced Resistive Exercise Devices 

ASCR    Astronaut Strength, Conditioning and Rehabilitation 

ASI    Agenzia Spaziale Italiana 

ASIS   Anterior Superior Iliac Spine 

BOS   Bar Over Shoulder 

CEVIS   Cycle Ergometer with Vibration Isolation and Stabilization 

CMC   Compute Muscle Control 

CNN    Convolutional Neural Network 

CO    Correct 

DL (or ND)  Deadlift 

ESA    European Space Agency 

GRF   Ground Reaction Force 

HAR   Human Activity Recognition 

HB    Hyperextended Back 

HDBR   Head-down bed rest 

ID    Inverse Dynamics 

IK   Inverse Kinematics 

IMU   Inertial Measurement Unit 

IR   Infrared 

iRED    interim Resistive Exercise Device 

ISO-MAX   Maximal Isometric Strength 

ISS    International Space Station 

JSC    Johnson Space Center 

KNN    K-Nearest Neighbor 

KOT    Knees Over Toes 



LIST OF ABBREVIATIONS 
 

XXXIII 

KV    Valgus Knees 

LDM    Long Duration Missions 

LEAD   Lower Extremity Assistive Device 

MARS-PRE  MARcatori biologici e funzionali per la biomedicina 

aStronautica di PREcisione 

MLP  Multi-Layer Perceptron 

MOCAP  MOtion CAPture 

MSKM   Musculoskeletal Model 

NASA   National Aeronautics and Space Administration 

NS   Normal Squat 

PCA    Principal Component Analysis 

RB   Rounded Back 

RH    Raised Heels 

ROM    Range of Motion 

RRA    Residual Reduction Algorithm 

SIMM   Software for Interactive Musculoskeletal Modeling 

SVM    Support Vector Machine 

TVC    TeleVision Camera 

VIS    Vibration Isolation System 

WP    Word Package 

WS   Wide Squat 

XGBoost  Extreme Gradient Boosting 

 

 





CHAPTER 1 - STATE OF THE ART 
 

1 

CHAPTER 1 

STATE OF THE ART 

In this first chapter we will expose the current state of the art essential to understand 

the roots that led to the budding of the current project. 

 

1.1 Physiological adaptations during long-term space 

mission 

During the last decades, many experiments and analysis have been conducted on the 

physiological modifications related to microgravity environments. These studies 

were possible thanks to mankind aim of exploring the space around our planet. 

Humanity firstly started with missions around the Earth Orbit: just think about Yuri 

Gagarin, who completed in 1961 a single orbit of the Earth for the first time. After 

this important accomplishment, the idea of reaching farther distances became 

concrete and real. Therefore, short-term and, later, long-term spaceflight (typically 

six months) became feasible, implying a wide variety of psychological and physical 

stressors on the body, including (but not limited to) sustained levels of ionizing 

radiation, circadian shifts, microgravity, diet restriction, sleep deprivation, reduced 

physical work, confinement and isolation. Space Motion Sickness is experienced by 

60% to 80% of space travelers during their first 2 to 3 days in microgravity. It 

manifests clinically with symptoms similar to other forms of motion sickness (such 
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as malaise, fatigue, loss of appetite, nausea and vomiting) and it is a branch of the 

Space Adaptation Syndrome. The latter also includes facial stuffiness from headward 

shifts of fluids, headaches, and back pain (Heer et al. 2006). Among all the 

drawbacks and side effects while living in a place lacking gravity, we could list 

cardiovascular, respiratory, visual and musculo-skeletal downsides. 

 

Cardiovascular alterations from spaceflight begin immediately upon liberation from 

Earth's gravitational force. Prolonged exposure to microgravity and radiation yields 

profound effects on the cardiovascular system, including a massive cephalad fluid 

translocation and altered arterial pressure, which attenuate blood pressure regulatory 

mechanisms and increase cardiac output. Also, central venous pressure decreases due 

to the loss of venous compression. The stimulation of baroreceptors by the cephalad 

shift results in an approximately 10%–15% reduction in plasma volume, with fluid 

translocating from the vascular lumen to the interstitium (Vernice et al., 2020).  

 

 

Figure 1: fluid shift from the lower to the upper part of the body in weightlessness environment. This 

thoraco-cephalic fluid shift stimulates central volume carotid, aortic and cardiac receptors inducing an 

increase in diuresis and natriuresis and a decrease in plasma volume (Narici et al. 2007). On Earth, the 

arterial pressure is higher in the feet and lower in the head, 200 mmHg and 70 mmHg respectively. In 

orbit, instead, the situation changes: the gradient of pressure is almost absent, hence the brain is 

subjected to a higher pressure with respect to the one present in normal conditions (Hargens et al., 

2012). 
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As regards the ventilation apparatus, studies in microgravity condition have been 

performed and resulted in the so-called Slinky effect. The latter causes both uneven 

ventilation (through the deformation of lung tissue) and irregular perfusion (through 

a combination of the Slinky effect and the zone model of pulmonary perfusion). 

However, gravity serves to maintain a degree of matching of these two processes, in 

a way that the ventilation/perfusion ratio (and consequently the gas exchange) 

remains efficient. Therefore, gas exchange in spaceflight is quite similar to the one 

on Earth. Despite the changes in its function when gravity is removed, the lung 

continues to work properly in weightlessness without any apparent degradation even 

after 6 months in space (Prisk, 2014).  

 

Table 1: lung function measurements performed in zero gravity (Prisk, 2019).  

 

 

Considering the visual system, research projects lead by NASA compared two twin 

subjects spending time on ISS and on Earth, respectively. Increases in subfoveal 

choroidal thickness (the primary vascular supply of the outer retina) and peripapillary 
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total retinal thickness were observed (referring to the space traveler), thus indicating 

retinal edema formation. Moreover, the severity of the choroidal folds augmented 

during spaceflight. These ocular structure parameters were unchanged on ground for 

the whole duration of the study. Of relevance to these ocular alterations, untargeted 

proteomics revealed a decrease in urine leucine-rich alpha-2-glycoprotein (LRG1) 

levels inflight. LRG1 itself has been reported to play a role in retinal vascular 

pathology (X. Wang et al. 2013). The predisposition to develop these ocular changes 

during spaceflight has also been associated with B-vitamin status and the presence of 

specific single nucleotide polymorphisms (SNPs) (Zwart et al, 2016). Risk alleles in 

five SNPs predict incidence of ophthalmic issues (X. Wang et al. 2013), and six of 

the nine risk alleles are present in the twins (Zwart et al, 2016). Furthermore, serum 

folate, a B-vitamin that is often low in astronauts who experienced ophthalmic 

changes during flight (Zwart et al. 2012), was also low in both twins. 

 

Nowadays, a primary objective of the international space programs is to install 

permanently manned bases on the Moon and to undertake manned explorations of 

Mars within the next 5-10 years. For these projects to become a reality, the negative 

effects of microgravity on the human muscle system must be overcome. Indeed, 

since the beginning of the space-flight era, weightlessness was shown to lead to 

substantial changes of muscle function. These changes, globally defined as 

deconditioning, consist mainly of loss of muscle mass, force and power, increased 

muscle fatigability, and abnormal reflex patterns (for reviews see Ferretti et al., 

1997). They are due to a combination of factors among which an increased 

degradation of muscle proteins and substantial changes of the neuromuscular control 

of movement (both brought about by the absence of the constant pull of gravity) play 

a major role. Uninterrupted bed rest (see chapter 1.2 for further information on this 

topic) was found to be a suitable model to simulate the decrease in proteins synthesis. 

The researchers showed a 50% reduction in skeletal muscle protein synthesis during 

the first two weeks of bed rest (Ferrando et al., 1996). Hence, during long-term space 

missions, muscle deconditioning could limit the crews’ ability to work in space (or 

on the Moon/Mars surface) and to rapidly egress the spacecraft in an emergency 
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landing. Furthermore, muscle atrophy and weakness are of particular concern when 

the transition from zero to one g occurs, as the musculoskeletal system after several 

days/months in weightlessness has to bear suddenly the gravity force. 

 

There exists very limited data for determining the effectiveness of human health and 

performance countermeasures intended to preserve astronaut health during long 

duration space exploration missions. Exercise countermeasures used in the Space 

Shuttle Program and on the International Space Station do not eliminate bone loss or 

muscle deconditioning. Without an effective countermeasure, astronauts lose bone 

density at a rate of 1-2% a month, which may lead to early onset osteoporosis and 

place the astronaut at greater risk of fracture after returning to the earth’s 

gravitational field. 

 

1.2 Space environment simulation on ground  

With the advent of human spaceflight in 1961, thousands of research projects started 

to recreate the same specific environmental conditions found by the space travelers. 

In this way, trials could be performed also on Earth, thus augmenting the number of 

experiments feasible (avoiding the exclusivity in-flight). Initially, immersion in water 

was used as a logical model for reducing the pull of gravity on the mass of the body. 

However, it soon resulted impractical remaining in water for more than a day since it 

brought on unpleasant consequences.  



CHAPTER 1 - STATE OF THE ART 
 

6 

 

Figure 2: astronaut is preparing to train underwater. Credits: NASA. 

 

Following, a couple different approaches are listed: the first one refers to a practical 

and concrete replication, while the second relies on a simulation performed via 

software (Matlab and OpenSim). 

 Bed rest 

The history of bed rest predates spaceflight. In the nineteenth century, it was first 

introduced as a medical treatment, but then many noticed how resting was not the 

cure to every disease. 

 

In the early 1970s, cosmonauts coming back from longer missions complained to 

their medical staff about a hard time sleeping since they felt the sensation of slipping 

off the foot of the bed. The latter was raised till the astronauts perceived a horizontal 

sensation: in this way they could go back to sleep. Every night they lowered the foot 

of the bed a little, in order to restore their habitual preflight behaviors. Russian 

researchers took note of this observation and theorized that, perhaps, the head-down 
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position on Earth was closer to what the crew felt in space. The HDBR simulation 

model was born. 

 

Nowadays, bed rest studies allow scientists to analyze the adaptation of human body 

in weightlessness. HDBR is characterized by immobilization, inactivity, confinement 

and elimination of Gz (vertical axis) gravitational stimuli, such as posture change and 

direction (which affect body sensors and responses). These induce upward fluid shift, 

unloading the body’s upright weight, absence of work against gravity, reduced 

energy requirements and reduction in overall sensory stimulation. The upward fluid 

shift (by acting on central volume receptors) induces a 10–15% reduction in plasma 

volume. This leads to a now well-documented set of cardiovascular changes 

including modifications in cardiac performance and baroreflex sensitivity (which are 

identical to those in space). Moreover, calcium excretion is increased from the 

beginning of bed rest leading to a sustained negative calcium balance. 

Contemporarily, calcium absorption is reduced. In addition, body weight, muscle 

mass and muscle strength are reduced, as the resistance of muscle to insulin. Bone 

density, stiffness of bones of the lower limbs, spinal cord and bone architecture are 

altered. Also, circadian rhythms are dampened and may shift (Narici et al. 2007). 

 

Volunteers spend up to 70 days in bed with a six-degree head-down tilt. They have 

limited freedom of movement since they must eat, exercise, and even shower in the 

head-down position. In this way, their bodies adapt replicating almost the same 

environmental space condition. Continuously monitoring is fundamental to 

understand any possible body change together with the associated reason.  
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Figure 3: fluid shift from the lower to the upper part of the body induced by real (a) and simulated 

weightlessness (b). As in spaceflight, cardiovascular deconditioning characterized by orthostatic 

intolerance is observed at the end of bed rest (Narici et al. 2007). 

 

 Simulation of a LEAD for resistance training in microgravity 

environment via software 

During a generic human body motion, the gravitational acceleration prevents muscle 

atrophy by continuously generating a resistance of the movement, granting the 

possibility to maintain contact with the ground during walking (thereby producing a 

ground reaction force, GRF). However, during long time periods of space flights, 

many issues arise: among them, muscles atrophy itself must be taken into account. 

Indeed, the resistance force is barely generated when moving in a microgravity 

environment. In order to prevent this phenomenon, Lower Extremity Assistive 

Devices (LEADs) can be used to provide a specific resistance training. 
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While developing an assistive device for physical workout in weightlessness, it is 

necessary to select the types and locations of appropriate actuators and determine the 

control inputs to implement the desired task. In the design process, musculoskeletal 

simulations can be used to examine the actuator locations and acquire the 

corresponding control input, which enables the tracking of the desired motion data 

and muscle forces. 

 

The purpose of the simulation is allowing the human model to track the state 

variables (generalized coordinate, generalized speed, muscle activation and muscle 

fiber length) measured and predicted during 1 g normal motion with the assistance of 

an external actuator under microgravity conditions. Simulation for a LEAD in 

microgravity was performed in the research lead by Jong In Han (et al., 2020) with 

two platforms: Matlab and OpenSim (that allows to set at zero-g value the 

gravitational acceleration). 

 

 

Figure 4: image taken from the research paper. It shows the processes used in OpenSim and Matlab 

(a) Process for obtaining tracking objective data. (b) Optimization process using Matlab and OpenSim 

(Jong In Han, 2020). 
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Having in mind all the information explained so far, it is evident the importance of 

specific training plans pre-flight, in-flight and post-flight. Pre-flight exercises have 

multiple purposes: 

- support astronauts in maintaining an over-all fitness level. 

- collect data to tailor individually the in-flight training protocols. 

- prepare them by replicating the ISS exercise countermeasures.  

Post-flight exercise reconditioning is necessary to correct any alteration resulting 

from the microgravity adaptation and the re-adaptation to Earth’s gravity. However, 

in the current work we are going to briefly overview only the inflight phase.  

 

1.3 In-flight countermeasures on ISS 

The International Space Station (ISS) (figure 5) is a large spacecraft in orbit around 

Earth at an average altitude of approximately 250 miles and travels at 17,500 mph. 

The first piece of ISS was launched in November 1998.  

 

 

Figure 5: a photograph of the International Space Station (ISS). Credits: NASA. 
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Nowadays, it serves as a home where crews of astronauts and cosmonauts live, and it 

is used also as a unique science laboratory (due to the peculiarity of being in absence 

of gravity). Indeed, the areas of research cover different fields: biology, life science, 

development and validation of new technologies, astronomy and Earth observation. 

Several nations worked together to build and use the space station. The latter is made 

up of parts assembled directly in space by the astronauts. In particular, it consists of 3 

nodes: node 1 (Unity), that connects the U.S.A and Russian segments of the ISS; 

node 2, which connects the U.S.A, European and Japanese laboratories; node 3 

(Tranquility), whose aim is about providing habitation functions including hygiene, 

sleeping and training compartments. The last one is actually the most modern of ISS: 

it was built by the European Space Agency (ESA) and the Italian Space Agency 

(ASI) and it hosts the training area of the Station (figure 7). 

Hence, NASA is using the space station to learn more about living and working in a 

space environment. These lessons will make it possible to send humans at a farther 

distance from earth than ever before. 

 

 

Figure 6: at the end of October 2020, 240 people from 19 countries have been on the International 

Space Station. More than 2,800 experiments have been conducted in space. Credits: NASA. 
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Figure 7: node 3 configuration with the Advanced Resistive Exercises Devices (ARED) system. 

 

Innovation and progress allowed in the first two decades of the 21st century to 

improve the In-flight countermeasures exercise devices (as shown in table 2). 

 

Table 2: historical overview of exercise countermeasure hardware available on ISS for ESA's eight 

long-duration missions to the International Space Station (ISS) (from Petersen et al., 2016). iRED: 

interim resistive exercise device; ARED: advanced resistive exercise device; TVIS: treadmill with 

vibration isolation and stabilization system; T2: 2nd generation treadmill; CEVIS: cycle ergometer 

with vibration isolation and stabilization system; VELO: Russian cycle ergometer. 
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Among the devices, we could count:  

- Two cycle ergometers and two treadmills are available for cardiovascular 

exercises. The Cycle Ergometer with Vibration Isolation and Stabilization 

(CEVIS) and the VELOergometer provide workloads from 25-350 Watts and 

100-250 Watts, respectively. The 2nd generation of treadmill, namely COLBERT 

or T2, and the D-2 treadmill provide motorized speed up to 20.4 km/h and 20 

km/h, respectively. 

- Resistance exercise was previously performed by using the interim Resistive 

Exercise Device (iRED), which was later substituted by the Advanced Resistive 

Exercise Device (ARED) (figure 8) in 2009 because of its inefficacy on 

maintaining muscle mass, muscle strength and bone mineral density (Lang et al., 

2004; Trappe et al., 2009). 

 

 

Figure 8: on the left, ARED/VIS module (Image Credit: NASA). The foot platform provides a support 

for the astronauts to perform their physical exercises and it is assembled with two force plates used to 

measure the Ground Reaction Forces (GRFs). Vacuum cylinders embedded in the system provide the 

force to the adjustable exercise bar, which includes the wishbone arm and the lift bar components. The 

load adjustment mechanism allows to simply modify the loads according to the needs of the space 

travelers. Vibration Isolation System (VIS) avoids any transmission of vibrations to the ISS by means 

of absorbing shocks. On the right, an astronaut is performing his own exercises using ARED (Image 

Credit: NASA). 
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ARED simulates the use of free weights in microgravity by generating a constant 

load. The resistive force is supplied by two piston-driven vacuum cylinders with an 

adjustable load: from 0 to, approximately, 2670 N (0 to 272.5 Kg on Earth) for bar 

exercises. In order to avoid any transmission of forces to the ISS during exercising, 

the ARED is attached to the station with a Vibration Isolation System (VIS), which 

absorbs shocks thanks to springs and dampers. 

Moreover, ARED allows to carry out up to 29 exercises including Normal Stance 

Squat, Wide Stance Squat, Single Leg Squat and Deadlift. These exercises are 

performed by adding an external load as a percentage of individual maximal 

isometric strength (ISO-MAX) tested before flight. 

 

Currently, the training approach is planned ad-hoc specifically for each astronaut and 

includes mainly three phases (Petersen et al., 2016) with a gradual load increment: 

I.  Adaptation phase: starting from the second day (after arrival on ISS), 2-3 

weeks of cycle ergometer exercises are necessary. Initially, the astronaut is 

involved 1h per day, but later the training raises up to 2.5h per day. The 

intensity is relatively low. 

II.  Main phase: for 130 – 250 days, resistance exercise load has to be increased. 

Hence, every week the load itself is incremented by 3-5% of ISO-MAX, 

eventually reaching (at least) its 80%. Running and cycling speeds are 

enhanced always basing on the individual performance. 

III.  Preparation for re-entry phase: during the last 3-4 weeks of flight the loads of 

resistive exercises are maintained high. 

 

A critical drawback to be considered in a microgravity environment regards the body 

weight: the latter is not perceived as on Earth. The reason is related to a reduced (or 

absent) gravity acceleration. Therefore, the application of loads via the ARED bar 

becomes fundamental. At the moment, a replacement of almost 70-75% of body 

weight is used, basing on the personal experience and feedback of astronaut. 
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 Target exercises on ISS 

Normal Stance Squat, Wide Stance Squat and Deadlift can be considered actually the 

exercises generally performed on ISS during each astronaut’s training session. As 

previously mentioned, the ARED system allows the space travelers to undergo 

extensive physical preparation to guarantee correct performance, thus avoiding any 

injury or inefficacy of their workout. In order for the readers to have a better 

understanding of the whole process, a practical explanation regarding the optimal 

techniques of those exercises is reported below (Ravizza et al., 2020). Keep in mind 

that the exercises themselves and their execution is reviewed and approved by the 

NASA Astronaut Strength, Conditioning, and Rehabilitation (ASCR) specialists. 

 

Normal stance squat and wide stance squat 

The Normal Stance Squat, one of the main exercises used both in training and 

rehabilitation, guarantee to strengthen lower limb muscles and to assess ranges of 

motion. It is a closed kinetic chain motion task that involves hip and knee flexion 

together with ankle dorsiflexion. This movement implies both recruitment and 

synergy of several muscle groups, whose contraction and relaxation happens in 

specific motion phases. Beginning from a standing position and maintaining a 

straight trunk, the knees are flexed to reach an angle equal (or greater) than 90° and, 

after their extension, they reach the starting position again. 

As far as Wide Stance Squat is concerned, instead, it can be considered a variation of 

the Normal Stance Squat already explained. It involves, indeed, more muscles than 

the first one. While in the Normal Stance Squat the feet placement is closer (a 

separation similar to the shoulders’ one), the Wide Stance Squat requires more 

distance (a separation 1.5-2 times larger). Anyway, if both cases are performed with 

an inappropriate technique, they can provoke training inefficacy and/or several 

injuries (especially at levels of trunk and lower limb joints). 

To minimize the risks of trauma and ensure maximal lower limb muscles activation, 

an optimal squat technique (figure 9) requires: heels in contact with the floor (to 

prevent forward lean of the trunk); upright trunk to maintain spine in a neutral 
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position, with a slightly lordotic lumbar spine (pelvic anteversion); knees tracking 

over the toes (preventing to bring them closer and avoiding to overcome the vertical 

lines of the toes themselves); tibiae parallel to the upright torso; gaze forwards or 

upwards (Comfort et al, 2018; Braidot et al., 2007; Lorenzetti et al., 2018; Myer et 

al., 2014). 

 

 

Figure 9: frontal (a) and lateral (b) views of correct squat position. Dashed green vertical lines 

originate from the toes. In frontal plane, knee joints remain laterally with respect to the lines; in 

sagittal plane, they stay behind the lines. The solid green line highlights the natural lordotic lumbar 

curve, which has to be maintained during squatting. Knee angle should be ≥ 90°. 

 

Deadlift 

Deadlift is a training exercises commonly known and used to develop strength of 

trunk muscles. High risk of back injuries is possible when performing this complex 

motion incorrectly. The optimal deadlift technique (figure 10) requires an initial 

starting position in partial squatting, with natural width of feet and arms coming 

down outside the legs to reach the bar. Then, hip and shoulders have to be lifted at 

the same time maintaining a natural position of the spine. 
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Similarly to the squat exercise, also in this case it is necessary to respect some rules 

to avoid inefficacy of training and/or injuries: hip joints must be higher than knees, 

thus preventing forward lean of the trunk; upright trunk has to maintain spine in a 

neutral position; shoulder blades have to be adduced slightly in front of bar; one have 

to gaze forwards; knees must be tracking over the toes (preventing to bring them 

closer and avoiding to overcome the vertical lines of the toes themselves). 

 

 

Figure 10: lateral view of correct starting (a) and ending (b) positions of Deadlift. Dashed green 

vertical line originates from the shoulder: the bar must not pass that boundary line. Solid green line 

shows the correct upright position of trunk to be maintained during lifting. Dashed orange line, 

instead, points out the correct alignment of shoulder, hip and knee at the end of exercise. 
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1.4 The importance of having a real-time feedback 

Currently, inside the ISS, the ARED Photo/TV system (figure 11) is used in order to 

get a real time audio/video communication between the ground team and the 

astronauts during the training session. As we have already anticipated, feedbacks and 

recommendations are the main keys to maintain physical integrity. However, NASA 

and ESA are planning to travel for farther distances in terms of space missions: 

indeed, Mars is a target planet that humanity wants to reach and study. Of course, to 

succeed in the mission, a long journey will be necessary and the distance from Earth 

would increase significantly. Therefore, longer communication delays are expected, 

thus implying the inefficiency (due to the time delay itself) of those recommendation 

just mentioned above (Linh Vu et al., 2018). Consequently, it would be fundamental 

a specific tool able to provide real-time instructions and correction feedbacks for the 

space travelers without considering the human coaching anymore. In this way, we 

maintain intact the important aims about preventing possible injuries and optimizing 

the overall muscle strength outcomes. 

 

 

Figure 11: standard ARED Photo/TV system field of view on ISS (from Ferchette et al., 2017). 
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To achieve this purpose, on the ISS a computerized system able to detect and analyze 

each exercise repetition could implemented to grant a real-time corrective 

biofeedback. In the current thesis project, we tried to compare different Machine 

Learning tools combined with the data extracted from OpenSim (see chapter 3 and 4 

for further information). Hence, the following paragraphs will describe the state of 

the art regarding different ML approaches for both offline and real time signals 

classification. As we are about to observe, those algorithms are used in many 

different applications and for various goals.  

 

A first example can be seen in the 2020 article ‘’ Automatic Classification of Squat 

Posture Using Inertial Sensors: Deep Learning Approach’’ by Jaehyun Lee et. al, the 

squat posture classification performance of deep learning was compared to that of 

conventional machine learning. Accelerometer and gyroscope data were collected 

from 39 healthy participants using five inertial measurement units (IMUs) attached to 

the left thigh, right thigh, left shank, right shank, and lumbar region. Each participant 

performed six repetitions of an acceptable squat and five incorrect forms of squats 

that are typically observed in inexperienced exercisers. The accuracies of squat 

posture classification obtained using conventional machine learning and deep 

learning were compared. 

 

Table 3: table taken from the Jaehyun Lee’s research. It shows the squat classification performance of 

conventional machine learning (CML) and deep learning (DL) when considering five IMUs, two 

IMUs and one IMU. 
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Each result was obtained using one IMU or a combination of two or five IMUs. 

Overall, the deep learning approaches demonstrated to be superior with respect to 

outcomes obtained using conventional machine learning (for both single and multiple 

IMUs). 

 

Figure 12: processes used to train classification models (random forest and convolutional neural 

network–long short-term memory (CNN–LSTM)) via segmented repetitions of squats. 

 

A second example is shown in the research of Ashish Shrestha and Ji Dang on a 

‘Deep Learning-Based Real-Time Auto Classification of Smartphone Measured 

Bridge Vibration Data’.  
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Figure 13: detailed map of convolution neural network (CNN) architecture for time series vibration 

classification. 

 

In this study, a simple and customizable convolution neural network framework (for 

further information on CNNs see chapter 4) was used to train a vibration 

classification model that can be integrated into the measurement application in order 

to realize accurate and real-time bridge vibration status on mobile platforms. The 

inputs for the network model are basically the multichannel time-series signals 

acquired from the built-in accelerometer sensor of smartphones, while the outputs are 

the predefined vibration categories. 

 

Table 4: table taken from the Ashish Shrestha and Ji Dang’s research. It shows specifically how the 

network is composed. 

 

Both examples afore explained used acceleration data with gravity and did not 

consider external loads, differently from the current thesis project.  



CHAPTER 1 - STATE OF THE ART 
 

22 

 Motion Capture (Mocap) System on ISS 

Motion Capture (also named as MO-CAP or MOCAP) is the process of digitally 

record the movement of people. It is used in entertainment, sports, medical 

applications, ergonomics and robotics. In film-making and game development, 

instead, it refers to recording actions of actors for animations or visual effects. A 

famous example of a movie with lots of motion capture technology is “Avengers: 

end game” (figure 14). 

 

 

Figure 14: example of motion capture system used in filmography. 

 

As regards the engineering and biomechanical world, this method permits to acquire 

kinematics data: joint positions, velocities, accelerations and angles. The analysis of 

those parameters allows to obtain biomechanical information about the 

musculoskeletal system during the execution of a motor task. 

 

Three different branches of human motion tracking technologies (used for the whole 

body or just for a specific part of it) can be listed as follows:  

- Marker-based systems. 

- Depth camera-based systems. 

- Sensor-based systems. 
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Marker-based motion capture systems have been used as the main tool in capturing 

motion for years. They are very pricey, lab-based and beyond reach of many 

researchers, hence they cannot be applied to ubiquitous applications. This kind of 

device exploit optoelectronic measurement systems (OMSs), markers located on the 

subject's body surface and a set of television cameras (TVCs). Every marker must be 

“seen” by at least one pair of TVCs: this allows to recognize in a three-dimensional 

way the markers’ position in space (in terms of x y z, with respect to the reference 

axis or the laboratory axis).  

 

Figure 15: TVCs cameras allow to recognize in a three-dimensional way the markers’ position in 

space. 

 

These markers are actually little spheres which can be passive (hence coated with 

reflective substances) or active (able to emit lights by themselves).  
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Figure 16: example of active and passive markers. 

 

In order to have a better understanding of their differences, advantages and 

disadvantages are described below.  

 

Advantages passive markers: 

- Freedom of movements: neither cables nor batteries are needed.  

- Absence of heat. 

- “Unlimited” number of markers feasible since they do not need a power 

supply. 

- Their functioning is independent from the number placed on the subjects. 

- It is feasible to carry out evaluations both in total and specific body parts.  

 

Disadvantages passive markers:  

- Need of coaxial illuminators. 

- Non-automatic labeling.  

- Higher costs with respect to the active ones. 

- Non-usable in open spaces: different noise sources must be considered such 

as sunlight, which can alter data acquisition.  

- Proper calibration is needed to optimize and increase the accuracy. 
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Advantages of active markers: 

- Automatic labeling: markers light up according to the position on the body.  

- Real time tracking: immediate identification and representation on the laptop.   

- Noise reduction: light is not a reflection that can be easily affected by noise.  

 

Disadvantages active markers:  

- Encumbrance and limitation of movements.  

- Positioning time: the need also a power supply to be placed.   

- Heat.  

- Synchronization between markers since a certain lighting sequence is needed 

for their tracking. 

- Adequate sampling frequency. 

 

Examples of OMSs (used to perform kinematic analysis and scientific experiments 

with astronauts, on Earth and/or on ISS) are ELITE-S2, CODAmotion and BTS-

SMART (figure 17). 

 

 

Figure 17: TVC of BTS-SMART system. 

 

Later, depth camera technologies introduced a new type of devices: we are talking 

about a motion capture system which is marker-less (yet cheaper), more portable and 
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quicker to setup. Among all the depth cameras emerged over the last years, the most 

notably are Structured Light (SL)-based and Time-Of-Flight (ToF)-based cameras. 

Indeed, recent Kinect v2, based on ToF technology, embeds an optical apparatus 

consisting of an RGB camera and a double infrared (IR) depth sensor. The latter is 

composed of an infrared projector and a camera sensitive to the same band, which in 

practice reads what is detected by infrared rays. 

Kinect deduces the position of the body through relying on the following two steps: 

1) A depth map is built using the structured light analysis created by the infrared 

emitter.  

2) The position is inferred using specific tracking algorithms. 

 

Figure 18: kinect image processing example. Starting from the left: RGB image, the corresponding 

Depth-Map (center) and eventually the representation of the stick figure generated after the tracking 

phase (right). 

 

In the first phase, Kinect obtains 3D information coming from the analyzed scene, 

thus creating a depth that allows to discriminate objects closest to the Kinect 

compared to those further away. Each pixel is associated with a specific distance 

from the camera, representing reality and creating the so-called “depth map”. 

Specific algorithms allow to quantify this distance and correlate the information with 

the original video image. Once a depth image has been obtained, the next processing 

step consists of a tracking operation. The latter is entirely carried out by the software 
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where the main body segments, together with their position and orientation, are 

identified.  

 

Figure 19: example of Depth Map representation. 

 

Eventually, sensor-based systems do not comprehend cameras, but sensors that rely 

on the inertia principle. Motion sensors are composed typically by accelerometers 

(which measure linear acceleration in m/s2 and they are built on 3 axis), gyroscopes 

(which measure angular velocities in degrees/sec) and magnetometers (that measure 

magnetic field strength in uT, namely micro Tesla, or Gauss, since 1 Gauss is equal 

to 100 uT). Initial sensors are typically called 6-axis IMU (inertial measurements 

units comprising gyroscopes and accelerometers) or 9-axis IMU (including 

accelerometer, gyroscope and magnetometer). 

 

Figure 20: inertial Measurement Units (IMUs) can be considered a combination of these three devices: 

accelerometers, gyroscopes and magnetometers (left). An example of 9-axis IMU (Motion Tracking 

device) used for smartphones, tablets, wearable sensors, and other consumer markets (right). 
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Table 5: includes the most used MoCap systems together with their characteristics. Here we compare 

IMUs (e.g., XsensMVN), marker-based or marker-less (e.g., Kinect) camera systems, their advantages 

and disadvantages in order to evaluate how each sensors type is appropriate to the different 

applications. 

 

 

 

The first MOCAP system installed on board of ISS was ELITE-S2 (Ferrigno et al., 

2003), but recently NASA managed to install a new heir: the BTS-Smart system, 

previously mentioned. The same device is also available in Politecnico di Milano and 

will allow to obtain useful information through the comparison of data acquired on 

ISS with the ones collected on ground.  
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Figure 21: previous Elite-S2 camera placement (TVC1, TVC2, TVC3, TVC4) and available HD 

cameras (New Camera 1, New Camera 2, New Camera 3). (Ravizza, 2018) 

 

Also, NASA programmed to install a new toilet in node 3. In February 2019, the 

Toilet Stall hardware was deployed on ISS (only the first half of the project could be 

completed at this time). The modifications implied many changes both for the 

installation of the new BTS-Smart system and ARED. The second half of the toilet 

later reached the ISS in October 2020. Eventually, the final goals regard the 

introduction of IMU sensors to be used with ARED on ISS. These improvements 

will help NASA preparing for future missions, including those to the Moon and 

Mars. 
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Figure 22: layout of Node 3 with ARED and the Toilet Stall Deployed (Borrego et al., 2019) 

 

 

Figure 23: toilet Stall deployed in ISS Node 3 (Borrego et al., 2019). The second half of the toilet 

reached the ISS in October 2020.Its features and improvement will help NASA preparing for future 

missions, including those to the Moon and Mars. 
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CHAPTER 2 

AIM OF THE THESIS 

This thesis is inserted in the research project “MARcatori biologici e funzionali per 

la biomedicina aStronautica di PREcisione – MARS-PRE”, proposed by Italian 

Space Agency (ASI) and structured in 21 Work Packages (WPs). The 

characterization of human adaptation to gravity conditions different from Earth can 

be conducted through the analysis of biological markers (which are the main goals of 

MARS-PRE project). Biochemical measures of fluids, structural and physical 

properties of tissues, functional test of muscular strength and biomarkers of sensory-

motor behavior are typical example. Nodo 1700 has been assigned to Politenico di 

Milano, whose WP is entitled: “Marcatori personalizzati del programma di 

contromisure attraverso machine learning e sensori indossabili per biofeedback”. 

The purpose is to design a system able to monitor astronauts’ workout executed with 

ARED on ISS. Cosmonauts, indeed, perform a set of exercises without any online or 

offline trainer’s help. To solve this issue, anticipatory indicators of possible training 

inefficacy and/or injury could be evaluated starting from parameters extracted from a 

small set of inertial sensors (simulated and real). Consequently, it is important to 

choose a specific set of devices reusable even in microgravity conditions. To reach 

this aim, instead of depending on the usual kinematic variables of joint and angular 

positions, the project relied on acceleration and gyroscopic measures.  

Both a biomechanical model including muscular actions and a machine learning 

algorithm are required to reach the aforesaid scope. The model itself must be inserted 
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in a virtual environment where target exercises, proposed on ISS, can be simulated 

both in Earth gravity and microgravity conditions. A machine learning system will 

then associate the risk level with measurements coming from accelerometers and 

gyroscopes. In this way, the astronauts will be warned in real time about any 

incorrect exercise execution. The biofeedback provided will be useful to avoid 

atrophy, musculoskeletal damage and deconditioning, bone demineralization, 

cardiovascular deconditioning and coordination defects (important factors when 

considering long-term missions including Moon or Mars expeditions). 

The whole setup could interest even other applications on Earth: rehabilitation (to 

allow continuity of care with reliable and simple technologies) and athletes training 

(to optimize their performance). 

 

The biomechanical model would be also used in the contest of project “ARED 

Kinematics – Biomechanical quantification of bone and muscle loading to improve 

the quality of microgravity countermeasure prescriptions for resistive exercise”, 

which involves ESA, NearLab at Politecnico di Milano, NASA JSC and Kayser 

Italia. The aims can be listed as follows: investigate internal forces to optimize 

resistance exercises prescriptions when using ARED, maximizing their effectiveness 

and minimizing the required time. Kinematics and dynamics data will, hence, be 

collected from each astronaut during pre-, in- and post-flight conditions with three 

different load levels. 

 

Our work was focused on the following aims: 
 

- The primary objective refers to the improvement of a model useful to conduct a 

biomechanical analysis of the human motion in microgravity conditions on ISS. 

The OpenSim model employed in the current project allows to reach higher 

ranges of motion with respect to the one previously considered (Ravizza et al., 

2020). 

- The secondary goal regards the acceleration signals extraction from correct and 

incorrect exercises in specific body points. The measurements afore mentioned 

want to reproduce the same output obtainable from inertial sensors placed on 
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these anatomical landmarks. The collected data will become the input of 

machine learning algorithms (e.g., Convolutional Neural Networks, Support 

Vector Machines, Decision Trees, K-Nearest Neighbor, Extreme Gradient 

Boosting, Multi-Layer Perceptron), in order to discriminate in real time correct 

and incorrect exercise executions. Consequently, these body points will be 

identified as anticipatory biomarkers of muscle-skeletal damage. 

- Once chosen the most suitable ML algorithm (starting from the comparison of 

the 6 ones used in this work), the latter will be exploited to obtain a customized 

classifier for each single astronaut. 

 

Up to now, we verified the validation of OpenSim model by using data collected 

from 6 subjects, who performed target exercises using ARED at the NASA JSC. The 

ML classifier was trained, instead, with acceleration data coming from 17 volunteers, 

who executed the same target exercises (correctly and incorrectly) using barbell and 

weights (load within 50-75% of ISO-MAX), according to a protocol approved by the 

Etic Committee of Politecnico di Milano and ASCR NASA JSC. 

 

The following page shows the conceptual scheme which visually explains the current 

project. Considering the fact that no IMU sensors are currently available on the ISS, 

another approach has been taken into account. The new MOCAP system installed 

between the end of 2020 and the beginning of 2021 will allow to track the astronauts’ 

motion during their trainings with ARED. This system, namely BTS SMART DX, 

tracks the position of passive markers located on the subjects’ body. Via OpenSim 

software, a biomechanical model will guarantee to simulate IMU placement on body 

and extract analogues (acceleration) data. The platform enables also to simulate the 

exercise in the same gravity conditions found on the ISS. The puzzle is completed 

with the integration of a machine learning system, able to acquire the inertial 

information previously mentioned. The input data will be processed by the algorithm, 

thus providing in real time a biofeedback to the cosmonauts. In this way, the latter 

will know whether they are performing correctly a specific exercise (e.g. Normal 

Squat, Wide Squat, Deadlift) or not. In case of incorrect execution, the system will 

also provide information about which type of mistake was made. 
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Figure 24: thesis workflow. 
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CHAPTER 3 

OPENSIM 4.1 ® 

In recent years, thanks to a rapid development of software engineering, it has been 

possible to create an open-source simulation environment, namely OpenSim, which 

allows researchers to share and integrate multiple and different dynamic simulations. 

In the following chapter, we will describe a brief history of the software origin, the 

software itself, its potential, the types of data it accepts as input and the various 

embedded Tools. The latter will be then explained, in order to have a better 

comprehension regarding the software capabilities. 

In the early 1990s, Delp and Loan, at the National Center for Simulation in 

Rehabilitation Research (NCSRR) at Stanford University, introduced 

musculoskeletal modeling software, called SIMM (Software for Interactive 

Musculoskeletal Modeling), which allows users to create, modify, and evaluate 

models of different structures of the musculoskeletal system. Using SIMM, models 

of the lower and upper limbs were developed. These progresses allowed to obtain 

different outcomes: examine the biomechanical consequences of surgical 

interventions (such as osteotomies and joint prosthesis grafting); estimate the length 

of the muscle-tendon complex; estimate the arms of the moments of individual 

muscles with respect to a joint; calculate the speed and accelerations induced and the 

forces present on the knee during a movement. Moreover, the software also provides 

the possibility of calculating muscle activations and forces and presents several tools 

that allow the analysis of the results of dynamic simulations.  



CHAPTER 3 – OPENSIM 4.1 ® 
 

36 

As far as OpenSim is concerned, it is an open-source platform managed on Simtk.org 

by a group of researchers. It is used for modeling, simulation and analysis of the 

neuro-musculoskeletal system. This software consists of low-level computational 

tools that are called up by an application. OpenSim is written in ANSI C ++ and the 

graphical interface (GUI), written in Java, allows users to develop, analyze and 

visualize models of the musculoskeletal system and generate dynamic movement 

simulations. The software can be used on all common operating systems.  

 

An OpenSim model represents the dynamics of a system made up of rigid bodies and 

joints on which forces act to produce movement. The .osim file (which represents the 

model in OpenSim) consists of components corresponding to parts of the physical 

system. Most of the properties regarding an OpenSim model can be changed in the 

GUI. The models of the musculoskeletal system grant the possibility to study 

neuromuscular coordination, analyze athletic performance and estimate 

musculoskeletal loads. The muscles stretch over the joints and they generate forces 

and movements. Once the musculoskeletal model has been created, OpenSim allows 

users to study the effects of musculoskeletal geometry, joint kinematics, and 

musculoskeletal properties on joint forces together with the moments that muscles 

can produce. 

 

Figure 25: example of OpenSim model displayed via software. 
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3.1 Features 

OpenSim allows the following operations:  

• Resizing the size of the musculoskeletal model.  

• Inverse kinematics analysis to calculate joint angles starting from marker 

positions.  

• Performing Reverse Dynamics analysis to calculate joint moments, using 

both joint angles and external forces.  

• Solve a direct dynamics problem and generate motion simulations.  

• Analyze the data obtained.  

• Plot the results obtained.  

• Create videos or take snapshots of model movement.  

 

The software features allow you to perform biomechanical simulations and a detailed 

analysis (using experimental data) of the musculoskeletal system during motor 

gestures. In this way, it is possible to validate, or not, the model.  

 

The fundamental elements for the simulation are:  

• Musculoskeletal model. 

• Kinematics data (marker trajectories). 

• Experimentally measured reaction force data (Ground Reaction Forces, 

GRF). 

 

The files that are used to generate a simulation in Opensim are shown below. 

 

3.2 File marker (.trc) 

The .trc (Track Row Column) file format was created by Motion Analysis 

Corporation to specify the position of the markers placed on the subject at different 

instants of time during the execution of a movement acquired through 



CHAPTER 3 – OPENSIM 4.1 ® 
 

38 

stereophotogrammetry. The first three lines of a .trc file consist of a header, followed 

by two lines containing the names of the markers that must be equal to the names of 

the virtual markers positioned on the model. Then a blank line is followed by the 

lines containing all the data relating to the acquisition. Each row of data will contain 

the frame number of that data, the instant in time and the position coordinates (x-y-z) 

of each marker. As regards the header, its contents can be listed as follow: 

‘DataRate’ parameter indicates the frequency in Hertz at which the data was 

acquired; ‘NumFrames’ corresponds, instead, to the number of data frames; the 

‘NumMarker’ refers to the number of acquired markers and, eventually, 

‘OrigDataStartFrame’ indicates the number of the first frame. Considering a situation 

in which the .trc file hence generated does not respect the above format, then the data 

in it contained will not be read correctly by the Opensim software. 

 

 

Figure 26: example of .trc file. 

 

For the realization of this report, the files containing the trajectories of the markers 

during the static acquisition of the subject and those describing the kinematics of 

movement were created in this format: the former will be useful in the Scaling phase 

of the model while the others will guide the model when calculating the inverse 

kinematics. 
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3.3 File .mot  

The .mot format consists of two main parts: a header and the section corresponding 

to the data. The former consists of a first line starting that starts with the .mot file 

name followed by its format. Subsequent rows contain ‘nRows’ (namely the total 

number of data rows) and ‘nColumns’ (hence the total number of columns). Then, 

we have the time interval range in which the file data extends. Consecutively, the 

data is shown in columnar format: the first column represents the instant of time to 

which each data correspond. 

 

 

Figure 27: example of .mot file. 

 

The labels contained .mot file (as shown in figure 27) are:  

• Time;  

• Reaction forces along X, Y, Z (vx, vy, vz);  

• Point of application (px, py, pz); 

• Pairs (x, y, z).  
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Every row contains the corresponding data (referred to the reference system of the 

model) for each instant of time in which the movement was sampled. The files 

created with this format are those containing the reaction forces (in the three x-y-z 

components) expressed with respect to time. 

 

3.4 Opensim workflow  

 

 

Figure 28: brief OpenSim workflow. 

 

OpenSim includes robust tools to execute biomechanical simulations of 

musculoskeletal system during motor gestures and to analyze them. Among all the 

tools, those relevant for this specific project regard model scaling, inverse kinematics 

(IK) and inverse dynamics (ID) problems resolution, using the Analyze tool to 

extract virtual markers trajectories (useful to obtain their acceleration), plotting 

results, creating video and capturing screenshots of model during simulation. 
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The following steps are needed to analyze experimental data collected in laboratory: 
 

• Preparing kinematics and dynamics data in specific formats. 

• Choosing/creating a model and putting virtual markers on it, in order to 

reproduce. 

• The same marker set-up used during data acquisition. 

• Scaling the model basing on anthropometry of every subject. 

• Computing the IK problem to obtain joint angles that better reproduce 

movement captured with the MOCAP system. 

• Solving the ID problem to determine joint torques. 

• Reducing residuals to minimize errors deriving from modeling, so due to the 

simplification of the system, and marker data processing. This leads to make 

generalized coordinates more consistent with GRFs and joint moments 

computed. 

• Extraction of trajectories using the Analyze tool, in order to obtain in post 

processing velocities and accelerations. 

 

3.5 Scaling  

The first operation to be performed to make a correct simulation is that of Scaling the 

musculoskeletal model which will be done basing on the anthropometry of the 

subject under examination. Firstly, a static experimental acquisition of the marker 

positions previously placed on the individual in specific anatomical reference points 

(experimental markers) is required. In the same way, virtual markers will be placed 

on the same points in the model in order to have a direct correlation between the 

individual and the model. The virtual markers must have the same name as the 

experimental markers. The dimensions of each body segment in the model are 

calculated based on the relative distances between the marker pairs, obtained by a 

Motion Capture system, which are matched to the virtual marker pairs.  



CHAPTER 3 – OPENSIM 4.1 ® 
 

42 

 

Figure 29: experimental marker positions are computed with MOCAP system (blue markers); virtual 

markers are placed manually on biomechanical model in anatomical correspondence (pink markers). 

Distances between experimental markers (ei) relative to the distances between virtual markers (mi) are 

used to compute scale factors. 

 

 

For example, suppose we use two pairs of markers: p1 = {R.ASIS, R.Knee.Lat} and 

p2 = {L.ASIS, L.Knee.Lat}. The distance for pair 1 on the model (m1) is calculated 

by placing the model in its default configuration. The experimental distance for pair 

1 (e1) is obtained by observing each frame of experimental marker data in the 

given.trc file, calculating the distance between the pair for that frame, and taking the 

average over all frames over a user-specified time. The scale factor due to torque 1 is 

therefore s1 = e1 / m1. The overall scale factor is the average of the scale factors 

calculated for all pairs of the same segment (for example, s = (s1 + s2) / 2 in this case, 

where s2 is the scale factor due to pair 2). This global scale factor can then be used 
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for resizing any segment. However, it is possible (in an alternative way) to scale the 

body segments with scale factors obtained through anthropometric analysis.  

Then, based on the scaling factors, the Scale Tool scales the model geometry, body 

segments, center of mass location, force application points, and muscle attachment 

points. For example, the distal attachment point of the soleus muscle is scaled based 

on the scale factors for the tibial segment. With this operation we also want to 

modify the masses of the body segments, taking into account the principle that the 

total sum of the segment’s masses (even if redistributed) must be equal to the entire 

mass of the subject (Preserve Mass Distribution, PMD). Components of a model that 

depend on distances or lengths, such as ligaments and muscle actuators, are also 

updated after scaling. For example, muscle's new Optimum_fiber_length and 

Tendon_slack_length are calculated during the scaling process. The process is 

complicated by the fact that parameters such as muscle length also depend on the 

configuration, hence OpenSim tries to keep the model configuration when scaling. 

Once the Scaling operation has been performed, the virtual markers assume new 

positions on the musculoskeletal model (more similar to the positions of the 

experimental markers), so that the subsequent data analysis is as truthful as possible 

and similar to reality. 

 

 

 

Figure 30: inputs and outputs of the Scale tool. Experimental data are in green, OpenSim files (.osim).  
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Figure 31: examples of the Scale interface used in the OpenSim Software. 

 

The inputs of the Tool Scale are listed as follows:  

• The. osim model to be scaled.  

• The .trc file containing the positions of the experimental markers for a static 

test, i.e. with the subject stationary in a known position.  

• The marker set .xml comprising the set of virtual markers positioned on the 

model segments. 

  

The output hence obtained is the resized model. 

 

3.6 Inverse kinematic  

Once the model has been resized, we can proceed with the Inverse Kinematics (IK) 

procedure. The purpose of this Tool is about finding a set of generalized coordinates 

(namely the joint angles and the positions of the body segments for the 

musculoskeletal model) which best reproduce the kinematics of movement referred 
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to a subject under examination. The Tool IK, for each instant of time, sets the joint 

coordinates of the model in a position which "corresponds best" to that of the 

experimental marker and to the coordinate data acquired during that period of time, 

minimizing the sum of weighted square errors of markers and/or coordinates. The 

marker error is the distance between an experimental marker and the corresponding 

virtual marker on the model when its generalized coordinates are those calculated by 

the IK tool. Each marker has an associated weight that specifies how strongly the 

error term should be minimized. The coordinate error is the difference between an 

experimental coordinate value and the coordinate value calculated by the IK 

instrument. The values of the experimental coordinates can be the joint angles, 

obtained directly from the Motion Capture system or from an external specialized 

algorithm (or other measuring devices, such as a goniometer).  

A distinction should be made between the 'prescribed' and 'unprescribed' coordinates. 

The former (also called ‘locked coordinate’) is a generalized coordinate whose 

trajectory is known, and which will not be calculated using IK. It will be set to its 

exact trajectory value. This can be useful when you are confident enough in a 

generalized coordinate value that you do not want the IK solver to change it. An 

unprescribed coordinate, instead, refers to a specific coordinate that is not fixed and 

whose value is calculated using IK. Using these definitions, only the coordinates that 

are not previously locked can vary and therefore only they appear in the least squares 

equation solved by IK. Each unprescribed coordinate that is compared to an 

experimental coordinate must have an associated weight, specifying how strongly the 

coordinate error should be minimized. Mathematically, the IK tool solves the 

weighted least squares problem as follows: 

 

The instrument finds, for each instant in time, the generalized coordinate vector q 

which minimizes the cost equation, where xexp
i is the experimental position of the i-th 

marker, xi (q) is the position of the corresponding marker on the model, a function of 
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generalized coordinate values and qexp
j is the experimental value for the j coordinate. 

All prescribed coordinates are set to their experimental values.  

 

Figure 32: input and output of IK tool. Experimental data in green; OpenSim files are in red; setting 

file are in blue; output of IK is in purple. Names are as example. 

 

 

Figure 33: example of the Inverse Kinematic (IK) interface used in the OpenSim Software. 

 

Below, the IK Tool inputs required are listed:  

• the file of the marker trajectories obtained thanks to the Motion Capture 

system related to the entire motor act to be studied.  

• the scaled model and the .xml file containing the weight associated with each 

marker and/or coordinate not described. 
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As output of the IK, we will have a .mot movement file containing the generalized 

coordinate trajectories (angles and/or joint translations). The units used by IK are the 

model units, in particular: meters for length; degrees for angles.  

 

3.7 Inverse dynamic 

The .mot file obtained from IK Tool is used as input in the Inverse Dynamics Tool 

(ID), which determines the generalized forces in each joint responsible for a given 

movement of the model. Given the kinematics (which describes the movement of the 

model) and the external loads applied to the model, the Tool ID calculates the 

internal forces (or torques) generated by the muscles. In classical mechanics, the 

relationship between force and acceleration is expressed by the Newton's second law 

(F = ma) by means of equations of motion; ID solves these equations to determine 

net forces and torques at each joint producing the motion. The classical equations of 

motion can be expressed in the following form: 

 

 

 

where: for a model with N degrees of freedom, q, 𝑞   and 𝑞   ∈ RN are the vectors of 

generalized positions, velocities and accelerations; M (q) ∈ RN × N is the mass 

matrix of the system that depends on the q    configuration of the model ; C ( q, q    ) ∈ 

RN is the Coriolis vector and centrifugal forces; G (q) ∈ RN is the vector of 

gravitational forces; A (q, 𝑞  , x, t) ∈ RN is the vector of applied loads, which are the 

external forces applied to the model (such as ground reaction forces, passive bodies 

or components active) and which may explicitly depend on time t and on the input 

controls for the actuators. The resulting generalized forces τ ∈ RN are what the 

instrument calculates.  
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Figure 34: inputs and output of the ID tool. Experimental data in green; OpenSim files are in red; 

setting file are in blue; output of IK and ID are in purple. Name are as example. 

 

 

Figure 35: example of the Inverse Dynamics (ID) interface used in the OpenSim Software. 

 

As Input of the ID tool we consider:  

• the .mot movement file, containing the temporal histories of the generalized 

coordinates that describe the movement of the model obtained from IK. It is 

recommended to check the Filter coordinates item in order to have more 

homogeneous waveforms.  

• As regards the external loads, we set the ground reaction forces (.grf file). 

 

The output is related to an archive file containing the temporal chronologies of the 

joint couples and forces. In solving the inverse dynamics problem, both kinematic 
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data and force plate data were used, making this an overly determined problem. In 

other words, the problem has more equations than unknowns (i.e., degrees of 

freedom). Due to errors in the experimental movement data and inaccuracies in the 

musculoskeletal model, it turns out that Newton's second law is violated: 

 

One method of handling this inconsistency is to calculate and apply residual forces 

and moments to a particular body segment in the model, such that Newton's second 

law becomes: 

 

However, this procedure is intended exclusively for the study of walking where there 

is a continuous displacement of the center of mass and therefore a continuous 

imbalance of forces and moments.  

 

The residues are usually applied to the pelvic segment. In the absence of an error 

between the experimental data and the model data, the residual force must be zero. In 

practice, however, this is never verified (you can see the residuals from the inverse 

dynamics solution, plotting pelvis_tx_force, pelvis_ty_force as a function of time). 

 

3.8 Residuals reduction algorithm  

The purpose of the Residual Reduction Algorithm (RRA) is to minimize the effects 

of modeling errors and marker data processing that aggregate and lead to large non-

physical compensatory forces called residuals. More specifically, residual reduction 

alters the center of mass of the torso (or pelvis) of a subject-specific model and 

allows the kinematics of the model to be varied from the inverse kinematics in order 

to be more dynamically consistent with ground reaction force data. Residual 

reduction is a form of direct dynamic simulation that uses a controller to follow the 

kinematics of the model determined by the inverse kinematics. The Computed 

Muscle Control (CMC) acts as a controller: it can be used to determine a mass and 
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kinematic distribution of the joints that are more consistent with the ground reaction 

forces. 

 

We could explain what RRA actually consists of, using an example. Consider a 

human skeleton model without upper limbs (e.g., gait23 model) made up of ten rigid 

segments (bones); 17 of the 23 generalized coordinates of the model represent the 

angles at the joints. Each of these 17 degrees of freedom is operated by a pair. The 

remaining six generalized coordinates represent the six degrees of freedom (three 

translational and three rotational) of the pelvis with respect to the ground. To 

simulate a walk, the six degrees of freedom of the pelvis are represented as a ‘six 

degrees of freedom joint’ operated with as many actuators. Each of these 6 pairs is 

called a residual actuator. It now has 23 degrees of freedom and 23 actuators, that is, 

exactly, one actuator per degree of freedom. The three residual actuators that operate 

the three translational degrees of freedom between the basin and the ground are the 

residual forces indicated with Fx, Fy and Fz. The three rotational degrees of freedom 

are operated by residual torques (or moments) indicated with Mx, My, and Mz. Fx is 

the force applied along the X axis (forward), Fy is the force applied along the Y axis 

(vertical), Fz along the Z axis (transverse), Mx is the torque applied to the X axis, and 

etc. In other words, the six residual actuators would be equivalent to adding a new 

term that satisfies Newton's second law: F + Fresiduals = ma. To reduce residual forces 

and moments, residuals are calculated and averaged over the duration of the motion. 

On the basis of these averages, the algorithm makes changes in the mass parameters 

of the model, such as the position of the center of mass of the pelvis. To minimize 

residues, it is important to:  

• Make an initial step with predefined inputs, then check for residuals and 

coordinate errors.  

• Reduce stakeout weight on coordinates with low error.  

• Reduce maximum residual excitation or optimum actuator force.  

 

The goal of these residual value restrictions is to reduce the need for residuals to a 

minimum in order to closely follow the desired kinematics (so that motion is 
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generated solely by internal joint moments). During computerized muscle control 

(CMC), the next OpenSim step, moments will derive from forces generated by the 

muscles. In this way, the biomechanical results on the muscle function (obtained as 

results of CMC) will be closer to reality rather than letting the residues be arbitrarily 

large. With these restrictions placed on the residuals, the movement of the model will 

probably be altered since the residuals themselves may not be able to reach the 

quantities that would result from the inverse dynamics while following the IK 

kinematics exactly.  

 

REMINDER: a critical aspect for RRA regards the replacement of muscles with only 

one ideal actuator per coordinate. In the gait2354 example, these correspond to the 

residuals for the six degrees of freedom of the pelvis and the reserves for all other 

internal coordinates of the model (joint angles). Hence, each degree of freedom 

(DOF) in the model should have an ideal torque or force (reserve) actuator. Thus, we 

have to consider and include the 6 DOFs of the base segment of the model, which are 

called "residual actuators". In most cases, these ideal actuators are used to replace 

muscles in the model. The optimal forces are the maximum output of the ideal 

actuators (torques, linear forces). The applied torque (force) is equal to the optimum 

force multiplied by the control value.  

 

The remnant to the pelvis must be applied to the resized COM position. Actuator 

forces are calculated by choosing force and torque values that minimize an objective 

function. At the end of the simulation, the average value is calculated for each 

residual actuator. The average values for Mx (residual left-right torque) and Mz 

(residual forward torque) are used to adjust the center of mass of the trunk to correct 

the excessive "tilt" of the model due to inaccuracies in mass distribution and in the 

bust geometry in the model. 

 

In order to evaluate the results obtained, you can consider these tips:  

• The RMS difference in joint angle during movement should be less than 2-5º 

(or less than 2cm for translations).  
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• Peak residual forces should typically be less than 10-20 N. Average residuals 

should typically be less than 5-10 N.  

• Comparing the residual moments of RRA with the moments of Inverse 

Dynamics, you should see a 30-50% reduction in residual peak moments.  

• Compare the torque/joint forces with those present in literature. 

 

Table 6: example of threshold values used to evaluate RRA results for full body walk and run 

simulations. 

 

 

 

 

 

Figure 36: input and output of RRA tool. Experimental data are in green; OpenSim files are in red; 

setting file are in blue; output of IK and RRA are in purple. Names are as example. 
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Figure 37: examples of the Scale interface used in the OpenSim Software. 
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In input to RRA are requested: 

• The .mot file obtained from the IK Tool.  

• The tasks .xml file which specifies what are the coordinates to plot and the 

corresponding weight (which determines how well the joint angles follow the 

angles specified by IK).  

• The external loads file grf.mot. 

• The file of the joint actuators used to replace the muscles (it contains the 

name of the generalized coordinates to which the actuator is applied, the 

minimum and maximum value of the control signal applied and the maximum 

generalized force produced by it). 

 

After loading the required data, we can start the simulation and, as output, we will 

obtain a model with adjusted mass properties, actuator excitations (i.e., control 

signals necessary to generate actuator forces and torques), actuator forces and 

torques (corresponding adjusted kinematics), joint angles, velocities and 

accelerations, position errors for each of the generalized coordinates of the model 

during the test. 

 

3.9 Computerized muscle control  

The CMC, Computerized Muscle Control, previously mentioned, is another peculiar 

Tool embedded in OpenSim. In this case, the aim is to calculate a series of muscle 

excitations that drive the dynamic musculoskeletal model towards a particular 

desired kinematics. The CMC method applies this concept by using a proportional-

derivative PD control and static optimization. Firstly, the initial states of the model 

are calculated, i.e. the initial values of the generalized coordinates q (joint angles), 

the generalized speeds, plus any initial states such as the levels of muscle activation 

and the length of the fiber at the beginning of the movement. While the initial values 

of the generalized coordinates and velocities can be taken from kinematics, the initial 

values of the muscle states are generally unknown. The first step of the CMC 
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algorithm is to calculate a series of desired accelerations (𝑞   *), starting from the 

experimental generalized coordinates (qexp). The desired accelerations are calculated 

using the following PD law: 

𝒒   ∗ (𝒕 + 𝑻) = 𝒒  𝒆𝒙𝒑 (𝒕 + 𝑻) + 𝒌𝒗 [𝒒  𝒆𝒙𝒑 (𝒕) −𝒒   (𝒕)] + 𝒌𝒑 [𝒒𝒆𝒙𝒑 (𝒕) −𝒒 (𝒕)] 

 

 

Figure 38: conceptual scheme explaining the CMC algorithm. 

 

Where: 𝑞  exp and 𝑞  exp are, respectively, the accelerations and velocities of the 

experimental markers calculated as derivatives in time of their position coordinates; 

kv and kp are the feedback gains on velocity and position errors. Since the forces 

applied by muscles to the body cannot change instantly, the desired accelerations are 

calculated for some time T in the future. For musculoskeletal models, T is typically 

chosen for approximately 0.010 seconds. This time interval is short enough to have 

adequate control and long enough for the muscle forces to change. If these desired 

accelerations are obtained, the errors between the model coordinates and the 

experimentally derived coordinates will be brought to zero. To bring these errors to 

zero critically, the speed gains can be chosen using the following relationship: 

 

𝒌𝒗 = 𝟐√𝒌𝒑 

 

For musculoskeletal models, it works well if error gains are chosen in order to slowly 

bring errors to zero (kv = 20 and kp = 100). 
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The next phase is about considering the static optimization in which actuator controls 

𝑥(t), which are muscle forces, are obtained to achieve the desired accelerations 𝑞  ∗ (𝑡 

+ 𝑇). The definition of ‘static’ is referred to the computation of quantities in each 

time instant. Static optimization works basing on two formulations: the first one (Eq. 

X), called slow target, minimizes and distributes loads across actuators and the 

model accelerations toward the desired accelerations; the second equation (Eq. Y), 

called fast target, is the sum of squared controls augmented by a set of constraints 𝐶𝑗 

= 0 that require the desired accelerations to be achieved within the tolerance set for 

the optimizer. The last one is faster and produce better tracking, but if constraints 

cannot be met, it fails. 

    (X) 

  (Y) 

In the end, CMC computes controls to conduct a standard forward dynamic 

simulation over time, so that muscle excitations are estimated. 

 

The scheme in figure 39 describes the workflow starting from measured data, passing 

through IK, ID and CMC to obtain muscle forces. 

 

 

Figure 39: from left to right it is shown the workflow to obtain muscle forces starting from data 

acquisition using MOCAP system and force plates. Kinematics data measured with MOCAP system 

(markers’ coordinates over time) are in light blue and they are used to compute IK, so that joint angles 

are obtained. Force data (GRFs and external forces) utilized to resolve the ID problem, which needs 

also joint angular accelerations obtained by deriving twice joint angles, are in green. In the end, 

complex algorithms estimate control actuators (muscle forces) using data obtained in the step before. 
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Figure 40: inputs and outputs regarding the CMC tool. Experimental data are in green; OpenSim files 

are in red; setting file are in blue; output of IK and RRA are in purple. Names are as example. 
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Figure 41: examples of the CMC Tool interface used in the OpenSim Software. 

 

Opening the CMC Tool in OpenSim, as inputs we will have:  

• The kinematics coming out of RRA.  

• The .xml file that specifies which coordinates to track and the corresponding 

tracking weight. 

• In case it exists, it is important to insert the actuator constraints file which 

contains the limits on the model actuators, which include muscles, spare and 

residual actuators. The control constraint file specifies the maximum and 

minimum "excitation".  

• In the ‘Actuators and External Load’ section, the external load data and the 

residual actuators are needed. 

 

The output of CMC, instead, includes three files:  

• Controls.xml file, which contains the excitations for the individual muscles 

and the controls for any residual and/or reserve actuators. 

• Forces.sto file, that contains the reserve and/or residual muscle forces and 

pairs. 
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• States.sto file, which contains the model states and muscle states of the 

simulated movement (i.e., joint angles and velocities, muscle fiber length and 

activations). 

 

In order to evaluate the results obtained, these tips can be considered:  

• Peak reserve actuator torques should typically be less than 10% of the 

coupling's peak torque.  

• Peak residual forces should typically be less than 10-20 N; residual peak 

moments, instead, less than 75 Nm (depending on the type of movement).  

• it is important to compare the simulated activations with the experimental 

EMG data (recorded by the subject or from the literature). The triggers should 

show times and entities similar to EMG data. 

 

Table 7: example of threshold values used to evaluate CMC results for full-body walk and run 

simulations. 

 

 

3.10 Analyze tool 

The Analyze tool permits to analyze a model or a simulation basing on several 

inputs, which can include time histories of model states, controls, and applied 

external loads. A typical use case is analyzing an existing simulation, which may 
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have been calculated using the CMC, without having to repeat the simulation. This 

both saves processing time and allows to analyze a simulation exactly as it happened. 

  

The basic analyzes that can be carried out are listed below: 

• Kinematics: it records generalized coordinates (q), generalized velocities (u's) 

and accelerations (i.e. the derivatives of generalized velocities: du/dt. This is 

exactly what we used to carry out the current project.  

• BodyKinematics: it records the configuration (center of mass position and 

orientation) of each body, as well as their velocities (linear and angular) and 

accelerations (linear and angular). It also records the overall center of mass of 

the model, as well as the speed and acceleration of this center of mass.  

• Actuators: it records the generalized force, speed, and power developed by 

each model actuator. The generalized force can be a force (with unit N) or a 

torque (with unit Nm). Actuator speed is the speed at which the actuator 

shortens. Depending on the actuator, a velocity can be a travel speed (m/s) or 

an angular velocity (degrees/s). An actuator power (Watt) is the speed at 

which an actuator operates. Positive work means that the actuator is 

delivering power to the model; negative power means, instead, that the 

actuator draws energy from the model. 

 

The available analyzes also include, in addition to the three analyzes above 

mentioned (kinematics, body kinematics and actuators):  

 

• Joint Reaction Analysis: it reports the joint reaction loads of a model. For a 

given joint, the reaction load is calculated as the required forces and moments 

to constrain the movements of the body to satisfy the joint as if the joint did 

not exist. The reaction load acts on the center of the joint of both the 'parent' 

and 'child' body and the force can be signaled and expressed in the 'child', 

'parent' or 'ground' frame. 
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Depending on the analysis you want to perform, there are three types of inputs that 

may be needed to analyze a model:  

• States: variables of a model that are governed by differential equations and 

are therefore integrated during a simulation. The most common examples of 

states are generalized coordinates (q, e.g., joint angles) and velocities (e.g., 

joint angular velocities) that specify the configuration of a model. However, 

states are not limited to coordinates and velocities. Muscles have often been. 

Muscle activation and fiber length are common examples of muscle states.  

• Controls: independent variables used to control the behavior of a model. 

Muscle excitations are an example. They are not governed by differential 

equations, but they are generally free to take any value between zero (no 

excitation) and one (full excitation). Controls in a model are often the 

variables used as control parameters in optimization problems.  

• External Loads: forces or torques applied between the terrain and the bodies 

of a model. Induced Acceleration Analysis is used to calculate accelerations 

caused or "induced" by forces acting on a model, such as the contribution of 

individual muscle forces to the acceleration of the center of mass. Typically, 

one wishes to study induced accelerations of generalized coordinates (e.g. 

knee angle) or body positions (e.g. center of mass of the model) and the 

forces are made up of muscles, gravity and any additional forces (e.g. residual 

actuators, reserve actuators, etc.). 
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Figure 42: example of set-up file for analyzing kinematics of desired points. Circled in black, 

specification of selected point on pelvis whose coordinates relative to global reference frame are 

specified. 
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Figure 43: examples of the Analyze Tool interface used in the OpenSim Software. 
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CHAPTER 4 

MATERIALS AND METHODS 

Let's move on, therefore, to understand more specifically the conceptual path that led 

to the completion of the whole project. The following subchapter will introduce the 

protocol and exercises exploited for both simulated (from OpenSim software) and 

real (from IMU sensors) data. 

 

4.1 Exercises 

Each subject performed a different number of repetitions of Normal Squat, Wide 

Squat and Normal Deadlift. All the data collected were not simply about a correct 

motion execution, but it was also important to have a collection regarding incorrect 

exercise (always keeping in mind not to harm permanently or temporarily the 

subjects recruited). Barbell and weights are related to a load within 50-75% of ISO-

MAX in both correct and incorrect configurations. 

 

 Incorrectness of exercises executions 

NASA Astronaut Strength, Conditioning and Rehabilitation (ASCR) Specialists and 

the Etic Committee of Politecnico di Milano approved the main execution mistakes 

here below summarized. 
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Squat and wide stance squat 

 

1) No straight trunk (figure 44a): implies not maintaining the natural lumbar curves, 

thus keeping the pelvis in retroversion instead of in anteversion (during squatting) 

and then rounding back (during rising). 

2) Valgus knees (figure 44b): in this case, knees do not follow feet directions, but 

they approach the medial line of the body. 

3) Knee joints over the toes’ lines (figure 44c): knees do not remain behind the 

vertical lines passed through the toes. 

4) Heels not in contact with the floor (figure 44c): heels are risen at the end of 

squatting. 

5) Shallow squat: knees flexion angles smaller than 90°. 

 

For simplicity, techniques will be called CO (Correct), RB (Rounded Back), KV 

(Valgus Knees), KOT (Knees Over Toes), RH (Raised Heels) and SH (SHallow). 

 

 

Deadlift 

 

1) Rounded back (figure 45a): trunk is not maintained in natural position, but it is 

bent forward. 

2) Bar Over Shoulder (figure 45b): bar is brought too far ahead at the start of 

exercise, overcoming the shoulders. 

3) Hyperextended back (figure 45c): at the end of lifting, lumbar is overextended.  

 

For simplicity, incorrect techniques will be named as RB (Rounded back), BOS (Bar 

Over Shoulder) and HB (Hyperextended Back) respectively. 
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Figure 44: incorrectness of squat. (a) Trunk is not kept straight, and this leads to bring the bar over the 

vertical lines of toes; dotted line projects shoulder joint on ground highlighting that the line ends in 

front of the toe. (b) Knees are brought closer; dotted lines show that knees and toes are not aligned. (c) 

Knees go over toes and heels are raised. Dotted line points out as knee overcomes toe. 
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Figure 45: incorrectness of deadlift. (a) Trunk is rounded and this leads to start the exercise with hip 

and shoulder at the same level instead of having shoulder higher than hip. (b) Dotted line shows the 

vertical line passing from the shoulder; it is evident that the exercise start with bar in front of that line. 

(c) At the end of lifting, an excessive lumbar extension is performed, thus shoulder, hip and ankle are 

not aligned. 
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4.2 Opensim models used 

OpenSim allows to choose among different musculoskeletal models provided by 

various researchers all over the world. In this project, it was important to have a 

model that enabled to study and reproduce movements as the Squat exercise. Of 

course, we are talking about motions characterized by peculiar joint degrees range 

(e.g., in a Wide Squat, the knee flexion can reach degree values that are even above 

140°). Consequently, it was fundamental to choose a musculoskeletal model that 

fitted these characteristics.  

 

In Literature, the most used and validated model is ‘gait2392_simbody’, comprising 

23-degree-of-freedom of the human body. It features lower extremity joint 

definitions adopted from Delp et al. (1990), low back joint and anthropometry 

adopted from Anderson and Pandy (1999), and a planar knee model adopted from 

Yamaguchi and Zajac (1989). As the name suggests, the number 92 refers to the 

musculotendon actuators to represent 76 muscles in the lower extremities and torso. 

The model is a quite good reproduction of the lower extremity body with two legs 

and torso segment. However, the model itself shows a limitation: it does not contain 

the upper limbs.  

 

Despite the ‘gait2392_simbody’ could be considered as a main starting point, this 

work mainly relied on a musculoskeletal model customized exactly for squatting task 

and created by Danilo S. Catelli (et Al.). Differently from ‘gait2392_simbody’ and 

musculoskeletal models (MSKM) designed to evaluate gait and running, which have 

limited range of motions (ROMs), the ‘Catelli’ one granted to provide realistic 

muscle moment arms (MA) for large ROMs. Indeed, it is suitable for analysis up to 

138° hip and 145° knee flexions (the Knee joint is fundamental for exercises like the 

Squat ones). In addition, it also includes the upper limb body.  
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Figure 46: screenshot of ‘Catelli’ (left) and ‘gait2392_simbody’ (right) models performing a quat 

motion. 

  

Even though a scientific research has been already conducted on the Catelli model, 

we decided to make a ROM comparison with ‘gait2392_simbody’ and verify the 

superiority (in terms of ROM) of the former.  

Considering that the range of motions allowed and computationally used in the 

‘gait2392_simbody’ main joints are the following:  

- The Hip joint varies from -120° to 120°.  

- The Knee joint varies from -10° to 120°. 

- The Ankle joint varies from -90° to 90°. 

 

Considering also that the range of motions allowed and computationally used in the 

‘Catelli’ main joints are the following:  

- The Hip joint varies from -30° to 138°.  

- The Knee joint varies from -10° to 145°. 

- The Ankle joint varies from -40° to 40°. 
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To verify the validation, we considered the simulated data coming from 6 subjects 

recruited at NASA JSC (3 Males, Mean: 32.33 ± 3.06 years old, 79.96 ± 10.84 kg, 

174.67 ± 8.50 cm height; 3 Females, Mean: 31.33 ± 6.80 years old, 60.20 ± 7.56 kg, 

161.83 ± 7.21 cm height) who performed 4 repetitions for each movement (Normal 

Squat, Wide Squat and Deadlift) using ARED. 

According to the tables and graphs reported in chapter 5.1, we clearly understand and 

notice the differences between the two models.  

4.3 Inertial sensors simulation  

Considering the ARED system installed on the ISS, the astronauts have the 

possibility to collect only kinematics data (acquired with MOCAP system) from their 

exercises. This statement allows to understand that it is necessary to extract somehow 

the accelerations data (as the ones obtainable with inertial sensors). In order to reach 

the purpose afore mentioned, the data (related to the 6 subjects of NASA JSC) 

already used to verify the validation of “Catelli” musculoskeletal model have also 

been employed by the OpenSim Analyze tool (please, for any further specification 

and information about its functioning refer to paragraph 3.4) to simulate the 

accelerations in a microgravity condition. 

 

The 6 body points chosen (figure 47) are: Sternum, Sacrum, Right Upper Thigh, Left 

Upper Thigh, Right Upper Shank and Left Upper Shank. 

 



CHAPTER 4 – MATERIALS AND METHODS 
 

72 

 

Figure 47: lateral view of the Catelli model with virtual inertial sensors (pointed by the green arrows) 

placed on Sternum, Sacrum, Right Upper Thigh, Left Upper Thigh, Right Upper Shank and Left 

Upper Shank. 
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The OpenSim software provides positions, linear and angular velocities, linear and 

angular accelerations of each point and saves the result in a .sto file. However, an 

inexplicable drift of acceleration data was observed, hence they were computed via 

Matlab deriving only the velocities. An example of the result is shown in figure 48. 

 

 

Figure 48: accelerations along the three axes of the simulated inertial sensor placed on the Left Upper 

Thigh.  

 

These data will be useful to understand whether the classification of simulated 

accelerations while using a classifier trained with real data is a feasible pathway (see 

chapter 5.5). 
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4.4 IMU hardware set-up  

While the previous subchapters were focused on simulated data, the following topic 

will treat real ones. Waiting for the dataset collected in-flight by astronauts using the 

ARED system, we started analyzing all the data collected on-ground by Politecnico 

di Milano. In particular, data collection was carried out on 17 subjects (9 Males, 

Mean: 26.89 ± 5.73 years old, 64.22 ± 7.14 kg, 173,44 ± 4.25 cm height; 8 Females, 

Mean: 25.38 ± 3.77 years old, 56 ± 6.31 kg, 163.14 ± 6.52 cm height) who 

performed target exercises proposed on ISS (the range varies from 5 to 20, according 

to their physical capabilities). Acceleration data were acquired during July 2020 in a 

gym located in Pavia. From the work of Ravizza et al. (2020), no statistical 

differences are observed between kinematics of exercises performed with ARED and 

barbell. Consequently, the current thesis project relied on this pillar to conduct the 

acquisition step.  

The Electronic system used (XSENS) to acquire acceleration data is made up of 6 

different accelerometers placed in distinct human body locations. In particular, the 

IMU sensors were placed as follows:  

- 1 on sternum. 

- 1 on each thigh. 

- 1 on each shank. 

- 1 on sacrum. 

 

Figure 49: IMU sensors placement for data collection. From left to right, respectively, we have lateral, 

back and frontal views. 



CHAPTER 4 – MATERIALS AND METHODS 
 

75 

4.5 Data collection and data processing 

The raw data used in the current work actually come from another parallel thesis 

project inserted in the MARS-PRE research. These data were already pre-elaborated 

by subtracting the gravitational component, in order to simulate the same exact 

conditions found on ISS. 

 

Basing on the raw information received, our further pre-processing efforts can be 

summarized according to the following steps: 

 

A) Data filtering was related to a sixth-order low pass Butterworth filter, with 5 

Hz cut-off frequency. 

B) We considered and kept only the meaningful acceleration data. 

C) The outliers have been removed. 

D) Every single repetition made by the participants was extrapolated, using a 

peak-detection algorithm applied on the gyroscope signal. 

E) In order to simplify and accelerate the processing of input data by ML 

algorithms, all the repetitions have been resized according to an average 

value (e.g., every single repetition lasts 3.5 seconds and is made up of 350 

samples). 

F) Dataset normalization. 

G) SMOTE algorithm was applied to solve imbalance classification problems 

(further information is described below in this paragraph). 

H) Feature extraction and feature selection using PCA algorithm (n.b. applied 

only on the classical ML algorithms and the MLP. The CNN method used 

acceleration data pre-processed according to the previous steps without 

considering feature extraction). 

 

Matlab R2019b software was used to execute steps from A to E, while F to H have 

been carried out through Google Colab (based on python scripts). 
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Figure 50: raw acceleration data (x, y, z axis) WITH GRAVITY (just for filter explanation and clarity) 

coming from the IMU sensor placed on Sacrum (above) and filtered acceleration data (below). 
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Figure 51: outliers removed; only the meaningful data related to the repetitions of the same exercise 

have been considered. Initial and final static positions have been cut off. The figure represents, just for 

explanation clarity, an example of acceleration data WITH GRAVITY. 
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In order to extract every single repetition made by the participants, a simple peak-

detection algorithm was applied on the gyroscope signal with the largest amplitude 

for any particular exercise. The start and ending points of each repetition can be 

found by looking for the corresponding zero-crossing points of the gyroscope signal 

leading up to and following the location of a peak in the signal. Figure 52 

demonstrates example results of the segmentation algorithm used on the gyroscope Z 

signal, from an IMU positioned on the Left Thigh during a Normal Squat exercise. 

 

Figure 52: plot showing detection of peak, start, and end points of repetitions through identifying 

neighboring zero-crossing values to the peak locations. The signal shown is the gyroscope Z signal 

from the left thigh during a Normal Squat exercise. 

4.6 Methods chosen in this work 

Even though the acceleration dataset was quite small (only 792, 793 and 508 

repetitions were available respectively for Normal Squat, Wide Squat and Deadlift), 

we chose to consider a multi-label classification problem, in order to distinguish 

correct and incorrect performances, differentiating the various mistakes.  

 

Six supervised learning methods were compared: 

- Support Vector Machine (SVM). 
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- K-Nearest Neighbor (KNN) 

- Decision Tree  

- eXtreme Gradient Boosting (XGBoost) 

- Multi-layer Perceptron (MLP) 

- Convolutional Neural Network (CNN) 

 

Supervised algorithm usually begins with feature extraction. Starting from a set of 

measured data, non-redundant informative values are extrapolated. These features 

facilitate the subsequent learning and generalization steps. However, if the dataset 

extracted is too large and may be redundant, it can be transformed and reduced in a 

subset by feature selection. The main statistical procedure used for selecting features 

is Principal Component Analysis (PCA), adopted in this project. The workflow can 

be observed in the scheme below. 

 

 

Figure 53: brief schematic explanation of the methods chosen for this work. 

 

The ML algorithms were developed in Google Colab (which is based on python 

scripts). Training set and test set were randomly created extracting respectively the 

70% and 20% of data. A target array was created to define the correct class of each 

entry, labeled with {0, 1, 2, 3, 4, 5} when considering the Squat exercises (Normal 
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Squat and Wide Squat), where 0 corresponded to a correct exercise (CO), 1 to Knees 

Over Toes (KOT), 2 to Valgus Knees (Kv), 3 to Rounded Back (Rb), 4 to Raised 

Heels (Rh), 5 to Shallow (Sh). When considering Deadlift instead, the labels are {0, 

1, 2, 3}, where 0 corresponded to a correct exercise (CO), 1 to Bar Over Shoulder 

(BOS), 2 to Rounded back (Rb), 3 to Hyperextended back (Hb). Confusion matrix 

and accuracy of each testing subset were obtained. 

 Feature extraction  

To obtain better results, in terms of accuracy, the current work is based on the 

extraction of specific features extrapolated from the acceleration data collected (as 

explained in the previous chapters). However, the feature extraction itself is applied 

only on the classical machine learning algorithm (e.g. Support Vector Machines 

SVM, K-Nearest neighbor KNN, Decision Trees, XGBoost) and on the Multi-Layer 

Perceptron (MLP). As far as the Convolutional Neural Network is concerned, we 

chose to use, as input, directly the raw data coming from the sensors without 

considering any kind of feature extraction. 

 

Basing on a GitHub work on the Human Activity Recognition (HAR) classification, 

we extracted: statistical and geometrical features from raw signals and jerk signals 

(acceleration first derivative); frequency domain features from raw signals and jerk 

signals. More precisely, from each sample: 

 

• x, y and z raw signals: mean, max, min, standard deviation, skewness, 

kurtosis, interquartile range, median absolute deviation, area under curve, 

area under squared curve. 

• x, y and z jerk signals (first derivative): mean, max, min, standard 

deviation, skewness, kurtosis, interquartile range, median absolute deviation, 

area under curve, area under squared curve. 

• x, y and z raw signals Discrete Fourier Transform: mean, max, min, 

standard deviation, skewness, kurtosis, interquartile range, median absolute 

deviation, area under curve, area under squared curve, weighted mean 
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frequency, 5 first DFT coefficients, 5 first local maxima of DFT coefficients 

and their corresponding frequencies. 

• x, y and z jerk signals Discrete Fourier Transform: mean, max, min, 

standard deviation, skewness, kurtosis, interquartile range, median absolute 

deviation, area under curve, area under squared curve, weighted mean 

frequency, 5 first DFT coefficients, 5 first local maxima of DFT coefficients 

and their corresponding frequencies. 

• x, y and z correlation coefficients 

 

Table 8 shows in a concise way a brief list of all the features extracted, together with 

their related equations.  

 

Table 8: list of all the features extracted; each feature is related to one axis of a single sensor. 
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 Principal Component Analysis 

Principal component analysis (PCA) is the most widely known technique of attribute 

reduction by means of projection. Generally speaking, the purpose of this method is 

about obtaining a projective transformation that replaces a subset of the original 

numerical attributes with a lower number of new attributes obtained as their linear 

combination, without this change causing a loss of information. Experience shows 

that a transformation of the attributes may lead in many instances to better accuracy 

in the learning models subsequently developed. 

Before applying the principal component method, it is expedient to standardize the 

data, to obtain for all the attributes the same range of values, usually represented by 

the interval [−1, 1]. Moreover, the mean of each attribute aj is made equal to 0 by 

applying the transformation  

 

Let X denote the matrix resulting from applying the transformation above to the 

original data and let V = X’X be the covariance matrix of the attributes. If the 

correlation matrix is used to develop the principal component analysis method 

instead of the covariance matrix, the transformation is not required. 

Starting from the n attributes in the original dataset, represented by the matrix X, the 

principal component method derives n orthogonal vectors, namely the principal 

components, which constitute a new basis of the space Rn. 

Principal components are better suited than the original attributes to explain 

fluctuations in the data, in the sense that usually a subset consisting of q principal 

components, with q < n, has an information content that is almost equivalent to that 

of the original dataset. As a consequence, the original data are projected into a lower-

dimensional space of dimension q having the same explanatory capability. 

Principal components are generated in sequence by means of an iterative algorithm. 

The first component is determined by solving an appropriate optimization problem, 

in order to explain the highest percentage of variation in the data. At each iteration, 
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the next principal component is selected, among those vectors that are orthogonal to 

all components already determined, as the one which explains the maximum 

percentage of variance not yet explained by the previously generated components.  

At the end of the procedure the principal components are ranked in non-increasing 

order with respect to the amount of variance that they are able to explain.  

Let pj, j ∈ N, denote the n principal components, each of them being obtained as a 

linear combination pj = Xwj of the available attributes, where the weights wj have to 

be determined. The projection of a generic example xi in the direction of the weights 

vector wj is given by w’jxi. It can easily be seen that its variance is given by  

 

 

 

The first principal component p1 represents a vector in the direction of maximum 

variance in the space of the original attributes and therefore its weights may be 

obtained by solving the quadratic constrained maximization problem  

 

where the unit norm constraint for w1 is introduced in order to derive a well-posed 

problem. By introducing the Lagrangian function 

 

and applying the Karush–Kuhn–Tucker conditions, the solution of the maximization 

problem reduces to the solution of the system 

 

which can be rewritten as 
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subject to the unit norm condition w’1w1 = 1, where I is the identity matrix. The 

solution of the maximization problem is therefore given by w1 = u1, where u1 is the 

eigenvector of unit norm associated with the maximum eigenvalue λ1 of the 

covariance matrix V. Since the variance we wish to maximize is given by 

 

 

 

the first principal component is obtained by means of the eigenvector u1, associated 

with the maximum eigenvalue λ1 of V, through the relation pj = Xuj. 

The second principal component may be determined by solving an optimization 

problem, adding the condition of orthogonality to the previously obtained principal 

component, expressed by the constraint  

 

Proceeding in an iterative way, it is possible to derive the n principal components 

starting from the eigenvectors uj, j ∈ N, of V ordered by non-increasing eigenvalues 

λ1 ≥ λ2 ≥ . . . ≥ λn, through the equalities pj = Xuj. The variance of the principal 

component pj is given by var(pj) = λj. 

The n principal components constitute a new basis in the space Rn since the vectors 

are orthogonal to each other. Therefore, they are also uncorrelated and can be 

ordered according to a relevance indicator expressed by the corresponding 

eigenvalue. In particular, the first principal component explains the greatest 

proportion of variance in the data, the second explains the second greatest proportion 

of variance, and so on. If U denotes the n × n matrix whose columns are the 

eigenvectors uj, j ∈ N, and P indicates the n × n matrix whose columns are the 

principal components pj, j ∈ N, then the equality P = XU holds true. 

The total variance of the principal components is equal to the total variance of the 

original attributes, that is,  
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The interpretation of the principal components may be obtained from the coefficients 

of the vector wj = uj which express their relationship with the original attributes. To 

this end, notice that the principal component ph assumes the form 

 

 

 

The coefficient uhj can be therefore interpreted as the weight of the attribute aj in 

determining the component ph. The greater the absolute value of uhj is, the more the 

component ph is characterized by the attribute aj. At the same time, var(ph) = λh 

represents a measure of the proportion of total variance explained by the principal 

component ph. For this reason, the index 

 

 

 

expresses the percentage of total variance explained by the first q principal 

components and provides an indication of the amount of information preserved by 

the first q components. In order to determine the number of principal components to 

be appropriately used, it is possible to go on until the level of overall importance Iq of 

the considered components exceeds a threshold Imin deemed reasonable, in relation to 

the properties of the dataset. The number of principal components is therefore 

determined as the smallest value q such that Iq > Imin. 
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Figure 54:  example of the result of PCA in which the first two PCs are plotted; it is clearly visible 

how the data are mainly distributed along the first Principal component. Moreover, one can also 

observe how the two PCs are orthogonal. 

 

 

This work is based on the algorithm developed in Google Colab (based on python 

script) according to the following steps: 

 

• Standardization of data using z-score      . 

• Computation of the covariance matrix V = X′X. 

• Calculation of eigenvectors and eigenvalues of V, which represent 

respectively the directions of the PCs and their amplitudes. 

• Choice of the smallest number of PCs able to explain at least the 90% of the 

total Variance. 
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 Smote algorithm 

The challenge of working with imbalanced datasets is that most machine learning 

techniques will ignore (and, in turn, have poor performance on) the minority class. 

However, typically, the performance on the minority class happens to be sometimes 

the most important. As a consequence, the model considered will not effectively 

learn the decision boundary. 

 

One approach to addressing imbalanced datasets is to oversample the minority class. 

The simplest approach involves duplicating examples in the minority class: this aim 

can be achieved by simply duplicating examples from the minority class in the 

training dataset prior to fitting a model. Even though the result is about balancing the 

class distribution, these examples do not add any new information to the model. On 

the other hand, instead, new examples can be synthesized from the existing 

examples. We are hence considering a specific type of data augmentation for the 

minority class, better known as Synthetic Minority Oversampling Technique, or 

SMOTE in short. Perhaps, it is the approach most widely used when synthesizing 

new examples. 

 

This technique was described by Nitesh Chawla, et al. in their 2002 paper entitled 

“SMOTE: Synthetic Minority Over-sampling Technique.” To have a better 

understanding of the algorithm, SMOTE works by selecting examples that are close 

in the feature space, sketching a line between the examples in the feature space and 

drawing a new sample at a point along that line. 

 

Specifically, a random example from the minority class is first chosen. Then k of the 

nearest neighbors for that example are found. A randomly selected neighbor is 

chosen, and a synthetic example is created at a randomly selected point between the 

two examples in feature space.  
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Figure 55: example of the SMOTE algorithm functioning.  

 

This procedure can be used to create as many synthetic examples for the minority 

class as are required. As described in the paper “Imbalanced Learning: Foundations, 

Algorithms, and Applications” (2013), the suggestion is about using random under-

sampling to trim the number of examples in the majority class, and then using 

SMOTE to oversample the minority class to balance the class distribution. 

 

To summarize, the approach is effective because new synthetic examples from the 

minority class are created that are plausible (namely, they are relatively close in 

feature space to existing examples from the minority class). 

 

A general drawback of the method above explained regards the fact that synthetic 

examples are created without considering the majority class, possibly resulting in 

ambiguous examples whether there is a strong overlap for the classes. 
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 Support Vector Machine 

Support Vector Machines represent a separation method for classification and 

estimation. They allow to identify a set of features, called support vectors (SVs), 

which are representative of the target classes. They are more important than the 

original features because SVs determine the position of the separation surface 

obtained from the classifier in the feature space. 

In binary classification, SVM create N-dimension hyperplane which optimally 

separates data into two groups. The separation margin represents the distance 

between the pairs of canonic hyperplanes, parallel to the separation surface. The 

points collocated at the minimum distance to the hyperplane of separation are the 

support vectors (figure 56). 

 

Figure 56: example of the separation surface of the maximum margin obtained with SVM applied for 

linearly separable data. The optimal hyperplane is shown in red; the maximum margin is represented 

in yellow; black dotted lines identify the support vectors for linearly separable data, whose formulas 

are expressed in blue and green. The two colors distinguish data belonging to the two classes. 
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Calling w the angular coefficient of the separator hyperplane and 𝑏 the known term, 

the equation of the hyperplane is: 

w′x = b 

while the equations of the canonic hyperplanes are: 

w′x − b = 1 w′x − b = −1 

The separation margin δ is: 

 

The goal of SVM is to maximize the separation margin with constraints, which 

impose that each point 𝑥𝑖 stays in the half-space corresponding to the class 𝑦𝑖. In 

particular, if data are linearly separable, the optimization problem is: 

 

Where 𝑦𝑖 is the label vector {-1, 1} that determines the class and the optimization 

problem is seen as the minimization of the reciprocal of the margin. 

 

If data are non-linearly separable, instead, the problem is: 

 

Where 𝑑𝑖 > 0 is the error of classification; 𝜆 adjusts the relative weight of the 

generalization capability, which is represented by the reciprocal of the margin, and of 

the accuracy in respect to the training set, expresses as the sum of the errors. 

 

The optimization problem is solved using Lagrange multipliers 𝛼𝑖 ≥ 0 and 𝜇 ≥ 0 the 

multiplier of the constraints: 

 

With 𝛼 ≤ 𝜆. 
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 K-Nearest Neighbors (KNN) algorithm 

 

The k-nearest neighbors’ algorithm is a supervised classification algorithm. It takes a 

bunch of labeled points and uses them to learn how to label other points. To label a 

new point, the algorithm looks at the already labeled points closest to that new point 

(that’s why we talk about its nearest neighbors) and it will relate each neighbor to a 

single vote. Hence, this new point will be classified according to a criteria of 

majority voting. Moreover, the term “k”, in K-Nearest Neighbors, refers to the 

number of neighbors the algorithm checks. It is ‘supervised’ because we are trying to 

classify a point basing on the known classification of other points. 

 

KNN works according to the following steps:  

- Determine the value for K. 

- Calculate the distances between the new input (test data) and all the training 

data. The most used metrics for calculating distance are Euclidean, 

Manhattan, Minkowski and Mahalanobis ones. 

- Sort the distance and determine k nearest neighbors based on minimum 

distance values. 

- Analyze the category of those neighbors and assign the category for the test 

data based on majority voting. 

- The output of KNN is the predicted class. 
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Figure 57: example of KNN. A bunch of already classified data (yellow and violet ones) are used by 

the algorithm to determine the classification of the new data considered (red star). In this example, if 

we choose K = 3 the star will join the Class B dataset; considering K = 6, instead, the new point will 

belong to Class A. 

 

The Euclidean distance between the vectors associated with the pair of observations 

xi = (xi1, xi2, . . ., xin) and xk = (xk1, xk2, . . ., xkn) in n-dimensional space is defined as 

 

 

 

 

As alternative, we may consider the Manhattan distance 
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which is so called because in order to reach one point from another we have to travel 

along two sides of a rectangle having the two points as its opposite vertices.  

 

 

Figure 58: difference between Euclidean (full line) and Manhattan distance (dotted line), between two 

point in a plane. 

 

A third option, which generalizes both the Euclidean and Manhattan metrics, is the 

Minkowski distance, defined as 

 

for some positive integer q. The Minkowski distance reduces to the Manhattan 

distance when q = 1, and to the Euclidean distance when q = 2. 

A further generalization of the Euclidean distance can be obtained through the 

Mahalanobis distance, defined as 
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where V−1
ik is the inverse of the covariance matrix of the pair of observations xi and 

xk. If the observations xi and xk are independent, so that the covariance matrix 

reduces to the identity matrix, the Mahalanobis distance coincides with the Euclidean 

distance. The Mahalanobis distance is used when the observations are highly 

correlated, with different variances and a different range.  

 

 Classification trees 

 

Classification trees are perhaps the best-known and most widely used learning 

methods in data mining applications. The reasons for their popularity lie in their 

conceptual simplicity, ease of usage, computational speed, robustness with respect to 

missing data and outliers and, most of all, the interpretability of the rules they 

generate. To separate the observations belonging to different classes, methods based 

on trees obtain simple and explanatory rules for the relationship existing between the 

target variables and predictive ones. 

The development of a classification tree corresponds to the training phase of the 

model and is regulated by a recursive procedure of heuristic nature, based on a 

divide-and-conquer partitioning scheme. 

 

The steps referred to the classification methods used by decision trees are the 

following: 

1. In the initialization phase, each observation is placed in the root node of the 

tree. The root is included in the list L of active nodes. 

2. If the list L is empty the procedure is stopped, otherwise a node J belonging 

to the list L is selected, removed from the list and used as the node for 

analysis.  
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3. The optimal rule to split the observations contained in J is then determined, 

based on an appropriate preset criterion. The splitting rule generated in this 

way is then applied, and descendant nodes are constructed by subdividing the 

observations contained in J. For each descendant node, the conditions for 

stopping the subdivision are verified. If these are met, node J becomes a leaf, 

to which the target class is assigned according to the majority of the 

observations contained in J. Otherwise, the descendant nodes are added to the 

list L. Finally, step 2 is repeated.  

 

Splitting rules: for each node of the tree, it is necessary to specify the criteria used 

to identify the optimal rule for splitting the observations and for creating the 

descendant nodes. Several alternative criteria can be considered and they differ in the 

number of descendants, the number of attributes and the evaluation metrics. 

Stopping criteria: at each node of the tree different stopping criteria are applied to 

establish whether the development should be continued recursively, or the node 

should be considered as a leaf. Even in this case, various criteria have been proposed, 

which result in quite different topologies of the generated trees, all other elements 

being equal. 

Pruning criteria: finally, it is appropriate to apply a few pruning criteria, first to 

avoid excessive growth of the tree during the development phase (pre-pruning), and 

then to reduce the number of nodes after the tree has been generated (post-pruning). 

 

 

Figure 59: example of Decision Tree structure. 
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 eXtreme Gradient Boosting (XGBoost) 

XGBoost can be considered one of the most popular algorithms in the world of data 

science. Its multitasking aspect allows it to be used in regression or classification 

projects. It can be used on tabular, structured, and unstructured data. 

 

XGBoost, also named eXtreme Gradient Boosting, refers to a based-tree algorithm 

(Chen and Guestrin, 2016). It is, hence, part of the tree family (Decision tree, 

Random Forest, bagging, boosting, gradient boosting). 

Boosting is an ensemble method with the primary objective of reducing bias and 

variance. The goal is about creating weak trees sequentially so that each new tree (or 

learner) focuses on the weakness (misclassified data) of the previous one. Once a 

weak learner is added, the data weights are readjusted (a phenomenon generally 

known as “re-weighting”). The whole forming a strong model after convergence due 

to the auto-correction once every new learner is added. 

 

The strength of XGBoost is based on parallelism and hardware optimization. The 

data is stored in in-memory (called a block) and stored in the compressed column 

[CSC] format. The algorithm can perform tree pruning in order to remove branches 

with a low probability. The loss function of the model has a term to penalize the 

complexity of the model with regularization to smooth the learning process (thus 

decreasing the possibility of overfitting). 

 

The model performs well even with missing or lots of zero values with sparsity 

awareness. XGBoost uses an algorithm called “weighted quantile sketch algorithm”, 

which allows the algorithm itself to focus on data that are misclassified. The goal of 

each new learner is simply to learn how to classify the wrong data after each 

iteration. The method allows you to sort the data by quantiles in order to find the 

right splitting point. It is actually the goal of the ϵ parameter, which refers 

specifically to the value of split (ϵ=0.1; quantiles = [10%, 20%, …, 90%]). 
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The number of iterations for the boosting process is automatically determined by the 

algorithm with an integrated cross-validation method. 

The authors provide a table (table 9) with a comparison of different tree algorithms. 

 

Table 9: comparison of the different tree algorithms according to the studies and works headed by 

Chen and Guestin (2016. p.7, Table 1). 

 

 

 Feed-forward Artificial Neural Network (MLP, Multi-layer 

perceptron) 

 

In order to have a clear understanding of what a MLP actually is, we need to 

introduce the mathematical meaning of a single Rosenblatt perceptron. 

The perceptron, shown in figure 60, is the simplest form of neural network and 

corresponds to a single neuron that receives as input the values (x1, x2, . . ., xn) along 

the incoming connections, and returns an output value f(x). The input values coincide 

with the values of the explanatory attributes, while the output value determines the 

prediction of the response variable y. Each of the n input connections is associated 

with a weight wj. An activation function g and a constant ϑ, called distortion, are also 

assigned. Suppose that the values of the weights and the distortion have already been 

determined during the training phase. The prediction for a new observation x is then 

derived by performing the following steps. 
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Figure 60: operation of a single unit in a neural network. 

 

First, the weighted linear combination of the values of the explanatory variables for 

the new observation is calculated and the distortion is subtracted from it: 

w1x1 + w2x2 +· · ·+wnxn − ϑ = w’x − ϑ. 

The prediction f(x) is then obtained by applying the activation function g to the linear 

combination of the predictors: 

f(x) = g(w1x1 + w2x2 +· · ·+wnxn − ϑ) = g(wx − ϑ).  

The purpose of the function g is to map the linear combination into the set H = {v1, 

v2, . . ., vH} of the values assumed by the target variable, usually by means of a 

sigmoid profile. For binary classification problems we have H = {−1, 1}, so that one 

may select g(·) = sgn(·), making the prediction coincide with the sign of the weighted 

sum (in the first equation of this section). 

f (x) = sgn(w1x1 + w2x2 +· · ·+wnxn − ϑ) = g(w’x − ϑ).  

An iterative algorithm is then used to determine the values of the weights wj and the 

distortion ϑ, examining the examples in sequence, one after the other. For each 

example xi the prediction f(xi) is calculated, and the value of the parameters is then 

updated using recursive formulas that take into account the error yi − f(xi).  

For binary classification problems it is possible to give a geometrical interpretation 

of the prediction obtained using a Rosenblatt perceptron. Indeed, if we place the m 

observations of the training dataset in the space Rn, the weighted linear combination 

calculated for xi expresses the slack between the observation and the hyperplane: 
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z = w1x1 + w2x2 +· · ·+wnxn − ϑ = wx − ϑ.  

 

The purpose of the activation function g(·) = sgn(·) is therefore to establish if the 

point associated with the example xi is placed in the lower or upper half-space with 

respect to the separating hyperplane. Hence, the Rosenblatt perceptron corresponds 

to a linear separation of the observations based on the target class. The aim of the 

iterative procedure is therefore to determine the coefficients of the separating 

hyperplane.  

 

A multi-layer feed-forward neural network (MLP), shown in figure 61, is a more 

complex structure than the perceptron since it includes the following components. 

 

Input nodes: The purpose of the input nodes is to receive as input the values of the 

explanatory attributes for each observation. Usually, the number of input nodes 

equals the number of explanatory variables. 

Hidden nodes: Hidden nodes apply given transformations to the input values inside 

the network. Each node is connected to incoming arcs that go from other hidden 

nodes or from input nodes, and it is connected with outgoing arcs to output nodes or 

to other hidden nodes. 

Output nodes: Output nodes receive connections from hidden nodes or from input 

nodes and return an output value that corresponds to the prediction of the response 

variable. In classification problems, there is usually only one output node. 
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Figure 61: example of MLP. We can clearly observe the presence of input vectors, input nodes, 

hidden nodes and output nodes. 

 

Each node of the network basically operates as a perceptron, in the sense that given 

weights are associated with the input arcs, while each node is associated with a 

distortion coefficient and an activation function. In general, the activation function 

may assume forms that are more complex than the sign function sgn(·), such as a 

linear function, a sigmoid or a hyperbolic tangent. 

 

One of the strengths of neural network is about being a learning mechanism 

applicable to both classification and regression problems. Considering this thesis 

project, the classification problem is taken into account. More specifically, the two 

layers feed-forward neural network was developed using Google Colab and the 

libraries associated with ANNs and MLPs. The Input layer was composed by a 

number of nodes depending on the result of PCA, which varies for each exercise 

(Normal Squat, Wide Squat, Deadlift). The number of hidden neurons was selected 

basing on the minimum error on validation sets. The output layer needed 6 neurons 
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to classify correct and incorrect exercises (in the same way as SVMs. See previous 

subchapter for further information). The activation function chosen was the ReLu 

(Rectified Linear Activation Function). 

 

 Convolutional Neural Networks (CNN) 

 

CNNs belong to the category of deep learning methods. They are worldwide known 

and used in images application. However, in recent year, this algorithm has been 

applied even in Human activity recognition for both real time and offline situations. 

As far as this thesis project is concerned, we used the main concepts to elaborate and 

create a new neural network capable of training on all the sensors used to acquire 

acceleration data in order to provide information on correct or incorrect exercise 

execution. For completion, the following sections describe both the CNNs’ concepts 

applied on images and the structure of our CNN created ad-hoc for Human Activity 

Recognition (HAR). 

 

CNN for images  

Convolutional neural networks (CNN) are FFNN designed to exploit spatially‐local 

correlation by enforcing a local connectivity pattern between neurons of adjacent 

layers. In other words, the inputs of hidden units in layer m are from a subset of units 

in layer m‐1, units that have spatially contiguous receptive fields. This wiring 

modality of the CNN differs therefore from the traditional full connection related to 

the Feed forward neural network (FFNN). This paradigm is called sparse 

connectivity (see figure 62). 
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Figure 62: example of CNN wiring exploiting spatially-local correlation.  

 

In figure 62, units in layer m have receptive fields of width 3 in the input and are thus 

only connected to 3 adjacent neurons in the first layer. Units in layer m+1 have a 

similar connectivity with the layer below. Therefore, their receptive field with 

respect to the layer below is also 3, but their receptive field with respect to the input 

is larger (precisely, 5). Each unit is unresponsive to signals outside of its receptive 

field with respect to the first layer. The architecture thus ensures that the learnt 

“filters” produce the strongest response to a spatially local input pattern. However, 

stacking many such layers leads to (non‐linear) “filters” that become increasingly 

“global” (i.e., responsive to a larger region of pixel space). For example, the unit in 

hidden layer m+1 can encode a non‐linear feature of width 5 (in terms of pixel 

space).  

 

Convolutional neural networks use three basic ideas: local receptive fields, shared 

weights, and pooling. A local receptive field consists of a set of connections (which 

determines the local connectivity), along the corresponding weight set (which 

determines the filter property), that is replicated across the entire visual field. These 

replicated units share the same parameterization (weights and bias) and form a 

feature map. Replicating units in this way allows for features to be detected 

regardless of their position in the visual field. Additionally, weight sharing increases 

learning efficiency by greatly reducing the number of free parameters being learnt 
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(figure 63). The constraints on the model enable CNNs to achieve better 

generalization on vision problems.  

 

 

Figure 63: three hidden units belonging to the same feature map. Weights of the same color are shared 

– constrained to be identical.  

 

A feature map is attained by repetitive application of a function across sub‐regions of 

the whole image, in other words, by convolution of the input image with a linear 

filter, adding a bias term and then applying the neural activation function. If we 

designate/call the i‐th feature map at a given layer as u(i), whose filter is determined 

by the weight matrix W(i) and bias b(i), then the feature map u(i) at the specific 

location (j, k) in the layer reads as follows:  

 

where fx    and fy   are the horizontal and vertical sizes of the filter, and ax,y is the 

input activation at position x,y. When considering the first convolutional layer then 

input activation corresponds to the image pixel value. By convention, the bias b is 

equivalent to the traditional threshold multiplied by the virtual input ‐1. For example, 

provided that we have a 40x40 pixel image and we set a local receptive field of 5x5, 

the output of the first neuron mapping the receptive field will be computed as:  



CHAPTER 4 – MATERIALS AND METHODS 
 

104 

 

requiring only 26 parameters (25 weights + 1 threshold). 

Assuming that we adopt a zero‐padding strategy (adding zeros to the image 

boundary) for the convolutional product, the output size (ss, sy) of each convolutional 

layer can be computed as:  

 

where Ix and Iy are the input image sizes in x and y directions, zx and zy are the 

zero‐padding sizes, fx and fy are the filtering sizes, and Lx and Ly are the stride 

lengths of the filter. The stride accounts for quantification (in pixel) of the shift the 

filter is undergoing when convoluted with the image. A stride length of 1 will 

correspond to the filter shift of 1 pixel. A stride length of 3 will correspond to the 

filter shift of one 3 pixels. Let us assume a 240x240 pixel images, a convolutional 

filter of 7x7 pixels with a stride length of 3 and a 2‐pixel zero padding both in 

horizontal and vertical directions. The output of the convolution will be then an 

image map of 80x80 pixels. 

 

An important peculiar characteristic of CNN to keep in mind is that the network is 

structurally NOT fully connected. 

 

This ML algorithm in general is applied both on 2D images and 3D images. In the 

latter situation, the images themselves are described in terms of number of pixels in x 

and y direction, along with the number of slices taken in the z direction. Applying a 

convolutional filter to such data means to define not only the x, y size but even the z 

one which specifies how many slices will be processed simultaneously. Likewise, in 
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this 3D convolution that is determined by the corresponding 3D feature map, we can 

compute the output size of the convolutional processing as follows:  

 

 

 

where ns is the number of slices of the scan, fz is the number of slices addressed by 

the filter, Lz is the stride of the filter in the z direction. Considering an input volume 

of 65x65x8, composed say by 33800 voxels, a 5x5x2 filter with no padding and 

stride equal to 2 in all the three direction, the feature map will endow 3844 neurons, 

all featuring 51 parameters (50 weights and 1 threshold). This feature map can be 

regarded as a 3D distribution of neurons regularly distributed on a 3D grid of 

31x31x4. Assuming that the first convolutional layer encompasses n different 

features maps, one neuron in the second layer belonging to the first feature map will 

be spanning all the feature maps in the previous layer. Provided that the filter size is 

3x3x2 with no padding and stride of 2 along all the three directions, then the 

complete feature map will consist of 15x15x2 neurons, i.e. 450 neurons in total. Each 

neuron therefore will have ‘(3x3x2) x n + 1’ free parameters. 
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Figure 64: considering a filter size of 3x3x2 with no padding and stride of 2 along all the three 

directions, the complete feature map will consist of 15x15x2 neurons, i.e. 450 neurons in total. Each 

neuron therefore will have ‘(3x3x2) x n +1’ free parameters. 

 

Another important concept of CNNs is max‐pooling, which is a form of non‐linear 

down‐ sampling. Max‐pooling partitions the input image into a set of non‐ 

overlapping rectangles and, for each such sub‐region, outputs the maximum value. 

Max‐pooling is useful mainly for two reasons: 1) by eliminating non‐maximal 

values, it reduces computation for upper layers; 2) it provides a form of translation 

invariance. 

 

 

Figure 65: max pooling example considering 2x2 filters and stride 2.  
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Imagine cascading a max‐pooling layer with a convolutional layer (figure 65). There 

are 8 directions in which one can translate the input image by a single pixel. If 

max‐pooling is done over a 2x2 region, 3 out of these 8 possible configurations will 

produce exactly the same output at the convolutional layer. For max‐pooling over a 

3x3 window, this jumps to 5/8. Since it provides additional robustness to position, 

max‐pooling is a “smart” way of reducing the dimensionality of intermediate 

representations. 

 

Another processing layer utilized in CCN is represented by the rectified linear unit 

layer (ReLU). It is chained to the convolutional layer to ensure that all the feature 

maps have positive signals (remember that activation function tanh is associated to 

potential negative outputs). 

 

 

Figure 66: equations and graphical representation of ReLU. 

 

The basic idea of building deep learning with CNN leads to bind together blocks 

constituted by the three elements above (Convolutional layer, ReLU, Max Pooling) 

with decreasing number of units up to a final stage of feature classification. Usually 

this consists of a fully connected FFNN shaped as a cluster network (e.g. softmax) 

whose multi‐dimensional output refers to the number of predefined features or 

classes (Fig. 73). Softmax network maps a N‐dimensional vector of arbitrary real 

values to a N‐dimensional vector of real values in the range (0, 1) that add up to 1. 

This is obtained using normalized exponential activation as: zi = ePi/ ∑ ePj. The 

CNN can be trained using the traditional algorithm of backpropagation. ReLU and 

Pooling layers do not require learning. 
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Figure 67: (Upper panel) Example of a classifier built using multi‐layer convolutional neural network. 

The last layer consists of a fully connected FFNN shaped as a cluster network (e.g., softmax). (Lower 

panel) Softmax connectivity. It “maps" a N‐dimensional vector of arbitrary real values to a 

N‐dimensional vector of real values in the range (0, 1) that add up to 1. This is obtained using 

normalized exponential activation as: zi = ePi/ ∑ ePj. 

 

CNN for real time and offline classification 

As previously mentioned, CNNs can be employed not only for image classification 

but also used in many other applications related to our daily life.  

 

In the current work, the Convolutional Neural Network is applied on the data 

collected by IMU sensors during Squat and Deadlift exercises to classify correct and 
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incorrect motions. In order to achieve these goals, we chose to train separately each 

sensor (using the basic concepts previously explained in the ‘CNN for images 

section’). The results coming from this first step are then elaborated together in the 

last CNN layers, thus providing a specific classified outcome.  

 

Figure below shows in a more understandable way the acceleration data pathway, 

starting from the pre-processed data (see chapter 4.5) and ending with the 

classification of the exercise analyzed.  

 

More precisely, the figure shows how the whole exercise repetition (which lasts 3.5 

seconds and comprises 350 samples), coming from one sensor, is used as input for a 

2D CNN. The information related to each IMU is initially processed separately from 

the other ones. The architecture adopted consists of two convolution layers with filter 

numbers of 64 and 32, and sizes of (1 x 50) and (1 x 20), respectively. Each layer is 

followed by a MaxPooling and a Dropout layers, with drop percentage 10% and 

20%, respectively. The Pooling layer reduce by a factor of 5 the convolution layer’s 

width and height, while dropout controls the neurons overfitting. The use of pooling 

and dropout after each convolution layer significantly reduces the number of 

parameters in the fully connected layers: in this way, training becomes faster. After 

these first processing steps, all the results are concatenated together to pass through 

the last layers. The top layers in CNN are stacked by two fully connected neural 

networks. The latter are expected to combine different local structures in the lower 

layers for the final classification purpose. The SoftMax approach, eventually, allows 

to reach the goal of a multilabel classification. In case of Normal Squat or Wide 

Squat exercises, the classifier will have to choose among 6 different possibilities. As 

regards Deadlift, instead, the output will be only one among 4 feasible 

classifications. The dataset percentage to create subsets for training, testing and 

validation were respectively 70%, 20% and 10%.  

 

Table 10 provides a detailed overview of the 2D CNN model. 
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Table 10: the CNN was created ad-hoc to elaborate singularly the input coming from the different 

sensors and then combining all the results to classify the motion. The table shows the network 

parameters. 
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CHAPTER 5 

RESULTS AND DISCUSSION 

In this chapter, all the outcomes obtained through the OpenSim models’ comparison 

and the results of ML algorithms explained in Chapter 4 are reported.  

 

Subchapter 5.1 highlights in detail the differences between the “Catelli” and 

“Gait2392” models through both a numerical and a graphical analysis.  

Subchapter 5.2 refers to real acceleration data acquired on ground, showing results of 

the 6 different ML approaches exploited in this thesis. 

Subchapter 5.3 focuses on the same real acceleration data collected on ground and 

shows the results obtained by the combination of different sensors. 

Subchapter 5.4 describes the results on a customized classification for single subject, 

still considering the same real acceleration data saved on ground. 

Subchapter 5.5 regards the comparison between real and simulated datasets. 

 

Every result is referred to a multi-label classification basing on the three exercises 

analyzed: Normal Squat (NS), Wide Squat (WS) and Deadlift (ND).  
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5.1 OPENSIM MODEL COMPARISON  

According to the tables and graphs reported below, we clearly understand and notice 

the differences between the Catelli and Gait2392 models. The numbers circled in red 

(Tables 12, 14, 16) represent ROMs that derive from maximum and/or minimum 

values associable with outlier (as shown in chapter 4.2, each model presents specific 

motion boundaries of the three joints considered, namely hip, knee and ankle). 

Consequently, such ROM values are not acceptable.  

 

Table 11: each line of this numeric table shows the anonymous reference of a single subject recruited 

at NASA JSC. Each column refers to a specific right or left joint. The numbers refer to the ROM 

mean based on 4 repetitions of the same movement. In particular, here we consider the Deadlift (ND) 

exercise performed by the ‘Catelli’ model. 

 

 

 

Table 12: each line of this numeric table shows the anonymous reference of a single subject recruited 

at NASA JSC. Each column refers to a specific right or left joint. The numbers refer to the ROM 

mean based on 4 repetitions of the same movement. In particular, here we consider the Deadlift (ND) 

exercise performed by the ‘gait2392_simbody’ model. The numbers circled in red represent ROMs 

that derive from MAXIMUM and/or MINIMUM values associable with OUTLIERS. 
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Table 13: each line of this numeric table shows the anonymous reference of a single subject recruited 

at NASA JSC. Each column refers to a specific right or left joint. The numbers refer to the ROM 

mean based on 4 repetitions of the same movement. In particular, here we consider the Wide Squat 

(WS) exercise performed by the ‘Catelli’ model. 

 

 

 

Table 14: each line of this numeric table shows the anonymous reference of a single subject recruited 

at NASA JSC. Each column refers to a specific right or left joint. The numbers refer to the ROM 

mean based on 4 repetitions of the same movement. In particular, here we consider the Wide Squat 

(WS) exercise performed by the ‘gait2392_simbody’ model. The numbers circled in red represent 

ROMs that derive from MAXIMUM and/or MINIMUM values associable with OUTLIERS. 
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Table 15: each line of this numeric table shows the anonymous reference of a single subject recruited 

at NASA JSC. Each column refers to a specific right or left joint. The numbers refer to the ROM 

mean based on 4 repetitions of the same movement. In particular, here we consider the Normal Squat 

(NS) exercise performed by the ‘Catelli’ model. The value circled in red is due to a lack of data 

associated with the ankle. 

 
 

 

Table 16: each line of this numeric table shows the anonymous reference of a single subject recruited 

at NASA JSC. Each column refers to a specific right or left joint. The numbers refer to the ROM 

mean based on 4 repetitions of the same movement. In particular, here we consider the Normal Squat 

(NS) exercise performed by the ‘gait2392_simbody’ model. The numbers circled in red represent 

ROMs that derive from MAXIMUM and/or MINIMUM values associable with OUTLIERS. 

 

 

 

To have a clearer view about the models’ differences, the following graphs show the 

variation of both the left and right joints angle with respect to the repetition 

progression of the Normal Deadlift (ND) and Normal Squat (NS) exercises. In 

particular, the blue and orange lines and ranges represent respectively the mean 

(based on 4 repetitions of a single subject) and the standard deviation. 
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Figure 68: the two graphs above show respectively the variation of both the left and right Hip joint 

angle with respect to the repetition progression of the Normal Deadlift (ND) exercise. In particular, 

the blue and orange lines represent the mean based on 4 repetitions of the same motion, while the 

orange and blue ranges correspond to the standard deviation. The figure also shows the Maximum 

value of the two curves. This approach highlights the differences between the ‘Catelli’ and 

‘gait2392_simbody’. 
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Figure 69: the two graphs above show respectively the variation of both the left and right Knee joint 

angle with respect to the repetition progression of the Normal Deadlift (ND) exercise. In particular, 

the blue and orange lines represent the mean based on 4 repetitions of the same motion, while the 

orange and blue ranges correspond to the standard deviation. The figure also shows the Maximum 

value of the two curves. This approach highlights the differences between the ‘Catelli’ and 

‘gait2392_simbody’ models. 
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Figure 70: the two graphs above show respectively the variation of both the left and right Ankle joint 

angle with respect to the repetition progression of the Normal Deadlift (ND) exercise. In particular, 

the blue and orange lines represent the mean based on 4 repetitions of the same motion, while the 

orange and blue ranges correspond to the standard deviation. The figure also shows the Maximum 

value of the two curves. This approach highlights the differences between the ‘Catelli’ and 

‘gait2392_simbody’ models. 
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Figure 71: the two graphs above show respectively the variation of both the left and right Hip joint 

angle with respect to the repetition progression of the Normal Squat (NS) exercise. In particular, the 

blue and orange lines represent the mean based on 4 repetitions of the same motion, while the orange 

and blue ranges correspond to the standard deviation. The figure also shows the Maximum value of 

the two curves. This approach highlights the differences between the ‘Catelli’ and 

‘gait2392_simbody’ models. 
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Figure 72: the two graphs above show respectively the variation of both the left and right Knee joint 

angle with respect to the repetition progression of the Normal Squat (NS) exercise. In particular, the 

blue and orange lines represent the mean based on 4 repetitions of the same motion, while the orange 

and blue ranges correspond to the standard deviation. The figure also shows the Maximum value of 

the two curves. This approach highlights the differences between the ‘Catelli’ and 

‘gait2392_simbody’ models. 
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Figure 73: the two graphs above show respectively the variation of both the left and right Ankle joint 

angle with respect to the repetition progression of the Normal Squat (NS) exercise. In particular, the 

blue and orange lines represent the mean based on 4 repetitions of the same motion, while the orange 

and blue ranges correspond to the standard deviation. The figure also shows the Maximum value of 

the two curves. This approach highlights the differences between the ‘Catelli’ and 

‘gait2392_simbody’ models. 
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5.2 IMU DATA ANALYSIS AND RESULTS 

A summary of the accuracies coming from the six algorithms chosen can be found in 

Table 17. All the results are referred to the cooperation of the six IMU sensors 

(shown in chapter 4). 

 

Table 17: summary containing all the accuracies obtained by the six different Machine Learning 

approaches. In general, SVM and CNN reached better results with respect to the other methods 

chosen. 

 

 

 5.2.1 NORMAL SQUAT 

The original dataset, containing 1314 features for six sensors (hence, 219 features for 

each of them), is reduced with PCA to 198 features (the ones which represent at least 

90% of variance). The algorithms have been trained with 70% of data, tested with 

20% and validated with the remaining 10%. A single entry corresponded to one 

repetition that was opportunely labeled as a number between zero and five {0 1 2 3 4 

5}, where 0 corresponded to a correct exercise (CO), 1 to Knees Over Toes (KOT), 2 

to Valgus Knees (Kv), 3 to Rounded Back (Rb), 4 to Raised Heels (Rh), 5 to Shallow 

(Sh). 

A total of 792 observations were used, where CO repetitions were 143, KOT 

repetitions were 113, Kv repetitions were 127, Rb repetitions were 139, Rh 

repetitions were 129 and Sh repetitions were 141.  

Statistical parameters (precision, recall, f1-score), confusion matrixes and graphs 

resulting from each testing phase are shown below. It was observed greater 

accuracies for the SVM (87.79 %) and CNN (84.30%) algorithms with respect to the 
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other ones. Below only SVM and CNN are reported since the other approaches 

present less accurate outcomes (see Appendix B).  

Support vector machine (SVM) results  

 

 

 

Accuracy: 87.79% 
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Convolutional Neural Network (CNN) results  

 

 

Accuracy: 84.30 % 
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 5.2.2 WIDE SQUAT 

The original dataset, containing 1314 features for six sensors (hence, 219 features for 

each of them), is reduced with PCA to 216 features (the ones which represent at least 

90% of variance). The algorithms have been trained with 70% of data, tested with 

20% and validated with the remaining 10%. A single entry corresponded to one 

repetition that was opportunely labeled as a number between zero and five {0 1 2 3 4 

5}, where 0 corresponded to a correct exercise (CO), 1 to Knees Over Toes (KOT), 2 

to Valgus Knees (Kv), 3 to Rounded Back (Rb), 4 to Raised Heels (Rh), 5 to Shallow 

(Sh). 

A total of 793 observations were used, where CO repetitions were 159, KOT 

repetitions were 119, Kv repetitions were 123, Rb repetitions were 133, Rh 

repetitions were 123 and Sh repetitions were 136.  

Statistical parameters (precision, recall, f1-score), confusion matrixes and graphs 

resulting from each testing phase are shown below. It was observed greater 

accuracies for the SVM (86.38 %) and CNN (86.91%) algorithms with respect to the 

other ones. Below only SVM and CNN are reported since the other approaches 

present less accurate outcomes (see Appendix B). 

Support vector machine (SVM) results  
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Accuracy: 86.38% 

 

 

Convolutional Neural Network (CNN) results  
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Accuracy: 86.91% 

 

 

 5.2.3 DEADLIFT 

The original dataset, containing 1314 features for six sensors (hence, 219 features for 

each of them), is reduced with PCA to 152 features (the ones which represent at least 

90% of variance). The algorithms have been trained with 70% of data, tested with 

20% and validated with the remaining 10%. A single entry corresponded to one 

repetition that was opportunely labeled as a number between zero and three {0 1 2 

3}, where 0 corresponded to a Correct Exercise (CO), 1 to Bar Over Shoulders 

(BOS), 2 to Rounded back (Rb), 3 to Hyperextended back (Hb). 

A total of 508 observations were used, where CO repetitions were 146, BOS 

repetitions were 103, Rb repetitions were 132 and Hb repetitions were 127. 

Statistical parameters (precision, recall, f1-score), confusion matrixes and graphs 

resulting from each testing phase are shown below. It was observed greater 

accuracies for the SVM (83.76 %) and CNN (82.05%) algorithms with respect to the 

other ones. Below only SVM and CNN are reported since the other approaches 

present less accurate outcomes (see Appendix B). 



CHAPTER 5 – RESULTS AND DISCUSSION 
 

129 

Support vector machine (SVM) results  

 

 

 

Accuracy: 83.76% 
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Convolutional Neural Network (CNN) results  

 

 

 

Accuracy: 82.05%  
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5.3 DIFFERENT SENSORS COMBINATIONS 

The current works strongly recommend the use of CNN network (see Conclusions 

explained in chapter 6 for further information). Since the MARS-PRE projects aims 

at investigating which is the minimum number of sensors (together with their 

specific body placement) to be exploited by the astronauts on ISS, we tested different 

combination of sensors. The results, in terms of accuracies, while considering the 

Normal Squat, Wide Squat and Deadlift exercises are reported, respectively, in tables 

18, 19, 20. Better outcomes are reached when considering all the six sensors 

(Sacrum, Right Shank, Left Shank, Right Thigh, Left Thigh, Sternum): 84.30% (NS), 

86.91% (WS) and 82.05% (DL) accuracy values. However, good results (83.25%, 

81.68% and 82.05%) were obtained also with the cooperation of homolateral sensors 

(such as Sacrum, Left Shank, Left Thigh and Sternum) and sensors (Right Shank, 

Left Shank, Right Thigh, Left Thigh) placed on the lower limbs (84.29%, 81.68% 

and 76.92%). 

 

Table 18: CNN accuracy results obtained by different combination of sensors when performing 

Normal Squat exercise.  
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Table 19: CNN accuracy results obtained by different combination of sensors when performing Wide 

Squat exercise. 

 

 

Table 20: CNN accuracy results obtained by different combination of sensors when performing 

Deadlift exercise. 

 



CHAPTER 5 – RESULTS AND DISCUSSION 
 

133 

5.4 CUSTOMIZED CLASSIFIER FOR SINGLE 

SUBJECT – Examples 

Still considering the IMU dataset (explained in chapter 4), the current thesis also 

employed the ML algorithms to build a customized classifier suited for a single 

person (since customization is one of the MARS-PRE project’s aims). More 

specifically, we tried to isolate the subjects (among the 17 available) who performed 

the highest number of repetitions and we studied them separately. Table 21 shows 

the number of observations of 3 subjects performing Normal Squat (NS), Wide Squat 

(WS) and Deadlift (DL). Even in this case, we focused on and trained only CNNs 

and SVMs algorithms. Table 22 shows a summary of the results, in terms of 

accuracy, obtained for each single subject. See Appendix B for the related confusion 

matrices.  

 

Table 21: number of single subjects’ observations. 
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Table 22: accuracy results summary for customized classifiers on single subjects.  

 

 

5.5 SIMULATED DATA ANALYSIS AND RESULTS 

While all the previous analyses were related only to IMU sensors, we tried to 

understand whether it was possible to classify the simulated data (i.e. those coming 

from the OpenSim software) starting from a classifier trained with real observations. 

However, comparing the latter without gravity (figure 74) and the simulated ones 

(figure 75), an intuitive and easily visible incompatibility is noted. Indeed, in the 

simulated data it is possible to observe the single repetitions simply by looking at the 

acceleration trend relative to the Y axis (differently from the real ones). Moreover, 

no machine learning algorithm was able to correctly classify the movement since the 

trials performed with every classifier led to meaningless results in terms of prediction 

accuracies (see appendix B).  
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Figure 74: IMU data with gravity of a Normal Squat exercise based on a sensor placed on the Sacrum 

(left). Corresponding IMU data without gravity (right). 

 

 

Figure 75: example of OpenSim simulated data without gravity related to a Normal Squat exercise 

based on a biomarker positioned on the Sacrum. 
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As a consequence, we have decided to treat the simulated data from OpenSim and 

the real IMU ones SEPARATELY. Table 23 shows the few number of observations 

collected in Politecnico di Milano of 2 subjects (1 male and 1 female) performing 

Normal Squat, Wide Squat and Deadlift. Even in this case, we focused on and trained 

only CNNs and SVMs algorithms.  

 

Table 23: number of simulated data observations. 

 

 

 

 

A summary of the accuracies coming from SVM and CNN algorithms can be found 

in Table 24. 

 

Table 24: summary containing all the accuracies obtained by CNN and SVM algorithms when training 

and testing only with simulated OpenSim data.  
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 5.5.1 NORMAL SQUAT 

Support vector machine (SVM) results  

 

Accuracy: 90.00% 

Convolutional Neural Network (CNN) results  

 

Accuracy: 80.00% 
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 5.5.2 WIDE SQUAT 

Support vector machine (SVM) results  

 

Accuracy: 85.71% 

Convolutional Neural Network (CNN) results  

 

Accuracy: 71.43% 
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 5.5.3 DEADLIFT 

Support vector machine (SVM) results  

 

Accuracy: 75.00% 

Convolutional Neural Network (CNN) results  

 

Accuracy: 75.00% 
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CHAPTER 6 

CONCLUSIONS & FUTURE WORKS 

In this work, an OpenSim biomechanical model was used to simulate 

countermeasure target exercises performed on ISS by astronauts during their 

missions. Training is essential to reduce the effects of weightlessness on 

musculoskeletal system deconditioning. However, dangerous or hazardous 

consequences can occur even when executing incorrect motion. 

 

Keeping in mind the results obtained in Chapter 5, the conclusions of this whole 

project can be summarized as follows: 

 

- The “Catelli” OpenSim biomechanical model, differently from “gait2392”, 

demonstrated to be a valid candidate in the ARED-K research project since it 

allows to reach, especially regarding the knee joint, those Range of Motions 

(ROM) suitable for the specific training exercises (Normal Squat, Wide Squat, 

Deadlift) performed on ISS. 

 

- Six different Machine Learning approaches have been considered, but only SVM 

and CNN allowed to reach discrete and reliable results in terms of accuracy. 

However, the following statements are going to make the reader understand the 

reason why we mainly focused on the CNN algorithm: 
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A) In literature, the last 6-year papers (e.g., Gemert et al. (2019), Jaehyun 

Lee et al. (2020); O’Reilly et al. (2015), O’Reilly et al. (2017); Avci et 

al. (2017), Shrestha et al. (2020), Kiranyaz et al. (2019)) strongly 

recommend the use of CNN to classify human motion, even for real 

time applications. Also, the computational speed has been proved to 

be higher with respect to the SVM. 

B) While the SVM algorithm needs to execute longer steps in pre-

processing (e.g. features extraction and feature selection with PCA), 

the CNN takes as input just the raw data (see chapter 4 for further 

information), thus lowering the total computational cost. 

 

- Relying on the results obtained through CNN (84.30% accuracy for Normal 

Squat classification; 86.91% accuracy for Wide Squat classification; 82.05% 

accuracy for Deadlift classification), it can be inferred that our biomarkers are 

Sacrum, Left Thigh, Right Thigh, Left Shank, Right Shank and Sternum. 

 

- Using CNN, we analyzed different outputs coming from several combination of 

sensors (see Chapter 5.3). The best results were obtained when considering all 

the six sensors used in the data acquisition step. However, discrete outcomes 

(83.25% for NS, 81.68% for WS and 82.05% for DL) were reached even with 

sensors placed in homolateral position (for instance, the left side of human body 

related to the Sacrum, Left Thigh, Left Shank and Sternum body points). 

Moreover, the outcomes also show that considering the sensors placed only on 

the lower limbs (Right Shank, Left Shank, Right Thigh, Left Thigh) is a feasible 

solution (84.29% for NS, 81.68% for WS and 82.05% for DL). In particular, the 

latter statement will be fundamental for the future projects since it has already 

been planned to introduce IMU sensors even on ISS. 

 

- Considering three subjects (among the 17 available of the IMU acquisition), who 

performed the highest number of repetitions, and studying them separately, the 

good accuracy results obtained (3 Female subjects, mean of accuracy for SVM 
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and CNN, respectively: 98.61% ± 2.41% and 95.83% ± 4.17% for NS; 98.61% ± 

2.41% and 87.5 % ± 4.17% for WS; 91.67% ± 3.61% and 87.5% ± 10.83% for 

DL) highlight how building a customized classifier (suited for a single person) is 

a feasible pathway. This outcome is in agreement with the MARS-PRE project’s 

aim of creating a customized biofeedback for single subjects. 

 

- Inertial (e.g. coming from IMU) and simulated (related to OpenSim) data, 

gravity free, show visible differences and seem quite incompatible: currently, 

training ML algorithms with the former and testing with the latter (and 

viceversa) is not a reliable approach. 

 

- Even simulated data require a much larger dataset (about 30 observations for 

each exercise type is very little, especially for the convolutional neural network). 

 

The findings of this study have to be considered in the light of some limitations. First 

of all, the main drawback regards the number of subjects involved, which should be 

increased to conduct simulations and to reach better machine learning results in 

terms of accuracy. Indeed, data collected from 17 people is not enough, especially 

for CNN: in literature, it is well known how any type of neural network requires a 

huge amount of data for training. Even though the current project expected to collect 

more data, the instability caused by the Covid-19 virus strictly imposed limitations 

and did not allow to reach such purposes. However, we strongly believe that, 

enlarging the acceleration dataset, Convolutional Neural Networks will reach higher 

performances and will be very useful as biofeedback on ISS for the cosmonauts’ 

workout. Furthermore, the solution considering the homolateral position of sensors is 

NOT a feasible option, since the asymmetry would be a limit and would imply 

feedbacks related only to a single body part (left or right) excluding the other one.  
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6.1 Future works 

The first MOCAP system installed on board the ISS was ELITE-S2 (Ferrigno et al., 

2003), but recently NASA managed to install a new heir: the BTS-Smart system. The 

same device is also available in Politecnico di Milano and will allow to obtain useful 

information through the comparison of data obtained on ISS with the ones collected 

on ground. The current in-flight protocol should involve only a few markers placed 

on one body side. Of course, issues will arise during the process of wearing passive 

markers: just imagine all the concerns (even in terms of time) when putting on those 

markers in microgravity conditions! Some astronauts have already given their 

approval to conduct data collection during training in the next missions. These data 

will contribute to improve the weightlessness simulations, to conduct subject specific 

biomechanical analysis and to test the classifier with real 0G kinematics. Eventually, 

the final goals regard the introduction of IMU sensors to be used with ARED on ISS. 

 

Moreover, the real time biofeedback could have a positive impact on the astronauts, 

psychologically speaking. It is well known how the space travelers does not perceive 

physical workout as a recreational daily moment and consequently they are often 

demotivated to train. The psychological aspect of motivation, which guarantees 

adherence to the pre-established training program, is essential especially talking 

about long-term missions. Perhaps, the real time coaching system, once 

implemented, will grant a more interactive experience for the cosmonauts.  

 

In addition, at the very end of the thesis project we started working on a more 

realistic simulation integrating the ‘Catelli’ Model (Catelli et. al, 2018. Validation 

confirmed also in chapter 5.1) and the CAD of ARED already developed by Fregly 

et. al (2015). Since the old version of ARED had a script written in OpenSim 3.1 

software, we adapted the HTML code for version 4.1. We also added the ‘Catelli’ 

features, but still some adjustments and improvements have to be made (Figure 76).  

After these steps, it will be feasible to simulate in a more realistic way the 

cosmonauts’ workout related to new kinematic data acquired on ISS.  
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Figure 76: ‘Catelli’ model (upper left panel) and CAD of ARED (upper left panel) by Fregly et al. 

(2015). Our primitive version of their combination is shown in the lower part of the figure. 
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To the ones who will keep on working and will inherit the burden of this project, we 

feel like saying:  

 

 

Houston …  

we will always have problems, 

 

but … hey…  

the journey has just begun!!! 

 

 

 
Year 2804: the thesis project’s authors pretending to be astronauts. © All rights reserved. 
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Input and output OpenSim files explanation 

 

Scale Tool files 

• subject01_model.osim is the biomechanical model which will be used for the 

simulation;  

• subject01_static.trc contains coordinates of experimental marker for a static 

trial. The latter is usually several seconds of data with the subject posed in a 

known static position. A segment of a regular motion file can be used as a static 

trial if desired. 

• ScaleMarkerSet.xml contains coordinates of virtual marker to place on the 

model, which reproduce exactly the disposition of the experimental markers put 

on the subject during the data collection; 

• subject01_Setup_Scale.xml is a file containing all the setting information for the 

Scale Tool. 

• subject01_scaled_model.osim is the output of the Tool, therefore it is the 

musculoskeletal model scaled to the dimensions of the subject. 

 

Inverse Kinematic Tool files 

• subject01_simbody.osim is the subject-specific OpenSim model generated by 

scaling a generic model with the Scale Tool, along with an associated marker set 

containing adjusted virtual markers;  

• subject01_walk1.trc contains experimental marker trajectories of a trial obtained 

from a motion capture system, along with the time range of interest; 

• subjec01_Setup_IK.xml is a file containing all the setting information for the 

Tool; 

• subject01_walk1_ik.osim is the output of the Tool, therefore it is a motion file 

containing the generalized coordinate trajectories (joint angles and/or 

translations) computed by IK. 
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Inverse Dynamic Tool files 

• subject01_simbody.osim is the subject-specific OpenSim model generated by 

scaling a generic model with the Scale Tool, along with an associated marker set 

containing adjusted virtual markers. The model must include inertial parameters; 

• subject01_walk1_grf.xml is a file containing all external load data (i.e., ground 

reaction forces, moments, and center of pressure location). This file includes 

also the name of each force as well the names of the bodies to which they are 

applied; 

• subject01_walk1.mot is the result of the IK, therefore a  motion file containing 

time histories of joint angles; 

• subjec01_Setup_InverseDynamics.xml is a file containing all the setting 

information for the Tool; 

• subject01_walk1_InverseDynamics_force.sto is the output of the Tool, therefore 

it is a storage file containing the time histories of the net joint moments. 

 

Residual Reduction Algorithm Tool files 

• subject01_simbody.osim is the A subject-specific OpenSim model generated by 

scaling a generic model with the Scale Tool or by other means, along with an 

associated marker set containing adjusted virtual markers. The model must 

include inertial parameters; 

• subject01_walk1_grf.xml is a file containing all external load data data (i.e., 

ground reaction forces, moments, and center of pressure location). This file 

includes also the name of each force as well the names of the bodies to which 

they are applied; 

• subject01_walk1.mot is the result of the IK, therefore a motion file containing 

time histories of joint angles; 

• subjec01_Setup_RRA.xml is a file containing all the setting information for the 

Tool; 

• gait2354_RRA_Actuators.xml is a file specifying the residual and reserve 

actuators to be applied and their parameters, such as maximum/minimum force. 
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• gait2354_RRA_Tasks.xml is a tracking file that specifies which coordinates to 

track and the corresponding weights, used to determine how well a joint angle 

will tracks the specified joint angle from IK. 

• subject01_walk1_RRA_Kinematic_q.sto is the output of the Tool, therefore it is 

a storage file containing the time histories of the net joint moments.  

• Subject01_simbody_adjusted.osim is a model with adjusted mass properties. 

 

Compute Muscle Control Tool files 

• subject01_simbody_adjusted.osim is the subject specific model with adjusted 

mass properties obtained with RRA; 

• subject01_walk1_grf.xml is a file containing all external load data(i.e., ground 

reaction forces, moments, and center of pressure location). This file includes 

also the name of each force as well the names of the bodies to which they are 

applied; 

• subject01_walk1_RRA_Kinematic_q.sto is the output of RRA tool, therefore it is 

a storage file containing the time histories of the net joint moments. 

• subjec01_Setup_CMC.xml is a file containing all the setting information for the 

Tool; 

• gait2354_CMC_Actuators.xml is a file specifying the residual and reserve 

actuators to be applied and their parameters, such as maximum/minimum force. 

• gait2354_CMC_Tasks.xml is a tracking file that specifies which coordinates to 

track and the corresponding weights, used to determine how well a joint angle 

will tracks the specified joint angle from IK. 

• gait2354_CMC_ControlConstraints.xml is a file which contains limits on model 

actuators, including muscles, reserve and residual actuators. Control constraint 

file specifies maximum and minimum excitation for each actuator. 

• subject01_simbody_controls.xml is the output of the tool containing the 

excitations to individual muscles as well controls for any residual and reserve 

actuators. 

• subject01_simbody_forces.sto is a file with muscle forces and reserve or residual 

forces and torques. 
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IMU DATA - NORMAL SQUAT  

 

K-nearest neighbor (KNN) results  

 

 
 

Accuracy: 77.91% 
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Decision tree results  

 

 

Accuracy: 56.98% 
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Extreme Gradient Boosting (XGBoost) results  

 

 

 

Accuracy: 80.23% 
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Multi-layer perceptron (MLP) results  

 

 

Accuracy: 72.09 % 
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IMU DATA - WIDE SQUAT  

 

K-nearest neighbor (KNN) results  

 

 
 

Accuracy: 67.54% 
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Decision tree results 

 

 

 

Accuracy: 47.12% 
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Extreme Gradient Boosting (XGBoost) results  

 

 

 

Accuracy: 80.10% 
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Multi-layer perceptron (MLP) results  

 

 

 

Accuracy: 70.68% 
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IMU DATA - DEADLIFT  

 

K-nearest neighbor (KNN) results  

 

 
 

Accuracy: 73.50% 
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Decision tree  

 

 

 

Accuracy: 42.74% 
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Extreme Gradient Boosting (XGBoost) results  

 

 

 

Accuracy: 75.21% 
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Multi-layer perceptron (MLP) results  

 

 

 

Accuracy: 68.37% 
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CUSTOMIZED CLASSIFIER FOR SINGLE SUBJECT  

 

SUBJECT 06 – NORMAL SQUAT 

 

    Support Vector Machines        Convolutional Neural Network 

 

 

SUBJECT 06 – WIDE SQUAT 

 

           Support Vector Machines        Convolutional Neural Network 

 



APPENDIX B 
 

173 

SUBJECT 06 – DEADLIFT 

 

          Support Vector Machines         Convolutional Neural Network 

 

 

SUBJECT 08 – NORMAL SQUAT 

 

     Support Vector Machines         Convolutional Neural Network 
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SUBJECT 08 – WIDE SQUAT 

 

     Support Vector Machines         Convolutional Neural Network  

 

 

SUBJECT 08 – DEADLIFT 

 

     Support Vector Machines         Convolutional Neural Network 
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SUBJECT 11 – NORMAL SQUAT 

 

    Support Vector Machines         Convolutional Neural Network 

 

 

SUBJECT 11 – WIDE SQUAT 

 

    Support Vector Machines         Convolutional Neural Network 

 

 

 



APPENDIX B 
 

176 

SUBJECT 11 – DEADLIFT 

 

    Support Vector Machines         Convolutional Neural Network 

 

 

A summary of the results, in terms of accuracy, can be summarized in the followin table: 
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SIMULATED DATA  

 

This section regards the classification of simulated data (i.e. those coming from 

OpenSim software) starting from a classifier trained with real data. Below, tables 

referred to SVM and CNN approaches are reported. The first row of each table is the 

target variable (we know exactly how the exercise have been performed according to 

the protocol of correct/incorrect executions explained in chapter 4.2). The second 

row, instead, denotes the classification predicted by the ML algorithm. The columns 

highlighted in orange are the only ones predicted in a correct way. We clearly notice 

how neither SVM nor CNN are able to obtain discrete/good results.  

 

REMINDER: A target array was created to define the correct class of each entry, 

labeled with {0, 1, 2, 3, 4, 5} when considering the Squat exercises (Normal Squat 

and Wide Squat), where 0 corresponded to a correct exercise (CO), 1 to Knees Over 

Toes (KOT), 2 to Valgus Knees (Kv), 3 to Rounded Back (Rb), 4 to Raised Heels 

(Rh), 5 to Shallow (Sh). When considering deadlift instead, the labels are {0, 1, 2, 

3}, where 0 corresponded to a correct exercise (CO), 1 to Bar Over Shoulder (BOS), 

2 to Rounded back (Rb), 3 to Hyperextended back (Hb).  

 

Support Vector Machines (SVM) prediction results 

Target NS 0 0 0 0 3 3 1 1 2 2 4 4 5 5 0 0 0 0 3 3 3 3 1 1 1 1 2 2 2 2 4 4 4 4 5 5 5 5

Predicted NS 1 4 4 0 4 3 1 0 3 2 4 1 1 5 5 5 2 5 1 3 5 3 3 3 3 1 3 3 1 1 5 2 0 2 2 4 3 4  

Target WS 0 0 0 0 3 3 1 1 1 2 2 0 0 0 0 3 3 3 3 1 1 1 1 2 2 2 2

Predicted WS 5 5 5 2 1 5 5 5 0 3 5 2 0 3 5 4 1 4 2 1 2 2 2 2 1 2 4  

Target DL 0 0 0 2 2 1 1 3 3 0 0 0 0 2 2 2 2 1 1 1 1 3 3 3 3

Predicted DL 3 3 1 0 3 2 2 0 3 2 1 3 1 2 2 2 2 1 3 3 2 1 1 0 1  

Convolutional Neural Network (CNN) prediction results 

Target NS 0 0 0 0 3 3 1 1 2 2 4 4 5 5 0 0 0 0 3 3 3 3 1 1 1 1 2 2 2 2 4 4 4 4 5 5 5 5

Predicted NS 0 4 0 0 0 0 4 4 1 0 0 0 0 0 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

Target WS 0 0 0 0 3 3 1 1 1 2 2 0 0 0 0 3 3 3 3 1 1 1 1 2 2 2 2

Predicted WS 4 4 4 4 0 0 0 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

Target DL 0 0 0 2 2 1 1 3 3 0 0 0 0 2 2 2 2 1 1 1 1 3 3 3 3

Predicted DL 3 3 3 3 3 3 3 3 3 3 1 3 3 3 0 0 0 1 0 0 3 1 3 2 0  


