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Abstract

The advent of the internet and social media has determined a rapid
diffusion of digital multimedia content online. Images and videos are
often shared to convey strong messages. If done maliciously, diffusion of
biased or altered content may lead to severe social consequences. For this
reason, it is important to develop forensic detectors capable of assessing
the origin and the integrity of multimedia objects.

In this thesis, we focus on the problem of camera model identifica-
tion for video sequences. This is, given a video under analysis, detect
the camera model used for its acquisition. This problem has gained a
significant importance in multimedia forensics as it allows to trace back
a video to its creator, thus enabling to solve copyright infringement cases
as well as to expose the authors of hideous crimes.

In order to solve the problem of determining the smartphone model
used to acquire a video of unknown provenance, we develop two different
detectors working in a multi-modal scenario. Both detectors are based
on the use of convolutional neural networks (CNNs) and jointly exploit
audio and visual information from the video under analysis in different
ways. The first detector applies a voting procedure on top of two mono-
modal CNNs that analyze the audio and visual streams separately. The
second detector is composed by a single CNN that takes decision jointly
analyzing audio and visual data.

The proposed solutions are tested on the well known Vision dataset,
which contains a series of videos belonging to different devices. Experi-
ments are performed considering original videos directly coming from the
acquisition devices, videos uploaded on YouTube, videos shared through
WhatsApp, and videos re-encoded using modern coding standards. Re-
sults show that the proposed multi-modal approaches outperform their
mono-modal counterparts.



Sommario

L’avvento di internet e dei social media ha determinato una rapida dif-
fusione di contenuti multimediali digitali online. Le immagini e i video
sono spesso condivisi per trasmettere messaggi forti. Se fatto in modo
doloso, la diffusione di contenuti di parte o alterati può portare a gravi
conseguenze sociali. Per questo motivo è importante sviluppare dei ril-
evatori forensi in grado di valutare l’origine e l’integrità degli oggetti
multimediali.

In questa tesi, ci concentriamo sul problema del camera model iden-
tification per sequenze video. Si tratta, dato un video in analisi, di rile-
vare il modello di fotocamera utilizzato per la sua acquisizione. Questo
problema ha acquisito una notevole importanza nell’ambito forense mul-
timediale in quanto permette di ricondurre un video al suo creatore, con-
sentendo così di risolvere casi di violazione del copyright nonché esporre
gli autori di crimini orribili.

Per risolvere il problema della determinazione del modello di smart-
phone utilizzato per acquisire un video di provenienza sconosciuta, svilup-
piamo due diversi rilevatori che lavorano in uno scenario multimodale.
Entrambi i rilevatori si basano sull’uso di reti neurali convoluzionali
(CNN) e sfruttano congiuntamente le informazioni audio e visive del
video analizzato in modi diversi. Il primo rilevatore applica una proce-
dura di voto su due CNN monomodali che analizzano separatamente i
flussi audio e video. Il secondo rilevatore è composto da un’unica CNN
che prende la decisione analizzando congiuntamente i dati audio e video.

Le soluzioni proposte vengono testate sul noto dataset Vision, che
contiene una serie di video appartenenti a diversi dispositivi. Gli esperi-
menti vengono eseguiti considerando video originali provenienti diretta-
mente dai dispositivi di acquisizione, video caricati su YouTube, video
condivisi tramite WhatsApp e video ricodificati utilizzando moderni stan-
dard di codifica. I risultati mostrano che gli approcci multimodali pro-
posti superano le loro controparti monomodali.
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Introduction

Camera model identification has gained significant importance in multi-
media forensic investigations, as digital multimedia contents (i.e., digital
images, videos and audio sequences) are increasingly widespread and
will continue to spread in the future with the advance of technological
progress. This phenomenon is mainly attributable to the advent of the
internet and social media, which allowed a very rapid diffusion of digi-
tal contents and, consequently, made it extremely difficult to trace their
origin.

In forensic analysis, tracing the origin of digital contents can be essen-
tial, for example, to identify the perpetrators of crimes such as rape, drug
trafficking or acts of terrorism. There is also the possibility that certain
private contents become viral through the internet, as sadly happened
in recent times with revenge porn; tracing the origin therefore assumes
a fundamental role.

The aim of this thesis is to determine the smartphone model used to
acquire digital video sequences by exploiting visual and audio information
of the videos themselves. We mainly focus on this, because little work
has been done specifically for digital video sequences in the state-of-the-
art forensic source identification literature [9]. The analysis of digital
images, in the other hand, is widely addressed [10, 11, 12, 13, 14, 15, 16].

The two main families of approaches related to image camera model
identification are model-based and data-driven. Model-based approaches
specifically rely on exploiting the traces released by the digital image
acquisition process in order to identify the camera model. To this family
belong methods that exploit the peculiar traces released by color filter
array (CFA) configuration, by demosaicing process or by unwanted ef-
fects generated by the lens. On the other hand, data-driven approaches
consist in extracting from the images under investigation certain sta-
tistical features that capture the difference caused by camera structure
and various in-camera image processing algorithms, followed by machine
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learning and pattern recognition algorithms for similarity measures of
extracted features. Methods based on hand-crafted features (i.e., manu-
ally engineered by data scientists) or learned features (i.e., automatically
obtained from a machine learning algorithm) belong to this family. As
we can see, the camera model identification methods related to digital
images are numerous; however many of these are considered obsolete.

We rely on the most advanced data-driven approaches that use
learned features, in order to develop effective methods for video se-
quences. These methods involve the use of convolutional neural networks
(CNNs) capable of classifying videos by extracting suitable features from
their visual and audio content. Given a video, as visual content to pro-
vide to the CNNs we use patches cropped from its video frames, while
as audio content we use patches cropped from the log-mel spectrogram
of its audio track.

We propose two multi-modal camera model identification approaches:
in the first one we compare the scores individually obtained from two
trained mono-modal CNNs (one only with visual patches, the other only
with audio patches), in the second one we build multi-input networks
and train them with visual/audio patch pairs. For completeness, before
proceeding with the resolution of the multi-modal model attribution, we
investigate the mono-modal model attribution using CNNs trained only
with video patches or audio patches. Investigating both problems is also
useful for us to understand which approach leads to better results.

The dataset from which we take videos is the Vision dataset, a recent
image and video dataset, purposely designed for multimedia forensics in-
vestigations. The videos on which we experience are not only the original
ones; we also use those compressed by the WhatsApp and YouTube algo-
rithms and those further compressed in other ways (e.g., H.264 or H.265
codecs) so as to obtain many results with different configurations.

In general, multi-modal methods are more effective than mono-modal
methods and, depending on our needs, the first multi-modal method
can be better or worse than the second one. We achieve very good
results in non-cross tests (i.e., when training and testing sets are se-
lected from the same dataset), reaching accuracy values up to 99% in
the first multi-modal method. In cross tests (i.e., when training and
testing sets belong to different datasets) the achieved accuracy depends
on the kind of datasets involved (e.g., WhatsApp data are more chal-
lenging to model than YouTube’s) and the applied compression factors
(e.g., stronger compressions usually correspond to worse results). Both
multi-modal methods achieve similar results; depending on the specific
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cross-test, one method may be preferred over the other. Possible future
works could concern the improvement of cross test results thanks to the
realization of systems that are more stable and less sensitive to data
compression.

This thesis is organized as follows. In Chapter 1, we introduce some
general concepts in order to better understand the tackled problem and
the proposed methodology. In Chapter 2, we report the formulation of
the problems of mono-modal and multi-modal model attribution, and
in Chapter 3 we present different camera model identification methods
documented in literature. In Chapter 4, we report a detailed explanation
of the resolution methods used; in Chapter 5, we analyze the results
obtained from the application of the methods. Eventually, Chapter 6
draws some conclusions.



1
Theoretical Background

This chapter introduces some general background concepts in order to
better understand what will be explained in the following pages. In par-
ticular, we focus on the concepts of neural networks and log-mel spectro-
gram and take a first look at how a digital image is captured.

1.1 Neural Networks
Neural networks, also known as artificial neural networks (ANNs) or
simulated neural networks (SNNs), are a subset of machine learning al-
gorithms and are at the heart of deep learning [17, 18]. Their name
and structure are inspired by the human brain, mimicking the way that
biological neurons signal to one another.

ANNs are composed by layers containing multiple nodes (or neurons).
They are typically composed by an input layer, one or more hidden lay-
ers, and an output layer (as shown in Figure 1.1). Each node, or artificial
neuron, connects to another one and has an associated weight and acti-
vation (e.g., a threshold or some other non-linear function). If the output
of any individual node is above the specified threshold value, that node
is activated, sending data to the next layer of the network. Otherwise,
no data is passed along to the next layer of the network.
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Figure 1.1: A generic neural network [1].

Neural networks rely on training data to learn and improve their accu-
racy over time. However, once these learning algorithms are fine-tuned to
minimize some cost function and maximize some metric (e.g., accuracy),
they are powerful tools in computer science and artificial intelligence,
allowing us to classify data at a high velocity.

Let us see how a neural network works. Think of each individual
j-node as its own linear regression model, composed of input data si,
weights wij, a bias bj (or threshold), and an output sj. The formulas
would look something like this:

zj =
n−1∑︂
i=0

wijsi, (1.1)

gj(x) =

⎧⎪⎪⎨⎪⎪⎩
1 if x > 0

0 if x = 0

−1 if x < 0

, (1.2)

sj = gj(zj − bj). (1.3)

Initially, weights and bias are assigned randomly or with a specific
criterion. These weights help determine the importance of any given
variable, with larger ones contributing more significantly to the output
compared to other inputs. All inputs are then multiplied by their re-
spective weights and then summed. Afterward, this sum zj and bias bj
are passed through an activation function gj(x) , which determines the
output sj. The activation function can be different from network to net-
work (in this example we have reported a step function) and determines
the passage of data from one node to the next layer of the network. This
results in the output of one node becoming in the input of the next node.
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This process of passing data from one layer to the next layer defines this
neural network as a feedforward network.

Naturally, the network will not work well with the initial weights and
biases; we have to update them. We will focus on updating related to
supervised learning (i.e., the desired outcome is known for each input
data). Suppose we have a network with one input and one output:

• yi is the outcome associated to a particular input data xi; we want
that yi is predicted from the network;

• ŷi is the predicted outcome from xi;

• N is the number of samples.

We can evaluate the accuracy of the network with a loss (or cost)
function. A very common loss function is the mean square error (MSE)
defined in this way:

MSE =
1

N

N∑︂
i=1

(yi − ŷi)
2. (1.4)

The goal is to minimize the value of the loss function to ensure cor-
rectness of fit for any given observation. This value depends on weights
and biases that the network presents. With each training example, the
parameters of the model adjust allowing the value of the loss function to
gradually converge at the minimum, as shown in Figure 1.2.

Figure 1.2: The curve indicates the loss function with respect to a single
weight. The ordinates of the dots indicate the values assumed by the loss
function after each weight update; one is yellow because its ordinate also
indicates the minimum point of the loss function. The distance between the
abscissas of adjacent points is equal to the related learning step. The arrows
between adjacent points indicate the weight update direction [2].
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The process is called backpropagation and consists in updating the
parameters of the network using this formula:

wn+1 = wn +∆w = wn − η · ∂E
∂w

⃓⃓⃓⃓
w=wn

, (1.5)

where wn indicates the weights vector (including biases) at the time step
n, ∆w the learning step, η the learning rate and E the loss function. To
better understand this formula, let us consider the case in which we have
to update only one parameter like in Figure 1.2.

The parameter is updated by adding a certain quantity, the learning
step, which can be positive or negative. As we can see in Figure 1.2,
by gradually enlarging the parameter we will decrease the value of the
loss function; if instead we do the reverse operation, the value of the
loss function will increase. The increase and decrease of the parameter is
dictated by the sign of the learning step. The way to choose the right sign
is to exploit the sign of the derivative of the loss function with respect
to the parameter calculated at the parameter point: if it is positive, it
means that the loss function is increasing; we will therefore decrease the
parameter to end up with a lower loss function value. The operation is
opposite for the negative sign. The idea to update the network weights
is to proceed in small increments to avoid exceeding the minimum point
and witness an increase in the loss function value. The learning step will
therefore be composed of the derivative with opposite sign (to define the
increase or decrease of the parameter) multiplied by a very small number,
the learning rate (to proceed gradually in decreasing the value of the loss
function).

In the equation (1.5) we report the general case in which the network
has several parameters. The reasoning remains unchanged, clearly we
will apply the partial derivatives of the loss function with respect to the
different parameters. This process is called backpropagation because the
updating of weights and biases starts from those closest to the output
and then proceeds towards the initial ones.

1.2 Convolutional Neural Networks
Suppose we have to build a neural network able to classifying images. A
first approach could be to use an input layer with a number of nodes equal
to the number of pixels in the input images (every node is associated to
a particular pixel), some hidden layer and an output layer. It is a simple
approach, but not optimal, due to three main reasons:
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1. in image classification, we want to recognize patterns corresponding
to objects inside the image. We are more interested in how nearby
pixels are arranged, and less interested in how pixels, that are far
from each other, appear in combination. In the above approach,
we consider always the entire image: missing locality property;

2. the network must recognize objects regardless of their position in
the image: translation invariant property. In the above approach,
also this property is missing;

3. the above approach involves a network with a very very large
amount of parameters, therefore very difficult to train.

A convolutional neural network (CNN) [19, 20] is a particular type
of neural network that presents locality and translation invariant prop-
erties and it is realized with fewer parameters: it is perfect for image
classification.

A CNN is mainly made up of layers called convolutional layers; they
perform an operation on images called convolution. Convolution is de-
fined for a 2D image as the scalar product of a weight matrix, the kernel,
with every neighborhood in the input:

g(x, y) = ω ∗ f(x, y) =
a∑︂

s=−a

b∑︂
t=−b

ω(s, t)f(x− s, y − t), (1.6)

where g(x, y) is the output image obtained from convolution, f(x, y)
is the original image (the value of f(x, y) is 0 outside the image), ω is
the kernel.

Figure 1.3: A general convolutional neural network [3].

Figure 1.3 shows a CNN that includes convolutional layers (each with
more than one kernel) + ReLU (the activation function), pooling layers
used to reduce the dimension of images and a final classification section
with some flatten layers like those in Figure 1.1.
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Again, we have to compute the loss function and adjust weights and
bias of each layer, in order to train the network. In convolutional layers,
weights are the elements inside kernels.

1.3 Digital Image Acquisition
Whenever we take a photograph with a digital camera or smartphone, we
trigger an elaborate process consisting of several operations called digital
image acquisition. This process, which lasts a few fractions of a second,
starts when we press the shutter button and ends when we can visualize
the shot we took.

The digital image acquisition pipeline varies according to the device
we are considering. However, it is reasonable to assume that a typical
digital image acquisition pipeline is composed by a series of common
steps [21], as shown in Figure 1.4.

Figure 1.4: Typical steps of a common image acquisition pipeline.

Ray lights hit a lens that focus them on the sensor [4]. The surface of
a sensor is covered by a grid of microscopic pits called photosites which
represent the pixels of a digital image. Each photosite has an electronic
device called photodiode inside which transforms light intensity into an
electric charge.

Most sensors use color filters, because the photosites themselves cap-
ture only the light intensity (not the color). The most common color
filter array is the Bayer color filter array (Bayer CFA).

Figure 1.5: A sensor showing a layer of the photosites with a Bayer CFA [4].
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As we can see in Figure 1.5, the Bayer CFA covers each photosite
with a colored filter (red, green or blue), specializing it in capturing that
particular color. It typically consists of 50% green, 25% red and 25%
blue (as shown in Figure 1.6). This type of pattern is also called RGGB
(sometimes also arranged as BGGR, RGBG or GRGB). The green color
represents the luminance-sensitive elements of an image and the red and
blue represent the chrominance-sensitive elements. The Bayer CFA was
developed to mimic the way the human eye interprets color. This is
because according to study the luminance perception of the human eye
is most sensitive to the color green. The colors of an image on digital
cameras are based on this concept.

Figure 1.6: Profile/cross-section of a sensor covered by a Bayer CFA [5].

In order to detect the color of a pixel associated to a specific photosite
p, an interpolation is made between the color captured by p and the col-
ors captured by the photosites placed around p. This procedure is called
demosaicing and allows to obtain a raw version of color images. After
that, we have a processing phase consisting of additional operations. We
generally find white balance, color correction and lens distortion correc-
tion among the most common processing operations. Finally, lossy image
compression is typically applied through the JPEG standard.

1.4 Log-Mel Spectrogram
A signal is a variation in a certain quantity over time. For audio, the
quantity that varies is air pressure. To digitally capture this information,
we can sample and quantize the air pressure over time. The rate at which
we sample the data can vary, but is most commonly 44.1kHz (e.g., Audio
CDs use this sample rate).
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Suppose we have a digital audio signal s(n) where n indicates the
time; s(n) describes the signal in terms of air pressure, or more generally,
in terms of amplitude in time domain (as shown in Figure 1.7).

Figure 1.7: Representation of the digital audio signal s(n) in time domain.

An audio signal is comprised of several single-frequency sound waves.
When taking samples of the signal over time, we only capture the result-
ing amplitude. The Fourier transform (FT) is a mathematical formula
that allows to decompose a signal into its individual frequency compo-
nents; in other words, it converts the signal from the time domain into
the frequency domain.

Sw(k) =
N−1∑︂
n=0

sw(n) · e−
j2π
N

kn. (1.7)

The equation (1.7) defines the discrete Fourier transform (DFT) ap-
plied to a windowed segment of the signal s(n) indicated as sw(n). Here,
j is the imaginary unit and N is the length of the window. We use DFT
instead of classic FT because we work in discrete time and frequency
domains. The result Sw(k) is called spectrum and it is a function of the
frequency k. If we compute the absolute value of Sw(k), we obtain the
magnitude spectrum |Sw(k)| which is related to the amplitude of various
frequency components of sw(n) (as shown in Figure 1.8).
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Figure 1.8: Representation of the magnitude spectrum |Sw(k)|.

If the frequency content of our signal varies over time, we have to
compute several spectrums by performing the FT on several windowed
segments of the signal. This process is called short-time Fourier transform
(STFT). We define the discrete STFT for the same reasons of the DFT:

S(m, k) =
∞∑︂

n=−∞

s(n) · w(n−m) · e−
j2π
N

kn. (1.8)

In the equation (1.8), m indicates a time shift and w(n−m) indicates
a particular window that multiplies the signal s(n). The spectrogram of
s(n) is defined as |S(m, k)|2 and can be used to represent the spectral
content of an audio signal over time in a Cartesian coordinate system:
on the x-axis we have time, on the y-axis we have frequency and on the
z-axis we have amplitude. Generally, the y-axis is converted to a log
scale and the z-axis is converted to decibels. This is because humans
do not perceive frequencies and amplitudes on a linear scale, but on a
log scale (we are better at detecting differences in lower frequencies and
amplitudes than higher frequencies and amplitudes). From this rescaling
of the axis, we obtain the log spectrogram illustrated in Figure 1.9.
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Figure 1.9: Representation of the log spectrogram |S(m, k)|2.

In 1937, Stevens, Volkmann, and Newmann proposed a perceptual
scale of pitches judged by listeners to be equal in distance from one
another: the mel scale [22]. The relation between the pitch and the
frequency on which this scale is based is as follows:

Mel(k) = 2595 · log
(︃
1 +

k

700

)︃
, (1.9)

where Mel(k) indicates the perceived pitch of a sound at frequency k.
Based on this relation, we can rescale the y-axis of the log spectrogram,
in order to obtain a distribution of frequencies that best approximates
the human perception of them. From this rescaling of the y-axis, we
obtain the so-called log-mel spectrogram [23], illustrated in Figure 1.10.

Figure 1.10: Representation of the log-mel spectrogram of s(n).
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1.5 Conclusive Remarks
In this chapter we have introduced the basic concepts useful for under-
standing the next part of the thesis. In particular we have shown:

• what a neural network is and how it works,

• what a CNN is,

• how digital image acquisition works,

• what a log-mel spectrogram is and how we can extract it from an
audio signal.

Now that these concepts have been defined, we can formally introduce
the problem we aim to solve in our work and which are some possible
solutions in the next chapters.



2
Problem Formulation

The problem we address in this thesis is that of audio-visual camera
model identification. Camera model identification subsumes the broad
class of forensic source identification techniques that aim to determine
the camera (e.g., digital camera, smartphone camera, etc.) model used
to acquire some multimedia content of unknown provenance [16]. We
mainly focus on identifying the source camera model of digital video
sequences (considering both audio and visual cues), as the analysis of
digital images is widely addressed in the forensic source identification
literature, with excellent results [24, 25]. Camera model identification
seeks to answer one or both of these questions:

• “What is the camera model that (most likely) acquired this data
content?”;

• “Was this content captured with a camera of this particular make
and model?”.

The premise of camera model identification is that contents acquired
with the same camera model share common characteristics, which can
be exploited for inference about the source.

Depending on the specific case and available reference information,
forensic source identification may be approached at different levels of
identification granularity.
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Figure 2.1: Granularity levels in forensic source identification.

In Figure 2.1 we can distinguish between methods to determine the
type of acquisition device, its make or model, and ultimately also the
actual device itself. The vertically stacked instances of (groups of) ac-
quisition devices and/or acquisition methods allude to possible class sets
of each of the horizontally arranged granularity levels. Granularity in-
creases from left to right: at the lowest level, we might be interested
in separating between computer generated and camera shot material,
whereas device-level identification aims to differentiate individual digital
cameras (or other devices).

We stay on the granularity model-level, working with video sequences
recorded from different smartphone models and proposing an innovative
approach that combines visual and audio information of the considered
videos.

2.1 Mono-Modal Model Attribution
The problem of mono-modal model attribution consists in detecting
which is the device model used to acquire a specific kind of media at a
single modality. For instance, given a photograph, to understand which
is the model of the camera used to take it. Alternatively, given an audio
recording, to detect the used recorder model. Given a video, which is the
case of our interest, the mono-modal model attribution consists in identi-
fying the device model that shot it, using the visual or audio information
of the video itself. Formally, we can define this problem as follows.

Let M be the set of device models and D the set of videos. Each
element d ∈ D is a tuple (v(m), a(m)), where v(m) and a(m) respectively
indicate the visual and audio content of a particular video shot with the
model m ∈ M. We define:



Chapter 2. Problem Formulation 14

• the set of visual contents V = {π1(d) : d = (v(m), a(m)) ∈ D};

• the set of audio contents A = {π2(d) : d = (v(m), a(m)) ∈ D};

where π1(d) and π2(d) respectively indicate the first and second ele-
ments of the tuple d.

According to the chosen modality (visual information or audio infor-
mation), the mono-modal model attribution problem on video sequences
consists in one of these two tasks:

• compute the function f : V → M such that, ∀v(m) ∈ V , f(v(m)) =

m with m ∈ M;

• compute the function g : A → M such that, ∀a(m) ∈ A, g(a(m)) =

m with m ∈ M.

However, solving the problem defined in this way is very difficult in
practice. We can redefine it to be more accessible. Again, according to
the chosen modality, the redefined problem consists in one of these tasks:

• compute the function f : V → M such that, taken any v(m) ∈ V
and m ∈ M, the probability P (f(v(m)) ̸= m) is as small as possible;

• compute the function g : A → M such that, taken any a(m) ∈ A
and m ∈ M, the probability P (g(a(m)) ̸= m) is as small as possible.

2.2 Multi-Modal Model Attribution
Given a video sequence, the problem of multi-modal model attribution
converts in identifying the device model that shot it, using both visual
and audio information of the video itself. Formally, we can define this
problem as follows.

Let M, D, V , A be defined as in mono-modal model attribution case.
The problem consists in one of these tasks:

• compute the function h1 : {V×A} → M such that, ∀(v(m), a(m)) ∈
D, h1(v

(m), a(m)) = m with m ∈ M;

• compute the function h2 : {A×V} → M such that, ∀(v(m), a(m)) ∈
D, h2(a

(m), v(m)) = m with m ∈ M.

Again, solving the defined problem may be very difficult in practice.
The redefined and more accessible problem consists in one of these tasks:
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• compute the function h1 : {V × A} → M such that, taken any
(v(m), a(m)) ∈ D and m ∈ M, the probability P (h1(v

(m), a(m)) ̸= m)

is small as possible;

• compute the function h2 : {A × V} → M such that, taken any
(v(m), a(m)) ∈ D and m ∈ M, the probability P (h2(a

(m), v(m)) ̸= m)

is small as possible.

2.3 Conclusive Remarks
In this chapter we have formulated the problem to be addressed. We have
seen how the camera model identification can be approached at different
granularity levels (e.g., model, device, etc.), sources (e.g., video, audio,
etc.) and modalities (i.e., mono-modal and multi-modal). In the next
chapter we will understand how the state of the art can help us in the
realization of the methods used to address the main problem.



3
State of the Art

In this chapter we present different camera model identification methods
widely documented in state-of-the-art literature. We focus on model-
based and data-driven approaches, reporting some methods for each.

3.1 Model-based Approaches
As we have seen in Section 1.3, digital image acquisition is a process
composed of several operations that can characterize a specific camera
brand and model. This process varies from device to device, therefore the
operations that compose it can leave traces within the images produced
that are peculiar to the device in question. In this section, we provide an
overview of the so-called model-based methods, which are camera model
identification methods based specifically on exploiting those traces. They
assume that each artifact of the acquisition chain can be modeled, in
order to detect the camera model. These methods are historically the
first ones being documented in the literature [26].

3.1.1 CFA Configuration
We can exploit information from characteristics of the color filter array
(CFA) to infer some model-specific features. As CFA patterns are dif-
ferent among different camera models, the artifacts introduced by CFA
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configuration can reflect model-specific to some extent [10, 27].

3.1.2 CFA Interpolation
Digital cameras acquire an image with one sensor overlaid with a CFA,
capturing at each spatial location one sample from the three necessary
color channels. The missing pixels must be interpolated in a process
known as demosaicing. This process is highly nonlinear and can vary
greatly between different camera brands and models. A camera model
classification method based on this process use correlations between color
channels to construct a characteristic map that is useful in matching an
image to its source [11, 28].

3.1.3 Lens Effects
The type of lens mounted on a camera model generates unwanted effects
in the images acquired. In particular, we can distinguish three main
effects:

• distortion: image is stretched in some way;

• chromatic aberration: color fringe and uneven colors around edge
details in high contrast scenes;

• vignetting: darkening of corners of an image.

A camera model classification method based on lens effects tries to
exploit the differences between one or more effects generated by distinct
camera models [12, 29].

3.1.4 Other Processing and Defects
There are also other camera model classification methods less reported in
literature that exploit other artifacts or characteristics, such as the dust
particles in front of the camera sensor that create a persistent pattern
in the captured images [30] or the Auto-White Balance algorithm used
inside the camera [31].

3.2 Data-driven Approaches
These approaches consist in extracting from the images under investi-
gation certain statistical features that capture the difference caused by
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camera structure and various in-camera image processing algorithms, fol-
lowed by machine learning and pattern recognition algorithms for simi-
larity measures of extracted features. Features can be hand-crafted (i.e.,
manually engineered by data scientists) or learned (i.e., automatically
obtained from a machine learning algorithm). In this section, we provide
an overview of camera model identification methods that work in this
way.

3.2.1 Hand-crafted Features
There are methods that use uniform gray-scale invariant local binary
patterns [13] or are based on generalized noise model developed by fol-
lowing a image processing pipeline of a digital camera [32, 33]; several
hand-crafted features can be extracted.

3.2.2 Learned Features
These are the most recent methods, which are best suited to the lat-
est generation cameras. Most of them use convolutional neural network
(CNN) that are able to extract features suitable for camera model clas-
sification [14, 15], learn similarity features [34], deal with open sets of
camera models [35] or be part of generative adversarial networks (GANs)
[36]. There are also methods for video camera model identification [9],
but they have not been covered much in the literature.

3.3 Conclusive Remarks
As we can see, there are several camera model classification methods,
but many of them are obsolete nowadays; both because more advanced
methods based on CNNs have outperformed older detectors and because
the latest generation cameras have different characteristics with respect
to those on which these methods were based. Our analysis is developed
based on the most recent methods: data-driven approaches using learned
features.



4
Methodology

We have seen what mono-modal and multi-modal model attribution
mean, especially if we use video sequences. Now let us see how to im-
plement useful algorithms to solve these problems, starting from a data
preprocessing and arriving at a model prediction.

4.1 Mono-Modal Model Attribution
As mentioned in Section 2.1, given a video, the mono-modal model at-
tribution consists in identifying the device model that shot it, using the
visual or audio information of the video itself. Data from the same model
must exhibit similar characteristics in order to classify them; more com-
monly called features.

Let us take into consideration the visual information modality. For
each v(m) ∈ V we can extract a feature vector f belonging to the set of
feature vectors F and then, map each f to a model m ∈ M. Therefore,
we can visualize the function f that we want to compute as a composite
function fB ◦ fA, where:

• fA : V → F extracts feature vectors from visual contents;

• fB : F → M maps feature vectors to models.
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Computing the functions fA and fB would mean solving the problem,
but unfortunately it is not so immediate; also because we do not know
apriori which are the useful features to extract in order to identify a
model. The solution we have adopted is to use a convolutional neural
network (CNN).

Both functions are learned in the CNN training phase from tuples
of training data (v

(m)
train,m) ∈ {Vtrain × Mtrain} ⊆ {V × M}, where the

notations Vtrain indicates the subsets of V used for training. In our case,
Mtrain = M, as we exploit all the available camera models during the
training process. Notice that too homogeneous training data is likely to
result in a network that does not generalize well. Therefore, before prac-
tical use, any camera model identification algorithm should additionally
be tested against validation data (v

(m)
val ,m) ∈ {Vval ×Mval} ⊆ {V ×M}

and refined based thereon, to rule out a mismatch with new input data.
In this case as well, Mval = M.

After training, the network can be used for practical camera model
identification in the test phase by predicting the source camera models
(more generally called labels) from never seen data v

(m)
test ∈ Vtest ⊆ V , with

m ∈ M.
The algorithm is analogous as regards the audio information modal-

ity; clearly the extracted features will differ as the type of information is
different.

4.1.1 CNN for Camera Model Identification
Now let us see how a CNN built for classification, given a generic input
data x, selects the predicted camera model m̂ ∈ M.

The final layer of the network is a fully connected layer with a number
of nodes equal to the total number of models; each node is associated
with a particular model and an output value calculated each time a new
input data x is provided. These values are the result of the various
transformations applied to x along the network.

We call y the vector that contains the output values of all the final
layer nodes associated with the input data x. In the classification process,
y is passed to the softmax function, which maps its values into a range
from 0 to 1 so that their sum gives 1. Softmax is defined as:

σ(y)i =
eyi∑︁M−1

j=0 eyj
. (4.1)

The notation σ(y)i indicates the i-th value of y mapped in the new
range and is called score, yi indicates the i-th value of y and M indicates
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the total number of camera models. Therefore a score σ(y)i produced by
softmax, which we remember being associated with the i-node, represents
the probability that input data has been acquired by the model associated
with that node. To extract the predicted model m̂, we have to select the
node associated with the maximum score obtained:

m̂ = argmax
i

σ(y)i. (4.2)

In order to train and test a CNN for camera model identification, we
must first divide the available input data into training, validation and
testing data. Then, we go to provide the network with a certain amount
of training data, called batch. Based on the score vectors obtained from
the network and associated with each training data in the batch, we can
calculate the loss function. In our case we use the cross-entropy loss
(CE), which is defined in this way:

CE =
1

N

N∑︂
n=1

(︄
−

M−1∑︂
i=0

bni · ln (σ(yn)i)

)︄
, (4.3)

where N indicates the batch size, yn the output vector of the n-th
input data and bni a binary indicator equal to 1 when i is equal to the
true camera model of the n-th data; 0 otherwise.

Thanks to the loss function we can update weights and biases of the
network through the backpropagation, as described in Section 1.1. This
procedure will be repeated starting from a new batch of different data,
until we have provided all the training data to the network. At this
point we are going to calculate a global CE on the validation data, called
validation loss.

The process that goes from providing the CNN with training data
to the calculation of the validation loss is repeated for a certain number
of epochs. At the end of each epoch, the value of the validation loss is
compared with the lowest one calculated previously. Therefore, valida-
tion data are used to understand how the CNN behaves with data that
has not been used to adjust its parameters. When the number of epochs
is finished, we consider the network trained with the parameters that
allowed us to obtain the lowest value of the validation loss.

Generally, if the validation loss tends not to decrease, the learning
rate is lowered to approach the minimum point more gradually; if even
in this way it does not decrease, the training stops. Once the network
is trained, we can test its effectiveness based on the predicted camera
models of testing data.
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After describing how a CNN for camera model identification works,
let us see in detail the CNN architectures that we use in our analysis.
Then, we focus on the concrete data that we provide as input to the
networks. Visual and audio contents are in fact general concepts that
do not precisely define a type of data. For now we only anticipate that
these input data are extracted from video/audio tracks of videos in a
preprocessing phase. The general procedure is described in Figure 4.1.

Figure 4.1: Black box block diagram of the whole process.

4.1.2 CNN Architectures
The CNNs we use to solve the problem are called EfficientNetB0 and
VGGish. We use the first one for both visual and audio content, while
the second one only for audio content.

4.1.2.1 EfficientNetB0 Architecture

The EfficientNetB0 belongs to the recently proposed EfficientNet fam-
ily of CNN models [37], which has achieved very good results both in
computer vision and multimedia forensics tasks. It is the simplest Ef-
ficientNet model; we have selected this in order to have faster training
phases and, consequently, much more time to experiment with different
configurations.

Figure 4.2: Simplified representation of the EfficientNetB0.

As we can see in Figure 4.2, the EfficientNetB0 is composed of several
convolutional layers and a final fully connected layer. The notation n×n

indicates the kernel size of that layer, while the number at the bottom
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indicates the number of channels (the number of nodes for the fully con-
nected layer). The successive layers which are the same are merged; the
number placed before the name in some layers indicates the number of
occurrences of that layer.

MBConv1 and MBConv6 are particular convolutional blocks belong-
ing to a family of blocks called inverted residual blocks [7]. For instance,
a general (i.e., not inverted) residual block is structured as shown in
Figure 4.3.

Figure 4.3: A general residual block [6].

As we can see, the peculiarity of this block consists in an additional
connection that allows input x to add directly to H(x) skipping the in-
termediate layers. Let us see how this additional connection, commonly
called skip-connection, can be useful. A neural network try to best ap-
proximate a particular function, which can be more or less complex. A
deep network can approximate very complex functions that would be
out of reach for a too simple network, but would have much more trou-
ble approximating simpler functions. Since the function to approximate
is initially unknown, it is difficult to quantify its complexity and conse-
quently choose a suitable network. The introduction of residual blocks
in a deep network can help it to learn simpler functions, thanks to the
opportunity to skip some layers [7]. The differences between a classic
residual block and an inverted residual block can be seen in Figure 4.4.

Figure 4.4: Representation of a residual block and an inverted residual block
[7].
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We can notice that a classic residual block follows a wide-narrow-wide
approach concerning the number of channels [38] and is characterized by
three convolutions + ReLU operations. On the other hand, an inverted
residual block follows a narrow-wide-narrow approach and is character-
ized by a convolution + ReLU6, a depth-wise separable convolution (i.e.,
convolution that reduces the computational cost) + ReLU6 and a final
convolution. The lightly colored layers indicate the beginning of the next
block, while the diagonally hatched textures indicate linear bottlenecks,
particular layers that contain few channels compared to the previous ones
and are not preceded by an activation function. In the names MBConv1
and MBConv6, the numbers 1 and 6 refer to the so-called expansion fac-
tor t, which affects the number of channels of the intermediate layers of
the block [7].

For our purposes, we replace the last fully connected layer with 1000
nodes with another fully connected layer with a number of nodes equal to
that of camera models (i.e., labels) used for the classification, as shown
in Figure 4.5.

Figure 4.5: EfficientNetB0 with last layer modified.

4.1.2.2 VGGish Architecture

The VGGish [39] is a pretrained CNN from Google used for audio clas-
sification and inspired to the famous VGG networks [40] used for image
classification. It has been used in several recent projects concerning audio
classification; we can cite [41, 42]. The structure is much more compact
than that of the EfficientNetB0 and is composed of several convolutional
layers followed by some fully connected layer, as shown in Figure 4.6.
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Figure 4.6: Simplified representation of the VGGish.

For our purposes, we add a final fully connected layer with a number
of nodes equal to the number of labels, as shown in Figure 4.7.

Figure 4.7: VGGish with one extra fully connected layer.

4.1.3 Data Preprocessing
The preprocessing phase consists of video and audio content extraction
and data normalization. As far as audio is concerned, this process in-
cludes a further modification to the EfficientNetB0 in order to match the
shape of the input data.

4.1.3.1 Visual Information

The visual content of a video can be seen as a set of images, called frames,
placed one after the other over time. We define it as an array of shape
N × C ×H ×W , where N is the number of frames, C is the number of
color channels and H and W respectively are the height and the width
(i.e., the number of pixels along rows and columns) of a video frame.
Since we adopt the RGB representation, C is always equal to 3. For each
video, we extract a certain number NF of frames (as shown in Figure 4.8)
equally distant in time and distributed over its entire duration. In this
way, we capture part of the visual information along the entire length of
the video.
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Figure 4.8: Representation of the extracted frames.

From each frame, we randomly crop a number NP of color patches
of size HP × WP (as shown in Figure 4.9); the patches are exactly the
elements v(m) ∈ V . We use patches instead of frames as input data, so
as to have a greater number of data available with the same size.

Figure 4.9: Extraction of the visual patches.

It is a good practice to normalize data before providing them to neural
networks; this is because it can help the training phase [43]. There are
several ways to normalize data; we used the following one:

(zi)c =
(xi)c − µc

σc

. (4.4)

This type of normalization, which is called z-score, is applied at the
pixel-level of the patches: the notations (xi)c and (zi)c respectively in-
dicate the c ∈ {Red,Green,Blue} value of the raw and the normalized
i-pixel of a patch; the notations µc and σc respectively indicate the mean
and the standard deviation calculated with respect to the c value of all
pixels of all patches. The whole process is summarized in Figure 4.10.
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Figure 4.10: Visual information preprocessing block diagram.

4.1.3.2 Audio Information

From the audio tracks of the videos, we extract the log-mel spectrograms.
Their information can be stored in 2D matrices H × W , where values
at each position (i.e., i-th row, j-th column) correspond to values of
log-amplitudes that we find at coordinates (xi, yj) in their Cartesian
representation; the x-axis indicates the time information, while the y-
axis indicates the mel-frequency information. Since the networks we use
admit arrays of shape C × H × W , we add a dimension C equal to
1 before the two dimensions H and W mentioned above. From each
log-mel spectrogram, we randomly crop a number NP of patches of size
C × HP × WP (as shown in Figure 4.11) and then we normalize them
with the z-score (equation (4.4)).

Figure 4.11: Extraction of the audio patches.

The patches are exactly the elements a(m) ∈ A. The whole process is
summarized in Figure 4.12.
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Figure 4.12: Audio information preprocessing block diagram.

In the EfficientNetB0 (as shown in Figure 4.13) we add an initial
convolutional layer to switch from a 1-channel image to a 3-channel image
as required by the network.

Figure 4.13: EfficientNetB0 further modified for audio data.

4.2 Multi-Modal Model Attribution
As mentioned in Section 2.2, given a video sequence, the problem of
multi-modal model attribution converts in identifying the device model
that shot it, using both visual and audio information of the video itself.

We adopt two methods to solve the problem of multi-modal model
attribution:

1. Late Fusion method: compare the scores of each visual/audio patch
pair separately obtained from two single-input CNNs;

2. Early Fusion method: build a multi-input CNN and train it with
visual/audio patch pairs.

In both methods, we need a one-to-one correspondence between visual
and audio patches. In other words, each visual patch must be paired with
one and only one audio patch and vice versa. This is because we must
ensure that no visual or audio patch is excluded and that any visual or
audio patch is taken no more than once; in this way they all have the
same importance.
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Let NF and NP respectively be the number of frames and the number
of patches per frame extracted from a video. In order to obtain a one-to-
one correspondence, we extract NF ·NP patches per log-mel spectrogram
making sure that, for each video frame, its audio information is contained
in one and only one group of NP patches. In this way, we got the same
number of visual and audio patches associated with a certain frame. The
generation of pairs is random; it is sufficient that the patches belong to
the same frame (i.e., NP random pairs per frame).

4.2.1 Late Fusion
In the first method, we follow three steps to determine the predicted
model m̂ for a visual/audio patch pair:

1. separately train a CNN with visual patches and a CNN with audio
patches;

2. given a new visual/audio patch pair, provide the visual patch to
the first network and the audio patch to the second one, obtaining
the respective score vectors sv = (σ(yv)i) and sa = (σ(ya)i), i ∈
[0,M − 1]. Precisely, yv refers to the output vector related to the
visual patch and ya to the output vector related to the audio patch
(refer to Section 4.1.1);

3. select the score vector that contains the highest score; m̂ is given
by the index in which that score is found: m̂ = argmaxi si, where
si is the i-th element of the vector s defined as

s =

⎧⎨⎩sv if maxi σ(yv)i ≥ maxi σ(ya)i

sa if maxi σ(yv)i < maxi σ(ya)i
. (4.5)

For the sake of clarity, Figure 4.14 shows the proposed pipeline for
the Late Fusion multi-modal attribution.

Figure 4.14: Late Fusion block diagram.
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Table 4.1 shows an application of Late Fusion multi-modal attribution
with 4 visual/audio patch pairs and 4 reference camera models. For
example, if we analyze the second row, the highest score among visual
and audio patches is associated with an audio patch and is equal to
1. Therefore, the predicted camera model for that patch pair is related
to the position of this score in the audio patch score vector, i.e., the
predicted model is that with label equal to 1.

Table 4.1: A general application of the Late Fusion with 3 patch pairs
and 4 camera models. We indicate in bold the numbers analyzed in the
text.

Visual Patch Scores Audio Patch Scores Max Score Predicted Model

(0.8, 0.0, 0.0, 0.2) (0.6, 0.0, 0.0, 0.4) 0.8 0
(0.5, 0.4, 0.1, 0.0) (0.0, 1.0, 0.0, 0.0) 1.0 1
(0.2, 0.1, 0.1, 0.6) (0.2, 0.1, 0.2, 0.5) 0.6 3

4.2.2 Early Fusion
In the second method, we build a multi-input CNN by joining together an
EfficientNetB0 with a VGGish or two EfficientNetB0. The union is made
by concatenating the final fully connected layers of the two networks and
is followed by some additional fully connected layer up to the prediction
of the model. The resulting network then has two inputs: one for visual
patches and one for audio patches.

Figure 4.15: EfficientNetB0 + VGGish multi-input neural network.
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Figure 4.16: EfficientNetB0 + EfficientNetB0 multi-input neural network.

In Figures 4.15 and 4.16, we can see that the changes made to the indi-
vidual single-input networks are different compared to the mono-modal
case: the EfficientNetB0 networks, in fact, end with a fully connected
layer of 128 nodes and the VGGish used is the classic one, without any
modification. Both layers that go to concatenate have 128 nodes so as
to give the same importance to both patches. For the sake of brevity,
we do not report the preprocessing phase, which remains the same as
mono-modal case.

Training and testing phases are analogous to that of the mono-modal
model attribution, but this time we provide the CNN with visual/audio
patch pairs; not single patches. For each patch pair the network predicts
a model always based on the scores given by the application of a softmax
function to the output vector yv+a (refer to Section 4.1.1):

m̂ = argmax
i

σ(yv+a)i. (4.6)

4.3 Conclusive Remarks
In this chapter we have described the algorithms used to solve these
problems, dwelling on the data preprocessing and the networks used for
classification. We can notice how the most evident differences between
visual and audio information methods reside in the preprocessing phase;
once the patches are obtained, the residual process is almost identical.
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We just have to concretely apply the methods and discuss the results
obtained; we will see everything in the next chapter.



5
Simulations and Tests

Now let us concretely apply the methods described in Chapter 4. We
first of all take a look at the dataset we work with and at the experi-
mental setup (i.e., numerical values and configurations that we use in the
experiments); after that we report and comment on the various results
obtained and draw conclusions.

5.1 Vision Dataset
In our analysis we use the Vision dataset [8]; a recent image and
video dataset, purposely designed for multimedia forensics investigations.
Specifically, Vision dataset has been designed to follow the trend on im-
age and video acquisition and social sharing. In the last few years photo-
amateurs have rapidly converted to portable devices as preferred mean
to capture images and videos. Then, the acquired content is typically
shared on social media platforms, e.g., WhatsApp, Facebook, etc. In
this vein, Vision dataset collects almost 12, 000 native images of similar
scenes captured by 35 modern smartphones/tablets, including also their
related social media version. We can see the complete list of devices in
Figure 5.1.
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Figure 5.1: Complete list of devices in Vision dataset; DStab shows the pres-
ence or absence of digital stabilization on the acquired content, HDR indicates
whether the device supports it, VR stands for video resolution and IR for im-
age resolution [8].

For each device, the dataset presents different categories of videos. In
particular, a video can be flat, indoor or outdoor. A flat video is made
up of almost monochromatic frames very similar to each other; indoor
and outdoor videos are respectively videos shot inside a building and
videos shot outdoors. In Figure 5.2 we report three frames each belonging
to a different category. For each video, or almost, the Vision dataset
additionally provides two compressed copies: one with the WhatsApp
algorithm and the other with the YouTube algorithm.
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Figure 5.2: Frames respectively extracted from a flat video, an indoor video
and an outdoor video shot with the device “ D06_Apple_iPhone6” [8].

In the literature, Vision dataset has often been used for investigations
on the camera model identification problem. Among them, we can cite
[44, 45].

5.2 Experimental Setup
To perform our experiments we select non-flat native videos from Vi-
sion Video Dataset; both the original ones and those compressed by
WhatsApp and YouTube algorithms. Since our analysis is aimed at
the granularity model-level, we group videos from different devices that
belong to the same model. Videos from devices “D04_LG_D290”,
“D12_Sony_XperiaZ1Compact”, “D17_Microsoft_Lumia640LTE” and
“D22_Samsung_GalaxyTrendPlus” are excluded because they give
problems in the extraction of the frames or the audio track. We also
exclude the original videos that do not feature a WhatsApp or YouTube
compressed version. Therefore, we work with 1110 videos of about 1
minute, belonging to 25 different camera models. We extract 50 frames
per video equally distant in time and distributed over its entire duration
and 10 random patches per frame, for a total of 500 patches per video.
As for audio, we extract 100 random patches per log-mel spectrogram in
the mono-modal case and 500 random patches per log-mel spectrogram
in the multi-modal case. We apply data augmentation on visual patches,
in particular: horizontal flip, vertical flip, 90 degree rotation and JPEG
compression [46] at six different quality levels, from 75 to 100 with a step
of 5.

Following a common procedure applied in convolutional neural net-
work (CNN) training, we initialize the EfficientNetB0 weights using those
trained on ImageNet database [47], while we initialize the VGGish ones
using those trained on AudioSet database [48]. We initialize in the same
way also the weights of the EfficientNetB0 and of the VGGish networks
that are part of the multi-input CNNs in the Early Fusion. All CNNs are
trained using cross-entropy loss (CE) and Adam optimizer with default
parameters. The learning rate is initialized to 0.001 and is decreased by
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a factor 10 whenever the validation loss does not improve for 10 epochs.
We train the networks for at most 50 epochs, and training is stopped if
the validation loss does not decrease for more than 20 epochs. The model
providing the best validation loss is selected.

Concerning the dataset split policy, we always keep 80% of the data
for training phase (further divided in 85% − 15% for training set and
validation set, respectively), leaving the remaining 20% to the evaluation
set; we use a batch-size of 20. All tests run on a workstation equipped
with one Intel® Xeon E5-2687W v4 (48 Cores @3 GHz), RAM 252 GB,
one TITAN V (5120 CUDA Cores @1455 MHz), 12 GB, running Ubuntu
20.04.2. We resort to Albumentations [49] as data augmentation library
for visual patches and we use Pytorch [50] as Deep Learning framework.

5.3 Results
Now let us see the results obtained with various configurations, start-
ing from the mono-modal methods to then arrive at the multi-modal
methods.

5.3.1 Visual Patches
We train the EfficientNetB0 using visual patches of shape 3× 256× 256

from original videos, videos compressed by the WhatsApp algorithm and
videos compressed by the YouTube algorithm, obtaining three network
models. We test these models not only using patches from videos of
the same category, but also from different categories (e.g., test patches
from WhatsApp videos on the model trained with patches from original
videos). This last type of test is called cross test.

Let us start by analyzing the confusion matrices produced by non-
cross tests.
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Figure 5.3: Training Set: Original; Testing Set: Original; Accuracy: 0.8202.

Figure 5.4: Training Set: WhatsApp; Testing Set: WhatsApp; Accuracy:
0.6739.
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Figure 5.5: Training Set: YouTube; Testing Set: YouTube; Accuracy: 0.7404.

As shown in Figures 5.3, 5.4 and 5.5, the classification algorithm
works very well as the matrices come very close to being diagonal.

Now let us see how it behaves in cross tests (for the sake, of brevity
we show only two tests).
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Figure 5.6: Training Set: Original; Testing Set: WhatsApp; Accuracy: 0.3579.

Figure 5.7: Training Set: Original; Testing Set: YouTube; Accuracy: 0.4869.
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As shown in Figures 5.6 and 5.7, the algorithm presents some diffi-
culties in the classification; only some models manage to classify them
very well, while others tend to confuse them (especially smartphones of
similar models of the same brand).

We summarize in Table 5.1 the accuracy given by the various tests in
order to draw conclusions.

Table 5.1: Table that collects the accuracy achieved in the various tests.

Testing Set →
Original WhatsApp YouTube

Training Set ↓

Original 0.8202 0.3579 0.4869

WhatsApp 0.5599 0.6739 0.5158

YouTube 0.7271 0.5531 0.7404

We note how the algorithm works worse in the case in which patches
are coming from WhatsApp videos. Apparently, the compression applied
by WhatsApp is more massive than that of YouTube, making it difficult
to extract the features suitable for classification.

Let us investigate further by compressing videos with the H.264 [51]
and H.265 [52] codecs at different quality factors. For the compression, we
use FFmpeg [53] at five different Constant Rate Factor (CRF) values [53]:
7, 15, 23, 31 and 39; smaller values correspond to better quality, larger
values to lower. For the sake of brevity, we report only the classification
accuracies as a function of the used dataset (i.e., original, WhatsApp-
compressed, YouTube-compressed) and CRF values. Figure 5.8 shows
the accuracies concerning the data compressed with the H.264 codec,
Figure 5.9 reports accuracies concerning the data compressed with the
H.265 codec.
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Figure 5.8: Classification accuracies as a function of training/testing sets and
H.264 compression quality factors.

Figure 5.9: Classification accuracies as a function of training/testing sets and
H.265 compression quality factors.
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As we can see, the matrices are quite comparable and, predictably,
the accuracy drops as the compression factor increases.

To conclude, we report in Figure 5.10 the accuracies concerning the
data compressed with H.264 and H.265 codecs.

Figure 5.10: Classification accuracies as a function of training/testing sets and
H.264 and H.265 compression quality factors.

Since the matrix is excessively large, we report only the colors of the
boxes and not the numbers (that would have been illegible); in this case
it is much more important to rely on the glance. The areas concerning
the different training set/testing set pairs are clearly distinguishable. We
achieve the best results for the pairs of original/original, YouTube/orig-
inal and YouTube/YouTube sets. The same cannot be said for the origi-
nal/YouTube pair of sets, where the classification algorithm works worse.
Comparing the cross tests H.264/H.265 and H.265/H.264, we note how
the results are very similar in general. The most evident difference is
found in the area with the original/original set pairs, where a significant
decrease in accuracy occurs at lower CRF values in H.265 compared to
H.264. The tests involving WhatsApp data are confirmed as the worst,
representing the weakness of the model. Finally, we can see how better
results are obtained in cross tests if the training set is made up of more
compressed data than those of the testing set (e.g., YouTube/original
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results are better than original/YouTube ones).

5.3.2 Audio Patches
We train the VGGish and the EfficientNetB0 using audio patches from
original videos, videos compressed by the WhatsApp algorithm and
videos compressed by the YouTube algorithm. We start showing the
results of the VGGish, then we go to make a comparison with those of
the EfficientNetB0.

5.3.2.1 Results of VGGish

For the VGGish, patches are cropped from log-mel spectrograms com-
puted using the parameters for which this network is optimized (e.g., log
offset, short-time Fourier transform (STFT) window length, etc.). Their
shape is 1×96×64 and is also due to parameters; the 64 mel bins cover a
frequency range up to about 8kHz. Let us analyze the confusion matrices
produced by non-cross tests.

Figure 5.11: VGGish - Training Set: Original; Testing Set: Original; Accuracy:
0.6578.
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Figure 5.12: VGGish - Training Set: WhatsApp; Testing Set: WhatsApp;
Accuracy: 6757.

Figure 5.13: VGGish - Training Set: YouTube; Testing Set: YouTube; Accu-
racy: 0.7010.
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As shown in Figures 5.11, 5.12 and 5.13, the classification algorithm
works quite well, beyond a bit of uncertainty about some model.

Now let us see how it behaves in cross tests (for the sake of brevity,
we show only two tests).

Figure 5.14: VGGish - Training Set: Original; Testing Set: WhatsApp; Accu-
racy: 0.5304.
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Figure 5.15: VGGish - Training Set: Original; Testing Set: YouTube; Accu-
racy: 0.6654.

As shown in Figures 5.14 and 5.15, the algorithm presents some diffi-
culties; but results are more stable with respect to the classification with
visual patches.

We summarize in Table 5.2 the accuracy given by the various tests in
order to draw conclusions.

Table 5.2: Table that collects the classification accuracies of mono-modal
methods as a function of training/testing sets; for audio patches we have
a VGGish. We indicate in bold the numbers analyzed in the text.

- Audio Patches Visual Patches
Testing Set →

Original WhatsApp YouTube Original WhatsApp YouTube
Training Set ↓

Original 0.6578 0.5304 0.6654 0.8202 0.3579 0.4869

WhatsApp 0.5028 0.6757 0.5245 0.5599 0.6739 0.5158

YouTube 0.6954 0.5924 0.7010 0.7271 0.5531 0.7404

The algorithm does not present particular weaknesses, but very high
accuracy are never achieved. Certainly, the biggest improvement with
respect to the mono-modal case with visual patches is obtained in the
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original/WhatsApp and original/YouTube cross tests. The results of
the remaining cross-tests, on the other hand, are very similar in both
configurations. As regards the non-cross tests, we continue to have the
best results with the visual patches, reaching a maximum accuracy of
82% in the original/original test; with audio patches we only reach a
maximum of 70% in the YouTube/YouTube test. Intuitively, the network
model obtained with audio patches is more general, because there are no
particular cases in which it behaves much better or much worse than the
others.

Let us investigate further by compressing audio in MP3 format [54]
at different quality factors. For the compression, we used FFmpeg at five
different qscale values [53]: 0, 2, 4, 6 and 8; smaller values correspond to
better quality, larger values to lower. For the sake of brevity, we report in
Figure 5.16 the classification accuracies as a function of the used dataset
and qscale values.

Figure 5.16: Classification accuracies as a function of training/testing sets and
MP3 compression quality factors.

The generality of the network model is reconfirmed, in fact there are
no major changes between one compression and another; a noticeable
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decrease in accuracy occurs only when the compression is really high.

5.3.2.2 Results of EfficientNetB0 on Audio Patches

Passing to the EfficientNetB0, patches are extracted both as for the VG-
Gish, and by expanding the frequency range to the entire audio band
using 192 mel beans. We call the EfficientNetB0 trained with patch
1×96×64 EfficientNetB064, while we call the EfficientNetB0 trained with
patch 1× 96× 192 EfficientNetB0192. For the sake of brevity, we report
the classification accuracies as a function of the used dataset and MP3
values. Figure 5.17 shows the accuracies concerning the EfficientNetB064,
Figure 5.18 reports accuracies concerning the EfficientNetB0192.

Figure 5.17: Classification accuracies as a function of training/testing sets and
MP3 compression quality factors - EfficientNetB064.
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Figure 5.18: Classification accuracies as a function of training/testing sets and
MP3 compression quality factors - EfficientNetB0192.

Starting from Figure 5.17, we notice how the differences with respect
to VGGish are minimal. The results are generally a little better, but we
have more sensitivity on the compression factor.

Expanding the spectrum, the differences become considerable. In
Figure 5.18 we note very high accuracy with regard to non-cross tests
and cross tests including only original and Youtube data, but very low
accuracy with regard to cross tests including WhatsApp data.

We summarize in Table 5.3 the accuracy given by the various tests in
order to draw conclusions.
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Table 5.3: Table that collects the classification accuracies of mono-modal
methods as a function of training/testing sets; VGGish, EfficientNetB064,
EfficientNetB0192 are for audio patches and EfficientNetB0 for visual
patches. We indicate in bold the numbers analyzed in the text.

- VGGish EfficientNetB064 EfficientNetB0192 EfficientNetB0
Test. Set →

O WA YT O WA YT O WA YT O WA YT
Train. Set ↓

O 0.66 0.53 0.67 0.78 0.62 0.78 0.95 0.33 0.77 0.82 0.36 0.49

WA 0.50 0.68 0.52 0.57 0.74 0.59 0.34 0.86 0.37 0.56 0.67 0.52

YT 0.70 0.59 0.70 0.72 0.58 0.74 0.85 0.39 0.94 0.73 0.55 0.74

As we can see, the best network model from the point of view of
non-cross tests is undoubtedly the one made with the EfficientNetB0192,
which reaches a maximum accuracy value of 95%. However, it is also
the one that presents the worst results in cross tests with WhatsApp
data. This network model is therefore the least general, whose perfor-
mance drastically worsens in the case of more powerful compressions (e.g.,
WhatsApp). Apparently, it comes closest to approximating the function
that maps the training data to their labels.

As for the original/YouTube and YouTube/original cross tests,
the best results are found in the EfficientNetB064 and in the
EfficientNetB0192; while for WhatsApp cross tests the best results are
found in VGGish and in the EfficientNetB064. Finally, if we get bet-
ter cross test results for visual patches with a training set consisting of
more compressed data than the testing set (e.g., YouTube/original results
are better than original/YouTube), the same does not happen for audio
patches where the results remain very similar (e.g., YouTube/original
results are very similar to original/YouTube).

5.3.3 Late Fusion
Given the previous results, we focus on trying to improve the cases where
mono-modal methods performed worse (i.e., cross-tests with WhatsApp
data). In order to improve these results, intuitively it is more reasonable
to combine the visual results with those of an audio network that has
proved to be more general: VGGish or EfficientNetB064. We call the
Late Fusion with the VGGish Late Fusion 1; Late Fusion 2 the one with
EfficientNetB064. For the sake of brevity, we directly report the classifica-
tion accuracies as a function of the used dataset for both configurations;
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omitting further compressions (i.e., H.264, H.265 and MP3).

Table 5.4: Table that collects the classification accuracies of Late Fusion
1 and mono-modal methods as a function of training/testing sets; for
Late Fusion 1 we have an EfficientNetB0 + VGGish, for audio patches
we have a VGGish. We indicate in bold the numbers analyzed in the
text.

- Late Fusion 1 Visual Patches Audio Patches
Testing Set →

Original WhatsApp YouTube Original WhatsApp YouTube Original WhatsApp YouTube
Training Set ↓

Original 0.9039 0.5960 0.7069 0.8202 0.3579 0.4869 0.6578 0.5304 0.6654

WhatsApp 0.6413 0.7610 0.6368 0.5599 0.6739 0.5158 0.5028 0.6757 0.5245

YouTube 0.8163 0.6595 0.8274 0.7271 0.5531 0.7404 0.6954 0.5924 0.7010

Table 5.5: Table that collects the classification accuracies of Late Fusion
2 and mono-modal methods as a function of training/testing sets; for
Late Fusion 2 we have an EfficientNetB0 + EfficientNetB064, for audio
patches we have an EfficientNetB064. We indicate in bold the numbers
analyzed in the text.

- Late Fusion 2 Visual Patches Audio Patches
Testing Set →

Original WhatsApp YouTube Original WhatsApp YouTube Original WhatsApp YouTube
Training Set ↓

Original 0.8945 0.6020 0.8039 0.8202 0.3579 0.4869 0.7758 0.6214 0.7847

WhatsApp 0.6262 0.8198 0.6208 0.5599 0.6739 0.5158 0.5730 0.7408 0.5857

YouTube 0.8321 0.6976 0.8390 0.7271 0.5531 0.7404 0.7203 0.5823 0.7404

In Tables 5.4 and 5.5 we note how Late Fusion 1 and Late Fusion
2 perform better than their mono-modal counterparts. The only result
in which the mono-modal has a slightly higher accuracy is in the origi-
nal/WhatsApp cross test with respect to Late Fusion 2, as reported by
the bold numbers in Table 5.5.

Based on the results considered, there is no multi-modal configuration
that is totally better than the other. In a general sense, we can consider
Late Fusion 2 better, because the results in which it is worse are few and
not far from those obtained by the other configuration. On the contrary,
in the more numerous results where Late Fusion 2 is better, the gap
compared to those of the other configuration is greater. An example of
this we can find in the original/Youtube cross test (as reported by the
bold numbers in Tables 5.4 and 5.5), where the gap is about 10%.

In both multi-modal configurations, we can see how better results are
obtained in cross tests if the training set is made up of more compressed
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data than those of the testing set (e.g., YouTube/original results are
better than original/YouTube ones). WhatsApp cross tests still give the
worst results.

To conclude, we combine the scores of the EfficientNetB0 and the
EfficientNetB0192, calling this configuration Late Fusion 3. For the sake
of brevity, we directly report the classification accuracies as a function
of the used dataset, omitting further compressions.

Table 5.6: Table that collects the classification accuracies of Late Fusion
3 and mono-modal methods as a function of training/testing sets; for
Late Fusion 3 we have an EfficientNetB0 + EfficientNetB0192, for audio
patches we have a EfficientNetB0192. We indicate in bold the numbers
analyzed in the text.

- Late Fusion 3 Visual Patches Audio Patches
Testing Set →

Original WhatsApp YouTube Original WhatsApp YouTube Original WhatsApp YouTube
Training Set ↓

Original 0.9900 0.4544 0.8389 0.8202 0.3579 0.4869 0.9518 0.3307 0.7729

WhatsApp 0.5703 0.9163 0.5602 0.5599 0.6739 0.5158 0.3418 0.8583 0.3706

YouTube 0.9172 0.4957 0.9519 0.7590 0.5531 0.7404 0.8490 0.3902 0.9398

As expected, the network model obtained works worse in cross tests
with WhatsApp data than Late Fusion 1 and Late Fusion 2. This derives
from the fact that this multi-input network is composed of two networks
that are able to very well approximate the function that maps the training
data to their labels; this is certainly good if this network model should
work only with data of the same category, but it is not very suitable
for more heterogeneous data. Table 5.6 shows a very large capacity of
the network to classify homogeneous data with extremely high accuracy
values, up to 99%.

5.3.4 Early Fusion
As for Late Fusion, we focus on trying to improve the cases where mono-
modal methods performed worse (i.e., cross-tests with WhatsApp data).
In order to improve these results, we train two multi-input networks using
visual and audio patches from original videos, videos compressed by the
WhatsApp algorithm and videos compressed by the YouTube algorithm.
The first one is composed of the EfficientNetB0 and the VGGish, the
second one of the EfficientNetB0 and the EfficientNetB064. We call the
first configuration Early Fusion 1 and the second Early Fusion 2.
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Table 5.7: Table that collects the classification accuracies of Early Fusion
1 and mono-modal methods as a function of training/testing sets; for
Early Fusion 1 we have an EfficientNetB0 + VGGish, for audio patches
we have a VGGish. We indicate in bold the numbers analyzed in the
text.

- Early Fusion 1 Visual Patches Audio Patches
Testing Set →

Original WhatsApp YouTube Original WhatsApp YouTube Original WhatsApp YouTube
Training Set ↓

Original 0.8210 0.6879 0.7784 0.8202 0.3579 0.4869 0.6578 0.5304 0.6654

WhatsApp 0.5810 0.7519 0.5766 0.5599 0.6739 0.5158 0.5028 0.6757 0.5245

YouTube 0.7548 0.6212 0.7590 0.7271 0.5531 0.7404 0.6954 0.5924 0.7010

Table 5.8: Table that collects the classification accuracies of Early Fusion
2 and mono-modal methods as a function of training/testing sets; for
Early Fusion 2 we have an EfficientNetB0 + EfficientNetB064, for audio
patches we have an EfficientNetB064. We indicate in bold the numbers
analyzed in the text.

- Early Fusion 2 Visual Patches Audio Patches
Testing Set →

Original WhatsApp YouTube Original WhatsApp YouTube Original WhatsApp YouTube
Training Set ↓

Original 0.8396 0.6120 0.7956 0.8202 0.3579 0.4869 0.7758 0.6214 0.7847

WhatsApp 0.5930 0.8076 0.5873 0.5599 0.6739 0.5158 0.5730 0.7408 0.5857

YouTube 0.8071 0.6903 0.8090 0.7271 0.5531 0.7404 0.7203 0.5823 0.7404

In Tables 5.7 and 5.8 we note how Early Fusion 1 and Early Fusion
2 perform better than their mono-modal counterparts. The only result
in which the mono-modal has a slightly higher accuracy is in the origi-
nal/WhatsApp cross test with respect to Early Fusion 2, as reported by
the bold numbers in Table 5.8. Regarding Early Fusion 1, we can record
a fairly significant increase in accuracy in the cross test with original
data as training set and WhatsApp data as testing set (as reported by
the bold number in Table 5.7). This cross test is important because it
can be traced back to different realistic scenarios in which we have to
classify a data compressed through internet services (e.g., social media,
upload sites, etc.).

To conclude, we train the multi-input network composed by the Ef-
ficientNetB0 and the EfficientNetB0192. We call this configuration Early
Fusion 3.
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Table 5.9: Table that collects the classification accuracies of Early Fusion
3 and mono-modal methods as a function of training/testing sets; for
Early Fusion 3 we have an EfficientNetB0 + EfficientNetB0192, for audio
patches we have a EfficientNetB0192.

- Early Fusion 3 Visual Patches Audio Patches
Testing Set →

Original WhatsApp YouTube Original WhatsApp YouTube Original WhatsApp YouTube
Training Set ↓

Original 0.9598 0.1795 0.7968 0.8202 0.3579 0.4869 0.9518 0.3307 0.7729

WhatsApp 0.5091 0.9120 0.4954 0.5599 0.6739 0.5158 0.3418 0.8583 0.3706

YouTube 0.8731 0.4146 0.9513 0.7590 0.5531 0.7404 0.8490 0.3902 0.9398

As expected, the network model obtained works very badly in cross
tests with WhatsApp data. In particular, we note how the accuracy
value in the cross test with original data as training set and WhatsApp
data as testing set is the lowest compared to the previous methods. This
derives from the fact that this multi-input network is composed of two
networks that are able to very well approximate the function that maps
the training data to their labels; this is certainly good if this network
model should work only with data of the same category, but it is not
very suitable for more heterogeneous data. Table 5.9 shows a very large
capacity of the network to classify homogeneous data with extremely
high accuracy values.

We merge in Tables 5.10 and 5.11 the classification accuracies of the
multi-modal methods as a function of the used dataset, in order to have
a global overview.

Table 5.10: Table that collects the classification accuracies of Late Fusion
1, Late Fusion 2 and Late Fusion 3 as a function of training/testing sets;
for Late Fusion 1 we have an EfficientNetB0 + VGGish, for Late Fusion 2
we have an EfficientNetB0 + EfficientNetB064, for Late Fusion 3 we have
an EfficientNetB0 + EfficientNetB0192. We indicate in bold the numbers
analyzed in the text.

- Late Fusion 1 Late Fusion 2 Late Fusion 3
Testing Set →

Original WhatsApp YouTube Original WhatsApp YouTube Original WhatsApp YouTube
Training Set ↓

Original 0.9039 0.5960 0.7069 0.8945 0.6020 0.8039 0.9900 0.4544 0.8389

WhatsApp 0.6413 0.7610 0.6368 0.6262 0.8198 0.6208 0.5703 0.9163 0.5602

YouTube 0.8163 0.6595 0.8274 0.8321 0.6976 0.8390 0.9172 0.4957 0.9519
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Table 5.11: Table that collects the classification accuracies of Early Fu-
sion 1, Early Fusion 2 and Early Fusion 3 as a function of training/testing
sets; for Early Fusion 1 we have an EfficientNetB0 + VGGish, for Early
Fusion 2 we have an EfficientNetB0 + EfficientNetB064, for Early Fusion
3 we have an EfficientNetB0 + EfficientNetB0192. We indicate in bold
the numbers analyzed in the text.

- Early Fusion 1 Early Fusion 2 Early Fusion 3
Testing Set →

Original WhatsApp YouTube Original WhatsApp YouTube Original WhatsApp YouTube
Training Set ↓

Original 0.8210 0.6879 0.7784 0.8396 0.6120 0.7956 0.9598 0.1795 0.7968

WhatsApp 0.5810 0.7519 0.5766 0.5930 0.8076 0.5873 0.5091 0.9120 0.4954

YouTube 0.7548 0.6212 0.7590 0.8071 0.6903 0.8090 0.8731 0.4146 0.9513

In general, multi-modal methods prove to be more effective than
mono-modal methods, showing higher accuracy values. Starting from
the analysis of the non-cross tests, Late Fusion 3 is the configuration
that achieves the highest accuracy, up to 99%.

Late Fusion 3 shows the highest accuracies even in cross tests includ-
ing original and YouTube data; this is probably due to the fact that
YouTube’s compression is not high enough to interfere with classifica-
tion. With more massive compressions, as in the case of WhatsApp, this
configuration presents some problems. Early Fusion 3 also has very high
accuracy values, but still lower than all those of Late Fusion 3.

The other configurations never reach the accuracy values of Late Fu-
sion 3 and Early Fusion 3, but prove to be more efficient in dealing
with data with significant compression. In particular, Late Fusion 1 has
the best results in WhatsApp/original and WhatsApp/YouTube cross
tests, Late Fusion 2 has the best result in YouTube/WhatsApp cross
test and Early Fusion 1 has the best result in original/WhatsApp cross
test. Therefore, there is not one configuration that is clearly better in
cross test including WhatsApp data; it depends on the case of our inter-
est. We emphasize the original/WhatsApp cross test improved by Early
Fusion 1, because it can be traced back to different realistic scenarios (as
mentioned in Section 5.3.4).

5.4 Conclusive Remarks
In this chapter we have evaluated the proposed methodology through
simulations and experiments. We started by analyzing the results ob-
tained by mono-modal methods and then moving on to those obtained
by multi-modal methods. For each method we have highlighted its
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strengths and weaknesses, deducing which could be the best based on a
proposed scenario. Multi-modal methods performed better than mono-
modal ones, constituting a great improvement in both non-cross and cross
tests. Among the multi-modal methods, however, there is not one that
is better than all the others; it all depends on the case of our interest.



6
Conclusions and Future Works

This thesis proposes a methodology for camera model identification
related to digital video sequences. The aim is to determine the smart-
phone model used to acquire digital video sequences by exploiting visual
and audio information from the videos themselves.

The devised methodology is based on convolutional neural networks
(CNNs) capable of classifying videos by extracting suitable features from
their visual and audio content. Given a video, as visual content to provide
to the CNNs we use patches cropped from its video frames, while as audio
content we use patches cropped from the log-mel spectrogram of its audio
track. As for the networks, we use the EfficientNetB0 to classify both the
visual and audio patches, while the VGGish only to classify the audio
patches. The networks are appropriately modified in order to match
the shape of input data and the number of smartphone models to be
classified.

We propose two multi-modal camera model identification approaches:
in the first one, we compare the scores individually obtained from two
trained mono-modal CNNs (one only with visual patches, the other only
with audio patches); in the second one, we build multi-input networks
and train them with visual/audio patch pairs. For completeness, before
proceeding with the resolution of the multi-modal model attribution, we
investigate the mono-modal model attribution using CNNs trained only
with video patches or audio patches.
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The dataset from which we take videos is the Vision dataset, a recent
image and video dataset, purposely designed for multimedia forensics in-
vestigations. The videos on which we experience are not only the original
ones; we also use those compressed by the WhatsApp and YouTube algo-
rithms and those further compressed in other ways (e.g., H.264 or H.265
codecs) so as to obtain many results with different configurations.

Based on the results obtained, we find that multi-modal methods
are more effective than mono-modal methods and, depending on our
needs, the first multi-modal method could be better or worse than the
second one. We achieve very good results in non-cross tests (i.e., when
training and testing sets are selected from the same dataset), reaching
accuracy values up to 99% in the first multi-modal method. In cross
tests (i.e., when training and testing sets belong to different datasets)
the achieved accuracy depends on the kind of datasets involved and the
applied compression factors.

The results obtained with the original and YouTube data are very
good, both in the first and in the second multi-modal methods. This is
probably due to the fact that YouTube’s compression is not high enough
to interfere with classification. With more massive compressions, as in
the case of WhatsApp, classification becomes more challenging.

Thanks to the realization of different configurations of the two multi-
modal methods, we can visualize which one gives better results according
to our needs. In non-cross tests and cross tests that include only original
and YouTube data, the configuration that gives the best results belongs
to the first multi-modal method. It compares the scores obtained from an
EfficientNetB0 trained with visual patches and an EfficientNetB0 trained
with audio patches. In cross test that include WhatsApp data, however,
we do not have a configuration that gives better results in all cases; we
therefore prefer a configuration based on the specific result of our interest.
For example, if we are interested in training a model with original data in
order to classify WhatsApp data, the configuration that suits us belongs
to the second multi-modal method and is based on a multi-input network
that combines an EfficientNetB0 for visual patches and a VGGish for
audio patches.

The results achieved with our experimental campaign highlight a se-
ries of future challenges and improvements that can be tackled as future
work.

Generalization The tests have brought us good results, but we have
not been able to obtain an overall model that is better than all the
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others in the analysis. This leads us, in a realistic scenario, to change
configuration according to the classification we want to do. Instead, the
ideal would be to build a single general model that is suitable for any
circumstance.

Challenging scenarios We obtained the worst results in cross tests
where we consider a training set composed of more compressed data than
those of the testing set, or vice versa (e.g., training set: original; testing
set: WhatsApp). A possible improvement consists in the construction of
a model that is able to classify data belonging to these tests well, with
high accuracy values.

Different approaches A possible different approach concerns the type
of frames extracted from the video sequences. In our analysis, we ex-
tracted frames equally spaced over time and distributed over the entire
duration of the video considered; regardless of the frame type. We could
instead work using only I-frames, or P-frames, or P-frames and B-frames
together etc. This is because the compression could affect only some
types of frames considerably, intervening less on the others. This could
help us in creating a model that is more stable and less sensitive to data
compression.
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