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Introduction
The scope of this thesis is to study the prop-
erties of anisotropic spin lattices, i.e. lattices
where the exchange interaction in the horizon-
tal direction Jx is different from the one in
the vertical direction Jy. This executive sum-
mary will cover the most important aspects

of this work : first, a description of the 18-
fold way algorithm (introduced by NOVOTNY

[5]) we used, then the study of dynamic phase
transitions the system undergoes when a time-
varying sinusoidal external field is applied and
finally the impact of introducing randomness
into the model is investigated to get a closer
look to realistic situations, in order to see
how the effect of casualty competes with the
anisotropy.

1. State of the art
Anisotropic spin lattices and their implementa-
tion, in the last 20 years, have been tackled in
several scientific papers that investigated var-
ious ways to determine critical parameters of
such systems. M. GHAEMI, M. GHANNADI

and B. MIRZA [1] computed in 2003 the crit-
ical temperature of a multi-layer ferromagnet
with anisotropic exchange interaction. They
defined three coupling variables : the in-plane
exchange constants Kx and Ky and the inter-
layer coupling constant Kz and used the Trans-
fer Matrix method. To determine the criti-
cal temperature, they plotted the reduced in-
ternal energy per site as a function of the re-
duced temperature for different lattice sizes.
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Figure 1: Calculation of the critical temperature
by GHAEMI as a function of the anisotropy ([1])

These curves crossing themselves at the criti-
cal point, this allows to recover this parame-
ter.They calculated this parameter for various
values of the in-plane anisotropy ratio ρ =

Ky
Kx

and ξ = Kz
Kx

. The graph in Fig. 1 shows the
computed values within this model for Tc as
a function of ρ for different values of the pa-
rameter ξ. As we can observe, for a fixed value
of ξ, the critical temperature diminishes as the
in-plane anisotropy factor ρ increases, in a sim-
ilar fashion for all three values of ξ. Clearly,
the in-plane anisotropy, which is our focus in
this thesis (we will simulate 2D lattices) has
a higher impact than the inter-layer one : the
three curves are pretty close from one another,
despite the variation of ξ.
In 2017, D. FARSAL, M. SNINA, M. BADIA and
M. BENNAI studied anisotropic spin lattices by
the means of two methods : the Finite-Cluster
Approximation (FCA) and the Monte-Carlo al-
gorithm. By computing the magnetic suscepti-
bility and finding the position of its peak, they
confirmed that the critical temperature under-
goes a decreasing trend when the anisotropy
goes up, as Fig. 2 shows.

2. 18-fold way algorithm
The classical MONTE-CARLO algorithm for
spin lattices is based on single spin-flip, where
the spins are all considered as single units. In
1975, LEBOWITZ provided the 10-fold way al-
gorithm, in which the spin lattice is partitioned
into 10 classes according to the orientation of
the considered spin and to the one of its nearest

Figure 2: Magnetic susceptibility for different
anisotropies (lattice size L = 60) ([2])

neighbours. This method allows a better com-
putational efficiency with respect to the clas-
sical algorithm. NOVOTNY, in 1995, adapted
this partition of a spin lattice to the anisotropic
case. In such a configuration, there are exactly
18 classes that form a division of the lattice. If
a spin in a given class i = 1, ..., 18 is flipped, it
will cause a variation of the total energy of the
system ∆Ei = Eold − Enew. In order to simulate
the dynamic evolution, we use the following
probability rates per unit time of spin-flipping
for a class i and a spin sj = ±1 :

wi(sj) =
1

2α

(
1 + sjtanh(β

∆Ei

2
)
)

, (1)

where α = 1 is the inverse of a time (in s−1)
and β = 1

kBT . Such rates correspond to the
GLAUBER dynamics : the flips that make the
total energy diminish (∆E > 0) are not ac-
cepted with the same probability like with the
METROPOLIS dynamics; rather, the ones that
correspond to a higher decrease of E are more
probable than the others. To check that the
algorithm (implemented on MATLAB) works,
we need to compare the results we obtain in the
static case (B = 0) with the analytical predic-
tion made by ONSAGER in 1944:

sinh
( 2Jx

kBTc

)
sinh

( 2Jy

kBTc

)
= 1. (2)

To determine the critical temperature, we cal-
culate the magnetic susceptibility of the system
χ = β(⟨m2⟩ − ⟨m⟩2), where m = 1

N ∑N
i,j=1 si,j is

the mean magnetization per spin and ⟨.⟩ repre-
sents the mean value of a quantity in the canon-
ical ensemble. The curve of χ as a function of
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Figure 3: Tc = f (α) (analytical and computed
values)

T presenting a peak for T = Tc, we can identify
the critical temperature for various values of
the anisotropy parameter K = Jx

Jy
. From a phys-

ical point of view, having an anisotropy K or
1
K should be completely equivalent. Therefore,
we impose the following normalization for the
two coupling constants{

Jx =
√

2J cos(α);
Jy =

√
2J sin(α),

(3)

where J is taken equal to 1 in our simulation
and α (consequently equal to arccotan( Jx

Jy
)) is

the anisotropy angle.
Figure 3 shows the values obtained by our
simulations with respect to the analytical re-
sults predicted by ONSAGER for a lattice of size
100 × 100, where Tc is plotted as a function of
α (the isotropic case being at the center of the
graph, for α = π

4 ). We observe that our sim-
ulations are in line with the theoretical curve,
which indicates that the algorithm works well.

3. Dynamic phase transitions
In this section, we analyze the effect of
anisotropy on dynamic phase transitions
(DPT). DPT occur when a time-varying sinu-
soidal field B(t) = B0 cos( 2π

P t) is applied to
the spin lattice. The order parameter in this
case is no longer the static magnetization, but
the averaged magnetization per cycle, also called
the dynamic order parameter Q, defined as

Figure 4: Tc = f (α) (analytical and computed
values)

follows :

Q =
1
P

∮
M(t)dt, (4)

where
∮

refers to the integral performed over a
period of the magnetic field P. The phase tran-
sition is occurring at the so-called dynamic crit-
ical temperature Tc,d. To determine it, we com-
pute the variance of Q given by

V(Q) = L2(⟨Q2⟩ − ⟨Q⟩2), (5)

where L is the length of the square lattice. Sim-
ilarly to the magnetic susceptibility, this quan-
tity shows a peak for T = Tc,d. Let us investi-
gate the effect of the field’s amplitude and pe-
riod on the curve Tc = f (α).

3.1. Increasing the field B0

By fixing the period of the field P = 1000
(higher than the spontaneous time constant of
the system), we plotted the curves Tc = f (α)
for several values of the field’s amplitude B0,
as shown on Fig. 4.
As we can see, increasing the field makes the
dynamic critical temperature diminish. This is
expected, since having a stronger field means
bringing a stronger disorder into the sys-
tem. The effect is very well marked for small
anisotropies but is less present on the sides of
the diagram. We would have also expected
these points to get closer to zero, since α =
0 corresponds to a null critical temperature.
Since the curves seem to look like the static
curve multiplied by a multiplicative factor, we
determined for several values of B0 comprised
between 0 and 0.5 the best-fitting factor a(B0).
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Figure 5: Tc,d = f (α) and the best fits a(B0) ∗
Tc(B = 0)

Figure 6: Tc,d = f (P) for various anisotropies
and the best corresponding fits

Fig. 5 shows the numerical values and the fit-
ting curves for some values of B0. We observe
a fair linear correlation between the coefficients
a(B0) and the values B0 until B0 = 0.5.

3.2. Decreasing the period P

Another way to make Tc,d vary is to decrease
the period of the magnetic field. Fixing the am-
plitude of the magnetic field B0 = 0.3, we de-
termined the dynamic critical temperature for
different values of the period (distributed over
2 orders of magnitude to get significant results).
Again using the peak of the variance, we obtain
the graph shown in Fig. 6.
This graph shows the dynamic critical temper-
ature as a function of the period for various val-
ues of the anisotropy factor K. We can extrap-
olate pretty the points for K = 1 with the func-
tion Tc =

a
log10(P) + b, shown by the black solid

Figure 7: (T, K, Q) 3D phase diagram for B0 =
0.3 and P = 1000

Figure 8: (T, B0, Q) 3D phase diagram for K =
1 and P = 1000

line in Fig. 4. The curves Tc,d = f (P) show
a very similar behaviour, with a constant slope
a : they are obtained by a vertical translation
of the curve for K = 1. This does not seem to
hold for stronger anisotropies, as the curves for
K = 15 and K = 20 show a different behaviour
for example.

3.3. Phase diagrams

With all the measurements realized in the pre-
vious subsections, we were able to draw sev-
eral phase diagrams between the dynamic or-
dered phase (Q = 1) and the dynamic disor-
dered phase (Q = 0) for different configura-
tions : the (T, K, Q) diagram for various val-
ues of the field’s period, as illustrated by Fig.
7 and the (T, B0, Q) for various values of the
anisotropy factor, on Fig. 8.
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4. Random Anisotropy Ising
Model

In order to simulate the lattices in a more real-
istic way, we need to introduce casuality in the
model. Indeed, in a real system, the value of
the exchange interaction is not uniform across
the lattice : it might assume various local val-
ues. In analogy with the Random-Bond Ising
Model for anisotropic lattices, we introduce an
anisotropy carried by the anisotropy angle α,
distributed according to a gaussian distribution
for a given set of coordinates in the lattice (k, l)
:

g(αk,l) =
1√

2πσ2
α

e
−

(αk,l−ᾱ)2

2σ2
α , (6)

where ᾱ is the mean of the gaussian distribu-
tion, σα the standard deviation and R the disor-
der parameter, on which σα depends. To choose
a suited value for the standard deviation, we
should have a probability of getting a negative
angle equal for all mean values ᾱ. By perform-
ing analytical calculations, we find that the con-
dition of normalization is to have the standard
deviation proportional to the mean value. The
associated proportionality coefficient that mod-
ulates the randomness is denoted

√
R, where

R is called the disorder parameter. The prob-
ability of having a negative angle can be plot-
ted and compared with the ferromagnetic limit
given in an article by JAGGI as 10 %. Indeed,
if there are too much antiferromagnetic links
in the lattice (J < 0, i.e. α = 0), the proper-
ties of the lattice become different and the com-
putations we perform would not be applica-
ble anymore. Fig. 9 is showing the probabil-
ity alongside the ferromagnetic limit, showing
that R∗ = 0.6 constitutes the limit not to over-
come in order to stay within the framework of
a ferromagnetic lattice.
By considering values of R lower than 0.6, we
can find the critical temperature by looking
at the position of the magnetic susceptibility’s
peak. Fig. 10 shows the results of such simu-
lations for R = 0.1, 0.2, 0.3 and 0.5. To reduce
the bias caused by the fluctuations, we ran ten
times each single configuration and plotted the
average and the standard deviation of these 10
computations.
The first observation that can be made is that
the maximum critical temperature is not in the

Figure 9: P(αk,l < 0) and the ferromagnetic
limit as a function of R

Figure 10: Tc = f (ᾱ) for various values of the
disorder parameter
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Figure 11: Linear trend for very high
anisotropies

center (i.e. the anisotropic case) anymore for a
fixed value of R. It gets shifted towards higher
mean anisotropies as the disorder parameter
increases. Then, we see that the effect of the
randomness is limited : when the anisotropy
becomes important (typically above K̄ = 10),
the four curves become almost superimposed,
with a fair linear trend in this restricted area, as
Fig. 11 shows.

Conclusion and future perspec-
tives
To wrap up, the original results of this thesis
are multiple :
• the impact of a time-varying sinusoidal

magnetic field (its amplitude and its pe-
riod) on an anisotropic spin lattice;

• the elaboration of multiple three-
dimensional phase diagrams for the
dynamic order parameter as a function of
diverse quantities (the anisotropy factor
K, the period P and the amplitude B0);

• the introduction of the Random-
Anisotropy Ising Model to study the
impact of randomness in an anisotropic
spin lattice.

From the computational point of view, a future
perspective would be to write the dynamic al-
gorithm in a parallel way instead of the classi-
cal sequential method. Indeed, this would al-
low to treat way bigger lattices while keeping a
small computation time. The idea is to divide
the lattice into several regions that are treated
by the various processors of the computer that

is used for the simulation.
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