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Introduction 

NaTech events (Natural Hazard Triggering 
Technological Disasters) are industrial accidents 
triggered by natural hazards which may lead to 
losses of hazardous materials with potentially 
tremendous impact on the environment and the 
surrounding population. Seismic-induced tsunami 
NaTech risk assessment entails the seismic sources 
to be characterised and modelled in support of the 
seismic-induced tsunamis modelling and 
simulation needed for a Seismic Probabilistic 
Tsunami Hazard Analysis (SPTHA). In this thesis, 
we propose two Sensitivity Analysis (SA) methods 
to deal with the computational issues related with:  
1. The identification of the model parameters 

most affecting the Peak Ground Acceleration 
(PGA) which ultimately determines the height 
of the tsunami wave height;  

2. The identification most relevant features of the 
seismic model, for deciding a priori the seismic 
scenarios to be simulated. 

With respect to the first issue, we propose a novel 
Bootstrapped Modularised Global Sensitivity 

Analysis (BMGSA) method. The method is tested 
on a benchmark case study. The results are 
compared with a standard variance-based Global 
SA method. The strength of the proposed method 
is that its application only requires input-output 
data and not the direct accessibility to the code.  
With respect to the second issue, we propose a 
wrapper-based heuristic approach to select the set 
of most relevant features of the seismic model, for 
deciding a priori the seismic scenarios to be 
simulated. The proposed approach is based a 
Multi-Objective Differential Evolution Algorithm 
(MODEA) and is developed with reference to a 
case study whose objective of the analysis is 
calculating the annual rate of a threshold 
exceedance of the height of tsunami waves caused 
by subduction earthquakes that might be 
generated on a section of the Hellenic Arc and 
propagated to a target site on the eastern coast of 
Sicily (Siracusa). The comparison between the 
mean values of annual rate of exceedance of the 
tsunami wave height estimated considering only 
the selected scenarios and the full set of scenarios 
shows that the proposed approach allows a 
significant reduction of the number of scenarios 



Executive summary Nicola Gallo 
 

2 

with half of the features to be considered, and with 
no appreciable loss of accuracy. 
To manage tsunami threat, tsunami hazard and 
risks methodologies have been developed through 
time to quantify the tsunami hazard and the 
potential consequent risks [1]. Early on, “worst 
credible”/ “worst case” scenarios approaches have 
been adopted [2] that have proven to be limited in 
modelling seismic sources as well as tsunamis, due 
to the large uncertainty, both epistemic and 
aleatory, given by the scarcity of tsunami 
observations [3]. To overcome “worst credible”/ 
“worst case” scenarios analyses, SPTHA is aimed 
at estimating, for a certain location, the annual rate 
of exceedance of a seismic-induced tsunami wave 
with respect to a predefined threshold. SPTHA 
relies on computationally demanding numerical 
simulations of seismic-induced tsunami generation 
and propagation, and coastal areas inundation.  
SPTHA entails performing: 

1. Seismic sources characterisation and modelling, 

2. Seismic-induced tsunamis modelling and 
simulation. 

Probabilistic Seismic Hazard Analysis (PSHA) 
consists of assessing at a given target location and 
for a given exposure time window Δ𝑇, the 
probability that a given intensity measure (IM) of 
the ground motion, typically the PGA, exceeds a 
threshold value 𝛾 [4]. The output of the PSHA are 
hazard curves, defined by quantifying the mean 
annual rates of exceedance of a set of IM values. 
Considering PGA as the IM and assuming a 
Poisson process, as the model of earthquake 
occurrence, with parameter 𝜆  denoting the mean 
annual rate of exceedance of the 𝛾-th PGA level, the 
probability of interest is calculated: 

𝑃(𝑃𝐺𝐴 > 𝛾, Δ𝑇) = 1 − exp[−𝜆 (𝑃𝐺𝐴 > 𝛾)Δ𝑇] (1) 
Since the propagation of the earthquake wave in 
the soil is typically evaluated by empirical 
relationships, called Ground Motion Prediction 
Equations (GMPEs), 𝜆  is quantified by means of 
the total probability theorem as [5]: 

𝜆 (𝑃𝐺𝐴 > 𝛾) = 𝜆 𝑃(𝑃𝐺𝐴

> 𝛾|𝑚, 𝑟)𝑓 (𝑚)𝑓 (𝑟)𝑑𝑚𝑑𝑟 
(2) 

where 𝜆 is the mean annual rate of earthquake 
occurrence at a given source location (i.e., the 
number of occurrence of earthquakes with 
intensity of PGA above a given threshold per year); 
the distribution 𝑓 (𝑚) describes the probability 
distribution of different earthquake magnitudes, 
typically assumed to follow a truncated 

Gutenberg-Richter distribution within the interval 
of values [𝑚 ; 𝑚 ] and slope parameter 𝑏 [5]; 
𝑓 (𝑟) describes the probability distribution of the 
source-to-target distance 𝑟, assuming a spatial 
distribution for earthquakes [4]. 
 
SPTHA aims to estimate the probability that the 
height 𝜓 of an earthquake-induced tsunami wave 
exceeds a threshold 𝜓, within in an exposure time 
Δ𝑇, at a location of coordinates 𝑎 [1]. Each tsunami 
is assumed to be generated by a seismic scenario 𝜎  
belonging to the space of possible seismic scenarios 
Σ (𝜎 ̅ ∈ Σ), characterized by parameters �̅� and 
occurring with annual frequency 𝜆(𝜎 ̅) considering 
a Poisson process for the wave exceedance event 
occurrence in time, the probability of exceedance 𝑃  
can be written as: 

𝑃 = 𝑃𝑟 𝜓 ≥ 𝜓; 𝛥𝑇

≈ 1 − 𝑒𝑥𝑝 −Λ 𝜓 ≥ 𝜓  Δ𝑇  (3) 

where Λ 𝜓 ≥ 𝜓  is the annual rate of occurrence 
of a tsunami of intensity 𝜓 ≥ 𝜓 at location 𝑎. This 
rate is calculated by integrating, over the space Σ, 
the annual frequency 𝜆(𝜎 ̅) of occurrence of the 
seismic scenario 𝜎 ̅  times the probability 𝑃𝑟 𝜓 ≥

𝜓|𝜎 ̅  that the tsunami wave generated by the 
scenario exceeds 𝜓: 

Λ 𝜓 ≥ 𝜓 = 𝜆(𝜎 ̅)𝑃𝑟 𝜓 ≥ 𝜓|𝜎 ̅ 𝑑𝜎 ̅ (4) 

Considering, without loss of generality and for the 
sake of simplicity, a set of 𝑄 discretized seismic 
scenarios 𝜎 ̅  (𝑞 = 1, … , 𝑄) with 𝜆 𝜎 ̅  and 

𝑃𝑟 𝜓 ≥ 𝜓|𝜎 ̅ , Eq. (4) can be approximated as: 

Λ 𝜓 ≥ 𝜓 ≈ 𝜆 𝜎 ̅ 𝑃𝑟 𝜓 ≥ 𝜓|𝜎 ̅  (5) 

To account for epistemic uncertainty, 𝑀 alternative 
formulations of 𝜆 𝜎 ̅  and 𝑃𝑟 𝜓 ≥ 𝜓|𝜎 ̅  can be 
considered, producing 𝑀 alternative 
quantifications of both factors in Eq. (5). The mean 
hazard rate can, then, be evaluated as: 

Λ 𝜓 ≥ 𝜓 ≈
1

𝑀
𝜆 𝜎 ̅ 𝑃𝑟 𝜓

≥ 𝜓|𝜎 ̅  

(6) 

In this thesis, we propose two novel Sensitivity 
Analysis methods to address the aforementioned 
computational issues related with SPTHA, namely:  
1. A Bootstrapped Modularised method of Global 

Sensitivity Analysis (GSA) for Probabilistic 
Seismic Hazard Assessment; 

2. A heuristic features selection approach for 
scenario analysis of a Regional Seismic 
Probabilistic Tsunami Hazard Assessment. 
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1. A Bootstrapped Modularised 
Method of Global Sensitivity 
Analysis for Probabilistic Seismic 
Hazard Assessment 

To identify the input variables which the output of 
a seismic model is most sensitive to, assuming that 
only an input-output dataset is given and with no 
need of repeating hazard computations, we 
propose a novel modularised GSA method based 
on bootstrapping and ensemble strategies 
(BMGSA), consisting of:  
1) Generating 𝐷 alternative bootstrapped artificial 

datasets from the available input-output 
dataset �̿� [6];  

2) From each 𝑑-th alternative dataset and for each 
input variable 𝑋 , calculating a sensitivity index 
(here the first-order Sobol index) 𝑆  with the 
modularised method [7]; 

3) Aggregating the 𝐷 individual rankings (one for 
each alternative dataset) with Bottom-Up/All-
Out strategies [8]. 

The proposed method has been tested on a 
hypothetical PSHA case study with a point seismic 
source and a nearby target point, where the hazard 
intensity corresponding to 10% probability of 
being exceeded in 50y is to be calculated. The 
epistemic uncertainty of the PSHA is evaluated 
with respect to six input parameters, accounting 
for a total of 16384 alternative computational 
settings, resulting in �̿� = [16384 × 7]. The input 
parameters are 𝑋 = (𝜎 , 𝜆, 𝑚 , 𝑚 , 𝑏, 𝑟) 
where: 𝜎  is the standard deviation of the 
GMPE, 𝜆 is the mean annual rate of seismic activity 
at the source location (i.e., the number of 
earthquakes per year of intensity magnitude 𝑚) 
𝑚  and 𝑚  are the minimum and the 
maximum magnitude parameters of the truncated 
Gutenberg-Richter distribution, whose slope is 𝑏 
[5], and 𝑟 is the source-to-target distance [5]. The 
output variable is the IM 𝑃𝐺𝐴, i.e., the reference 
peak ground acceleration at the target location that 
has annual rate of exceedance 𝜆  assumed to be 
equal to 1/475y. 
The results have been compared to those obtained 
by a standard variance-based GSA method [9], 
which is the state-of-practice approach when the 
simulation model is available. Notably, the main 
drivers of the epistemic uncertainty on the 
reference PGA are 𝑚  and 𝜎  (see Table 1). 

Both ensemble strategies and the standard GSA 
identify the 𝜎  and 𝑚  as the most important 
variables. The disagreement regarding the ranking 
for the positions 4-6 may be due to hidden 
dependences and/or correlations between the 
input variables, as well as to the quantity of data 
upon which the rankings are drawn. 
 
Table 1 – Input variables rankings (sample size S=16384). 

Rank Standard 
GSA 

Bottom-
Up 

(BMGSA) 

All-Out 
(BMGSA) 

No 
bootstrap 
(MGSA) 

1 𝑚  𝑚  𝑚  𝑚  

2 𝜎  𝜎  𝜎  𝜎  

3 𝜆 𝜆 𝜆 𝑟 

4 𝑟 𝑚  𝑚  𝑚  

5 𝑏 𝑟 𝑟 𝜆 

6 𝑚  𝑏 𝑏 𝑏 

 
To highlight the important role played by the 
bootstrapping in obtaining such results, we show 
the results that would have been obtained with a 
given input-output dataset �̿� of decreasing size 
(𝑆 = 16384, 4096, 1024), employing the more 
transparent AO ensemble strategy. When �̿� =

[16384 × 7], as shown in Table 1, the Standard GSA, 
the BMGSA and the MGSA agree on the 
identification of 𝑚  and 𝜎  as the most 
important variables, whereas for the third most 
important variable only Standard GSA and 
BMGSA agree on 𝜆. Then, the approaches provide 
different rankings for lower ranking positions. 
 
When �̿� = [4096 × 7] the Standard GSA and the 
BMGSA agree on the identification of 𝑚  and 
𝜎  as the most important variables, as well as 
on third (𝜆) and fourth (𝑟) most important 
variables. Then, the approaches provide different 
rankings for lower ranking positions. The MGSA 
instead yields a completely different ranking 
(except for position 4).  
 
Table 2 – Input variables rankings (sample size S=4096). 

Rank Standard 
GSA 

All-Out 
(BMGSA) 

No bootstrap 
(MGSA) 

1 𝑚  𝑚  𝜎  

2 𝜎  𝜎  𝑚  

3 𝜆 𝜆 𝑚  

4 𝑟 𝑟 𝑟 

5 𝑏 𝑚  𝜆 



Executive summary Nicola Gallo 
 

4 

6 𝑚  𝑏 𝑏 

 
When �̿� = [1024 × 7] the Standard GSA, the 
BMGSA and the MGSA agree on the identification 
of 𝑚  as the most important variable, whereas 
for the second (𝜎 ) and third (𝜆) most important 
variables only Standard GSA and BMGSA agree. 
Then, the approaches provide different rankings 
for lower ranking positions. Nevertheless, the 
numerical values of the Sobol indices obtained 
with the proposed BMGSA may not be considered 
satisfactory: when the dimension of �̿� decreases, 
the distributions of 𝑆 ,  become wider (i.e., 
bootstrap replicates are subject to noise and, as a 
result, the Sobol indices estimate are not precise) 
even if the most important variables are correctly 
identified, a less accurate estimation of the Sobol 
indices is provided. 
 
Table 3 – Input variables rankings (sample size S=1024). 

Rank Standard 
GSA 

All-Out 
(BMGSA) 

No bootstrap 
(MGSA) 

1 𝑚  𝑚  𝑚  

2 𝜎  𝜎  𝜆 

3 𝜆 𝜆 𝜎  

4 𝑟 𝑏 𝑏 

5 𝑏 𝑟 𝑚  

6 𝑚  𝑚  𝑟 

 
As general conclusion, we can state that 
bootstrapping allows relying on a very small 
dataset. Indeed, 𝑆 = 4096 yields already a very 
satisfactory estimate of the Sobol indices values 
(compared with the GSA estimates). Thus, as a 
general recommendation, we may conclude that a 
ratio of 4:1 of 𝑆: 𝐷 (dataset size vs number of 
bootstrap replicates) is enough to guarantee 
satisfactory results, without resorting further to 
demanding computations. 
For the case study at hand, we can conclude that, 
𝑚 , 𝜎 , and 𝜆 have been identified as the 
input variables which most influence the reference 
PGA, whereas 𝑟, 𝑏, and 𝑚  influence is 
negligible.  
We underline that, obviously, the numerical results 
obtained are relative to the specific case and cannot 
be generalised to other PSHA case studies. 

2. A Heuristic Features Selection 
Approach for Scenario Analysis of a 
Regional Seismic Probabilistic 
Tsunami Hazard Analysis  

To select the relevant features of the seismic 
scenarios to be simulated for an accurate SPTHA, 
we propose a wrapper-based feature selection 
heuristic approach based on MODEA [10]. The 
proposed approach is developed with reference to 
a case study whose objective of the analysis is 
calculating the annual rate of exceedance of a 
threshold 𝜓 = 1𝑚 of tsunami wave height, 
resulting from subduction earthquakes in a section 
of the Hellenic Arc. The target site 𝑎 for the 
propagation of the wave is at Siracusa, on the 
eastern coast of Sicily. The case study considers the 
crustal seismicity generated in the Kefalonia-
Lefkada region. This source area comprises a total 
of 𝑄 = 23272 seismic scenarios and 𝑀 = 1000 
alternative models for the calculation of Λ(𝜓 ≥

1𝑚). 
Earthquakes are assumed to be generated at 
specific epicentral locations with different 
magnitudes, depths, and faulting mechanisms. 
Without loss of generality, the following 
assumptions are made:   

i. Threshold is of 𝜓 = 1𝑚 at 50m from the 
coastline. 

ii. One epicentral location is considered, since a 
large number 𝑄 = 721 of seismic scenarios 𝜎 ̅  is 
available. 

Each 𝜎 ̅  is characterised by the set of parameters 
�̅� = (𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 ) [11]. To alleviate the 
computational burden of the SPTHA, the 
procedure sketched in Figure 1 is developed. 
Firstly, an optimisation problem is solved to 
identify the optimal set of seismic scenarios that 
contribute most to Λ(𝜓 ≥ 1𝑚) of Eq. (6). Then, 
their features values are identified. The 
optimisation is performed by a wrapper-based 
heuristic approach: based on a Multi-Objective 
Differential Evolution Algorithm (MODEA) 
wherein the DE engine [10] iteratively searches for 
candidates sets of scenarios, among the original 
dataset of 𝑄 = 721 scenarios, whose performance 
is evaluated with respect to a given cost function. 
Once the optimal set of scenarios is identified, their 
common features are retrieved by statistical 
analysis. 
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Figure 1: Wrapper approach for optimal set of scenarios 

selection based on MODEA 
 
The procedure is explained in detail here below. 
 
Step 1: Consider the original dataset  
The original dataset �̿� = [𝑄 × 9] is: 

A =

⎝

⎜
⎜
⎛

𝑥 , … 𝑥 , Λ 𝜓 ≥ 1𝑚|𝜎 ̅

⋮
𝑥 ,

⋮

⋮
⋯
⋮

⋮
𝑥 ,

⋮

⋮

Λ 𝜓 ≥ 1𝑚|𝜎 ̅

⋮
𝑥 , … 𝑥 , Λ 𝜓 ≥ 1𝑚|𝜎 ̅ ⎠

⎟
⎟
⎞

 (7) 

where 𝑥 ,  is the value of the parameter 𝑥  in the 𝑞-
th scenario, 𝑥 ,  is the value of the parameter 𝑥  in 
the 𝑞-th scenario, etc., and Λ 𝜓 ≥ 1𝑚|𝜎 ̅ =

∑ 𝜆 𝜎 ̅ 𝑃𝑟 𝜓 ≥ 1𝑚|𝜎 ̅  is the annual 

rate of exceedance of the q-th scenario. 
 
Step 2: Apply MODEA to identify the most 
relevant scenarios 
The MODEA searches the global minimum of a set 
of objective (cost) functions 𝐹 = {𝑓(∙)}, of one (or 
more) decision vector(s) 𝑈 (typically a string of 
binary digits) [12]. In the case of interest for this 
work, 𝑈 indicates whether the q-th seismic scenario 
is considered in the candidate solution (q-th bit 
equal to 1) or not (q-th bit equal to 0). The MODEA 
search is performed by initially randomly 
sampling the bits of the 𝑁𝑃 vectors that compose 
the initial population strings. Then, iteratively, the 
population is enriched by the solution 𝑈 that best 
fits the objective functions, through a selection 
process driven by a set of parameters, i.e., the 
scaling factor 𝐹 and the crossover probability 𝐶𝑅. 
In our case, the objective functions considered are:  

1. Minimisation of 𝑄 (i.e., the number of scenarios 
𝜎 ̅  considered in the solution):  

𝑓 = 𝑈  (8) 

2. Minimisation of the squared error 𝑆𝐸 between 
the annual rate of exceedance Λ(𝜓 ≥ 1𝑚) and 
the annual rate of exceedance calculated 
considering exclusively the 𝑄∗ = 𝑚𝑖𝑛 ∑ 𝑈  
selected scenarios Λ∗(𝜓 ≥ 1𝑚):  

𝑓 = Λ(𝜓 ≥ 1𝑚) − Λ∗(𝜓 ≥ 1𝑚)  (9) 
where Λ∗(𝜓 ≥ 1𝑚) is calculated as: 

Λ∗(𝜓 ≥ 1𝑚) = 𝜆 𝜎 ̅ 𝑃𝑟 𝜓

≥ 1𝑚|𝜎 ̅ 𝑈  

(10) 

The search procedure ends when the stopping 
criterion (e.g., the maximum number of 
generations 𝑀𝐴𝑋𝐺𝐸𝑁) is reached. 
 
Step 3: Optimal set of scenarios 
The optimal solution vector 𝑈∗ (i.e., the optimal set 
of scenarios) is selected from the Pareto optimal 
front, as the solution with the minimum number 𝑄∗ 
of entries equal to 1 (i.e., the scenarios considered 
in the candidate solution). 
 
Step 4: optimal features identification 
To identify the most relevant features to be 
considered for the SPTHA, we first calculate the 
optimal features matrix �̿�∗ = [𝑄∗ × 9], as the 
Hadamard product of the original dataset �̿� with 
𝑈∗ (with (𝑄 − 𝑄∗) null vector rows): 

�̿�∗ = �̿� ∘ 𝑈∗ (11) 
Then, the matrix �̿�∗ is columnwise compared with 
the original dataset �̿� to assess their commonality 
(i.e., the optimal features subset).  
 
In this work, the preferred solution 𝑈∗ is the one 
that yields the minimum number of 𝑄∗ = 38 
scenarios (i.e., a 95% reduction with respect to 𝑄) 
with a reasonably small 𝑆𝐸 = 8.5 𝑦𝑒𝑎𝑟𝑠  (i.e., a 
percentage error of 0.085%) in the estimation of 
Λ(𝜓 ≥ 1𝑚|𝐻 ) i.e., most of the 𝑄 = 721 seismic 
scenarios bring a negligible contribution to the 
estimation of Λ(𝜓 ≥ 1𝑚) but increase the 
computational burden. As a result of the MODE 
selection, the analyst may simulate the scenarios 
characterised by:   
- magnitude 𝑥 ∈ (6.5000, 6.8012, 7.0737, 7.3203, 

7.5435, 7.7453); 
- depth 𝑥 ∈ (1, 7.56, 9.43, 11.58, 14.12); 
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- strike 𝑥 ∈ (22.5 ,157.5 ,337.5);  
- dip 𝑥 ∈ (10, 30, 50, 70, 90);  
- rake 𝑥 ∈ (90, 270); 
- area 𝑥 ∈ (318.5, 638.11, 1194.98, 2108.29, 

3524.55, 5608.92);  
- length 𝑥 ∈ (22.68, 34.39, 50.10, 70.44, 95.87, 

126.69);  
- slip 𝑥 ∈ (0.67, 0.95, 1.30, 1.73, 2.24, 2.82). 
These results are expected, based on the 
tsunamigenic capability of earthquakes (see [13] 
and references therein). They depend both on the 
particular case study analysed and on the specific 
tsunami threshold of 𝜓 ≥ 1𝑚 chosen. Larger 
tsunami intensities, e.g., 𝜓 ≥ 10𝑚, would have 
involved different (probably larger) magnitudes. 
On the other hand, the results for the strike, dip, 
and rake angles are probably more general, and 
they are possibly still valid for larger tsunami 
intensities. 

3. Conclusions 

In this thesis, we have proposed two SA methods 
to deal with the computational issues of the 
SPTHA related with:  

1. The identification of the model parameters 
most affecting the PGA;  

2. The identification most relevant features of the 
seismic model, for deciding a priori the seismic 
scenarios to be simulated. 

We have proposed a novel Bootstrapped 
Modularised Sensitivity Analysis (BMGSA) 
method based on bootstrapping, MGSA and 
ensemble strategies to identify the input 
parameters which the output of a PSHA model is 
most sensitive to, assuming that only an input-
output dataset is given whereas the model is not 
available. The novelty and strength of the 
proposed BMGSA method is that to be applied it 
only needs data and not the source simulation 
code. The capability of the proposed method is 
tested on a benchmark case study. The results have 
been compared with a standard variance-based 
GSA method of literature, showing that the 
proposed method and the standard GSA agree on 
the identification of the three by-far most 
important input variables. Furthermore, the 
BMGSA has proved to be reliable even when 
applied to very small datasets. The application of 
the developed technique to PSHA demonstrates its 
capability of scoring correctly the importance of 

existing epistemic uncertainty factor, needing only 
the input and the output data. This allows 
applying the technique to any hazard model in 
which epistemic uncertainty is to be evaluated. Its 
systematic application to hazard studies to detect 
the most influential parameters, would allow 
hazard practitioners to both improve the sanity 
checks during the assessment and to focus future 
research toward the reduction of epistemic 
uncertainty by further characterisation of the 
important factors. 

Then, a novel approach for reducing the number of 
seismic scenarios to be analysed for SPTHA has 
been presented. The approach is a wrapper-based 
feature selection heuristic approach based on 
MODEA. It selects the relevant features of the 
seismic scenarios to be simulated. The proposed 
approach has been applied to a case study with 
reference to the estimation of the annual rate of 
exceedance of a height threshold 𝜓 = 1𝑚 of 
tsunami waves caused by crustal earthquakes that 
might be generated on the Kefalonia-Lefkada 
region in North-western Greece and propagated to 
a target site 𝑎 on the eastern coast of Sicily (Italy). 
The proposed approach is shown to be able to 
significantly reduce the number of features 
describing the seismic source variability and, thus, 
the number of scenarios to be considered in the 
analysis without affecting the accuracy of the 
estimate of the annual rate of exceedance. A 
geophysical interpretation of the results has been 
provided.  
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