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Abstract

GROUP synchronization refers to the problem of inferring the un-
known values attached to vertices of a graph where edges are la-
belled with the ratio of the incident vertices and labels belong to

a group. This work addresses for the first time the group synchronization
problem on multigraphs, that is, graphs with more than one edge connect-
ing the same pair of vertices. The problem arises naturally when multi-
ple measures are available to model the relationship between two vertices.
This happens when different sensors measure the same quantity or when the
original graph is partitioned into subgraphs that are solved independently.
In this case the relationships among subgraphs give rise to multi-edges and
the problem can be traced back to a multigraph synchronization problem.
The solutions appeared so far reduce multigraphs to simple ones by aver-
aging their multi-edges, however this approach falls short because: i) has
been studied only for some groups and ii) the resulting estimator is less sta-
tistically efficient than our solution, as we prove empirically. Specifically,
we present a solution based on a principled constrained eigenvalue opti-
mization that copes with general groups and can be profitably used both on
synthetic and real multigraph synchronization problems.
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Sommario

LA sincronizzazione su gruppi è il problema di riconstruire i valori
sconosciuti corrisponenti ai vertici di un grafo etichettato, i cui archi
sono anch’essi etichettati dal rapporto tra gli elementi associati ai

due vertici incidenti. In questo elaborato si considera, per la prima volta,
il caso in cui la sincronizzazione è applicata a multigrafi, ovvero grafi
che ammettono più di un singolo arco tra una qualsiasi coppia di vertici.
Questo problema si presenta naturalmente quando sensori diversi misurano
la stessa quantità o quando il grafo originale è partizionato in sotto-grafi
indipendentemente sincronizzati. In questo caso, le relazioni tra sotto-grafi
danno origine a multi-archi e il problema può essere ricondotto a un prob-
lema di sincronizzazione su multigrafo. Le soluzioni attuali riducono il
multigrafo ad un grafo semplice facendo la media degli elementi associati
ai multi-archi. Questo approccio presenta serie limitazioni in quanto: i) è
stato finora considerato solo per alcuni gruppi and ii) lo stimatore che si
ottiene è meno efficiente a livello statistico della nostra soluzione, come di-
mostrato empiricamente. Nello specifico, in questo elaborato presentiamo
una soluzione basata su un problema di ottimizzazione di autovalori vinco-
lati che non è limitata a gruppi specifici e che garantisce ottimi risultati su
grafi sia sintetici sia reali.
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Notation

Multidimensional objects

• a: is a generic element, be it in scalar, nominal or vectorial form

• a: is a vector

• A: is a matrix

• Id: is an identity d× d matrix

• 1d: is a 1× d vector filled with ones

Sets

• S: is a finite set. The cardinality of S is |S|. In addition, S can be an
empty set ∅ or {}

• N,R,Z: are the infinite numerical sets for natural, real and integer
respectively

Operations

• Aᵀ: is the transposition for a matrix A

• tr(A): is the linear trace operator of a square matrix A

• ||A||F : is the Frobenius norm of A

• A⊗B: is the Kronecker product of A and B

• A ◦B: is the Hadamard product (entry-wise product) of A and B
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• S ×R: is the Cartesian product between sets S andR

Matrix groups and semigroups

• GL(d) = {M ∈ Rd×d s.t. det(M) 6= 0}: the General Linear Group is
the set of invertible matrices

• SL(d) = {M ∈ Rd×d s.t. det(M) = 1}: the Special Linear Group is
the set of invertible matrices with unit determinant

• O(d) = {M ∈ Rd×d s.t. M>M = MM> = Id}: the Orthogonal
Group is the set of rotations and reflections

• SO(d) = {M ∈ O(d) s.t. det(M) = 1}: the Special Orthogonal
Group is the set of rotations

• SE(d): the Special Euclidean Group is the set of direct isometries

• GA(d): the General Affine Group is the set of affine maps

• Sym(d) = {M ∈ {0, 1}d×d s.t. M1d = 1d,1dM = 1d}: the Sym-
metric Group is the set of total permutations

• R∗: the set of projectively extended real numbers

Any exception of the notation as above is locally explained in this thesis to
avoid misunderstanding.
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CHAPTER1
Introduction

Many tasks in Computer Vision can be formulated as the synchroniza-
tion [34] of group-labelled graphs: given a network of nodes labeled with
unknown elements of a group Σ, the goal is to estimate them from a set of
noisy relative measurements expressed as ratios (or differences) attached to
edges. Depending on the group Σ, the synchronization formulation can be
exploited to model several relevant problems in Computer Vision, including
structure from motion, simultaneous localization and mapping (SLAM),
multi-view matching and image mosaicking. A prominent example is when
the vertices of the graph are sensors and the goal is to estimate the unknown
attitude and location of each sensor in a common reference frame [20]. In
this case, labels are in the Special Euclidean Group Σ = SE(3), and the
pairwise measurements are relative orientations between sensors.

1.1 Scenario and Problem statement

Traditionally, the synchronization problem is defined on simple graphs, that
is graphs in which any pair of vertices is connected by at most one edge. In
this work, we explore the possibility of dealing with the case in which mul-
tiple measurements are available for the same pair of vertices, meaning that
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Chapter 1. Introduction

multiple edges (multi-edges) can exist in the graph. Thus, synchronization
is performed on a multigraph rather than on a simple graph.

Figure 1.1: A multigraph is a graph that admits multiple edges between its vertices. In
this figure, vertices correspond to unknown group elements xi ∈ SO(3) and edges
correspond to known relative measures. A multi-edge with cardinality 3, resulting for
instance from different estimates of relative transformations, is depicted in orange.

This novel and general multigraph synchronization framework allows
us to account for multiple measurements between the same pair of vertices,
which often happens in many applications. For instance, in SLAM multiple
sensors (cameras, IMU, GPS, . . . ) can estimate the 6 d.o.f motion of a ve-
hicle. Another scenario where multigraphs naturally arise is in large-scale
problems, where the original measurement graph is partitioned into smaller
subgraphs that are solved independently to speed up performance. In this
context, the vertices shared across sub-problems or the cut-edges connect-
ing vertices from different sub-graphs generate multi-edges and yield a
multigraph synchronization problem, as will be clarified in Chapter 6. This
approach not only reduces memory and processing time, but also enables
multi-threading and parallelism to a greater extent.

The naive solution to synchronization on multigraphs – henceforth named
edge averaging – consists in turning all multi-edges in the graph into simple
ones by averaging their measurements. This approach suffers from several
shortcomings. First, averaging is well defined only for some groups: while
it is possible to average rotations [22], there is not a principled solution
for homographies. Secondly, even when it is possible to average multi-
edges, the resulting estimator has sub-optimal statistical properties. As an
example, consider the problem of estimating a scale factor s that links two
matrices with noisy entries: A = sB. The optimal estimate is the least
squares solution s = tr(BᵀA)/tr(BᵀB) which is different from, e.g., tak-
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1.2. Contributions

ing the average of the entry-wise division A./B. Our experiments confirm
that this intuition holds also for synchronization.

1.2 Contributions

Our solution approaches synchronization of group-labeled multigraphs from
a new perspective: rather than averaging measures to collapse a multi-edge
to a simple one, it expands the multigraph by replicating vertices with in-
coming or outgoing multi-edges and enforces identity constraints between
the replicas of the same vertices. This leads to a constrained optimization
problem for which we derive a general closed-form spectral solution that
can be applied to graphs labeled with any linear group. Our experiments,
performed on both synthetic and real data sets, demonstrate that our so-
lution outperforms edge averaging in terms of accuracy and precision. In
the context of partitioned problems, our solution strikes a good balance be-
tween accuracy and complexity, as opposed to performing synchronization
on the whole graph. To summarize, our contribution is three-fold:

• we present, for the first time, a formal definition of the synchronization
of group-labeled multigraphs, which is a significant extension of the
synchronization of simple graphs;

• we derive a practical algorithm for solving a synchronization problem
on a multigraph, which is based on an expansion algorithm coupled
with a constrained spectral solution to deal with replicated vertices;

• we demonstrate how the multigraph framework can be conveniently
used to partition classical synchronization tasks, achieving a good
trade-off between accuracy and complexity.

1.3 Structure of Thesis

The work is organized as follows. Chapter (2) reviews previous works re-
lated to group synchronization. Chapter (3) formally introduces the group
synchronization problem and closed-form solutions for it. Chapter (4) pro-
vides the theoretical footing and introduces an algorithm for turning any
measurement multigraph into a simple measurement graph. Chapter (5)
presents our solution to the synchronization problem on multigraphs and
reports the results of experiments performed on synthetic graphs. Chapter
(6) describes partitioned synchronization as a possible application of multi-
graph synchronization and reports the results obtained from experiments on
real-world datasets. Conclusions are drawn in Chapter (7).
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CHAPTER2
Related work

The synchronization problem has a rich literature thanks to its many ap-
plications in the field of Computer Vision. The name synchronization is
derived from clock synchronization, that is, the problem of finding the time
offset with respect to a global reference for multiple connected clocks. De-
pending on the group chosen for synchronization, we obtain specific in-
stances of the problem, which relate to a specific application.

In this section, we review the existing applications of synchronization in
Computer Vision and the approaches for solving the problem on a simple
graph. The case of a multigraph is not considered in previous works as it is
introduced in this work for the first time.

If we consider the Special Orthogonal Group SO(3), solving the prob-
lem results in rotation synchronization, which is also known as multiple
rotation averaging or rotation optimization. Although only closed-form so-
lutions will be covered in this work, rotation synchronization can be solved
using a vast array of techniques, including: spectral decomposition [34], the
Weiszfeld algorithm [21], Lie-group optimization [12], semidefinite pro-
gramming [41], distributed optimization [39], low-rank decomposition [2],
Riemannian optimization [9], deep learning [28] and message passing [32].

If the Special Euclidean Group (i.e., Σ = SE(3)) is considered, it results
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Chapter 2. Related work

in rigid-motion synchronization, which is also called motion averaging or
pose-graph optimization. Existing techniques include spectral decomposi-
tion [1], Lie-group optimization [19], diffusion over dual quaternions [37],
Riemannian optimization [38], semidefinite programming [29], distributed
optimization [36], Bayesian optimization [11] and deep learning [24]. Both
rotation and rigid-motion synchronizations can be applied to structure from
motion, registration of 3D point clouds and simultaneous localization and
mapping.

If we consider the Symmetric Group (i.e., Σ = Sym(d)), then we get
permutation synchronization, which finds application in multi-view match-
ing. Available approaches include spectral decomposition [6], Gauss-Seidel
relaxation [43], distributed optimization [26], and Riemannian optimiza-
tion [10].

Other instances of synchronization concern the Special Linear Group
(i.e., Σ = SL(3)), which is used to represent homographies in image mo-
saicking [5], and the General Affine Group (i.e., Σ = GA(3)), which has
been used to solve for global color matching in image mosaicking [30].
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CHAPTER3
Group synchronization

3.1 Introduction

In this chapter, we provide an overview of the group synchronization prob-
lem, how it can be solved and its applications in the field of Computer
Vision. Most of the concepts introduced in this section can be found in the
literature and can be skipped if the reader is already familiar with group
synchronization and its closed-form solutions. In the following chapters,
we will refer to the notation and properties introduced in the following sec-
tions.

Let us begin by providing an intuition that should help the reader fa-
miliarize with the basic idea behind the group synchronization problem.
Consider a situation in which there are multiple clocks placed at different
locations. The goal is to make sure that all clocks display the same time, an
idea that is akin to the Poincaré-Einstein synchronization for clocks. This
problem can be formulated as a network in which each node represents a
clock and each link identifies the ability of two clocks to communicate and
thus measure clock differences. Without any loss of generality, we can as-
sume that the time for any clock A is defined as an offset oA from a global
reference. We can estimate the propagation delay between any two clocks
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Chapter 3. Group synchronization

A and B, that is the time that it takes for a message sent from A to be
received by B and vice versa, as follows:

oAB =
tB,1 − tA,1 + tB,2 − tA,2

2
(3.1)

Solving the synchronization problem means finding the offset oA of each
clock or node from the relative propagation delays oAB that are available.

Figure 3.1: A graph showing how two clocks A and B can exchange messages and mea-
sure the propagation delay between them.

Many tasks in Computer Vision can be formulated as group synchro-
nization problems on graphs. A prominent example is registration, in which
nodes represent sensors and edges represent relative measurements, that is
pairwise rotations, between nodes. The goal is to recover the unknown atti-
tude of each sensor to register them in a common reference frame. Depend-
ing on what the nodes in the graph represent, synchronization can be used
to model several other well-known Computer Vision problems, including
multi-view matching, structure from motion, image mosaicking and color
correction.

Figure 3.2: Structure from Motion (SfM), one of the most prominent applications of group
synchronization. Image from [8]

In this chapter we provide the theoretical framework for group synchro-
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3.2. Theoretical framework

nization on measurement graphs and introduce two well-known closed-
form solutions to such problem.

3.2 Theoretical framework

In this section, we provide a brief theoretical background that will cover
the main concepts and definitions concerning the group synchronization
problem. The notation and structure used throughout this section is inspired
by the work in [3], in which the reader can find more detailed descriptions
and formal proofs of the following theoretical results.

Let us describe in an informal way what the problem of group syn-
chronization is. Consider a network of nodes, each characterized by an
unknown state, and assume that the only information available is a set of
relative measurements between such nodes. The goal of the synchroniza-
tion problem is to provide an estimate for the states of the nodes from the
pairwise measurements available in the network.

Specifically, the group synchronization problem is defined on a mea-
surement graph in which states are represented by elements of a group Σ.
The goal of such problem is to recover the absolute or global states from
a set of pairwise measurements, which take the form of edges connecting
any two vertices in the graph. Thus, a measurement graph is not simply
a graph defined by a vertex set V and an edge set E with (i, j) ∈ E and
i, j ∈ V . Instead, it can be seen as a group-labeled graph in which ver-
tices and edges are assigned labels or elements of a group. Let us provide a
formal definition:

Definition 3.2.1. (Σ-labeled graph)
Consider a graph G = (V , E), with V being its vertex set and E being
its edge set, and a group Σ with unit element 1Σ. A Σ-labeled graph is
described as a tuple Γ = (V , E , z) where:

z : E → Σ (3.2)

In addition, if (i, j) ∈ E , then (j, i) ∈ E and z satisfies the following
property:

z(j, i) = z(i, j)−1 (3.3)

Therefore, since all edges have a counterpart that connects the same
vertices but with opposite direction, a group-labeled graph can be seen as
an undirected graph.

Let us define what a null cycle is in the context of group-labeled graphs
and group synchronization:

11



Chapter 3. Group synchronization

Definition 3.2.2. (Null cycle)
Consider a Σ-labeled graph Γ = (V , E , z), a circuit {(i1, i2), (i2, i3), . . . , (il, i1)}
with ik ∈ V is a null cycle if and only if the composition of the edge labels
for such path is equal to the identity for group Σ.

z(i1, i2) ∗ z(i2, i3) ∗ . . . ∗ z(il, i1) = 1Σ (3.4)

Intuitively, the definition of null cycle resembles that of the Kirchoff’s
voltage law. The concept of null cycle is very important in the context
of group synchronization: if we can find a null cycle in a measurement
graph, we can recover the exact vertex labeling for the vertices along that
path. It is possible to extend this idea to the whole graph by assuming that,
if a measurement graph does not contain non-null cycles, it is possible to
recover a vertex labeling that induces an edge labeling such that all cycles
are still null.

Definition 3.2.3. (Consistent labeling)
Consider a Σ-labeled graph Γ = (V , E , z), a consistent labeling for Γ is a
function x : V → Σ such that:

z(e) = x(i) ∗ x(j)−1 ∀e = (i, j) ∈ E (3.5)

Equation (3.5) is referred to as the consistency constraint and states that
a vertex labeling is consistent for a group-labeled graph if every induced
edge label is equal to the ratio of the labels of the vertices that are con-
nected by such edge.

Corollary 1. A group-labeled graph admits a consistent labeling if and
only if it does not contain a non-null cycle.

In other words, only measurement graphs that contain non-null cycles,
meaning that they do not include any noise in their measurements, admit
a consistent labeling. Solving the synchronization problem on a group-
labeled graph is equivalent to finding a consistent vertex labeling for such
graph. Of course, we wish to solve the synchronization problem even on
noisy measurement graphs, for which it is not possible to recover a per-
fectly consistent vertex labeling. Thus, we can introduce the concept of
consistency error to evaluate how much a vertex labeling and its induced
edge labeling are compatible with the labels assigned to the edges of a mea-
surement graph.

Definition 3.2.4. (Consistency error)
Let Γ be a Σ-labeled graph and x̃ : V → Σ be a vertex labeling. The

12



3.3. Synchronization over GL(d)

consistency error of x̃ is defined as such:

ε(x̃) =
∑

(i,j)∈E

ρ(δ(z̃(i, j), z(i, j))) (3.6)

where ρ is a loss function ρ : R+ → R+ with the properties described in [3]
and δ is a metric function δ : Σ× Σ→ R+.

If a vertex labeling is consistent we can see that the edge labeling z̃
induced by x̃ coincides with the measured edge labeling z. Thus, if a vertex
labeling is consistent it introduces a null consistency error. In the general
case, if a measurement graph is noisy, the consistency error ε for such graph
is not null.

3.3 Synchronization over GL(d)

In this section, we introduce two well-known closed-form solutions to the
synchronization problem on GL(d)-labeled measurement graphs, namely
the spectral solution and the null-space solution. GL(d) is a very general
group that includes all real d× d invertible matrices:

GL(d) = {M ∈ Rd×d | det(M) 6= 0} (3.7)

The goal is to provide an overview of the main synchronization techniques
that are going to be employed for the rest of this work. For further details
and formal proofs of the following concepts, we invite the reader to refer
to [3].

3.3.1 Definitions

Let us consider a GL(d)-labeled graph Γ. If Γ is complete, it is possible to
define matrices X ∈ Rdn×d and Z ∈ Rdn×dn that collect the vertex labels
and the edge labels for Γ respectively:

X =


X1

X2

. . .

Xn

 (3.8)

Z =


Id Z12 . . . Z1n

Z21 Id . . . Z2n

. . . . . . . . . . . .

Zn1 Zn2 . . . Id

 (3.9)

13



Chapter 3. Group synchronization

Let us rewrite the consistency constraint in matrix form as follows:

Z =


X1

X2

. . .

Xn

(X−1
1 X−1

2 . . . X−1
n

)
= XX− (3.10)

where X− is not the inverse of X, but the matrix obtained by inverting the
sub-matrices Xi in X.

We can prove that Equation (3.10) holds by considering the consistency
constraint defined in Equation (3.5) and its matrix form Zij = XiX

−1
j :

Z =


X1X

−1
1 X1X

−1
2 . . . X1X

−1
n

X2X
−1
1 X2X

−1
2 . . . X2X

−1
n

. . . . . . . . . . . .

XnX
−1
1 XnX

−1
2 . . . XnX

−1
n

 =

=


Id Z12 . . . Z1n

Z21 Id . . . Z2n

. . . . . . . . . . . .

Zn1 Zn2 . . . Id


(3.11)

If Γ is not complete, the matrix of edge labels Z should not contain
labels Zij and Zji if (i, j) /∈ E . Therefore, we wish to mask or zero the
corresponding elements from matrix Z. In order to achieve this result, we
define a new matrix ZA for incomplete graphs:

ZA = Z ◦ (A⊗ 1d×d) (3.12)

where ◦ stands for the Hadamard product and⊗ for the Kronecker product.
A is the adjacency matrix for the graph and is used to determine whether to
zero one element of Z based on the existence or absence of an edge in the
graph.

Let us define the consistency error for the group synchronization prob-
lem on GL(d):

ε(X) = ||ZA − (XX−) ◦ (A⊗ 1d×d)||2F (3.13)

where || · ||F indicates the Frobenius norm. The goal of group synchroniza-
tion is to find a vertex labeling X that minimizes ε(X). Two closed-form
solutions exist to solve this problem, the spectral solution and the null-
space solution.
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3.3. Synchronization over GL(d)

3.3.2 Spectral solution

The spectral solution is the best known closed-form solution for group syn-
chronization on GL(d). If we assume that the graph is complete and that
there is no noise in the measurements (ε = 0), from the definitions of Z and
X we obtain:

ZX = nX (3.14)

Therefore, the problem of recovering X from the pairwise measurements
Z becomes a matter of finding the d independent eigenvectors of Z that
correspond to the eigenvalue n. In Equation (3.10), we see that Z is of rank
d by construction, thus n is the largest eigenvalue of Z and has multiplicity
d.

For the incomplete graph case, Equation (3.14) generalizes to:

ZAX = (D⊗ Id)X

(D⊗ Id)
−1ZAX = X

(3.15)

where D is the degree matrix for the measurement graph computed from
the adjacency matrix as follows:

D = diag(A1n×1) (3.16)

given that: ∑
j|(i,j)∈E

ZijXj = [D]iiXi (3.17)

It can be proven that matrix (D ⊗ Id)
−1ZA has real eigenvalues and

that the largest eigenvalue is 1 with multiplicity d. Thus, the problem of
recovering X for an incomplete graph in the case of ε = 0 can be solved
by finding the d eigenvectors that correspond to the leading eigenvalue of
(D⊗ Id)

−1ZA, i.e. 1.
In the noisy case, when ε 6= 0, the vertex labels are estimated by com-

puting the eigenvectors corresponding to the d largest eigenvalues of (D⊗
Id)
−1. The reason is that, in the general case, the leading eigenvalue of

(D⊗ Id)
−1ZA will not be equal to 1 and it will not necessarily have multi-

plicity equal to d. The eigenvectors computed from (D⊗ Id)
−1ZA may be

complex, therefore, in order to obtain real vertex labels, the imaginary part
is zeroed.

3.3.3 Null-space solution

The null-space solution is an alternative closed-form solution to the syn-
chronization problem over GL(d). In order to derive its formulation, let us

15
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express the synchronization problem as a null-space problem by rewriting
Equation (3.14) as follows:

(nIdn − Z)X = 0 (3.18)

so that X represents the d-dimensional null-space of nIdn − Z.
Let us apply the same reasoning to the case of the incomplete graph:

(D⊗ Id − ZA)X = 0 (3.19)

so that X belongs to the null-space of D ⊗ Id − ZA. In presence of noise
(ε 6= 0), Equation (3.19) is usually solved in a least square sense:

min
X>X=Id

‖MX‖2
F (3.20)

where M = ZA−(D⊗Id) is defined from the matrix of incomplete relative
measurements. Hence, a solution can be obtained in closed-form as the
null-space of M, which in turn can be derived from the least eigenvectors
of M>M. In the presence of outliers, robustness can be easily gained via
Iteratively Reweighted Least Squares (IRLS) [23].

3.3.4 Ambiguity

As mentioned in section (3.2), the solution to the synchronization problem
is defined up to a global (right) product with any group element. Let us pro-
vide a formal explanation on why there are an infinite number of solutions
to the same group synchronization problem.

Without any loss of generality, let us consider the formulation of the
spectral solution when ε = 0 and the measurement graph is not complete.
An estimate for the vertex labeling is obtained from the eigenvectors of
matrix (D ⊗ Id)

−1ZA associated to the eigenvalue 1 with multiplicity d.
Thus, the eigenvectors corresponding to eigenvalue 1 represent a basis for
a d-dimensional linear subspace. Any basis for the eigenspace is a solution
to the synchronization problem. A (right) multiplication of the solution by
an invertible d × d matrix is equivalent to a change of basis, meaning that
the solution to synchronization is defined up to an element of GL(d). The
result is that the number of equivalent solutions is infinite, given that the
number of basis for the same eigenspace is also infinite.

The same idea applies to the null-space formulation, for which a solution
corresponds to any basis for the null-space of matrix nIdn − Z (complete
graph) or D⊗ Id − ZA (incomplete graph).
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3.4 Synchronization over subgroups of GL(d)

In this section we discuss on how the results obtained in sections (3.3.2) and
(3.3.3) can be used to solve the synchronization problem over the subgroups
of GL(d). Many tasks in Computer Vision can be modeled as synchroniza-
tion problems over subgroups of GL(d). Let us provide a short list of the
most prominent groups we are interested in:

• Σ = SO(d)
It corresponds to rotation synchronization, also known as rotation av-
eraging.

• Σ = SE(d)
It corresponds to rigid-motion synchronization, also known as motion
averaging. Common applications include structure from motion, reg-
istration of 3D point clouds and simultaneous localization and map-
ping.

• Σ = SL(d)
It corresponds to homography synchronization which can be applied
to image stitching or mosaicking.

Other examples include Σ = Sd and Σ = Id, which correspond to permuta-
tion synchronization and partial permutation synchronization respectively,
but they will not be covered in detail in this work.

Subgroups ofGL(d) can be embedded in Rd×d, hence we can treat them
as if they were elements of GL(d) itself. This means that the spectral and
the null-space solutions work as expected.

When synchronizing over subgroups of GL(d), the main difference to
consider is that the estimated labels are only guaranteed to belong toGL(d)
and not to one of its subgroups. In other words, if we are synchronizing
rotations, we are not guaranteed to obtain estimates that are still rotations.
Therefore, after solving the synchronization problem we need to project the
solution into the subgroup on which we are performing synchronization.
Of course, every subgroup of GL(d) requires its own projection that entails
some sort of approximation.
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CHAPTER4
Multigraph formulation and expansion

4.1 Introduction

The problem of group synchronization is defined on measurement graphs
in which vertices represent unknown states and edges are labeled with the
pairwise measurements between states. So far, we analyzed the case in
which only a single relative measurement between any pair of states is
available, thus we only considered simple graphs.

In graph theory, a graph which is permitted to have multiple edges be-
tween any pair of vertices is referred to as a multigraph. The closed-form
synchronization techniques introduced in sections (3.3.2) and (3.3.3) are
designed for simple graphs and do not cope with synchronization problems
on multigraphs. As a matter of fact, the matrix Z of relative measurements
defined in Equation (3.9), which is used to estimate the vertex labeling for
the graph, can hold one measurement between any two given states at most.

In this chapter we formally define the group synchronization problem
in the presence of multiple relative measurements between unknown global
states. In order to achieve this, we adopt a theoretical framework that ex-
tends the mathematical background introduced in section (3.2) to support
group-labeled multigraphs.
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Then, in section (4.5), we introduce an algorithm that transforms a labeled-
multigraph into a simple labeled-graph that retains all pairwise information
as well as the underlying structure of the original graph. This procedure will
be referred to as multigraph expansion and will prove to be a fundamental
component in the solution of the synchronization problem on group-labeled
multigraphs.

4.2 Theoretical framework

In this section we introduce the theoretical framework for group-labeled
multigraphs that is referenced throughout this work.

In graph theory, a multigraph is a graph that is allowed to have multiple
edges (or parallel edges). We refer to the set of edges between a pair of
vertices (i, j) as the multi-edge involved with i and j. In order words, a
pair of vertices in a multigraph is connected by a multi-edge if there is
more than one edge connecting such vertices.

For the purposes of this work, the notion of multigraph will not include
pseudographs, that is, a multigraph is not allowed to have loops and, there-
fore, edges cannot connect a vertex to itself. This is consistent with the fact
that edges in a group-labeled graph encode pairwise information and loops
are not taken into account.

Let us extend the definition of Σ-labelled graph introduced in section
(3.2) to multigraphs:

Definition 4.2.1. (Multigraph)
A multigraph G = (V , E , s, t) is a directed graph where V is the set of
vertices, E is the set of edges, s is a function mapping an edge to its source
vertex:

s : E → V (4.1)
and t is a function mapping an edge to its target vertex:

t : E → V (4.2)

satisfying ∀u, v:

|s−1(v) ∩ t−1(u)| = |s−1(u) ∩ t−1(v)| (4.3)

thus, G can be seen as an undirected graph. A multigraph is not allowed to
have loops, therefore edges cannot connect a vertex to itself.

Definition 4.2.2. (Multi-edge)
Given a multigraph G = (V , E , s, t), the multi-edge E(i, j) is the set:

E(i, j) = {e ∈ E : s(e) = i ∧ t(e) = j}. (4.4)
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Definition 4.2.3. (Multiplicity of a multi-edge)
Given a multigraph G = (V , E , s, t), the multiplicity m of a multi-edge is a
function:

m : V × V → N (4.5)

and is defined as:
m(i, j) = |E(i, j)| (4.6)

In other words the multiplicity of the multi-edge connecting vertices
(i, j) is equal to the number of edges e ∈ E that connect such vertices.

Definition 4.2.4. (Multiplicity of a multigraph)
Given a multigraph G = (V , E , s, t), the multiplicity mG of G is equal to the
maximum number of edges that connect any pair of vertices (i, j), that is:

mG = max({e ∈ E : m(s(e), t(e))}) (4.7)

Strictly speaking, every simple graph is also a multigraph, but here-
inafter we consider them as different objects: a simple graph refers to a
graph having multiplicity mG ≤ 1, whereas multigraphs must have at least
one pair of vertices (i, j) with mij > 1.

The elements of a multiplicative group (Σ, ∗) can be used to label the
vertices and edges of a multigraph yielding a group-labeled multigraph:

Definition 4.2.5. (Group-labeled multigraph)
Let (Σ, ∗) be a group. A Σ-labeled multigraph is a tuple Γ = (V , E , s, t, z)
where G = (V , E , s, t) is a multigraph and z is a labeling function:

z : E → Σ (4.8)

The edge set E satisfies the following property: if e ∈ E with s(e) = i ∧
t(e) = j then e′ ∈ E with s(e′) = j ∧ t(e′) = i, and the labelling function
z satisfies:

z(e) = z(e′)−1. (4.9)

Equation (4.9) means that each edge connecting a pair of vertices (i, j)
has a corresponding edge connecting (j, i), which is labelled with the in-
verse transformation, analogously to the case of the simple graph. This
property allows us to see the graph as an undirected multigraph.

Most of the definitions related to simple graphs are still valid for multi-
graphs, albeit with small differences to account for the possible presence of
multiple edges between any pair of vertices.
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Definition 4.2.6. (Null cycle)
Let Γ = (V , E , s, t, z) be a Σ-labeled multigraph. A circuit of edges con-
necting pairs of vertices such as (i1, i2), (i2, i3), . . . , (il, i1) is a null cycle if
and only if the composition of the edge labels along the circuit returns the
identity for group Σ for every possible choice of edge between any pair of
vertices in the circuit.

z(e12) ∗ z(e23) ∗ ... ∗ z(el1) = 1Σ (4.10)

with eij ∈ {e ∈ E | (s(e), t(e)) = (i, j)}.

In practice, to check whether a cycle is null, the edge labels associated
to the edges in the cycles are chained and checked against the identity for
group Σ. In the case of multigraphs, multiple cycles passing through the
same subset of V can exist. Thus, the fact that a cycle through vertices
V ′ ⊆ V is null does not guarantee that all cycles through V ′ are null.

As seen for simple graphs, null cycles are employed in order to define
what a consistent labeling for a multigraph is.

Definition 4.2.7. (Consistent labeling)
Let Γ = (V , E , s, t, z) be a Σ-labelled multigraph and let x : V → Σ be a
vertex labeling. x is a consistent labeling if and only if

z(e) = x(i) ∗ x(j)−1 (4.11)

∀e ∈ E such that ((s(e), t(e)) = (i, j).

We refer to a Σ-labeled multigraph which admits a consistent labeling as
a balanced multigraph. Equation (4.11) means that for any pair of vertices
(i, j) ∈ V , with V being the vertex set of the multigraph, the labels of the
edges connecting i and j must be equal to the ratio of the vertex labels
x(i) and x(j). Thus, equation (4.11) is also referred to as the consistency
constraint.

From definition (4.2.7), it is understood that a multigraph can have a
consistent labeling only if all the edges between a pair of vertices share
the same edge labeling. In order to satisfy the consistency constraint, an
edge label must be equal to the ratio of the corresponding vertex labels.
Therefore, in a balanced multigraph, the only label assignment for an edge
e ∈ E involved with i and j is z(e) = x(i) ∗ x(j)−1.

Definition 4.2.8. (Redundant edge)
An edge e ∈ E is said to be redundant if there exists another edge e′ ∈ E
s.t. z(e) = z(e′) ∧ s(e) = s(e′) ∧ t(e) = t(e′).
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In other words, an edge is said to be redundant if there is another edge
connecting the same two vertices i and j with the same edge label.
Remark 1. Let Γ = (V , E , s, t, z) be a Σ-labelled multigraph. Γ admits a
consistent labeling if and only if it can be simplified into a simple graph by
removing redundant edges between any pair of vertices (i, j) ∈ V × V and
the resulting graph admits a consistent labeling.

The statements above may lead us to believe that the notion of multi-
graph is redundant. It is understood that only multigraphs which can be
mapped to simple graphs by removing redundant edges are the ones that
admit a consistent labeling. In practice, though, having a graph, even one
without multi-edges, that admits an exactly consistent labeling is unlikely.
This is due to the fact that, in real world scenarios, the pairwise measure-
ments encoded in a measurement graph are noisy. Thus, a labeling that is
consistent across the entire graph does not exist. As discussed in section
(3.3.2), we wish to obtain a labeling that minimizes the consistency error
across the graph. If the graph admits a consistent labeling, then it means
that we are in the noiseless scenario and that the consistency error will have
a minimum in zero.

4.2.1 Group synchronization

Let us define a metric function δ : Σ×Σ→ R+ and a non-negative mono-
tonically increasing loss function ρ : R+ → R+ with a single minimum at
0 and p(0) = 0.

Definition 4.2.9. (Consistency error for multigraphs)
Let Γ = (V , E , s, t, z) be a Σ-labeled multigraph and x̃ be a vertex labeling
for Γ. The consistency error for x̃ is defined as follows:

ε(x̃) =
∑
e∈E

ρ

(
δ(z̃(e), z(e))

)
(4.12)

where z̃ is the edge labeling induced by x̃. The metric function δ defines a
distance between each pair of elements in Σ. In the context of group syn-
chronization, the distance between two elements is usually defined as the
Frobenius norm of the difference between such elements. The loss function
ρ can be a quadratic function or a robust function from M-estimators [23].

As mentioned before, finding a consistent vertex labeling in either a
multigraph or a simple graph means that such labeling induces a consis-
tency error equal to zero. Given that this rarely happens in practice due
to the noise in the measurements, the goal is to find a vertex labeling that
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minimizes the consistency error for such graph. Again, this legitimates the
notion of multigraph applied in the context of group synchronization: since
pairwise measurements are likely to be noisy, then multiple measurements
between unknown states are allowed and encouraged in order to provide a
more robust and reliable set of information.

As in synchronization on simple graphs, we wish to estimate the un-
known vertex labeling starting from a set of noisy pairwise measurements.
This is achieved by applying the consistency constraint between pairs of
vertices knowing that cycles in the multigraph must be null. A clear advan-
tage of multigraphs compared to simple graphs is that, given a number of
vertices, the number of cycles in the graph can increase substantially de-
pending on the number and the multiplicity of multi-edges. The presence
of a greater number of cycles should allow for more effective error com-
pensation and, therefore, provide more accurate and robust results when
the multigraph is synchronized.

4.3 Challenges related to multigraphs

From the remarks in section (4.2.1), it is clear that the solutions for the
synchronization problem from section (3.3) cannot be applied to a labeled
multigraph. As a matter of fact, the presence of multi-edges makes it impos-
sible to collect the edge labels into a single consistency constraint matrix Z:
the techniques introduced so far allow for a maximum of one consistency
constraint (edge) between each pair of vertices, therefore it is not straight-
forward to solve the synchronization problem on multigraphs.
Remark 2. A naive strategy to handle the multiple measurements in multi-
graphs is edge averaging. This technique consists in collapsing any multi-
edge in one simple edge by averaging its labels. While this approach is
certainly effective, it does lead to sub-optimal results. In addition, the av-
erage is well defined only in certain groups, e.g., average in SO(3) is well
studied by [22], whereas similar results are less studied for general groups
such as SL(3).

Another factor is the inherent problem related to information loss that
emerges when collapsing the multi-edges. While this loss may be small
enough to produce acceptable results for certain groups, this approach can
introduce significant approximations.

For these reasons, the solution proposed in later sections consists in turn-
ing a multigraph into a simple graph without any loss of information so that
synchronization techniques designed for simple graphs can be applied to it.
This approach will allow us to solve the synchronization problem for a
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multigraph without the need to collapse multi-edges into simple edges and
lose relative (pairwise) measurements. As we shall discuss later in more
details, the benefits provided by this approach are not limited to preserv-
ing measurements. As a matter of fact, the ability to turn any multigraph
into a simple graph solves the problem of having to define an aggregation
function for certain groups, such as SL(3) for homographies.

4.4 Multigraph expansion

Let us consider the definition of group-labeled multigraph introduced in
section (4.2). In this section we show that given any group-labeled multi-
graph it is possible to find a simple labeled graph that retains all the pairwise
and global information present in the original multigraph.

The process of transforming a multigraph Γmulti into a simple graph
Γsimple is called multigraph expansion and Γsimple is referred to as the ex-
panded graph of Γmulti. More specifically, multigraph expansion is defined
as the process of expanding a multigraph into a simple graph by replicating
vertices and by introducing additional constraints in order to preserve both
the relative (pairwise) information and the underlying structure of the orig-
inal multigraph. In addition, we present an iterative greedy algorithm that
is capable of expanding any group-labeled multigraph while replicating the
minimum number of vertices. As we shall explain, minimizing the num-
ber of vertices in the expanded graph provides several benefits, including
improved computational and memory efficiency for synchronization.

4.4.1 Intuition

Let us begin this introduction to multigraph expansion by analyzing a sim-
ple case first. Let us take into account the minimal multigraph in Figure
(4.1), that is, a graph made by two vertices x1 and x2 connected by a multi-
edge of multiplicity 2 with edge labels z12,1 and z12,2.

Figure 4.1: The minimal multigraph considered in this section.

If the goal is to expand the multigraph, then we need to find a way to
remove the multi-edge while preserving the pairwise information in the
edge labels. In order to achieve this result, vertex x1 is replaced by two
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separate vertices x1,1 and x1,2, each connected to x2. The edge between x1,1

and x2 has label z12,1, while the one between x1,2 and x2 has label z12,2, as
shown in Figure (4.2). The multigraph is now a graph with simple edges
and it retains both labels that were previously assigned to the multi-edge.

Figure 4.2: The simple graph that is obtained from the original multigraph by replacing
x1 with its vertex replicas x1,1 and x1,2.

An important point to consider is that, because x1,1 and x1,2 are spawned
from the same vertex x1, the labels assigned to them should be equal to
each other. In order to migrate this constraint to the expanded graph, it is
sufficient to add a new edge connecting x1,1 and x1,2 with a label equal to
the unit element 1Σ for group Σ, as shown in Figure (4.3). The vertices
x1,1 and x1,2 are called replicas of vertex x1, given the fact that, although
x1,1 and x1,2 are separate vertices in the expanded graph, they represent a
single vertex in the underlying structure of the multigraph. Thus, replicas
of a vertex should have the same vertex label to ensure the consistency of
labels between the two graphs.

Figure 4.3: The expanded graph of the multigraph in Figure (4.1) obtained by replacing
x1 with its two vertex replicas and by adding an identity constraint between them.

After expanding the multigraph, it is possible to collect vertex labels in
matrix X ∈ Rdn×d and edge labels in matrix Z ∈ Rdn×dn as seen in the
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case of a simple graph with no multi-edges:

X =

X1,1

X1,2

X2

 (4.13)

Z =

 1Σ 1Σ z12,1

1Σ 1Σ z12,2

z21,1 z21,2 1Σ

 (4.14)

Another point to consider is that this method can also be applied when
the multi-edge connecting x1 and x2 is of an arbitrary multiplicity m12 that
is greater than 2 (see Figure (4.4)). In order to obtain an expanded graph
from a multigraph with two vertices and a multi-edge of an arbitrary mul-
tiplicity m12, it is sufficient to replace vertex x1 with m12 vertex replicas
x1,1, x1,2, ..., x1,m12 . Each replica x1,k of x1 is connected to x2 by an edge
with label z12,k, with k ∈ {1, 2, . . . ,m12}.The next step is to encode the
constraint that the vertex labels of all replicas of x1 must share the same
value in the expanded graph. Thus, identity constraints in the form of edges
with label 1Σ are introduced for every pair of vertex replicas. The final ex-
panded graph is shown in Figure (4.5).

Figure 4.4: A multigraph that contains multi-edges of an arbitrary multiplicity.

27



Chapter 4. Multigraph formulation and expansion

Figure 4.5: The expanded graph of the multigraph in Figure (4.4).

As a final note, it is possible to choose x2 instead of x1 as the vertex
chosen to be replaced by replicas. Of course, the choice does not affect the
result, since pairwise information is preserved in either case.

Taking these considerations into account, we can safely assume that ev-
ery multigraph can be expanded into a simple graph if, for every pair of ver-
tices connected by a multi-edge of multiplicity mij , we replace at least one
vertex with a set of mij vertex replicas and add the necessary constraints to
preserve the information encoded in the original multigraph.

4.4.2 Replicating vertices in a multigraph

So far, we provided an intuition to the idea of multigraph expansion and
considered only the case of the minimal multigraph in Figure (4.1). In
general, this is not enough given that it is very likely that vertices have more
than a single incoming (or outgoing) multi-edge. In this section, we address
the general case of expanding a multigraph with an arbitrary number of
vertices and multiple incoming (or outgoing) multi-edges.

Let us begin from the intuition provided in section (4.4.1) and gener-
alize from it. Consider the case in Figure (4.6) of a single multi-edge of
multiplicity mij connecting two vertices xi and xj . Any of the two vertices
is a good candidate for being replicated. Let us select xi for expansion. xi
is replaced with mij replicas named xi,1, xi,2, . . . , xi,mij

. The next step is to
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add constraints between every pair of replicas to indicate that their labels
must be the same, given that they are spawned from the same vertex xi.
Thus, we introduce edges with labels 1Σ connecting every pair of replicas,
for a total of mij×(mij−1)

2
constraints. Finally, we introduce constraints of

type zij,k between xj , which was not expanded, and xi,k for a total of mij

edges as in Figure (4.7).

Figure 4.6: A multigraph with two vertices connected by a multi-edge of an arbitrary
multiplicity mij .

Figure 4.7: The expanded graph of the multigraph in Figure (4.6) after replicating xi.
Dashed lines represent the identity constraints between vertex replicas.

Consider the general case in which multi-edges connect xi to multiple
vertices. Let us assume that each multi-edge has an arbitrary multiplicity.
The number of replicas that needs to be introduced in order to replicate ver-
tex xi is equal to the largest multiplicity mmax of the incoming multi-edges
for xi. After xi is replaced by mmax replicas, for every vertex previously
connected to xi, we need to introduce a set of constraints between such ver-
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tex and the newly added replicas. If the number of replicas mmax is larger
than the multiplicity mij of the multi-edge previously connecting xi to a
generic vertex xj , then the number of constraints added between xj and the
mmax replicas of xi is going to be limited to mij . Random sampling with-
out replacement can be performed to select a subset with cardinality mij of
the mmax replicas of xi.

Figure 4.8: A multigraph with 2 multi-edges of arbitrary multiplicity connecting 3 ver-
tices. If we assume that mij > mih, then mmax = mij .

Figure 4.9: The expanded graph of the multigraph in Figure (4.8).

In the case in which a replicated vertex is connected to other vertices
with a simple edge, then the edge is replicated mmax times along with its
label, where mmax is the number of replicas introduced in place of xi. Each
of these replicated edges will connect the vertex that was not expanded to a
different replica of xi as illustrated in Figure (4.11).

Another approach to the problem of replicating vertices with incom-
ing (outgoing) simple edges is to connect just one of the mmax replicas

30



4.4. Multigraph expansion

to the non-expanded vertex, instead of replicating the edge mmax times.
In practice, the underlying structure of the multigraph is preserved, hence
synchronization performance should not be impacted. In addition, this ap-
proach provides benefits in terms of time and memory requirements since
the matrix of constraints ZA will be more sparse. We refer to this approach
as optimized single link vertex replication.

Figure 4.10: A multigraph containing both a simple edge and a multi-edge.

Figure 4.11: The expanded graph of the multigraph in Figure (4.10) without optimized
single link vertex replication.
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Figure 4.12: The expanded graph of the multigraph in Figure (4.10) with optimized single
link vertex replication.

4.4.3 Optimized graph expansion

In this section we introduce an efficient iterative greedy algorithm that can
be applied in order to find the solution to the problem of replicating the
minimum number of vertices to efficiently expand a multigraph.

Let us begin by making an observation regarding vertex replication. Af-
ter a vertex is replicated in a multigraph, the result is that all vertices that
were previously connected to the replicated vertex will have one less in-
coming (outgoing) multi-edge. Thus, the idea behind optimized multigraph
expansion can be seen as the problem of finding those vertices that cause
the largest number of multi-edges to be removed from the graph once they
are replicated.

In section (4.4.1), we considered a minimal multigraph whose vertex
set included only two vertices x1 and x2 connected by a single multi-edge
with m12 = 2. In order to expand the multigraph into a simple graph, we
demonstrated that it was sufficient to replicate only one of the two vertices
and to turn the multi-edge into 2 simple edges connecting the replicas to
the non-replicated vertex.

Let us combine the observations made so far in order to devise an opti-
mal strategy for optimized multigraph expansion. The strategy we propose
is to give precedence to those vertices whose replication causes two or more
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multi-edges to be transformed into simple edges. In practice, the algorithm
iterates through all the elements of the vertex set of the input multigraph
and proceeds to replicate a vertex if it satisfies the condition that it has at
least two incoming (outgoing) multi-edges. Once all vertices are scanned,
then only vertices having at most a single incoming (outgoing) multi-edge
remain. After that, we arbitrarily choose which vertex to replicate in pairs
of adjacent vertices connected by a single multi-edge and obtain the final
expanded graph.

Algorithm (1) provides a brief outline of the main steps for optimized
graph expansion. Further details will be provided in section (4.5).

Algorithm 1 Outline of optimized graph expansion
Input: A group-labeled multigraph
Output: The optimized expanded graph of the input multigraph

1: S = ∅
2: for every node i in the multigraph do
3: if there is one outgoing multi-edge for i then
4: S = S ∪ {i} . save node i to expand it later
5: else if there are two or more outgoing multi-edges for i then
6: replicate node i and apply changes to the graph
7: end if
8: end for
9: for every node i in S do

10: if there is an outgoing multi-edge for i then
11: replicate node i and apply changes to the graph
12: end if
13: end for

Let us provide a practical example in which the optimized graph expan-
sion algorithm can reduce the number of replicated vertices for an expanded
multigraph. Consider the case of a multigraph made of a chain of n ver-
tices connected by n− 1 multi-edges of any multiplicity. For every pair of
adjacent vertices in the chain, at least one of the two must be replicated in
order to expand all multi-edges. Following the greedy strategy, we iterate
through the vertices in the graph, starting from x1, and expand only the
vertices with multiple incoming (outgoing) multi-edges.

Figure 4.13: A depiction of the multigraph referenced in this section.
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x1 is at the edge of the chain, thus it has only one incoming (outgoing)
multi-edge and is not chosen for replication. Next is x2, which satisfies
the condition and is replicated. As a result, the incoming (outgoing) multi-
edges in x1 and x3 are transformed into simple edges. x3 is skipped for
the same reason as x1 and x4 is selected for replication. This continues
until the end of the chain. The result is that only half of the vertices are
selected for replication. More specifically, if n is even, then n

2
vertices are

expanded, while if n is odd, then n−1
2

vertices are expanded. The choice
to replicate vertices x2, x4, . . . satisfies the previously identified constraint
that, for every pair of adjacent vertices in the original multigraph, at least
one vertex should be replicated in order to convert the multigraph into its
expanded simple graph.

Figure 4.14: An example of a chain of 5 vertices connected by multi-edges. Expanding
the 2 vertices highlighted in blue is sufficient in order to turn the multigraph into an
equivalent simple graph.

Of course, replicating a vertex at the edge of the chain still produces a
valid expanded graph, but it does not guarantee that the set of vertices that
are replicated at the end of the expansion procedure contains the minimum
number of elements.
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4.4. Multigraph expansion

Figure 4.15: A depiction of a multigraph with a central vertex configuration. Notice how
expanding the vertex with more than a single incoming (outgoing) multi-edge allows
us to expand the minimum number of vertices.

4.4.4 Considerations on multigraph expansion

The reader may be questioning why going through the trouble of devising a
strategy to minimize the number of additional vertices in the form of repli-
cas introduced by the multigraph expansion algorithm. As established so
far, the choice of vertices to replicate does not affect the end result, meaning
that multigraph expansion allows us to turn any group-labeled multigraph
into a simple graph without any loss of information. The choice of vertices
to replicate does affect the computational complexity both in terms of time
and memory though, since the more vertex replicas are added to the graph,
the larger the matrices encoding the graph are going to be, resulting in both
a larger memory footprint and longer processing.

Consider the synchronization problem over a subgroup of the General
Linear Group GL(d). As noted in (3.3.2), the problem can be solved by
applying a closed-form solution, namely the spectral solution, which con-
sists in finding the eigenvectors associated to the d leading eigenvalues of
matrix (D ⊗ Id)

−1ZA. D is a n × n matrix and ZA is a dn × dn matrix,
where n is the number of vertices in the graph. This means that, as the
number of vertices in the graph grows, the time required to find the d lead-
ing eigenvalues of such matrix can increase by a significant amount, even
when exploiting optimized sparse solvers such as eigs or svds. This poses a
significant problem, particularly for large graphs with lots of multi-edges,
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Chapter 4. Multigraph formulation and expansion

given that the large number of vertices to replicate may render closed-form
solutions impractical. Therefore, we expect that the optimization applied to
multigraph expansion will provide significant benefits in the computational
complexity of both the expansion of the multigraph itself and subsequent
group synchronization techniques applied to the respective expanded graph.

4.5 Algorithm for multigraph expansion

In this section, we expand on the results from section (4.4) in order to de-
fine a general algorithm for the expansion of any Σ-labeled multigraph.
In addition, we analyze the complexity of such algorithm and present the
MATLAB implementation used to conduct experiments in this work.

The multigraph expansion algorithm, henceforth named MULTIGRAPH-
EXPAND, is an iterative greedy procedure that turns a Σ-labeled multigraph
Γin given in input into a simple graph Γout = (Vout, Eout, z), as shown in
Figure (4.16). Algorithm 2 describes the main steps.

x x1 x2 x3

1Σ

1Σ

1Σ

Figure 4.16: Multigraph expansion: the process of expanding a multigraph into a simple
graph without multi-edges by replicating specific vertices (shaded nodes) and by intro-
ducing additional constraints to preserve both absolute (global) and relative (pairwise)
information between the nodes in the graph.

At first, in lines 1-3, we initialize the vertex set and the edge set of
the output graph to the values of the input multi-graph. At high level, the
algorithm cycles through all the vertices of the input graph and populates
Vout and Eout adding the vertex and its corresponding edges, but when a
multi-edge is encountered this is first expanded to simple-edges between
replicated vertices, via the EXPANDVERTEX routine, and then it is added
to Eout together with the replicas which are in turn added to Vout. For reasons
of efficiency, the procedure starts by expanding the vertices with more than
one multi-edge, (lines 4-17) while the expansion of vertices with a single
multi-edge is deferred until the end of the procedure (line 19 – 24). This
deferred expansion mechanism is implemented by means of a queue S that
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4.5. Algorithm for multigraph expansion

Algorithm 2 MULTIGRAPHEXPAND

Input: A Σ labeled multi-graph Γin = (Vin, Ein, s, t, z)
Output: The expanded graph Go = (Vout, Eout, z)

1: Vout = Vin
2: Eout = Ein
3: S = ∅ . queue
4: for v ∈ Vin do
5: Ev = GETMULTIEDGES(v,Γout)
6: if |Ev| > 1 then . there are many multi-edges
7: . Remove vertices and edges
8: Vout = Vout \ {v}
9: Eout = Eout \ {e ∈ Eout : s(e) = v or t(e) = v}

10: . Add replicated vertices and edges
11: (Vrep, Erep) = EXPANDVERTEX(v,Γout)
12: Vout = Vout ∪ Vrep
13: Eout = Eout ∪ Erep
14: else if |Ev| = 1 then
15: S = S ∪ {v} . add to queue
16: end if
17: end for
18: . Process vertices with a single multi-edge
19: for v ∈ S do
20: Ev = GETMULTIEDGES(v,Γout)
21: if |Ev| > 0 then
22: repeat lines 8-13
23: end if
24: end for
25: Γout = (Vout, Eout, z)
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is initialized as empty (line 3).
The first loop (lines 4-17) consists in iterating through the vertices in

the input multigraph and replicating those with more than one multi-edge
updating Vout and Eout accordingly for the output graph. Specifically, in
line 5 we gather the multi-edges for a vertex v and, if their count is greater
than 1, we proceed to replicate v. In lines 8-9, we remove v from Vout and
all its edges from Eout. In line 11, we invoke the EXPANDVERTEX proce-
dure, which returns Vrep and Erep. Vrep contains the replicas of v, while Erep

contains the previous edges of v distributed for Vrep, including the identity
constraints between replicas (more details in Alg.3).

The elements of Vrep and Erep are merged with those of Vout (line 12) and
Eout (line 13) respectively, updating the output graph. If v has only a single
incoming or outgoing multi-edge, then v is added to the queue S (line 15)
and its replication is deferred after the other vertices with a greater number
of multi-edges have been expanded.

The second loop (lines 19-24) consists in iterating through the vertices
v in the queue S. The procedure is similar to the first loop: v is replicated
when it is still involved with a multi-edge. This check (line 21) is necessary
because, during the first pass, the multi-edge involved with v may have been
expanded by the vertices adjacent to v.

The algorithm outputs the expanded graph Γout, which is defined by the
updated vertex set Vout and edge set Eout.

Expansion of vertex and multi-edge conversion The procedure EXPANDVER-
TEX, detailed in Algorithm 3, aims at replicating a vertex i originally in-
volved in a multi-edge with a set of returned replicas Vrep. In addition, EX-
PANDVERTEX converts the original multi-edges involving i in simple edges
connecting the replicas. Specifically, incoming edges, outgoing edges and
identity constraints between replicas are instantiated and added to the re-
turned set of simple edges Erep.

First, we compute the maximum number m between the cardinality
of incoming and the cardinality of outgoing multi-edges involved with i
(lines 2 - 7). This value is used to initialize an ordered sequence Vrep =
{v1, v2, . . . , vm} with m replicas of i (line 8). The r-th element of Vrep is
referenced by using the array-like notation Vrep[r]. The set of edges for the
expanded vertex is initially empty (line 9).

The next step is to distribute the original constraints among replicas,
starting from the incoming edges (lines 11-19). For every incoming multi-
edge E, we take every simple edge e ∈ E and add a new edge f to Erep with
the same label and source node as e, but with a different target vertex in Vrep
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Algorithm 3 Expand vertex and convert multi-edges
1: function EXPANDVERTEX(i, V , E)
2: . Get max cardinality of multi-edges
3: E→i = GETINCOMINGMULTIEDGES(i,V, E)
4: m→i = maxe∈E→i |e|
5: Ei→ = GETOUTGOINGMULTIEDGES(i,V, E)
6: mi→ = maxe∈Ei→ |e|
7: m = max(1,m→i,mi→) . Number of replicas
8: Vrep = {v1, . . . , vm} . Ordered set of replicas
9: Erep = ∅

10: . Distribute incoming edges among replicas
11: for E ∈ E→i do . E is a multi-edge
12: r = 1 . replicas’ counter
13: for e ∈ E do . e is a simple edge in E
14: instantiate f s.t. s(f) = t(e), t(f) = Vrep[r]
15: Erep = Erep ∪ {f}
16: z(f) = z(e)
17: r = r + 1
18: end for
19: end for
20: . Distribute outgoing edges among replicas
21: for E ∈ Ei→ do
22: r = 1
23: for e ∈ E do
24: instantiate f s.t. s(f) = Vrep[r], t(f) = t(e)
25: Erep = Erep ∪ {f}
26: z(f) = z(e)
27: r = r + 1
28: end for
29: end for
30: . Add identity constraints between replicas
31: for (v1, v2) ∈ P2(Vrep) do
32: instantiate f s.t. s(f) = v1, t(f) = v2

33: Erep = Erep ∪ {f}
34: z(f) = 1Σ

35: end for
36: return (Vrep, Erep)
37: end function
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(lines 11- 19). In other words, we are rerouting every edge that makes up
the multi-edge so that each of them has a different replica Vrep[r] of i, as
target vertex. Notice that simple edges can be seen as multi-edges with
multiplicity equal to 1, thus they are distributed as well.

We apply the same steps to distribute the constraints among replicas
for outgoing multi-edges. The main difference is that the re-routed edges
f have the same label and target vertex as their counterparts, but have a
replica Vrep[r] of i as a source vertex (lines 20-35) (see Figure 4.16).

Finally, we add the identity constraints between replicas (lines 30 - 35).
To this end, we iterate through all possible pairs of replicas (v1, v2), indi-
cated as P2(Vrep) (line 31), and a new edge f is added to Vrep with source
vertex v1, target vertexv2 with the identity 1Σ as label.

Auxiliary function for multi-edges Algorithm 4 collects auxiliary functions
that are used to get the incoming, the outgoing and all the multi-edges re-
spectively for a vertex i in the graph Γ. We recall that the notation E(i, j)
denotes the multi-edges connecting vertex i and j.
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Algorithm 4 Auxiliary function for multi-edges

1: function GETINCOMINGMULTIEDGES(i, V , E)
2: Input: A node i and a multi-graph Γ = (V, E , s, t).
3: Output: The set of incoming multi-edges for i.
4: T = {e ∈ E | t(e) = i}
5: U = {v ∈ V | ∃e ∈ T s.t. s(e) = v}
6: return E→i = {E(v, i) : v ∈ U}
7: end function

1: function GETOUTGOINGMULTIEDGES(i, V , E)
2: Input: A node i and a multi-graph Γ = (V, E , s, t).
3: Output: The set of outgoing multi-edges for i.
4: S = {e ∈ E | s(e) = i}
5: U = {v ∈ V | ∃e ∈ S s.t. t(e) = v}
6: return Ei→ = {E(i, v) : v ∈ U}
7: end function

1: function GETMULTIEDGES(i, V , E)
2: Input: A node i and a multi-graph Γ = (V, E , s, t).
3: Output: The set of multi-edges for i.
4: E→i = GETINGOINGMULTIEDGES(i, Γ).
5: Ei→ = GETOUTGOINGMULTIEDGES(i, Γ).
6: return E→i ∪ Ei→.
7: end function
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4.5.1 Computational complexity

In this section, we analyze the computational complexity of the algorithm.
Let us begin by analyzing the complexity of the EXPANDVERTEX pro-

cedure. EXPANDVERTEX includes three for-loops. The first and second
loops iterate through the incoming and outgoing multi-edges of vertex i re-
spectively. The number of outgoing and incoming edges for i depends on
its degree di:

di =
n∑
j

aij (4.15)

where the adjacency matrix A = [aij]. The upper bound for the degree of
a vertex is the number of vertices n in the graph. Each iteration contains
another loop that, for every edge e in E, adds a new edge to Erep. Thus,
the average number of iterations for this loop is equal to the average mul-
tiplicity of the multi-edges in the multigraph. Let us assume that the cost
function c represents the unit time taken to run an operation. From these
considerations, we estimate the run time t1 and t2 for the first two loops as
follows:

t1 = t2 = nmc (4.16)

where m is the average multiplicity of the multi-edges and n is the number
of vertices in the graph. The third loop iterates through all the unordered
pairs in Vrep, thus the run time t3 is estimated as:

t3 =
m× (m− 1)

2
c (4.17)

and the overall execution time texp for EXPANDVERTEX is estimated as:

texp = nmc +
m2

2
c− m

2
c (4.18)

and the procedure is of time complexity O(nm+m2)

The MULTIGRAPHEXPAND algorithm is made of two for-loops. The
first loop iterates over n elements, where n is the number of vertices in the
input multigraph. The second loop iterates over a subset of the vertex set
of the input multigraph, hence it iterates over a maximum of n elements as
well. Both loops perform a similar set of operations. For every iteration,
the multi-edges of the current vertex v are queried. We assume that this
operation is supported by a data structure that can access the edges of a
vertex directly, thus getting the multi-edges of v in constant time. The
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EXPANDVERTEX procedure is invoked once per iteration and the vertex
and edge sets of the graph are updated accordingly.

The overall run time estimate for MULTIGRAPHEXPAND is therefore:

t = 2n(c + texp) = 2nc + 2n2mc + 2n
m2

2
c− 2n

m

2
c (4.19)

and the algorithm if of time complexity O(n2m+ nm2).
In general, the number of vertices n in the input multigraph is much

larger than the average multiplicity of the multi-edges in the same graph
(n� m), therefore:

n2m+ nm2 = nm(n+m) ≈ n2m (4.20)

and MULTIGRAPHEXPAND is of time complexity O(n2m) in general, as
we shall demonstrate empirically in section (4.6).
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4.5.2 Implementation

In this section we present a MATLAB implementation of the MULTIGRAPH-
EXPAND and EXPANDVERTEX algorithms. This implementation is going
to be employed for our experimental validation in later chapters.

Listing 4.1: MULTIGRAPHEXPAND algorithm - MATLAB implementation
1 f u n c t i o n [ E , c o r r ] = m u l t i g r a p h _ e x p a n d ( EdgeTable )
2 % Perform t h e M u l t i g r a p h Expans ion a l g o r i t h m .
3 %
4 % [ E , c o r r ] = m u l t i g r a p h _ e x p a n d ( EdgeTable ) r e t u r n s an edge t a b l e t h a t
5 % encodes t h e s i m p l e g raph t h a t r e s u l t s from p e r f o r m i n g t h e M u l t i g r a p h
6 % Expans ion a l g o r i t h m on t h e m u l t i g r a p h p a s s e d as i n p u t . EdgeTable i s
7 % a t a b l e e n c o d i n g t h e m u l t i g r a p h we wish t o e x p a n d . E i s t h e edge
8 % t a b l e t h a t encodes t h e expanded s i m p l e g raph and c o r r i s an a r r a y o r
9 % s i z e 1xn , w i th n e q u a l t o t h e number o f nodes i n t h e o r i g i n a l

10 % m u l t i g r a p h , s t o r i n g t h e c o r r e s p o n d e n c e s between t h e i n d i c e s o f t h e
11 % o r i g i n a l v e r t i c e s and t h e i n d i c e s o f t h e i r r e p l i c a s : e . g . i f v e r t e x
12 % a t i n d e x 4 has r e p l i c a s wi th i n d i c e s 8 , 9 , 1 0 , t h e n
13 % c o r r {4} = [ 8 , 9 , 10] .
14

15 E = s o r t _ e d g e s ( EdgeTable ) ;
16 n = max ( [ E d g e T a b l e . i ; E d g e T a b l e . j ] ) ;
17

18 % S t o r e c o r r e s p o n d e n c e s between nodes and r e p l i c a s
19 c o r r = c e l l ( 1 , n ) ;
20

21

22 % Expand a l l nodes t h a t have 1+ incoming / o u t g o i n g m u l t i - edges
23 node_cache = [ ] ;
24

25 f o r i = 1 : n -1
26 me_count = c o u n t _ m u l t i e d g e s ( E , i ) ;
27 i f me_count > 1
28 % R e p l i c a t e node
29 [ S , c ] = r e p l i c a t e _ n o d e ( E , i ) ;
30

31 % D e l e t e s t a r t i n g node b e f o r e a dd i ng i n o r d e r n o t t o o v e r w r i t e
32 E ( E . i == i , : ) = [ ] ;
33

34 % Add new edges t o t h e g raph and save i n d e x e s o f node r e p l i c a s
35 E = [ E ; S ] ;
36 c o r r { i } = c ;
37 e l s e i f me_count > 0
38 % Save node i d f o r l a t e r
39 node_cache = [ node_cache ; i ] ;
40 end
41 end
42

43

44 % Expand t h e r e m a i n i n g nodes t h a t an incoming / o u t g o i n g m u l t i - edge
45 f o r i = 1 : l e n g t h ( node_cache )
46 n i d = node_cache ( i ) ;
47 i f c o u n t _ m u l t i e d g e s ( E , n i d ) > 0
48 % R e p l i c a t e node

44



4.5. Algorithm for multigraph expansion

49 [ S , c ] = r e p l i c a t e _ n o d e ( E , n i d ) ;
50

51 % D e l e t e s t a r t i n g node b e f o r e a dd i ng i n o r d e r n o t t o o v e r w r i t e
52 E ( E . i == nid , : ) = [ ] ;
53

54 % Add new edges t o t h e g raph and save i n d e x e s o f node r e p l i c a s
55 E = [ E ; S ] ;
56 c o r r { n i d } = c ;
57 end
58 end
59

60

61 % Add i d e n t i t y c o n s t r a i n t s be tween r e p l i c a s o f t h e same node
62 f o r i = 1 : n
63 i f ¬i s e m p t y ( c o r r { i } )
64 p a i r s = nchoosek ( c o r r { i } , 2 ) ;
65 f o r j = 1 : s i z e ( p a i r s , 1 )
66 r = e d g e t a b l e _ r o w ( p a i r s ( j , 1 ) , p a i r s ( j , 2 ) , . . .
67 m a t 2 c e l l ( eye ( 3 ) , 3 , 3 ) , m a t 2 c e l l ( eye ( 3 ) , 3 , 3 ) ) ;
68 E = [ E ; r ] ;
69 end
70 end
71 end
72

73 E = s o r t _ e d g e s ( E ) ;
74 end

Listing 4.2: EXPANDVERTEX algorithm - MATLAB implementation
1 f u n c t i o n [ S , c o r r ] = r e p l i c a t e _ n o d e ( E , i )
2 % Perform t h e o p t i m i z e d node r e p l i c a t i o n a l g o r i t h m .
3 %
4 % [ S , c o r r ] = r e p l i c a t e _ n o d e ( E , i ) r e t u r n s t h e edges t h a t r e s u l t
5 % from t h e e x p a n s i o n of node wi th i n d e x i i n edge t a b l e E.
6 % C o r r e s p o n d e n c e s between o r i g i n a l nodes and i t s r e p l i c a s a r e
7 % s t o r e d i n c o r r . E i s an edge t a b l e r e p r e s e n t i n g t h e o r i g i n a l
8 % m u l t i g r a p h , w h i l e i i s a i n t 3 2 s c a l a r r e p r e s e n t i n g t h e i n d e x
9 % of t h e node t o r e p l i c a t e

10

11 S = e m p t y _ e d g e t a b l e ( ) ;
12 c o r r = [ ] ;
13

14 % Get edges s t a r t i n g from node i
15 E_i = E ( E . i == i , : ) ;
16 l a s t _ i d x = max ( [ E . i ; E . j ] ) ;
17

18 % Loop t h r o u g h a l l nodes wi th i n d e x h i g h e r t h a n i t o c o n v e r t ...
m u l t i - edges

19 % i n t o s i m p l e edges
20

21 f o r j = i +1 : max ( E _ i . j )
22 % Get edges between nodes i and j
23 E _ i j = E_i ( E _ i . j == j , : ) ;
24

25 f o r i d x = 1 : s i z e ( E_ i j , 1 )
26 i f i d x == 1
27 % Recyc le t h e o r i g i n a l v e r t e x i n d e x n o t t o l e a v e b l a n k ...
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i n d i c e s
28 k = i ;
29 e l s e
30 k = l a s t _ i d x + i d x - 1 ;
31 end
32

33 Z _ i j = E _ i j ( idx , : ) . Z _ i j ;
34 Z _ j i = E _ i j ( idx , : ) . Z _ j i ;
35

36 % R e g i s t e r a new edge
37 i f k > j
38 r = e d g e t a b l e _ r o w ( j , k , Z_ j i , Z _ i j ) ;
39 S = [ S ; r ] ;
40 e l s e
41 r = e d g e t a b l e _ r o w ( k , j , Z_ i j , Z _ j i ) ;
42 S = [ S ; r ] ;
43 end
44

45 % R e g i s t e r a c o r r e s p o n d e n c e between t h e o r i g i n a l v e r t e x and i t s
46 % r e p l i c a
47 c o r r = u n i qu e ( [ c o r r , k ] ) ;
48 end
49 end
50 end

Data structure

Let us describe the data structure used to represent the input group-labeled
multigraph for the purposes of this implementation.

Since a labeled multigraph admits multiple edges between any pair of
vertices, it is not possible to write a matrix Z, as defined in section (3.3),
to encode all of the consistency constraints represented by the multi-edges.
Therefore, we encode labeled multigraphs in a table-like data structure in
which each row represents an edge in the graph. This allows for an unlim-
ited number of edges between any pair of vertices in the graph. We call this
data structure edge table.

In an edge table a row represents an edge and it contains the following
columns:

• i: the source vertex of the edge

• j: the target vertex of the edge

• Zij: the label of the edge

• Zji: the inverse label of the edge

Let us give a brief example of how an edge table can be used to encode
a multigraph and its expanded representation. Consider the minimal multi-
graph in Figure (4.1), it can be encoded in an edge table as follows:
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Table 4.1: An edge table encoding the minimal multigraph

i j Zij Zji

x1 x2 z12,1 z−1
12,1

x1 x2 z12,2 z−1
12,2

Notice how the edge table can encode multi-edges by adding multiple
rows with the same source and target vertices, each with their own edge
label. If we were to expand the graph in Figure (4.1), the resulting edge
table would be as follows:

Table 4.2: An edge table encoding the expanded graph of the multigraph in Table (4.1)

i j Zij Zji

x11 x2 z12,1 z−1
12,1

x12 x2 z12,2 z−1
12,2

x11 x12 1Σ 1Σ

Given that this edge table does not contain multiple rows with the same
source and target vertices, it can be converted into a matrix of consistency
constraints Z without any loss of information.
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4.6 Experimental validation

In this section, we validate the theoretical results regarding the complexity
of the MULTIGRAPHEXPAND algorithm and provide a comparison between
optimized graph expansion and a naive expansion approach that does not
follow the greedy strategy presented in section (4.4.3).

4.6.1 Computational complexity

We ran experiments in order to estimate the computational complexity of
our implementation of the MULTIGRAPHEXPAND algorithm and whether
the theoretical results in section (4.5.1) check out. In order to achieve this,
we ran the algorithm on a number of synthetic multigraphs with a variable
number of vertices n and a variable average multiplicity mavg of the multi-
edges. Each experiment consisted of 50 runs of the algorithm on randomly
generated multigraphs.

The plot in Figure (4.17) report the average execution time of the algo-
rithm as a function of the number of vertices n and the average multiplicity
mavg of the multi-edges. As expected, the execution time shows a quadratic
growth as n increases. Higher values of mavg have an effect on the slope of
the curve, making it grow faster, while still being quadratic.
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Figure 4.17: The plot shows the execution time of the MULTIGRAPHEXPAND algorithm
as a function of the number of vertices and the average multiplicity of the multi-edges.

The plot in Figure (4.18) shows how the execution time of the algorithm
responds to a change in the average multiplicitymavg of the multi-edges for
a multigraph with n = 15 vertices. As long as n � mavg, processing time
shows a growth that is linear in the multiplicity of the multi-edge since com-
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4.6. Experimental validation

plexity is O(n2mavg). When the value of mavg approaches or exceeds n,
then the execution time starts to show a quadratic growth, since the approx-
imation that n+mavg ≈ n in Eq. (4.20) is no longer valid. Asymptotically,
the algorithm is of time complexity O(nm2

avg).
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Figure 4.18: The plot shows the execution time for the MULTIGRAPHEXPAND algorithm
on a multigraph with n = 15 as a function of mavg .

4.6.2 Optimized vs. naive graph expansion

We ran experiments to show how the optimized graph expansion strategy
introduced in section (4.4.3) and the MULTIGRAPHEXPAND algorithm gen-
erate expanded simple graphs that contain fewer vertices compared to those
obtained from naive expansion. We refer to naive expansion as the non-
greedy method that expands all vertices in order, without considering the
number of incoming (outgoing) multi-edges for a vertex.

Table (4.3) shows the number of output vertices nout for both the op-
timized and naive graph expansion strategies. These results are obtained
from synthetic multigraphs with a varying number of vertices n and av-
erage multiplicity of the multi-edges mavg. As expected, results show a
reduction in the size of the expanded graph. Overall, since the optimized
approach never performs worse compared to the naive solution and it does
not affect computational complexity significantly, we suggest to use the
optimized approach in all circumstances.
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Chapter 4. Multigraph formulation and expansion

Table 4.3: Optimized vs. naive graph expansion in terms of vertices in the output expanded
graph. n is the number of vertices in the original multigraph and mavg is the average
multiplicity of the multi-edges. nout stands for the number of vertices in the output
graph.

Optimized vs. naive graph expansion
n mavg nout optimized nout naive
10 2 17 18
10 5 37 40
10 10 74 78
20 5 87 93
30 5 134 145
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CHAPTER5
Synchronization on multigraphs

In this chapter, we expand on the theoretical background introduced in
chapters (3) and (4) to devise a principled and efficient solution to the prob-
lem of synchronization on group-labeled multigraphs.

The current state of the art for synchronizing measurement multigraphs
is to reduce them by combining the multi-edges and their labels into simple
edges. Once simplified, closed-form synchronization techniques designed
for simple graphs are applied in order to estimate the vertex labeling for
the original multigraph. For the purposes of this work, we refer to this
technique as edge averaging. However, this approach falls short because:
i) averaging is defined only for some groups (e.g. rotations in SO(3)) and ii)
the solution is sub-optimal, leading to an estimator that is less precise and
accurate. For instance, consider the problem of estimating a scale factor s
that links two matrices with noisy entries: A = sB. The optimal estimate
is the least squares solution s = tr(BᵀA)/tr(BᵀB) which is different from,
e.g., taking the average of the entry-wise division A./B.

The MULTIGRAPHEXPAND algorithm in chapter (4) allows us to turn
any labeled multigraph into a simple graph, while, at the same time, pre-
serving the pairwise measurements and the underlying structure of the orig-
inal multigraph. As we shall discuss, applying closed-form solutions to an
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Chapter 5. Synchronization on multigraphs

expanded graph is not straightforward, given that, in the general case, the
estimated labeling for the replicas of the same vertex will not assign them
the same group element. As a matter of fact, the noise in the relative mea-
surements causes the integrity of the consistency constraints, including the
identity ones, to break when the graph is synchronized.

The main focus of this chapter is the introduction of the first synchro-
nization algorithm for multigraphs that is based on a principled constrained
eigenvalue optimization problem. Our method is a general solution that
can cope with any linear group, thus solving the intrinsic issues of edge
averaging.

Finally, in order to validate our theoretical results, we report the results
of synthetic experiments aimed at comparing the precision and accuracy of
our method with respect to edge averaging.

5.1 Challenges of multigraph synchronization

In this section, we give an overview of the possible approaches to synchro-
nization on measurement multigraphs, discussing the challenges that arise
when synchronizing graphs expanded with the MULTIGRAPHEXPAND al-
gorithm and exploring the current state of the art techniques such as edge
averaging. Our analysis will focus on the limitations of these approaches
and their inherent issues, while introducing the reader to the reasons behind
our method for synchronization on multigraphs.

For the purposes of this analysis, we are going to consider multigraphs
whose measurements are noisy, given that the noiseless case is not relevant
in real-world scenarios.

5.1.1 Synchronization on expanded graphs

We already established that any measurement multigraph can be expanded
into a simple graph by applying the MULTIGRAPHEXPAND algorithm. In
order to obtain an estimate for the labeling of the original multigraph, we
can apply the spectral or null-space solutions to the expanded graph.

In the general case, the labeling estimated using this approach does not
assign the same label to the replicas of a vertex in the original multigraph.
This is because, if ε 6= 0, a vertex labeling x̃ that satisfies all the consistency
constraints at once does not exist. Therefore, the vertex labeling x̃ obtained
by applying a closed-form solution will minimize ε at the cost of breaking
pairwise constraints. The result is that the identity constraints 1Σ introduced
by the MULTIGRAPHEXPAND algorithm between replicas are also broken,
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5.1. Challenges of multigraph synchronization

meaning that there is no guarantee that the same label will be assigned to
those replicas.

Let us provide a practical example to show how these issues impact on
the applicability of existing synchronization techniques in the context of
measurement multigraphs. Consider a simple R∗-labeled multigraph with
two global states and two noisy pairwise measurements z12,1 = 2.1 and
z12,2 = 1.8 and its expanded simple graph. It is clear that no vertex label
assignment exists such that ε = 0, i.e. there is no label assignment for
which all consistency constraints can be satisfied.

Figure 5.1: A simple measurement multigraph with noisy measurements. Notice how the
labels assigned to the edges that connect the same two vertices x1 and x2 are different.

Figure 5.2: The measurement graph obtained by applying the MULTIGRAPHEXPAND
algorithm to the measurement multigraph in Figure (5.1).

If we apply a closed-form solution on the expanded graph, in this case
the spectral solution, we obtain the following vertex labeling x̃:

x̃1,1 0.6741
x̃1,2 0.6509
x̃2 0.3491

Let us compute the edge labeling induced by x̃ as follows:

x̃1,1 ∗ x̃−1
2 1,9309

x̃1,2 ∗ x̃−1
2 1.8645

x̃1,1 ∗ x̃−1
1,2 1.0356
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Intuitively, these results show that the spectral solution is trying to find a
compromise between the pairwise measurements in order to minimize the
overall consistency error in the graph, which can be computed as follows:

ε = (2.1− 1, 9309)2 + (1.8− 1.8645)2 + (1− 1.0356)2

This has the inevitable side-effect that the vertex labels assigned to replicas
of x1, that is x1,1 and x1,2, are not equal, given that the constraint that links
them is broken to minimize ε.

The problem of aggregating or choosing the best label among the ones
assigned to replicas is not straightforward and can lead to sub-optimal re-
sults, especially for those groups for which averaging is not well defined.

For these reasons, we would like to have a guarantee that the algorithm
will not break the identity constraints between replicas. In other words, we
wish to find a compromise aimed at minimizing ε only on the edges that do
not connect replicas. The goal is to find a vertex labeling that assigns the
same exact labels to vertex replicas.

5.1.2 Sub-optimal solutions

In order to better understand the reasoning behind our contribution to the
problem of multigraph synchronization, let us introduce the current ap-
proaches to this problem and explain why their solutions are sub-optimal.

Vertex averaging

An approach to the problem of finding a common labeling for replicas is to
combine their labels by averaging them. This procedure is sub-optimal for
a number of reasons, including the fact that it requires a method to combine
an arbitrary number of elements of a group Σ. This is not always straight-
forward for groups for which averaging is not well defined. In addition, this
approach is all but general, since it requires modifications for each group Σ
on which synchronization is performed.

Edge averaging

Edge averaging consists in reducing the multi-edges in a multigraph to
simple ones by averaging their measurements. This suffers from several
shortcomings. First of all, averaging is well defined only for some groups.
Secondly, even when it is possible to average the multi-edges, the resulting
estimator has sub-optimal statistical properties.
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Weighted synchronization

So far, we assumed that all pairwise measurements in a group-labeled graph
are equally reliable. In some cases, measurements can be associated to a
weight wij , that indicates the importance or reliability of such measure-
ment. This results in a weighted graph G, which can be defined by an
adjacency matrix A = [wij], meaning that A will contain the weight of an
edge instead of just binary values to indicate the presence of an edge be-
tween vertices. In order to solve the problem of group-synchronization for
a weighted graph, we employ the same techniques seen for simple graphs,
with the only difference that the adjacency matrix is not binary anymore,
but instead contains the weights associated to each edge. The result is a de-
gree matrix D of the graph which differs slightly depending on the weight
assigned to each edge.

An interesting possibility is to increase the weight of the identity con-
straints 1Σ, introduced between the replicas, with respect to other pairwise
measurements. Theoretically, as the weight of the edges between replicas
increases, the vertex labeling for such vertices should converge to the same
value: breaking the identity constraints will negatively add to the consis-
tency error to a larger extent compared to other constraints, meaning that
they should become harder to break.

The downside of this approach is the need to set a dissimilarity threshold
between the labels of replicas under which we are satisfied with the results.
For instance, we may expect the average squared Frobenius norm of the
difference between the vertex labels of replicas to be lower than a certain
threshold µ:

2

n× (n− 1)

n−1∑
i=1

(
n∑

j=i+1

‖xk,i − xk,j‖F

)
< µ (5.1)

where xk,i and xk,j are the i-th and j-th replicas of vertex k respectively
and n is the number of replicas of k. Finding a set of weights wij that
ensures that this condition is satisfied is not straightforward and requires
manual tuning of the weights. Finally, it is important to stress that no mat-
ter the weights, the labels obtained with this method will never converge
to the same exact values. Therefore, this approach suffers from the same
problems introduced for the previous approaches, albeit to a limited extent.
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5.2 Constrained synchronization

In this section we introduce a novel method for multigraph synchronization
– named constrained synchronization – which approaches group-labeled
multigraphs from a new perspective: rather than averaging measures to col-
lapse a multi-edge to a simple one, it works on expanded multigraphs and
enforces identity constraints between the replicated vertices. This leads to
a constrained optimization problem for which we derive a general closed-
form solution that can be applied to graphs labeled with any linear group.

In section (5.2.1), we introduce a constrained eigenvalue optimization
problem and its solution which serves as the theoretical foundation of con-
strained synchronization. In section (5.2.2) we provide an intuition of how
constrained synchronization works and what it accomplishes. In section
(5.2.3) we describe how to determine the set of linear constraints that the
estimated vertex labeling must satisfy. Finally, in section (5.2.4) we for-
mally define and solve the constrained synchronization problem.

5.2.1 Constrained eigenvalue optimization problem

In this section, we introduce a variant of the following eigenvalue optimiza-
tion problem in [17]:

max
x

xᵀAx (5.2)

with the main difference being that x is subject to a set of linear constraints.
This problem is introduced in [15] and admits a closed-form solution.

Consider a symmetric matrix A ∈ Rd and a vector c such that cᵀc = 1.
Let us define the following optimization problem:

max
x

xᵀAx (5.3)

subject to the constraints:
xᵀx = 1 (5.4)

cᵀx = 0 (5.5)

Let:
L = xᵀAx− λ(xᵀx− 1) + 2µxᵀc (5.6)

where λ and µ are the Lagrange multipliers. Consider the derivative of (5.6)
and set it to zero:

Axᵀ − λx + µc = 0; (5.7)
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Let us multiply equation (5.7) on the left by cᵀ. Referencing equation
(5.14) and using the fact that cᵀc = 1, we obtain:

µ = −cᵀAx (5.8)

From (5.7) and (5.8), we obtain:

PAx = λx (5.9)

where P = (I−cᵀc). It is clear that Equation (5.9) is an eigenvalue problem
with P being a projection matrix since P2 = P.

The authors of [15] discuss the case in which x is subject to a set of lin-
ear constraints C, instead of a single constraint c, a case that is of particular
interest for the purposes of constrained synchronization. Let us replace the
constraint (5.14) with the set of constraints:

Cᵀx = 0 (5.10)

where C ∈ Rd×p with rank r. Then, the projection matrix P can be com-
puted as follows:

P = (I−CC−) (5.11)

where C− is the generalized inverse of matrix C. Therefore, the solution x̂
to the maximization problem (5.3) subject to the set of linear constraints en-
coded in C is equal to the eigenvector associated to the leading eigenvalue
of PA.

The same reasoning can be applied for the following minimization prob-
lem as well:

min
x

xᵀAx (5.12)

subject to the constraints:
xᵀx = 1 (5.13)

Cᵀx = 0 (5.14)

In this case, the solution to the problem is given by the eigenvector asso-
ciated to the smallest eigenvalue of PA, bearing in mind that, according
to [15], PA has at least r = rank(C) zero eigenvalues that should not be
considered.

5.2.2 Intuition for constrained synchronization

In this section we introduce the idea behind constrained synchronization by
analyzing a simple case on a minimal multigraph. The goal of this section
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is to give the reader an insight into how constrained synchronization works
before introducing it formally in the next sections.

Let us consider a synchronization problem defined on the minimalGL(2)-
labeled multigraph, containing vertices x1 and x2 connected by a single
multi-edge with multiplicity 2. We can expand it into a simple graph by
replicating x1 with two replicas, as shown in Figure (5.4).

Figure 5.3: The multigraph taken as an example in this section

Figure 5.4: The simple graph that is obtained by expanding the multigraph in Figure (5.3)

We write the matrix X of vertex labels and the matrix Z of edge labels
for the expanded graph in Figure (5.4):

X =

X1,1

X1,2

X2

 , Z =

 I2 I2 Z12,1

I2 I2 Z12,2

Z21,1 Z21,2 I2

 (5.15)

X1,1, X1,2 and X2 are elements ofGL(2), so X can be rewritten as follows:

X =



x(1,1),1 x(1,1),2

x(1,1),3 x(1,1),4

x(1,2),1 x(1,2),2

x(1,2),3 x(1,2),4

x2,1 x2,2

x2,3 x2,4


(5.16)
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where x(i,k),j is the j-th element of the vertex label of the k-th replica of
vertex i. k is omitted if a vertex is not a replica of another vertex.

Consider the null-space solution for solving the synchronization prob-
lem on GL(d) introduced in section (3.3.3). In general, i.e. Z12,1 6= Z12,2,
the labels X1,1 and X1,2 obtained by computing the eigenvectors corre-
sponding to the d = 2 smallest eigenvalues of D⊗ Id − ZA are not equal.

If we consider each column of X as an independent eigenvector, it is
possible to write a set of linear constraints to enforce the identity constraint
between X1,1 and X1,2. Let us write the constraints for the first eigenvector:{

x(1,1),1 = x(1,2),1

x(1,1),3 = x(1,2),3

(5.17)

and for the second eigenvector:{
x(1,1),2 = x(1,2),2

x(1,1),4 = x(1,2),4

(5.18)

If we consider the eigenvectors separately, it becomes clear that both sys-
tems of equations (5.17) and (5.18) enforce the same constraints on the
elements of their respective vectors. Given their equivalence, we consider
only the constraints referring to the first eigenvector in X.

Let us rewrite the constraints in (5.17) as follows:{
x(1,1),1 − x(1,2),1 = 0

x(1,1),3 − x(1,2),3 = 0
(5.19)

Referring to the definitions introduced in section (5.2.1), we introduce a
matrix C of linear constraints:

C =



1 0

0 1

−1 0

0 −1

0 0

0 0


(5.20)

so that the system of equations in (5.19) can be rewritten as Cᵀx = 0,
where x =

(
x(1,1),1, x(1,1),3, x(1,2),1, x(1,2),3, x2,1, x2,3

)ᵀ.
After properly defining C, it is sufficient to solve a constrained version

of the original problem by finding the eigenvectors x corresponding to the
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d = 2 smallest eigenvalues of D ⊗ Id − ZA subject to Cᵀx. In section
(5.2.4) we formally introduce a closed-form solution to this problem.

Having discussed a simple example on a minimal multigraph, in the
next section we show how to build the matrix of linear constraints C in the
general case of a GL(d)-labeled multigraph.

5.2.3 Constraints between vertex replicas

In this section, we discuss the general case of defining equality constraints
between vertex replicas when synchronization is performed on GL(d) and
an arbitrary number of vertices in the multigraph is replaced by an also
arbitrary number of replicas.

Let us consider two matrices A, B both belonging to group GL(d), i.e.
A,B ∈ Rd×d and det(A) 6= 0 and det(B) 6= 0:

A =

a1,1 . . . a1,d

. . .
. . . . . .

ad,1 . . . ad,d

 , B =

b1,1 . . . b1,d

. . .
. . . . . .

bd,1 . . . bd,d

 (5.21)

In order for the first column of A to be equal to the first column of B we
need to define a set of d linear constraints as follows:

a1,1 − b1,1 = 0

a2,1 − b2,1 = 0

. . .

ad,1 − bd,1 = 0

(5.22)

The same constraints apply to the other d− 1 columns of A and B, bearing
in mind a change in the subscript of ai,j and bh,k.

Let us consider the case in which we need to set an equality constraint
between the elements of the first column of k different matrices instead
of just two. Consider k invertible matrices X1,X2, . . . ,Xk ∈ Rd×d. The
elements in matrices X1,X2, . . . ,Xk must satisfy the following conditions:

x1,1 = x1,2 = · · · = x1,k

. . .

xd,1 = xd,2 = · · · = xd,k

(5.23)

where xi,j is the i-th element of the first column of matrix Xj . Let us rewrite
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the system of equations as follows:

x1,1 − x1,2 = 0

x1,2 − x1,3 = 0

. . .

x1,k−1 − x1,k = 0

,



x2,1 − x2,2 = 0

x2,2 − x2,3 = 0

. . .

x2,k−1 − x2,k = 0

, . . .



xd,1 − xd,2 = 0

xd,2 − xd,3 = 0

. . .

xd,k−1 − xd,k = 0

(5.24)
where xi,j is the same as above. Please consider that, in the equation above,
the system of equations is split just for clarity and should not be interpreted
as d separate systems.

From (5.24), we know that the number of linear constraints that need to
be introduced in order to ensure that the columns of matrices X1,X2, . . . ,Xk

are the same is equal to d × (k − 1), where d is the number of rows (and
columns) of matrices inGL(d) and k is the number of matrices to constrain.

Let us extend these results to the problem of synchronization on expanded
multigraphs. In section (3.3), we discussed how vertex labels can be col-
lected in a matrix X ∈ Rdn×d by stacking the labels of the n vertices in the
graph. Consider the case in which a vertex xj is replicated k times, so that,
in X, label Xj is replaced by k labels Xj,1, . . . ,Xj,k. We can assume with-
out any loss of generality that all labels of replicas are placed adjacently in
X as follows:

X =



...
Xj,1

Xj,2

...
Xj,k

...


(5.25)

Referencing the system of equations in (5.24), we can write a set of d(k−1)
linear constraints. Each constraint ci,j is a Rdn×1 vector defined as follows:

ci,j = [ 0, . . . , 1, . . . ,−1, . . . , 0 ]ᵀ (5.26)

with it having only two elements different from 0, corresponding to the
elements of the labels appearing in the constraint that c encodes. Vectors
ci,j are stacked horizontally in a matrix Cj of size dn× d(k − 1) encoding
the set of constraints that enforce the equality between replicas of Xj:

Cj = [ c1,j, c2,j, . . . , ck−1,j ] (5.27)
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If more than one vertex in a multigraph is expanded, then we obtain m
matrices Cj , where m is the number of replicated vertices. The number of
columns of each matrix Cj varies depending on the number of replicas the
vertex xj is replaced with.

Let C be the matrix containing the final set of linear constraints. C is
obtained by stacking the m matrices Cj horizontally as follows:

C = [ C1,C2, . . . ,Cm ] (5.28)

Let us define an algorithm that, given a mapping M between vertices in a
multigraph and their replicas in the expanded graph, returns the matrix of
linear constraints C that enforces the equality between labels of replicas for
the same vertex. In order to access the replicas of a vertex i in M, we use
the array-like notation M[i]: an index i corresponds to a replicated vertex
and M[i] returns the vector of replicas for i.

In Algorithm 5 we iterate through each replicated vertex v in M (lines 2 -
14) and get the vector of replicas mv for v (line 4). In lines 6 - 13 we encode
the constraints for the replicas of v, as specified in Eq. (5.24). In line 8 we
initialize c as a dn × 1 vector of zeros and in lines 9 - 10 we update c in
order to encode one of the equality constraints between the labels of the
replicas mv for v. The linear constraint in vertex form c is appended to C
(line 11).

Algorithm 5 Building the matrix of linear constraints
Input: A mapping M between vertices in the underlying multigraph and their replicas in
the expanded graph
Output: A matrix C containing the set of linear constraints that enforce the equality
between the labels of replicas of the same vertex in the underlying multigraph

1: d = number of rows (columns) of matrices in GL(d)
2: for every replicated vertex v ∈ M do
3: . Get the vector of vertices that are replicas of v in the expanded graph
4: mv = M[v]
5: . Add linear constraints between the elements of replicas
6: for j from 1 to d do
7: for k from 1 to length(m)− 1 do
8: c = 0dn . c is a dn× 1 vector filled with zeros
9: c(d×mv[k] + j − d) = 1

10: c(d×mv[k + 1] + j − d) = −1
11: C = [C, c]
12: end for
13: end for
14: end for
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5.2.4 Solving the constrained synchronization problem

In this section, we define the algorithm for constrained synchronization
applied to any Σ-labeled measurement multigraph by combining the results
introduced in sections (5.2.1) and (5.2.3).

Consider a Σ-labeled multigraph Γ. Let us apply the MULTIGRAPH-
EXPAND algorithm from section (4.5) and obtain the expanded graph of
Γ. This graph is described by ZA, the matrix containing the consistency
constraints or edge labels, and A, its adjacency matrix.

Let us consider the definition of null-space solution from section (3.3.3).
Proposition 1 ( [1]). A consistent vertex labelling X satisfies the following
equation:

ZAX− (D⊗ Id)X = 0 (5.29)
where D denotes the degree matrix of the graph.

This proposition is at the basis of the null-space solution for synchro-
nization on a simple graph, which, due to noise, solves Equation (5.29) by
least squares:

min
X>X=Id

‖MX‖2
F (5.30)

where M = ZA−(D⊗Id) is defined from the matrix of incomplete relative
measurements. It can be proved that synchronization admits a closed-form
solution as the null-space of M [1], which in turn can be derived from the
least eigenvectors of M>M.

Synchronizing the expanded graph by solving Equation (5.30) for the
unknown labels X falls short, as it does not guarantee that replicated ver-
tices have been assigned the same label. Indeed, the constraints given by
edges labeled with the identity are treated as “soft” ones, like all the others.

In order to solve this problem, let us apply the algorithm introduced in
section (5.2.3) and obtain the matrix C containing the set of linear con-
straints that enforce the identity constraint between the labels of replicas.
We are therefore led to a constrained version of Equation (5.30):

min
X
‖MX‖2

F subject to X>X = Id, C>X = 0, (5.31)

where C>X = 0 enforces the equality between replicated vertices. The
constrained problem (5.31) admits a closed-form solution as demonstrated
in the following theorem.

Theorem 1. The solution to problem (5.31) is given by the eigenvectors
corresponding to the d smallest non-zero eigenvalues of PM>M, where
P = I−CC− and C− = (C−C)−1C− is the pseudo-inverse of C.
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Proof. Problem (5.31) is equivalent to

min
X

tr
(
X>(M>M)X

)
s. t. X>X = Id, C>X = 0. (5.32)

The Lagrangian of the cost function to this problem is

L = tr
(
X>(M>M)X

)
+ tr

(
∆(X>X− Id)

)
+

tr
(
ΓC>X)

)
,

(5.33)

where ∆ and Γ are matrices of unknown Lagrange multipliers. Setting to
zero the derivatives with respect to X we have

∂L
∂X

= 2M>MX + 2X∆ + CΓ> = 0. (5.34)

Revisiting the approach described in [15] and section (5.2.1), we left-multiply
by C>, then using C>X = 0, we obtain

2C>M>MX + C>CΓ> = 0, (5.35)

from which we get
Γ> = −2C−M>MX. (5.36)

Plugging (5.36) into (5.34) yields(
I−CC†

)
M>MX = −X∆. (5.37)

Let P = I−CC− and X = [x1, . . . ,xd], the last equation implies that the
eigenvectors of PM>M are stationary points for (5.33), and the minimum
is obtained when xi are the orthogonal eigenvectors corresponding to the d
smallest non-zero eigenvalues of PM>M. From [15], at least r = rank(C)
eigenvalues of PM>M are equal to 0 and their corresponding eigenvectors
are the columns of C.

Even if P is symmetric, PM>M may not be necessarily symmetric,
nonetheless:

Lemma 1. The matrix PM>M has real eigenvalues.

Proof. Since P is a projection matrix (P2 = P) we get:

eig(PM>M) = eig(P2M>M) = eig(PM>MP). (5.38)

Thus the eigenvalues of PM>M are the same of those of PM>MP which
is symmetric (and hence has real eigenvalues).
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Let us construct X as a dn× d matrix by juxtaposing the least d eigen-
vectors of PM>M, which are real thanks to the above lemma. According
to Theorem 1, such a matrix solves Problem (5.31): this is a relaxed prob-
lem, as the feasible set is given by X ∈ Rdn×dn with X>X = Id, instead
of X ∈ Σn. In order to recover the block-wise structure of X in Equation
(3.8), it is hence necessary to project each d× d block of X onto the group
Σ. When Σ = SO(3), for instance, the final projection can be done via
Singular Value Decomposition. This produces our closed-form solution to
multigraph synchronization. In the presence of outliers, robustness can be
easily gained via Iteratively Reweighted Least Squares (IRLS), as in [1].

5.2.5 Summary

To sum up, in order to apply constrained synchronization, we first expand
a Σ-labeled measurement multigraph with the MULTIGRAPHEXPAND al-
gorithm of section (4.5) to dilate it to a simple graph with replicated ver-
tices. The hard constraints between replicas are then integrated with the
constrained Problem (5.31), for which a closed-form solution is derived
using Theorem 1. Finally, each block of the solution is projected on the
group Σ. This approach is therefore general and can be applied to any linear
group, such as SO(3), which is relevant for a variety of vision applications.

5.2.6 Computational complexity

Constrained synchronization is generally more computationally expensive
with respect to the spectral and null-space methods for simple measurement
graphs.

From a memory complexity point of view, constrained synchronization
requires to store an additional matrix C which, asymptotically, contains a
maximum of dn2 linear constraints, hence C ∈ Rdn×dn2 , although C is
usually very sparse. In addition, constrained synchronization is applied to
expanded graphs obtained from labeled multigraphs, which can be signifi-
cantly larger than simplified measurements graphs obtained by combining
multi-edges.

Time complexity is also affected by the computation of the generalized
inverse C− of C needed to obtain the projection matrix P. This inversion
can result in a potentially significant performance penalty if C is a very
sizable matrix.
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5.2.7 Implementation

The following MATLAB code snippet show how constrained synchroniza-
tion can be adapted to solve the synchronization problem on SO(3). In the
code snippet below, M represents the mapping between the replicas in the
expanded simple graph and its underlying multigraph.

Listing 5.1: Constrained synchronization - SO(3)
1 f u n c t i o n R = c o n s t r a i n e d _ s y n c h ( Z , A, C ,M)
2 n = s i z e (A, 1 ) ;
3 D = kron ( d i a g ( sum (A, 2 ) ) , eye ( 3 ) ) ;
4 B = Z - D;
5 P = eye ( s i z e (B , 1 ) ) - C * p inv (C) ;
6 [Q,O] = e i g s ( P * (B ' * B) , r ank (C) +3 , ' s m a l l e s t a b s ' ) ;
7

8 % F i l t e r t h e s m a l l e s t r ank (C) e i g e n v a l u e s a c c o r d i n g t o Golub
9 [¬ , o rd ] = s o r t ( d i a g (O) ) ;

10 Q = Q ( : , o rd ) ;
11 Q = Q ( : , r ank (C) +1:end ) ;
12

13 % Remove a m b i g u i t y
14 i = M{ 1 } ( : , 1 ) ;
15 Q = Q / (Q( i * 3 - 2 : i * 3 , : ) ) ;
16

17 % P r o j e c t i o n on to SO ( 3 )
18 synch = c e l l ( 1 , n ) ;
19 f o r i = 1 : n
20 [U,¬ ,V] = svd (Q(3* i - 2 : 3 * i , : ) ) ;
21 synch { i } = U * d i a g ( [ 1 , 1 , d e t (U*V ' ) ] ) * V ' ;
22 end
23

24 % Merge l a b e l s from r e p l i c a s and c o r r e c t f o r i n d e x d i f f e r e n c e s
25 R = c e l l ( 1 , s i z e (M, 2 ) ) ;
26 k = 1 ;
27 f o r i = 1 : s i z e (M, 2 )
28 i f s i z e (M{ i } , 1 ) > 0
29 R{ i } = R{M{ i } ( : , 1 ) } ;
30 e l s e
31 R{ i } = R{k } ;
32 k = k + 1 ;
33 end
34 end
35 end
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5.3 Experimental validation

We evaluate the performance of constrained synchronization and compare
it to existing techniques for handling measurement multigraphs. The cur-
rent state of the art for group synchronization on measurement multigraphs
is represented by edge averaging. It consists in turning a measurement
multigraph into a simple graph by simplifying its multi-edges by averaging
their respective edge labels in order to apply spectral formulation intro-
duced in section (3.3.2).

Constrained synchronization is a general technique that is compatible
with GL(d) and its subgroups, therefore, for the purposes of this section,
the tests will be performed on group SO(3), given its many applications in
the field of Computer Vision, including rotation synchronization, structure
from motion, 3D point cloud registration and SLAM.

We compare the estimated and ground-truth orientations by considering
the optimal isometry that aligns them as the error metric. As a matter of
fact, we use the Φ6 distance function Φ6 : SO(3) × SO(3) → R+ defined
in [13] as follows:

εi = || log(x(i)x̃(i)ᵀ)||F . (5.39)

Edge averaging in SO(3) is achieved by averaging the labels of the multi-
edges using the (non-robust) chordal `2-mean [22].

All the methods were implemented in MATLAB and were tested on an
Intel Core i9 9900k at stock speeds coupled with 16 GB of 3200 MHz
RAM.

We ran synthetic experiments on SO(3)-labeled multigraphs. For each
run, we built a measurement multigraph Γ = (V , E , s, t, z) with parameters
(n, p,m) where n indicates the number of vertices in V , p indicates the
probability that any two vertices are connected by an edge and m indicates
the average multiplicity of the multi-edges in Γ. The ground truth rotation
matrices x(i) were instantiated by uniformly sampling Euler angles, hence
relative rotations were generated as:

zij = x(i)x(j)ᵀeij (5.40)

with eij ∈ SO(3) being a small multiplicative noise. The Euler angles
for the perturbation eij are sampled from a Gaussian distribution with zero
mean and a standard deviation σR chosen based on the experiment. Each
experiment consisted of 100 random runs and the results were averaged to
get more accurate results.

We performed the first batch of experiments on SO(3)-labeled multi-
graphs with n = 10 vertices, p = 0.75 and a varying average multiplicity
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for the multi-edges m. For each run, a multigraph is built by generating
n random ground truth rotation matrices and by corrupting relative orien-
tations with a small multiplicative noise. The perturbation is generated by
sampling Euler angles from a Gaussian distribution with zero mean and
σR = π/8. Results of these tests are reported in Figure (5.5) and show
that constrained synchronization and edge averaging are tied in terms of
accuracy for low multi-edge multiplicity values m, while constrained syn-
chronization delivers consistently better results for larger values of m. If
we look at the precision, constrained synchronization delivers significantly
better results for all values of m, which gives credit to our hypothesis that
constrained synchronization is intrinsically more robust to noise and out-
liers compared to edge averaging.
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Figure 5.5: The plots shows the accuracy and the precision of constrained synchronization
with respect to the average multiplicity m of the multigraph

For the second batch of tests, we ran experiments on 12 levels of Gaus-
sian noise σ and measured how the accuracy and precision scale for both
techniques. The experiments were run on a SO(3)-labeled multigraph with
parameters n = 10, p = 0.75 and m = 5.

In Figure (5.6), results show that both the accuracy and the variance of
the rotation error tend to increase less rapidly for constrained synchroniza-
tion compared to edge averaging with respect to σ. Again, these results
give credit to our hypothesis that constrained synchronization is, in gen-
eral, more robust and returns results that are more reliable compared to
those from edge averaging.
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Figure 5.6: The plots shows the accuracy and the precision of constrained synchronization
with respect to the standard deviation σ of the additive Gaussian noise
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CHAPTER6
Application: Partitioned synchronization

6.1 Introduction

The goal of this chapter is to introduce a novel and efficient approach to
group synchronization on large-scale data sets by solving the synchroniza-
tion problem on subgraphs of the original measurement graph. Partitioning
a synchronization problem into multiple sub-problems and combining their
solutions is not trivial, as the labeling estimated for each problem is defined
up to a global (right) product with any group element. The multigraph for-
mulation introduced in the previous chapters allows us to remove the local
ambiguities and lift the multiple labelings for the subgraphs to a single con-
sistent labeling on the original graph. To this end, we build and synchronize
a multigraph, from now on called patch multigraph, in which a vertex rep-
resents the transformation that must be applied to a subgraph in order to fix
its group ambiguity.

This novel approach to group synchronization allows us to overcome the
most prominent limitations related to existing closed-form solutions when
dealing with large-scale data sets. As a matter of fact, traditional synchro-
nization techniques tend to be quite slow, especially robust ones, when mea-
surement graphs are large and dense. Partitioning the problem allows us to
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better exploit parallelism and multi-threading in modern computer archi-
tectures, achieving a good trade-off between accuracy and execution time.
In [3], the authors discuss how, in general, the computational complexity
of solving the synchronization problem grows quadratically with respect to
the number of vertices in the input graph. Therefore, an added benefit of
partitioned synchronization is that it allows us to divide the large data set in
chunks and store them on separate processing nodes.

Furthermore, in this chapter we introduce an efficient and effective ap-
proach based on spectral clustering that addresses the issue of finding a par-
tition of a measurement graph so that the induced subgraphs are as densely
connected as possible to exploit the error compensation properties of syn-
chronization techniques. The main idea is that if the local solutions to the
sub-problems are of better quality, then it will be easier to extract more
accurate results from the combined solution.

Finally, we include experiments and results that show how our approach
performs on real large-scale data sets and how it compares to partitioned
synchronization performed by employing current state of the art and com-
peting techniques such as edge averaging.

6.2 Reasons for partitioned synchronization

The idea of partitioning a synchronization problem into smaller sub-problems
(which are easier to solve) is present in a number of works in the context of
structure from motion [7, 14], simultaneous localization and mapping [27]
and motion segmentation [4]. Such techniques, however, do not exploit the
multigraph formulation – that is introduced in this work for the first time in
the literature – but they (either implicitly or explicitly) turn the multigraph
into a simple one by averaging multi-edges.

In this section, we summarize the most prominent reasons for partitioned
synchronization and why it can be particularly helpful for handling large-
scale data sets.

Efficiency

Partitioned synchronization brings several benefits from an efficiency point
of view, in terms of both time and memory required to solve the synchro-
nization problem, especially on large data sets. In general, the execution
time of synchronization techniques, especially robust ones, grows quadrat-
ically with respect to the number of vertices in the graph. Even the spec-
tral and null-space solutions, which are not robust and use efficient sparse
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solvers such as eigs or svds, can see their execution time grow quadratically
in the number of vertices if the measurement graph is densely connected.

From a memory complexity point of view, it is worth remembering that,
depending on the size of the dataset, the spectral and null-space solutions
may require to store two potentially massive matrices, that is the vertex
labeling X, which is a dn × d matrix, and the edge labeling Z, which is a
dn × dn matrix. Having the ability to partition both X and Z in multiple
sub-matrices and process them independently on separate processing nodes
can result in dramatic savings in terms of memory and execution time.

Exploiting multithreading and parallelism

As mentioned earlier, if the synchronization problem can be divided into
smaller, independent sub-problems, then it is possible to synchronize the
disjoint sub-problems in parallel, fully exploiting the multithreading capa-
bilities of modern computer architectures.

Data safety and privacy

Partitioned synchronization allows for data sets to be segregated so that
each processing node can see only a portion of the whole measurement
graph (see e.g., [16]) The ability not to expose the whole dataset to all the
processing nodes can be important when the safety of data and privacy are
of significant importance.

6.3 Outline

In this section we provide a brief overview of the algorithm for partitioned
synchronization applied to a Σ-labeled measurement graph Γ = (V , E , z).
The idea behind partitioned synchronization is to decompose the problem
of group synchronization on the whole measurement graph Γ into an arbi-
trary number of smaller synchronization problems on subgraphs of Γ. The
solutions to the sub-problems are then combined in order to obtain a ver-
tex labeling for the original graph Γ. Thus, we can say that partitioned
synchronization is loosely inspired by the well known divide-and-conquer
paradigm for algorithm design.

In this work, we introduce two variants of partitioned synchronization: i)
with subgraph augmentation and ii) without subgraph augmentation. Both
variants tackle the problem of removing local ambiguities and lifting the
labelings obtained for the synchronization sub-problems to a single consis-
tent labeling on the original graph. Each variant has its own strengths and
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weaknesses and will be presented as a sequence of steps or a pipeline that
takes as input a measurement graph, partitions it and estimates its vertex
labeling by combining the solutions to the independent sub-problems.

6.3.1 Partitioned synchronization with subgraph augmentation

The first variant we introduce is partitioned synchronization with subgraph
augmentation. Given a partition of the input measurement graph, subgraph
augmentation consists in turning the partition into overlapping subsets that,
in turn, induce overlapping subgraphs.

Starting from an input measurement graph Γ, the following steps are
performed sequentially in order to estimate the vertex labeling for the input
graph:

1. Graph partitioning
The input measurement graph is partitioned into an arbitrary number
of disjoint subgraphs.

2. Subgraph augmentation
Each subgraph is augmented in order for it to share vertices with other
subgraphs.

3. Synchronization on subgraphs
The synchronization problem is solved on the independent sub-problems.

4. Synchronization on patch multigraph
The vertices shared between subgraphs yield a labeled multigraph
that, once synchronized, provides estimates for the ambiguity factors
of each sub-problem.

5. Merge solutions to sub-problems
The solutions from the independent sub-problems are combined into
a single vertex labeling for the input measurement graph.

In section (6.4), we introduce the problem of graph partitioning applied
to a generic measurement graph Γ, while highlighting the problem of han-
dling the ambiguity for each of the resulting sub-problems. In section (6.5),
we introduce a novel approach to solve the issues related to the ambiguity
by allowing subgraphs to share vertices (subgraph augmentation) that yield
a multigraph synchronization problem. Finally, in section (6.6) we combine
these results to provide a formal description of the partitioned synchroniza-
tion with subgraph augmentation algorithm.
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Figure 6.1: The algorithm for partitioned synchronization with subgraph augmentation
illustrated as a pipeline with a measurement graph as the input and the estimated
vertex labels as the output.

6.3.2 Partitioned synchronization w/o subgraph augmentation

The second variant we introduce is partitioned synchronization without sub-
graph augmentation. As opposed to the technique introduced in section
(6.3.1), this approach does not require disjoint subgraphs to share vertices
to fix the ambiguity in the sub-problems. Instead, the ambiguity problem is
solved by synchronizing a multigraph built by considering the cut-edges of
the input measurement graph.

Starting from an input measurement graph Γ, the following steps are
performed sequentially in order to estimate the vertex labeling for the input
graph:

1. Graph partitioning
The input measurement graph is partitioned into an arbitrary number
of disjoint subgraphs.

2. Synchronization on subgraphs
The synchronization problem is solved on the independent sub-problems.
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3. Synchronization on patch multigraph
The edges cut after partitioning the input graph into disjoint subgraphs
yield a labeled multigraph that, once synchronized, provides estimates
for the ambiguity factors of each sub-problem.

4. Merge solutions to sub-problems
The solutions from the independent sub-problems are combined into
a single vertex labeling for the input measurement graph.

In section (6.7), we provide a formal description of the partitioned syn-
chronization without subgraph augmentation algorithm.

Figure 6.2: The algorithm for partitioned synchronization without subgraph augmentation
illustrated as a pipeline with a measurement graph as the input and the estimated vertex
labels as the output.
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6.4 Measurement graph partitioning

In this section we lay the groundwork to partitioned synchronization by
presenting our approach to graph partitioning. In particular, we introduce
the problem of finding a partition of a measurement graph that induces
subgraphs that are as densely connected as possible. The reason behind this
requirement is that closed-form synchronization techniques work best when
applied to graphs that contain many edges: in section (3.2), we discussed
how cycles in graphs can be employed in order to compensate for errors
in the pairwise measurements. Therefore, it is reasonable to assume that
subgraphs of densely connected vertices should provide better performance
when applying synchronization on them.

In order to achieve this goal, we employ the spectral clustering algo-
rithm, which provides an efficient solution to the problem of identifying
densely connected clusters in a graph.

Figure 6.3: A graph partitioned into 3 densely connected subgraphs.

6.4.1 Spectral clustering for graph partitioning

The problem of finding densely connected subgraphs has a rich literature
in the field of graph theory and can be solved by applying a variety of dif-
ferent techniques [25], [18]. In this work, we chose the spectral clustering
algorithm for finding the densest subgraphs of a measurement graph. More
specifically, we chose the normalization of [31], also referred to as nor-
malized spectral clustering according to Shi and Malik, because it tends to
balance the number of edges among clusters, which is the relevant param-
eter for the computational complexity of the sparse methods we are using
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for synchronization.
In [40], the author provides an introduction to spectral clustering with a

particular focus on the criteria behind how the algorithm groups elements
together. Starting from the definition of similarity sij between two elements
i and j, consider a graph of elements such that edges are assigned weights
that are equal to the similarity of the elements they connect. Spectral clus-
tering finds a partition of elements so that the edges that link elements be-
longing to separate clusters have very low weights and the edges within the
same group have high weights. Therefore, if we can successfully define a
similarity metric for vertices in a measurement graph, then spectral clus-
tering will output a partition able to satisfy the requirements established so
far.

Let us consider a Σ-labeled graph Γ = (V , E , z). In order to apply the
spectral clustering algorithm, the first step is to define how the similarity
between vertices in V is computed. In the context of measurement graphs,
the similarity between two vertices i and j depends exclusively on whether
there is a labeled edge connecting such vertices, that is if (i, j) ∈ E . There-
fore, sij can assume only two values: sij = 0 when vertices i and j are
not connected by an edge and sij = 1 otherwise. In other words, two ver-
tices share any similarity if and only if there is an edge connecting them in
E . From the definition of similarity between vertices sij , let us define the
similarity matrix SΓ for graph Γ:

SΓ = [sij] =

{
1 if (i, j) ∈ E
0 otherwise

(6.1)

Having defined a metric to establish the similarity between vertices in
a Σ-labeled graph, the problem is to partition Γ so that edges connecting
vertices in different clusters have small similarity weights, while edges con-
necting vertices in the same cluster have high similarity values. This prob-
lem is equivalent to the one solved by the spectral clustering algorithm.

Let us consider the similarity matrix SΓ. It is straightforward to see that
such matrix is equivalent to the adjacency matrix A defined for the graph
G = (V , E) obtained from Γ. Let us compute the degree matrix D from the
adjacency matrix A or, equivalently, SΓ:

D = diag(A1n×1) (6.2)

where 1n×1 denotes a n×1 vector filled with ones. From the degree matrix
D, it is possible to compute the unnormalized graph Laplacian as follows:

L = D−A (6.3)
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From the normalized graph Laplacian, we can compute the first k gener-
alized eigenvectors u1, ..., uk of the generalized eigenproblem Lu = λDu,
where k is the number of clusters we wish to find in the graph. Let U ∈
Rn×k be the matrix containing u1, . . . , uk as columns. We apply the k-
means algorithm by considering each row of U as an independent data
point. The result is a set of k clusters that forms a partition of the original
pairwise measurement graph so that each cluster induces a densely con-
nected subgraph.

6.4.2 Implementation

The following MATLAB code snippet implements the Normalized Spectral
Clustering according to Shi and Malik [31] for a labeled graph of pairwise
measurements. The algorithm requires two inputs: the adjacency matrix
for the graph and the desired number of clusters k.

Listing 6.1: MATLAB implementation of Normalized spectral clustering according to Ng,
Jordan, and Weiss

1 f u n c t i o n g ro up s = s p e c t r a l _ s h i _ m a l i k (A, k )
2

3 % Maximum number o f i t e r a t i o n s f o r k - means
4 m a x i t e r = 1000 ;
5

6 % Normal ized s p e c t r a l c l u s t e r i n g a c c o r d i n g t o Shi and Malik ( 2 0 0 0 )
7 % u s i n g Unnormal ized L a p l a c i a n L = D - W
8 D = d i a g (1 . / s q r t ( sum (A) + eps ) ) ;
9 L = D - A;

10 [U,¬] = e i g s ( L , D, k , ' s m a l l e s t a b s ' ) ;
11

12 g r ou ps = kmeans (U, k , ' m a x i t e r ' , m a x i t e r , ' S t a r t ' ,U( 1 : k , : ) , . . .
13 ' EmptyAction ' , ' s i n g l e t o n ' , ' D i s t a n c e ' , ' c i t y b l o c k ' ) ;
14

15 end

6.4.3 Ambiguity from graph partitioning

The main challenge that we need to overcome when considering graph par-
titioning is related to how the solutions of the sub-problems are combined
in order to estimate a consistent vertex labeling for the original graph. In
this section, we provide a detailed explanation of these inherent problems
and discuss a possible solution to overcome these limitations.

So far, we applied spectral clustering in order to partition the vertex set
V of a measurement graph into separate subsets or clusters so that every
vertex v ∈ V belongs to a single cluster. As mentioned in section (3.2),
a consistent labeling in a Σ-labeled graph is defined up to a global (right)

79



Chapter 6. Application: Partitioned synchronization

product with any element of group Σ. This means that, for instance, the
solution to the synchronization problem in the general case of GL(d) is
defined up to a right multiplication by an invertible d× d matrix.

Let us provide an explanation for the ambiguity in the solution of group
synchronization by considering the closed-form solutions introduced in sec-
tion (3.2) and, in particular, the spectral solution applied to GL(d). The
vertex labels for a GL(d)-labeled graph are recovered by computing the
eigenvectors that correspond to the d leading eigenvalues of matrix (D ⊗
Id)
−1ZA. The d eigenvectors span a linear subspace, therefore, any ba-

sis for such space is a solution. A change of the basis in the eigenspace
can be seen as a right multiplication by an element in GL(d) that is also
invertible. A consequence of such property is that, if the synchronization
problem is partitioned into multiple sub-problems, then each solution for
a sub-problem is defined up to a d × d invertible matrix that is unique for
such sub-problem. In other words, if we were to solve the synchronization
problem on k independent partitions of the measurement graph, then there
would be k different elements upon which the solutions would be defined.

Figure 6.4: The figure shows how this simple measurement graph is partitioned into 3
subgraphs and how the vertex labels recovered for each sub-problem are defined up to
3 different elements A1, A2, A3 of GL(d).

Observation 1. The presence of multiple factors on which the individual
solutions depend upon makes it impossible to merge the multiple label as-
signments and to recover a common, consistent vertex labeling for all the
vertices in the complete measurement graph.

Proof. Let us consider consider a noiseless Σ-labeled graph Γ = (V , E , z)
with i, j ∈ V and (i, j) ∈ E . Consider the vertex labels estimated for
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vertices i and j by solving the synchronization problem on the entire graph
Γ, respectively Xi and Xj . It is possible to write the consistency constraint
between i and j as follows:

Zij = XiX
−1
j (6.4)

Let us partition Γ into two sub-graphs Γ1 = (V1, E1, z1) and Γ2 =
(V2, E2, z2) so that V1∩V2 = ∅, i ∈ V1 and j ∈ V2. Let us solve the synchro-
nization problem independently for the two sub-graphs and recover labels
X̃i and X̃j for i and j respectively. In general, Xi 6= X̃i and Xj 6= X̃j ,
given that the solutions found for different graphs (or even sub-graphs of
the same graph) are defined up to a global (right) product with an element
in Σ.

Let us compute the ratio between the vertex labels recovered from the
original measurement graph and the partitioned graphs:

M1 = X−1
i X̃i

M2 = X−1
j X̃j

(6.5)

Let us write the consistency constraint Zij involving the labels of ver-
tices i and j recovered after partitioning the graph and plug in the results of
Equation (6.5):

X̃i = ZijX̃j

(XiM1) = Zij(XjM2)

(XiM1) = XiX
−1
j (XjM2)

XiM1 = XiM2

(6.6)

Therefore, the vertex labeling for graph Γ obtained by merging the solutions
found for the two sub-graphs Γ1 and Γ2 satisfies the consistency constraint,
i.e. it is consistent, if and only if:

M1 = M2 (6.7)

Let us make an observation to illustrate how the ambiguity problem can
be solved if M1 and M2 are known in the previous example. Without any
loss of generality, assume that the solution to the synchronization problem
for the original measurement graph is defined up to the unit element Id. If
we apply the transformations M−1

1 and M−1
2 to the solutions for Γ1 and

Γ2 respectively, the result is a change of basis for the eigenspaces of both
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solutions. The labels will be defined up to the same element Id, given that:

XiM1M
−1
1 = XiId

XjM2M
−1
2 = XjId

(6.8)

Therefore, the solutions to the sub-problems will be defined up to a (right)
product multiplication by Id, which is also true for the solution to the orig-
inal measurement graph. In other words, after this change of basis, the
solutions for Γ, Γ1 and Γ2 will be defined up to the same element ofGL(d).
Thus, the ambiguity problem is resolved and the solutions can be merged.

Of course, this procedure for merging the labeling for vertices belong-
ing to different sub-graphs requires a solution for the entire measurement
graph and knowledge of elements Mi, thus defying the whole purpose of
partitioned synchronization. In the next sections we will discuss how the
ambiguity problem can be solved either with or without sharing vertices
between disjoint subgraphs.

6.5 Subgraph augmentation by vertex sharing

In this section we introduce a novel approach to the solution of the ambi-
guity problem introduced in section (6.4.3) by formulating it as a group-
synchronization problem on a labeled multigraph. More specifically, the
issue of ambiguity is solved by allowing subgraphs to have vertices in com-
mon. We call this process subgraph augmentation.

As described later, shared vertices between subgraphs yield a multigraph
synchronization problem that, when solved, allows us to reconstruct the ele-
ments of group Σ upon which the solutions to the sub-problems are defined.

6.5.1 Single vertex sharing

Let us introduce subgraph augmentation by considering a simple Σ-labeled
graph Γ = (V , E , z) and a partition P dividing the graph into two sub-
graphs or clusters Γ1 = (V1, E1, z1) and Γ2 = (V2, E2, z2) with V1∩V2 = ∅.
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Figure 6.5: The simple example graph we will refer to in this section.

As discussed in section (6.4.3), if the synchronization problem is solved
independently on the two sub-graphs Γ1 and Γ2, then the solution for Γ1

will be defined up to an element M1 ∈ Σ, while the solution for Γ2 will
be defined up to M2 ∈ Σ. In general, M1 6= M2 and, therefore, in order
to merge the solutions, the next step is to apply a transformation to the
vertex labels recovered from either of the two clusters in order to make
sure that the ambiguity elements M1 and M2 for Γ1 and Γ2 respectively
will converge to the same value. Intuitively, if M1 = M2, then merging the
solutions for the two independent sub-problems is straightforward because
it is as if the labels estimated from the two separate sub-problems were the
result of a single, whole synchronization problem.

Let us consider any vertex v ∈ V that is connected to two vertices v1

and v2 such that v 6= v1 6= v2 and v1 ∈ V1 and v2 ∈ V2.

Figure 6.6: A simple graph partitioned into two subgraphs (blue and orange). In this
case, we select v = 4, given that it is connected to both v1 = 2 and v2 = 5 which
belong to the blue and orange clusters respectively.

In order to solve the ambiguity problem for the partitioned graph, let us
take vertex v and assign it to both clusters before extracting the two sub-
graphs Γ1 and Γ2.

83



Chapter 6. Application: Partitioned synchronization

Figure 6.7: The updated clusters and sub-graphs after assigning v = 4 to both the blue
and orange clusters.

Consider the two labels assigned to vertex v from the two synchroniza-
tion problems, namely Xv,1 and Xv,2. The transformation that changes the
basis for the eigenspace of Xv,1 into that of Xv,2 is defined as the ratio
between the two labels:

M12 = (Xv,1)−1Xv,2 (6.9)

given that Xv,1M12 = Xv,1X
−1
v,1Xv,2 = Xv,2.

If the transformation M12 is applied to all labels in the solution for the
synchronization problem on Γ1, then it will result in a change of basis for
the eigenspace such that the solutions for both Γ1 and Γ2 are defined up to
a single element in Σ, thus merging the two solutions found for the inde-
pendent sub-graphs.

For noiseless measurement graphs, the result is that both vertex labels
found for vertex v will converge to the same exact value. In the case of
noisy measurement graphs, though, the estimate of the transformation be-
tween the basis of the eigenspaces for Γ1 and Γ2 will not be perfectly accu-
rate. This estimate is provided by the labels for v recovered from the two
noisy measurement sub-graphs. The presence of noise introduces errors in
the reconstruction of both the labels and the transformation between the
basis for the two eigenspaces. Therefore, merging the solutions for the two
sub-problems can introduce errors determined by two factors:

• Errors due to noise in the independent sub-graphs for the recovered
vertex labels

• Errors in the reconstruction of the factors upon which the solutions are
defined due to the noisy vertex labels on which it is based on

As we shall discuss in later sections, a solution to this problem is to
gather more samples in terms of vertex labels to estimate the factors upon
which the solutions for the individual sub-graphs are defined.
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6.5.2 Handling multiple subgraphs

So far, we considered the case in which the measurement graph is divided
into two subgraphs. In the general case of multiple clusters, every pair of
subgraphs Γi and Γj that share a vertex allows us to compute a transfor-
mation of type Mij , as described in section (6.5.1). If we consider every
ambiguity factor Mi in the solution for a sub-problem as an unknwon state
(see section (6.4.3)) and the transformations of type Mij as pairwise mea-
surements between such states, it is possible to build a new measurement
graph we call patch graph.

Definition 6.5.1. (Patch graph – for subgraph augmentation)
Let us consider a Σ-labeled measurement graph Γ = (V , E , z) and a set
S = {Γ1, . . . ,Γk} for which every element Γi is a sub-graph of Γ.
The patch graph for Γ and its sub-graph set S is defined as a Σ-labeled
graph Φ = (VΦ, EΦ, zΦ), where VΦ contains a vertex for each Γi ∈ S and
(i, j) ∈ EΦ if and only if ∃v ∈ V such that ∃Γi ∈ S ∧ ∃Γj ∈ S such that
v ∈ Vi ∧ v ∈ Vj , with Vi and Vj the vertex sets for Γi and Γj respectively.
In addition,

z : E → Σ (6.10)

and is defined as follows:

z(i, j) = X−1
v,iXv,j (6.11)

where v is the vertex shared by Γi and Γj , Xv,i and Xv,j are the vertex
labels for v estimated for sub-graphs Γi and Γj respectively.

In other words, a patch graph for a measurement graph Γ contains a
number of vertices that is equal to the number of subgraphs identified in it,
while every edge (i, j) corresponds to the transformation that needs to be
applied to the solution for subgraph Γi for the solutions to Γi and Γj to be
defined up to the same element of group Σ.
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Figure 6.8: An example of how a patch graph is built starting from a measurement graph
and two sub-graphs having a vertex in common.

The introduction of the patch graph for partitioned synchronization al-
lows us to exploit the properties of measurement graphs and group synchro-
nization introduced in section (3.2) to get more accurate and robust results
when merging the solutions for the sub-problems. For starters, it is possible
to solve the synchronization problem for the patch graph and reconstruct its
global states. The global states for the patch graph represent the elements
upon which the solutions for the corresponding sub-graphs are defined. In
other words, if we are able to solve the synchronization problem for a patch
graph,we can recover the various ambiguity factors and merge the vertex
labels from different sub-problem in one sweep. In addition, formulating
the problem of merging solutions as a synchronization problem on a mea-
surement graph, allows us to exploit all of the advantages related to graphs,
including cycle consistency and the ability to consider multiple pairwise
information sources at once. The graph formulation implies that the propa-
gation of the error is mitigated, hence providing better results compared to
a more standard spanning tree or cascaded approach to label merging.
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Figure 6.9: The figure above shows a measurement graph partitioned into 3 subgraphs.
Each pair of subgraphs shares a vertex. The figure below shows the patch graph re-
sulting from the subgraphs highlighted in the figure above. Notice how the patch graph
is complete because every pair of subgraphs has a vertex in common.

6.5.3 Multiple vertex sharing

In this section, we introduce a novel approach to the problem of merging
the solutions of multiple synchronization problems on subgraphs of a sin-
gle measurement graph by solving a synchronization on a properly defined
patch multigraph.

In section (6.5.1), we discussed how the quality of the solution for the
synchronization problem on the original measurement graph depends not
only on the quality of the solutions to the sub-problems, but also on the
merging phase of the algorithm. The techniques introduced in sections
(6.5.1) and (6.5.2) can be augmented by allowing pairs of subgraphs to
share multiple vertices instead of a single one. The main advantage of mul-
tiple vertex sharing between subgraphs is the ability to sample more trans-
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formations of type Mij between any pair of subgraphs Γi and Γj , thus ob-
taining more pairwise measurements that can be added to the patch graph.

Let us discuss the consequences of multiple vertex sharing on the defi-
nition of the patch graph in (6.5.1) by considering a simple Σ-labeled graph
Γ = (V , E , z) and a partition of V dividing the graph into two subgraphs
(or clusters) Γ1 = (V1, E1, z1) and Γ2 = (V2, E2, z2) with V1 ∩ V2 = ∅. Let
us consider a set of vertices S = {v1, v2, . . . , vk} with S ⊆ V such that
∀v ∈ S, v is connected to at least two vertices va and vb such that va ∈ V1

and vb ∈ V2.

Figure 6.10: The simple example graph we will refer to in this section. Notice how vertices
4 and 5 are connected to vertices both in the blue and orange clusters.

If the synchronization problem is solved independently on the two sub-
graphs, then the solutions to the sub-problems will be defined up to a (right)
product by two different ambiguity elements in Σ, that is M1 and M2 for
Γ1 and Γ2 respectively.

Let us follow the approach introduced in section (6.5.1) and assign some
or all of the vertices in S to both clusters before extracting the two sub-
graphs Γ1 and Γ2. After solving the synchronization problem on Γ1 and
Γ2 independently, consider the vertex labels recovered for the elements in
S. For every vi ∈ S , the synchronization sub-problems return two vertex
labels of type Xvi,1 and Xvi,2. This means that, for every vi ∈ S , we are
able to write a transformation of type M12 = X−1

vi,1
Xvi,2 that can be applied

to change the basis for the eigenspace associated to the solution for Γ1, thus
merging the two solutions for the independent subgraphs.

A clear implication of this approach is that if we were to build the patch
graph for the measurement graph Γ and its subgraphs, the result would
not be a simple Σ-labeled graph, but instead a Σ-labeled multigraph. As
a matter of fact, the number of transformations available between any two
subgraphs (or global states) is no longer limited to 1. Instead, we can es-
timate up to k different pairwise measurements, where k is the number of
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vertices in S shared between the two subgraphs.

Definition 6.5.2. (Patch multigraph – for subgraph augmentation)
Let us consider a Σ-labeled measurement graph Γ = (V , E , z) and a set
S = {Γ1, . . . ,Γk} for which every element Γi is a sub-graph of Γ.
The patch multigraph for Γ and its subgraph set S is defined as a Σ-labeled
multigraph Φ = (VΦ, EΦ, sΦ, tΦ, zΦ), where VΦ contains a vertex for each
Γi ∈ S and EΦ contains, for every pair of subgraphs Γi and Γj , a multi-
edge from i to j of multiplicity mij = |Vi ∩ Vj|, with Vi and Vj the vertex
sets for Γi and Γj respectively. In addition,

z : E → Σ (6.12)

and is defined as follows:

z(e) = X−1
v,iXv,j (6.13)

where v ∈ Vi ∩ Vj , sΦ(e) = i, tΦ(e) = j and Xv,i and Xv,j are the vertex
labels for v estimated for subgraphs Γi and Γj respectively. sΦ, tΦ are the
source and target function respectively, as in the definition of the generic
group-labeled multigraph.

The fact that, in the general case, the patch graph needs to be upgraded to
a multigraph to allow for multiple vertex sharing does not pose a significant
problem. As a matter of fact, the constrained synchronization technique
introduced in section (5.2) allows to efficiently solve the synchronization
problem for the patch multigraph independently from the group Σ on which
synchronization is performed.

Figure 6.11: An example of how a patch multigraph is built starting from a measurement
graph and two subgraphs having multiple vertices in common.
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Advantages

Multiple vertex sharing between subgraphs brings several advantages in
the merging phase of the partitioned synchronization algorithm. The multi-
graph formulation is more robust to noise and outliers, given that multi-
edges can encode more information. In addition, the results obtained for
the constrained synchronization technique reported in section (5.3) trans-
late to this case, providing concrete proof of the increased robustness of
our solution merging technique.

An important point to consider is that the improvements to accuracy re-
lated to multiple vertex sharing do not come just from the fact that the patch
graph is actually a multigraph, but also from the fact that the subgraphs ob-
tained from the partition of the measurement graph need to be augmented
or enlarged for vertices to be shared across clusters. The increased size
of the subgraphs means that more pairwise measurements are available for
each sub-problem, producing more accurate sub-solutions.

Drawbacks

Although multiple vertex sharing tends to provide more robust results com-
pared to single vertex sharing, it does come at a potentially significant com-
putational cost. Depending on the number of vertices shared between clus-
ters, the size of the subgraphs may become significant enough to offset the
increased efficiency provided by partitioned synchronization.
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6.6 Partitioned synchronization with subgraph augmentation

In sections (6.4) and (6.5) we discussed about the inherent ambiguity in the
solutions to the synchronization sub-problems introduced after partitioning
the graph and provided a method for reconstructing those ambiguity factors
by solving the synchronization on a patch multigraph. In this section, we
piece together the results obtained so far to provide a formal description of
the various steps that make up the pipeline for the partitioned synchroniza-
tion algorithm with subgraph augmentation.

Let us consider a measurement graph Γ = (V , E , z). In order to solve
the partitioned synchronization problem on Γ, let us apply the following
steps sequentially.

6.6.1 Graph partitioning

Find a partition of k disjoint subsets of the vertex set V for Γ by apply-
ing the spectral clustering technique for measurement graphs introduced
in section (6.4). The result is a set W containing subsets of V , where
W = {V1, . . . ,Vk} satisfies the condition that ∀Vi ∈ W : Vi ⊆ V .

6.6.2 Subgraph augmentation

For every pair of subsets Vi,Vj ∈ W , the set of vertices that can be shared
between the induced subgraphs Γi = (Vi, Ei, zi) and Γj = (Vj, Ej, zj) is
defined as follows:

Sij = {v ∈ Vi ∪ Vj | v ∈ Vi ∧ v ∈ Vj} (6.14)

For every subset Vi ∈ W , let us initialize V ′i = Vi and add it to the setW ′.
For every pair of elements Vi,Vj ∈ W , let us choose a subset Vij ⊆ Sij and
update the elements V ′i,V ′j ∈ W ′ as follows:

V ′i = V ′i ∪ Vij
V ′j = V ′j ∪ Vij

(6.15)

thus adding shared vertices to both clusters. The result is that the sets V ′u ∈
W ′ are not disjoint anymore.

In practice, the number of vertices shared between subgraphs is an hy-
perparameter that can be tuned based on the accuracy required from the
reconstruction. In general, a larger number of vertices shared between clus-
ters produces better results at the cost of increased execution time.
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6.6.3 Synchronization on subgraphs

Let us build the measurement subgraphs and solve the independent syn-
chronization sub-problems. From the elements ofW ′, which are still sub-
sets of V for Γ, let us build k measurement sub-graphs Γ1, . . . ,Γk. Every
sub-graph Γi is defined as Γi = (V ′i, Ei, zi), with V ′i ∈ W ′ and Ei defined as
follows:

Ei = {(u, v) ∈ E | u ∈ V ′i ∧ v ∈ V ′i} (6.16)

Let us solve the synchronization problem for every measurement subgraph
Γi and obtain k matrices of type Xi, each containing the vertex labels esti-
mated for the set of vertices V ′i:

Xi =

 Xi,1

...
Xi,|V ′

i|

 (6.17)

As discussed in section (6.4.3), each solution will be defined up to an ele-
ment Mi that is unique for each subgraph Γi.

6.6.4 Synchronization on patch multigraph

Let us build the patch multigraph Φ for Γ and its subgraphs Γ1, . . . ,Γk. The
patch multigraph is a tuple Φ = (VΦ, EΦ, sΦ, tΦ, zΦ), in which VΦ contains k
elements (or global states), EΦ is a set such that e ∈ EΦ and (sΦ(e), tΦ(e)) =
(i, j) if and only if ∃v ∈ V such that v ∈ V ′i ∧ v ∈ V ′j . The multiplicity
mij of the multi-edge connecting vertices (i, j) is equal to the number of
vertices in common between subgraphs Γi and Γj , that is:

mij = |V ′i ∩ V ′j| (6.18)

zΦ is a function of type:
zΦ : EΦ → Σ (6.19)

and is defined as follows:

zΦ(e) = X−1
vh,i

Xvh,j (6.20)

with e ∈ EΦ such that (sΦ(e), tΦ(e)) = (i, j) and vh ∈ (V ′i ∩ V ′j). In other
words, there is an edge in EΦ connecting two global states for every vertex
shared between the subgraphs represented by such states, each with its own
edge label deriving from the estimate of the transformation between their
ambiguity factors.
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Let us solve the group synchronization problem for the patch multi-
graph Φ by applying the constrained synchronization technique introduced
in (5.2.4). We obtain a matrix XΦ containing the vertex labels that represent
the solution to the synchronization problem for Φ:

XΦ =

XΦ,1

...
XΦ,k

 (6.21)

6.6.5 Solution merging

The last step is to make sure that the solutions to the k sub-problems are
defined up to a global (right) product with the same group element. In order
to achieve this, for every matrix XΦ,i in XΦ, let us apply the following
transformation to the vertex labels recovered from the solution to the i-th
subgraph Xi:

Xi =

 Xi,1X
−1
Φ,i

...
Xi,|V ′

i|X
−1
Φ,i

 (6.22)

After all transformations are applied and the problem of ambiguity is
solved, we need to build the matrix X containing the estimated vertex labels
for the input measurement graph Γ. As usual, X is a matrix of matrices Xi,
each representing the estimated label for vertex v ∈ V . These estimates
can be recovered from the solutions to the sub-problems, given that they
are now defined up to the same group element.

In the case in which more estimates for the label of a vertex v ∈ V
are available, we can choose to pick the one which results in the lowest
consistency error or combine them if an aggregation function can be defined
for group Σ.

6.6.6 Advantages and disadvantages

In our experiments, which are reported in section (6.8), partitioned syn-
chronization with subgraph augmentation performs very well, sometimes
even outperforming traditional synchronization techniques on the whole
measurement graph when data sets are noisy. The choice to estimate the
transformations between sub-problems by considering shared vertices in
different subgraphs provides reliable measurements that allow us to merge
the solutions in an accurate manner. Augmenting the subgraphs has also
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the implicit effect of making them larger, thus increasing the amount of
information available for solving the synchronization sub-problems.

This approach has two clear downsides, though. Firstly, augmenting
subgraphs makes the independent problems harder to solve, given that the
number of vertices in a graph determines the complexity of the synchro-
nization problem. Secondly, and perhaps more importantly, the last step of
the algorithm, that is solution merging, requires the averaging of multiple
estimates for the label of a vertex shared between subgraphs. This may be
a challenge that is easy to overcome if synchronization is performed on a
group for which an aggregation function exists, e.g. SO(3), but may lead
to sub-optimal results in other scenarios. Discarding some labels instead of
aggregating them also constitutes a sub-optimal approach and may lead to
worse results, especially if the data sets are noisy.
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6.7 Partitioned synchronization w/o subgraph augmentation

In this section we introduce partitioned synchronization without subgraph
augmentation, a variant of partitioned synchronization that exploits relative
measurements between vertices in disjoint clusters in order to estimate the
pairwise transformations for the patch multigraph.

Graph partitioning remains unchanged compared to the algorithm in sec-
tion (6.6), with the only exception that clusters are not augmented. Syn-
chronization on subgraphs is also unchanged: each subgraph (or patch) Γi

is synchronized independently using standard synchronization techniques,
obtaining a total of k different labelings Xi, where k is the number of sub-
graphs induced by the partition.

6.7.1 Patch multigraph building

The last step is to remove the local ambiguities and lift the multiple labeling
Xi to a single consistent labeling on the original graph. To this end we build
a patch multigraph defined as follows. The vertices of the patch multigraph
correspond to the patches Γ1, . . .Γk, the multi-edge connecting Γu and Γv

consist of all the cut edges, i.e., the edges that have one end in Γu and the
other end in Γv.

The vertex labels in each patch must be multiplied by an unknown group
element in order to bring them in a common frame. Let these two transfor-
mations be Mu ∈ Σ and Mv ∈ Σ, respectively, then the edge (u, v) in the
patch multigraph should be labeled with MuM

−1
v . In order to find this la-

bel, let us consider one edge that connects vertex i ∈ Γu and vertex j ∈ Γv,
and let Xi,u and Xj,v be the respective labels. The edge label is:

Zi,j = (Xi,uMu)(Xj,vMv)
−1 = Xi,uMuM

−1
v X−1

j,v (6.23)

Hence:
MuM

−1
v = X−1

i,uZi,jXj,v (6.24)

The patch multigraph for partitioned synchronization without subgraph
augmentation is defined as follows:

Definition 6.7.1. (Patch multigraph – without subgraph augmentation)
Let us consider a Σ-labeled measurement graph Γ = (V , E , z) and a set
S = {Γ1, . . . ,Γk} for which every element Γu is a subgraph of Γ.
The patch multigraph for Γ and its subgraph set S is defined as a Σ-labeled
multigraph Φ = (VΦ, EΦ, sΦ, tΦ, zΦ), where VΦ contains a vertex for each
Γu ∈ S and EΦ contains, for every pair of subgraphs Γu and Γv, a multi-
edge from u ∈ VΦ to v ∈ VΦ of multiplicity muv equal to the number of
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cut-edges between Γu and Γv. In addition,

z : E → Σ (6.25)

and, given vertices i and j in Γu and Γv respectively, is defined as follows:

z(e) = X−1
i,uz(i, j)Xj,v (6.26)

with Xi,u being the label for vertex i estimated in Γu, Xj,v being the label
for vertex j estimated in Γj , sΦ(e) = u, tΦ(e) = v and z(i, j) being the
consistency constraint between vertices (i, j) in Γ. sΦ, tΦ are the source
and target function respectively, as in the definition of the generic group-
labeled multigraph.

6.7.2 Synchronization on the patch graph

The constrained synchronization technique on multigraphs introduced in
section (5.2) is applied to the patch multigraph to synchronize all the patch
transformations M1 . . .Mk and eventually transform the local label assign-
ments Xu into a unique, globally consistent labeling.

Simple graph Partitioning Patch graph

Figure 6.12: Partitioned synchronization: A simple graph (on the left) is partitioned in
three patches Γ1,Γ2,Γ3. Each patch is synchronized individually. To solve for the
local ambiguities, a patch multigraph is built (on the right), whose nodes correspond
to patches and multi-edges contain the cut edges (drawn in red). The patch multigraph
is synchronized with our multigraph approach.

6.7.3 Advantages and disadvantages

This technique overcomes the issues of partitioned synchronization with
subgraph augmentation discussed in section (6.6.6). Firstly, subgraphs do
not need to be augmented, therefore the complexity of the sub-problems
does not increase. Secondly, the algorithm does not output multiple labels
for the same vertex, meaning that we are not required to define an aggrega-
tion function or to discard estimates.
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On the other hand, this approach usually results in less accurate results,
since the estimates for the transformations between patches are based on
relative measurements which may be very noisy or even outliers. In addi-
tion, the resulting patch multigraph can have multi-edges with very high
multiplicity values, thus making multigraph expansion very computation-
ally intensive and negating the advantages of partitioning. A solution to this
problem is to sample a subset of the cut-edges when estimating the trans-
formations, thus increasing the efficiency of the algorithm at a small cost in
accuracy.
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6.8 Experimental validation

In this section, we evaluate partitioned synchronization with subgraph aug-
mentation introduced in section (6.6) and compare it to the edge averaging
technique in the context of partitioned synchronization. For the purposes
of this section, we call our method MULTISYNC. We define edge aver-
aging as the simplification of a patch multigraph, obtained following the
procedure introduced in (6.6), into a simple graph by averaging the labels
of the individual edges in each multi-edge. We also compared our approach
to partitioned synchronization with the baseline performance provided by
the synchronization problem defined on the entire measurement graph. We
refer to this problem as full synchronization.

For the experimental validation, we considered partitioned synchroniza-
tion problems in SO(3).We used large-scale image data sets taken from [42]
which provide the input graph and estimates of relative rotations. The out-
put of Bundler [35] was taken as ground-truth, as customarily done in the
literature. All the experiments were performed in MATLAB on an Intel
Core i9 9900k at stock speeds coupled with 16 GB of 3200 MHz RAM.

For every dataset, we perform 50 independent runs, each time sampling
a random subset of vertices to share between sub-graphs. Results are aver-
aged and reported in the following sections. The number of clusters c for
every data set is computed from the number of vertices n in the measure-
ment graph according to this formula:

c =
⌈
0.54
√
n
⌉

(6.27)

where the coefficient 0.54 has been manually tuned on the whole data set.
Analogously to section (5.3), we compare the estimated labels x̃with the

ground-truth ones x as the angular distance between rotations [13], which
is defined as:

εi = || log(x(i), x̃(i)ᵀ)|| (6.28)

6.8.1 Non robust experiments

The first batch of experiments is performed using non robust techniques for
synchronization. The synchronization sub-problems are solved indepen-
dently by spectral decomposition (EIG) and the solutions are merged by
solving the synchronization problem on the patch multigraph as follows:

• In MULTISYNC, we use the constrained synchronization algorithm in-
troduced in (5.2.4)
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• In edge averaging we average the edge labels and project them in
SO(3) and use spectral decomposition (EIG) on the resulting graph

For reference we also report the results of full synchronization performed
on the whole measurement graph using spectral decomposition (EIG).

Table (6.6) reports the mean/median angular error and the execution
time of all the analysed methods. Results show that MULTISYNC consis-
tently outperforms edge averaging in terms of accuracy on all the cases.
In some instances, the median error obtained with MULTISYNC is close or
outperforms full synchronization. We interpret this improvement in per-
formance compared to full synchronization as the result of partitioning the
problem into subgraphs that mitigate the effect of erroneous measurements
or outliers.

MULTISYNC has the important advantage of being significantly less
computationally expensive with respect to full synchronization. In Table
(6.2) we observe a significant reduction in the execution time for MULTI-
SYNC especially for data sets that are very large. For smaller datasets we
observe a regression in performance due to the added overhead of multi-
graph synchronization. Nonetheless, larger data sets show up to a 2x im-
provement in performance. Of course, partitioned synchronization trades
increased performance for a relatively small loss in accuracy. In Table (6.6),
results show that MULTISYNC is generally a bit slower when compared to
edge averaging due to the added overhead of the multigraph expansion,
though it generally retains a significant lead against full synchronization.
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Table 6.1: Partitioned synchronization with subgraph augmentation in SO(3) on real
data sets from [42]. The average error ε̄, median error ε̂, and computational time t are
reported for constrained synchronization and edge averaging. Partitioned synchro-
nization on the sub-problems is solved with spectral decomposition (EIG) and edge
averaging is also not robust. Full synchronization performances are included but are
intended only as an ideal reference as it works on different assumptions, having at
disposal the full graph instead of partitioning it.

Edge averaging Multisync Full sync

Data set n c ε̄ ε̂ t ε̄ ε̂ t ε̄ ε̂ t

Ellis Island 247 9 12.6 3.9 0.27 11.3 3.1 0.31 6.5 2.8 0.17

Piazza del Popolo 345 11 16.6 3.7 0.26 15.5 3.4 0.32 12.9 3.3 0.24

NYC Library 376 11 29.9 8.3 0.26 29 5.9 0.29 8.4 5.5 0.41

Madrid Metropolis 394 11 39.8 13.4 0.35 32.9 10.9 0.39 20.8 7.5 0.53

Yorkminster 458 12 15.3 6.2 0.25 15.2 5.9 0.29 8.1 5.8 0.82

Montreal N. Dame 474 12 11.4 2.7 0.31 11.4 2.6 0.35 6.6 2.2 0.75

Tower of London 489 13 18.6 5.6 0.24 17.9 4.9 0.28 6.8 3.9 0.82

Notre Dame 553 13 7.9 3.4 0.72 7.7 3 0.76 7.7 3.4 1.12

Alamo 627 14 11.1 3.2 1.1 11 2.9 1.18 7.7 3.2 1.27

Gendarmenmarkt 742 15 72.18 74.88 0.89 71.90 73.27 0.94 66.13 76.52 1.06

Vienna Cathedral 918 17 22.3 8.2 0.58 21 7.8 0.62 20.7 6 2.59

Union Square 930 17 16.1 9.7 0.46 13.8 7.2 0.52 10.7 8.6 1.17

Roman Forum 1102 17 44.9 24.2 0.61 35.8 22.7 0.75 65.8 21.5 1.69

Piccadilly 2508 21 83.1 77 8.38 80.8 62.5 8.43 63.9 35 14.4

Cornell Arts Quad 5530 41 77.4 48.7 6.23 75.9 46.1 6.3 72.3 43.8 58.6
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Table 6.2: Comparison between non robust partitioned synchronization with constrained
synchronization for the patch multigraph and non robust full synchronization. Percent
changes for the median error ε̂ and execution time t are reported.

Partitioned sync vs Full sync

Data set n ε̄ (% change) ε̂ (% change) t (% change)

Ellis Island 247 74% 11% 82%

Piazza del Popolo 345 20% 3% 33%

NYC Library 376 245% 7% -29%

Madrid Metropolis 394 58% 45% -36%

Yorkminster 458 88% 2% -65%

Montreal N. Dame 474 73% 18% -53%

Tower of London 489 163% 26% -66%

Notre Dame 553 0% -12% -32%

Alamo 627 43% -9% -7%

Gendarmenmarkt 742 9% -4% -11%

Vienna Cathedral 918 1% 30% -76%

Union Square 930 29% -16% -56%

Roman Forum 1102 -46% 6% -56%

Piccadilly 2508 131% 79% -41%

Cornell Arts Quad 5530 5% 5% -89%

6.8.2 Robust experiments

The second batch of experiments is performed using robust techniques for
synchronization. The synchronization sub-problems are solved indepen-
dently by applying MPLS (Message Passing Least Squares in [33]), which
represents the current state of the art for robust group synchronization on
the datasets in [42]. The solutions are merged by solving the synchroniza-
tion problem on the patch multigraph as follows:

• In MULTISYNC we use the constrained synchronization method aug-
mented with IRLS, as in [1], to provide robustness to outliers

• In edge averaging the labels of the multi-edges are averaged using
the Weiszfeld algorithm [21], thus collapsing the multi-graph into a
simple graph; then, the resulting graph is synchronized with MPLS
[33].

Table (6.3) reports the mean/median angular error and the execution
time of all the analysed methods. MULTISYNC consistently outperforms
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edge averaging in terms of accuracy on all the cases. The worse accuracy
on the Gendarmenmarkt data set is caused by the fact that the graph is rela-
tively sparse and lacks cycle information, as already observed in [32]. The
great advantage of MULTISYNC is that it trades relatively little accuracy in
exchange for a major speed up in the execution time of the algorithm. Some
of the larger data sets, such as Piccadilly, show up to a 13x improvement
in this regard. As a matter of fact, In Table (6.4), results for MULTISYNC
are even more favorable compared to full synchronization compared to the
results for non robust techniques. In some of the larger datasets, we trade
less than 10% accuracy for a very significant speed up in performance.

Table 6.3: Partitioned synchronization with subgraph augmentation in SO(3) on real
data sets from [42]. The average error ε̄, median error ε̂, and computational time t are
reported for constrained synchronization and edge averaging. Partitioned synchro-
nization on the sub-problems is solved robustly with MPLS [33] and edge averaging is
performed with the Weiszfeld algorithm [21]. Full synchronization is also solved with
MPLS. Full synchronization performances are included but are intended only as an
ideal reference as it works on different assumptions, having at disposal the full graph
instead of partitioning it.

Edge averaging Multisync Full sync

Data set n c ε̄ ε̂ t ε̄ ε̂ t ε̄ ε̂ t

Ellis Island 247 9 3.9 0.59 0.77 3.9 0.58 0.81 3 0.47 3.4

Piazza del Popolo 345 11 3.9 1.01 0.83 3.7 1.02 0.97 3.3 0.86 3.47

NYC Library 376 11 3.7 1.43 2.79 3.6 1.34 2.88 3.16 1.27 4.8

Madrid Metropolis 394 11 8.6 2.41 2.75 8 2.23 2.82 6.6 1.12 1.18

Yorkminster 458 12 6.91 2.75 1.66 6.23 2.26 1.84 3.5 1.58 4.83

Montreal N. Dame 474 12 1.29 0.53 8.32 1.27 0.5 8.44 1.12 0.5 10.1

Tower of London 489 13 4.56 2.3 1.27 4.49 2.05 1.35 4.21 2.33 3.91

Notre Dame 553 13 3.12 0.68 2.81 3.12 0.66 2.88 2.7 0.65 22

Alamo 627 14 5.9 1.1 4.08 5.88 1.07 4.12 3.7 1.02 26.5

Gendarmenmarkt 742 15 38.13 20.61 2.38 34.12 12.53 2.49 40.82 6.09 39.9

Vienna Cathedral 918 17 21.4 1.45 3.07 21.3 1.31 3.11 6.2 1.27 50.2

Union Square 930 17 15.9 6.62 2.49 15.6 6.3 2.59 6.18 3.6 6.61

Roman Forum 1102 17 6.28 3.37 3.83 5.15 2.52 3.94 2.81 1.4 12.1

Piccadilly 2508 21 7.68 3.01 17.6 7.3 2.76 17.7 4.42 1.94 241

Cornell Arts Quad 5530 41 3.6 1.98 18.4 3.4 1.88 18.5 3.2 1.71 191
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Table 6.4: Comparison between robust partitioned synchronization with constrained syn-
chronization for the patch multigraph and robust full synchronization with MPLS. Per-
cent changes for the median error ε̂ and execution time t are reported.

Partitioned sync vs Full sync

Data set n ε̄ (% change) ε̂ (% change) t (% change)

Ellis Island 247 30% 23% -76%

Piazza del Popolo 345 12% 19% -72%

NYC Library 376 14% 6% -40%

Madrid Metropolis 394 21% 99% 139%

Yorkminster 458 78% 43% -62%

Montreal N. Dame 474 13% 0% -16%

Tower of London 489 7% -12% -65%

Notre Dame 553 16% 2% -87%

Alamo 627 59% 5% -84%

Gendarmenmarkt 742 -16% 106% -94%

Vienna Cathedral 918 244% 3% -94%

Union Square 930 152% 75% -61%

Roman Forum 1102 83% 80% -67%

Piccadilly 2508 65% 42% -93%

Cornell Arts Quad 5530 6% 10% -90%

6.8.3 Additional testing

Partitioned synchronization without subgraph augmentation: We eval-
uated the performance of partitioned synchronization without subgraph aug-
mentation and compared it to its counterpart with subgraph augmentation.
Table (6.5) shows the performance of this method under the same condi-
tions and parameters as the robust experiments conducted in section (6.8.2).

In the majority of test cases, this variant of partitioned synchronization
trades accuracy for marginal improvements in execution time compared
to synchronization with subgraph augmentation. Although these improve-
ments in efficiency can definitely make a difference in certain scenarios,
these results give credit to our recommendation of using subgraph augmen-
tation whenever possible, given that the small efficiency gains do not justify
the loss in accuracy.

Other synchronization methods: As already noted, MULTISYNC can be
seen as a general framework that is agnostic about the synchronization tech-
nique used on subgraphs. This aspect is investigated in Table (6.6), which
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Table 6.5: Partitioned synchronization without subgraph augmentation in SO(3) on real
data sets from [42]. The average error ε̄, median error ε̂, and computational time t are
reported for constrained synchronization and edge averaging. Partitioned synchro-
nization on the sub-problems is solved robustly with MPLS [33] and edge averaging is
performed with the Weiszfeld algorithm [21]. Full synchronization is also solved with
MPLS. Full synchronization performances are included but are intended only as an
ideal reference as it works on different assumptions, having at disposal the full graph
instead of partitioning it.

Edge averaging MULTISYNC Full sync

Data set n c ε̄ ε̂ t ε̄ ε̂ t ε̄ ε̂ t

Ellis Island 247 9 3.56 0.73 1.02 3.49 0.68 1.07 3 0.47 3.4

Piazza del Popolo 345 11 5.62 1.86 1.27 5.22 1.41 1.38 3.3 0.86 3.47

NYC Library 376 11 4.91 3.35 0.93 4.24 2.32 1.01 3.16 1.27 4.8

Madrid Metropolis 394 11 7.84 3.19 1.13 7.14 2.52 1.18 6.6 1.12 1.18

Yorkminster 458 12 5.96 3.98 1.33 4.98 2.91 1.37 3.5 1.58 4.83

Montreal N. Dame 474 12 2.67 1.02 1.32 2.11 0.87 1.41 1.12 0.5 10.1

Tower of London 489 13 6.43 3.51 1.07 5.54 2.74 1.12 4.21 2.33 3.91

Notre Dame 553 13 4.25 1.92 3.82 3.43 0.85 3.87 2.7 0.65 22

Alamo 627 14 6.89 1.63 4.21 6.42 1.57 4.28 3.7 1.02 26.5

Gendarmenmarkt 742 15 39.54 21.18 2.29 34.32 12.68 2.34 40.82 6.09 39.9

Vienna Cathedral 918 17 15.73 4.87 3.88 11.01 3.73 3.92 6.2 1.27 50.2

Union Square 930 17 7.71 3.88 3.65 7.25 3.67 3.71 6.18 3.6 6.61

Roman Forum 1102 17 10.03 9.12 4.95 6.91 3.39 5.01 2.81 1.4 12.1

Piccadilly 2508 21 19.89 10.21 17.45 17.47 8.21 17.61 4.42 1.94 241

Cornell Arts Quad 5530 41 8.64 3.29 17.88 6.25 2.71 18.02 3.2 1.71 191
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shows the performance of MULTISYNC coupled with different synchroniza-
tion methods, namely EIG-IRLS [1], L1-IRLS [12] and R-GODEC [2].
The state-of-the-art MPLS [32] is only reported in Table 6.3. EIG-IRLS
results are not reported on Cornell Arts Quad because it did not reach con-
vergence.

It turns out that different performances of the various methods on the
full graph reflect on the partitioned case: for instance, R-GoDec is the
fastest solution whereas L1-IRLS is the most accurate. With respect to
full synchronization, again we see that MULTISYNC strikes a good balance
between accuracy and computational burden.

Table 6.6: Performances of MULTISYNC leveraging on different techniques on sub-
graphs, for synchronization in SO(3) on real data sets [42]. The median error ε̂,
and computational time t are reported.

EIG-IRLS L1-IRLS R-GoDec

MULTISYNC Full sync MULTISYNC Full sync MULTISYNC Full sync

Data set n c ε̂ t ε̂ t ε̂ t ε̂ t ε̂ t ε̂ t

Ellis Island 247 9 1.15 0.43 1.18 0.82 1.05 0.41 0.57 2.35 1.48 0.23 1.00 0.23

Piazza del Popolo 345 11 1.78 1.18 1.02 2.24 1.84 0.53 0.98 3.55 1.86 0.24 1.48 0.49

NYC Library 376 11 3.24 3.15 1.98 1.65 2.02 0.39 1.33 2.36 2.82 0.47 3.20 1.35

Madrid Metropolis 394 11 4.01 3.83 4.43 1.79 2.68 0.57 1.01 4.20 3.94 0.29 4.07 0.49

Yorkminster 458 12 2.91 2.85 1.81 3.18 2.86 1.07 1.69 2.29 2.85 0.43 2.69 2.03

Montreal N. Dame 474 12 2.12 6.92 0.59 4.09 1.01 3.67 0.58 7.10 1.02 0.52 0.85 1.05

Tower of London 489 13 2.98 3.74 2.79 2.43 2.83 1.20 2.63 1.94 2.89 0.46 3.28 2.11

Notre Dame 553 13 1.23 5.22 0.74 7.46 1.22 25.94 0.65 29.11 1.57 1.79 1.05 1.10

Alamo 627 14 1.99 2.01 1.19 11.05 1.87 1.84 1.09 32.22 1.61 0.79 1.48 1.67

Gendarmenmarkt 742 15 26.88 8.19 76.97 11.30 14.81 2.12 28.85 12.01 37.36 1.01 28.70 5.83

Vienna Cathedral 918 17 4.72 2.88 1.62 18.23 3.92 1.68 1.37 56.80 2.53 1.59 2.08 9.26

Union Square 930 17 18.95 4.13 4.93 6.48 4.33 1.05 3.97 4.82 20.17 1.57 7.16 10.58

Roman Forum 1102 17 7.89 6.11 1.86 15.46 3.85 2.20 2.27 12.46 5.54 1.12 7.54 14.77

Piccadilly 2508 21 39.55 54.05 24.87 284.87 9.01 8.93 1.89 287.23 11.79 12.24 13.36 47.13

Cornell Arts Quad 5530 41 - - - - 5.49 30.10 1.98 73.51 17.13 28.24 13.21 586.6
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CHAPTER7
Conclusions and future work

In this work, we studied – for the first time – the task of synchronization
on group-labeled multigraphs. Traditionally, synchronization problems are
defined on simple graphs and do not cope with multiple measurements be-
tween unknown states. We instead explored this possibility by introducing
a novel and general multigraph synchronization framework that allows us
to account for multiple measurements between states.

After formally introducing the theoretical framework (section 4.2), we
designed MULTIGRAPHEXPAND, an iterative greedy algorithm for expand-
ing any labeled multigraph into a simple graph (section 4.5). The algo-
rithm is designed for efficiency and preserves the pairwise measurements
as well as the underlying structure of the original multigraph, while repli-
cating only the vertices that are strictly required.

Then, we solved the challenges that naturally arise when synchronizing
expanded multigraphs (section 5.1). We formally introduced a new syn-
chronization technique based on a constrained optimization for which we
defined a principled closed-form spectral solution (section 5.2). Our ap-
proach exploits the redundancy encapsulated in the multi-edges and has bet-
ter statistical properties with respect to its competitor edge averaging, im-
proving its performance both in terms of accuracy and precision as demon-
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strated by our synthetic experiments (section 5.3).
In addition, we discussed a prominent application of synchronization on

multigraphs, i.e. partitioned synchronization (chapter 6). The measurement
graph is partitioned into smaller subgraphs that are synchronized indepen-
dently, exploiting parallelism to greatly speed up the execution time. Our
multigraph formulation is used to remove the local ambiguities and lift the
multiple labelings for the subgraphs to a single consistent labeling on the
original graph. We introduced two variants: i) with subgraph augmentation
and ii) without subgraph augmentation, with the first being more accurate
but slightly less efficient (sections 6.6 and 6.7). Our experiments on real
data sets indicate that our approach to partitioned synchronization is very
efficient and outperforms its other partitioned competitors in terms of accu-
racy and precision.

To summarize, our contribution is three-fold:

• We presented, for the first time, a formal definition of the synchroniza-
tion of group-labeled multigraphs, which is a significant extension of
the synchronization of simple graphs

• We derived a practical algorithm for solving a synchronization prob-
lem on a multigraph, which is based on an expansion algorithm cou-
pled with a constrained spectral solution to deal with replicated ver-
tices

• We demonstrated how the multigraph framework can be conveniently
used to partition classical synchronization tasks, achieving a good
trade-off between accuracy and complexity.

Applications of multigraph synchronization are countless, including par-
titioned synchronization, measurements taken from multiple sensors and
SLAM. This aspect provides the main motivation for future research. Fu-
ture research should focus on understanding which scenarios are best suited
to adopt the multigraph formulation and on evaluating the impact of our
contribution. Our framework allows us to account for multiple measure-
ments from different sensors. In SLAM, multiple sensors (cameras, IMU,
GPS, . . . ) can estimate the 6 d.o.f motion of a vehicle, therefore it rep-
resents a promising field for future research. In addition, we focused on
partitioned synchronization and tested our method on well-known data sets
in the literature [42]. Another interesting possibility for future research is to
evaluate the performance of our contribution on additional data sets and dif-
ferent real-world scenarios. To summarize, future work will be focused on
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looking into more applications in which multiple pairwise measurements
between states can be obtained and on evaluating the impact of our contri-
bution in additional real-world scenarios.
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