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1. Introduction
Machine Learning (ML) techniques have proved
to be extremely powerful tools capable of au-
tonomously extracting and learning information
from large sets of data, with applications rang-
ing from data mining to medicine and finance.
ML tools have become even more accessible
thanks to Cloud computing and Machine-
Learning-as-a-Service (MLaaS) solutions, which
offer powerful scalable environments for deep
learning models at manageable costs.
Outsourcing ML computations to third-party
providers however raises important privacy
concerns when sensitive data needs to be
elaborated. Novel privacy-preserving machine
learning techniques have recently emerged to
address this issue, in particular making use of
Homomorphic Encryption (HE) schemes to
perform calculations on encrypted data without
ever accessing its contents [1].
The PINPOINT family of models [3] offers
a successful application of homomorphic tech-
niques to a privacy-preserving deep learning
model for time series prediction. PINPOINT
can obtain forecasts on encrypted private data
with comparable accuracy to other state-of-
the-art privacy-violating solutions. However,

because of the limitations imposed by HE
schemes the model is only able to perform
inference on encrypted data.
Our research presents the new privacy-
preserving PINStack model for time series
prediction, which extends the previous PIN-
POINT architecture by implementing a
privacy-preserving training algorithm. PIN-
Stack uses the Cheon-Kim-Kim-Song (CKKS)
homomorphic encryption scheme [2] to suc-
cessfully train the parameters of a single fully
connected layer on encrypted data without
breaching its privacy. The performance of the
model is tested under settings that model real
use-case scenarios and compared with other
state-of-the-art time series prediction solutions
executed on plain data.

2. Background
Homomorphic Encryption (HE) is a type
of encryption scheme that supports the com-
putation of specific operations directly over en-
crypted data without any knowledge of the en-
crypted information [1]. Under some assump-
tions, the result of a homomorphic operation
between encrypted values or ciphertexts, when
decrypted, will be equal to the one between the
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corresponding plain values or plaintexts. Most
practical implementations of HE schemes fall
under the category of Leveled Fully Homomor-
phic Encryption, which enables calculations on
ciphertexts with the following restrictions:
– Only homomorphic additions and multiplica-

tions are supported.
– Only a set number of operations (specifi-

cally multiplications) can be performed on
the same ciphertext before its information is
lost. Indeed, a noise term is embedded into
each ciphertext during encryption to make the
scheme secure to decryption, but this noise
grows with each homomorphic operation un-
til it overwrites the original encrypted value.

– Homomorphic operations come at the cost of
important computational overheads.

The Cheon-Kim-Kim-Song (CKKS) homo-
morphic encryption scheme [2] is chosen for our
model due to its native support of floating point
values. CKKS is a leveled FHE scheme based on
the Ring Learning With Errors (RLWE) prob-
lem designed for approximate arithmetic on vec-
tors of complex numbers. The scheme oper-
ates on the plaintext space of the polynomial
ring R = Z[X]/(XN + 1) and offers operations
to homomorphically evaluate additions, multi-
plications and rotations over ciphertexts. A
Rescale operation is used to manage the noise
term between multiplications, which in turn de-
termines a maximum multiplicative depth for
each ciphertext. The plaintext polynomials of
the scheme can encode up to N/2 plain values,
allowing the encryption of vectors and the ap-
plication of Single Instruction, Multiple Data
(SIMD) operations through batching.
Our research aims to apply the privacy-
preserving properties of the CKKS scheme to
a time series prediction task. Given a
time series X = (X1, . . . , Xn) being an or-
dered set of real value observations, a pre-
diction task involves finding a predictor Ŷ =
(X̂n+1, . . . , X̂n+h) for the upcoming values of the
series up to a forecast horizon h. Multiple ma-
chine and deep learning models have had great
success in this field. In particular, Tempo-
ral Convolutional Neural Networks (TC-
NNs) approach the time series forecasting task
through the use of convolutional layers, which
apply a convolution operation to an input se-
quence with a set of filters or kernels. This op-

eration is used to return information about the
relationship between neighboring inputs so that
each output of a convolutional layer is a function
of a sequence of previous inputs. The convolu-
tional and fully connected layers of a TCNN op-
erate using only additions and multiplications,
making this architecture a prime candidate for
implementation with homomorphic encryption.
Other non-linear layers commonly used by TC-
NNs are not compatible with the limitations of
HE schemes but can be approximated with HE-
compliant versions, such as non-linear activation
functions being replaced by square layers.
The Privacy-preservINg temPoral cOnvo-
lutIonal Neural neTworks (PINPOINT)
family of models [3] is a collection of privacy-
preserving time series forecasting models in-
spired by TCNNs. These networks operate on
time series data encrypted with the BFV ho-
momorphic encryption scheme and are specifi-
cally designed for privacy-preserving deep learn-
ing on the Cloud. PINPOINT models are built
from a sequence of one or more convolutional
blocks followed by fully connected layers that
output the final prediction. Although effective
at making accurate predictions, the main draw-
back with this solution is that models are limited
to privacy-preserving inference and cannot learn
from encrypted data. Instead, PINPOINT net-
works are first trained on plain publicly available
data and then encoded to support homomorphic
calculations. In addition, the BFV homomor-
phic scheme natively supports the encryption of
integer values only, while time series data often
comes in the form of floating point values.

3. Proposed solution
The goal of our work is to develop a privacy-
preserving framework for machine learning that
suports both encrypted inference and encrypted
training. We also prove its effectiveness by de-
veloping a working model for univariate time se-
ries prediction that pushes the limits of these
encrypted training capabilities within the con-
straints given by homomorphic encryption.
Our starting point is the PINPOINT family of
models, which is first reworked to implement
the CKKS encryption scheme and use more ef-
ficient batched vectorized operations. The model
is adapted to take as input a batched ciphertext
encrypting multiple sequences of observations,
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and returns a batched encryption of all the corre-
sponding predictions. For each layer in the PIN-
POINT architecture, we present a forward pass
algorithm that can operate on batched inputs
and consumes only one level of multiplication.
In particular, fully connected layers and convo-
lutional layers implement an algorithm for effi-
cient homomorphic matrix multiplication, mak-
ing use of diagonal order matrix encoding to re-
duce the number of operations required. Appro-
priate solutions for square and flatten layers are
also developed.
Given this optimized framework, a new homo-
morphic training procedure can be introduced.
Full training of a deep learning model is effec-
tively impossible under HE settings because of
the extremely limited number of operations al-
lowed on ciphertexts. Instead, we focus on im-
plementing a backward step solely for a single
fully connected layer and maximizing its effi-
ciency in terms of multiplication usage. A ho-
momorphic version of the batch gradient descent
optimization algorithm is developed to optimize
the weights and bias of a fully connected layer
given its prediction error on a set of training
data. In addition, a momentum term in the
form of Nesterov’s Accelerated Gradient (NAG)
is introduced. Momentum has proved to speed-
up convergence of gradient descent and help it
navigate through local optima, with NAG offer-
ing a good trade-off in terms of effectiveness and
compatibility with homomorphic environments.
The resulting gradient descent backward pass al-
gorithm only has a multiplicative depth of one
and is shown to be effective even in low-epoch
training environments.
The proposed implementations of HE-enabled
neural network layers are combined in our train-
able privacy-preserving architecture for time se-
ries prediction, called PINStack (Fig. 1). PIN-
Stack makes use of the limited training allowed
on its single final fully connected layer to fine-
tune a model previously trained on plain data
through a transfer learning approach. In par-
ticular, a model stacking architecture is devel-
oped to leverage plain transfer data coming from
multiple sources, which can even be mostly un-
related to the encrypted data specific to the
task. A PINStack model is composed of n level-0
models φ

(0)
i built with the previous PINPOINT

architecture, each trained on a separate plain
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Figure 1: Diagram of the PINStack model. An example
of a forward pass is reported with the size of the input
and output of each layer.

transfer dataset Di. Given a specific learning
task on an encrypted time series dataset Z com-
posed of input-prediction sequence pairs, the
level-0 models are encoded and used to pre-
process the encrypted data of Z. Their com-
bined outputs are then fed into a single level-1
model or generalizer φ(1), composed of a flat-
ten layer and a trainable fully connected layer.
The level-0 models φ

(0)
i act as feature extrac-

tors for the encrypted dataset Z, each identi-
fying patterns similar to those of their corre-
sponding transfer dataset Di; the level-1 model
φ(1) then learns how to best combine these new
features to produce the final predictions. Using
this approach, users of the model are not re-
quired to provide any plain data in addition to
their private training dataset, as publicly avail-
able datasets can be used for transfer learning in-
stead. The generalizer φ(1) is initialized to out-
put an average of the predictions of the original
level-0 models, which acts as a good unbiased
starting point for the following fine-tuning and
greatly speeds up training.
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dataset range P.P. PINStack P.V. P.V.

PINStack transfer training PINPOINT Naive ARIMA Prophet

France 1435.904 83.09 126.89 71.50 63.50 95.21 89.18 84.87

Luxembourg 66.577 3.378 3.356 3.376 4.018 4.522 4.019 4.752

Norway 620.595 16.31 16.76 15.27 15.77 18.36 17.07 18.31

Portugal 75.975 6.912 6.878 6.931 6.228 10.332 8.405 7.729

(a) Similar transfer data.

dataset range P.P. PINStack P.V. P.V.

PINStack transfer training PINPOINT Naive ARIMA Prophet
Airline

Passengers 518 34.44 57.83 24.29 35.47 66.67 54.66 34.08

Beer
Production 153 12.14 16.46 11.42 8.49 38.00 20.31 9.64

India Monthly
Rainfall 13352.7 1160.7 1590.7 1059.3 938.5 2440.3 2241.5 830.6

Lake Superior
Water Level 1.19 0.0857 0.1067 0.0834 0.0719 0.0988 0.1180 0.2439

Monthly
Sunspots 253.8 34.74 40.16 34.29 22.40 31.70 24.23 27.15

New Home
Sales 107 5.618 4.786 5.427 5.015 12.354 6.077 26.639

Sales For
Retail 439784 18340.4 45702.0 22361.6 10785.2 44849.3 27872.5 12422.0

Total Energy
Consumption 4.2286 0.2585 0.3288 0.2495 0.2159 0.6525 0.4510 0.2498

Unemployment
Rate 9.0 0.3541 0.4606 0.3582 0.2430 0.3625 0.4842 2.4809

(b) Unrelated transfer data.

Table 1: Prediction MAE of PINStack in the two experiments, compared with other time series prediction models.
The PINStack model is run in privacy-preserving (P.P.) mode, while the other state-of-the-art references are run in
privacy-violating (P.V.) mode. PINStack P.V. results are reference points obtained on plain data.

4. Experimental results
The proposed PINStack time series prediction
model is implemented in the Python library
PyCNN-CKKS. The library is built on the
Pyfhel [4] implementation of the CKKS scheme
and offers a framework for a general-purpose en-
crypted network with privacy-preserving train-
ing capabilities. The performance of PINStack
using the PyCNN-CKKS library is tested in two
scenarios that exemplify two different realistic
use cases:
1. Similar transfer data. A user wants to train

a PINStack model on an encrypted dataset
Z and gives it access to other similar plain
datasets Di as well for transfer learning.

2. Unrelated transfer data. A user wants to train
a PINStack model on an encrypted dataset Z
and only has access to sensitive data.

The first experiment is run on a collection of

six publicly available datasets coming from sim-
ilar sources (namely datasets of the daily overall
power consumption of several European coun-
tries), two of which are used as transfer datasets
while four are encrypted for training. The sec-
ond experiment instead uses nine unrelated pub-
lic datasets that only share a monthly time
resolution. Each dataset is selected once for
encrypted training using the remaining eight
datasets for transfer learning. In both experi-
ments, plain transfer data is first used to individ-
ually train privacy-violating versions of the level-
0 models through the PyTorch library. Their
weights are encoded to create a PINStack model
which is trained on the encrypted dataset for 9
epochs, using all multiplications allowed under
maximized CKKS settings. The performance of
the PINStack model is evaluated on the accu-
racy of its predictions made on encrypted data
and compared to other privacy-violating state-
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P.P. P.V.

similar unrelated average
level-0

forward pass 231.35 210.0s 0.17s

level-1
forward pass 26.18 74.8s 0.06s

level-1
backward pass 27.85 118.1s 0.76s

Table 2: Amortized computational time of the execution
of different parts of the PINStack model on a single input
ciphertext. Results from the two experiments on the real
privacy-preserving model and a privacy-violating version
run on plain data are compared.

of-the-art time series prediction models (Tab. 1).
The Mean Absolute Error (MAE) of the predic-
tions is the error metric of choice.
Results show that the performance of the model
on encrypted data is at the very least compa-
rable with (and often better than) the other
privacy-violating models, both with and without
having access to similar transfer learning data.
In particular, PINStack convincingly and con-
sistently produces accurate forecasts despite the
approximation errors introduced by the CKKS
encryption scheme and the overall unoptimized
hyperparameters necessary to work in a gener-
alized setting. The transfer learning process re-
sults in an effective initialization for the train-
ing procedure, which is proved to significantly
reduce the prediction error in almost all cases.
The time and memory requirements for the ho-
momorphic computations of the model are quite
significant. A full execution of the training and
inference algorithms occupies between 130GB
and 210GB of memory across both experiments.
The computational times of each section of the
execution (Tab. 2) lead to a full training run-
time of 6.5 to 46 hours for the first experiment
and 13 hours for the second. However, these re-
sults act as significant improvements over previ-
ous privacy-preserving deep learning solutions,
and PINStack is intended to be deployed in a
Cloud-based setting where the resources are per-
fectly capable of satisfying its memory and com-
putational demands.

5. Conclusions
In this work a privacy-preserving solution for
time series forecasting is proposed, which is ca-
pable of performing both inference and training
on encrypted time series data using a homomor-

phic encryption scheme. Implementations of the
main layers of a TCNN compatible with such
schemes are presented, together with a gradient
descent algorithm that operates on fully con-
nected layers under homomorphic restrictions.
The resulting PINStack model combines the fea-
tures of the previous PINPOINT architecture
with a transfer learning approach, optimizes its
operations for the CKKS encryption scheme and
allows training of its final fully connected layer
for fine-tuning on encrypted datasets.
The capabilities of the architecture and its ap-
plications to a Cloud-based MLaaS scenario are
particularly promising. The proposed experi-
ments prove that PINStack is successful at mak-
ing accurate predictions without breaching the
privacy of a user’s data, both with and with-
out having access to plain data related to the
task. The research acts as a proof-of-concept to
show that training in such low-epoch environ-
ments can be effective with the right underlying
model, and further developments can push this
approach further to a proper implementation for
real-world usage.
Several improvements can still be made to the
underlying PyCNN-CKKS library to increase ef-
ficiency and performance, with optimizations for
multi-processor and GPU architectures having
the potential to significantly reduce computa-
tional times. Another area of interest largely left
unattended by our research is that of parameter
optimization. More studies can be made into
optimizing each model to the specific transfer
datasets employed, or designing models with a
particular combination of transfer datasets and
hyperparameters that are optimized for particu-
lar scenarios and data distributions. In addition,
in the case where similar plain data is accessi-
ble, more classical hyperparameter optimization
techniques can be used to better fit the task
at hand. Finally, the homomorphic layers and
stacking architecture proposed in our library can
be adapted to work in different deep learning
scenarios or extended to encompass more com-
plex models. Applications to generic classifica-
tion and regressions tasks using a curated collec-
tion of simple machine learning models require
further research but look entirely feasible.
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Abstract: In a world defined by Deep Learning and big data, Cloud-based com-
puting infrastructures have become a necessary tool to meet the increasing com-
putaional demands of machine learning tasks and give any user access to high
performance, scalable and affordable solutions. However, this approach involves
processing large amounts of data on a third-party platform, which leads to severe
privacy concerns when dealing with sensitive data such as medical and financial
records. Privacy-preserving machine learning techniques offer a solution to these
issues through the use of Homomorphic Encryption (HE) schemes, but present
novel challenges in the way these privacy-preserving networks need to be designed.
Previous work in the form of the PINPOINT family of deep learning models has
already shown promising results on privacy-preserving time series prediction tasks
with potential real-world applications. The aim of this thesis is to extend this work
to include a novel training procedure which makes it possible to fine-tune a network
directly on encrypted sensisitve data without breaching its privacy. The resulting
PINStack model stacking architecture is presented as a general-purpose solution
for time series forecasting in a privacy-preserving environment both for inference
and training, using the Cheon-Kim-Kim-Song (CKKS) homomorphic scheme to
guarantee the privacy of the data. Its performance is evaluated in realistic use-case
scenarios and shows great potential for future implementation and further devel-
opments.

Key-words: Privacy-preserving machine learning, time series forecasting, Homomorphic Encryption,
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1. Introduction

1.1. Problem and motivation

Machine Learning (ML) techniques have proved to be extremely powerful tools capable of autonomously ex-
tracting and learning information from large sets of data. Their applications range from image [45] and speech
recognition [27] to autonomous driving [23], financial risk management [29] and important fields of medicine
such as skin cancer identification [30] and genome analysis [44]. With the advent of Deep Learning frameworks
[69] machine learning models have only become more and more complex, requiring in turn more and more
powerful computational infrastructures. Cloud computing [67] has emerged in recent years as a widely available
solution to these issues, providing large computational power on demand at a pay-per-use rate, but outsourcing
computation to a third-party provider implies giving them access to the necessary data as well. This can be
a major privacy concern when sensitive data is treated (e.g. medical diagnoses, financial records, or personal
pictures) and potentially prevent essential services from having access to this powerful technology.
A novel solution to this relevant problem comes from privacy-preserving machine learning techniques [12],
of which we focus on the ones based on Homomorphic Encryption (HE) [10]. HE schemes support the
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computation of some operations directly on encrypted data without ever needing access to the original plain
information. By employing such a scheme a non-trustworthy third party can receive data encrypted from a
user, process these ciphertexts without knowing their contents and produce a final encrypted result to be sent
back to the user, fully ensuring the privacy of the data.
Previous work in the form of the PINPOINT family of models [31] has shown that HE schemes can be suc-
cessfully applied to a privacy-preserving learning task, specifically with a focus on time series prediction. The
PINPOINT architecture is designed to be deployed in a Cloud-based "as-a-service" setting and obtains fore-
casting results comparable with other state-of-the-art privacy-violating solutions. However, the model comes
with some major drawbacks and specifically lacks the ability to perform training on encrypted data, instead
relying on additional plain data to construct it.

1.2. Goal and results

The goal of this research is to extend the original work of Falcetta et al. by developing a privacy-preserving
machine learning model for inference and training on a time series prediction task.
In particular, the model is designed to process time series sequences encrypted through homomorphic encryption
and perform an effective training procedure without breaching the privacy of the training data. This training
process needs to be carried out under the harsh limitations introduced by homomorphic schemes, namely:

– HE schemes only support the homomorphic computation of addition and multiplications, requiring that
all parts of the training algorithm only use these two operations.

– HE schemes allow only a limited number of operations (and specifically multiplications) to be performed
on the same ciphertext before the encrypted information is lost.

– Homorphic encryption introduces important overheads both in terms of computational time and memory
usage which need to be managed for an efficient implementation.

This thesis addresses these issues by proposing a new privacy-preserving model called PINStack. PINStack
is built on the Cheon-Kim-Kim-Song (CKKS) homomorphic encryption scheme [24] and uses a model stacking
approach based on the original PINPOINT architecture. The model offers a novel implementation of batch
gradient descent for the homomorphic training of a single fully connected layer on encrypted inputs. A trainable
fully connected layer is used in conjunction with multiple PINPOINT learners trained on plain transfer data,
which act as feature extractors for the time series inputs. PINStack also proposes new implementations of all
layers used by the original PINPOINT architecture, greatly optimized for operations on vectorized inputs.
The effectiveness of the PINStack architecture is successfully tested on multiple publicly available time series
datasets under settings that model real use-case scenarios. Its performance on privacy-preserving encrypted
data is shown to be on par with state-of-the-art time series prediction models run on plain data.

1.3. Thesis structure

Section 2 introduces important concepts necessary for the understanding of the work, regarding in particular
Machine Learning, Homomorphic Encryption and time series forecasting. Section 3 discusses the current state-
of-the-art for privacy-preserving learning on time series data, specifically focusing on the novel aspects tackled
by our research. In addition, this section gives a formal introduction to the PINPOINT family of models that
this work is based on. Section 4 describes in detail the proposed PINStack model, addressing the changes
made to the previous PINPOINT implementation and the creation of the new stacking architecture for transfer
learning. Section 5 details the Python library created to implement this solution and its usage. Section 6
presents a series of experiments that show the efficacy of the PINStack model in realistic time series prediction
scenarios. Finally, Section 7 draws the conclusions and highlights possible directions for future works.
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2. Background

2.1. Privacy-preserving machine learning

Machine Learning (ML) [42] is a branch of artificial intelligence that concerns algorithms capable of auto-
matically improving through experience without being explicitly programmed. The goal of ML is to generalize
information gathered from data, being a set of inputs with distinct and quantifiable features, and apply it to
new scenarios to compute a desired output.
A ML algorithm typically involves two phases. During a training phase, the algorithm operates on a dataset
of training inputs to learn its representation and update its parameters based on the observations made. The
process is repeated over the entire training dataset for a number of iterations called epochs. Then, during an
inference phase, the algorithm is given new, unseen data and tasked with producing a corresponding output
from the information acquired in the training phase.
The way this training phase is performed divides ML algorithms into three main categories (although some
additional and hybrid approaches do exist):

• Supervised learning associates each input from the training dataset with one or more labels or target
values. The objective of the algorithm is to learn the representation of the target values based on the
input features and correctly label a set of unlabelled data during inference.

• Unsupervised learning offers no labels for the training values, and instead tasks the algorithm with finding
a particular structure in the data, such as similarities or specific patterns.

• Reinforcement learning has the algorithm learn to perform a set of actions, and rewards or punishes the
algorithm based on the outcome of said actions.

Supervised learning tasks are typically divided further into classification, where data labels belong to a finite
set of classes; regression, where data labels are continuous values; and prediction, where the model learns to
predict a set of upcoming values from a series of observations.

Deep Learning and Deep Neural Networks (DNNs) [69] in particular take inspiration from the way
information is transmitted and processed by the brain. DNNs are built on interconnected processing units
called neurons, further organized into multiple layers. Each layer of a neural network takes a set of inputs and
extracts a more abstract, higher-level representation of its core features, to then feed these new inputs into
the next layer of the network. The word "deep" in deep learning indeed refers to the number of layers that
compose a single network, with deeper DNNs being able to extract better features from the inputs at the cost
of higher computational complexity. Layers can take multiple forms according to the operations carried out by
their neurons and can be combined together to perform complex computations. The basic building blocks are
fully connected layers, where each neuron computes a weighted sum of all outputs of the previous layer.
DNNs can themselves be categorized into feed-forward networks, where inputs are processed sequentially by
each layer until an output is returned, and recurrent networks, where signals coming from a layer can be fed
back into previous layers for further processing.

Privacy-preserving machine learning [12] refers to a sub-category of ML algorithms aimed at preserving
the privacy of the processed data. These algorithms are born out of necessity from the rise of Cloud comput-
ing and the advent of Machine-Learning-as-a-Service (MLaaS) paradigms [59]. In MLaaS, an expensive
machine learning procedure is outsourced for computation to a Cloud service, which offers resources far greater
than everyday-use machines at a fraction of the cost that would be necessary to purchase such computational
power. The Cloud provider can offer platforms already optimized for specific ML tasks and highly scalable
environments according to a user’s needs.
However, outsourcing computation to a Cloud service typically requires users to send their data to a poten-
tially untrusted third-party, as it needs to have full access to it in order to perform the machine learning task.
Privacy-preserving machine learning addresses these privacy concerns by implementing algorithms that do not
require explicit access to the necessary input data in order to compute a corresponding output. This is mainly
achieved through the use of cryptography, which obfuscates data and makes it unreadable to any party who
does not have access to the specific key used to encrypt it.

2.2. Homomorphic encryption

Homomorphic Encryption (HE) is a type of encryption scheme that supports the computation of specific
operations directly over encrypted data without any knowledge of the encrypted information [10]. In particular,
an encryption scheme with an encryption function Encrypt and decryption function Decrypt is homomorphic
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with respect to a class of functions F if, for any f ∈ F , a function g can be constructed such that:

f(x) = Decrypt(g(Encrypt(x))

where x is any set of possible inputs [16]. As an example, an additively homomorphic encryption scheme sup-
ports an operation ⊕ such that, given two input messages m1 and m2, Encrypt(m1 +m2) can be computed as
Encrypt(m1)⊕Encrypt(m2) without ever needing to access the unencrypted data. The homomorphic properties
of the scheme guarantee that (under some assumptions) the result of the operation between encrypted values,
when decrypted, will be equal to the one between corresponding plain values.
HE schemes build upon classical asymmetric encryption schemes (although it is also possible to transform them
into symmetric schemes and viceversa [61]) by introducing the HE-specific Eval operation on top of the usual
KeyGen, Encrypt, and Decrypt of conventional cryptography [13]:

• KeyGen(Θ) (key generation) takes as input a set of encryption parameters Θ and returns a key pair
(pk, sk), where pk is the public key used for encryption and sk is the secret key used for decryption.

• Encrypt(pk,m) (encryption) takes as input the public key pk and a plaintext message m and returns the
corresponing ciphertext c.

• Decrypt(sk, c) (decryption) takes as input the secret key sk and a ciphertext c and returns the original
plaintext message m.

• Eval(f, C) (evaluation) takes as input a supported function f and a set of ciphertexts C that encrypt the
plaintexts M , and returns an evaluation ciphertext c′ such thath Decrypt(sk, c′) = f(M).

In practice the Eval operation only ever needs to support addition and multiplication in order to allow for the
homomorphic evaluation of arbitray functions, as addition and multiplication are functionally complete sets
over finite sets: any boolean circuit can be implemented using only AND (addition) and XOR (multiplication)
gates.

First theorized by Rivest et al. [60], it is only the breakthrough work of Gentry [34] and the advent of Fully
Homomorphic Encryption (FHE) that opened the way for applications of homomorphic encryption to ma-
chine learning. FHE schemes as theorized allow for unlimited types of homomorphic operations (namely any
combination of additions and multiplications) to be performed on ciphertexts an unlimited number of times.
However, their practical implementation raises some complications.
Gentry’s and all following FHE schemes inject noise into ciphertexts during encryption in order to make the
scheme robust to decryption attempts. The introduction of noise enables the property of probabilistic encryption
[36] and guarantees that multiple encryptions of the same plaintext will produce different ciphertexts. Typically
this noise term is small enough that the original message can be fully recovered after a proper decryption,
however the application of homomorphic additions and multiplications to ciphertexts results in the addition
or multiplication of their noise as well. With enough operations the noise will grow to the point where the
original message will be overwritten and decryption will fail. The number of operations allowed on a ciphertext
before a failure is a function of the parameters chosen for the HE scheme and the type of operations used. In
particular, homomorphic addition makes the noise grow linearly while homomorphic multiplication makes it
grow exponentially.
FHE schemes overcome this issue by implementing a bootstrapping operation, which can refresh a noisy cipher-
text without decrypting it. Bootstrapping creates a new ciphertext from an existing one that encrypts the
same message but with a lower noise, by executing the decryption circuit in the homomorphic domain. The
technique as proposed by Gentry however is extremely costly, and while faster bootstrapping procedures have
been designed [25] this makes true FHE schemes still too expensive for real-world applications.

A more practical approach is taken by Leveled Fully Homomorphic Encryption which instead skips
bootstrapping entirely. Leveled FHE schemes still support any combination of homomorphic additions and
multiplications but limit the number of operations allowed. Several efficient HE schemes that fall under this
category have been developed in the last decade, such as the BFV [19, 32], BGV [20] and CKKS schemes [24].
These schemes are the main focus for current applications of HE functionalities to complex scenarios such as
deep learning. Indeed, a machine learning model can operate entirely on encrypted data by replacing its opera-
tions with the homomorphic counterparts of a leveled FHE scheme, assuming that all operations necessary for
the learner are supported by the encryption scheme.
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Figure 1: High level view of the CKKS scheme [40].

2.3. CKKS

The Cheon-Kim-Kim-Song (CKKS) scheme [24] is a leveled FHE scheme proposed by Cheon et al. based
on the Ring Learning With Errors (RLWE) problem. The scheme is designed for approximate homomorphic
arithmetic on vectors of complex numbers, differentiating it from other schemes such as BFV [19, 32] and
BGV [20] which perform exact computations on integer values. The scheme is approximate because CKKS
embeds noise into ciphertexts as part of the message itself, treating it as an error that cannot be removed
during decryption but that stays small enough not to affect the significant figures of the plaintext. Given an
encryption c of message m its decryption will then have the form Decrypt(sk, c) = m+ e (mod q), where e is a
small error, sk is the secret key and q a ciphertext modulus. The new value m′ = m+ e is close enough to the
original message m that it can replace it for approximate arithmetic.
A high level view of the full cycle for the homomorphic evaluation of function f(·) on a plain message m is
presented in Figure 1.

2.3.1 Ring Learning With Errors

The security of the CKKS scheme is given by the hardness of the Ring Learning With Errors (RLWE)
problem, introduced in [50]. In particular, the RLWE problem is built on polynomial rings with coefficients
from a finite field. In order to formally introduce this concept we first define a parameter N or polynomial
degree, being a power of 2, and a parameter q or coefficient modulus, being a prime integer. We denote with
ϕM (X) = XN + 1 the M -th cyclotonic polynomial [46], with M = 2N . We also denote with Zq the set of
integers modulo q defined as Z ∩ (−q/2, q/2].
We can now define the polynomial ring Rq = Zq[X]/ϕM (X) as the ring of all polynomials of degree N − 1 with
coefficients in Zq, meaning that Rq = {a0 + a1x+ . . .+ an−1x

n−1 : ai ∈ Zq∀i}.

Under these assumptions we give a formal definition to the RLWE problem, specifically its decision version.
Let:

– ai(X) be a set of random but known polynomials from Rq.
– ei(X) be a set of small random and unknown polynomials relative to a bound b in the ring Rq.
– s(X) be a small unknown polynomial relative to a bound b in the ring Rq.
– bi(X) = (ai(X) · s(X)) + ei(X).

Given a list of polynomial pairs (ai(X), bi(X)), the RLWE decision problem consists in determining whether
the bi(X) polynomials were indeed constructed as bi(X) = (ai(X) · s(X)) + ei(X) or were generated randomly
from Rq.
The RLWE problem is presumed to be difficult to solve even on quantum computers, meaning that it can be
used as a base to build secure public-secret key pairs for asymmetric encryption schemes.

2.3.2 Encoding and batching

The CKKS scheme uses the security guarantees of the RLWE problem to build an encryption scheme that can
encrypt polynomials from Rq. However, messages to encrypt typically come in the form of real numbers, so it
is first necessary to encode these values into proper polynomial plaintexts.
CKKS proposes a way to encode a vector z ∈ CN/2 of size N/2 into a polynomial m(X) ∈ R = Z[X]/(XN + 1)
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using a variant of the complex canonical embedding map ϕ : CN/2 → R [51]. The encoding and decoding
algorithms are defined as follows:

• Encode(z,∆). For z ∈ CN/2, output the polynomial m(X) = ϕ(∆ · z) ∈ R. We multiply z by a power-of-
two scaling factor ∆ > 1 to preserve its precision.

• Decode(m,∆). For a plaintext polynomial m ∈ R, output the original complex vector z = ϕ−1(m/∆) ∈ CN/2.

Using this encoding technique a single plaintext polynomials can actually store up to N/2 complex values. We
refer to the practice of storing multiple input values into a single plaintext or ciphertext as batching [65]. Batching
enables the application of parallel processing through Single Instruction, Multiple Data (SIMD) operations [33].
Indeed, by operating on one such polynomial, we are effectively applying the same operation to each of the N/2
slots of the ciphertext at the same time.

2.3.3 Encrypted operations

We can now define the set of operations implemented by CKKS for plaintext and ciphertext data. Cipher-
texts in CKKS come in the form of polynomial pairs c = (c0, c1) ∈ R2

ql
, where l is the level associated with the

ciphertext. This level is an integer 0 < l < L that defines the coefficient modulus of the ciphertext as ql = ∆l ·q0.

In order to create such ciphertexts we first require a way to generate the asymmetric key pairs required for
encryption and decryption. These keys are a function of a security parameter λ, ensuring that all attacks against
the cryptographic system should take Ω(2λ) bit operations. We can then define:

• KeyGen(1λ).
– For the security parameter λ and a maximum coefficient modulus qL, output the power-of-two ring

dimension N .
– Set the parameters for the small distributions χkey, χerr and χenc over R.
– Sample a secret s← χkey, a random polynomial a← Rql and an error e← χerr. Set the secret key

as sk ← (1, s) and the public key as pk ← (b, a) ∈ R2
ql

, where b← −as+ e (mod qL).
– Sample another a′ ← Rq2l

and e′ ← χerr. Set the evaluation key evk as evk ← (b′, a′) ∈ R2
q2l

, where
b′ ← −a′s+ e′ + qLs

2 (mod q2L).

In addition to the public-secret key pair (pk, sk) KeyGen returns an evaluation key evk, which is used for mul-
tiplication between ciphertexts.
We can finally define all operations of the scheme:

• Encrypt(pk,m). For m ∈ R, sample v ← χenc and e0, e1 ← χerr. Output
c← v · pk + (m+ e0, e1) (mod qL) ∈ R2

ql
.

• Decrypt(sk, c). For c = (b, a) ∈ R2
ql

, output m← b+ a · s (mod ql) ∈ R.

• Add(c1, c2). For c1, c2 ∈ R2
ql

, output cadd ← c1 + c2 (mod ql) ∈ R2
ql

.

• CMult(c,m). For c ∈ R2
ql

and m ∈ R, output cmult ← m · c (mod ql) ∈ R2
ql

.

• Mult(evk, c1, c2). For c1 = (b1, a1), c2 = (b2, a2) ∈ R2
ql

, let
(d0, d1, d1) = (b1b2, a1b2 + a2b1, a1a2) (mod ql) ∈ R3

ql
. Output

cmult ← (d0, d1) + ⌊q−1
L · d2 · evk⌉ (mod ql) ∈ R2

ql
.

Note that CKKS enables both ciphertext-ciphertext operations and ciphertext-plaintext operations, as the two
share similar spaces. The latter is particularly useful in the case of multiplications, as ciphertext-plaintext
multiplications CMult are less complex than the ciphertext-ciphertext Mult version.
The homomorphic Mult and CMult operations pose however some issues. Because plaintexts are scaled before
encryption, multiplying two ciphertexts together (or a ciphertext and a plaintext) multiplies their scale as well.
Not only that, but the noises introduced during encryption, which in CKKS are part of the messages themselves,
get multiplied too and grow with each operation. To prevent this a Rescale operation is introduced:

• Rescalel→l′(c). For c ∈ R2
ql

, output c′ ← ⌊ ql′ql c⌉ (mod ql′) ∈ R2
ql′

.

Rescale should be used after each homomorphic multiplication to manage the scale of the result by reducing
its level from l to l − 1. This entails that a scheme with maximum level L (and maximum coefficient modulus
qL) has a multiplicative depth of L, meaning that it can only support exactly L multiplications on the same
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N 210 211 212 213 214 215

qL bit length ≤ 27 ≤ 54 ≤ 109 ≤ 218 ≤ 438 ≤ 881

Table 1: Maximum coefficient modulus qL bit length for a given polynomial modulus degree N , using a security level λ
of 128 bits [41].

ciphertext before decryption fails. When the parameters of the scheme are first defined it is then necessary to
know the maximum number of multiplications that will be performed on each ciphertext.

CKKS also supports a rotation operation that shifts the values of the original plain vector across the slots
of the encrypted ciphertext. A rotation of r slots of a vector (v0, . . . , vk−1) would return the shifted vector
(vr, . . . , vk−1, v0, . . . , vr−1). Rotation requires the generation of an additional key rk, called rotation key. We
can define it over ciphertexts as:

• Rotate(rk, c, r). For c ∈ R2
ql

, output c′ ∈ R2
ql

encrypting the plaintext vector of c rotated by r positions.

2.3.4 Parameters analysis

We summarize here the relevant parameters of the CKKS scheme and their role in practical applications.

– L is the maximum possible level for ciphertexts: freshly encrypted ciphertext start from this level. More
importantly, L corresponds to the maximum number of multiplications allowed on the same ciphertext.
L is usually the first parameter to be set and needs to be known in advance when designing an application
using CKKS.

– N and specifically N/2 determines the number of values that can be encoded in a single ciphertext. It is
also the main indicator for memory requirement and computation times of homomorphic algorithms, as
a bigger N increases the complexity of encrypted operations.

– ∆ and q0 determine the precision of the encrypted values. In particular, a decrypted value will retain
(log2 ∆) bits of precision for the decimal part and (log2 q0 − log2 ∆) bits of precision for the integer part.
In actual implementations of the scheme these values are typically approximated by a list of primes in
order to greatly speed up computations. Instead of having qL = ∆L · q0, a list of prime integers is chosen
such that p0 ≈ q0 and p1, . . . , pL ≈ ∆. The maximum coefficient modulus is then set as qL =

∏L
i=0 pi.

For a given security level λ and a polynomial modulus degree N there is an upper bound on the maximum
coefficient modulus qL. Table 1 illustrates typical values for such upper bounds. Parameters L, N and ∆
are indeed strictly interconnected and pose practical limitations to the capabilities of the scheme, requiring a
trade-off between accuracy, performance and number of operations allowed.

2.4. Time series forecasting

Time series forecasting [22] is a task which involves the prediction of upcoming events given a set of times-
tamped observations. In particular, given a time series X = (X1, . . . , Xn) being an ordered set of real values,
a prediction task involves finding a predictor X̂n+1 for the next value in the series Xn+1. This process can be
expanded to produce multiple forecasts, resulting in an output vector Ŷ = (X̂n+1, . . . , X̂n+h) of future predic-
tions, where h is denoted as the forecast horizon.
In particular, a univariate time series is composed of single-feature observations for each time instant, while a
multivariate time series has multiple features for each data point. We also refer to seasonal time series data
when the observations experience regular and predictable changes according to a specific cycle, where the sea-
sonality of the data is the lenght of said cycle.

Multiple machine learning and specifically deep learning models have had great success historically on time
series forecasting tasks. Some examples of machine learning models commonly used in the literature are Re-
current Neural Networks (RNNs) [62], AutoRegressive Integrated Moving Average (ARIMA) models [18], Long
Short-Term Memory (LSTM) models [63] and transformer models [73].
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2.5. TCNNs and privacy-preserving forecasting

Temporal Convolutional Neural Networks (TCNNs) [14] are a variation of Convolutional Neural Net-
works (CNNs) [49] designed for sequence modelling tasks. Both architectures make use of convolutional layers,
which apply a convolution operation to a multi-dimensional input with a set of filters or kernels. This operation
is used to return information about the relationship between neighboring inputs: the size of the filter defines a
receptive field in which input values are weighted by the kernel and summed together. The filter "slides" across
the dimensions of the input to compute an output or activation map for each of the filters used.
In traditional CNNs this convolution operation is used to analyze 2-D images, where 2-D filters extract features
from patches of neighboring pixels. Instead, in TCNNs the same process is applied to 1-D time series inputs
using 1-D kernels to perform a causal convolution. Each output of the convolutional layer is indeed a function of
a sequence of previous inputs of length corresponding to the receptive field of the filter. Multiple convolutional
layer can be chained together to increase the size of the receptive field as shown in Figure 2.

Among all deep learning time series solutions TCNNs are a prime candidate for implementation with homomor-
phic encryption due to their simple structure. Indeed, all other state-of-the-art models listed in Section 2.4 are
stateful recursive models, meaning that they require a persistent internal representation which is updated at
every new input. The model uses this internal state to retain information between multiple inputs and compute
a prediction based on the history of the inputs, rather than just the last value fed to the network. TCNNs
instead use a stateless, feed-forward approach where all inputs are processed at the same time and the size of the
receptive field determines how many inputs are considered for the computation of each prediction. The model
does not hold an internal representation of the inputs, instead relying solely on the weights of the convolutional
filters to evaluate the relationship between sequences of observations.
This property is particularly useful in a homomorphic environment where the number of operations on the same
encrypted value is a main limiting factor. Indeed, the recurring updates of the internal state of stateful models
are not compatible with a ciphertext of fixed multiplicative depth.

In order to implement a TCNN (or CNN) model using homomorphic encryption all of its layers need to be
adapted to work using homomorphic operations, as leveled HE schemes natively only support addition and
multiplication. While convolutional layers and fully connected layers only use these operations for computation,
other non-linear layers commonly used by TCNNs are not compatible with the limitations of homomorphic
encryption and as such need to be approximated with HE-compliant versions:

• Activation functions: Activation functions introduce non-linearities in a neural network in order to allow
the computation of more complex functions. Typical activation functions such as the Rectified Linear
Unit (ReLU) and tanh functions are too complex for computation in homomorphic environments. Low
degree polynomials are instead much easier to calculate, and in particular the simple square function
f(x) = x2 is commonly used without a significant loss of complexity [35].

• Pooling layers: Maximum Pooling is typically used to reduce the dimensionality of convolutional ac-
tivation maps, where each batch of values of a specific pooling size is reduced to its maximum. The
computation of the maximum requires a comparison operator which is not available on ciphertexts. In-
stead, an Average Pooling layer can be used, as the average of multiple values can be easily computed
through a sum and a division.

• Normalization layers: Normalization layers use the mean and standard deviation of the input data
distribution to reduce the values of the inputs to a known range. As the inputs cannot be observed when
encrypted, their mean and standard deviation are not accessible. These layers are replaced by batch
normalization layers that calculate an average of the currently processed data, which uses a division by
a fixed value.
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Figure 2: Receptive field of a multi-layer convolutional network of filter size 2. Convolutions in each layer are dilated in
order to take into consideration a wider range of inputs. [54]

3. Related literature

After the groundbreaking introduction of FHE and the development of homomorphic encryption schemes for the
practical use, the research field in HE-based privacy-preserving machine learning has been quickly and steadily
growing. Multiple solutions with promising applications have been proposed in recent years, especially on the
topic of privacy-preserving inference using leveled FHE schemes [35] [21] [47].
Our specific solution however aims to address three specific issues that have seen little to no research due to
their complexity:

• The solution should be capable of privacy-preserving training on encrypted data as well as inference.

• The solution should be tailored to the specific time series prediction task, although capable of general-
ization to multiple different contexts.

• The solution should be implemented in a Cloud learning scenario and fully transparent to users in order
to minimize their involvement.

Section 3.1 and Section 3.2 analyze the few results found in the literature that at least partially address some of
these points. Section 3.3 then describes an initial answer to this problem in the form of the PINPOINT family
of models, proposed by Falcetta et al. Our work acts as a continuation of their research, which offers a basic
framework that will be extended with the addition of privacy-preserving training.

3.1. Privacy-preserving training

Privacy-preserving training of machine learning models is still a widely unexplored field in the literature. Most
accepted soltuions for privacy-preserving learning focus soleley on encrypted inference, instead relying on the
encryption of models pre-trained on plain data. Indeed, the iterative nature of the training process greatly
increases the number of operations required on ciphertexts, which can easily go beyond the capabilities of the
practical homomorphic schemes currently available.

One solution to this issue comes with interactive training, where the entirety or part of the computational
demand is outsourced to the owners of the private data. Secure Multi-Party Computation (SMPC) approaches
[79] offer a distributed computing environment where multiple parties can jointly calculate an objective function,
each using their own private data. A Cloud environment can contribute as one of the parties themselves, and
homorphic encryption and garbled circuits [76] allow users to securely share the results of private computations
without any privacy loss. Bakshi et al. [15] use SMPC to introduce a Recurrent Neural Network model (RNN)
with no network approximation, where the expensive non-linear activation functions are calculated by the client
on ciphertexts received by the server.
Federated learning [48] instead takes a model sharing approach. Each party privately trains a machine learning
model on their own data, then securely sends the model parameters to some intermediate server to aggregate
the training results without revealing any information about the training data. Tran et al. [72] develop a
general-purpose model sharing framework for decentralized networks with low communication bandwith, imple-
menting an efficient protocol to jointly calculate a sum of private inputs. Zhang et al. [78] have participating
clients share local gradient updates on their private data instead of the entire models. Gradient information is
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quantized and batched in order to improve the efficiency of the protocol and then aggregated by a server using
additively homomorphic encryption.
Another interactive training solution that minimizes client-side computations is to have users refresh noisy
ciphertexts by decrypting and recrypting their content. Mihara et al. [52] develop privacy-preserving im-
plementations of neural network layers where ciphertexts are sent back to the user for recryption after each
homomorphic multiplication. Takabi et al. [70] study the same approach in a SMPC scenario with data con-
tributions from multiple users, and monitor the noise level of ciphertexts in order to use recryption only when
strictly necessary.

All of these approaches are not a good fit for the Cloud-based learning scenario we propose. Our MLaaS
model aims to be completely transparent to users, requiring no active participation from their side and making
no computational demands. The goal is a non-interactive training solution, where all computations are per-
formed server-side so that clients can simply send encrypted data and receive the desired encrypted outputs.
Non-interactive training for deep learning networks must come at the cost of severe constraints on the training
process to be somewhat practical. Most studies in this area focus on simple networks for tasks such as linear
regression and logistic regression. Kim et al. [43] perform privacy-preserving logistic regression analysis with
the CKKS encryption scheme, proposing an efficient polynomial approximation of the sigmoid function and an
algorithm for the homomorphic evaluation of gradient descent with ciphertext batching.
The first results on privacy-preserving training of a full deep learning neural network come from Nandakumar et
al. [53]. They propose an effective implementation of the bootstrapping technique to refresh noisy ciphertexts,
allowing an unlimited number of homomorphic operations, and employ a mini-batch version of gradient descent
with ciphertext batching. However, the bootstrapping implementation has an extremely high computational
cost, requiring the network to be massively simplified to make learning feasible. The solution is tested on the
MNIST image classification task [26], which even after downscaling the inputs to 8× 8 images requires almost
28 days of computation for a single epoch of training on the full dataset.
Similarly, Al Badawi et al. [11] develop a non-interactive deep learning training framework for text classification
using the CKKS homomorphic scheme. In particular, a novel GPU implementation of CKKS is used for a 1 to
2 orders of magnitude speedup against existing implementations. The resulting network is composed of fully
connected layers only and trained using batch gradient descent with backpropagation. The trade-off in this case
is that the high number of operations required by the training phase allows only for 2 epochs of training on
encrypted data, and the procedure still takes around 5 days to compute.

3.2. Privacy-preserving time series prediction

Time series analysis is a particularly challenging task under the limitations of homomorphic encryption. Sim-
ilarly to the issues with training, typical stateful time series prediction models require iterative updates on
the internal state of the layers even during inference, which is expensive in terms of noise propagation and
discourages privacy-preserving implementations with HE. The result is that the existing literature on this topic
is extremely scarce, with only a few highly specific privacy-preserving solutions being present.

Yue et al. [77] introduce a privacy-preserving hybrid deep learning framework for the classification of time-
series medical images. In particular, convolutional blocks are used to extract the spatial features of the images,
while Long-Short Term Memory (LSTM) cells encode the temporal information of the encrypted image se-
quences. Both types of networks are adapted to work with the BFV homomorphic encryption scheme [19, 32]
and their results are combined through a sequence voting procedure. However, the model is only capable of
performing inference on encrypted outputs, as training an LSTM network in the homomorphic domain would
be unfeasible in terms of multiplicative depth. This solution also performs classification instead of prediction.
Bos et al. [17] propose a privacy-preserving time series prediction tool for smart grids using the Fan-Vercauteren
encryption scheme [32]. Instead of neural networks, the simpler Group Method of Data Handling (GMDH) is
implemented with homomorphic operations and used to make predictions on encrypted data regarding the elec-
tric load of smart grids. Although this approach is quite effective in this limited scenario, GMDH is a far less
powerful tool than neural networks and cannot be easily extended to a general-purpose application.
Finally, Paul et al. [56] use a collective learning protocol to train a privacy-preserving LSTM network on time se-
ries classification. The work focuses on fine-tuning the last fully connected layer of the network using encrypted
logistic regression. Collective learning can then be used to securely share the model parameters obtained by
multiple workers who have access to different encrypted data in order to create a better aggregated learner.
This approach is once again only designed for time series classification and cannot be easily adapted to a MLaaS
scenario, as it requires users to train their models locally.
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Figure 3: Diagram of the PINPOINT Temporal Convolutional Neural Network family.

3.3. PINPOINT

The Privacy-preservINg temPoral cOnvolutIonal Neural neTworks (PINPOINT) family of models
[31] is a collection of privacy-preserving time series forecasting models inspired by TCNNs. PINPOINT models
are built on the BFV homomorphic encryption scheme [19, 32] and implemented in Python through an extension
of the PyCrCNN library [28], which itself uses the Pyfhel library [41] to perform homomorphic computations
on encrypted data.
Unlike the other solutions described so far, the PINPOINT architecture is specifically designed with the limi-
tations of homomorphic encryption in mind for the purpose of privacy-preserving deep learning on the Cloud.
In particular, the choice of using a TCNN minimizes the number of operations necessary on ciphertexts, as
described in Section 2.5.
The structure of PINPOINT is shown in Figure 3. It receives as input a vector of q encrypted time series
observations and returns an encrypted vector of the predictions for the next h time instants. The model is built
from a sequence of convolutional blocks, followed by a flatten layer and three fully connected layers that return
the actual output. Each convolutional block is composed of a 1-D convolutional layer and a square layer, chosen
as a non-linear activation function compatible with homomorphic constraints. The original paper presents two
different configurations of the model, one which uses a single convolutional block (PINPOINT-1CONV) and
one which uses two (PINPOINT-2CONV). The higher complexity of the PINPOINT-2CONV version leads to
a slight increase in performance at the cost of a higher number of operations required. The model does not use
any pooling or normalization layers, instead keeping the network structure as simple as possible to facilitate the
implementation of homomorphic operations.

Both configurations of PINPOINT are shown to have a prediction accuracy directly comparable with other
state-of-the-art time series forecasting models run in a privacy-violating way (meaning on plain data).
The main drawback with this approach is that the model is limited to privacy-preserving inference and cannot
learn from encrypted data. Instead, the model is first trained on plain publicly available data, requiring pro-
cessing in the clear that violates its privacy. After the training phase, the model weights are fixed and encoded
to support operations on ciphertexts, and a new encrypted dataset can be used for encrypted inference.
In addition, when compared to plain algorithms the homomorphic operations introduce an important overhead
both in terms of time and memory for the computation of each forecast. The BFV homomorphic scheme also
natively supports the encryption of integer values only, while the model takes floating point values as inputs.
The PyCrCNN library of PINPOINT gets around this issue by implementing a fractional encoder within the
encryption procedure, which comes at the cost of some precision in the encrypted values.
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4. Proposed solution

The goal of our work is to develop a privacy-preserving framework for machine learning that suports both
encrypted inference and encrypted training. We also prove its effectiveness by developing a working model for
univariate time series prediction that pushes the limits of these encrypted training capabilities within the con-
straints given by homomorphic encryption. The architecture should be fully compatible with Cloud computing,
providing a privacy preserving time series forecasting application "as-a-service" with general-purpose models
that can be fine-tuned by users using encrypted data. Its usage is exemplified in the following scenario.
A user wants to use a Cloud-based application to provide a time series prediction on sensitive data without
breaching its privacy. They have access to a dataset Z of univariate time series observations up to time t and
want to compute a prediction Ẑ for its values in the next h time instants. However, they do not want to disclose
the actual values of Z to a third-party provider. By using our solution, the user can first encrypt their data Z
locally using their public key and send over to our Cloud provider Z = Encrypt(pk, Z) instead. Our machine
learning model on the Cloud platform can use part of the encrypted data Ztrain to fine-tune its own parameters
through a series of homomorphic computations, without ever accessing the original information. The rest of
the encrypted dataset Zinf is then used to compute the h predicted values Ẑ, still in encrypted form. The out-
put is finally sent back to the user who can use their secret key to recover the plain prediction Ẑ = Decrypt(sk, Ẑ).

Our starting point is the PINPOINT family of models described in Section 3.3 and the TCNN architec-
ture in general. PINPOINT already provides a solution for inference on encrypted data and the underlying
PyCrCNN library offers HE-compatible implementations of the basic layers of a TCNN. The architecture shows
promising results both on plain and encrypted data and proves that homomorphic encryption can be applied
to feed-forward models for effective privacy-preserving learning. However, PINPOINT does not implement a
training procedure, instead relying on encrypting a model pre-trained on plain data. Although this solution
can be effective even in Cloud-based scenarios, it does not allow users to tune the model parameters to their
specific prediction task unless they have access to equivalent plain data not protected by privacy.

Several steps have to be taken in order to add encrypted training functionalities to the PINPOINT archi-
tecture in its current state. Section 4.1 first describes the implementation of the CKKS encrption scheme and
batched vectorized operations for PINPOINT, which should minimize the number of operations required on
ciphertexts. Section 4.2 then expands this initial framework by introducing a homomorphic training algorithm
that can work with the implemented neural network layers. Finally, Section 4.3 describes a novel model for
time series prediction based on PINPOINT that uses these new functionalities to effectively perform training
on encrypted data.

4.1. CKKS implementation

The current implementation of the PINPOINT family of models poses several challenges to the addition of a
training algorithm. First, as explained in Section 3.3, PINPOINT is built on the PyCrCNN library which uses
the BFV scheme for homomorphic computations. The BFV scheme natively supports only integer operations,
requiring additional steps in order to implement a fractional encoder that lead to lower overall accuracy and
performance. More importantly however, PyCrCNN does not make use of ciphertext batching, meaning that
every private value is encrypted by itself in a new ciphertext. Implementing a training phase requires a much
larger ciphertext size and number of operations than simple inference, which in turn quickly makes this approach
completely unfeasible both in terms of time and resources.
Before we can add any new functionalities to the model, we first need to restructure the PyCrCNN library to
be compatible with ciphertext batching and in particular with the CKKS encryption scheme, chosen for its
native support of floating point values. Ciphertext batching enables SIMD processing by operating on multiple
input values at once, at the expense of the ability to access individual values of the encrypted vector. Our first
goal then becomes translating all operations performed in the forward pass of all PINPOINT layers into matrix
and vector operations compatible with batched ciphertexts.

For each proposed algorithm, we highlight the number of multiplications and rotations used (being the rel-
evant operations in terms of computation time) and, most importantly, the multiplicative depth, meaning the
number of multiplications that need to be applied in sequence to the same ciphertext. The multiplicative depth
is what determines the number of multiplications allowed under the chosen HE settings, and consequently what
we are mainly looking to minimize. An efficient algorithm needs to use up at most one level of multiplication
on the input in its forward pass. Any number of additions and rotations are allowed, although they should also
be minimized under the previous constraints to improve efficiency.
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4.1.1 Encoding and basic operations

Time series forecasting tasks use input sequences of multiple observed values in order to compute an output
sequence of multiple upcoming predictions. Batching can be applied to such sequences on multiple levels when
encrypting them to CKKS ciphertexts.
The first obvious step is to encrypt an entire input sequence into a single ciphertext vector. The current single
value operations in PINPOINT can then be replaced with much more efficient vector and matrix formula-
tions. We can use the operations described in Section 2.3.2 and Section 2.3.3 to encrypt a vector of inputs
x =

(
x0 x1 · · · xn

)T of size n+ 1 into the ciphertext:

X = Encrypt(pk,Encode(x,∆)).

We will abuse this notation and simply refer to this operation as X = Encrypt(x), and similarly avoid mentioning
scales or keys for all further operations. With this encoding, the resulting ciphertext X has the form:

X = { x0 x1 · · · xn 0 · · · 0 }(l)
where we denote with {} a set of encrypted values and where (l) is the current level of the ciphertext.
The ciphertext as described can encode up to N/2 complex values, which in practical applications is a number
order of magnitudes larger than the size of inputs n+ 1. We can then make efficient use of the ciphertext slots
by applying another batching step and stacking together multiple input sequences into the same ciphertext. We
define for each ciphertext a number of rows r (being a power of 2 to ease future operations) that can contain
up to N

2r elements each. Multiple input vectors xi can now be encrypted into the same ciphertext as:

Xr = { x0,0 · · · x0,n 0 · · · 0 x1,0 · · · x1,n 0 · · · 0 xr−1,0 · · · xr−1,n 0 · · · 0 }(l).
The input vectors are all padded with 0s to fill each row. A 0 padding is extremely important as it prevents
unwanted overlaps between rows after a Rotate operation on the ciphertext. Indeed, rotating a ciphertext makes
it so that the encrypted values at the beginning or end of the sequence wrap around to the other end of the
vector, such as:

Rotate(X, 1) = { x1 x2 · · · xn 0 · · · 0 x0 }(l)
Without the zero padding, rotating a ciphertext would cause some values of each row to spill into a neighboring
one. In order to avoid this issue the size of each row should always be at least twice as big as the maximum
size of the vectors to encrypt, or r < N

4(n+1) .

We can now study the implementation of the basic building blocks of PINPOINT using these encrypted input
vectors. In order to simplify their discussion, the following algorithms are explained using only ciphertexts
with r = 1 where no batching of multiple input vectors is performed. However, unless stated otherwise, the
SIMD operations employed by the algorithms work in the exact same way even with ciphertexts of r > 1. The
only difference is that any vector encrypted or encoded within the algorithms will have to be padded with 0s
and replicated along all rows, making it so that the input values in each row are all subject to the same exact
operations. The encryption operation of additional parameter vectors in the case of multiple rows can then be
viewed as:

Encrypt(x)→ Encrypt([x & [0] ∗ (r − n− 1)] ∗ r).

where & denotes a concatenation and ∗ a replication of an array.

4.1.2 Fully Connected layer

Fully Connected (FC) layers take an input vector x of size n + 1 and perform a matrix multiplication using a
weight matrix W and a bias term b. Given:

x =


x0

x1

· · ·
xn

 , W =


w0,0 w0,1 · · · w0,n

w1,0 w1,1 · · · w1,n

· · ·
wm,0 wm,1 · · · wm,n

 , b =


b0
b1
· · ·
bm

 ,

a fully connected layer will output the feature vector y = Wx + b of size m + 1. Each element of the output
vector y has the form, for 0 ≤ i ≤ m,

yi = bi +

n∑
j=1

wi,jxj . (1)

In order to operate on an encrypted input vector, we present an algorithm for homomorphic matrix-vector
multiplication with a multiplicative depth of one. We also analyze in detail each relevant line of the algorithm,
showing its output.
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Algorithm 1 Fully Connected layer forward pass
1: for 0 ≤ i ≤ n do
2: Wi = Encrypt(di(W))
3: end for
4: B = Encrypt(b)
5: Xd = Add(X,Rotate(X,−(n+ 1)))
6: for 0 ≤ i ≤ n do
7: C1i = Rotate(Xd, i)
8: C2i = Rescale(Mult(C1i,Wi))
9: end for

10: C3 = Add(C20, . . . ,C2n)
11: Y = Add(B,C3)

Line 2. We encrypt the weight matrix W of shape (m + 1) × (n + 1). As suggested in [38], we can greatly
simplify the following matrix multiplication by representing W in diagonal order and encrypting it into n + 1
separate ciphertexts. Namely, W has n + 1 generalized diagonals d0, . . . , dn of m + 1 elements di[0], . . . , di[m]
such that di[j] = wj%(n+1),(j+i)%(n+1), where % is the modulo operation. Assuming for our example m < n
(although it is not required by the algorithm), this results in the following ciphertexts:

W0 = { w0,0 w1,1 · · · wm,m 0 · · · 0 }(l)
W1 = { w0,1 w1,2 · · · wm,m+1 0 · · · 0 }(l)
· · ·
Wn = { w0,n w1,0 · · · wm,m−1 0 · · · 0 }(l)

Line 4. We simply encrypt the bias vector b to a single ciphertext.

B = { b0 b1 · · · bm 0 · · · 0 }(l)
Line 5. We append to the end of the input ciphertext X = Encrypt(pk,x) a copy of itself, in order to make its
values properly wrap around in the following rotations.

Xd = { x0 x1 · · · xn x0 · · · xn 0 · · · 0 }(l)
Line 7. We rotate Xd n + 1 times, producing n + 1 staggered versions of the input with some unnecessary
values appended at the end.
C10 = { x0 x1 · · · xn x0 · · · 0 0 }(l)
C11 = { x1 x2 · · · x0 x1 · · · 0 x0 }(l)
· · ·
C1n = { xn x0 · · · xn−1 xn 0 · · · xn−1 }(l)

Line 8. We multiply the rotated inputs by the weight diagonals. Note that the resulting ciphertexts only
have m + 1 values, as the weight diagonals act as a mask that sets all other unnecessary values to 0 in the
multiplication.
C20 = { w0,0x0 w0,1x1 · · · wm,mxm 0 · · · 0 }(l+1)

C21 = { w0,1x1 w1,2x2 · · · wm,m+1xm+1 0 · · · 0 }(l+1)

· · ·
C2n = { w0,nxn w1,0x0 · · · wm,m−1xm−1 0 · · · 0 }(l+1)

Line 10. We sum together the previous n + 1 results. Each element of the resulting vector is the sum of all
values of x multiplied by a different row of the original matrix W.

C3 = {
∑n

j=0 w0,jxj

∑n
j=0 w1,jxj · · ·

∑n
j=0 wm,jxj 0 · · · 0 }(l+1)

Line 11. We add the bias B to obtain the final m+ 1 values of (1).

Y = { b0 +
∑n

j=0 w0,jxj b1 +
∑n

j=0 w1,jxj · · · bm +
∑n

j=0 wm,jxj 0 · · · 0 }(l+1)

Algorithm 1 uses O(n) rotations and multiplications per input and has a depth of one multiplication.

4.1.3 Convolutional layer

Convolutional layers take an input x and perform a convolution with a filter w, called kernel. In particular,
TCNNs use one-dimensional convolutional layers, which operate over 1-D inputs (in our case a time series)
using 1-D kernel vectors. Here the kernel sets a temporal window and convolutes neighboring inputs together
in order to evaluate their relationship, returned in a so called activation map.
Ignoring the concepts of stride and padding which are not relevant to our application (namely, we always use a
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stride of 1 and valid padding), for a single kernel w and a bias value b, given:

x =
(
x0 x1 · · · xn

)T
, w =

(
w0 w1 · · · wk

)T
,

with n > k, a 1-D convolutional layer will output a vector y of length n−k+1 such that, for 0 ≤ i ≤ (n−k+1),

yi = b+

k∑
j=0

wjxj+i. (2)

We can observe that this result is equivalent to the following matrix multiplication:

y =


w0 · · · wk 0 0 · · · 0
0 w0 · · · wk 0 · · · 0
· · ·
0 0 · · · 0 w0 · · · wk




x0

x1

· · ·
xn

+


b
b
· · ·
b

 ,

or y = W′x + b′, where W′ is a matrix of size (n − k + 1) × (n + 1) and b′ is a vector of size n − k + 1. As
such, we can adapt the algorithm used in Section 4.1.2 to compute homomorphic convolution as well.

Algorithm 2 1-D Convolutional layer forward pass
1: for 0 ≤ i ≤ k do
2: Wi = Encrypt([wi] ∗ (n− k + 1))
3: end for
4: B = Encrypt([b] ∗ k)
5: for 0 ≤ i ≤ k do
6: C1i = Rotate(X, i)
7: C2i = Rescale(Mult(C1i,Wi))
8: end for
9: C3 = Add(C20, . . . ,C2n)

10: Y = Add(B,C3)

Line 2. We encrypt the kernel w into k+1 ciphertexts corresponding to the diagonals of matrix W′. We only
need to encrypt the first k + 1 diagonals as the remaining ones are all empty. Each diagonal di(W′) simply
contains n− k + 1 copies of the kernel parameter wi.
W0 = { w0 w0 · · · w0 0 · · · 0 }(l)
· · ·
Wk = { wk wk · · · wk 0 · · · 0 }(l)

Line 4. For the bias we once again encrypt a vector containing n− k + 1 copies of b.

B = { b b · · · b 0 · · · 0 }(l)
Line 6-7. We proceed with multiplying the rotated inputs with the encrypted diagonals as before. Note that
duplicating the input ciphertext X is no longer necessary, as the kernel only convolutes with the input up to its
final value without any looping. Again we only obtain k + 1 ciphertexts as the rest would all be set to 0.
C20 = { w0x0 w0x1 · · · w0xn−k 0 · · · 0 }(l+1)

C21 = { w1x1 w1x2 · · · w1xn−k+1 0 · · · 0 }(l+1)

· · ·
C2k = { wkxk wkxk+1 · · · wkxn 0 · · · 0 }(l+1)

Line 9-10. We sum the k + 1 results with the bias to obtain (2).

Y = { b+
∑k

j=0 wjxj b+
∑k

j=0 wjxj+1 · · · b+
∑k

j=0 wjxj+(n−k) 0 · · · 0 }(l+1)

Algorithm 2 uses O(k) rotations and multiplications per input and has a depth of one multiplication.
Note that typically convolutional layers deal with multichannel data. Algorithm 2 can be extended to deal with
both multiple output and input channels while keeping a multiplicative depth of one:

– A convolutional layer with multiple output channels uses m different kernels wi, each of which is convo-
luted with the same input to produce a multichannel activation map. In this case Algorithm 2 is simply
repeated m times for m different kernels, resulting in m separate output vectors. The resulting complexity
is of O(m · k) rotations and multiplications.

– A convolutional layer with multiple input channels takes c different vectors xi as input. In this case
a different kernel wi is applied to each input channel using Algorithm 2 c times, and the resulting c
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activation maps are summed together to produce a single output vector. The resulting complexity is of
O(c · k) rotations and multiplications.

4.1.4 Square layer

Square layers are the non-linear activation layer of choice for PINPOINT, being easy to implement under
homomorphic conditions. Indeed, square activation layers simply return the square of an input x, which is an
operation natively supported on ciphertexts.
The layer uses one multiplication per input, meaning a depth of one multiplication too.

4.1.5 Flatten layer

Flatten layers take m + 1 separate inputs xi of size n + 1 and concatenate them in a single vector. Flatten
layers are used between convolutional blocks and fully connected blocks in order to transform the multichannel
outputs of convolutional layers into a single input vector compatible with fully connected layers. Given:

x0 =
(
x0,0 · · · x0,n

)T
, . . . , xm =

(
xm,0 · · · xm,n

)T
,

a flatten layer will output a vector of length (m+ 1) · (n+ 1)

y =
(
x0,0 · · · x0,n x1,0 · · · xm−1,n xm,0 · · · xm,n

)T
. (3)

While this can easily be achieved under homomorphic conditions with a set of rotations and additions, adding
up multiple rotated ciphertexts in CKKS can quickly build up their approximation errors and give suboptimal
results. Instead, we take an extra masking step that improves accuracy at the cost of one multiplication.

Algorithm 3 Flatten layer forward pass
1: for 0 ≤ i ≤ m do
2: C1i = Rotate(Xi,−i(n+ 1))
3: end for
4: M = [1] ∗ (n+ 1)
5: for 0 ≤ i ≤ m do
6: Mi = Encode(Rotate(M,−i(n+ 1)))
7: C2i = Rescale(Mult(Mi,C1i))
8: end for
9: Y = Add(C20, . . . ,C2m)

Line 2. We rotate each encrypted input Xi = Encrypt(xi) to the position it will occupy in the final concatenated
output, which means shifting it by −i(n + 1) positions. The rotations leave some unwanted errors where 0s
should be, especially in the first few ciphertext slots.
C10 = { x0,0 · · · x0,n 0 · · · 0 0 · · · 0 0 · · · 0 }(l)
C11 = { ε · · · 0 x1,0 · · · x1,n 0 · · · 0 0 · · · 0 }(l)
· · ·
C1m = { ε · · · 0 0 · · · 0 xm,0 · · · xm,n 0 · · · 0 }(l)

Line 4-6. We define an encoded mask for each rotated input C1i, where the positions filled with useful values
are marked with 1s and the rest with 0s. Note that the values of these masks are known and only depend on
the size of the ciphertexts, so they can simply be encoded instead of encrypted.
M0 = { 1 · · · 1 0 · · · 0 0 · · · 0 0 · · · 0 }
M1 = { 0 · · · 0 1 · · · 1 0 · · · 0 0 · · · 0 }
· · ·
Mm = { 0 · · · 0 0 · · · 0 1 · · · 1 0 · · · 0 }

Line 7-9. We multiply each rotated input with its mask in order to reset any errors in the unused ciphertext
slots to 0, then add them all up to obtain (3).

Y = { x0,0 · · · x0,n x1,0 · · · xm−1,n xm,0 · · · xm,n 0 · · · 0 }(l+1)

Algorithm 3 uses O(m) rotations and multiplications and has a depth of one multiplication.
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4.2. Encrypted training

Section 4.1 analyzes how to optimize the current PINPOINT model to work with the CKKS scheme and with
batched inputs. We can now build upon it and discuss the implementation of a proper training step on encrypted
data.
While implementing a training algorithm for each layer of the model is theoretically possible, the practicality of
this operation in terms of multiplicative depth is a major issue. Most implementations of CKKS use 215 = 32768
as the maximum possible polynomial degree N for cyphertexts, as going above that would be too demanding in
terms of time and memory occupation. This in turn limits the maximum bit-length of the coefficient modulus qL
to 881 (see Table 1). If we want to guarantee good enough precision of the encrypted data with a scale ∆ > 230,
this leaves us with a maximum multiplicative depth L of 25-30 levels depending on the chosen parameters (we
recall that qL = ∆Lq0).
Under this harsh limitation, training the entire model for a sufficient number of epochs becomes impossible.
Indeed, in order to train a layer on encrypted data its parameters need to be encrypted at the start of the
training algorithm, and will be iteratively updated at each epoch. If the layer’s backward step uses up even just
one level of multiplication this will stack up with subsequent iterations, posing a limit to the number of epochs
allowed. Instead, we focus on implementing a backward step solely for fully connected layers, as they make up
the final layers of the PINPOINT model, and maximizing its efficiency in terms of multiplication usage. We
will analyze how this single backward step can produce sufficient training results in the following section.

4.2.1 Gradient descent

The weights of a fully connected layer can be trained using gradient descent. Gradient descent is an opti-
mization algorithm that minimizes an objective function by moving its parameters in the direction opposite to
its gradient. The objective function we want to minimize is a cost or loss function C, which given the inputs
xi measures the error between the predicted outputs of our layer yi and the actual target values ti of the same
inputs. We specifically use the batch version of gradient descent, which evaluates the next set of parameters
over the entirety of the predicted outputs. Stochastic gradient descent, which instead updates the weights and
bias for each sample output individually, is typically preferred in privacy-violating algorithms for large enough
datasets as it converges faster and more consistently to the optimal solution. However, under homomorphic
conditions this approach would quickly run through all multiplication levels of the weight ciphertexts due to
the frequency of their updates.
Given a learning rate α and a fully connected layer with weights Wt and bias bt at iteration t of the batch
gradient descent algorithm, we can find the next set of weights and bias at iteration t+ 1 as:

Wt+1 = Wt − α
∂C

∂W

bt+1 = bt − α
∂C

∂b
.

(4)

(5)

This update can be repeated any number of times until it eventually reaches convergence to a local minimum.
Our loss function of choice over k + 1 predictions is the sum-of-squares error C = 1

2k

∑k
i=0(yi − ti)2, where we

recall that yi = Wxi + b. The gradient of C with respect to W and b can be computed using the derivative
chain rule, resulting in the update equations:

Wt+1 = Wt −
α

k

k∑
i=0

(yi − ti)xT
i

bt+1 = bt −
α

k

k∑
i=0

(yi − ti).

(6)

(7)

The point of interest here for homomorphic computation is the matrix product (yi − ti)xT
i , also referred to

as the outer product (yi − ti)⊗ xi. The outer product is defined as a (m + 1) × (n + 1) matrix obtained by
multiplying each element of the first vector with each element of the second. In particular we are interested
in obtaining the diagonal order formulation of this matrix, as the results of the outer products have to be
subtracted from the weight matrix W which we represent as a set of encrypted diagonals (see Section 4.1.2).
We propose the following algorithm for the homomorphic computation of the generalized diagonals of matrix

A = u⊗ v = uvT =


u0v0 u0v1 · · · u0vn
u1v0 u1v1 · · · u1vn
· · ·

umv0 umv0 · · · umvn

 ,

18



where u and v are vectors of m+ 1 and n+ 1 elements respectively, encrypted as U and V.

Algorithm 4 Outer product of two vectors
1: Vd = Add(V,Rotate(V,−(n+ 1)))
2: for 0 ≤ i ≤ n do
3: V1i = Rotate(Vd, i)
4: Ai = Rescale(Mult(U,V1i))
5: end for

Line 1-3. As with the matrix multiplication of Algorithm 1, we duplicate the encrypted input V and rotate it
n+ 1 times to obtain staggered copies of it.
V10 = { v0 v1 · · · vn x0 · · · 0 0 }(l)
V11 = { v1 v2 · · · v0 v1 · · · 0 v0 }(l)
· · ·
V1n = { vn v0 · · · vn−1 vn 0 · · · vn−1 }(l)

Line 4. We simply multiply each rotated ciphertext V1i for U in order to obtain the i-th diagonal of the outer
product Ai. The 0 values of U mask out only m + 1 elements in the resulting ciphertext, assuming for this
example m < n.
A0 = { u0v0 u1v1 · · · umvm 0 · · · 0 }(l+1)

A1 = { u0v1 u1v2 · · · umvm+1 0 · · · 0 }(l+1)

· · ·
An = { u0vn u1v0 · · · umvm−1 0 · · · 0 }(l+1)

Algorithm 4 uses O(n) rotations and multiplications per input pair and has a depth of one multiplication.

4.2.2 Nesterov’s Accelerated Gradient

The gradient descent step for the weights of a fully connected layer as formulated in (6) can be easily computed
using Algorithm 4. However, basic gradient descent, especially in batch form, gives suboptimal results when
used only for the < 30 epochs that we have available as it often gets stuck in a local mimimum. Momentum
[58] has proved to be an effective tool in almost all scenarios to accelerate gradient descent and help it navigate
through local optima. While many implementations of momentum are present in the literature, we focus on
Nesterov’s Accelerated Gradient (NAG) [68], which offers a good trade-off in terms of effectiveness and
compatibility with homomorphic environments.
NAG introduces a velocity parameter V to "look ahead" at the next expected values of the parameters to
optimize and calculate the gradient in that position. Using NAG the gradient descent update equation (14) for
the weights of a fully connected layer becomes:

Vt+1 = µVt − α
∂C

∂(Wt + µVt)

Wt+1 = Wt + Vt+1

(8)

(9)

where µ is a momentum term. In order to simplify these equations and keep the gradient calculations relative
to the current weights instead of the predicted future position, the Keras deep learning library [37] proposes
the following equivalent implementation of NAG:

Vt+1 = µVt − α
∂C

∂Wt

Wt+1 = Wt + µVt+1 − α
∂C

∂Wt
.

(10)

(11)

For the purpose of homomorphic implementation, we can save up on one multiplication on ciphertexts by further
rewriting (10) and (11) as:

(µVt+1) = µ(µVt)−
αµ

k

k∑
i=0

(yi − ti)xT
i

Wt+1 = Wt + (µVt+1)−
α

k

k∑
i=0

(yi − ti)xT
i

(12)

(13)

effectively replacing parameter V with a new parameter µV.
The following algorithm implements these equations together with (7) in order to compute a full iteration of the
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backward step of a fully connected layer, given the results of the forward step y = Wx + b. We pay particular
attention to the levels of the ciphertexts in question. Considering that the encryptions of Wt, bt and µVt as
well as the inputs xi start at level l, the encryption of the output y already starts at level l + 1 as the forward
pass of Algorithm 1 has a multiplicative depth of one.

Algorithm 5 Fully Connected layer backward pass using NAG
1: for 0 ≤ i ≤ k do
2: Ei = Add(Yi,−Ti)
3: XAi = Rescale(Mult(Xi,

α
k ))

4: XAMui = Rescale(Mult(Xi,
αµ
k ))

5: GAi = Ei ⊗ AXi

6: GAMui = Ei ⊗ AMuXi

7: EAi = Rescale(Mult(Ei,
α
k ))

8: end for
9: GA = Add(GA0, . . . ,GAk)

10: GAMu = Add(GAMu0, . . . ,GAMuk)
11: MuMuV = Rescale(Mult(MuV, µ))
12: MuV← Add(MuMuV,−GAMu)
13: W← Add(W,MuV,−GA)
14: B← Add(B,−E0, . . . ,−Ek)

Line 2. We compute the error between the predictions Yi (l+1) and the target values Ti (l) as Ei (l+1).
Line 3-4. We compute the products between the inputs Xi (l) and the two coefficients α

k and αµ
k . We perform

these operations separately and before the upcoming sums in order to obtain ciphertexts of level l + 1 instead
of l+2. While this is less efficient in terms of overall number of operations, it allows the algorithm to consume
only one level of multiplication.
Line 5-6. Using Algorithm 4 we compute two outer products that give us respectively the encryptions of
α
k (yi − ti)xT

i and αµ
k (yi − ti)xT

i . The results are two matrices represented by two sets of n + 1 encrypted
diagonals, each being a ciphertext of level l + 2.
Line 7. For the bias calculations we multiply the errors Ei (l+1) by α

k , obtaining the encryptions of α
k (yi − ti)

at level l + 2.
Line 9-10. We sum together the results of Line 5-6 to obtain α

k

∑k
i=0(yi − ti)xT

i and αµ
k

∑k
i=0(yi − ti)xT

i ,
still as sets of n+ 1 ciphertexts at level l + 2.
Line 11. We compute µ(µVt) by multiplying µVt by µ, giving us the matrix of ciphertexts MuMuV(l+1).
Note that µVt is also a matrix stored through its encrypted diagonals.
Line 12. We update µVt with the sum described in (12). Because of GAMu(l+2) the result is a set of level
l + 2 ciphertexts too.
Line 13. We update W with the sum described in (13), which also results in a set of level l + 2 encrypted
diagonals because of MuV(l+2) and GA(l+2).
Line 14. We subtract all the scaled errors from the bias to update it according to (7). This results in a single
level l + 2 ciphertext.

Algorithm 5 uses O(k · n) multiplications and has a depth of one multiplication starting from the forward step.

In the case of Algorithm 5 we need to make a distinction if we are using batched ciphertexts that encrypt
multiple input rows at once. The additions at Line 9-10 need to sum together all input rows of the operands
and not just the ciphertexts themselves. We can achieve this by applying an Accumulate procedure to all batched
ciphertexts before said additions. Accumulate takes as input a ciphertext X of r rows of size s = N

2r and adds it
recursively to its rotations:

X← Add(X,Rotate(X, s · 2i)), for i = 0, . . . , (log2 r)− 1.

The result is a ciphertext where each row contains a copy of the sum of all rows of the original input. The
chosen approach is faster than simply rotating the ciphertext by each row and adding it to the original, which
would take O(r) rotations instead of O(log r).

4.2.3 Backpropagation

In a typical feed-forward network the gradient descent algorithm is extended to train all layers at once through
the use of backpropagation. With backpropagation, the loss computed at the final output of the network is
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Figure 4: Comparison of backpropagation of gradient descent between one and two fully connected layers. Backprop-
agating the error through multiple layers uses up more multiplications both on the backward step and on the forward
step of the following epoch. Even with a backward step of multiplicative depth of 1, each epoch of training consumes
2 levels of multiplication in the first case and 4 in the second case, effectively halving the amount of epochs available if
opting to backpropagate through two layers.

propagated backwards through the previous layers, iterating the gradient descent algorithm using the derivative
chain rule. For instance, after updating the weights of the final layer L of our network using (14), layer L − 1
can be updated as:

W(L−1)
t+1 = W(L−1)

t − α
∂C

∂W(L−1)
= W(L−1)

t − α
∂C

∂x(L)

∂x(L)

∂W(L−1)
(14)

considering that in a feed-forward network the input of a layer x(L) is the output of the previous layer y(L−1).
In order to implement this update rule under homomorphic restrictions we need to be able to compute ∂C

∂x(L) ,
which for fully connected layers specifically requires the transposition of the weight matrix W(L). Matrix
transposition is not easy to compute using the diagonal matrix encoding adopted so far and would require one
extra multiplication per layer. In addition, backpropagating the error through multiple layers would increasingly
lower the level of their weight ciphertexts, which in turn would bring down the level of the inputs at the following
epoch. Figure 4 illustrates how even with a backward step that consumes only one level of multiplication per
layer, training two fully connected layers doubles the amount of multiplications required per epoch.
As such, we opt not to implement backpropagation for our encrypted training phase, and instead focus on
training only the final layer of the network for as many epochs as possible.

4.3. Trainable model

Thanks to the implementation of homomorphic gradient descent for fully connected layers described in Sec-
tion 4.2, we can now optimize the PINPOINT architecture to maximize the efficacy of this training phase.
As stated in Section 4.2.3 we choose to apply training only to the final fully connected layer of the model,
meaning that the rest of the network needs to be trained on plain data first and then encrypted. This goes
against the original privacy-preserving mission of our encrypted network and its compatibility with fully trans-
parent Cloud-based training. Users should not be required to send over plain reference data as there might be
situations where only sensitive data is available.
Ideally, we want to pre-train a base network on plain, publicly available data that might not even be strictly
related to a user’s specific task, and then use the user’s private encrypted data to fine-tune the results. The
approch of taking an existing learner and applying the knowledge it gained to a different task is referred to as
transfer learning. The resulting model should be robust enough to give accurate results with very few epochs
of fine-tuning of a single fully connected layer, and work as a general-purpose solution that does not require any
assumptions on the specific private training data.
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4.3.1 Stacking model

Because no knowledge on the type of training data can be used, our approach is to train multiple transfer
models on different sets of plain time series data and then combine their predictions on encrypted data using
a modified model stacking approach. Stacking [75] is an ensemble machine learning technique that combines
multiple types of models to create a more powerful architecture:

– Multiple level-0 models make a prediction on the training data.
– A single level-1 model or generalizer uses the outputs of the level-0 models as input data and learns how

to best combine them.
The level-1 model is trained on the predictions of the level-0 models, which in practice act as feature extractors.
By using level-0 models trained on different types of data distributions, the generalizer can then select which
ones best match the actual target outputs.

We can adapt this idea for our purposes by using multiple PINPOINT models as the level-0 models, and a
trainable fully connected layer as the level-1 generalizer. A diagram of our trainable stacking model imple-
mented using the PINPOINT architecture, called PINStack, is shown in Figure 5.
Given a time series forecasting task of forecast horizon h, n plain time series datasets Di used for transfer
learning, and an encrypted time series dataset Z for fine-tuning, a PINStack model can be constructed and
trained on encrypted data with the following steps:

1. We train in parallel n PINPOINT-1CONV transfer models φ(0)
i on the plain datasets Di. The PINPOINT-

1CONV version of the model is chosen in order to minimize the number of layers and, in turn, the number
of multiplications required. Because we only use one convolutional layer, we also swap the flatten and
square layers from the original architecture seen in Figure 3 in order to speed up computation. Note that
this training is done on plain versions of the models and does not require any encryptions or consume
ciphertext levels.

2. We remove the final fully connected layer of each level-0 model φ(0)
i in order to increase the number of

inputs for the generalizer. We denote with d the new output size of the models, corresponding to the
output size of the second-to-last fully connected layer.

3. We encode the parameters of the models φ
(0)
i . These parameters only depend on the plain transfer data

and will no longer be modified by the encrypted data, as such they can simply be encoded without any
privacy loss.

4. We create a new feed-forward model φ(1) composed of a flatten layer and a fully connected layer. The
fully connected layer has input size n · d and output size h. It is initialized using the parameters of the
removed fully connected layers, which are then encrypted. This is used as our level-1 generalizer.

5. We run the training dataset Z through a forward pass of each level-0 model φ(0)
i . The outputs are n sets

of predictions of size d for each input. Even though the level-0 models were not trained on this dataset,
we can still use their inner representation of this data to learn its real distribution.

6. We stack together the outputs of all models by running them through the flatten layer of φ(1), obtaining
a new set of |Z| inputs of size n · d.

7. We use the new encrypted inputs to homomorphically train the fully connected layer of φ(1).

To summarize, the level-0 models are each trained on a different plain dataset Di (named the transfer datasets)
and then used to pre-process the encrypted dataset Z (named the training dataset), so that the level-1 generalizer
can be trained to produce the final predictions.
To perform inference on a PINStack model, new encrypted time series inputs are first passed through all level-0
models φ

(0)
i in parallel and through the new flatten layer. The input obtained this way is compatible with the

level-1 generalizer, which can then output the final prediction.

4.3.2 Model details

The multiplicative depth necessary to run encrypted training and then encrypted inference on the PINStack
model illustrated in Figure 5 is:

– 5 levels for initial the forward pass of the φ
(0)
i models, as we run for each layer the forward pass algorithms

implemented in Section 4.1 that only require one level of multiplication each;
– 1 level for the forward pass of the flatten layer of φ(1);
– 2 levels for each epoch of training of the fully connected layer of φ(1), which requires one multiplication

on the input for the forward pass and one on the weights for the backward pass;
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Figure 5: Diagram of the PINStack model. An example of a forward pass is reported with the size of the input and
output of each layer.

– 1 level for the final forward pass of the fully connected layer of φ(1) performed during inference.
For e epochs of training, this results in an overall multiplicative depth of L = 7 + 2 · e.

Because of the very limited number of epochs of training allowed, the initialization of the trainable param-
eters (namely the weights W(1) and bias b(1) of the generalizer φ(1)) plays a key role in the final performance
of the model. As anticipated this initialization is done using the parameters of the n final fully connected layers
that are cut from the level-0 models.
Given a forecast horizon h, the weights W(0)

i of these layers are matrices of shape h× d, while their biases b(0)
i

are vectors of size h. The weigth matrix W(1) and bias b(1) can be initialized to:

W(1) =
(

1
nW(0)

1 · · · 1
nW(0)

n

)
, b(1) =

1

n

n∑
i=1

b(0)
i ,

resulting in a h× (n ·d) matrix and a vector of size h respectively. The result is that the fully connected layer is
initialized to output an average of the predictions of the original level-0 models, which acts as a good unbiased
starting point for the following fine-tuning.

Using this approach, no assumptions are required on the plain transfer datasets Di other than that they should
have the same input size and forecast horizon as the encrypted training dataset Z. This limitation is easy to
overcome in an actual Cloud-based implementation, as TCNNs for time series prediction tasks typically set the
input sequence length according to the time resolution of the target. A consistent time resolution and input
size allows the level-0 models to capture seasonal trends in the data and then identify similar patterns in the
final encrypted dataset. A provider can exploit this in the Cloud scenario by preparing a collection of PINStack
models that each use data with a different time resolution for transfer learning, and letting users select which
ones they want to train with their encrypted data.
Of course, results can be improved if a user has access to plain data similar to their private encrypted data (for
instance historical data that is no longer subject to confidentiality). We can use this plain data to prepare the
trasfer datasets Di and initialize a PINStack model using them, then fine-tune the models with the encrypted
data. The plain level-0 models will likely already have good prediction performance on the new encrypted
dataset, resulting in even better accuracy after training.
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5. Implementation

The proposed PINStack time series prediction model is implemented in the Python library PyCNN-CKKS.
The library includes all algorithms previously described and offers a framework for a general-purpose encrypted
network with privacy-preserving training capabilities. This section describes the overall structure of the new
library, as well as providing some notes on its usage.

5.1. External libraries

PyCNN-CKKS uses the following external libraries:

• Pyfhel [41]: Homomorphic encryption library that supports the CKKS encryption scheme. It is a Python
wrapper for the open-source C++ Microsoft SEAL [64] library.

• numpy [39]: Scientific computation.

• PyTorch [55]: Open source machine learning framework.

In addition, the following supporting libraries are useful to run the final experiments:

• pandas [74]: Data analysis library. Used for database handling.

• scikit-learn [57]: Open source library for machine learning tools. Used for data processing.

5.2. Structure

PyCNN-CKKS is a Python library built on top of the implementation of the CKKS scheme from the Pyfhel
library [41]. It provides tools for the creation and training of privacy-preserving feed-forward machine learning
models compatible with the network structure of the PyTorch library [55]. The library only implements the
layers necessary for our proposed architecture, namely:

– Fully Connected layers (corresponding to torch.nn.Linear);
– 1-D Convolutional layers (corresponding to torch.nn.Conv1d);
– Square layers (our custom activation layer);
– Flatten layers (corresponding to torch.nn.Flatten).

PyCNN-CKKS is divided into the following sub-packages:

• he: Contains the Pyfhel2d class, which implements all HE functionalities of the CKKS scheme. It
inherits the base Pyfhel.Pyfhel class (from the Pyfhel library) by adding support for matrix encryption
and encrypted matrix operations as described in Section 4.1.2, as well as useful operations related to
ciphertext batching.

• linear : Contains the EncLinear class, which implements an encrypted fully connected layer together with
its forward pass and backward pass algorithms as described in Section 4.1.2 and Section 4.2.2 respectively.

• convolutional : Contains the EncConv1d class, which implements an encrypted 1-D convolutional layer
together with its forward pass as described in Section 4.1.3.

• functional : Contains the EncSquare and EncFlatten classes, which implement encrypted square and
flatten layers together with their forward pass as described in Section 4.1.4 and Section 4.1.5 respectively.

• model : Contains the EncSequential class, which takes a torch.nn.Sequential network (from the Py-
Torch library) that only contains the previously implemented layers and builds an HE-compatible version
of the network using said layers. The network can include training functionalities on its last fully con-
nected layer.
Also contains the EncStacking class specific to our proposed architecture, which groups together multiple
EncSequential models to create the stacking model described in Section 4.3

The main methods of each of these classes are highlighted here:

◦ A homomorphic encryption context can be generated by the Pyfhel2d class using the contextGen method
inherited by Pyfhel.Pyfhel, which we call through:

Pyfhel2d.contextGen(scheme=’ckks’,
n=N,
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qi_sizes=[int_scale] + [bits_scale]*L + [int_scale],
scale=2**bits_scale)

Here N is the ciphertext polynomial degree N , bits_scale is the bit-length of the scale ∆ (which will be
approximated by prime integers), int_scale is the bit-length of final coefficient modulus q0, and L is the
maximum number of multiplications L.

◦ An instance of each implemented encrypted layer is created in a similar way to the corresponding PyTorch
modules, as:

EncLinear(HE, row_size, weight, bias, enc_mode)
EncConv1d(HE, row_size, weight, bias, in_size, enc_mode)
EncSquare(HE)
EncFlatten(HE, row_size, in_size)

All layers are given an instance HE of the Pyfhel2d class with its context already initialized, which will
handle their homomorphic operations, as well as a row_size used for batched ciphertexts. EncLinear
and EncConv1d are given an initial plain weight and bias, which will either be encrypted or encoded ac-
cording to parameter enc_mode. EncConv1d and EncFlatten also need to specify an additional int_size
parameter, the size of their input vectors. This parameter can typically be inferred from the inputs in a
plain execution but cannot be known from encrypted ciphertext vectors of fixed size N/2.
Each of these classes implements their respective forward pass algorithm on an encrypted input sequence
x in the function:

layer.forward(x)

EncLinear has the additional function:

EncLinear.forward_backward(X, Y, num_inputs, learning_rate, momentum)

The function performs encrypted training on the layer by implementing both the forward and backward
pass algorithms and executing them on the set of input-target sequence pairs (X, Y).

◦ The model classes are initialized as:

EncSequential(HE, model, row_size, seq_length, trainable)
EncStacking(HE, lv0_models, lv1_model)

EncSequential takes as input a torch.nn.Sequential model and encrypts it, specifying if the last layer
should be trainable. EncStacking instead takes a collection of EncSequential lv0_models and a single
EncSequential lv1_model to construct a stacking model. Both classes can perform a single forward pass
on an input x through all their layers as:

model.forward(x)

To train them on labeled inputs (X, Y) for num_epochs iterations the following function is used:

model.train(X, Y, num_inputs, num_epochs, learning_rate, momentum)

The train function of EncStacking implements the training framework described in Section 4.3.1 by
first running the inputs X through each of the lv0_models, and then using these new inputs to train the
lv1_model.

5.3. Usage

The EncLinear and EncConv1d classes are constructed from a set of plain weights and biases. The library
assumes that all models to encrypt have already been trained on plain data, which can be easily carried out
through PyTorch. In addition, both EncLinear and EncConv1d layers support an encrypted and encoded mode,
where the latter can be used for layers that do not require encrypted training (and as such do not need to be
modified according to any encrypted data) in order to speed up computation.

The encryption parameters for the CKKS scheme are chosen at initialization of the Pyfhel2d class, which
is used to build all encrypted layers and models and carry out their homomorphic operations. These encryp-
tion parameters must be shared with any user who wants to access a model encrypted with said instance of
Pyfhel2d. Indeed, the user must have access to an equivalent Pyfhel2d instance in order to encrypt their data
into ciphertexts compatible with the model weights and biases. Once these encryption parameters are known by
both parties, the user can generate a pair of public and secret keys and share their public key with the machine
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Figure 6: Example of the creation of a supervised training dataset starting from a time series dataset Z. Here, the
sequence length is q = 4 and the forecast horizon is h = 2. A dataset of |Z| time series observations can be used to
create a training dataset of |Z| − (q + h− 1) input-target sequence pairs.

learning provider. The same public key can then be used to encrypt the weights of the model that need to be
fine-tuned, with the provider no longer able to access their plain values without the secret key.

We also need to define how the inputs themselves are presented to the network. EncSequential and EncStacking
models have a set input size equal to a sequence length q and output size equal to a forecast horizon h, and will
learn to predict h upcoming time series values given the previous q observations. The models are trained in a
supervised manner and as such require that training data comes in the form of vector pairs: an input sequence
of q time series observations and a target sequence corresponding to the next h observations. The data should
also be normalized first in order to avoid issues with the scale parameters of CKKS, and it is important that
the same scaling is used across all transfer and training datasets for the learning process to be effective.
In the case of private data, these operations must necessarily be carried out by users on plain data before
encryption, meaning locally before sending it over to the chosen model when considering a Cloud-based setting.
Starting from any time series dataset, a user can easily construct a training dataset (either for the plain transfer
learning of level-0 models or for the encrypted fine-tuning of the generalizer) by splitting it into pairs of inputs of
length q and labels of length h, as illustrated in Figure 6. All data from the same dataset can also be normalized
together first, keeping the scaling consistent between samples and making it easy to rescale back the outputs
received by the encrypted network.

Note that because we are training on encrypted data we cannot use a validation set, as the model has no
knowledge of the actual values of its outputs. This should not be a concern in our case however, as with the
extremely limited number of training epochs we have available we do not risk overfitting the training dataset
in any significant way.
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6. Experimental results

In this section the performance of the PyCNN-CKKS implementation of the PINStack time series prediction
model is tested in two scenarios that exemplify two different realistic use cases:

1. Similar transfer data. A user wants to train a PINStack model on an encrypted dataset Z and gives it
access to other similar plain datasets Di as well for transfer learning.

2. Unrelated transfer data. A user wants to train a PINStack model on an encrypted dataset Z and only
has access to sensitive data.

The second case is of particular interest to our mission for a privacy-preserving Cloud-based solution, as it does
not demand from the user any information about their data and completely preserves the privacy of their task.
The goal of these experiments is to show that the privacy-preserving training capabilities of the model, although
limited to a single fully connected layer, are effective at producing similar results to other privacy-violating
architectures commonly used in the field.

6.1. Datasets

In order to test the two scenarios previously described, a collection of publicly available univariate time series
datasets is used to create the transfer and training datasets. In the first case, both the plain datasets for training
of the level-0 models and the encrypted dataset for training of the level-1 generalizer come from similar sources.
In the second case, a collection of unrelated datasets with the same time resolution is used as transfer data for
training on a different encrypted dataset.
Each dataset is split into a train dataset used for training (either of the level-0 models or the generalizer) and
a test dataset used for inference to evaluate their performance. When training level-0 models on plain data, a
further 5% of the train datasets is kept for validation in order to help prevent overfitting.
All datasets are scaled before encryption to the range [−1, 1] through the sklearn.preprocessing.MinMaxScaler
from the scikit-learn library. The same reversed scaler is applied to the decrypted outputs of the network to
retrieve the final predictions.

6.1.1 Similar transfer data

The first experiment is run on a collection of Western Europe Power Consumption datasets [4]. These datasets
describe the daily overall power consumption of several European countries, in GigaWatts, between 2015 and
2020. They are each split into a train dataset with values from 01-01-2015 to 20-01-2020 (1846 observations)
and a test dataset with values from 21-01-2020 to 31-08-2020 (224 observations).
In particular, the following power consumption datasets are chosen for encrypted training:

• France: Data range 1435.904.

• Luxembourg : Data range 66.577.

• Norway : Data range 620.595.

• Portugal : Data range 75.975.

In each of these cases the same two datasets are used exclusively for transfer learning:

• Germany : Data range 2806.167.

• Italy : Data range 657.905.

6.1.2 Unrelated transfer data

The following nine unrelated public datasets have been selected for the second experiment. All datasets have
the same time resolution, with observations being made on a monthly basis. This is necessary in order to better
capture any information about seasonal trends in the level-0 models and choose a consistent input sequence size
across all datasets. Outside of this restriction, the datasets are specifically chosen to be different in nature from
each other and offer a wide range of distribution types and trends in the data.

• Airline Passengers [2]: Monthly total passengers of an airline company, from Jan-1949 to Dec-1960.
Train dataset from Jan-1949 to Dec-1959 (126 observations), test dataset from Jan-1960 to Dec-1960 (12
observations). Data range 518.

• Beer Production [1]: Monthly beer production in Australia, in units of volume, from Jan-1956 to Aug-1996.
Train dataset from Jan-1956 to Dec-1993 (444 observations), test dataset from Jan-1994 to Aug-1996 (32
observations). Data range 153.
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• India Monthly Rainfall [6]: Monthly rainfall normal data in India, in millimeters, from Jan-1901 to
Dec-2002. Train dataset from Jan-1901 to Dec-1992 (1104 observations), test dataset from Jan-1993 to
Dec-2002 (120 observations). Data range 13352.7.

• Lake Superior Water Level [3]: Monthly mean lakewide average water level of Lake Superior (USA), in
meters, from Jan-1918 to Dec-2021. Train dataset from Jan-1901 to Dec-2015 (1176 observations), test
dataset from Jan-2016 to Dec-2021 (72 observations). Data range 1.19.

• Monthly Sunspots [7]: Monthly mean number of observed sunspots, from Jan-1749 to Aug-1983. Train
dataset from Jan-1749 to Dec-1981 (2796 observations), test dataset from Jan-1982 to Aug-1983 (20
observations). Data range 253.8.

• New Home Sales [8]: Monthly new single-family houses sold in the United States, in thousands of units,
from Jan-1963 to Dec-2019. Train dataset from Jan-1963 to Dec-2015 (636 observations), test dataset
from Jan-2016 to Dec-2019 (48 observations). Data range 107.

• Sales For Retail [8]: Monthly sales for retail and food services in the United States, in millions of dollars,
from Jan-1992 to Dec-2019. Train dataset from Jan-1992 to Dec-2017 (312 observations), test dataset
from Jan-2018 to Dec-2019 (24 observations). Data range 439784.

• Total Energy Consumption [9]: Monthly total energy consumption in the United States, in quadrillion
BTU, from Jan-1973 to Dec-2019. Train dataset from Jan-1973 to Dec-2015 (516 observations), test
dataset from Jan-2016 to Dec-2019 (48 observations). Data range 4.2286.

• Unemployment Rate [5]: Monthly unemployment rate in the United States, percentage, from Jan-1948
to Dec-2019. Train dataset from Jan-1948 to Dec-2015 (816 observations), test dataset from Jan-2016 to
Dec-2019 (48 observations). Data range 9.0.

Each dataset is selected once for encrypted training using the remaining eight datasets for transfer learning.

6.2. Parameter selection

Both experiments use the same underlying encryption scheme, which we initialize using the following parameters:
– Security level λ = 128 (default value for the this implementation of CKKS).
– Polynomial degree N = 215. This is the maximum possible value for N allowed by the SEAL library

implementation of the CKKS scheme used by Pyfhel. Maximizing this parameter is necessaryan to allow
a sufficient number of operations on ciphertexts.

– Bit-size of scale ∆ = 32. This results in a precision of 32 bits for the decimal part of the encrypted values.
– Bit-size of final coefficient modulus q0 = 40. This results in a precision of 8 bits for the decimal part of

the encrypted values.
– Maximum ciphertext level and maximum multiplicative depth L = 25.
– Row size r = 1024. This allows each ciphertext (encrypting up to N/2 = 214 values) to store 16 batched

vectors of size < 1024/2 = 512 in order to leave room for padding.

Because L = 7+ 2 · e (see Section 4.3.2), a multiplicative depth of 25 lets us train our proposed model for only
9 epochs. While this number could be slightly increased at the cost of some accuracy, our results show that it
is sufficient to obtain good transfer learning performance.
For this training phase, a learning rate of 0.01 and a momentum parameter of 0.99 are chosen across all exper-
iments. A high NAG momentum parameter in particular is the key factor in making training possible under
these harsh conditions, as test runs without a momentum term showed significantly lower performances.

The PINStack model follows the structure illustrated in Figure 5 for a sequence length q and a forecast horizon
h. It is implemented through an instance of the EncStacking class, built from the following sub-models:

• Level-0 models. For each of the n transfer learning datasets, one EncSequential model implementing a
PINPOINT-1CONV architecture with the following layers:

– EncConv1d layer: in_size = q, weight = matrix of size 32× 1× 3 (input channels = 1, number of
filters = 32, kernel size = 3), bias = vector of length 32.

– EncFlatten layer: in_size = (q − 3 + 1) = (q − 2). Flattens the 32 × (q − 2) outputs of the
EncConv1d layer.

– EncSquare layer.
– EncLinear layer: weight = matrix of size 16(q− 2)× 32(q− 2) (input size = 32(q− 2), output size

= 16(q − 2)), bias = vector of length 16(q − 2).
– EncLinear layer: weight = matrix of size d× 16(q − 2) (input size = 16(q − 2), output size = d),
bias = vector of length d.

– EncLinear layer: weight = matrix of size h × d (input size = d, output size = h), bias = vector
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of length h. Only used to train on plain transfer data, then cut from the model.

• Level-1 model. Single EncSequential generalizer model with the following layers:
– EncFlatten layer: in_size = d. Flattens the n× d outputs of the level-0 EncSequential models.
– EncLinear layer: weight = matrix of size h × n · d (input size = n · d, output size = h), bias =

vector of length h, trainable = True.

The specific model parameters for each experiment are:

1. Similar transfer data:
– Sequence length q = 2 · seasonality = 14 (for daily data).
– Forecast horizon h = 7.
– Number of level-0 models n = 2.
– Level-0 output size d = 64.

2. Unrelated transfer data:
– Sequence length q = 2 · seasonality = 12 (for monthly data).
– Forecast horizon h = 6.
– Number of level-0 models n = 8.
– Level-0 output size d = 32.

All of these model parameters have been mostly selected through trial and error, with hyperparameter opti-
mization not being a main focus for our goals.

6.3. Model performance

In both experiments, plain transfer data is first used to individually train privacy-violating versions of the level-0
models through the PyTorch library. These models are then passed to an instance of the EncStacking class,
which encrypts their weights and initializes the generalizer. The train function of EncStacking is used to train
the generalizer on the specific encrypted train dataset, and the forward function if finally used to produce the
final predictions from the encrypted test dataset.
Testing was performed on a 48-core CPU run at 3GHz with 384GB of memory, but no multiprocessing was used.

The performance of the PINStack model is evaluated on the accuracy of its predictions by comparing the
forecast and the true target values. The error metric of choice, which we are looking to minimize, is the Mean
Absolute Error (MAE)

∑n
i=1 |yi−ti|

n , where yi is a single value prediction returned by the model (corresponding
to one of the values of each output sequence), ti is the true target value and n is the total number of predictions.

Table 2 shows the performance of the PINStack model with similar and unrelated transfer data and com-
pares it to other state-of-the-art time series prediction models trained on the same tasks. The prediction MAE
for the following models is reported:

• PINPOINT : Base PINPOINT-1CONV model with analogous parameters to the PINStack model, run in
this case on plain data.

• Naive: Naive forecast model, which simply uses the last know time series value for the forecast. As such,
given an input sequence x = (xt−q+1, . . . , xt), it will output the prediction y = (xt−h+1, . . . , xt). This is
used as a baseline reference for performance.

• ARIMA: AutoRegressive Integrated Moving Average (ARIMA) model, implemented and trained using
the pmdarima Python library [66] with default settings.

• Prophet : Facebook Prophet model [71], implemented and trained using its official Python library with
default settings.

Note that these are all privacy-violating models, meaning that plain versions of the datasets were used for
training and inference, while our PINStack experiments were executed on encrypted data.
In addition, a privacy-violating version of PINStack (that runs the same operations on plain data instead of
encrypted data) was compared to the privacy-preserving model in order to better highlight its strengths and
weaknesses:

• PINStack P.V. transfer : Obtained by training the level-0 models of PINStack on the transfer data,
constructing the model and then running it on plain data with no further fine-tuning. This is a reference
point for the performance of the model before training, using only the initialization provided by the level-0
models.

• PINStack P.V. training : Obtained by training a privacy-violating version of PINStack on plain data.
This removes any approximation errors given by CKKS encryption from the training results.
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dataset range P.P. PINStack P.V. P.V.

PINStack transfer training PINPOINT Naive ARIMA Prophet

France 1435.904 83.09 126.89 71.50 63.50 95.21 89.18 84.87

Luxembourg 66.577 3.378 3.356 3.376 4.018 4.522 4.019 4.752

Norway 620.595 16.31 16.76 15.27 15.77 18.36 17.07 18.31

Portugal 75.975 6.912 6.878 6.931 6.228 10.332 8.405 7.729

(a) Similar transfer data.

dataset range P.P. PINStack P.V. P.V.

PINStack transfer training PINPOINT Naive ARIMA Prophet
Airline

Passengers 518 34.44 57.83 24.29 35.47 66.67 54.66 34.08

Beer
Production 153 12.14 16.46 11.42 8.49 38.00 20.31 9.64

India Monthly
Rainfall 13352.7 1160.7 1590.7 1059.3 938.5 2440.3 2241.5 830.6

Lake Superior
Water Level 1.19 0.0857 0.1067 0.0834 0.0719 0.0988 0.1180 0.2439

Monthly
Sunspots 253.8 34.74 40.16 34.29 22.40 31.70 24.23 27.15

New Home
Sales 107 5.618 4.786 5.427 5.015 12.354 6.077 26.639

Sales For
Retail 439784 18340.4 45702.0 22361.6 10785.2 44849.3 27872.5 12422.0

Total Energy
Consumption 4.2286 0.2585 0.3288 0.2495 0.2159 0.6525 0.4510 0.2498

Unemployment
Rate 9.0 0.3541 0.4606 0.3582 0.2430 0.3625 0.4842 2.4809

(b) Unrelated transfer data.

Table 2: Prediction MAE of PINStack in the two experiments, compared with other time series prediction models.
The PINStack model is run in privacy-preserving (P.P.) mode, while the other state-of-the-art references are run in
privacy-violating (P.V.) mode. PINStack P.V. results are reference points obtained on plain data.

The results show that the performance of the model on encrypted data is at the very least comparable with (and
often better than) the other privacy-violating models, both with and without having access to similar transfer
learning data. Specifically, the following observations can be made:

– PINStack convincingly and consistently produces forecasts more accurate than the simple Naive model
and shows results comparable with the privacy-violating version of PINPOINT, which has the lowest
MAE across almost all experiments.

– As expected, the experiments on similar transfer data show more consistent results than the ones using
unrelated datasets. Indeed the PINStack P.V. transfer MAEs indicate that the transfer learning models
by themselves were enough to obtain good performance on the encrypted dataset even without any fine-
tuning. However, even in the case of unrelated transfer data the training phase is proved to be effective
at correcting an initial low transfer performance.

– The choice of the learning rate proves to be particularly challenging in the privacy-preserving environment
of PINStack. As no information about the training dataset is known and the training algorithm is run
for only very few epochs, a fixed and quite high base learning rate of 0.01 is employed in all experiments
in order to speed up the training process. However, in cases where the starting transfer performance
PINStack P.V. transfer is already good (such as with the New Home Sales dataset), the MAE decreases
slightly after training as the network weights are moved away from the initial local minimum. This is a
necessary trade-off of the privacy-preserving setting, and the final MAE obtained in these cases is still
very good regardless.

– In almost all situations, the privacy-preserving PINStack MAE is closer to its starting PINStack P.V.
transfer value than its privacy-violating counterpart PINStack P.V. training. This is likely a consequence
of the approximation errors introduced by CKKS encryption, which somewhat slow down training. The
difference however is mostly negligible when compared to the other prediction models, and in turn signifies
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that the approximation error introduced by the encryption scheme is not a major point of concern even
with high settings.

– The chosen PINStack setting is not a perfect solution for all datasets, as the model was unable to beat
the Naive performance for the Monthly Sunspots dataset. It is possible that this dataset is paricularly
incompatible with the other transfer datasets, making it difficult to learn an accurate representation of the
data from their pre-processed inputs. This issue can be mitigated in a real Cloud-based implementation,
where more transfer datasets can be used or multiple separate models can be trained in parallel on
different types of transfer data, giving users the option to choose which one is more suited to their task.

6.4. Time and memory occupation

The main drawback introduced by the application of homomorphic encryption to the training process comes in
the form of its execution time and memory usage. The increase in computational requirements is a necessary
consequence of the homomorphic encryption scheme and needs to be managed if the privacy of the data is to
be preserved.
The number of multiplications used by PINStack requires maximized settings for the CKKS encryption scheme,
but as a consequence each encrypted ciphertext occupies a significant amount of memory. The result is that a
full execution of the training and inference algorithms for the first experiment on similar transfer data (which
uses two level-0 models that both need to be stored in memory for the entire execution) occupies approximately
130GB of memory. An execution of the second experiment on unrelated transfer data (which uses eight level-0
models) occupies approximately 210GB of memory.

As for computational time, Table 3 shows the amortized time per single input ciphertext of each part of the
execution of the PINStack model. The introduction of homomorphic operations increases the execution time of
the algorithms by two to three orders of magnitude over their privacy-violating counterparts. Fully connected
layers in particular make up for most of the time usage, both in their forward and backward passes, as they
use the highest number of multiplications and rotations. Their effect can be clearly seen when comparing the
times between the two experiments and considering the parameters described in Section 6.2. The experiment
with similar transfer data has a number of inputs for the level-1 fully connected layer of 2 · 64 = 128, while
the experiment with different transfer data has 8 · 32 = 256 inputs. As the number of operations for both the
forward and backward pass of fully connected layers depends on the number of inputs, the first experiment runs
significantly faster than the second. Instead, the level-0 models have an initial input size for the fully-connected
layers of 32 · (14 − 2) = 384 in the first experiment, and 32 · (12 − 2) = 320 in the second experiment. This
explains the slower level-0 computations in the first experiment.
The overall computational time per input of each phase can be computed as:

– Training: n · (level-0 forward time) + e · ((level-1 forward time) + (level-1 backward time))
– Inference: n · (level-0 forward time) + (level-1 forward time)

where n is the number of level-0 models and e is the number of epochs.
Thanks to input batching a forward pass or backward pass of the model on a single ciphertext accounts for 16
separate input sequences. As a result, according to the size of the dataset, for the experiments on unrelated
trasfer data a full training procedure of PINStack takes between 6.5 hours (for Airline Passengers with 126
observations) and 46 hours (for Monthly Sunspots with 2796 observations). For the experiments on similar
transfer data (all with 1846 observations) the full training time is approximately 13 hours. This runtime is a
noticeable improvement over the time requirements of other non-interactive state-of-the-art training solutions,
which operate in the order of several days [53] [11].

Although these requirements might appear like significant issues, PINStack is intended to be deployed in a
Cloud-based setting, where the resources are perfectly capable of satisfying its memory and computational de-
mands. These experiments are also designed for single-processor execution, although most of the computations
required by the algorithms can potentially be performed in parallel with no modifications necessary. Further
developments of the PyCNN-CKKS library could greatly improve its performance in real world applications,
but they fall outside of the scope of this research.
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P.P. P.V.

similar unrelated average
level-0

forward pass 231.35 210.0s 0.17s

level-1
forward pass 26.18 74.8s 0.06s

level-1
backward pass 27.85 118.1s 0.76s

Table 3: Amortized computational time of the execution of different parts of the PINStack model on a single input
ciphertext. Results from the two experiments on the real privacy-preserving model and a privacy-violating version run
on plain data are compared.

7. Conclusions

In this work a privacy-preserving solution for time series forecasting is proposed, which is capable of performing
both inference and training on encrypted time series data. Our solution makes use of state-of-the-art homomor-
phic encryption schemes to perform computations on encrypted data without ever needing to know its plain
contents. Implementations of the main layers of a TCNN compatible with such schemes are presented, together
with a gradient descent algorithm that operates on fully connected layers under homomorphic restrictions. The
resulting PINStack model combines the features of the previous PINPOINT architecture with a transfer learn-
ing approach, optimizes its operations for the CKKS encryption scheme and allows training of its final fully
connected layer for fine-tuning on encrypted datasets.
The capabilities of the architecture and its applications to a Cloud-based MLaaS scenario are particularly
promising. The proposed experiments prove that PINStack is successful at making accurate predictions with-
out breaching the privacy of a user’s data, both with and without having access to plain data related to the
task. The research acts as a proof-of-concept to show that training in such low-epoch environments can be
effective with the right underlying model, and further developments can push this approach further to a proper
implementation for real-world usage.

Several improvements can still be made to the underlying PyCNN-CKKS library to increase efficiency and
performance, with optimizations for multi-processor architectures having the potential to significantly reduce
computational times. More efficient implementations of the CKKS scheme, such as the one proposed in [11],
could also lead to important speed-ups by making use of GPU computing and introducing further parallelization
in the calculations.
Another area of interest largely left unattended by our research is that of parameter optimization. Although
having to operate on encrypted data makes it difficult if not outright impossible to optimize a model to a
specific encrypted learning task, the transfer learning framework used by PINStack still leaves room for major
improvements. More studies can be made into optimizing each model to the specific transfer datasets employed,
or designing models with a particular combination of transfer datasets and hyperparameters that are optimized
for particular scenarios and data distributions. In addition, in the case where similar plain data is accessible,
more classical hyperparameter optimization techniques can be used to better fit the task at hand.
Finally, the homomorphic layers proposed in our library can be adapted to work in different deep learning
scenarios or extended to encompass more complex models. The stacking framework and fine-tuning technique
described in our research can be applied to any machine learning model, provided that the network is not too
deep and that its layers can be implemented with addition and multiplication only. Applications to generic
classification and regressions tasks using a curated collection of simple machine learning models require further
research but look entirely feasible.
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Abstract in lingua italiana

In un mondo definito da Deep Learning e dai Big Data, le infrastrutture informatiche basate sul Cloud sono
diventate uno strumento necessario per soddisfare le cresenti esigenze di calcolo richieste da attività di Machine
Learning, in modo da dare a qualsiasi utente accesso a soluzioni ad alte prestazioni, scalabili e a costi contenuti.
Tuttavia, questo approccio comporta l’elaborazione di grandi quantità di dati su una piattaforma di terze parti,
il che comporta gravi problemi di privacy se bisogna trattare dati sensibili come quelli medici e finanziari. Le
tecniche di privacy-preserving machine learning offrono una soluzione a questi problemi grazie all’uso di schemi
di crittografia omomorfica (HE), ma presentano nuove sfide nel modo in cui questi privacy-preserving network
devono essere progettati. Lavori precedenti, sotto forma della famiglia di modelli di deep learning PINPOINT,
hanno già mostrato risultati promettenti nel campo della previsione di serie temporali a rispetto della privacy
dei dati, con potenziali applicazioni in situazioni reali. L’obiettivo di questa tesi è estendere tale lavoro per
includere una nuova procedura di training, che rende possibile il fine-tuning di un network direttamente su dati
sensibili criptati senza violare la loro privacy. Il risultato è la nuova architettura PINStack realizzata con model
stacking, che viene presentata come una soluzione generica per la previsione di serie temporali in un ambiente
privacy-preserving sia in una fase di inference che di training, utilizzando lo schema omomorfico Cheon-Kim-
Kim-Song (CKKS) per garantire la privacy dei dati. Le sue prestazioni sono state valutate in scenari d’uso
realistici e mostrano un grande potenziale per future implementazioni e ulteriori sviluppi.

Parole chiave: Privacy-preserving machine learning, previsione di serie temporali, crittografia omomor-
fica, training su dati criptati

37


	Introduction
	Background
	Proposed solution
	Experimental results
	Conclusions
	Introduction
	Problem and motivation
	Goal and results
	Thesis structure

	Background
	Privacy-preserving machine learning
	Homomorphic encryption
	CKKS
	Ring Learning With Errors
	Encoding and batching
	Encrypted operations
	Parameters analysis

	Time series forecasting
	TCNNs and privacy-preserving forecasting

	Related literature
	Privacy-preserving training
	Privacy-preserving time series prediction
	PINPOINT

	Proposed solution
	CKKS implementation
	Encoding and basic operations
	Fully Connected layer
	Convolutional layer
	Square layer
	Flatten layer

	Encrypted training
	Gradient descent
	Nesterov's Accelerated Gradient
	Backpropagation

	Trainable model
	Stacking model
	Model details


	Implementation
	External libraries
	Structure
	Usage

	Experimental results
	Datasets
	Similar transfer data
	Unrelated transfer data

	Parameter selection
	Model performance
	Time and memory occupation

	Conclusions

