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1. Introduction

Machine Learning (ML) techniques have proved
to be extremely powerful tools capable of au-
tonomously extracting and learning information
from large sets of data, with applications rang-
ing from data mining to medicine and finance.
ML tools have become even more accessible
thanks to Cloud computing and Machine-
Learning-as-a-Service (MLaaS) solutions, which
offer powerful scalable environments for deep
learning models at manageable costs.
Outsourcing ML computations to third-party
providers however raises important privacy
concerns when sensitive data needs to be
elaborated. Novel privacy-preserving machine
learning techniques have recently emerged to
address this issue, in particular making use of
Homomorphic Encryption (HE) schemes to
perform calculations on encrypted data without
ever accessing its contents [1].

The PINPOINT family of models [3] offers
a successful application of homomorphic tech-
niques to a privacy-preserving deep learning
model for time series prediction. PINPOINT
can obtain forecasts on encrypted private data
with comparable accuracy to other state-of-

the-art privacy-violating solutions. However,

because of the limitations imposed by HE
schemes the model is only able to perform
inference on encrypted data.

Our research presents the new privacy-
preserving PINStack model for time series
prediction, which extends the previous PIN-
POINT  architecture by implementing a
privacy-preserving training algorithm.  PIN-
Stack uses the Cheon-Kim-Kim-Song (CKKS)
homomorphic encryption scheme [2] to suc-
cessfully train the parameters of a single fully
connected layer on encrypted data without
breaching its privacy. The performance of the
model is tested under settings that model real
use-case scenarios and compared with other
state-of-the-art time series prediction solutions
executed on plain data.

2. Background

Homomorphic Encryption (HE) is a type
of encryption scheme that supports the com-
putation of specific operations directly over en-
crypted data without any knowledge of the en-
crypted information [1]. Under some assump-
tions, the result of a homomorphic operation
between encrypted values or ciphertexts, when
decrypted, will be equal to the one between the



corresponding plain values or plaintexts. Most

practical implementations of HE schemes fall

under the category of Leveled Fully Homomor-
phic Encryption, which enables calculations on
ciphertexts with the following restrictions:

— Only homomorphic additions and multiplica-
tions are supported.

— Only a set number of operations (specifi-
cally multiplications) can be performed on
the same ciphertext before its information is
lost. Indeed, a noise term is embedded into
each ciphertext during encryption to make the
scheme secure to decryption, but this noise
grows with each homomorphic operation un-
til it overwrites the original encrypted value.

— Homomorphic operations come at the cost of
important computational overheads.

The Cheon-Kim-Kim-Song (CKKS) homo-

morphic encryption scheme [2] is chosen for our

model due to its native support of floating point
values. CKKS is a leveled FHE scheme based on
the Ring Learning With Errors (RLWE) prob-
lem designed for approximate arithmetic on vec-
tors of complex numbers. The scheme oper-
ates on the plaintext space of the polynomial
ring R = Z[X]/(X" + 1) and offers operations
to homomorphically evaluate additions, multi-

plications and rotations over ciphertexts. A

Rescale operation is used to manage the noise

term between multiplications, which in turn de-

termines a maximum multiplicative depth for
each ciphertext. The plaintext polynomials of
the scheme can encode up to N/2 plain values,
allowing the encryption of vectors and the ap-
plication of Single Instruction, Multiple Data

(SIMD) operations through batching.

Our research aims to apply the privacy-

preserving properties of the CKKS scheme to

a time series prediction task. Given a

time series X = (Xi,...,X,) being an or-

dered set of real value observations, a pre-
diction task involves finding a predictor Yy =

(X,Hh e Xn—i—h) for the upcoming values of the

series up to a forecast horizon h. Multiple ma-

chine and deep learning models have had great
success in this field. In particular, Tempo-
ral Convolutional Neural Networks (TC-

NNs) approach the time series forecasting task

through the use of convolutional layers, which

apply a convolution operation to an input se-
quence with a set of filters or kernels. This op-

eration is used to return information about the
relationship between neighboring inputs so that
each output of a convolutional layer is a function
of a sequence of previous inputs. The convolu-
tional and fully connected layers of a TCNN op-
erate using only additions and multiplications,
making this architecture a prime candidate for
implementation with homomorphic encryption.
Other non-linear layers commonly used by TC-
NNs are not compatible with the limitations of
HE schemes but can be approximated with HE-
compliant versions, such as non-linear activation
functions being replaced by square layers.

The Privacy-preservINg temPoral cOnvo-
lutIonal Neural neTworks (PINPOINT)
family of models [3] is a collection of privacy-
preserving time series forecasting models in-
spired by TCNNs. These networks operate on
time series data encrypted with the BFV ho-
momorphic encryption scheme and are specifi-
cally designed for privacy-preserving deep learn-
ing on the Cloud. PINPOINT models are built
from a sequence of one or more convolutional
blocks followed by fully connected layers that
output the final prediction. Although effective
at making accurate predictions, the main draw-
back with this solution is that models are limited
to privacy-preserving inference and cannot learn
from encrypted data. Instead, PINPOINT net-
works are first trained on plain publicly available
data and then encoded to support homomorphic
calculations. In addition, the BFV homomor-
phic scheme natively supports the encryption of
integer values only, while time series data often
comes in the form of floating point values.

3. Proposed solution

The goal of our work is to develop a privacy-
preserving framework for machine learning that
suports both encrypted inference and encrypted
training. We also prove its effectiveness by de-
veloping a working model for univariate time se-
ries prediction that pushes the limits of these
encrypted training capabilities within the con-
straints given by homomorphic encryption.

Our starting point is the PINPOINT family of
models, which is first reworked to implement
the CKKS encryption scheme and use more ef-
ficient batched vectorized operations. The model
is adapted to take as input a batched ciphertext
encrypting multiple sequences of observations,



and returns a batched encryption of all the corre-
sponding predictions. For each layer in the PIN-
POINT architecture, we present a forward pass
algorithm that can operate on batched inputs
and consumes only one level of multiplication.
In particular, fully connected layers and convo-
lutional layers implement an algorithm for effi-
cient homomorphic matrix multiplication, mak-
ing use of diagonal order matrix encoding to re-
duce the number of operations required. Appro-
priate solutions for square and flatten layers are
also developed.

Given this optimized framework, a new homo-
morphic training procedure can be introduced.
Full training of a deep learning model is effec-
tively impossible under HE settings because of
the extremely limited number of operations al-
lowed on ciphertexts. Instead, we focus on im-
plementing a backward step solely for a single
fully connected layer and maximizing its effi-
ciency in terms of multiplication usage. A ho-
momorphic version of the batch gradient descent
optimization algorithm is developed to optimize
the weights and bias of a fully connected layer
given its prediction error on a set of training
data. In addition, a momentum term in the
form of Nesterov’s Accelerated Gradient (NAG)
is introduced. Momentum has proved to speed-
up convergence of gradient descent and help it
navigate through local optima, with NAG offer-
ing a good trade-off in terms of effectiveness and
compatibility with homomorphic environments.
The resulting gradient descent backward pass al-
gorithm only has a multiplicative depth of one
and is shown to be effective even in low-epoch
training environments.

The proposed implementations of HE-enabled
neural network layers are combined in our train-
able privacy-preserving architecture for time se-
ries prediction, called PINStack (Fig. 1). PIN-
Stack makes use of the limited training allowed
on its single final fully connected layer to fine-
tune a model previously trained on plain data
through a transfer learning approach. In par-
ticular, a model stacking architecture is devel-
oped to leverage plain transfer data coming from
multiple sources, which can even be mostly un-
related to the encrypted data specific to the
task. A PINStack model is composed of n level-0
models %(0) built with the previous PINPOINT
architecture, each trained on a separate plain
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Figure 1: Diagram of the PINStack model. An example
of a forward pass is reported with the size of the input
and output of each layer.

transfer dataset D;. Given a specific learning
task on an encrypted time series dataset Z com-
posed of input-prediction sequence pairs, the
level-0 models are encoded and used to pre-
process the encrypted data of Z. Their com-
bined outputs are then fed into a single level-1
model or generalizer (1), composed of a flat-
ten layer and a trainable fully connected layer.
The level-0 models cpl(-o) act as feature extrac-
tors for the encrypted dataset Z, each identi-
fying patterns similar to those of their corre-
sponding transfer dataset D;; the level-1 model
©1) then learns how to best combine these new
features to produce the final predictions. Using
this approach, users of the model are not re-
quired to provide any plain data in addition to
their private training dataset, as publicly avail-
able datasets can be used for transfer learning in-
stead. The generalizer o(!) is initialized to out-
put an average of the predictions of the original
level-0 models, which acts as a good unbiased
starting point for the following fine-tuning and
greatly speeds up training.



P.P. PINStack P.V. P.V.
dataset range
PINStack | transfer | training | PINPOINT | Naive | ARIMA | Prophet
France 1435.904 83.09 126.89 71.50 63.50 95.21 89.18 84.87
Luxembourg  66.577 3.378 3.356 3.376 4.018 4.522 4.019 4.752
Norway 620.595 16.31 16.76 15.27 15.77 18.36 17.07 18.31
Portugal 75.975 6.912 6.878 6.931 6.228 10.332 | 8.405 7.729
(a) Similar transfer data.
P.P. PINStack P.V. P.V.
dataset range
PINStack | transfer | training | PINPOINT Naive ARIMA | Prophet
Airline 518 34.44 57.83 24.29 35.47 66.67 54.66 34.08
Passengers
Beer. 153 12.14 16.46 11.42 8.49 38.00 20.31 9.64
Production
India Monthly 4050 7 | 1160.7 1590.7 1059.3 938.5 2440.3 | 2241.5 830.6
Rainfall
Lake Superior 1.19 0.0857 0.1067 | 0.0834 0.0719 0.0988 | 0.1180 0.2439
Water Level
Monthly 253.8 34.74 40.16 34.29 22.40 31.70 24.23 27.15
Sunspots
Nevsvaizme 107 5.618 4.786 5.427 5.015 12.354 6.077 26.639
Saﬁ‘zifr 430784 | 183404 | 45702.0 | 22361.6 10785.2 44849.3 | 27872.5 | 12422.0
Total Energy
i 4.2286 0.2585 0.3288 | 0.2495 0.2159 0.6525 | 0.4510 0.2498
Consumption
Unem};{);izment 9.0 0.3541 0.4606 | 0.3582 0.2430 0.3625 | 0.4842 | 2.4809

(b) Unrelated transfer data.

Table 1:

Prediction MAE of PINStack in the two experiments, compared with other time series prediction models.

The PINStack model is run in privacy-preserving (P.P.) mode, while the other state-of-the-art references are run in
privacy-violating (P.V.) mode. PINStack P.V. results are reference points obtained on plain data.

4. Experimental results

The proposed PINStack time series prediction
model is implemented in the Python library
PyCNN-CKKS. The library is built on the
Pyfhel [4] implementation of the CKKS scheme
and offers a framework for a general-purpose en-
crypted network with privacy-preserving train-
ing capabilities. The performance of PINStack
using the PyCNN-CKKS library is tested in two
scenarios that exemplify two different realistic
use cases:

1. Similar transfer data. A user wants to train
a PINStack model on an encrypted dataset
Z and gives it access to other similar plain
datasets D; as well for transfer learning.

2. Unrelated transfer data. A user wants to train
a PINStack model on an encrypted dataset Z
and only has access to sensitive data.

The first experiment is run on a collection of

six publicly available datasets coming from sim-
ilar sources (namely datasets of the daily overall
power consumption of several European coun-
tries), two of which are used as transfer datasets
while four are encrypted for training. The sec-
ond experiment instead uses nine unrelated pub-
lic datasets that only share a monthly time
resolution. Each dataset is selected once for
encrypted training using the remaining eight
datasets for transfer learning. In both experi-
ments, plain transfer data is first used to individ-
ually train privacy-violating versions of the level-
0 models through the PyTorch library. Their
weights are encoded to create a PINStack model
which is trained on the encrypted dataset for 9
epochs, using all multiplications allowed under
maximized CKKS settings. The performance of
the PINStack model is evaluated on the accu-
racy of its predictions made on encrypted data
and compared to other privacy-violating state-



P.P. P.V.
similar | unrelated | average
level-0 231.35 210.0s 0.17s
forward pass
level-1 26.18 748 0,065
forward pass
level-1
backward pass 27.85 118.1s 0.76s

Table 2: Amortized computational time of the execution
of different parts of the PINStack model on a single input
ciphertext. Results from the two experiments on the real
privacy-preserving model and a privacy-violating version
run on plain data are compared.

of-the-art time series prediction models (Tab. 1).
The Mean Absolute Error (MAE) of the predic-
tions is the error metric of choice.

Results show that the performance of the model
on encrypted data is at the very least compa-
rable with (and often better than) the other
privacy-violating models, both with and without
having access to similar transfer learning data.
In particular, PINStack convincingly and con-
sistently produces accurate forecasts despite the
approximation errors introduced by the CKKS
encryption scheme and the overall unoptimized
hyperparameters necessary to work in a gener-
alized setting. The transfer learning process re-
sults in an effective initialization for the train-
ing procedure, which is proved to significantly
reduce the prediction error in almost all cases.
The time and memory requirements for the ho-
momorphic computations of the model are quite
significant. A full execution of the training and
inference algorithms occupies between 130GB
and 210GB of memory across both experiments.
The computational times of each section of the
execution (Tab. 2) lead to a full training run-
time of 6.5 to 46 hours for the first experiment
and 13 hours for the second. However, these re-
sults act as significant improvements over previ-
ous privacy-preserving deep learning solutions,
and PINStack is intended to be deployed in a
Cloud-based setting where the resources are per-
fectly capable of satisfying its memory and com-
putational demands.

5. Conclusions

In this work a privacy-preserving solution for
time series forecasting is proposed, which is ca-
pable of performing both inference and training
on encrypted time series data using a homomor-

phic encryption scheme. Implementations of the
main layers of a TCNN compatible with such
schemes are presented, together with a gradient
descent algorithm that operates on fully con-
nected layers under homomorphic restrictions.
The resulting PINStack model combines the fea-
tures of the previous PINPOINT architecture
with a transfer learning approach, optimizes its
operations for the CKKS encryption scheme and
allows training of its final fully connected layer
for fine-tuning on encrypted datasets.

The capabilities of the architecture and its ap-
plications to a Cloud-based MLaaS scenario are
particularly promising. The proposed experi-
ments prove that PINStack is successful at mak-
ing accurate predictions without breaching the
privacy of a user’s data, both with and with-
out having access to plain data related to the
task. The research acts as a proof-of-concept to
show that training in such low-epoch environ-
ments can be effective with the right underlying
model, and further developments can push this
approach further to a proper implementation for
real-world usage.

Several improvements can still be made to the
underlying PyCNN-CKKS library to increase ef-
ficiency and performance, with optimizations for
multi-processor and GPU architectures having
the potential to significantly reduce computa-
tional times. Another area of interest largely left
unattended by our research is that of parameter
optimization. More studies can be made into
optimizing each model to the specific transfer
datasets employed, or designing models with a
particular combination of transfer datasets and
hyperparameters that are optimized for particu-
lar scenarios and data distributions. In addition,
in the case where similar plain data is accessi-
ble, more classical hyperparameter optimization
techniques can be used to better fit the task
at hand. Finally, the homomorphic layers and
stacking architecture proposed in our library can
be adapted to work in different deep learning
scenarios or extended to encompass more com-
plex models. Applications to generic classifica-
tion and regressions tasks using a curated collec-
tion of simple machine learning models require
further research but look entirely feasible.



Executive summary Giacomo Mosca

References

[1] Abbas Acar, Hidayet Aksu, A Selcuk Ulu-
agac, and Mauro Conti. A survey on ho-
momorphic encryption schemes: Theory and

implementation. ACM Computing Surveys
(Csur), 51(4):1-35, 2018.

[2] Jung Hee Cheon, Andrey Kim, Miran Kim,
and Yongsoo Song. Homomorphic encryp-
tion for arithmetic of approximate numbers.
In Advances in Cryptology-ASIACRYPT
2017: 23rd International Conference on the
Theory and Applications of Cryptology and
Information Security, Hong Kong, China,
December 3-7, 2017, Proceedings, Part I 23,
pages 409-437. Springer, 2017.

[3] Alessandro Falcetta and Manuel Roveri.
Privacy-preserving time series prediction
with temporal convolutional neural net-
works. In 2022 International Joint Confer-
ence on Neural Networks (IJCNN), pages 1—
8. IEEE, 2022.

[4] Alberto Ibarrondo and Alexander Viand.
Pyfhel: Python for homomorphic encryp-
tion libraries. In Proceedings of the 9th on
Workshop on Encrypted Computing € Ap-
plied Homomorphic Cryptography, pages 11—
16, 2021.



POLITECNICO
MILANO 1863

SCUOLA DI INGEGNERIA INDUSTRIALE
E DELLINFORMAZIONE

Privacy-preserving machine learning inference and training
with Homomorphic Encryption

TESI DI LAUREA MAGISTRALE IN

COMPUTER SCIENCE AND ENGINEERING - INGEGNERIA INFORMATICA

Giacomo Mosca, 10574012
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1. Introduction

1.1. Problem and motivation

Machine Learning (ML) techniques have proved to be extremely powerful tools capable of autonomously ex-
tracting and learning information from large sets of data. Their applications range from image [45] and speech
recognition [27] to autonomous driving [23], financial risk management [29] and important fields of medicine
such as skin cancer identification [30] and genome analysis [44]. With the advent of Deep Learning frameworks
[69] machine learning models have only become more and more complex, requiring in turn more and more
powerful computational infrastructures. Cloud computing [67] has emerged in recent years as a widely available
solution to these issues, providing large computational power on demand at a pay-per-use rate, but outsourcing
computation to a third-party provider implies giving them access to the necessary data as well. This can be
a major privacy concern when sensitive data is treated (e.g. medical diagnoses, financial records, or personal
pictures) and potentially prevent essential services from having access to this powerful technology.

A novel solution to this relevant problem comes from privacy-preserving machine learning techniques [12],
of which we focus on the ones based on Homomorphic Encryption (HE) [10]. HE schemes support the



computation of some operations directly on encrypted data without ever needing access to the original plain
information. By employing such a scheme a non-trustworthy third party can receive data encrypted from a
user, process these ciphertexts without knowing their contents and produce a final encrypted result to be sent
back to the user, fully ensuring the privacy of the data.

Previous work in the form of the PINPOINT family of models [31] has shown that HE schemes can be suc-
cessfully applied to a privacy-preserving learning task, specifically with a focus on time series prediction. The
PINPOINT architecture is designed to be deployed in a Cloud-based "as-a-service" setting and obtains fore-
casting results comparable with other state-of-the-art privacy-violating solutions. However, the model comes
with some major drawbacks and specifically lacks the ability to perform training on encrypted data, instead
relying on additional plain data to construct it.

1.2. Goal and results

The goal of this research is to extend the original work of Falcetta et al. by developing a privacy-preserving
machine learning model for inference and training on a time series prediction task.
In particular, the model is designed to process time series sequences encrypted through homomorphic encryption
and perform an effective training procedure without breaching the privacy of the training data. This training
process needs to be carried out under the harsh limitations introduced by homomorphic schemes, namely:
— HE schemes only support the homomorphic computation of addition and multiplications, requiring that
all parts of the training algorithm only use these two operations.
— HE schemes allow only a limited number of operations (and specifically multiplications) to be performed
on the same ciphertext before the encrypted information is lost.
— Homorphic encryption introduces important overheads both in terms of computational time and memory
usage which need to be managed for an efficient implementation.

This thesis addresses these issues by proposing a new privacy-preserving model called PINStack. PINStack
is built on the Cheon-Kim-Kim-Song (CKKS) homomorphic encryption scheme [24] and uses a model stacking
approach based on the original PINPOINT architecture. The model offers a novel implementation of batch
gradient descent for the homomorphic training of a single fully connected layer on encrypted inputs. A trainable
fully connected layer is used in conjunction with multiple PINPOINT learners trained on plain transfer data,
which act as feature extractors for the time series inputs. PINStack also proposes new implementations of all
layers used by the original PINPOINT architecture, greatly optimized for operations on vectorized inputs.
The effectiveness of the PINStack architecture is successfully tested on multiple publicly available time series
datasets under settings that model real use-case scenarios. Its performance on privacy-preserving encrypted
data is shown to be on par with state-of-the-art time series prediction models run on plain data.

1.3. Thesis structure

Section 2 introduces important concepts necessary for the understanding of the work, regarding in particular
Machine Learning, Homomorphic Encryption and time series forecasting. Section 8 discusses the current state-
of-the-art for privacy-preserving learning on time series data, specifically focusing on the novel aspects tackled
by our research. In addition, this section gives a formal introduction to the PINPOINT family of models that
this work is based on. Section 4 describes in detail the proposed PINStack model, addressing the changes
made to the previous PINPOINT implementation and the creation of the new stacking architecture for transfer
learning. Section 5 details the Python library created to implement this solution and its usage. Section 6
presents a series of experiments that show the efficacy of the PINStack model in realistic time series prediction
scenarios. Finally, Section 7 draws the conclusions and highlights possible directions for future works.



2. Background

2.1. Privacy-preserving machine learning

Machine Learning (ML) [42] is a branch of artificial intelligence that concerns algorithms capable of auto-
matically improving through experience without being explicitly programmed. The goal of ML is to generalize
information gathered from data, being a set of inputs with distinct and quantifiable features, and apply it to
new scenarios to compute a desired output.

A ML algorithm typically involves two phases. During a training phase, the algorithm operates on a dataset
of training inputs to learn its representation and update its parameters based on the observations made. The
process is repeated over the entire training dataset for a number of iterations called epochs. Then, during an
inference phase, the algorithm is given new, unseen data and tasked with producing a corresponding output
from the information acquired in the training phase.

The way this training phase is performed divides ML algorithms into three main categories (although some
additional and hybrid approaches do exist):

o Supervised learning associates each input from the training dataset with one or more labels or target
values. The objective of the algorithm is to learn the representation of the target values based on the
input features and correctly label a set of unlabelled data during inference.

e Unsupervised learning offers no labels for the training values, and instead tasks the algorithm with finding
a particular structure in the data, such as similarities or specific patterns.

e Reinforcement learning has the algorithm learn to perform a set of actions, and rewards or punishes the
algorithm based on the outcome of said actions.

Supervised learning tasks are typically divided further into classification, where data labels belong to a finite
set of classes; regression, where data labels are continuous values; and prediction, where the model learns to
predict a set of upcoming values from a series of observations.

Deep Learning and Deep Neural Networks (DNNs) [69] in particular take inspiration from the way
information is transmitted and processed by the brain. DNNs are built on interconnected processing units
called neurons, further organized into multiple layers. Each layer of a neural network takes a set of inputs and
extracts a more abstract, higher-level representation of its core features, to then feed these new inputs into
the next layer of the network. The word "deep" in deep learning indeed refers to the number of layers that
compose a single network, with deeper DNNs being able to extract better features from the inputs at the cost
of higher computational complexity. Layers can take multiple forms according to the operations carried out by
their neurons and can be combined together to perform complex computations. The basic building blocks are
fully connected layers, where each neuron computes a weighted sum of all outputs of the previous layer.

DNNs can themselves be categorized into feed-forward networks, where inputs are processed sequentially by
each layer until an output is returned, and recurrent networks, where signals coming from a layer can be fed
back into previous layers for further processing.

Privacy-preserving machine learning [12] refers to a sub-category of ML algorithms aimed at preserving
the privacy of the processed data. These algorithms are born out of necessity from the rise of Cloud comput-
ing and the advent of Machine-Learning-as-a-Service (MLaaS) paradigms [59]. In MLaaS, an expensive
machine learning procedure is outsourced for computation to a Cloud service, which offers resources far greater
than everyday-use machines at a fraction of the cost that would be necessary to purchase such computational
power. The Cloud provider can offer platforms already optimized for specific ML tasks and highly scalable
environments according to a user’s needs.

However, outsourcing computation to a Cloud service typically requires users to send their data to a poten-
tially untrusted third-party, as it needs to have full access to it in order to perform the machine learning task.
Privacy-preserving machine learning addresses these privacy concerns by implementing algorithms that do not
require explicit access to the necessary input data in order to compute a corresponding output. This is mainly
achieved through the use of cryptography, which obfuscates data and makes it unreadable to any party who
does not have access to the specific key used to encrypt it.

2.2. Homomorphic encryption

Homomorphic Encryption (HE) is a type of encryption scheme that supports the computation of specific
operations directly over