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Abstract

The purpose of this master’s thesis is to verify the clustering capabilities of the DBSCAN
algorithm for data from structural health monitoring by acoustic emission of a adhesive
bonded joint. Bonded joints are chosen for light weight, bonding of different materials,
and uniform load distribution in structural applications. The data analyzed are from
double cantilever beam (DCB) specimen. Acoustic Emission (AE) was used for its ability
to detect the signal from a damage source located inside the DCB beam joint. Given the
large amount of data acquired through AE, Machine Learning algorithms were chosen for
efficient and timely analysis of incoming data. The selected Machine Learning algorithm
is the Density-Based Spatial Clustering of Applications with Noise (DBSCAN), a highly
promising choice for data clustering, as it has several advantages over better known algo-
rithms: ability to recognize noise, the need to not define the number of clusters a priori as
well as the ability to form clusters regardless of shape. However, the methods in literature
are based on a limited amount of data. To adjust the two parameters of the algorithm
(the minimum number of points, minPts, and the cluster radius, eps), an approach was
adopted that reduced the unknowns to be defined (eps as a function of minPts). Next, a
method was developed in which, initially, a minimum number of points is assumed, eps is
calculated as a function of the minimum number of points chosen, and finally minPts is
reevaluated. The resulting clustering reflected expectations and was subsequently verified
by waveform representation.
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Abstract in lingua italiana

Lo scopo di questa tesi magistrale è verificare le capacità di clusterizzazione dell’algoritmo
DBSCAN per dati provenienti da monitoraggio strutturale tramite emissione acustica di
un giunto incollato. I giunti incollati sono stati scelti per la leggerezza, l’unione di ma-
teriali diversi e la distribuzione uniforme del carico nelle applicazioni strutturali. I dati
analizzati provengono da provino di doppia trave a sbalzo (DCB). L’Acoustic Emission
(AE) è stata utilizzata per la sua capacità di rilevare il segnale proveniente da difettologia
situata all’interno del giunto della trave DCB. A fronte dell’ingente quantità di dati ac-
quisita tramite AE, è stato scelto di adottare algoritmi di Machine Learning per un’analisi
efficiente e tempestiva dei dati in ingresso. L’algoritmo di Machine Learning selezionato
è il Density-Based Spatial Clustering of Applications with Noise (DBSCAN), una scelta
altamente promettente per la clusterizzazione dei dati, poiché presenta diversi vantaggi
rispetto agli algoritmi più conosciuti: capacità di riconoscere il rumore, la necessità di non
definire a priori il numero di cluster oltre che la capacità di formare cluster indipenden-
temente dalla forma. Tuttavia, i metodi presenti in letteratura si basano su una quantità
limitata di dati. Per adeguare i due parametri dell’algoritmo (il numero minimo di punti,
minPts, e il raggio del cluster, eps), è stato adottato un approccio che ha ridotto le incog-
nite da definire (eps in funzione del minPts). Successivamente, è stato sviluppato un
metodo in cui, inizialmente, si ipotizza un numero minimo di punti, si calcola eps in fun-
zione del numero minimo di punti scelto, e infine si rivaluta minPts. La clusterizzazione
risultante ha rispecchiato le aspettative ed è stata successivamente verificata tramite la
rappresentazione di forme d’onda.

Parole chiave: giunti incollati, emissione acustica, dbscan
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1

Introduction

In recent years, adhesive joints have gained popularity in several industries due to their
effectiveness in transferring loads between composites or metals, attributed to a larger con-
tact area than traditional mechanical fastening methods. Adhesive joints offer versatility
with even stress distribution and high/low temperature strength-to-weight ratio, design
flexibility, damage tolerance, and fatigue resistance. They could have several applications
in the automotive, aerospace, petroleum, and construction industries. The strength of
these joints is influenced by factors such as joint geometry, mechanical properties of the
adhesive and bonding agent, and environmental conditions. Evaluation methods includ-
ing fracture mechanics and testing with specimens such as double cantilever beam are
used to measure adhesive strength, particularly with the DCB test to determine fracture
toughness in Mode I.

Non-destructive testing (NDT) methods play a crucial role in assessing the integrity
of materials by detecting surface defects, internal problems and examining metallurgical
conditions without altering the structure of the material or compromising its fitness for
service. NDT enables comprehensive characterization of damage, including surface and
internal defects such as cracks, voids, cavities, delaminations and defective welds, effec-
tively preventing premature failure. However, real-time inspection and monitoring using
NDT has limitations due to the need to stop the machine during preparation, limiting
information acquisition to scheduled inspections. To enable continuous monitoring of fa-
cilities in real time, ensuring safety and reliability during service, on-demand inspection
techniques become essential. Selecting an appropriate inspection method involves evalu-
ating potential discontinuities in the component under consideration, taking into account
factors such as stress history, geometric vulnerabilities, and manufacturing cycle.

Structural health monitoring (SHM) is an emerging area of mechanical engineering that
is rapidly becoming popular for its ability to improve operational safety, reliability, and
reduce component maintenance costs. SHM achieves these goals by providing real-time
diagnostics of a structure’s condition during use, maintaining a historical record of its
operation, and enabling prognosis to assess deterioration trends and remaining life. This
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is critical to avoid irreparable damage and detect signs of development before structural
collapse. Among the various SHM methodologies, acoustic emission (AE) emerges as a
promising choice for our work. AE involves the evaluation of elastic waves generated
within monitored materials during deformation, particularly during the initiation and
propagation of deformation or damage. A comprehensive understanding of the physical
principles behind AE, including sensors and overall monitoring of the structure using this
technique, is essential. When an external force acts on a solid, it undergoes deformation,
releasing strain energy during plasticization and cracking. This release of strain energy,
expressed as elastic waves, is called "acoustic emission" (AE), which represents the sound
produced by a solid material undergoing stress and deformation.

Having obtained the data, it is important to understand how we can obtain useful
information to make the most of real-time acquisition through AE. To do this, Machine
Learning (ML) algorithms come to our aid. The choice to utilize machine learning is
based on the fact that, through structural monitoring methods (as Acoustic Emission
or Guided Waves testing), the amount of data one receives are very large because data
are captured, not only during a particular phenomenon but throughout the life of the
component. To help us manage the large amount of incoming data, the use of artificial
intelligence allows us to manage what is being tested or monitored relatively quickly. ML
proposes two types of approaches to data: supervised and unsupervised. Both learning
methods have dedicated algorithms that have been developed over the years; however, it
is important to understand how to use them consciously. After data acquisition through
appropriate sensor placement, processing of the data obtained during the test or service
is necessary. Therefore, a suitable recognition procedure should be chosen for the case
under study. Classification can be done in two ways:

• supervised methods use a dataset who acts as a guide to teach the algorithm how
to generate the results. In other words, a known input and output pattern is given
to take as an example to classify the data obtained. It is essential to know a priori
the number of classes of interest. The algorithm learns how to handle the input
data through a set of examples representative of the case in question, known as a
"training set."

• unsupervised methods use a more independent approach, in which a computer learns
to identify complex processes and patterns without knowing a preset model provided
a priori. Objects are classified according to the similarities of their features, and no
reference cases are required. This is referred to as clustering, so that "N" objects are
grouped into "C" a priori unknown groups. There is then knowledge of the input
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but not of the output (or vice versa).

In this thesis, the data utilized were derived from a mode I fatigue crack growth test con-
ducted on metallic adhesively bonded specimens of the "Double Cantilever Beam" (DCB)
monitored throught Acoustic Emission. The DCB is a commonly employed experimental
technique in engineering for assessing the fracture toughness and material resistance to
crack propagation. The data originate from an experimental study, the details of how the
DCB specimen and test was performed and data analysis methodology are explained in
the article[1].

The purpose of this study was to select the most promising methodology from the mul-
titude of machine learning algorithms available in the literature. This involved a detailed
analysis of the operating principles, pros and cons associated with each algorithm, as well
as fitting our data to the chosen algorithm to achieve true clustering. The investigation
focused primarily on DBSCAN, an increasingly popular algorithm known for its many
advantages. The goal was to emphasize that even algorithms under development, orig-
inally designed for smaller datasets, can give satisfactory results when applied to "big
data". This is especially relevant in scenarios with background noise while maintaining
the accuracy of the final result. In conclusion, to validate the clustering performed with
the DBSCAN algorithm, waveform comparisons were conducted for each cluster. This
validation aimed to ensure that distinct groups really identified different phenomena.

The thesis is organized into five chapters.

• Chapter 1 State of the art. A study was conducted on adhesive bonded joints and
major bonding methods, focusing particularly on the DCB sample. A review of non-
destructive testing(NDT), structural health monitoring (SHM), with an emphasis
on acoustic emission was also conducted. Finally, explanation was given on machine
learning for post-processing and how it works.

• Chapter 2 Clustering algorithms. In this chapter, the procedure followed to arrive
at the selection of the DBSCAN algorithm is delineated. Several algorithms were
carefully analyzed and compared with each other in order to identify the most
promising one to apply to our data.

• Chapter 3 Methodology. In this section, the methodology for determining the key
parameters needed for DBSCAN to achieve accurate clustering is detailed.

• Chapter 4 Results. All the results obtained were presented, providing detailed
verification that the work led to reliable results.
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• Chapter 5 Conclusions and future work. Final conclusions and possible future
work are described in this chapter.
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1.1. Adhesive bonded joints

In recent years, adhesive joints have become popular in several industries due to their
effectiveness in transferring loads between composites or metals. This effectiveness derives
from the larger contact area compared with traditional mechanical fastening methods. In
addition, adhesive joints demonstrate versatility in various industrial applications due
to their homogeneous stress distribution[2], high and low temperature resistance[3] in
different field such as automotive[4], aerospace[5], petroleum[6], and even construction[7].
They are chosen for their high strength-to-weight ratio, design flexibility, damage tolerance
and fatigue resistance. In essence, they can match or even surpass classic joining methods
such as bolts, welding, screws, and riveted joints[8].

1.1.1. Bonding methods

Firstly, we must consider different bonding methods: co-bonding, co-curing, secondary
bonding and multi material bonding. The first one is done when only one adherent (which
is the part that it will be joint) is cured with the adhesive, which means that only one
layer is polymerized, while, when both parts are simultaneously cured, we are talking
about co-curing (it can be formed either with or without the use of an adhesive, and the
entire laminate undergoes a single curing process[9]). In both cases they can be used to
joint composites[10] or metals[11]. Secondary bonding and multi material bonding have
the same techniques of joining with the only difference that in the first one the adhesive
layer is cured between two pre-cured panels of the same material, in the other we have a
combination of different cured substrates of materials[10].
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Figure 1.1: Bonding methods[10]

1.1.2. Type of adhesive joint

In industrial applications, different adhesive joints can be used. The strength of a spe-
cific joint type, under a particular load, is determined by the stress distribution within
the joint. This is influenced by the joint geometry as well as the mechanical properties of
both the adhesive and adherend[12]. According to the type of load that is applied to the
structure, different ways of bonding can be adopted in other to resist as much as possible
avoiding fractures, cracks or collapse of joints, even if the reliability of bonded connec-
tions in terms of fatigue and long-term behavior is limited[13]. However, the mechanical
resistance of an adhesive joints strongly depend on several factors, that could compromise
its structural integrity, including the materials being joined, the working environment,
pre-treatment methods[14] but also by surface preparation[15].

Different adhesive joints can be used as for example single lap joint (SLJ), that is one of
the most used joint, in which two adherents are joined together with an adhesive overlay.
It’s easy to fabricate and their results are sensitive to both adhesive quality and adherent
surface preparation[16]. In addition, several studies have been conducted to understand
its behavior under fatigue[17] or static load[18]. Double Lap Joint (DLJ) compared to the
SLJ, has higher efficiency because of duplication of the shear-resistant area. However, we
need access to both sides of the structure to obtain this junction [19]. As in the previous
case, also for DLJ some studies are done[20]. Adhesive butt joints involve connecting two
surfaces along their edges in a butt configuration. In this joint type, the two materials
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are positioned end-to-end, and adhesive is applied to bond them together without any
overlapping[21]. Adhesive butt strap joints typically involve bonding two surfaces together
using an adhesive, and a strap or band is used to add extra reinforcement and support to
the connection. These joints can be created in either a single configuration or a double
configuration.

In the figure 1.2 are shown various types of structural adhesive bonded joints commonly
utilized in industrial applications explained above.

Figure 1.2: Structural adhesive bonded joints[22]

To assess the strength of adhesive joints, a commonly employed approach involves utilizing
fracture mechanics. Traditionally, when the crack propagation follows a pure open mode,
the use of a double cantilever beam (DCB) has been employed to comprehend the fracture
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behavior[23] and so a DCB specimen is created for test method for measuring Mode I
fracture toughness[24]. The procedure for preparing the test specimen involves bonding
two adherents with adhesive and introducing an initial crack, before you clean up well the
surfaces. Subsequently, a cyclic load is applied. A more detailed description of how the
sample is prepared, whose data were used in this thesis work, is given in the article[1].

In the following paragraphs, a quick introduction on NDT is done necessary to better
introduce the concept of structural health monitoring methods and the specific approach
used for acquisition will be detailed.

1.2. Non-Destructive Testing

Non-destructive testing methods (NDT) are used to evaluate the integrity of materials
by identifying surface defects, internal or examining metallurgical conditions, all without
causing any alteration of the material or compromise its suitability for service. This
implies that non-destructive testing allows for the characterization of damage or defects
both on the surface and within the materials without employing cutting or any other
form of alteration. These methods are designed to identify problems such as cracks,
internal voids, surface cavities, delamination, incomplete or defective welds, and any other
imperfections that could lead to premature failure [25]. The NDT techniques offer a cost-
effective method for testing samples on an individual or can be applied to the entire
material for a complete investigation and comprehensive examination.

Inspection and monitoring of materials, components, or structures by NDT, however,
cannot take place in real time because, each of the nondestructive testing techniques needs
a preparation that must take place while the machine is stopped. Therefore, there is no
opportunity to receive information in real time, but only during scheduled inspections.
As a result, inspection techniques must be used to monitor the degradation of structures
on-demand. Assessing the condition of a facility in real time is essential to ensure its
safety and reliability during service [26].

To choose the correct inspection method, and since there are several non-destructive
testing methods, it is important to evaluate the types of discontinuities that could be
detected in the component under investigation, since there are no NDT methods that can
detect all possible imperfections. Knowledge of the previous history of the component
is essential, including the stress history, geometric points (notches) susceptible to over-
stressing, and the technological cycle used to produce the part itself. A careful preliminary
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study in the laboratory and a detailed study of the component’s documentation is critical.

On-demand monitoring of a structure, also known as Structural Health Monitoring
(SHM), is not suitable for all forms of non-destructive testing, as it requires that the struc-
ture (or specimen) be constantly monitored all along its service or testing and equipped
with appropriate sensors. The selection is therefore limited to a few methodologies, among
which Acoustic Emission (AE) stands out.

1.3. Structural Health Monitoring

Structural Health Monitoring (SHM) is a very recent area of mechanics that is spreading
rapidly because it allows for increased safety in operation, increased reliability, and de-
creased costs related to component maintenance and repair. These goals are achievable
because SHM can provide real-time diagnosis of the state of a structure at any time dur-
ing its use. The structural monitoring system keeps a record of the past operation of the
structure, also allowing prognosis, i.e., assessment of the deterioration trend and remain-
ing life. This capability is critical for preventing irreparable damage and identifying any
signs of damage development before it leads to the collapse of the structure. It should
be remembered that monitoring using SHM must always remain linked to the structure
being monitored because, just as the structure (or component) is subject to wear and
aging over time, the sensors associated with structural monitoring can also deteriorate
over time. All of this is possible because, unlike other non-destructive testing, SHM al-
lows planned interruptions in service to be replaced by targeted maintenance based on
the actual condition of the structure on an instant-by-instant basis [27].

1.3.1. Passive and Active monitoring systems

Monitoring systems can be divided into passive or active, depending on the methodology
with which they work. We refer to passive monitoring when monitoring consists of simply
observing the behavior of the structure using sensors embedded in the component 1.3a.
Instead, we refer to active monitoring when we interact with the structure using actuators
to perturb and sensors to detect its response 1.3b.



10 1| State of the art

(a) Passive monitoring

(b) Active monitoring

Figure 1.3: 1.3a "Passive" and 1.3b "Active" SHM methods[28]

Actuators and sensors can belong to the same or different categories, and some types of
transducers can perform both functions simultaneously. Sensors can be either placed on
the structure or embedded in manufacturing. The advantages of the latter are certainly
that the sensor is protected and not exposed to the environmental conditions of operation,
there is better sensor-material interaction, and monitoring in incessant areas becomes
possible. On the other hand, however, not all materials and technological processes allow
the incorporation of elements into structures, in addition to the fact that if the sensor
were to be damaged it would prove impossible to replace it, but the entire part would
have to be replaced. Regardless of the method chosen, it is important that SHM sensors
give a faithful response to the reactions of the embedded structure, faithfully transmit
the acquired signals, are unobtrusive to the structure, withstand the operating conditions,
and should be easy to handle. The choice of sensor is subjective for a given application;
there are no rules that apply to all case studies, and the wrong choice can lead to incorrect
data acquisition and post-processing. Infact, the choice of sensors depends on the type of
applications, data, and damage we expect from the structure being monitored.
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1.3.2. Methothologies for SHM

Every Structural Health Monitoring (SHM) technique varies from others in terms of the
measurement component (sensors) and the specific physical phenomenon adopted during
the monitoring process by the sensors. The use of each phenomenon has advantages and
disadvantages in practical application. Importantly, the choice of one over the others
directly and completely defines the monitoring strategy. This decision affects the type
of sensors, the setup configuration, and how the data are analyzed. Therefore, once the
decision is made, it is difficult to change it and go back. The most popular methodologies
are:

1. Modal-data-based: relies on the observation that the existence of structural dam-
age leads to a reduction in the stiffness of the structure, alterations in natural fre-
quencies, and shifts in frequency response patterns and structural modes [29]. It is
a cheap method, and insensitive to damage, at least until it is of a size that changes
the dynamic behavior of the structure.

2. Electro-mechanical-impedance-based: built on the premise that the compo-
sition of a system adds a specific contribution to its overall electrical-mechanical
impedance, and the existence of damage alters the impedance within a high-frequency
range, typically exceeding 30 kHz [30]. It is cheap and not very sensitive to damage
that needs to be near the sensors.

3. Static parameter-based: founded on the observation that the existence of dam-
age induces alterations in displacement and strain distribution as compared to a
benchmark [31]. It is easily integrated; however, it detects damage only near the
sensor. It is also very expensive.

4. Acoustic emission: grounded in the reality that the swift release of strain energy
produces transient waves, allowing for the assessment of the presence or progression
of damage by detecting acoustic waves emitted due to damage.

5. Elastic-wave based:built on the observation that structural damage induces dis-
tinctive wave scattering phenomena and mode conversion. The quantitative assess-
ment of damage is attainable by examining the wave signals scattered by the damage
[32].

In this thesis, the most suitable technique chosen for structural monitoring of the
bonded joint was found to be Acoustic Emission. In particular, the choice of the physical
phenomenon to be adopted and the related sensors are strongly influenced by the type of
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structure, type of damage we expect on the structure to be monitored, and the boundary
conditions.

As a last, it should be mentioned that through SHM it is possible to both monitor the
in-service health of the structure, thus having the possibility to have a diagnosis, but it is
also possible to anticipate the moment when a structure or system will no longer be able
to effectively perform its design function. In order for this to happen it is necessary to
have both an initial knowledge about the potential failures of the structure, including their
location, mode, cause, and mechanism, to accurately identify the system parameters and
to have chosen the correct method of SHM. Such a discipline is known as "prognostics."
With prognostics, the future performance of the component is defined relative to nominal
performance, as properly schematized in the figure1.4.

An effective prognostic system is based on several fundamental pillars:

• A thorough understanding of the failure modes and mechanisms of the materials
involved

• The ability to detect early signs of damage

• The detailed understanding of the conditions leading to system failure

Figure 1.4: Diagnosis and Prognosis scheme[27]
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1.4. SHM by Acoustic Emission

Among the various Structural Health Monitoring (SHM) methodologies, Acoustic Emis-
sion (AE) emerges as a promising option. This method offers the ability to evaluate elastic
waves generated within the monitored material during the reduction of their deformation,
that is, when strain energy is released during the initiation and propagation of defor-
mation or damage. It is necessary, however, to explain the physical principle behind
acoustic emission, sensors and everything related to structure monitoring by adopting
this technique.

1.4.1. Physical principle of AE

When an external force acts on a solid, it undergoes deformation. In the elastic regime,
the force generates elastic energy accumulation that is fully recovered at unloading. With
the first plasticization, the strain energy is released in the form of plastic deformation, and
the recovery at unloading is not complete. By further increasing the force, strain energy
is released through nucleation and crack propagation. During plasticization and cracking,
some of the strain energy is dissipated in the form of heat and, of considerable interest,
sound. This event is called "acoustic emission" (AE) and is the sound expression of a solid
material when it is subjected to stress and deformation. Specifically, plastic deformation
and cracking release strain energy in the form of elastic waves that propagate both inside
and outside the material. In summary, AE represents a phenomenon in which strain
energy stored in a solid is released in the form of deformation and cracking, generating
elastic waves.

The main categories of waves in acoustic emission (AE) are generally divided into two
types:

• Transient AE Waves: these waves consist of a single wave packet that fades over
time. They are commonly referred to as "events" or "hits" (figure 1.5).
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Figure 1.5: Transient wave[28]

• Continuous AE Waves: these waves are the result of continuous mechanical phe-
nomena over time, such as friction, or from the superposition of numerous transient
events close together in time (figure 1.6).

Figure 1.6: Continuous wave[28]

Monitoring by AE involves listening for and capturing these elastic (ultrasonic) waves
by means of special sensors, typically piezoelectric, placed on the surface of the structure.
Some of these waves are also released into the air in the form of sound waves, which are
often distinctly audible. The manifestation of collapse does not occur instantaneously,
even though its occurrence can be rapid. It begins at a microscopic scale and progresses
gradually, accumulating damage to the point of failure. Structural Health Monitoring
(SHM) by Acoustic Emission (AE) allows monitoring of this entire process, following it
from beginning to end or until a decision is made to remove the structure from service.
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1.4.2. "Kaiser" effect and sources of AE

As mention in the section 1.3.1 there are two types of SHM methods. Acoustic Emission
(AE) is a passive method; therefore, the structure under monitoring must be subjected to
loads to generate sound waves. Specifically, AE represents an irreversible phenomenon;
this implies that after the application of a maximum load, a further higher load must
be applied to observe further acoustic emission, a concept known as the "Kaiser effect."
This phenomenon is found in certain metals and composites, bringing with it a significant
practical consequence: each emission occurs only once, and there is no second opportunity
to repeat the test, inspection, or monitoring. Sources of acoustic emission (figure 1.7)
include various deformation and cracking mechanisms, known as "primary AE." In the
case of metals, this may involve crack propagation, dislocation movement, creep, grain
edge sliding, crystal sprouting, fracture and de-cohesion of inclusions, and so on.

Figure 1.7: Examples of acoustic emission sources: (a) Cracking, (b) Deformation, (c)
Sliding or slip, (d) Leakage[33]

In composites, the sources include matrix fracture, fiber fracture, and fiber de-cohesion.
In ceramic materials, such as cement, the sources can result from phenomena such as
fracture and creep. In addition to what happens internally in the material, there are
other clearly audible mechanical phenomena known as "secondary AE." These can result
from leakage and cavitation, friction, realignment of magnetic domains, liquefaction and
solidification, phase transformations, corrosion, and so on. Depending on the specific
context, such phenomena may be desired or represent annoying background noise.
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1.4.3. Sensors for AE

Signals from the monitored structure must be equipped with sensors. Unlike many other
methods, where the collation of the latter is of fundamental importance for acquisition,
in acoustic emission you do not have to be particularly rigid about their placement. This
implies that the placement of sensors in the proximity of the damaged area is not as
critical as in other methods. Important, however, is the choice of sensors, which allow
a mechanical strain to be transformed into a voltage after the sensor has detected and
received an AE wave. For this purpose, piezoelectric transducers are used. There are two
categories of AE sensors:

• Resonant sensors: when the wave is received, the piezoelectric transducer (PZT),
which is not damped, begins to vibrate, emphasizing the harmonic components of its
resonances, while the others are rapidly damped. The primary resonant frequency
of the PZT is determined by the formula (1.1):

fr =
Vpiezo

2s
(1.1)

• Broadband sensors: this type is more similar a traditional ultrasonic probe (UT)
because the PZT element is damped by a backing material. As a result, the fre-
quency spectrum is flat and broad, but, at the same time, the sensor is less sensitive
due to the increased damping

It should be noted that, through the sensors, it is not only possible to capture informa-
tion about the monitored structure, but it is also possible to proceed to the localization of
the sources by triangulating the flight times of the signals to a sensor network. The sen-
sors are part of a more complete set of equipment called a measuring system that typically
includes several independent channels, each with its own elements, including sensors and
an associated preamplifier located directly on the structure. This positioning is essential
as the detected signals are low intensity and require immediate pre-amplification to avoid
an unacceptable signal-to-noise ratio before being transmitted.

1.4.4. Type of waves and attenuation

As for AE wave types, they can generally be classified into two main categories. Tran-
sient AE waves consist of a single wave packet that fades over time and are often referred
to as "events" or "hits". On the other hand, continuous AE waves derive from mechanical
phenomena that continue over time, such as friction, or from the overlapping of numerous
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transient events that occur close together over time. The AE waves, similar to all elas-
tic waves, undergo a process of attenuation during their propagation through a medium.
The phenomena involved include the geometry of the front, in which the energy of the
spherical front remains constant but its surface increases with propagation.

Figure 1.8: Attenuation mechanisms[34]

Diffusion and diffraction occur when the front interacts with the microstructure of the
material, fragmenting and spreading without any decrease in energy. In addition, there
is absorption, where the energy of the waves is converted into heat through interaction
with the material.

1.4.5. Advantages and disadvantages of AE

Acoustic emission (AE) monitoring has several advantages that contribute to its at-
tractiveness as a structural evaluation technique. It is relatively inexpensive and offers a
quick and applicable method even for large structures. Its versatility makes it suitable
for any type of material, while ensuring a very low invasiveness. One advantage is the
ability to distinguish different types of damage, if any, and to pinpoint precisely where the
damage occurred by triangulation. However, it is important to also consider some disad-
vantages associated with this methodology. The structure must be subjected to loads to
generate acoustic emission, and the process is irreversible, known as the "Kaiser effect".
In addition, monitoring is susceptible to noise interference, both electrical, mechanical,
and environmental. The elastic waves used in the AE undergo attenuation, both of a ge-
ometric and structural nature, which may require the use of numerous sensors to ensure
adequate coverage. Another limitation is the difficulty in sizing the damage detected. In
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summary, while offering many advantages, monitoring through AE presents challenges
and limitations to be carefully considered in implementation.

1.4.6. Post-processing methodology

Once the data is acquired through AE, a processing is necessary to extrapolate the
useful information to the problem being studied. It is therefore important to identify only
the AE of interest and derive from them the maximum amount of useful information on
the current condition of damage or the behavior of the material and structure.

The first obstacle consists in separating (discriminating) the relevant signals (events)
from the background noise, since continuously capturing data without a skimming, is not
feasible. The signals of interest are generally distinguished by an amplitude significantly
greater than the background noise and a short time (from the order of microseconds to
milliseconds).

Consequently, the first step is to define a detection threshold to exclude background
noise and allow the acquisition and analysis only of signals with amplitudes greater than
this threshold. What falls below the threshold is not considered and will not be available
for further processing. Despite this trick, the amount of data to be managed is very
high. It is therefore necessary a post-acquisition processing that allows you to quickly
and effectively manage the data that is obtained from the sensors.

Regardless of the approach chosen for data management, it is crucial to adopt an effec-
tive post-processing method to analyze the signals from the sensors and extract relevant
information for monitoring. It is important to note that, in the case of AE, the amount
of data to be dealt with is considerable (attributable to the concept of Big Data). There-
fore, it is necessary to use a method that can quickly process all incoming data, enabling
real-time monitoring of the specimen. A particularly promising choice in this context
is Machine Learning (ML), a branch of artificial intelligence that employs algorithms to
obtain information.

1.5. Machine Learning

Machine learning (ML) represents a category of artificial intelligence that enables com-
puters to think and learn autonomously. The fundamental concept lies in guiding com-
puters to modify their actions to improve accuracy and produce correct results [35].
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1.5.1. Machine learning system

For machine learning methods to work, it is necessary to provide the learning algorithm
with experience in the form of "training data," allowing the algorithm to learn from it.
There are several strategies for the design of these learning algorithms, but first it is
important to understand which is the working principle of each machine learning methods.

Figure 1.9: The pipeline of building a machine learning system, consisting of three major
steps of data collection, feature generation, and model training[36]

In the initial phase, it is essential to gather a sufficient volume of training data that
accurately represents prior experiences for computer learning. Ideally, this training data
should be acquired under conditions mirroring those in which the system will ultimately
be deployed.

Moving to the second stage, specific to the domain, procedures are typically applied to
extract features from raw data. These features should be concise yet encompass the most
crucial information within the raw data.

In the final stage, a learning algorithm is selected to construct mathematical models based
on the extracted feature representations from the training data [36].

To gain a clearer understanding of the components of the model stage, let’s break down
the final step into four distinct stages [37] as shown in the figure :

• Algorithm Selection: Not every machine learning algorithm is universally suitable
for all problems. Specific algorithms are better suited to types of problems. It is
crucial to carefully choose the most appropriate machine learning algorithm for the
given problem to achieve optimal results.

• Model and Parameter Selection: Most machine learning algorithms require
some initial manual intervention to set the most appropriate values for various pa-
rameters. In the literature, there are also programs specifically designed to automat-
ically determine the most relevant features, such as Principal Component Analysis
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(PCA) and Linear Discriminant Analysis (LDA)[38] which are two commonly used
techniques for data classification and dimensionality reduction.

• Training:Following the selection of the appropriate algorithm and suitable param-
eter values, the model undergoes training using a portion of the dataset as training
data.

• Performance Evaluation: Before implementing the system in real-time, the model
needs to be tested against unseen data to assess the extent of learning. This evalu-
ation involves various performance parameters such as accuracy and precision.

Figure 1.10: Components of a generic ML model[37]

As mentioned above, machine learning algorithms can be of different types. In this
study, only supervised and unsupervised machine learning algorithms will be examined,
depending on the nature of the input data.
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Once we describe the basic concepts needed to understand the work done, we go into
the details of the procedure to determine the clustering algorithm and its fundamental
parameters.

In dealing with a Structural Health Monitoring (SHM) problem through Acoustic Emis-
sion (AE), it is crucial to establish an effective post-processing method. As explained in
the previous chapter, Machine Learning algorithms prove to be the best choice to analyze
the large amount of data quickly and effectively from the sensors applied on the monitored
structure or specimen. However, there is a downside when it comes to Machine Learning
algorithms: handling a large amount of data is not suitable for all algorithms.

The first part of the work was to figure out whether the algorithm to be applied to
experimental data obtained from previous laboratory experiments was supervised or un-
supervised. Having identified the type of algorithm, we proceeded to examine the many
algorithms in the literature and figure out, among those present, the most promising one
and verify that the chosen algorithm was also applicable to "big data" problems. In this
chapter we will deal in detail with the whole procedure followed in choosing the DBSCAN
algorithm.

2.0.1. Supervised learning

Observing the nature of the test data, it was decided to focus the work on unsupervised
algorithms. In fact, the algorithms supervised, generate a function that maps the inputs
to the desired outputs [39]. The working principle of supervised algorithms consist of two
distinct phases: training and testing. During the training process, the learning algorithm
or learner takes the samples from the training data as input, focusing on acquiring fea-
tures and constructing the learning model. During the testing phase, the learning model
employs the execution engine to generate predictions for the test or production data.
Even more significant is the nature of the data derived from the acoustic emission of the
specimen under analysis. These signals represent information that requires interpretation
to understand what mechanism of fracture, damage, or otherwise generated the struc-



22 2| Clustering algorithms

ture’s response to stimulation. In this context, one knows the reaction of the system,
but not the event that caused it; in other words, one is aware of the output, but the
input remains unknown. This peculiarity of the problem excludes a priori all supervised
machine learning algorithms, in which it is necessary to provide experimental data in
which the nature of the input and its response is known to train the algorithm [36]. Using
Supervised learning algorithms, we perform a classification of data.

2.0.2. Unsupervised learning

Unsupervised learning studies how systems can learn to represent input patterns in a way
that reflects the statistical structure of the overall collection of input patterns. Unsu-
pervised learning deals with data lacking predefined categories or labels. In our data,
necessitating algorithms to independently establish criteria for grouping similar outputs.
Determining output similarity when input labels are unknown, it means that we are
applying in a correct manner the algorithm. To determine accurate labels (cluster as-
signments), clustering methods depend exclusively on the intrinsic characteristics of data
points. These methods use these intrinsic characteristics to establish an empirical risk
associated with a candidate hypothesis. Unsupervised learning is also called Clustering
method[40].

There are many clustering algorithms in the literature, which can be divided into two
main categories: hard clustering and soft clustering: hard clustering assigns each data
point to a single cluster, while soft clustering methods assign each data point to multiple
clusters with varying degrees of membership, in contrast to the exclusive assignment of
the hard cluster. There are algorithms that can be applied in both contexts, depending
on the specific implementations. Some examples include artificial neural network (ANN)
algorithms such as the SOM (Self-Organizing Map), as well as hierarchical clustering
methods. In addition, there are clustering approaches based on data density, including
one of the best known: Density-Based Spatial Clustering of Applications with Noise
(DBSCAN).

We now review an overview of the main clustering algorithms in the literature, high-
lighting how they work and their associated advantages and disadvantages. This analysis
was crucial in guiding our choice on which clustering method to focus the work.

2.1. Hard clustering
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2.1.1. K-means

The k-means clustering algorithm is distinct as a powerful data mining algorithm widely
adopted by the research community. In the algorithm, the process begins by selecting
"k" cluster centers to align with "k" randomly chosen patterns or "k" randomly defined
points within the volume containing the set of patterns. The strategic location of these
centroids is crucial since different positions may produce different results. Therefore, the
optimal strategy is to place them as far away from each other as possible. Next, each
point in the dataset is associated with the nearest centroid. With the assignment of all
the points, the initial phase ends, marking the completion of an initial grouping. The
next crucial step is the recalculation of k new centroids. If a convergence criterion is not
met, the algorithm will be repeated starting in reassign each pattern to the closest cluster
center. Convergence is typically determined by reassignment of patterns to new cluster
centers or minimal decrease in quadratic error. This process forms a cycle, and, through
successive iterations, it becomes evident that the k centroids progressively change their
positions until no more changes occur. Simply put, the centroids reach a steady state,
stopping all further movement [41].

The k-means is a simple and easy algorithm to implement, and it is suitable for large
data sets, however, despite its popularity, the algorithm has some limitations. These
include the problems associated with random initialization of centroids, which often results
in unpredictable convergence. In addition, the algorithm requires a priori definition of the
number of clusters, contributing to variations in cluster shape and susceptibility to outlier
effects. A key disadvantage of the k-means algorithm lies in its inability to effectively
handle different types of data [42].

2.1.2. Spectral clustering

The family of spectral clustering algorithms have attracted considerable attention from
the academic community in recent years. This growing interest is attributed to its sound
theoretical foundation and the admirable clustering performance it demonstrates. Its
implementation is simple, solvable efficiently with standard linear algebra software and
often demonstrates good performance compared with traditional clustering algorithm [43].

Spectral clustering algorithms exploit the eigenvalues and eigenvectors of Laplacian
matrices to divide a graph into clusters. In this partitioning, nodes within the same
cluster show stronger connections to each other than nodes in different clusters. The
spectral features embedded in Laplacian matrices capture essential information about the
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connectivity and structure of the graph, making them valuable in tasks such as clustering
and other graph theory-based analyses.

The spectral clustering can be modeled as a process involving three steps. Initially, a
similarity graph is constructed for all data points. Next, the data points are placed in a
space in which the clusters become more obvious using the eigenvectors of the Laplacian
graph. Both steps involve significant computational costs in terms of time. In the case
of a dataset involving “n” data points with “m” dimensions, the time complexities for
the above steps are O(n2m) and O(n3), respectively. Such computational requirements
represent impractical, especially in the context of large-scale applications. Finally, a
conventional clustering algorithm is employed to partition the embedding [44].

In cases where data points are observed sequentially, a method was proposed to directly
update the clustering without the need to evaluate the entire affinity matrix. In addition,
a more versatile algorithm has been developed over the years that allows the similarity
between existing data points to be changed by incrementally updating the eigenvectors.
This reduces the total computational time, although, compared to many other algorithms,
it is very time-consuming [45].

2.2. Soft clustering

In many practical situations, some objects have characteristics that are intermediate be-
tween clusters, making clear assignment difficult. In such cases, using the classical (hard)
approach to clustering leads to unrealistic assignment, forcing objects to belong exclu-
sively to a single cluster. To overcome this drawback, the soft approach was developed.
The fundamental idea is that each data point can belong to more than one cluster. One
of the most important soft clustering approaches is known as fuzzy.

Fuzzy logic principle involves allocating data points to clusters based on a specified
degree, referred to as a membership degree, ranging from 0 (complete non-membership)
to 100 percent (complete membership). This membership degree, also known as a degree
of sharing, is computed by evaluating the ratio of the dissimilarity between each object
and the closest prototype to the sum of the dissimilarities between each object and all
the prototypes [46].
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2.2.1. Fuzzy c-means

This algorithm functions by assigning membership to each data point based on its dis-
tance from the cluster center. The closer the data point to the cluster center, the higher
its membership towards that cluster center. It is evident that the sum of the membership
values for each data point should equal one. As an unsupervised clustering algorithm,
it enables the construction of a fuzzy partition from the data. The algorithm relies on
a parameter, denoted as “m”, which represents the degree of fuzziness in the solution.
Larger values of “m” result in blurred classes, with elements tending to belong to all clus-
ters. The optimization problem’s solutions are influenced by the parameter “m”, meaning
that different choices of “m” typically lead to different partitions. We can say that by
approaching the value of “m” to 0, the Fuzzy C-Means algorithm tends to resemble the
K-Means hard clustering algorithm [47].

Figure 2.1: Difference betweeen K-means and Fuzzy c-means[48]

The method provides optimal results for data sets with overlaps, with relatively better
performance than the K-Means algorithm. Unlike K-Means, in which a data point is
forced to belong exclusively to a single cluster center, in this method a data point is
granted membership in each cluster center, allowing it to potentially belong to more than
one cluster center. However, there are drawbacks, such as the need to specify the number
of clusters a priori. A lower value of "m" can improve the results, but at the cost of
increased iterations. Euclidean distance measurements may assign unequal importance to
underlying factors. In addition, the performance of the FCM algorithm depends on the
initial selection of cluster centers and/or initial membership values [47].
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2.3. Artifician Neural Network

Artificial intelligence (AI) is a branch of computer science that focuses on creating soft-
ware capable of performing intelligent computations comparable to those performed by
the human brain. It encompasses a range of methods, tools and systems designed to simu-
late human approaches to acquiring logical and inductive knowledge and solving problems
through reasoning. Developments in AI fall into two main categories. The first includes
methods and systems that mimic human experience by drawing conclusions from pre-
defined rules, as is the case in expert systems. The second category includes systems
that model how the brain works, such as artificial neural networks [49]. Artificial Neural
Networks are particularly well suited to address and solve complex challenges involved in
real-world scenarios. Inspired by the human brain, these networks use processing tech-
niques to formulate algorithms that can model and understand intricate patterns and
prediction problems.

2.3.1. SOM

There are many different types of ANNs, some of which are more popular than others. The
self-organizing map (SOM) is an unsupervised ANN’s algorithm used for data training to
classify and effectively recognize patterns embedded in the input data space [50]. SOM is
typically organized in a two-dimensional space; map units or neurons create a mapping
from a high-dimensional space onto a plane. For each input vector, the crucial first step is
to identify the winning neuron, the one that minimizes the distance between its prototype
vector and the input vector. This mapped representation preserves the calculated relative
distances between data points. Then, in the second step, a significant improvement is
taken: the prototypes of not only the winning neuron, but also its neighbors, are updated.
This dynamic process contributes to the self-organization of the map, refining the data
representation in a consistent and meaningful way [51].

As a result, Self-Organizing Maps prove to be valuable tools for analyzing clusters
within high-dimensional datasets. In addition, self-organizing maps possess the ability of
generalization. During this process, the network can identify or characterize inputs that
it did not encounter in its training data. The new inputs are assimilated by the map unit,
enabling effective mapping and representation.
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Figure 2.2: SOM graph[49]

However, the model cannot generate a model for the data, which leads to a lack of
understanding of the data creation process. In addition, its performance is not optimal
when handling categorical data and even more so with mixed data types. Moreover, the
model preparation time is remarkably slow, which brings problems when training with
gradually evolving data.

2.4. Hierarchical clustering

Hierarchical clustering is an additional approach for conducting exploratory data analy-
sis, falling under the category of unsupervised techniques. Hierarchical clustering means
creating a tree of clusters by iteratively grouping or separating data points. There are
two types of hierarchical clustering:

• agglomerative clustering

• divisive clustering

Agglomerative clustering

Agglomerative clustering [52] is the process that involves the construction of a binary
fusion tree, starting with the individual data elements. The progression involves merging
pairs of the "closest" subsets stored at the nodes until the root is reached, which includes
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all the elements of set X. The distance between any two subsets of X is denoted as ∆ (Xi,
Xj) and is called the linkage distance. This method is commonly known as agglomerative
hierarchical clustering since it starts with single data elements (the xi) representing leaves
of the tree and systematically joins subsets until the root is reached. The dendrogram is a
diagram representing tree-based approach and they are used to visualize the relationship
among clusters.

Figure 2.3: Dendrogram[53]

Going up the hierarchy reduces the number of clusters as more samples are agglomer-
ated. At the end of the process, all samples are merged into one large cluster. Advantages
of hierarchical clustering include the flexibility of not having to predefine the number of
clusters, ease of implementation, and interpretability aided by dendrograms. In addition,
it consistently produces the same clusters (unlike the k-means algorithm in which they
may be different based on the initialization of centroids). Hierarchical clustering is rela-
tively slower than other clustering methods, especially when dealing with large datasets,
resulting in longer processing times [54].

Divisive clustering

Divisive clustering is the other macro category of hierarchical clustering algorithms. Their
operation is the same as agglomerative methods, except that they work in reverse.
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2.5. Density-based clusters

Density-based clusters can be displayed as sets of data points formed by cutting the
probability density function to a specific density threshold. Each cut delineates distinct
linked regions in the feature space where the probability density exceeds the threshold.
Each of these regions corresponds to a cluster that includes all data points within that
region. If the density threshold is set too low, separate clusters can join into a single
cluster. On the contrary, selecting too high a density level can cause the loss of clusters
with lower density [55].

2.5.1. DBSCAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) stands out as
an important density-based clustering algorithm. DBSCAN operates without the need to
specify the number of clusters as a parameter. Instead, it derives the number of clusters
from the data itself, demonstrating the ability to discover clusters of arbitrary shape. To
identify clusters, it is essential to configure two key parameters. As we will see later, the
correct determination of these parameters is crucial to ensure that the algorithm works
properly and achieves effective partitioning into clusters[56].

• ϵ: The radius that determines the neighborhood around a data point “P” and indi-
cates the distance for neighborhood specification. Two points are considered neigh-
bors if the distance between them is less than or equal to ϵ.

• minPts: The minimum required number of data points within a neighborhood to
create a cluster [57].

Figure 2.4: Operational dataset[58]
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Exploiting the provided parameters, DBSCAN classifies data points into three distinct
categories:

• Center points: Center points serve as core elements for clusters, relying on the
density approximation. A uniform ϵ is used to calculate the neighborhood of each
point, which ensures a consistent neighborhood volume. However, the differentiating
factor lies in the variable number of other points within each neighborhood. Central
points are those data points that meet a minimum density requirement represented
by minPts. Cluster construction focuses on these central points, hence the name
"core." Adjusting the minPts parameter allows us to precisely adjust the required
density for the cores of our clusters.

• Border Points: they are elements within our clusters that do not qualify as core
points. All points within the neighborhood of point “P” (see figure above) directly
reachable from “P” are considered border points.

• Outliers:these points do not qualify as core points and are also not near a cluster
to be density-reachable from a core point. Outliers remain unassigned to any cluster
and, depending on the context, may be deemed anomalous points.

Explained the main actors of algorithm, the fundamental concept of DBSCAN revolves
around the notion that, for each object within a cluster, the neighborhood within a
specified radius (Eps) must include a minimum number of objects (MinPts). This prereq-
uisite suggests that the number of objects within the neighborhood must exceed a specific
threshold (which is represented by the minimum number of points) [59].

Advantages and disadvantages of DBSCAN

Thanks to its operating principle, DBSCAN algorithm has distinctive and advanced
capabilities that prove valuable for detecting objects, classes, patterns, or structures of
various shapes and sizes. DBSCAN emerges as a strong competitor for discovering clusters
and their spatial arrangement within the data space, particularly when these clusters
exhibit comparable densities and no prior information about the groups present in a
dataset is available [60]. Density-based clustering algorithms prove useful for discovering
clusters within datasets characterized by arbitrary shapes and considerable size. These
algorithms typically identify dense regions of points in the data space, distinguishing them
from low-density regions [59]. However, the time complexity of the DBSCAN algorithm is
O(n2). The running time of the algorithm is greatly affected by the process of identifying
neighbors for each data point to determine the data density. As a result, for large data sets,
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the DBSCAN algorithm involves substantial calculations, resulting in decreased clustering
speed and increased execution time [58]. Several algorithms are proposed to reduce the
time needed for the computation: in the article [57], it is explained a procedure to reduce
it to O(n).

Despite the difficulties connected with the definition of the main parameters and the
considerable execution time, DBSCAN is a promising prospect for unsupervised applica-
tions, constituting a prominent alternative to the most well-known clustering algorithms
in the literature. Therefore, it was chosen as the subject of study for this thesis work.
In the next chapter, we will detail the procedure followed to adapt the algorithm to the
available data, using the MATLAB software. The main challenge lay in the efficient de-
termination of eps and minPts parameters, essential to achieve effective clustering and
results consistent with expectations.

In the table below, we summarize the principle of operation of every examined method of
clustering, and we list the main advantages and disadvantages.

How it works Pros Cons

K-means

A small number of k
clusters is established,
and subsequentiatly,
each data point is

allocated to the nearest
centroid.

After each assignment,
the centroid are

recalculated.

1) Easy implementation

2) Scalable to handle large
datasets

3) Can dynamically
re-evaluate centroid

position

4) Easily adaptable to
other problem domain

1) Manual selection
of the number of the

cluster (k)

2) Sensitivity to
initial values

3)Challenging for
clustering data with

diverse sizes
and densities
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Spectral
clustering

This approach relies on
graph theory. Spectral

clustering leverages
information extracted
from the eigenvalues
of specific matrices

constructed from either
the graph or the dataset.

By interpreting these
matrices and

eigenvalues, we can
assign our data to

clusters. This method
offers a high degree of
flexibility compared to

other clustering
techniques.

1) It doesn’t adhere to
fixed-shape clusters,

eliminating the need to
define a radius or a

cluster centroid

2) This flexibility implies
that the algorithm could
be effective for datasets
with varying shapes and

size

3) It demostrates
computational speed,
especially for sparse
datasets comprising

several thousand data
points

1) The number of
clusters may need
to be predermined

before initiating the
procedure

2) Computing large
datasets can be costly
due to the calculation

of eigenvalues,
eigenvectors, and

subsequent
clusterization

Fuzzy
c-means

The operational concept
resembles that of the
K-means algorithm;

however, the key
distrinction lies in

Fuzzy C-means, where
the weighted distance
between each cluster is
assessed for every point.
This evaluation assigns
a specific percentage of

membership to each
cluster. While this method

is essentially supevised,
it frequently proves to be
a viable alternative to the

K-means approach.

1) Provides optimal
outcomes for datasets

with overlapping
elements and performs

relatively better than the
K-means algorithm

2) In contrast to K-means,
where a data point must
exclusively belong to one

cluster center, in this
method, each data point
is assigned membership

to multiple clusters centers.
Consequently a data point
may belong to more than

one cluster center

1) A-priori
specification

of the number of
clusters is needed

2) Euclidea distance
measures can

unequally weight
underlying factors

3) The performance of
the FCM argorithm

depents on the selection
of the initial cluster

center and/or the initial
membership value
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SOM

This technique is
employed for

dimentionality reduction
in extensive datasets.

Similar to clustering, it
can examine substantial

data valumes and
generates maps within
the input space, where

the maps consist of data
points that are closely
positioned in the input
space. Moreover, SOM
has the capability to

construct maps within
the input space, even for

input data it has not
encountered previously.

1) Understanding and
interpreting data is
facilitated throught
techniques such as

dimetionality reduction
and grid clustering

2) This approach can
effectively address

various classification
problems, offering a

valuable and intelligent
summary of the data

simultaneously

1) It doesn’t generate
a model for the data,
resulting in a lack of
understanding of how
the data is generated

2) The model
exhibits
optimal

performance when
dealing with

categorical data and
performs even worse
with mixed type of

data

3) The preparation
time for the model is
notably slow, making
it challenging to train

against slowly
evolving data
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Hierarchical
clustering

This approach involves
the iterative cration of
a cluster tree, either by

progressively
grouping smaller

clusters into larger ones
(agglomerative

clustering) or by
starting with larger

cluster and deviding it
into smaller ones

(divisive clustering).
The clustering process

takes into account
variuos concepts of

similarity. The
dendrogram provides a
clearer visualization

of the clustering

1) There is no need to
pre-specify the number

of cluster

2) It is straightforward to
implement and interpret,

aided by dendrogram

3) Consistently produces
the same clusters,

in contrast to methods like
K-means clustering,

where different cluster
outcomes may arise

based on the initialization
of centroids

1) Hierarchical
clustering exhibits

prolonged execution
times, particularly

when handling
large data

2) It may be susceptible
to noise in the data
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DBSCAN

This algotithm has the
capability to determine
the number of clusters
based on the provided
data. Unlike K-means,
it identifies clusters of

diverse shapes
(typically, K-means
identifies spherical

clusters). In essence,
the process involves
defining a radius and

a minimum point
threshold required to
establish a cluster.

Based on the density
distribution of points,
three primary point

classes can be
delineated for each
cluster: core points
(those within the
specified radius),

border points (those
outside the core but within

the defined range), and
outliers (points situated
far beyond the core or

border points)

1) There is no need to
specify the numeber of

clusters in advance

2) Excels in handling
clusters with arbitrary

shapes

3) DBSCAN exhibits
robusteness to outliers
and has the capability

to detect them

1) Determining
a suitable

neighborhood
distance (eps)

can be challenging
and may

necessitate domain
knowledge

2) DBSCAN is less
adept at defining

clusters when
there are significant

variations
in-cluster densities.
The characteristics

of clusters are
determined by the

combination of
eps-minPts
parameters.

Since a single
eps-minPts

combination is
provided to the
algorithm, it
struggles to
generalize

effectively to
clusters

with markedly
differnt densities

3) High computational
time of the
algorithm
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3.1. Study case

The DBSCAN algorithm will be used to analyze data acquired by structural monitoring
using acoustic emission from a Double Cantilever Beam (DCB) sample from a previous
work[1].

Double Cantilever Beam (DCB) test is one of the most common tests used to evaluate
the fracture toughness of composite or adhesive materials[61]. Procedures for performing
these tests in mode I opening are provided by standard (ASTM D 3433-99[62] and ISO
25217:2009[63]).

A specimen for the Double Cantilever Beam (DCB) test comprises two beams with match-
ing length and thickness. In the standard DCB setup, there exists a segment without
adhesive recognized as the pre-crack (a0). The "adherent thickness" (h) denotes the
thickness of the bonding area, while the "adhesive thickness" (t) specifies the thickness
of the adhesive applied[64].

Figure 3.1: DCB specimen[61]

The test was conducted on two specimens both with a0 pre-crack equal to 65 mm. In
figure 3.2 are reported the specification of the specimen. In this thesis, it is used only one
specimen in three different moments of the test and it is called "specimen S1".
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Figure 3.2: DCB dimensions [1]

A fatigue growth test in mode I was conducted using an MTS 810 servo-hydraulic testing
machine, capable of handling a maximum load of 15 kN. For this experiment, a constant
load test was selected with a fatigue ratio (R, defined as the minimum load divided by the
maximum load) set to 0.1. The testing machine operated at a frequency of 5 Hz, applying
a maximum load of 850 N. At intervals of 5000 cycles, the tests were temporarily arrested
to execute a monotonic load ramp, gradually increasing the load to the maximum level
experienced during the fatigue cycles. This ramping was done at a rate of 0.5 mm/min.
Next, the peak load was maintained for a duration of 10 seconds to help measure crack
length (in this work we are not interested in the length of the fracture). Thereafter, the
machine was unloaded to reach the specified minimum load for fatigue testing, and the test
cycles were resumed. The experiments continued until the specimen showed a complete
crack.[1]. In this thesis, the terminology "cycle n" was adopted to denote a set of 5000
cycles. Therefore, "cycle 1" refers to the first set of 5000 cycles performed on the sample.
Similarly, "cycle 9" refers to the ninth iteration in which the cyclic force was applied,
i.e., data are analyzed after the sample has been subjected to between 40000 and 45000
cycles, and so on until the sample is completely broken. For detailed information on the
sample used to obtain the data that were used in this thesis work and described above,
including details on surface preparation, the type of adhesive used and its application,
and the parameters of the test performed, see [1].

In order to achieve an understanding of the data from the specimen, data were represented
graphically using a cumulative amplitude-time-energy plot. However, the scattering of
the data makes it difficult to draw conclusions from this representation. For example
considering the graph of specimen S1_cycle 1 (cycle between 0 and 5000 cycles shown
in figure 3.3) a concentrated distribution between 25 and 50 dB is present and a more
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marked dispersion of points above 50 dB is observed. Consequently, it is difficult to make
a clear breakdown of the data.

Figure 3.3: Amplitude - Time - Cumulative Energy, specimen S1_cycle 1

Similarly, considering the same specimen but different cycle (between 40000 and 45000
cycles, cycle 9) there is a large concentration of points with an amplitude between 40
and 50 dB and two distinct groups with amplitudes between 65 and 75 dB (figure 3.4),
differentiated by the time of initiation of the phenomenon.

Figure 3.4: Amplitude - Time - Cumulative Energy, specimen S1_cycle 9
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An analogous result is obtained by analyzing an ulterior amplitude-time-cumulative en-
ergy graph of a cycle (cycle 12) towards the end of the test 3.5.

Figure 3.5: Amplitude - Time - Cumulative Energy, specimen S1_cycle 12

From the analysis of these graphs, a proper discrimination of the phenomena and their
nature cannot be obtained. Therefore, a more in-depth analysis is needed, using a proper
clusterization post-process method.

3.2. DBSCAN choice parameters

Because of the large amount of data acquired throught acoustic emission from the tests
performed on the sample, the need emerges for a fast and efficient approach to analyze
it. The information acquired in a single run (cycle n, consisting of 5,000 cycles) is consid-
erable. DBSCAN-based approaches in the literature usually deal with limited amounts
of data. Therefore, it was essential to develop a rigorous method that would allow the
algorithm to be adapted to our data specifications, focusing in particular on determining
the eps and minPts parameters. Infact, in the DBSCAN algorithm, the "eps" (radius of
the cluster) and "minPts" (minimum number of points required to form the cluster) are
established based on experiential knowledge of the operator and are subsequently refined
in response to clustering results until satisfactory results are obtained[65]. Through this
method, however, we proceed by "trial and error," without following a rigorous approach,
but rather focusing on the operator’s experience. Therefore, a more methodical approach,
based on solid scientific foundations, was researched to determine the two basic parame-
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ters of DBSCAN. The goal is to obtain a standardized clustering that can fit any type of
data.

As explained in the chapter 2, to guarantee the proper functioning of DBSCAN, it is
essential to establish two key parameters to identify clusters:

• eps

• minPts

Starting from a specific point in the dataset, the surroundings of that point are con-
sidered, defining the limit of the cluster radius as the value of eps. Within this "circle"
with center at the considered point, for the set of points to be recognized as a cluster, the
predefined minimum number of points must be reached. If this is not done, the cluster is
not created. Of course, the algorithm does not stop but continues by considering a second
point of the dataset and always checking that the two necessary conditions for the cluster
to be formed are respected. The algorithm will stop until all the points in the dataset
have been checked. In the figure 3.6 is shown the totatality of the DBSCAN algorithm in
a schematic way.
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Figure 3.6: Functional blocks of DBSCAN algorithm[65]
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The choice of both eps and minpts is critical to prevent distortions in clustering the
dataset. Even small variations in the values of eps and minpts can generate very different
clustering results. Determining these parameters in advance is one of the main challenge
of DBSCAN.

In this chapter, we will review methods proposed in literature for determining these two
crucial parameters. It will be elaborate on how, based on already established approaches,
a specific method was developed to determine eps and minPts for the data used in this
work.

3.2.1. Tournament Selection for detection Eps and minPts

Tournament selection (TS) is a widely used strategy in evolutionary algorithms, used to
choose the eps value from a population of stored eps values based on the fitness function
(purity)[66]. The value that emerges as the winner is the one with the highest percentage
of the purity function. The winner of each tournament is then chosen to run the DBSCAN
algorithm on the generated population (minPts). Based on its specification, it generates
a more diverse set of eps values until an optimal combination of minPts and eps values is
identified[66].

Since the eps parameter can significantly affect the efficiency of the DBSCAN algorithm[67],
a combination of an analytical approach[68] for estimating eps and the Tournament Selec-
tion (TS) method is employed[69]. During each iteration, the eps parameter is calculated
and compared with the stored eps values from previous iterations. Initially, the initial eps
value is assigned a high probability by default to increase the probability of being selected
in the tournament compared to other values. A scheme of Tournament Selection (TS) in
shown in figure 3.7.
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Figure 3.7: Tournament selection graph[70]

The purity metric[66], which serves as both a measure of cluster quality and a fitness
function, measures the excellence of the clusters formed. Purity reflects the frequency of
the most common category or class within each cluster, with higher purity values near
100 percent indicating more desirable clustering results.

Another important parameter to consider is time complexity[66], that is the processing
time of the tournament selection (TS) algorithm for the parameters. The time required
to run the algorithm can be evaluated as O(Iterations * Population). As the number of
iterations increases, the accuracy of the results also increases. The number of iterations
is constrained by the assigned level of purity; until that level is reached, the tournaments
continue. The size of the population chosen for the tournament affects the overall du-
ration, as a larger population takes longer to run all the tournaments. This suggests
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that the additional time complexity to the DBSCAN algorithm is justifiable in order to
simultaneously identify the most suitable minPts and eps values.

However, although promising, it has a computational time directly proportional to the
size of the dataset, which in the case study presented in the section 3.1 (but in general
for data from AE), is very high because acquisitions were taken until the specimen was
broken. Therefore, although accurate for the definition of minPts and eps as shown
by the experiment conducted in the article[66], it results in a significant computational
slowdown. Consequently, an alternative approach, equally valid but characterized by a
significant improvement in reduction of computational time, was adopted.

3.2.2. Procedure for determining the eps and minPts

A three-step process was followed to establish the basic DBSCAN parameters essential for
the algorithm to function properly. Each of these steps produced results that helped to
enhance the decision-making process in determining the parameters, generating a grad-
ual improvement in the clustering of the data. The validity of these improvements was
confirmed through a verification involving the waveforms associated with each cluster.

Choice of features with PCA

The first essential step involved defining the features to apply to the DBSCAN. These
features represent the most relevant elements in the acquired signal. In our case, they
encapsulate the vital information extractable from the acquired waveform shapes:

• Time-domain: Amplitude, Duration, Energy, Rise Time, Counts

• Frequency-domain: Peak frequency and Centroid frequency

However, applying a clustering algorithm to all features would not only be extremely
complex but also time-consuming. For this reason, it is essential to reduce the information
set in order to optimize the operation of the algorithm. Feature selection proved crucial
not only to conduct a detailed analysis of the algorithm itself, but also to ensure the
consistency of the features used in the clustering of the data, which was carried out by
other clustering algorithms. This allowed for a meaningful comparison of the results
obtained from different methodologies. To accomplish this, we relied on the PCA from
previous work[1]. In this work, energy and duration were identified as relevant features
in the time domain, and peak frequency in the frequency domain. Therefore, the focus
was on using only two of the three features considered relevant: duration and energy.
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As previously mentioned, Principal Component Analysis (PCA) was employed for the
selection of these features, which is useful in revealing relationships between variables
and between samples, such as in the case of cluster formation.[71]. PCA stands as a
widely recognized method for reducing dimensionality, with applications spanning vari-
ous domains such as data compression, image processing, visualization, exploratory data
analysis, pattern recognition, and time series prediction[72].

Method 1

Having defined the features for applying DBSCAN, the next step was to choose the
two fundamental parameters, eps and minPts, to ensure the proper functioning of the
algorithm. A decision was made to express eps as a function of the assigned number
of points and determine its value accordingly. This approach reduced the number of
parameters to define from two to one. The method employed is known as the "line
method"[73].

To apply the "line method," it is necessary to express the two related parameters by
a function. The used method of calculating this parameter is based on a function that
calculates the distance between each element of a data set and its k-th neighbor. This
function is often denoted k-dist, and its parameter k, in our case study, is equal to minPts.
The k-nn function evaluates the class or value of a new observation by comparing it with
the k closest observations in the training dataset. In the absence of prior knowledge k-nn
can be quantified using various metrics, such as Euclidean distance. The class or value of
the new observation is then determined by the most prevalent class or value among the k
neighbors. The choice of the value of k is a crucial parameter: higher values of k lead to
more robust decisions but may be less responsive to local variations, while lower values
make the model more responsive to local variations but potentially more susceptible to
noise in the data. In summary, the k-th neighbor function is a machine learning approach
that exploits proximity in feature space to make predictions on new data[74].

Using the k-th neighbor function, we can express eps as a function of the minimum
number of points as shown in figure 3.8. In addition, there is an interval of points known
as "knee" which is characterized by significant variation in distances. The challenge is
to accurately determine the starting point of the knee, which serves as a crucial factor
in identifying abrupt changes in distances (at the practical level abrupt changes in the
slope of the curve)[75] and then define the eps parameter for the DBSCAN algorithm.
Typically, the first sharp increase in distances occurs towards the beginning of the knee
as shown in detail in the figure 3.9.
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Figure 3.8: k-distance graph of specimen S1_cycle 9, with minPts = 6

Figure 3.9: k-distance graph of specimen S1_cycle 9 with minPts = 6: highlight of the
abrupt change in slope of the curve

The knee size is influenced by the density of clusters and the type of k chosen. Determining
the knee point correctly is particularly complex, and variations in the width and slope of
the knee depend strongly on the choice of "k" and thus affect its shape.
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To handle this issue, a script was developed in MATLAB in order to identify the points
at which a change in slope occurs (figure 3.10).

Once a point had been identified as acceptable, it was defined as the first point to de-
termine the coordinates of point one (P1). Starting from the knee initial position (P1),
identified by considering the intersection of the red line and the graph of K-dist as shown
in figure 3.10.

Figure 3.10: K-distance graph of specimen S1_cycle 9, with minPts = 6, with detection
of abrupt change of slope

Then, it was essential to identify a second point, designated as point P2 as shown in the
figure 3.11, represented by the maximum limit of the k-dist curve.
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Figure 3.11: Line method[73]

Afterwards, by performing a symmetry passing through the middle of the line and par-
allel to the y-axis, the corresponding line was generated as shown in figure 3.12. The
intersection of this straight line and the k-dist curve made it possible to locate P3. It can
be observed that the straight line determines the point P3(x3, y3), located at the top of
the knee. The y-coordinate of point P3 then defines the value of y3 = eps [73].
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Figure 3.12: Line interpolation for detection of eps[73]

However, the choice of minPts parameter remains crucial. Indeed, analyzing articles
in the literature[73, 75, 76], it was chosen to select the value of k (i.e., minPts) as 4, 5
or 6, depending on the amount of data to be processed (usually dataset considered are
about 1000 data), or using formulas based on feature size to conduct clustering (remember
that for each value of “k”, the K-dist graph will change)[77]. Since the data used for this
analysis present a considerable number of points for the type of structural monitoring
employed, the decision was to opt for the k=6 value (in our work the mean dataset is
about 10000-15000 data).

In developing the methodology, the focus was on cycle 9 of specimen S1. This choice
was motivated by the fact that the volume of data of specimen S1 in each run was of
the order of magnitude of 104, lower than, for example, specimen S2 (of the order of
magnitude of 105). This selection made it possible to reduce the computational time of
the algorithm in the Matlab script. It should be noted that this methodology could have
been applied to any sample, however, this selection was motivated also by the fact that,
visually, the division of specimen S1_cycle 9 into clusters was quite evident. In fact, three
broad aggregations of clearly distinguishable points can be observed in figure 3.13, which
are likely to correspond to distinct phenomena with differentiated physical characteristics,
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thus likely to be subdivided into separate clusters. Of course, the validity of such claims
will have to be supported by thorough scientific analysis.

Figure 3.13: Duration - Energy, distribution of dataset without clustering, specimen
S1_cycle 9

Consequently, it was possible, upon initial analysis, to assess the correctness of the
methodology for the determination of eps and minPts (figure 3.14).

Figure 3.14: DBSCAN: Duration - Energy, specimen S1_cycle 9, method 1
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Initially, the subdivision seems to be effective. Indeed, looking at the above figure 3.14
from left to right, two well-defined clusters clearly emerge. The first cluster, represented
by the orange dots, is distinguished by significantly lower duration and energy than the
other two clusters of data. On the other hand, the second cluster, which is clearly defined
and colored light green, shows remarkable compactness and density; as we will see in the
following sections, this cluster maintains a uniform coherence in all the tests that will
be performed. However, in the aggregation of dots on the right, six distinct clusters are
identified, despite the fact that the dots appear similar in energy and duration. Another
group is designated with the number -1. According to the theory of the algorithm, the
points identified in this group should be considered outliers, that are points that do not
belong to any cluster and they are interpreted as "noise." However, it is essential to con-
duct a more in-depth evaluation to confirm the validity of this assumption. Therefore, the
need was felt to further investigate the methodology for assigning the minimum number
of points, as the one just described did not seem consistent with the nature of the data
under consideration.

Method 2

Since the cluster diameter was determined based on minPts, it was essential to develop
a rigorous approach to assign only the minimum number of points. The reasons for this
are clear; grouping partitioning did not meet expectations and, in addition, the examples
cited in the literature were based on datasets with limited size (not referable to big
data)[68],for datasets containing a limited number of objects, it is suggested the following
heuristic formula 3.1 (m = object of dataset):

minPts = interger(m/25) (3.1)

As an example, for a dataset with m = 50 objects, set minPts=2, for m = 100, set
minpts=4, and so on, according to the formula 3.1. For datasets with a large number of
objects, is recommended using minPts set to 20.

Then, as suggested by the article[68], the K-dist diagram was plotted based on a minimum
number of points for large dataset (= 20). Next, the beginning of the knee was identified
to determine the point P1 and consequently the point P2. Finally, through symmetry with
respect to the axis passing through the centerline of the line just created, the point P3

could be determined. The procedure to determine the eps is explained in detail in 3.2.2.
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Figure 3.15: DBSCAN: Duration - Energy, specimen S1_cycle 9, method 2

Cluster partitioning occurs as expected for the yellow zone (cluster 1) and the green zone
(cluster 2) looking at figure 3.15. However, the scatter of points containing two clusters
and points considered as noise raises questions about the correctness of the algorithm.
We expected the point cloud in the upper right corner of the graph to represent a single
cluster, indicating that these points should have similar feature values. Therefore, it was
necessary to develop an improved methodology for choosing minPts to obtain the expected
subdivision of clusters.

Method 3

To increase the accuracy of the minPts number value, it was necessary to take a step
back.

In the article[73], a formula is provided based on the size of the clustered vector and a
ratio of distances to estimate the minimum number of points represented by the formula
3.2:

minPts =

round(dp + 0.5) for dim(X) == 2

round(dp − 0.5) for dim(X) > 2
(3.2)

The methodology is based on considering the size of the feature vector used for clustering
by evaluating the minimum number of points in two separate ways. If the dimension
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is equal to two (the minimum required for the algorithm’s applicability), the minimum
value of points is defined by adding 0.5 to dp. In case the dimension exceeds the value of
two, the formula calculates its value reduced by 0.5. In the case studied, having applied
DBSCAN to two features, the first formula was applied.

Therefore, it was necessary to define the value of dp represented by the formula 3.3:

dp =
d(P2, P3)

d(P1, P3)
(3.3)

This value represents the ratio between two distances, specifically between the distance
between point P2 and P3 and the distance between point 1 and 3. Through this approach,
it was possible to rigorously estimate the minimum number of points. To determine the
points, an initial minpts of 20 is set, applying the concept explained in previous paragraph
for large datasets. This provided a baseline for the k-dist graph, allowing P1 to be defined
and then the other two points to be defined by evaluating the value of eps for large
datasets and then redefining the minimum value of points for clustering.

The results obtained by applying method 3 are in accordance with the expected cluster
partitioning, as highlighted in figure 3.16

Figure 3.16: DBSCAN: Duration - Energy, specimen S1_cycle 9

There are actually three clusters, each corresponding to one of three clear aggregations of
points, which reflect similar characteristics considering the two features used for DBSCAN.
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In conclusion, we can say that the three methods differ in a few steps, however, these
steps are crucial to the success of the clustering process. Specifically, in Method 1, in
which a minimum number of points of 6 is established (as suggested in the literature),
using the k-dist function we are able to represent the eps distance as a function of the
minimum number of points. At the beginning of the knee of the k-dist graph, indicated
by the sharp change in slope of the curve, the points P1 and then P2 are defined. Then,
by symmetry with respect to an axis parallel to the y-axis and passing through half of the
line just created, a symmetrical line is defined that intersects the graph at a point P3.The
y-coordinate of point P3 delineates the value of eps. The procedure for determining the
value of eps by the method of straight lines will remain unchanged for the other methods
as well, since we chose to focus on determining a single parameter, namely expressing eps
as a function of minPts. However, the results obtained with this approach did not allow
satisfactory partitioning into clusters (with very cohesive clusters), and due to the presence
of a large number of outliers, it was decided to implement an alternative method.In the
article [68], a minimum number of points, set at 20, is provided to handle large datasets.
The procedure of method 2 follows the same working logic as method 1, the only difference
being that the initial number of points is set at 20. Again, the clustering phase did not
produce the visually expected results. For this reason, an additional modification to the
method was adopted. Specifically, an additional step was added to method 2: once the
eps value is evaluated, the minimum number of points is recalculated using the formula
given in the article[73]. The method is based on the ratio of the distances between P2

and P3 over P1 and P3 points. Based on the results obtained through this methodology to
determine the crucial parameters for the proper execution of the clustering step, we can
say that method 3 emerges as the most effective and promising approach for clustering
large datasets. Infact, adopting method 3, the number of outliers is greatly reduced, as
user intervention is minimized and the determination of parameters through the trial-
and-error method is avoided.





57

4| Results

4.1. Clustering result

Having obtained a result congruent with expectations for cycle 9 (figure 3.16) considering
method 3 for determination of eps and minPts parameters explained in the section 3.2.2
of the chapter 3, the same procedure was extended to two other cycles in the same sam-
ple to substantiate the hypothesis that the proposed method was adaptable and worked
not only for the cycle for which it was originally developed, but also for generic cycles.
Accordingly, cycle 1 and cycle 12 of specimen S1 were selected, and application of the
proposed procedure to determine eps and minPts produced results that appear consistent
with a significant division into clusters.

To ensure the validity of the results derived from the clustering procedure shown in the
previous chapter, it is important that clusters should be considered valid if each point in
the cluster has similar characteristics.

In our case, the information related to each point is contained in the waveforms associated
with the points. To verify this, it was necessary to establish that the waveforms associated
with each represent phenomena are intrinsically similar. To test this hypothesis, the
waveforms associated with each cluster subdivision were represented graphically. This
approach led to interesting results that support the idea that the clusters identified from
DBSCAN are not simply the result of random groupings, but rather are indicative of
distinct phenomenological modes within the data considered.

Using a script in Matlab, the waveforms related to each cluster were displayed after the
clustering operation performed by the DBSCAN algorithm, using the duration and energy
features.

Let’s start analyzing, at first, cycle 1 of specimen considered for this work, mention as
Specimen S1.
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4.1.1. Cycle 1

Figure 4.1: DBSCAN: Duration - Energy of specimen S1_cycle 1, waveforms of each
cluster

The first cycle examined shows a subdivision into only four groups: the first cluster
(green dots) shows phenomena with a duration of less than 3× 104 µs, while the second
cluster (light blue dots) is distinguished by a duration of more than 4× 104 µs but lower
than 8 × 104 and a third group with a duration above 8 × 104(figure 4.1). However, the
associated energy is remarkably similar. This could be attributed to the fact that, being
at the beginning of the test, no particularly significant phenomena emerge within the
bonded joint. As a result, as expected, the waveforms are similar in terms of amplitude
but they are different in terms of duration, as shown in the figures 4.1. Due to their
shape, can be suppose that they are continuos wave associated with noise or some friction
during the tests. However, several amplitude peaks are evident in cluster 2 (light blue
waveform) and cluster 3 (blue wavelenght) that could indicate the presence of phenomena
unrelated to simple noise or friction during the test. For a more thorough assessment of
the nature of this cluster, a more accurate acquisition may need to be performed applying
a higher threshold level to eliminate excess noise present in the acquisition. However, if the
acquisition has already been completed, it may be of interest to apply a filter to reduce the
noise present in the acquired signal, thus improving the ability to detect phenomenology.



4| Results 59

Another group is identified during clusterization. Infact, some points are considered
as "noise". They belong to group named as -1, and their waveforms are represented by
color red in the figure 4.1. To understand the nature of the group, it is necessary to
consider how the cluster works. When a point does not meet the conditions necessary to
be part of a cluster, that is, if it does not fall within the radius of a point or, if it does
fall, if it is not part of a group large enough relative to its minimum value, it is excluded
from clustering and considered an outlier. However, being classified as an outlier does not
necessarily imply that it is noise. As can be seen from the clusteritation graph in figure
4.1 the energy related to this points (red dots) is considerably high compared to clusters
1, 2 and 3. The wave shape looks like a transient wave, generally associated to events.
They could result from events generated by internal phenomena to the adhesive bonded
joint or simply represent disturbances detected by the sensors. Therefore, a more detailed
analysis should be conducted in order to understand their nature by analysing its main
characteristic such as frequency, period, phase, crest factor, RMS and so on.

The characteristics of waveforms can be useful in identifying the properties of a given
phenomenon, but they are not sufficient to define its type. To associate similar waveforms
with similar characteristics, it is essential to acquire controlled signals from the same
model used for testing, thus creating a reference for comparison. This approach allows
the construction of a defect history in which the causes generating the specific waveform
are known. Obtaining a catalog of signals representative of noise, damage or defects allows
them to be used as templates to identify defect phenomenology after clustering.

Considering the clustering based on the characteristics of duration and energy, graphs
related to other waveform quantities were subsequently generated.

Figure 4.2: DBSCAN: Duration - Energy, specimen S1 cycle 1, energy-frequency
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As an example, considering the graph 4.2 , in the light green cluster (cluster 1) the
frequency associated with the waveforms is heterogeneous, but a very low energy distri-
bution is observed, suggesting the possibility of noise. In contrast, cluster 2 (light blue)
and cluster 3 (blue) have, for all points, a very similar frequency associated with a lim-
ited frequency range. Therefore, it can be assumed that this are event that do not just
represent noise, but could indicate the presence of similar phenomenon characterize by
a frequency of 0.1 × 105 Hz but, according to clusters, with different energy. This as-
sumption is supported by the waveforms previously shown (figure 4.1), where peaks were
present in clusters.

Recalling the graph cited in chapter 3 and shown in figure 3.3, a comparison with
amplitude-time graph after clusterization is done (figure 4.3).

Figure 4.3: Amplitude - time, specimen S1_cycle 1

It is evident that a clearer subdivision of the points is possible due to clustering based on
the characteristics of duration and energy, so we can clearly distinguish points of different
colors. This is not possibile without clusterization. So, as described earlier, the clustering
reflects the waveforms taken as examples. In fact, the average amplitude of the waveforms
in cluster one is generally lower than the shapes associated with cluster 2 (light blue) and
cluster 3 (blue). This could be attributable to the fact that the waveforms in cluster 2
and 3 have different peaks that contribute to their average value. However, since this is
the initial cycle of the test, it is possible that there is a high presence of noise, making the
results less reliable. Therefore, it was essential to examine additional cycles to evaluate
the effects of method 3 for clustering more completly.
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4.1.2. Cycle 9

Figure 4.4: DBSCAN: Duration - Energy of specimen S1_cycle 9, waveforms of each
cluster

As seen in the figure 4.4 there are three clusters and a group considered as noise:

• -1 (red dots)

• 1 (light green dots)

• 2 (light blue dots)

• 3 (purple dots)

Group -1 includes all points that do not meet the requirements to be included in a
cluster, regardless of their nature. However, the fact that they are classified as "noise" by
the algorithm does not exclude the possibility that they represent fracture, deformation
or damage phenomena within the sample, as can be observed from the red wave(figures
4.4). Indeed, at a time instant of about 3.7 × 104, a peak of amplitude about 5 mV is
observed, which could mean that, appling a filter to reduce noise, it can be easily identified
a phenomenon in correspondence of the peak.

The remaining three groups differ clearly in duration and energy as a result of the
clustering process. This suggests that, when looking at the distribution of clusters, the
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phenomena associated with cluster 1 (green waveform: probabily, due to its energy, it is
noise) is very different from clusters 2 (light blue wave) and cluster 3 (purple wave), while
clusters 2 and 3 are related to different events that may exhibit similar characteristics in
terms of duration (about 6−10×104 µs), while, considering the energy, purple cluster has
double energy of light blue cluster (about 4 × 105 eu). In comparison with the previous
cycle (4.1.1), a more defined distribution of data is evident in cycle 9. This phenomenon
can be attributed to the fact that cycle 9 represents an advanced stage of testing, where
most of the possible faults may already be developing, thus generating significantly more
energy than the previously analyzed cycle, where most of the events could be associated
with only background noise due to low threshold before acquisition.

To conclude the analysis and confirm the effectiveness of clustering by DBSCAN using
method 3 for determining the eps and minPts parameters, it was decided to extend the
analysis to a cycle near the end of the specimen’s life. The cycle selected is 12 (i.e., 55000
to 60000 cycles), which corresponds to two cycles before failure.

4.1.3. Cycle 12

Figure 4.5: DBSCAN: Duration - Energy, specimen S1_cycle 12, waveforms of each cluster

The clustering of cycle 12 consists of six clusters. The yellow cluster has limited energy
and duration, as well as a significantly lower amplitude than the other clusters, situating
itself between 30 and 45 dB. Analyzing the previous cycles, one constant emerges: the
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presence of a cluster whose amplitude never exceeds 50 dB and which, from the energy
point of view, is significantly lower than the others. These are clearly noise-related and
unremarkable phenomena that require adequate filtering to ensure the input signal is
clean. This hypothesis is further confirmed by observing the waveforms associated with
these clusters, which exhibit essentially the same characteristics.

Examining the other clusters, it becomes apparent that in this cycle they are all in close
proximity to each other, with very similar characteristics in both duration and amplitude
and energy. The presence of outliers, i.e., points that do not fit into any cluster and
require in-depth investigation to be determined, is also evident

4.1.4. Discussion

Clustering was performed using DBSCAN considering features of duration and energy.
Other characteristics of the waveforms were subsequently displayed graphically to sup-
port the hypothesis that method 3 used for selection of eps and minPts parameters and
subsequent clustering produced promising results.

It should be noted that for cycles 1 there is a distribution of points with similar char-
acteristics. Infact, most of the points could be considered noise because of their limited
energy due to the fact that we are at the beginning of the test. By graphically represent-
ing all the characteristics of the waveforms (Figure 4.6), it is evident that the clustering,
were it not for the colors, would be difficult to interpret since the phenomena are very
similar to each other.
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Figure 4.6: cycle 1: Energy - Frequency, Energy - Amplitude, Duration - Amplitude,
Amplitude - Time

In contrast, in cycle 9 (Figure 4.7), there is a clear and sharp division of events, the
algorithm easily identifies the differences between the points, generating very good quality
clustering.

Figure 4.7: cycle 9: Energy - Frequency, Energy - Amplitude, Duration - Amplitude,
Amplitude - Time
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As can be seen in the graph above (figure 4.7), the three clusters generated are clearly
distinguishable from each other. The light green cluster (cluster 1) has very limited energy
and a frequency range from 1 to 9 × 104 Hz, but also in duration and amplitude. This
cluster could indicate the presence of background noise detected by the sensors. To reduce
or eliminate it, it might be appropriate to increase the threshold level so as to start the
acquisition with a higher event energy level. The other two point clouds correspond to
two clearly distinct clusters, as evidenced by the arrangement of the clouds in well-defined
areas of the graphs. This suggests that each cluster could be associated with a specific
type of defect or with a family of similar damages, characterized by particular features.

Cycle 12 (figure 4.8), on the other hand, represents the final phase of the test, just before
breakup, with few points identified as noise and many characterized by high energy. The
latter is due to the nature of the test and acquisition by acoustic emission, in which the
kaiser effect plays a key role (a higher force must be applied to make the structure emit
relevant sounds). However, in the presence of poorly delineated phenomena, the division
obtained with the DBSCAN algorithm is more chaotic than in well-delineated events.

Figure 4.8: cycle 12: Energy - Frequency, Energy - Amplitude, Duration - Amplitude,
Amplitude - Time
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5.0.1. Conclusions

The introductory study presented in the chapter on the state of the art was essential
to gain the knowledge necessary for the development of this work. Among the clustering
algorithms described in the literature, we focused in particular on the DBSCAN algorithm,
which was chosen for its advantages over its competitors, including the absence of the need
to define the number of clusters a priori, its excellence in defining clusters of arbitrary
shape, and its ability to identify outliers. To apply the algorithm to the data in this
study, a rigorous definition of the fundamental parameters (eps and minPts) was required.
The results of this phase led to the definition of a three-step methodology: the minPts
= 20 assumption, the definition of eps based on the minimum number of points via
the k-dist function, and finally the recalculation of the minimum value of points. This
approach, referred to as "method 3" in the thesis, resulted in effective clustering of the
data by reducing outliers (i.e., points that do not belong to any cluster) and minimizing
user influence in clustering, avoiding parameter determination through trial-and-error
methodology, known for its poor performance. In contrast, methods 1 and 2 did not
perform up to expectations in terms of the number and distribution of clusters and outliers.

Next, we focused on verifying the consistency of the clustering obtained by "method 3"
with the actual distribution of phenomenology in the test. Analysis of three separate
cycles of the same specimen revealed that the algorithm is able to cluster regardless of
the diversity of phenomena. However, in the presence of similar phenomena, the division
is less obvious, suggesting the parallel use of a second clustering algorithm.

In addition, to confirm that the grouping did actually reflect different phenomenologies,
the waveforms associated with each grouping were represented graphically. It turned out
that the cluster identified as -1 (outliers) did not represent only noise, as some waveforms
had energy, amplitude, and frequency typical of transient events. On the other hand, at
least one cluster consisted mainly of waveforms with low energy and amplitude (continuous
waves), identified as background noise. In addition, many clusters with typical features
of phenomenology had a lot of noise but representative peaks of events. The obtained
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clustering produced the expected results, but further development is needed to improve
the work.

Summarizing:

• DBSCAN algorithm can be used to clusterize even large datasets (big data) as long
as the eps and minPts parameters are chosen correctly

• DBSCAN algorithm represents a good clustering method when there are well distinct
events, however, its performance is reduced when the events have similar character-
istics

• Method 3, implemented to obtain a correct combination of eps and minPts, reduces
user intervention. This implies that the assignment of eps and minPts is rigorous
and trial and error is not performed. It thus guarantees good clustering of the
dataset.

• Outliers, points that do not belong to any cluster, do not just represent noise, but
may represent a group of events or single event and need more in-depth study

5.0.2. Future developments

From the data in use it emerges that the noise present in the acquired signals can influence
the clustering of the data, compromising the optimal clustering of the events based on
their real characteristics. On the basis of data used in this thesis, it is recommended to
establish an appropriate threshold value. In particular, it is suggested to increase the
threshold value during the pre-acquisition phase to avoid noise acquisition. By doing this,
it can also reduce the amount of data, which is particularly significant in AE acquisitions.
In the dataset in which the threshold value applied before the acquisition is too low, it is
suggested to apply, in post-processing, before clustering, a filter to reduce the noisy signal
from the real data.

Regarding the determination of a more precise and detailed definition of the defectology,
it would be advisable to analyze in detail the fundamental characteristics of the waveforms
associated with each cluster. A recommended approach might involve a controlled study
of the materials to obtain a known history of the defects, which could then be compared
with the data obtained from clustering.

Summarizing for future work/improvements:

• it could set a higher threshold to filter data from acquisitions via AE. Alternatively,
apply a pre-cluster filter to eliminate noise, if the highest threshold is not possible.
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• it could generate a history of defectology appropriate for each material, so as to
obtain a model to compare for future
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