
Department of Aerospace Science and Technology
Master’s Thesis in Space Engineering

Application of hybrid differential
dynamic programming in orbital
elements for low thrust trajectory

optimisation
Simone Carminati

Advisor :
Prof. Camilla Colombo
Co-Advisor :
Dr. Marco Nugnes

Academic Year 2021-2022, May 2023

Copyright© May 2023 by Simone Carminati.

All rights reserved.

This content is original, written by the Author, Simone Carminati. All the non-originals
information, taken from previous works, are specified and recorded in the Bibliography.

When referring to this work, full bibliographic details must be given, i.e.

Carminati Simone, “Application of hybrid differential dynamic proggraming in orbital ele-
ments for low thrust trajectory optimisation”. 2023, Politecnico di Milano, Master Thesis
in Space Engineering, Supervisor: Camilla Colombo, Co-supervisor: Marco Nugnes.

1

Abstract

In the field of orbital mechanics, from its earliest beginnings, the optimisation of trajec-
tories has always been a key step in deciding the feasibility of a space mission and its
development. In recent years, modern technological advances have led to the introduc-
tion of electric thrusters, which give rise to new scenarios and mission possibilities that
were hitherto completely precluded. In fact, they provide considerable benefits in terms of
consumption compared to classical chemical thrusters, at the price of much more limited
thrust capacities and, consequently, significantly longer transfer times. For these reasons,
there is currently a strong push in the direction of using such engines in a large variety of
situations, such as interplanetary travel, planetary orbital transfers, manoeuvring satellites
belonging to constellations, low-thrust deorbiting strategies and even innovative concepts
such as formation flying and in-orbit servicing.

The field of numerical optimisation was also influenced by this innovation and had to adapt
to keep up. Indeed, the impulsive manoeuvre approximation typically used for chemical
thrusters loses its validity in this case, due to the considerably longer burn time associated
with modern electric thrusters. At this point the problem addressed, in order to produce
plausible results, requires a continuous-thrust model, which assumes a large number of deci-
sion variables. Therefore, the transfer trajectories are now obtained as a solutions of a large
scale highly nonlinear optimal control problem. Several optimisation methods have been
developed to solve the latter, typically divided into two macro-families: direct methods and
indirect methods. Of these, Differential Dynamic Programming (DDP) assumes particular
importance, because it presents the advantages of methods from both families (accuracy
on the one hand, robustness on the other) and a low increase in computational cost as the
number of decision instants increases. It, therefore, turns out to be a powerful optimisation
tool, which is particularly suitable for solving problems of large dimensions just as it is
in the case of low-thrust trajectories. Despite its potential, until now this approach has
been used in a fairly limited manner. Most of the studies that dealt with it for celestial
mechanics problems in any case exploited the use of classical Cartesian coordinates as state
variables.

In this thesis we adapt the latest well-validated version of this optimisation method, called

i

Hybrid Differential Dynamic Programming (HDDP), to a new set of variables often used in
celestial mechanics, namely the orbital elements. This set reformulates the problem in terms
of size, shape and orientation in the space of the orbit in which it lies, and has numerical
advantages. In fact, their evolution in time during a generic transfer is known to be more
regular and smooth than the oscillatory behaviour of the previous Cartesian coordinates.
Thanks to this characteristic, it is expected that the method is facilitated in the optimi-
sation and it converges faster to the solution. Furthermore, for some specific low-thrust
applications that are particularly sensitive to the oscillation of the state variables and the
variation of the control law, as it is the case of multi-revolution transfers in a planetary
environment, the use of such variables is expected not only to improve the performance
of the algorithm in terms of convergence speed, but also to extend its applicability to a
number of revolutions previously impossible to handle.
In conclusion, this thesis work aims to assess the veracity of the aforementioned hypothesis
by applying the optimisation method with the new set of variables to various practically
relevant situations in the context of low-thrust trajectory design, through interplanetary
and planetary transfers, in single and multi-revolution cases.

Keywords: Differential Dynamic Programming, Orbital elements, Trajectory Optimisa-
tion, Low-Thrust Trajectory

ii

Sommario

Nell’ambito della Meccanica Orbitale, fin dalle sue origini, l’ottimizzazione di traiettorie è
sempre stata un passo fondamentale per decretare la fattibilità di una missione spaziale e
il suo successivo sviluppo. Negli ultimi anni, i recenti progressi tecnologici hanno portato
all’introduzione dei propulsori elettrici, i quali danno vita a nuovi scenari e possibilità di
missione finora del tutto precluse. Infatti, essi offrono notevoli vantaggi in termini di con-
sumo rispetto ai classici propulsori chimici, al prezzo di livelli di spinta molto più limitati e,
di conseguenza, di tempi di trasferimento significativamente più lunghi. Per questi motivi,
attualmente c’è una forte spinta del settore per estendere l’utilizzo di tali motori ad una
grande varietà di situazioni, come i viaggi interplanetari, i trasferimenti orbitali planetari,
le manovre di satelliti appartenenti a costellazioni, strategie di deorbiting a bassa spinta e
persino concetti innovativi come formation flying e in-orbit servicing.

Anche il campo dell’ottimizzazione numerica è stato influenzato da questa innovazione
e si è dovuto adattare per tenere il passo. Infatti, l’approssimazione di manovra impul-
siva tipicamente utilizzata per i propulsori chimici perde la sua validità in questo caso, a
causa del tempo caratteristico considerevolmente più lungo associato ai moderni propulsori
elettrici. A questo punto il problema affrontato, per produrre risultati plausibili, richiede
un modello a spinta continua, che presuppone un elevato numero di variabili decisionali.
Pertanto, le traiettorie di trasferimento a questo punto sono ottenute come soluzioni di un
problema di controllo ottimo altamente non lineare di grande dimensione. Per risolvere
quest’ultimo sono stati sviluppati diversi metodi di ottimizzazione, tipicamente divisi in
due macro-famiglie: metodi diretti e metodi indiretti. Tra questi, la programmazione di-
namica differenziale (DDP) assume particolare importanza, in quanto presenta i vantaggi
dei metodi di entrambe le famiglie (accuratezza da un lato, robustezza dall’altro) e un basso
incremento del costo computazionale all’aumentare del numero di istanti di decisione. Si riv-
ela quindi un potente strumento di ottimizzazione, particolarmente adatto alla risoluzione
di problemi di grandi dimensioni proprio come avviene nel caso delle traiettorie a bassa
spinta. Nonostante il suo potenziale, finora questo approccio è stato utilizzato in modo
piuttosto limitato. La maggior parte degli studi che lo vedono coinvolto per la trattazione
di problemi di meccanica celeste ha in ogni caso adottato le classiche coordinate cartesiane
come variabili di stato.

iii

In questa tesi si punta ad adattare la versione più recente e ben validata di questo metodo
di ottimizzazione, chiamato Programmazione Dinamica Differenziale Ibrida (HDDP), ad
un nuovo set di variabili spesso utilizzate in meccanica celeste, ovvero i cosiddetti elementi
orbitali. Questo set riformula il problema in termini di dimensione, forma e orientamento
nello spazio dell’orbita in cui si trova, e presenta diversi vantaggi numerici. Infatti, è ben
noto che l’evoluzione nel tempo di tali elementi durante un generico trasferimento è più
regolare e più stabile del comportamento oscillatorio delle precedenti coordinate cartesiane.
Grazie a questa caratteristica, ci si aspetta che il metodo sia facilitato nell’ottimizzazione
e che converga più velocemente alla soluzione. Inoltre, per alcune applicazioni specifiche
a bassa spinta che risultano particolarmente sensibili all’oscillazione delle variabili di stato
e alla variazione della legge di controllo, come nel caso dei trasferimenti multirivoluzione
in ambiente planetario, si ipotizza che l’uso di tali variabili non solo migliori le prestazioni
dell’algoritmo in termini di velocità di convergenza, ma che consenta anche di estendere la
sua applicabilità a un numero di rivoluzioni finora impossibile da gestire.
In conclusione, il presente lavoro di tesi si pone come obiettivo quello di valutare la veridicità
delle ipotesi sopracitate applicando il metodo di ottimizzazione con il nuovo set di variabili
a diverse situazioni di interesse pratico nel contesto della progettazione di traiettorie a
bassa spinta, attraverso trasferimenti sia interplanetari che planetari, in entrambi i casi di
rivoluzione singola e multipla.

Parole Chiave: Programmazione Dinamica Differenziale, Elementi Orbitali, Ottimiz-
zazione di Traiettorie, Traiettorie a Bassa Spinta

iv

Contents

1 Introduction 1
1.1 Background . 1
1.2 Aim of the thesis . 2
1.3 Novel contributions . 2
1.4 Thesis structure . 2

2 Literature review 4
2.1 Optimal Control Problem . 4
2.2 Optimisation methods . 4
2.3 Differential Dynamic Programming developments 7

3 Differential Dynamic Programming 10
3.1 Mathematical notation . 10
3.2 Problem formulation . 12
3.3 Differential dynamic programming . 13

3.3.1 Backward induction . 15
3.3.2 Forward propagation . 18
3.3.3 Limitations . 19

3.4 Hybrid Differential Dynamic Programming 20
3.4.1 Improvements introduced by HDDP 20
3.4.2 Limitations . 29
3.4.3 HDDP Algorithm . 30

4 HDDP in Orbital Elements 32
4.0.1 Reference frames . 32

4.1 Orbital elements overview . 33
4.2 Advantages and precautions . 34

4.2.1 Precautions . 35
4.2.2 Advantages . 38

4.3 Challenges and Sundman Transformation 39

v

5 Results 43
5.1 Direct Transfer in Continuous Thrust . 43

5.1.1 Description of the study case . 43
5.1.2 Results . 45
5.1.3 Specific Impulse Refinement . 49

5.2 Sensitivity analysis . 52
5.3 Interplanetary transfer: Earth-Mars rendez-vous 58

5.3.1 Description of the study case . 58
5.3.2 Results . 59

5.4 Multi-revolution low thrust transfer . 64
5.4.1 Description of the study case . 64
5.4.2 Results . 65

5.5 Application to a real case: the OneWeb constellation 71
5.5.1 Description of the study case . 71
5.5.2 Results . 73

6 Conclusions 76

Bibliography i

A Trust region subproblem algorithm v

B Optimisation parameters setting vii

List of Figures ix

List of Tables xi

vi

Nomenclature

DDP Differential Dynamic Programming

ECI Earth-Centered Inertial

GEO Geosynchronous Equatorial Orbit,commonly known as Geostationary Orbit

GTO Geostationary Transfer Orbit

HBVP Hamiltonian Boundary Value Problem

HDDP Hybrid Differential Dynamic Programming

ICRF International Celestial Reference Frame

ISRO Indian Space Research Organization

LVM 3 Launch Vehicle Mark 3

NLP Non Linear Programming

RTG Radioisotope Thermoelectric Generator

STM State Transition Matrix

TOF Time Of Flight

TRQP Trust Region Quadratic sub-Problem

vii

1 | Introduction

1.1 Background

In recent years, interest in low-thrust trajectories for orbital transfers has been rapidly
growing. This topic attracts the attention of many scientists because of the considerable
savings in propellant mass that today’s electric thrusters allow due to their high specific
impulses. This aspect allows a great increment of the payload capacity associated with a
spacecraft, opening the door to new mission’s possibilities that were hitherto completely
precluded.
Another typical feature of these engines is a low deliverable thrust with respect the nominal
one that a chemical thruster can achieve. In this context electric engines are particularly
suitable for applications where the forces involved are small and time is not a primary con-
cern. In the field of Orbital Mechanics it can be, for example, the case of an interplanetary
leg performed in deep space or the orbit maintenance of a satellite around a celestial body.
However, due to recent improvements in space sector, more and more frequently electric
engines are also designated as primary source to perform orbital transfer in planetary en-
vironment.
The design and the optimisation of these kind of trajectories is a problem that pose some
challenges with respect the design of a transfer characterised by impulsive manoeuvres,
which is the general approximation done whenever a chemical thruster is exploited. In-
deed, for an electrical engine, the characteristic time of the manoeuvre is longer due to the
low-level of thrust. This is the reason why a continuous-thrust model shall be employed,
which implies a large number of control/decision variables that are involved in the optimi-
sation problem.
Moreover, especially for the planetary case, a transfer between two orbits in general require
a lot of revolutions. This usually introduces characteristic time and distances very different
inside the same problem, which makes the numerical optimisation process more difficult to
be solved.

1

Introduction

The choice of a particular set of variable assume, in this context, a fundamental importance.
Indeed, especially for multi-revolution case, Cartesian variables has an oscillatory behaviour
that requires a fine discretisation in order to don’t prevent the convergence of the optimisa-
tion algorithm. Whereas, exploiting a set of variables that has a smoother evolution along
the transfer, can reduce a lot the number of nodes required to reach convergence. This is
due to optimisation method and also due to the accuracy achieved by the integration of
the trajectory during process. In most of the cases, and especially in differential dynamic
programming, the two aspects are not so independent of each other.

1.2 Aim of the thesis

For these reasons presented in section 1.1, the aim of the work here presented is to show
how it may be useful to couple a robust optimisation method, a revised version of Hybrid
Differential Dynamic Programming (HDDP) [27], with a coherent set of state variables
that limits the numerical instabilities, the orbital elements [21]. This is something which
has been done only by [23] and [32] before, and due to the poorness of the literature that
regards this topic is useful to investigate about this coupling further for the benefit that it
brings.
This dissertation’s purpose is to offer a solution for solving problems involving low-thrust
and continuous-thrust trajectories in an efficient and safe manner, emphasising the lim-
its and the necessary precautions of the method through the analysis of some practical
applications.

1.3 Novel contributions

The major novel contribution is related to the coupling of the HDDP optimisation method
to work in orbital elements. Indeed, as will be presented later, the selection of this new
set of variables brings several advantages from an optimisation viewpoint, but also some
drawbacks that shall be considered. Some precautions are indeed required on the dynamic
definition and set selection to grant the success of an optimisation done by HDDP. In
this thesis, it will be analysed in detail all the aspects related to this coupling and its
flexibility, by the application of the method to four very different situations relevant in
orbital mechanics.

1.4 Thesis structure

The master thesis will be structured in the following way. As first, an overview about
the optimal control problem and different optimisation method will be given in order to

2

1.4 Thesis structure

introduce the reader in the context in which this work aims to fit. Then, a more detail
about the differential dynamic programming and its most recent improvements will be
analysed. at this point, the major contribution of this work are reported, focusing on the
coupling of HDDP and orbital elements. Subsequently, by means of four different practical
applications, all aspects of the optimisation method will be analysed. Finally, the work will
be concluded by summarising the results obtained and possible future developments.

3

2 | Literature review

2.1 Optimal Control Problem

In this section an overview on what is an Optimal Control Problem is provided for sake of
clarity and to frame the problem addressed in this work. The next section will then go on to
describe the solving methods in order to clarify the state of the art regarding optimisation
algorithms.

An optimal control problem consists in the minimisation of an objective function J ,
that depends on a control law u and its associated trajectory x. The procedure typically
consists in iterative methods that progressively change u and x until the so-called "optimal
path" is achieved, i.e. the path and the control law that minimise J .
The trajectory usually is generated by a dynamic that shall be respected during the op-
timisation. Moreover, sometimes other additional constraints can be present (for example
the final point that the path shall match, the maximum values of the control laws, and so
on).

Its solution consists in inserting the constraints inside the cost-function trough the use
of appropriate multipliers and then imposing that the derivatives of J with respect to all
the different variables (multipliers included) are equal to 0. This procedure leads to the
formulation of the so-called Hamiltonian function and the Euler-Lagrange equations, whose
resolution leads to the minimum sought.

2.2 Optimisation methods

The solving methods of an optimal control problems belongs to two main families: Direct
methods and Indirect methods.

4

2.2 Optimisation methods

Indirect methods are based on the calculus of variations [1] and Pontryagin’s Maximum
Principle [26] in order to find the stationary point associated to the solution. The first
step is to write the Hamiltonian function and than, imposing its derivatives equal to zero,
the Euler-Lagrange differential equations are retrieved. Solving this set of equations, which
means solving an Hamiltonian Boundary-Value Problem (HBVP) [4], leads to a solutions
which is intrinsically optimal. This approach however, introduces in the problem additional
variable to determined, the so-called "co-states", which are the factors through which the
constraints are incorporated into the Hamiltonian. The physical meaning of these variables
is not always perfectly clear at priori, but they take parts in the solving process of the
problem and directly influence it.
Usually the set of differential equations is solved numerically, and to do that generally an
initial guess of the state variables shall be provided to start the solving process, adjoint
states included; moreover, for a lot of problems faced with this approach, the convergence
region is quite strict.
This aspects leads to these two big difficulties:

• Being not easy to define the physical interpretation of the co-states, defining their
first attempt value also becomes a difficult step.

• The selection of the first attempt value of the co-states often results outside the
attraction’s region and this prevents the convergence of the solution.

In addition, it should be also considered that the optimality differential equations associated
to the adjoint variables are not so easy to be derived, especially if the dynamic of the problem
is already complex in itself. Last but not least, also the integration of inequalities stage
constraints results challenging, due to the fact that in general it should be defined at priori
with respect the solving process if they are active or not.
To sum up, indirect methods present several difficulties that can only be solved if there is
a deep physical knowledge of the problem. However, when there is the possibility to be
able to do so, these approaches leads to solutions that are very accurate and which need a
limited amount of nodes to reach convergence.

Direct methods on the other hand, somehow represent the other side of the coin. They
consists in a reformulation of the problem, where the trajectory is firstly discretised and pa-
rameterised, and then the solution is searched exploiting a Non-Linear Programming (NLP)
technique. The main idea is convert the differential problem into a parametric one, and
then change the parameterised decision-vector obtained at each iteration obtaining results
that better and better approximate the optimal solution sought. NLP methods typically
rely on physical quantities and does not require cumbersome co-states to be defined. These
aspects eliminate all the major difficulties encountered in indirect methods and increase a
lot robustness, allowing to achieve convergence also with initial guesses which are quite far

5

Literature review

from the optimal solution. On the other hand, due to the approximation introduced by
the parameterisation, the final results founded are quite inaccurate when compared with
the ones founded by indirect methods. Indeed in general, to achieve good level of accuracy,
these methods require a large number of nodes.

Having explained the differences between the two main approaches, the major optimi-
sation methods are now presented one by one. In general, each method can be generated
by direct or indirect formulation, with their respective pros and cons.

The first methods presented is the single-shooting [5]. It consists in the propagation of
the trajectory once defined the optimisation variables as initial condition, hence the shooting
name. At the end of this process, the variables are modified as a function of a final error, in
order to optimise trajectory and to match the constraints on the final state. A typical feature
of this method is the big sensitivity of the problem to the initial variables. Indeed, due to
the propagation of the integration of the whole trajectory, sometimes also small variations
of optimisation parameters associated to the initial part of the trajectory can generate big
variations at the end of it. This phenomenon manifest itself in a particularly pronounced
manner whenever the dynamic is highly non-linear and produces some difficulties in the
numerical optimisation process.

The multiple-shooting technique [40] attempts to solve this issue by subdividing the
trajectory in different sub-intervals which are independently integrated one by the other.
This feature allows to reduce the effect that a small variation on variables that affect
first stages of the trajectory has at the end of it. However, the system to be solved at
each iteration to handle the constraints is much larger with respect to the single shooting
one. This is due to additive constraints that shall be included in the formulation between
two consecutive leg to grant the continuity of the trajectory. This aspect increase the
computational effort of the method. Moreover, for both multiple and single shooting, the
integration of stage-constraints in the problem add another difficulty. Indeed, in this case
is necessary to subdivide between constrained and unconstrained arcs of the trajectory
even before to start the process. In practical words this means knowing at priori when a
constraint is active or not along the path, which is almost impossible in most of the cases.

Collocation methods [22] take another important role in the optimization techniques.
They consists in exploiting piece-wise (in general) polynomial interpolation to approximate
the trajectory. Differently from the shooting technique, collocation does not require nu-
merical integration of the trajectory, but the dynamic differential equations are enforced
as a constraint at some specific points. These latter lie in each stage interval in which the
path is subdivided, and the dynamic is included trough an algebraic process. From one
side this aspect allows to reduce the computational effort per-stage due to the lack of a
numerical integration. On the other hand, for the same reason, in order to generate a path
that reasonably approximates the true dynamic of the problem, is necessary to have a quite
large number of nodes for the discretisation, which increase the computational effort. An

6

2.3 Differential Dynamic Programming developments

important aspect of the direct collocation case is that it is possible to include in a more
proper way some stage-constraints, applying technique of active set [36] or interior-point
[43].

As can be seen there are many methods of optimisation that exploit different principles
in order to obtain a solution. In relation to the Orbital Mechanics problems, both direct
and indirect methods has been employed. Regarding indirect ones some advances has been
made thanks to the works of Edelbaum [41] [42], Wiesel and Alfano [44], Petropulos [3] [2]
and Kluever [10]. On the other hand, examples of direct approach are reported in the work
of Betts [8] [9] [24].
However each method has its own drawbacks. The major ones of all the indirect approaches
consist in the restrictions imposed by the manage of the adjoint states, which limit the
complexity of the problem addressed and require the knowledge of it in order to reach con-
vergence. For what concern all the direct approaches, due to the approximation introduced
by discretisation, a lot of nodes in which subdivide the path are needed to achieve accurate
results. At the same time, in general the NLP technique exploited to optimise the variables
deals with the inversion of big matrices that increase rapidly in dimensions with the num-
ber of discretisation’s nodes. Therefore, the direct methods results computationally heavy,
limiting practically the dimension of the problem that they can face.

2.3 Differential Dynamic Programming developments

Differential Dynamic Programming assume, in the context just presented, an important rel-
evance. It is a cross between a direct and an indirect method, and it perfectly fits the need
requested by the solving process of large-scale problems. Indeed it is generally classified as a
direct method, because it does not introduce any adjoint state in the formulation. However,
differently from the other direct methods, DDP has a strict connection with the calculus
of variations. In fact, it can be shown (as demonstrated by Dreyfus [39]), that the DDP
procedure minimises the Hamiltonian of the problem, as in the calculus of variations. In
this way DDP does not formulates the problem by explicitly exploiting the optimality con-
ditions as indirect methods do, but the solution found is nevertheless influenced by them.
DDP therefore inherits the robustness typical of the direct methods and accuracy similar
of the indirect ones. Moreover this technique presents quadratic convergence under certain
hypothesis and, as it will be explained better in the next section, is more computationally
efficient if compared with the classical direct methods. All the aforementioned aspects con-
tribute in fuelling interests towards DDP, which is increasingly regarded as an optimisation
approach with interesting possible future developments and has already become the state
of the art for robust complex trajectory design.

7

Literature review

Differential Dynamic Programming was introduced for the first time by Mayne [15], which
develops a first basic version of the algorithm suitable for unconstrained discrete-time prob-
lems. Then other improvements are provided by Gershwin and Jacobson [18], Jacobson and
Mayne [25], Dyer and Mc Reynolds [16], Yakowitz and Murray [33]. Indeed, from its first
formulation, the potential of DDP was immediately realised and many authors start to
give their contribute with some improvements in order to expand its applicability in an
ever-widening manner.
One of main concern was to try to include in an efficient way the capability of the algorithm
to face constrained problem. The other important focus was related to the possibility of
dealing optimally even with problems featured by highly non-linear dynamics, where the
Hessian can occasionally becomes no longer positive-definite (this difficulties will be better
explained in the next section, but it is a fundamental aspect to grant a minimisation when
the algorithm is running).
Regarding the first aspect, considerable progress was made; most of them consisted in the
application of an augmented cost function, in which, through the use of appropriate mul-
tipliers, constraints also appear. On the other hand, concerning the second, the problem
was solved introducing a "shifting" of the Hessian. One of the first technique of this kind
was suggested by Liao and Shoemaker [29] [30], but also other methods are exploited, like
the one presented in Colombo et al.[13].
At the moment, the current state-of-the-art technology for the optimal design of low-thrust
trajectories that exploits a differential dynamic programming approach is the Mystic Low-
Thrust Trajectory Design and Visualization Software [34]. Mystic has best demonstrated
its capabilities with the success of NASA’s Dawn mission [11], and its optimisation engine
is built around the Static/Dynamic Optimal Control algorithm, a differential dynamic pro-
gramming approach developed by Whiffen [17].
More recently, the most major contribution to the theoretical field of DDP is provided by
the work of Lantoine and Russel [27], which developed a new version of the algorithm called
Hybrid Differential Dynamic Programming (HDDP). It mixes a Differential Dynamic Pro-
gramming approach with sophisticated mathematical techniques in order to increase the
robustness, computational efficiency and applicability. The paper is of paramount impor-
tance for this dissertation and will therefore be presented more in detail in the next chapters.
From the work of Lantoine and Russel [27] other developments has been introduced in order
to increase computational efficiency, generally trying to reduce the most computationally
expensive steps of the algorithm, and also in order to broaden the applicability to very sen-
sitive problems, like multi-revolution planetocentric transfers. Regarding the first purpose,
in general the focus is devoted in reducing the time needed to compute the state transition
matrices of the trajectory. Maestrini [31] proposed a solution exploiting differential algebra
to approximate the STM in a efficient way without the need of integration. Russel and
Pellegrini [37] [38] instead propose a solution that exploits parallelisation to its full poten-
tial, where HDDP is reformulated in a multiple-shooting approach that allows not only the
parallelisation of the STMs’ integration but also the entire DDP process associated with

8

2.3 Differential Dynamic Programming developments

each phase of the trajectory. Concerning the improvements to adapt DDP to problems
featured by many revolutions, a significant contribution is given by Aziz [23] and Colombo
and Nugnes [12]. Aziz [23] introduces a transformation to change the independent variable
from time to true/eccentric anomaly, whereas Colombo and Nugnes [12] face the problem
exploiting orbital elements. Both of these works, although in different ways, allow to in-
crease a lot the number of revolutions that can be achieved by the solution of the problem
faced.

9

3 | Differential Dynamic
Programming

In this chapter, the basic DDP algorithm and its recent improvements are presented in order
to grant a better understanding of the work. First, the reader is introduced to the math-
ematical notation adopted during the whole dissertation and to the problem formulation,
then the fundamental steps of the basic version of the DDP algorithm are described, before
finally moving on to the last largely validated upgrade of the algorithm, which consists in
Hybrid Differential Dynamic Programming (HDDP).

3.1 Mathematical notation

Due to the presence of a lot parameters and derivatives in the discussion, in this section
an attempt to remove any ambiguity of notation is performed. Indeed, for a general multi-
stage multi-phase problem, some confusion can arise due to presence of multiple subscripts
that describe the node related to the j-th stage at the i-th phase. The whole trajectory of a
problem, in fact, can be divided in M phases, each one is divided in a number Ni of stages.
A phase represents a "leg" of the trajectory. In a problem of orbital mechanics related
to an interplanetary travel, per example, it can be associated to the fraction of trajectory
in which a spacecraft is still inside the sphere of influence of a planet, or the fraction of
trajectory in which the spacecraft moves into the deep space, far by other celestial bodies.
Each phases can have its own dynamics. The stages instead, represent the nodes in which
each phase is discretised. The number of stages is often responsible of the accuracy achieved
by the solution, due to a more/less refined numerical integration of the trajectory and also
the big/small number of degrees of freedom associated to the control policy.

In this context it is important to define what the subscripts refers to and to what each
quantity represents in the description.
In the work presented, only single-phase problems are faced, so this ambiguity is avoided.

10

3.1 Mathematical notation

However, it is important for sake of clarity, to define in an unequivocally manner all the
mathematical operators/entities that will appear afterwards in the dissertation.
Because the algorithm exploited for this work is strictly related to HDDP version developed
by Lantoine and Russel [27], all the symbols reported in the following list follows the same
notation, referring to single-phase problems. For a complete description that involves also
multi-phase problems the reader can refer to [27].

xk ∈ Rn are the states of dimension n at stage k

uk ∈ Rm are the dynamic controls of dimension m at stage k

w ∈ Rp are the static parameters of dimension p

fk ∈ Rn → Rn are the dynamic functions that represents the first derivatives of the
states as a function of state, control inputs and static parameters at each stage

Fk ∈ Rn → Rn are the transitions functions that propagates the states across each
stage

Lk ∈ Rn → R are the stage cost functions

ϕ ∈ Rn → R are the final state cost function

gk ∈ Rn → Rng are the stage constraints

ψ ∈ Rn → Rnψ are the final state constraints

J ∈ R is the objective function of the problem to be minimised

11

Differential Dynamic Programming

J∗ ∈ R is control-free cost where control is replaced by the state dependent control
law: J∗(x) = J(x, u(x))

Jk ∈ R is the Cost-to-go function at the stage k

Jq,k ∈ Rq is the first partial derivative of Jk with respect to the dummy vector variable
q at stage k (column-wise convention)

Jqq,k ∈ Rq × Rq is the second partial derivative of Jk with respect to the dummy
vector variable q at stage k

The last aspect to be emphasised is the presence of tensor operations in the formulation.
Indeed, it is important to clarify how these operations are performed to avoid ambiguity or
confusion in the definition of different operators.
The operations that involves third-order tensor in this work are expressed by means of •
operator. Defined B as a tensor, we can have:

• C = A •B =⇒ C(i, j) =
∑N

p=1A(p)B(p, i, j), when A is a vector (C is a matrix)

• C = A • B =⇒ C(i, j, k) =
∑N

p=1A(i, p)B(p, j, k), when A is a matrix (C is a
third-order tensor)

3.2 Problem formulation

A dynamical system is described by the differential equation:

ẋ = f(x(t), u(t), w; t) (3.1)

where x = [x1, ..., xn]
T is a vector of n variables that represent the state vector, u =

[u1, ..., um]T is a vector of dimensionm that represent the control input, and w = [w1, ..., wp]
T

is a vector of dimension p that represent the so-called "static parameters", a number of
variables that does not depend on time but that influence the dynamic behaviour of the
system. Sometimes, in discrete-time, this formulation can be substituted in the following
way, thanks to the introduction of the transition function Fk:

xk+1 = Fk(xk, uk, w) (3.2)

where the link between Fk and fk is represented by:

Fk = xk +

∫ tk+1

tk

fk(x, uk, t)dt (3.3)

12

3.3 Differential dynamic programming

Given a dynamical system described by the aforementioned equations, solving an optimal

control problem consists, once fixed the initial state x0, in finding the control law u(t) and
the static parameters w such that the cost-function J is minimised:

J := ϕ(xtf) +

∫ tf

t0

L(x(t), u(t))dt

where ϕ is a function that depends only by the final state, whereas L is a merit function
that is dependant on all the remaining stages and respective controls of the trajectory. In
discrete-time the equation becomes:

J :=

N∑
j=0

Lk(xk, uk) + ϕ(xN+1) (3.4)

Sometimes there may also be some constraints that shall be respected: stage-constraints,
which express some constraints on each single stage of the trajectory and which have the
following form:

gk(xk, uk, w) ≤ 0 (3.5)

and final state constraints, which in general represents the desired final state that the
trajectory shall reach and typically have the following equality form:

ψ(xN+1, w) = 0 (3.6)

3.3 Differential dynamic programming

Differential dynamic programming is a modern way to face an optimal control problem of
large dimension. It consists of an iterative method that produces consecutive trajectories
associated with a gradually improved cost value, until a local minimum is reached.
It is based on the philosophy of dynamic programming, which, through a backward process,
produces a “family” of optimal paths leading to the same final point but with different initial
conditions. This why the term “fields of extremals” has been coined in the literature [35].
At each step of the regression in fact, the new optimal path is formed by the one obtained
at the previous step with the addition of a new node that represent a new initial condition.
The path is made optimal, and then the process is repeated until the starting state of the
trajectory is the initial condition of an optimal path. Considering the solution obtained,
each portion that connects one of its generic points at the final one, is therefore an optimal
path.
This backward methodology is based on Bellman’s optimality principle [35], which generates
a new optimal path via the following backward recursive equation:

Jk(xk) := Lk(xk, uk) + J∗
k+1(xk+1) (3.7)

13

Differential Dynamic Programming

where Jk is defined as the cost-to-go function, a function that represent the cost value of
the trajectory that goes from node k to the final one; J∗

k+1 is the optimal value of the
cost-to-go function associated to the optimal path that goes from node k + 1 to the final
one; Lk is a the stage cost function.

This is an equivalent reformulation of the Hamilton-Jacobi optimality principle, but its
application is obtained in different way with respect to the classical variational approach,
as already explained.
Dynamic Programming approach grants the achievement of a global minimum solution
in just one iteration. However it has an insurmountable drawback: the computational
cost. Indeed, in order satisfy the Bellman equation it is necessary to discretize both state
variables and time. Then, an optimal cost value shall be associated to each discrete point
xk of the grid generated at each time step k. All these values shall be stored to pass
to the next time step and proceed with the backward process. This procedure implies
therefore a huge amount of data to be stored; amount that, being already enormous, increase
exponentially with the dimension of state and control. It means that, for a problem with 6
state variables and 3 control inputs (typical dimensions for an orbital mechanics problem),
although theoretically the solution is obtained in a single iteration, the computational effort
is so prohibitive as to prevent its effective application in practice. This problem, according
to Bellman’s denomination, is called “curse of dimensionality”.

Differential Dynamic Programming fixes this issue, but the solution obtained is only a
local minimum. Indeed, with this approach, the Bellman equation is approximated with
a second order expansion around a reference trajectory and a reference control policy. At
this point the data to be stored in order to pass from the (k+1)-stage to the k-stage during
the backward process are only the coefficients of the Taylor expansion. In this way the
computational effort is extremely reduced, making the process applicable, but the method
requires several iterations to reach the optimal solution. The minimum found, moreover,
lose its globality property and reduces only to a local one.

This method is more computationally-efficient with respect to the other classical direct
methods as previously anticipated. Indeed, considering the solving process at each iteration
of a problem with n state variables, m control inputs and N discretization stages in time,
a typical NLP technique consists in solving a single large linear system, which requires the
inversion of matrices of order Nm×Nm = O(N2). It means that the computational cost
grows rapidly as the number of discretization stages increases. DDP instead, breaks the
initial problem in N smaller problems to be solved, where at each step, the only variable
to be optimized is the control input of the current time step k. Therefore the matrices that
the method have to deal with are N and have always dimensions equal to m × m. This
feature implies an increment of the computational effort directly proportional to the number

14

3.3 Differential dynamic programming

of the discretization stages O(N), making the method particularly suitable for large-scale
problems.

DDP is an approach that is composed of two main procedures: Backward Induction
and Forward Propagation. During the first, from a reference control law and its associated
trajectory, an optimal control variation and the expected reduction of the cost-function is
computed. Whereas in the second, the new trajectory in propagated, paying particular
attention that it falls in the neighborhood of the reference one, without violating the limits
imposed by the approximation of the second order expansion.
In the following sections an overview on the most important steps of the aforementioned
phases of the DDP is provided. For sake of clarity, for the moment static controls and
constraints are ignored.

3.3.1 Backward induction

The aim of this phase is to select a proper optimal control law knowing a reference one and
its associated trajectory, in order to minimize the objective function. The process consists
in solving an optimal control problem at each time-step k trough the equation 3.7, where
the unique variable to optimize is the control input uk at that precise time instant. The idea
behind this procedure is that, having previously computed an optimal path from the node
(k + 1) to the final one, the path from the node k to the final one, in order to be optimal,
will contain it. Doing so, the "last" part of the trajectory is already selected and does not
influence the optimal control problem at the instant k, which instead can be influenced by
the "new" part of the trajectory, i.e. the node k and its control input uk. As Bellman itself
reports in [35]:

"An optimal policy has the property that whatever the initial state and initial de-
cision are, the remaining decision must constitute an optimal policy with regard
to the state resulting from the first decision"

To do so, the terms present in the Equation 3.7 are expanded up to the second order with
respect to the variables at stake, around the reference trajectory x̄ and the reference control
ū.

Jk(x̄k + δxk, ūk + δuk) = Lk(x̄k + δxk, ūk + δuk) + J∗
k+1(x̄k + δxk) (3.8)

Expanding each term of the equation, the following expansion are obtained:

Lk(x̄k + δxk, ūk + δuk) ≈Lk + Lx,kδxk + Lu,kδuk +
1

2
δxTkLxx,kδxk+

1

2
δuTkLuu,kδuk + δxTkLxu,kδuk

(3.9)

15

Differential Dynamic Programming

Figure 3.1: Conceptual Representation of the Backward Induction Process, image adapted
from [31]

Jk(x̄k + δxk, ūk + δuk) ≈ Jk + Jx,kδxk + Ju,kδuk +
1

2
δxTk Jxx,kδxk+

1

2
δuTk Juu,kδuk + δxTk Jxu,kδuk

(3.10)

δJ∗
k+1 = J∗

k+1(x̄k+1 + δxk+1) ≈ J∗
k+1 + J∗

x,k+1δxk+1 +
1

2
δxTk+1J

∗
xx,k+1δxk+1 (3.11)

The latter term is not a function of uk because it is the optimal value of the cost-to-go
function, which is already the result of a minimization around ūk. Indeed, starting from
the Equation 3.7, we can obtain:

Jk = Lk(xk, uk) + J∗
k+1(xk+1) = Jk(xk, uk, xk+1)

Jk = Lk(xk, uk) + J∗
k+1(F (xk, uk))) = Jk(xk, uk)

J∗
k = min

uk
(Jk) = min

uk
(Lk(xk, uk) + J∗

k+1(F (xk, uk)))

J∗
k = J∗

k (xk)

At this point the dynamic equation is exploited in order to rewrite the optimal J∗
k+1 as

a function of state and control of the k-stage. Indeed, it can be written:

δxk+1(xk, uk) ≈ Fx,kδxk + Fu,kδuk +
1

2
δxTk Fxx,kδxk +

1

2
δuTk Fuu,kδuk + δxTk Fxu,kδuk

(3.12)

16

3.3 Differential dynamic programming

The previous expression is substituted into equation 3.11, and then all the expansion are
inserted in Eq. 3.8. After some manipulations the different terms of the equation can be
collected. The results of this operation bring up to the needed partials of Jk.

Jk =Lk(xk, uk) + J∗
k+1(xk+1) ≈ Lk + J∗

k+1 +

[
Lx,k + J∗

x,k+1Fx,k

Lu,k + J∗
x,k+1Fu,k

]T [
δxk
δuk

]
+

+
1

2

[
δxk
δuk

]T [
Qxx Qxu

Qux Quu

] [
δxk
δuk

] (3.13)

where:
Qxx = Lxx + J∗

x,k+1 • Fxx,k + F T
x,kJ

∗
xx,k+1Fx,k

Qxu = Lxu + J∗
x,k+1 • Fxu,k + F T

x,kJ
∗
xx,k+1Fu,k

Qux = QT
xu

Quu = Luu + J∗
x,k+1 • Fuu,k + F T

u,kJ
∗
xx,k+1Fu,k

(3.14)

Then, in order to obtain a an optimal control law, the condition that shall be imposed
is that d

d(δuk)
Jk = 0, leading to:

Lu,k + J∗
x,k+1Fu,k +Quxδxk +Quuδuk = 0 (3.15)

From this equation the control variation δuk is retrieved, at the condition that the
Hessian with respect to the control Quu is positive definite. This condition is fundamen-
tal because it makes the stationary point (found by imposing the derivative of the control
equal to zero) a local minimum of the cost function for the quadratic-approximation of the
cost-function. In other words, the control variation found is progressively minimizing the
cost-function.

δuk = Ak +Bkδxk

{
Ak = −Q−1

uu (Lu,k + J∗
x,k+1Fu,k)

Bk = −Q−1
uuQux

(3.16)

where the coefficients Ak and Bk shall be stored during the Backward Sweep. They
in fact represent the coefficient of the new feedback control policy, which will be exploited
during the Forward Propagation in order to define an improved trajectory. Once retrieved
this coefficients, the expression of δuk can be substituted inside the expansion of Jk in order
to find the optimal value of the cost-to-go function J∗

k .
Performing this procedure, the coefficients of the expanded optimal value J∗

k are retrieved
by Eq. 3.17. Moreover, with this operation, in the expression of Jk appear some terms that
represent the expected reduction of the cost-to-go function passing from the (k + 1)-stage
to the k-stage which are due to the variation of the control law.

17

Differential Dynamic Programming

ERk = ERk+1 + JT
u,kAk +

1

2
AT

k Juu,kAk

J∗
x,k = Jx,k + JT

u,kBk +
1

2
AT

k Juu,kBk +AT
k Jux,k

J∗
xx,k = Jxx,k +

1

2
BT

k Juu,kBk + JT
ux,kBk +BT

k Jux,k

(3.17)

These optimal values of the derivatives of J and the expected reduction become the
starting point that allow to recursively repeat the process at the next stage.
The procedure is repeated up to the initial node of the trajectory. As an initial condition
whenever the backward recursion process is initialised, it is necessary to derive the deriva-
tives J∗

x,N+1, J
∗
xx,N+1 according to the defined objective function, and to set ERN+1 = 0.

3.3.2 Forward propagation

Once the coefficients for all stages are stored in memory the Backward Induction is to
be regarded as completed. Now the new trajectory and the new control law are forward
propagated starting from the initial node and applying recursively the following formulas,
imposing that the initial conditions are δx0 = 0, δu0 = A0.{

uk = ūk + δuk = ūk + ϵAk +Bk(xk − x̄k)

xk+1 = F (xk, uk)
(3.18)

where ϵ is a parameter which is initially set equal to 1, and then progressively decreased if
needed. Once the whole trajectory and the control law associated are computed, also the
new value of the associated objective function Jnew is computed.
At this point there is the need to check whether the trajectory just calculated is "close
enough" to the previous one, to be sure that the second-order expansion approximation
is not violated. To perform this operation the value of Jnew and J are compared and
it is checked if the variation of the cost-function is similar to the value of the expected
reduction ER0 computed on the whole reference trajectory. If this is not the case in fact,
for non-linear problems the minimization is not granted at priori, because the second order
approximation around the reference trajectory could not represent in a proper way the non-
linear behaviour of the cost-function in the region of the new solution computed. If such a
case occurs, the value ϵ is halved and the process is repeated, generating a new control law
which is more similar to the reference one, and accordingly, also a trajectory more similar
to the reference one. At this point the is check is repeated and the process is replicated
until the checking criterion is met. This method in literature is known as a line-search
method. The general criterion to accept a new trajectory for unconstrained problems is the
following:

Jnew − J ≤ ϵ

2
ER0 (3.19)

18

3.3 Differential dynamic programming

Figure 3.2: Conceptual Representation of the Forward Propagation Process, image adapted
from [31]

where ER0 is the value of the expected reduction computed on the whole reference trajec-
tory during the Backward Induction.

Once the new reference control policy and trajectory are selected, another Backward
Induction can start and the whole procedure is repeated. The convergence is reached when
the absolute value of the expected reduction |ER0| is less then a certain tolerance imposed
by the user. Indeed the expected reduction is a quantity that gives an indication about
the gradients of the cost-function with respect to the control. Therefore having a small
ER0 means that there is a small minimization of cost-function between two consecutive
iterations and the solution is close to the local minimum searched by the method.

3.3.3 Limitations

The algorithm presented in this section is the basic local version of DDP, as it was originally
formulated by Mayne [15]. It is a very powerful tool in solving optimal control problems
due to the motivations already explained and as also shown by Liao and Shoemaker in [29]
[30]. However, as it stands, it also presents some limitations:

• The problem addressed shall be unconstrained: neither stage-constraints nor con-
straints on final state of the trajectory are taken into account in the formulation.
This is not the typical case in problems of Orbital Mechanics. Indeed in general the
final state of the trajectory is prescribed by the target orbit and there may be some
stage-constraints, such as the maximum deliverable thrust achievable by the engine
of the spacecraft.

• The problem shall be featured by positive-definite Hessian: along the whole tra-

19

Differential Dynamic Programming

jectory, the Hessian Quu shall be always positive-definite. This is not always true for
highly non-linear problems, such as the ones faced in this work. In order to grant a
minimization of the cost-function J some adjustments shall be undertaken whenever
this eventuality arises.

3.4 Hybrid Differential Dynamic Programming

Hybrid Differential Dynamic Programming is an improvement of the basic version of DDP
that combine robust mathematical techniques with a DDP formulation in order to overcome
the limitations aforementioned.
Being this algorithm the most important source of information for the realization of the
work presented, in this section a detailed overview on HDDP is provided.
The chapter is organised as follows: first the major innovations introduced by HDDP are
reported, then a global description of the algorithm is provided and lastly its limitations
are illustrated.

3.4.1 Improvements introduced by HDDP

In this section, all the major mathematical improvements adopted in the HDDP algorithm
[27] that differentiate it from the basic version introduced by Mayne [15] are presented.
Initially, the innovations brought about by the use of the trust region method will then be
reported, which almost radically revises the way in which the algorithm is implemented;
next, we will discuss how this algorithm handles the different types of constraints that may
be present; and finally, we will discuss the new state transition matrix approach, which
allows for a more flexible and suitable calculation of the partial derivatives required during
the backward induction process.

Trust-Region

One of the major improvements of the HDDP algorithm is the adoption of the Trust-region
method [14]. Its introduction upsets the classical formulation of the DDP method according
to which backward sweep and forward propagation are completely separate. In fact, it
consists of a robust mathematical technique that fulfils a dual purpose in the algorithm.
The first consists of replacing the classical line search method in forward propagation with a
technique that is recognised in the literature as being more numerically stable. The second
consists in introducing an efficient method capable of guaranteeing the positive definite
condition of the Hessian, solving the shift issue and providing great robustness.

The method is exploited to find the coefficients of the feedback control variation as
previously done in 3.3.1. However, differently from what previously seen, Trust region adds
directly a constraint on the maximum magnitude that the constant term Ak can have (the
so-called trust region radius). In this way the control variation at each step is restricted

20

3.4 Hybrid Differential Dynamic Programming

in a certain region and it is prevented from stepping "too far". Reasonably, if the trust
region radius is sufficiently small, the quadratic approximation reflects in a proper way
the behaviour of the objective function. This allows to directly impose in the backward
sweep a control law that respects at priori the approximation imposed by second order
expansion, avoiding multiple integration in the forward propagation. Otherwise, if the
solution generated is not in the neighborhood of the reference one, the backward sweep
process must be repeated by decreasing the trust region radius.

Operatively, the method consists in solving the following subproblem at each time step
k, named as TRQP(Ju,k, Juu,k,∆), referring to the inputs required to define it:

min
δuk

(Ju,kδuk +
1

2
δuTk Juu,kδuk) subjected to ||Dδuk|| ≤ ∆ (3.20)

where ∆ is the current trust region radius and D is a positive definite scaling matrix.
The latter must be defined on the basis of the problem addressed, and is of paramount
importance when the problem is poorly scaled (the same variation in different variables
affects the objective function in a very different way).

The solution of this subproblem is obtained by following algorithms presented in [14],
but an overview on the possible solving methods are also present in [36]. Of the various
possibilities, given the small size m of the control vector, in this work the designated method
of resolution of TRQP is the one based on eigenvalue decomposition of the Hessian, and it
is reported in the appendix A.
To be concise, what is important to underline is that each solving method, included the
one mentioned above, consists in an iterative procedure that produces an adequate shift of
Juu,k, in order to obtain a solution that respect the magnitude constraint. Once defined
the solution δu∗k and the shifted hessian J̃uu,k, at the end the solution of the subproblem
consists in:

δu∗k = Ak = −J̃−1
uu,kJu,k (3.21)

The shifted J̃uu,k is then exploited to define all the other coefficients that appears in the
feedback control law.
Differently on what presented in 3.3.1, a problem can also contain constraints and static
parameter w. The latter ones are time-independent parameters that affect the solution,
and often there is the intention to minimise the cost function with respect to those as well.
The presence of constraints instead, generally leads to an augmented objective function
that depends directly on them by means of some multipliers λ, as will be better explained
in the next sections. However, for the general case the objective function J is typically

21

Differential Dynamic Programming

expanded also with respect to these parameters, becoming:

δJk ≈ ERk+1 + JT
x,kδxk + JT

u,kδuk + JT
w,kδw + JT

λ,kδλ+
1

2
δxTk Jxx,kδxk

+
1

2
δuTk J̃uu,kδuk +

1

2
δwTJww,kδw +

1

2
δλTJλλ,kδλ+ δxTk Jxu,kδuk

+ δxTk Jxw,kδw + δuTk Juw,kδw + δxTk Jxλ,kδλ+ δuTk Juλ,kδλ+ δwTJwλ,kδλ

(3.22)

Then, in [27], in analogy with the previous definition of the feedback control variation, the
feedback control law assume the form:

δuk = Ak +Bkδxk + Ckδw +Dkδλ (3.23)

The additional coefficients are determined once the shifted hessian J̃uu,k is retrieved by
the trust-region subproblem solution. Hence, following the same philosophy of the uncon-
strained case, imposing that d

dδuk
δJk = 0:

Ak = −J̃−1
uu,kJu,k

Bk = −J̃−1
uu,kJux,k

Ck = −J̃−1
uu,kJuw,k

Dk = −J̃−1
uu,kJuλ,k

(3.24)

Furthermore, having now new derivatives in the 3.22 with respect to 3.10, also additional
equation shall be respected for the update rule. Indeed, at the equations presented in 3.17,
also the following list shall be taken into account:

J∗
xw,k = Jxw,k +BT

k Juu,kCk +BT
k Juw,k + JT

ux,kCk

J∗
xλ,k = Jxλ,k +BT

k Juu,kDk +BT
k Juλ,k + JT

ux,kDk

J∗
w,k = Jw,k +AT

k Juu,kCk +AT
k Juw,k + JT

u,kCk

J∗
ww,k = Jww,k + CT

k Juu,kCk + CT
k Juw,k + JT

uw,kCk

J∗
wλ,k = Jwλ,k + CT

k Juu,kDk + CT
k Juλ,k + JT

uw,kDk

J∗
λ,k = Jλ,k +AT

k Juu,kDk +AT
k Juλ,k + JT

u,kDk

J∗
λλ,k = Jλλ,k +DT

k Juu,kDk +DT
k Juλ,k + JT

uλ,kDk

(3.25)

At this point, when all the coefficients are determined (if there are static parameter or
constraints also their variation shall be determined), the trajectory is propagated one single
time, and then a check on the neighborhood is performed in order to accept or reject the
iterate produced. In HDDP, the following parameter ρ is defined:

ρ =
Jnew − J

ER0
(3.26)

22

3.4 Hybrid Differential Dynamic Programming

Whenever the expected reduction well reflects the effective variation of the objective func-
tion (so the second order approximation is good), ρ ≈ 1. This is why the following criterion
is exploited in HDDP to accept the iterate:{

1− ϵ1 ≤ ρ ≤ 1 + ϵ1 iterate accepted
otherwise iterate rejected

(3.27)

where ϵ is a small parameter > 0, defined by the user (typically around 0.01).
Should the iteration be accepted or not, the trust region radius is modified accordingly. If
the iteration is successfully accepted, the radius is increased in order to try to speed up the
convergence rate. Conversely, when the iteration is rejected, this parameter is reduced in
order to obtain a trajectory closer to the reference one. The updating rule proposed is the
following:

∆k+1 =

{
min((1 + κ)∆k,∆max) if ρ ∈ [1− ϵ1, 1 + ϵ1]

max((1− κ)∆k,∆min) otherwise
(3.28)

where 0 < κ < 1 is a constant selected at priori.

Constraints Handling

With respect to the basic version of DDP, HDDP can manage effectively also the presence of
constraints. In this context, some improvements had already been made in previous works,
like in Yakowitz [33] or Dyer and McReynolds [16]. The work of Lantoine and Russel takes
some tried and tested techniques and uses them for the effective treatment of constrained
problems.

First of all, a differentiation is made between two families, i.e. stage constraints and
final state constraints, which are handled differently by the algorithm.
The first class are guaranteed to be satisfied to the first order with each iteration generated,
while in the second case, an iterative method is generated that progressively brings the
solution to comply with the constraint.

23

Differential Dynamic Programming

Range-Space Active Set Methods (stage constraints)

In order to handle stage constraints a Range-Space active set method is employed in both
version of HDDP. It is based on a procedure that identifies if the constraint is active at
the current step k. When this occurs, the latter is linearized and a constrained quadratic
programming technique based on Fletcher’s work [36] is then applied. This ensure the com-
pliance with the constraints at the first order approximation.
The idea consists in computing initially the control variation δu∗k in the same way of the
unconstrained case, reported in section 3.4.1. Then the control uk = ūk + δu

∗
k is computed,

and is checked if g(x̄k, uk, w̄) ≤ 0. The active constraints identified are then collected in a
matrix g̃ and linearized.
Afterwards the control law is found by solving the minimization of the quadratic approxi-
mation of Jk subjected to the equality constraints:

g̃Tu,kδuk + g̃Tx,kδxk + g̃Tw,kδwk + g̃Tc = 0

The method proposed by Fletcher consists in the fulfilment of the Karush-Kuhn-Tucker [7]
conditions by defining the following Lagrangian function:

Lk =ERk+1 + JT
x,kδxk + JT

u,kδuk + JT
w,kδw + JT

λ,kδλ+
1

2
δxTk Jxx,kδxk

+
1

2
δuTk J̃uu,kδuk +

1

2
δwTJww,kδw +

1

2
δλTJλλ,kδλ+ δxTk Jxu,kδuk

+ δxTk Jxw,kδw + δuTk Juw,kδw + δxTk Jxλ,kδλ+ δuTk Juλ,kδλ+ δwTJwλ,kδλ

+ νTk (g̃
T
u,kδuk + g̃Tx,kδxk + g̃Tw,kδwk + g̃Tc)

(3.29)

Imposing that the derivatives of Lk with respect to the control policy variation and the
lagrangian multipliers ν are equal to zero, the system 3.30 is obtained. Once solved, the
coefficients of the new control policy are finally retrieved, Eq. 3.32.[

J̃uu,k g̃u,k
g̃Tu,k 0

] [
δuk
νk

]
=

[
−Ju,k − JT

xu,kδxk − Juw,kδw − Juλ,kδλ

−g̃c − g̃Tx,kδxk − g̃Tw,kδwk

]
(3.30)

δuk = Ak +Bkδxk + Ckδw +Dkδλ (3.31)

G = (g̃Tu,kJ̃
−1
uu,kg̃u,k)

−1g̃Tu,kJ̃
−1
uu,k

K = J̃−1
uu,k(Im − g̃u,kG)

Ak = −KJu,k −GT g̃c

Bk = −KTJT
xu,k −GT g̃Tx,k

Ck = −KTJuw,k −GT g̃Tw,k

Dk = −KTJuλ,k −GT g̃Tλ,k

(3.32)

24

3.4 Hybrid Differential Dynamic Programming

Augmented Lagrangian (final state constraints)

In order to handle final state constraints (or for a multi-phase problem the so-called phase
constraints) an augmented Lagrangian approach is employed [19]. The idea behind this
approach is to consider an augmented objective function, that include two additional terms.

The first one is a "penalty term", which consists in the product between a scalar σ > 0
and the squared norm of the final state constraint’s violation. Considering the objective
function augmented by this term and following the same procedure as for unconstrained
problems, gives rise to what in literature are known as penalty methods [19]. The addition
of the penalty term allows to generate a solution that take into account also the constraints,
limiting their violation. Once convergence is achieved, the greater the penalty parameter σ,
the closer the solution will be to the imposed final state. However, this family of methods
has a drawback. Indeed, if the penalty term is added to the objective function individually,
in order to reach a solution that matches perfectly the prescribed final state, theoretically
a parameter σ = +∞ is required. This in practice is an unachievable condition, but never-
theless, in order to obtain a solution featured by a very small constraints violation, an high
value of σ is needed. In this context the issue is that having a parameter that takes on
such great values significantly alters the shape of the objective function. The consequence
consists in the generation of numerical ill-conditioning that makes the convergence achieve-
ment particularly difficult for the algorithm.
Augmented Lagrangian methods overcome this problem by adding another term represented
by the scalar product of a vector of multipliers λ and the vector of the constraint violation
(recalling in this way a sort of Lagrangian function of the augmented objective function).
This approach acts on modification not only of the penalty parameter σ but also of the
vector of the multipliers λ. It has been demonstrated that this technique allows to reach
a solution featured by a very small constraints violation also for limited values of σ and λ
differently from penalty methods. In this way, ill-conditioning problems are prevented and
the convergence rate is improved.
Operatively, in order to practically apply this approach in the HDDP algorithm, the final
state cost function ϕ is substituted by the expression:

ϕ̃ = ϕ+ λTψ + σ||ψ||2 (3.33)

In this way, exploiting the augmented cost function ϕ̃, the final state constraint is automat-
ically included in the objective function expression.

At this point the algorithm procedure need some new passages with respect to the ones
expressed in 3.3.1. In fact, an augmented Lagrangian method generally presupposes the
modification of the multipliers vector during the solving process by following a precise law
(either by exploiting the estimation at the first-order of the multipliers, or more refined
approximations).
There are two version of HDDP, where the vector of multipliers is changed differently
according to the approach adopted:

25

Differential Dynamic Programming

• In the first version of HDDP [28], the problem is faced by a "min max" approach.
Here the detailed theoretical explication is omitted for conciseness, for a detailed
description of this approach the reader can refer to the book of Bertsekas [6]. What is
important to emphasise, however, is that in this approach, optimisation is performed
by means of two separate cycles. In the first, a minimisation of the objective function
is performed as in the unconstrained case, keeping the multipliers constant. Once the
first minimisation is complete, the second cycle is executed just once, in which J is
also expanded with respect to the multipliers. Their variation is computed imposing
that d

dδλδJ0 = 0, in a similar way to what have been done for the control, but, unlike
the first loop, in this case the optimization consists in a maximisation with respect
to the multipliers. Then, the δλ computed take also part in the definition of the new
control policy and the vector λ is changed accordingly for the next iteration.

• In the final version of HDDP presented in [27], the main idea behind the multipliers
update is almost identical to what have been said for the previous case. The main
difference consists in the fact that the optimization is performed in a single coupled
cycle, where at each minimisation with respect to the control also a maximization
with respect to the multipliers is "simultaneously" computed.

Operatively, in the cycle where there is the multipliers update, the idea consists in expanding
Jk also with respect λ, obtaining the expansion 3.22. Then, retrieved all the coefficients with
the procedure described in 3.4.1 I or in 3.4.1 III, an adequate variation of the multipliers
shall be defined. In order to do that, in HDDP the hereunder rule is imposed, following the
same philosophy of what previously done with the control:

δλ = Aλ + Cλδw (3.34)

with: {
Aλ = −J̃−1

λλ Jλ

Cλ = −J̃−1
λλ Jλw

(3.35)

In [27], J̃λλ is defined solving the trust region subproblem TRQP(−Jλ,k,−Jλλ,k,∆). Dif-
ferently from the one defined for the control, the solving process consists in a constrained
maximization in δλ, no longer in a minimization.
As a final step of the backward process, the expected reduction of J is modified to take
into account the increase in the objective function due to the maximisation on Lagrange
multipliers

ER0 = ER0 + JT
λ Aλ +

1

2
AT

λJλλAλ (3.36)

Once the procedure to accept the iterate is then performed, it can sometimes happen that
the norm of the final state constraints violation increases instead of decreasing. If it is
the case, Lantoine and Russel proposed a rule for increase in a proper way the penalty

26

3.4 Hybrid Differential Dynamic Programming

parameter σ, in order to push the next iterates towards feasibility. The updating rule
proposed is the following:

σk+1 = max

(
min

(
0.5

h

f2
, kσσk

)
, σk

)
(3.37)

where kσ is a constant greater than 1, and h, f are defined in the following way:

h = ϕ(xN+1, w) +

N∑
k=1

L(xk, uk, w) (3.38)

f =
√
||ψ(xN+1, w)||2 (3.39)

At this point, due to the way in which these constraints are treated, the termination
condition of algorithm is obtained when both two different conditions are matched:

• ||ER0|| ≤ ϵopt, which is the condition related to the gradients of the objective function,
i.e. the closeness to the local minimum sought by the method.

• ||ψ(xN+1, w)|| ≤ ϵfeas, which is the condition related to the closeness to the target
final state.

ϵopt and ϵfeas are two tolerances defined by the user, depending on the level of accuracy
required and on the problem addressed.

State Transition Matrix approach

An other important aspect introduced by the HDDP is the State Transition Matrix (STM)
approach [27]. This is a new way to compute the derivatives needed by the algorithm during
the backward sweep, indeed they can be exploited in order to map the perturbations between
two consecutive stages. The STMs substitute the derivatives of the transition function F
that appear in the formulation. For problems that require integrated dynamics, i.e. where
we have the dynamics f expressed as a set of differential equations, it is sometimes difficult,
or downright impossible, to trace back to a transition function F analytically. The latter
is in fact derived by approximating the integral of the dynamics f numerically (recalling
the expression 3.3). This does not constitute a major problem in the calculation of the
trajectory, however, in the computation of the derivatives of F it introduces a difficulty.
In fact, changing the numerical integration method by which F is obtained also means
changing its expression to be derived, which is exploited by the optimisation. Every time
the method of integration is changed, in some way the derivatives of F are modified, thus
also affecting the optimisation. This is why integration and optimisation, up to this point,

27

Differential Dynamic Programming

where considered somewhat linked in the DDP method and their coupling must be handled
appropriately. The use of the STM fixes this problem, decoupling the integration by the
optimization.

In the HDDP, an augmented system is exploited to compact the notation, in which the
augmented state vector XT

k = [xTk uTk wT] is considered. Accordingly, also an augmented
transition function is taken into account F̃ T

k = [F T
k 0m 0p] (since u̇k = 0 and ẇ = 0). By

definition, the augmented system leads to:

Xk+1 = F̃k(Xk) (3.40)

δXk+1 ≈ F̃ T
X,kδXk +

1

2
δXT

k • F̃ T
XX,kδXk = Φ1

kδXk + δXT
k • Φ2

kδXk (3.41)

where Φ1
k represents the state transition matrix of order 1 of the augmented system, whereas

Φ2
k is the state transition matrix of order 2.

These two tensors can be provided directly by the user, can be derived directly by the F
(whenever there is an analytical form of the transition function), or can be retrieved by
a numerical integration that requires just the knowledge of the dynamics expressed as f .
Indeed, in this latter case, the state transition matrices can be computed by the integration
of the following differential system:{

Φ̇1
k = fXΦ1

k

Φ̇2
k = fX • Φ2

k +Φ1T
k • fXX • Φ1

k

(3.42)

subjected to the initial condition Φ1
k(tk) = In+m+p and Φ2

k(tk) = 0n+m+p.
The last casuistry is typically exploited in the case where there is an integrated dynamic in
which an F function cannot be easily traced analytically. With this new approach, it should
be emphasised that the derivatives of F are obtained by means of numerical integration,
which requires knowledge only of the dynamics f , without the need of derivating a complex
expression of a numerical integration scheme by which the F will be expressed. In this way
the integration does not affect directly any more the optimization, and the user is facilitated
to make the inputs of the problem faced conform to the optimisation algorithm.

Once the STMs are computed, substituting 3.41 into the expansion of J∗
k+1, the equation

to compute the derivatives of J at the previous stage can be derived, in analogy with the
process expressed in 3.3.1. The rule is here reported, considering the new STM approach
introduced and the presence of static parameters w and final state constraints ψ.Jx,kJu,k

Jw,k

T

=

Lx,k

Lu,k

Lw,k

T

+

J∗
x,k+1

0m
J∗
w,k+1

T

Φ1
k (3.43)

28

3.4 Hybrid Differential Dynamic Programming

Jxx,k Jxu,k Jxw,k

Jux,k Juu,k Juw,k

Jwx,k Jwu,k Jww,k

 =

Lxx,k Lxu,k Lxw,k

Lux,k Luu,k Luw,k

Lwx,k Lwu,k Lww,k

+Φ1T
k

J∗
xx,k+1 0n×m J∗

xw,k+1

0m×n 0m×m 0m×p

J∗T
xw,k+1 0p×m J∗

ww,k+1

Φ1
k

+

J∗
x,k+1

0m
J∗
w,k+1

T

• Φ2
k

(3.44)

Jλ,k = J∗
λ,k+1 Jλλ,k = J∗

λλ,k+1 (3.45)

[
JT
xλ,k J

T
uλ,k J

T
wλ,k

]
= JT

Xλ,k = J∗T
Xλ,k+1

∂Xk+1

∂Xk
=

[
J∗T
xλ,k+1 0m J∗T

wλ,k+1

]
Φ1
k (3.46)

3.4.2 Limitations

Up to this point, the various improvements made by HDDP have been illustrated to demon-
strate its potential. On the other hand, this algorithm is also subject to certain limitations
that circumscribe its use and on which further improvements shall be investigated. The
two major ones are related to the employment of the mathematical techniques that at the
same time represent the major innovations introduced by HDDP: the trust region method
and the STM approach.

STM Computations

The introduction of the STM approach provide several advantages. However, its calculation
requires a lot of computational effort. In fact, the integration of the first and second order
STMs requires (n + m + p)2 and (n + m + p)3 equation to be integrated. This implies
computational cost that increase rapidly as the number of the variables of the problem
increase. In this regard, many studies carried out using HDDP have shown that the part of
the algorithm that takes the longest computational time is precisely related to the calcula-
tion of STMs. In comparison, the traditional Riccati-like formulation (implemented in the
software Mystic [34]) requires only (n+m+ p) and (n+m+ p)2 equation to be integrated.
This is why considerable attention is now being paid to studies that aim to decrease the
computational time dedicated to STMs, like for example numerical approximations of STMs
[31] or the use of analytical STMs [20] that approximate the actual dynamics whenever its
possible.

29

Differential Dynamic Programming

Tuning of the Algorithm

An other open points is related to the tuning of HDDP. Indeed, in the algorithm there
are a lot of parameters to be tuned at priori in order to grant/speed up convergence. One
of the most important parameters to be tuned in this sense, is the scaling matrix D of
the trust-region method. The latter is of paramount importance for a convergence of the
algorithm, especially when the problem faced presents some final state constraints. In this
case indeed, also if the problem is well-scaled (so in general a good nondimensionalization
is performed and the same variation on different variables produces similar variation on the
objective function), typically the variation brought about by the lagrangian multipliers λ is
very different by the one brought about by the state variables. This is why, in any case, Du

and Dλ are different. Moreover, there is no an automatic rule to rely on in order to define
a scaling matrix that ensure the convergence. This implies that some tests are required to
define the D matrix in a proper manner, in order to grant convergence.
However, this tuning operation can sometimes be quite complicated and difficult to resolve
effectively in practice.

3.4.3 HDDP Algorithm

Step 0 (Initialization): Assume an initial guess for dynamic controls uk and Lagrange mul-
tiplier λ (tipically λ = 0). Define all the initial values of optimization parameters, i.e. initial
trust region radius ∆0, initial penalty parameter σ0, convergence thresholds ϵopt, ϵfeas, and
constants parameters like D matrix, κ, kσ, ϵ1. Compute trajectory, initial objective and
constraints violation values.

Step 1 (Computation of first/second order STMs): Evaluation of ϕ1k and ϕ2k for all the
stages k. If this process is performed by the integration of 3.42, this is the most computa-
tional expensive step of the algorithm.

Step 2 (Backward Sweep): Initialize the optimal cost-to-go function derivatives and the
expected reduction ER at the last stage. Perform recursive mapping of control, state and
multiplier cost derivatives through 3.43, 3.44, 3.45 and 3.46. Solve the successive trust
region subproblems of 3.22. Deduce the control law coefficients Ak, Bk, Ck and Dk for δuk
from 3.24 (unconstrained case) or 3.32 (constrained case); the control law coefficients Aλ

and Cλ for δλ from 3.35. Compute the total expected reduction ER0 from repeated appli-
cation of 3.17 (first equation) and 3.36.

Step 3 (Convergence Test): if ER0 < ϵopt, f < ϵfeas, all reduced Hessian Juu with respect
to u are positive definite and Hessian Jλλ with respect to λ is negative definite, then STOP
(CONVERGENCE ACHIEVED).

Step 4 (Forward Sweep): Compute a new trial iterate with the control laws obtained from
Step 2. Evaluate Jnew, hnew and fnew.

30

3.4 Hybrid Differential Dynamic Programming

Step 5 (Trust region Update and Acceptance of an Iteration): Compute the cost ratio ρ
from 3.26. Update trust region radius ∆ following the rule 3.28. If ρ ∈ [1− ϵ1, 1+ ϵ1] go to
Step 6, otherwise go to Step 2.

Step 6 (Penalty Update): if fnew > f , update the penalty parameter using 3.37.

Step 7 (Nominal Solution Update): Replace the values of J, h, f, uk, w, λ and xk by their
new values. Go to Step 1.

31

4 | HDDP in Orbital Elements

This chapter reports on the major contribution made by this thesis work. It presents the
coupling of the optimisation algorithm discussed in the previous chapter with the use of
orbital elements as a set of variables.
The structure of the optimiser remains the same, however, attention must be paid to certain
aspects due to the intrinsic nature of the new set of variables, as also mentioned in [32] and
[12]. In this chapter, we will begin by introducing the reader to a brief overview of what
orbital elements are and what they represent, followed by a discussion of the advantages
and the necessary precautions of using such variables in the context of HDDP, to finally
move on to present a method for change the independent variable in the formulation, the
Sundman transformation, which has considerable numerical benefits for certain types of
problems addressed.

4.0.1 Reference frames

Before to start the overview it is important to define the 3 reference frame in which the
states typically work. The Cartesian coordinates are in general defined in a fixed inertial
x, y, z framework that can be for example Earth-Centered Inertial (ECI) or International
Celestial Reference Frame (ICRF). However, sometimes can be convenient to define the
states in other framework not fixed at priori. The two most common are Perifocal (EPH)
one and the TNH [21]. EPH has x-axis that points towards the pericentre location, z-axis
that is in the same direction of the angular momentum of the orbit and the y-axis that
complete the right-handed tern. TNH, instead, is the frame that has y-axis directed as the
conjunction between the point considered and the focus of the orbit, the z-axis directed as
the angular momentum and x-axis that complete the right-handed tern.

32

4.1 Orbital elements overview

4.1 Orbital elements overview

There are two main sets of orbital elements that are usually used to deal with orbital
mechanics problems, both of which allow to reformulate the problem no longer in terms of
the classical Cartesian coordinates, but as a function of certain parameters of the orbit on
which an hypothetical spacecraft lies at certain instant. Sometimes, such a representation
takes on major importance in this context, since it allows one to evaluate how an orbital
transfer takes place in terms of specific feature of an orbit, like the dimension and the shape,
also being able to interpret which part of the transfer is most energy-consuming, which is
difficult to interpret when the user can observe trends in Cartesian coordinates.
The first set consists of the so-called Keplerian elements, which have a close correlation with
typical physical and geometric quantities of the orbit. In the literature they are typically
reported with as a, e, i, Ω, w, θ of which:

• a is called semimajor axis. It represents the dimension of the orbit. The last quantity
is also closely related to the energy level, and therefore this parameter gives important
information in this regard as well.

• e is called eccentricity. It represents the shape of the orbit. Indeed, in the two-body
environment, the orbit is represented by a conic section, i.e. an ellipses, a parabola
or an hyperbola. This parameter indicates to which family the orbit belongs and its
ellipticity.

• i is called inclination. It represent the angle between the normal to the orbital plane
and the direction of the z-axis in the Cartesian reference system.

• Ω is called right-ascension of the ascending node, which is the angle between the x-
axis in the Cartesian reference frame and the direction defined by the intersection of
the orbital plane on the xy-plane of the same latter framework (which can be called
node direction).

• w is called anomaly of pericentre. It is the angle between the direction defined by the
intersection of the orbital plane on the xy-plane in the Cartesian reference frame and
the one defined by the orbital pericentre location.

• θ is called true anomaly. It represents the angle between the pericentre direction and
the point in which the spacecraft lies on the orbit.

This set of variables can be retrieved directly the the Cartesian expression of the state by
applying some non-linear transformations that are well known in orbital mechanics. To see
a complete view of these the reader can refer to [21].

The second widely used set refers to the so-called Modified-equinoctial elements. They are
reported in literature as p, f, g, h, k, L, which:

33

HDDP in Orbital Elements

• p is called semilatus rectum and represents the distance by the attractor when θ = 90°.
It still has similar meaning of the semi-major axis a in terms of energy and dimension
of the orbit, but it has the property that for any value of eccentricity e it never
diverges neither change sign. The semi-major axis instead is = ∞ when the orbit
become a parabola and is less than 0 when the latter becomes an hyperbola.

• f, g represents the x and y components of the eccentricity vector in the EPH frame.

• h, k represents the x and y components of the node vector in the orbital frame.

• L is called true longitude

The last set can be retrieved directly from the knowledge of the classical Keplerian elements
and viceversa, by applying the following transformations:

p = a(1− e2)

f = e cos(Ω + ω)

g = e sin(Ω + ω)

h = tan
(
i
2

)
cos(Ω)

k = tan
(
i
2

)
sin(Ω)

L = Ω+ ω + θ

(4.1)

a =
p

1− e2

e =
√
f2 + g2

i = 2 tan−1(
√
h2 + k2)

Ω = tan−1(k, h)

ω = tan−1(g, f)− Ω

θ = L− (Ω + ω)

(4.2)

where equation 4.1 represents the direct transformation, whereas equation 4.2 represents
the inverse one. tan−1 indicates a four quadrant inverse tangent calculation.

4.2 Advantages and precautions

This section discusses in detail all the advantages and precautions required for a successful
optimisation method when adopting orbital elements as a set of state variables.

34

4.2 Advantages and precautions

4.2.1 Precautions

The two main points to pay attention to are the scaling process, which as we will see is
crucial here, and some pros and cons associated with the different choice of set adopted for
the problem addressed.

Scaling Process

As seen in the section 4.1, orbital elements presents as state variables of different nature.
Indeed, a or p consists in physical distances, i, Ω, w, θ, L are geometric angles, e is a di-
mensionless parameter and f, g, h, k are quantities that are difficult to label.
In particular, it should be emphasised that for this reason, some quantities have dimensions
that are significantly different from others. This is the case for the semi-major axis and the
semilatus rectum, which have typical values that exceed tens of thousands of kilometres, and
other elements, which, being geometric angles or projections of almost unitary vectors, are
bounded to values just over the unity. This phenomenon causes an inherent ill-conditioning
of the matrices involved in the treatment and consequently a scaling process becomes of
paramount importance for the success of the optimisation in this case. This aspect is a
good practice also when Cartesian coordinates are exploited, but for that case sometimes a
convergence can be achieved also without the scaling process. For orbital elements instead,
it becomes fundamental to avoid intrinsic ill-conditioning due to the reasons aforementioned.

In this work to avoid numerical problems due to this aspect the following characteristic
quantities are adopted, which are similar to the ones proposed by [12], i.e.:

• Lref = atarget/1.5, reference length equal to target semi-major axis divided by a factor
equal to 1.5;

• mref = m0, reference mass equal to initial total mass of the spacecraft;

• tref =

√
L3
ref

µ
, reference time chosen to have some coefficients in the dynamic equation

equal to 1;

• uref =
µmref

L2
ref

, reference thrust chosen to have some coefficients in the dynamic

equation equal to 1;

The factor equal to 1.5 that appear in the espression of Lref is introduced to ensure that the
solution, when close to convergence, will have a dimensionless semi-major axis equal to the
factor. It was chosen greater than 1 in order to give slightly more weight to the violation
of the constraint on the semi-axis than the other parameters. Indeed, it is noted during
optimization that a variation of a leads also a variation of ω and θ (because the optimiza-
tion acts on ut). They are the variables in the problem that exhibit the most oscillatory

35

HDDP in Orbital Elements

behaviour, which means that the greatest variation typically occurs on them. It is therefore
sometimes the case that the method focuses more on reducing the final constraint violation
associated with these angles, having difficulty in optimising the semi-axis efficiently at the
same time. At the end of this procedure the parameters that are rescaled are: the semi-
major axis a, the mass m, the components of the thrust Tt, Tn, Th, the specific impulse Isp1,
the constant acceleration g0 and the time of flight TOF selected for the transfer.

The trajectory is generated integrating dimensionless Gauss planetary equations re-
ported in 4.3, which directly involve orbital elements as a variables. To this set of differen-
tial equations, the mass equation is added, obtaining the complete dynamics that describe
the problem faced.

˙̃a = 2

√
ã3

1− e2
(1 + 2e cos θ + e2)

(
ũt
m̃

)

ė =

√
ã(1− e2)

1 + 2e cos θ + e2

[
2(e+ cos θ)

(
ũt
m̃

)
− (1− e2) sin θ

1 + e cos θ

(
ũn
m̃

)]

i̇ =
√
ã(1− e2)

cos (ω + θ)

1 + e cos θ

(
ũh
m̃

)

Ω̇ =
1

sin i

√
ã(1− e2)

sin (ω + θ)

1 + e cos θ

(
ũh
m̃

)

ω̇ =
1

e

√
ã(1− e2)

1 + 2e cos θ + e2

[
2 sin θ

(
ũt
m̃

)
+

2e+ cos θ + e2 cos θ

1 + e cos θ

(
ũn
m̃

)]
−
√
ã(1− e2)

cos i

sin i

sin (ω + θ)

1 + e cos θ

(
ũh
m̃

)

θ̇ =
(1 + e cos θ)2√
ã3(1− e2)3

− 1

e

√
ã(1− e2)

1 + 2e cos θ + e2

[
2 sin θ

(
ũt
m̃

)
+

2e+ cos θ + e2 cos θ

1 + e cos θ

(
ũn
m̃

)]

˙̃m = −

√
ũ2t + ũ2n + ũ2h

Ĩspg0
(4.3)

1Ĩspg0 = Ispg0

√
Lref

µ

36

4.2 Advantages and precautions

As can be seen in the equations 4.3 is not present the gravitational parameter µ. This
is precisely due to the scaling process.
At the same time, the dimensionless dynamics equation exploited when modified-equinoctial
elements are adopted as state variables, are reported in 4.4, which are provided by [32]. For
this work it has been decided to maintain the semi-major axis a rather than the semilatus
rectum p. This is due to the fact that the transfers studied involve only elliptical orbits,
thus avoiding the problems caused by the divergence/change of sign of this element. At the
end of the scaling procedure (which is performed exploiting the same characteristic quan-
tities adopted for the Keplerian elements evolution) the dynamics equation is represented
by:

˙̃a = 2
√
ã3

√
1 + 2f cosL+ 2g sinL+ f2 + g2

1− f2 − g2

(
ũt
m̃

)

ḟ =
√
ã

√
1− f2 − g2

1 + 2f cosL+ 2g sinL+ f2 + g2

{
2(f + cosL)

(
ũt
m̃

)
−

[
2g+

1− f2 − g2

1 + f cosL+ g sinL
sinL

](
ũn
m̃

)}
− g

√
ã(1− f2 − g2)

h sinL− k cosL

1 + f cosL+ g sinL

(
ũh
m̃

)

ġ =
√
ã

√
1− f2 − g2

1 + 2f cosL+ 2g sinL+ f2 + g2

{
2(g + sinL)

(
ũt
m̃

)
−

[
2f+

1− f2 − g2

1 + f cosL+ g sinL
cosL

](
ũn
m̃

)}
− f

√
ã(1− f2 − g2)

h sinL− k cosL

1 + f cosL+ g sinL

(
ũh
m̃

)

ḣ =
1

2

√
ã(1− f2 − g2)

1 + h2 + k2

1 + f cosL+ g sinL
cosL

(
ũh
m̃

)

k̇ =
1

2

√
ã(1− f2 − g2)

1 + h2 + k2

1 + f cosL+ g sinL
sinL

(
ũh
m̃

)

L̇ =
(1 + f cosL+ g sinL)2√

[ã(1− f2 − g2)]3
+
√
ã(1− f2 − g2)

h sinL− k cosL

1 + f cosL+ g sinL

(
ũh
m̃

)

˙̃m = −

√
ũ2t + ũ2n + ũ2h

Ĩspg0
(4.4)

37

HDDP in Orbital Elements

Choice of the set

The other precautions to pay attention is related to the choice of the set of orbital elements
adopted.
All the classical Keplerian orbital elements has a strong physical meaning, representing
dimension, shape and orientation in space of the current orbit. This implies that their
evolution over time provides an easy-to-interpret view of how the transfer orbit is changes
size, shape and how it rotates in space. However, this set, as can be seen by the dynamic
Equation 4.3, is affected by several singularity conditions. In cases when e = 0, e = 1 and
i = 0, which are often situations of interest for practical applications, the dynamic diverges,
causing the failure of the method. Every time the path approaches these conditions, even
without reaching them, the behaviour of the optimiser worsens, slowing down and sometimes
completely preventing convergence.
Modified equinoctial elements on the other hand, has the advantage to do not present any
singularity condition, but their evolution is not easy to interpret as they have no direct
physical meaning (with the exception of p).

4.2.2 Advantages

The two main advantages that suggest the use of these variables’ set are related to their
evolution in time and the framework in which the dynamic works, that helps to define in a
more easy way a better first guess.

Time evolution

It is well known in orbital mechanics that the orbital elements presents a behaviour which is
quite different from the Cartesian coordinate representation. Considering for example the
evolution of the two cases on a frozen keplerian orbit in the two-body environment. When
Cartesian coordinates are exploits to describe this situation, all the 6 variable oscillates
in a trend similar to a sinusoid. On the other hand, because the characteristic property
of the orbit (i.e. dimension, shape and orientation of the orbital plane) does not change,
a, e, i, Ω, w remain constant and the unique parameter that oscillates is the true anomaly.
In this situation, therefore, the evolution of orbital elements exhibits a more regular and
less oscillating behaviour than the Cartesian trend. In a general orbital transfer also the
orbital elements changes, but their evolution in time is more smooth than the Cartesian
ones in any case. With regard to the modified equinoctial elements, their behaviour is
even more regular than the classical Keplerian elements, and they are considered the most
efficient set in this respect.
This feature becomes very important in the optimisation context. In fact, from a numerical
viewpoint, it facilitates the optimiser’s task also with a limited amount of discretisation
stagesN . This results in optimisation taking place faster and with fewer iterations whenever
the orbital elements are exploited as state variables.

38

4.3 Challenges and Sundman Transformation

First guess generation

Another important aspect related to the number of iterations required to achieve conver-
gence is the definition of a good initial guess. Typically, when Cartesian coordinates are
exploited as state variables, this is a issue to be solved. In fact results difficult to define a
control law that generates the solution desired to the difficulty in identifying how a control
law affect the characteristic properties of the orbit (energy, shape, orientation) when this
set is employed. Morover, typically describing the problem in fixed refernce frame, like ECI,
a good initial control policy require the variation in time of all the 3 components, which is
difficult to be defined at priori.
Considering instead an orbital element’s set in the TNH reference frame, the situation
changes. In fact working directly on specif properties of an orbit, the dynamic equation
directly provide what components of the thrust generates a variation in shape, dimension or
orientation. In this way it is more easy to identify the control law required for the definition
of a good initial guess. Moreover, working in the TNH reference frame, the a good initial
control policy results more easy to be defined, because it can be retrieved maintaining
costant the components along the whole path. For example, for a planar case, where initial
and target orbit are circular and lies on xy plane in the ECI frame, a good initial guess is
a trajectory that approximately match the final dimension of the target orbit. To do so, in
TNH the issue is simply solved by defining a control policy which has just a constant tan-
gent component, where the magnitude is the only thing to be tuned. Whenever instead the
dynamic is represented in ECI, an oscillating control law of both x and y thrust component
shall be defined, which can also change if the discretization number change. It is evident
that in the latter case the issue is more cumbersome to be efficiently solved.
Therefore, this discussion underlines how is easier to define a good initial control law when-
ever the problem is formulated by means of orbital elements.

4.3 Challenges and Sundman Transformation

From the optimization point of view, when we are dealing with a planetary multi-revolution
transfer, the problem becomes very sensitive to variations in control and oscillations in state
variables. Moreover, due to its intrinsic nature, a large number of discretization stages N
is needed to well describe these kind of transfers.
For these reasons, it is very difficult for the algorithm, if not almost impossible, to achieve
convergence if classical Cartesian variables are used, due to their fluctuating behaviour.
The use of orbital elements in these cases, given their more regular evolution over time,
becomes not only a way to speed up convergence as in the previous study case, but also a
decisive means for the success of the method.

Another important aspect to keep in mind is how the discretization is handled. In fact,

39

HDDP in Orbital Elements

it can happen in this type of transfer that the number of nodes per revolution varies along
the trajectory. This means that if the independent variable is discretised in a total number
of nodes N in an equispaced manner, it may happen that for certain revolutions a much
greater (or lesser) number of nodes is found than for others. Furthermore, even on a single
revolution, depending typically on the shape of the orbit, there may be an accumulation of
nodes in certain areas rather than others.
This is the typical case when time t is used as independent variable, as has been done so far
in the previous case studies. It is well known that as the semi-major axis a increases, the
period increases, thus leading to an accumulation of nodes as this element grows during the
transfer and a poor discretization when this parameter is small and the dynamics is faster.
Similarly, for eccentric orbits where the velocity along the path is not constant, on a single
revolution, an accumulation of nodes in the apoapsis area in spite of the periapsis occurs.
These inhomogeneities in the spacing between nodes into which the path is divided make
the optimisation performed by the algorithm more inefficient and difficult, increasing the
number of iterations required to reach convergence.

In order to solve these issues, it is convenient to rewrite the problem in terms of a
new independent variable, leading to a different discretization from the one described.
This procedure is carried out by introducing the Sundman’s transform [23], which allows
everything to be reformulated as a function of an angle, such as the eccentric anomaly E
or the true anomaly θ.
The transformations that allow the dynamics to be rewritten as a function of the new
variables are the ones reported in [32]:

dt =

√
a3

µ

1− f2 − g2

1 + f cosL+ g sinL
dE

dt =

√
a3

µ

(1− f2 − g2)3/2

(1 + f cosL+ g sinL)2
dθ

(4.5)

At this point the dynamics equation can be reformulated considering:

d [a, f, g, h, k, L]T

dν
=
d [a, f, g, h, k, L]T

dt

dt

dν
(4.6)

where ν represents the generic angle in which the dynamic is rewritten (which can be E
either θ) and the derivatives dt

dν is recovered by 4.5.
At this point, spacing is handled differently depending on the choice of the new independent
variable.

40

4.3 Challenges and Sundman Transformation

(a) Time

(b) Eccentric Anomaly (c) True Anomaly

Figure 4.1: Different discretizations of an orbit with eccentricity e=0.8, depending on the
independent variable selected

First of all, it must be emphasised that in the case of both eccentric anomaly and true
anomaly as a new independent variable, the dependence of the spacing as a function of the
semi-major axis is missing. In fact, by expressing everything as a function of a geometric
angle, the discretization no longer presents accumulations and dispersions according to the
different value of the orbital period, as was the case with time.
The only dependence that remains is on the shape, i.e. the eccentricity of the orbit, which
changes from case to case.
When time is selected, as previously anticipated, there is an accumulation in proximity of
the apoapsis, and this represents the worst case from the optimizer point of view. In the
case of the true anomaly, on the other hand, the situation is the opposite. Indeed, there
is accumulation in the vicinity of the periapsis and dispersion in the area of the apoapsis.

41

HDDP in Orbital Elements

Finally, as far as the eccentric anomaly is concerned, we find the greatest possible uniformity
in the discretisation, where the latter also loses its dependence on eccentricity, obtaining
perfectly equispaced nodes in all eventualities.
From this point of view, the use of the eccentric anomaly seems to be the best choice for the
description of a multi-revolution problem. However, as later numerical tests will confirm,
similar results are also obtained with the true anomaly, despite the fact that it presents a
non-uniformity in spacing. This phenomenon can be attributed to the nature of the orbital
dynamics, which is faster at the peripsis. In this area, therefore, it seems reasonable to
assume a greater oscillation on the control as θ varies. The use of the true anomaly as an
independent variable therefore generates a distribution of nodes that, although not uniform,
is adapted to the speed at which the dynamics evolves along the trajectory. In conclusion,
both choices constitute a good alternative to the use of time as an independent variable in
order to extend the number of revolutions that can be treated in the optimisation, speed
up the achievement of convergence and limit the number of discretization nodes into which
the path will be divided.

42

5 | Results

5.1 Direct Transfer in Continuous Thrust

5.1.1 Description of the study case

As a first practical application, a transfer between two prescribed orbits in a planetary
environment was selected as a case study. The trajectory is imposed as a direct transfer
without revolutions and the dynamic selected is a Keplerian two-body model with the
Earth as a main attractor. The case under investigation aims to test the capability, on a
preliminary basis, of the optimization algorithm to deal effectively with problems formulated
in terms of orbital elements, evaluating performances and any limitation that may arise.

The state vector of the problem is represented by the 6 classical orbital elements and
the mass of the spacecraft, whereas the control inputs consists in the 3 components of the
thrust, expressed in the TNH reference frame.

In order to test the reliability and the robustness of the algorithm, initial and target
orbits are specially selected with significantly different orbital parameters. Indeed they are:

a [km] e [-] i [deg] Ω [deg] ω [deg] θ [deg]
x0 21378 0.4 5 0 0 60

xtarget 42378 0.1 72 72 72 145

Table 5.1: Initial and Target orbital elements of the direct transfer

43

Results

Figure 5.1: Different views of Initial and Target Position and Orbits in scaled ’x,y,z’ frame

As can be seen from figure 5.1, between the two orbits there is not only a change in the
semi-major axis and in eccentricity, but also a remarkable change in the orbital plane. In
this way the performances are evaluated when it is required a significant modification in all
the state variables in order to match the final target, stressing the optimization capabilities
of the algorithm.

The objective function J to be minimized is selected as the energy integral and the
final state constraints are set in a classical linear manner. Due to the nature of transfer, a
number of stages N = 50 was considered sufficient for the problem at hand.

J =

N∑
k=1

||ũk||2∆t̃k with ∆t̃k = t̃k+1 − t̃k (5.1)

ψ =
[
ã0 − ãtarget, e0 − etarget, i0 − itarget, Ω0 − Ωtarget, ω0 − ωtarget, θ0 − θtarget

]T
= 0
(5.2)

The selected objective function is generally exploited for a first optimization, where the final
aim is to maximize the final mass. The final results typically differ only marginally, but it
should be noted that they are not exactly the same. However, the function selected leads to
solutions where the development of the control law is more regular and smooth with respect
the one obtained for the final mass maximization, granting better performances during the

44

5.1 Direct Transfer in Continuous Thrust

optimization. These are the reasons behind the habit of choosing the energy integral as
objective function.

The specific impulse is assumed greater than a chemical thruster (with a value compat-
ible with the ones associated to electrical thrusters)1 and an initial mass value is selected
considering a large class satellite.
The time-of-flight and the initial control vector are set after some trials. The process behind
the first guess generation consists in imposing a simple control law, i.e. same tangential and
radial components and zero out-of-plane component for all the stages, and then perform
a series of propagation of the dynamic to find a reasonable magnitude of the control and
time of flight. The planar transfer obtained as initial guess is quite far from the target orbit
due to the significant change of plane aforementioned, and this is the way through which
the robustness of HDDP is estimated, in the face of initial guesses far removed from the
optimal solution.

Isp = 3000 s

TOF = 7.871 h

m0 = 1000 kg

uk = [30, 30, 0]T N for k = 1, 2, ..., N

(5.3)

The specific impulse selected is higher than the ones of real engine that can deliver the
level of thrust proposed. However, this value is selected for a first optimization in order
to avoid numerical problems associated to a possible excessive decrease in mass, which can
take values close to zero as a result of considerable orbital change. For a refinement of the
solution with more plausible specific impulses, a continuation scheme can be established
in which the obtained solution is used as initial guess for a further optimisation process
by setting lower Isp. The results presented in the next subsection are related to the first
optimization with the aforementioned Isp because the focus of this study case is related to
the robustness of HDDP rather than to obtain data in accord with the true state of the art
of the space propulsion technology. However, before to pass to the sensitivity section 5.2,
the results obtained by following the continuation scheme will also be presented. The final
specific impulse obtained following this procedure is Isp = 500 s, which is compatible with
thrust level achieved exploiting a chemical thruster.

5.1.2 Results

The minimum-energy solution obtained consume the 17.55% of the total initial mass to
perform the transfer, incurring in a final mass equal to 824.49 kg. It is important to recall

1It shall be underlined that the values of thrust and specific impulses are not retrieved directly from
data sheets of some cut-off-the-shelf products

45

Results

that the small mass consumption is due to the high specific impulse set for the optimization.
Setting tolerances ϵopt = 10−4 and ϵfeas = 10−5, the method converges in 60 iterations. The
optimal path presents a norm of the final constraint violation f = 8.4633 × 10−10 and an
expected reduction ER0 = −1.0305 × 10−8. The trend of the constraint violation and
the expected reduction along the optimization procedure can be seen in figures 5.2 and
5.3. Moreover, in table 5.2 are reported the values of Lagrange multipliers and penalty
parameter related to the initial guess and the optimal solution.
Of particular interest then is the development of the Keplerian parameters of the optimal
solution. From an analysis of these trends, in fact, it is easy to glimpse how their behaviour
has a correspondence with the physical meaning of the problem. As can be seen by looking
at the graphs of the semi-major axis and eccentricity reported in figure 5.4, in a first phase
the trajectory leads to a decrease of the two, in order to decrease the timing associated
with the transfer and match the orbit in the prescribed TOF . Afterwards, however, the
trajectory begins to increase these elements, on the one hand to bring the semi-major axis
equal to the target value, and on the other to decrease the control required to perform the
change of plane. In fact, as can be seen, the change of inclination is carried out mainly in
the second phase of the trajectory, when semi-major axis has already been increased and
the eccentricity is high. It is well known from theory on simple impulsive manoeuvres that
plane-change manoeuvres are less expensive when performed at large distances from the
main attractor. This justifies the high eccentricity. In fact, with the same semi-major axis,
the presence of a more elliptical orbit allows for points further away from the focus, where
tilt changes can be performed at lower cost.
In order to highlight the considerable difference between initial guess and optimal solution
in terms of trajectory, the two are represented graphically in figure 5.5.

Figure 5.2: Norm of constraint violation for all the iterations

46

5.1 Direct Transfer in Continuous Thrust

Figure 5.3: Absolute values of the expected reduction ER for all the iterations

λa λe λi λΩ λω λθ σ

Initial Guess 0 0 0 0 0 0 1
Optimal Solution -0.3259 -0.0155 -0.3678 -0.3089 -0.2470 -0.2883 3.375

Table 5.2: Lagrange Multipliers and Penalty Parameter of Initial guess and Final Optimal
Solution

47

Results

Figure 5.4: Evolution of Keplerian elements in time along the optimal transfer

48

5.1 Direct Transfer in Continuous Thrust

Figure 5.5: Different views of Initial Guess and Optimal Trajectory in scaled ’x,y,z’ frame

5.1.3 Specific Impulse Refinement

At this point, from the results obtained for this specific impulse value, a continuation
scheme is executed by decreasing the latter first to 800 s and then to 500 s, keeping the
same termination tolerances ϵopt = 10−4 and ϵfeas = 10−5.
At the beginning of each new optimisation, the optimal solution obtained in the previous
step is used as the initial guess. At the end of this procedure, the final results obtained
presents a final constraint violation f = 8.4339 × 10−6 and an expected reduction ER0 =
−9.6693× 10−6. The development of the Keplerian elements in time and the trajectory of
the optimal transfer are almost identical to the first optimal solution with Isp = 3000 s, but
the thrust level is lower as a result of the significant reduction in mass due to a lower Isp.
Indeed the final optimal transfer consume the 68.39 % of the total initial mass, resulting in
a final spacecraft mass equal to 316.05 kg.
The trend of the thrust magnitude and mass consumption related to the final optimal
solution are respectively reported in figure 5.6 and figure 5.7.

49

Results

Figure 5.6: Thrust Magnitude associated to the Optimal Trajectory

Figure 5.7: Mass of the Spacecraft for the Optimal Trajectory

A last remark should be made. In the study case reported, from the beginning all 6
state variables have been constrained to match the final target. However, it has been noted

50

5.1 Direct Transfer in Continuous Thrust

during optimization of different initial/final conditions, that sometimes constraining all 6
Keplerian elements from the beginning can generates some difficulties in convergence. In-
deed, this is due to the different behaviour of θ and the remaining elements, which have
a much less oscillating development than the former. When such a case occurs, it is con-
venient to constrain the first five orbital parameters in order to obtain a trajectory that
is efficiently directed to the target orbit. Subsequently, the solution found can be used as
initial guess of a second optimisation process where θ is also constrained. In this way the
convergence difficulty seems to be overcome.

51

Results

5.2 Sensitivity analysis

After deriving the aforementioned optimal solution, it was decided to carry out a study
of how the Keplerian elements and final mass vary with time of flight. To achieve this,
another continuation scheme was generated, where each optimal solution obtained is used
as an initial guess for the problem with different TOF . Thanks to this scheme, different
optimal solutions are computed in few iterations due to the initial guess selected, which is
already quite close to the optimal condition.
The constraints on the final state are kept identical to those presented in the previous
section, as the termination tolerances2. The reference TOF is the one that refers to that
solution, equal to 7 h 52 min. The analysis was carried out over a window of flight times
ranging from a minimum of 5 h 37 min to a maximum of 16 h 07 min, with variations of
45 min between two consecutive solutions, involving a total of 15 trajectories. In the table
5.3 are reported all the major data associated to the converged optimal transfers.

TOF f [-] ER0 [-] J∗ [-] max thrust [N] final mass [kg]

5 h 37 min 3.0286× 10−3 −1.5718× 10−4 0.4807 305.7355 165.959
6 h 22 min 4.1466× 10−6 −7.6968× 10−6 0.3393 226.3991 219.347
7 h 07 min 5.6969× 10−7 −4.2940× 10−7 0.2628 182.5557 271.782
7 h 52 min 8.4339× 10−6 −9.6693× 10−6 0.2093 145.9407 316.055
8 h 37 min 1.1687× 10−7 −2.3388× 10−9 0.1724 121.4939 350.528
9 h 22 min 7.5005× 10−7 −4.2011× 10−7 0.1474 107.7695 375.410
10 h 07 min 8.3529× 10−6 −2.3622× 10−6 0.1306 99.9766 391.178
10 h 52 min 4.6747× 10−7 −1.0142× 10−8 0.1193 93.9889 399.029
11 h 37 min 1.6009× 10−6 −4.5849× 10−6 0.1114 89.3096 400.695
12 h 22 min 8.0233× 10−6 −3.9113× 10−6 0.1060 86.9750 397.848
13 h 07 min 8.3763× 10−6 −4.8616× 10−6 0.1021 85.1832 391.665
13 h 52 min 3.4305× 10−6 −2.8116× 10−6 0.0993 83.6534 383.342
14 h 37 min 2.3675× 10−6 −1.0015× 10−6 0.0973 82.2044 373.775
15 h 22 min 8.3166× 10−6 −2.2007× 10−6 0.0958 80.7811 363.596
16 h 52 min 3.2778× 10−7 −1.0836× 10−7 0.0946 79.3189 353.190

Table 5.3: Major data of optimal trajectories with different TOF

2Only the solution with the shortest time of flight is stopped before due to proximity to singularity
condition

52

5.2 Sensitivity analysis

In the next legend are reported in detail all the time of flight of each optimal trajectory
and then, the development of each orbital element along time for different solutions are
compared. Furthermore, for sake of completeness, also a representation of all the transfers
in the scaled x, y, z frame are provided, in figure 5.8.

Figure 5.8: Different views of Optimal Trajectories for different TOF in scaled ’x,y,z’
frame

53

Results

Figure 5.9: Semi-major axis

Figure 5.10: Eccentricity

Figure 5.11: Inclination

54

5.2 Sensitivity analysis

Figure 5.12: Right Ascension of the Ascending Node

Figure 5.13: Anomaly of the Pericenter

Figure 5.14: True Anomaly

55

Results

It is interesting to note how the behaviour of the elements changes between solutions.
Indeed, when the time of flight is small, there is a remarkable oscillation along the trajectory
of both the semi-major axis and the eccentricity, almost reaching two times a singularity
condition in the case of minimum TOF (first a very low eccentricity is reached and then
a value of the same parameter greater than 0.97). These oscillations, as the time of flight
increases, gradually tend to dampen, resulting in an increasingly regular development of the
two elements. In fact, the semi-major axis from oscillations that brought it to values above
the target one, gradually tends to no longer exceed it along the trajectory. The eccentricity,
on the other hand, slowly tends to settle for most of the trajectory in an increasingly flat
manner at values close to its initial condition. However, it should be noted that, with a
further increase in flight time, the eccentricity again shows an increase in the second part
of the transfer before reaching the target value (figures 5.9 and 5.10).
In all solutions, the right ascension has two stationary points, a maximum and a minimum
respectively. Both, as TOF increases, take on greater and greater values. Similar trends to
Ω are seen for the anomaly of pericenter and the true anomaly, which tend to translate to
higher values as the time of flight increases, while the inclination seems to present a similar
behaviour in all cases, with its major variation occurring in the final phase of each trajectory.

A further observation to be addressed is related to the final mass obtained for several
optimal solutions. In fact, as shown by the figure 5.15a, its trend as a function of TOF is
not monotonic, and indeed exhibits a maximum. It hovers at a final mass to initial mass
ratio of ≈ 40.07%, when TOF = 11 h 37 min. It can be deduced, in fact, that beyond a
certain value of time of flight, the optimal trajectory needs a greater initial thrust to move
further away from the attractor (as shown by the detail in 5.8 and from the detail of figure
5.16) and this manoeuvre seems to be responsible for a greater consumption of propellant.
It is interesting to note then that, on the contrary, the trend of the value of the optimal
objective function is monotonically decreasing as the TOF increases (figure 5.15b). This,
once again, implies that in practice, although they are closely linked, maximisation of the
final mass and minimisation of the energy integral are not the same thing.

56

5.2 Sensitivity analysis

(a) Percentage Ratio between Final mass to
Initial mass for different TOF

(b) J* for different TOF

Figure 5.16: Thrust for different optimal solutions

57

Results

5.3 Interplanetary transfer: Earth-Mars rendez-vous

5.3.1 Description of the study case

A further important application of this algorithm concerns the area of low-thrust transfer
trajectories for interplanetary travel, for the various benefits related to the lower consump-
tion brought by modern electric thrusters. In fact, due to the almost total absence of forces
at play (very small perturbations when we are in deep space, far from the different planets),
the use of low-thrust engines can be an effective strategy for the transfer, all the more so
when one considers the gain in mass this solution entails compared to the use of chemical
thrusters.
An example often used to test for such a case study is an Earth-Mars rendezvous, which we
also decided to propose here. From the point of view of dynamics, due to the presence of
orbits with very low eccentricity and inclination, it is convenient to adopt a different set of
orbital elements from the previous section, as one is close to singularity conditions. Thus,
we chose to use equinoctial elements, which are currently considered the best for two main
reasons: from the point of view of dynamics, their evolution does not present any singular-
ities, eliminating the problems associated with the use of the classical Keplerian elements
seen previously; secondly, they present an even smoother behaviour than the other orbital
elements, and thus allow optimisation to take place with much less difficulty and with fewer
iterations.

The departure date selected is 5 June 2023 and arrival date is set to 23 March 2024. The
position of the Earth and Mars as function of time are computed by ephemerides model
that approximates the ones provided by the NASA JPL website, from which the orbital
elements are extrapolated:

a [AU3] e [-] i [deg] Ω [deg] ω [deg] θ [deg]
Departure 1.0000002 0.0166993 0 0 103.34 150.77

Arrival 1.5236884 0.0934264 1.85 49.74 286.75 182.21

Table 5.4: Classical Keplerian Orbital Elements associated to Departure/Arrival date

Also in this case a large class satellite is considered and the specific impulse is related
to an electric engine. The time of flight is imposed by the departure and arrival date, and
the first guess on the control law is retrieved in the same manner as done in section 5.1. At

31 AU = 149597870707 m

58

5.3 Interplanetary transfer: Earth-Mars rendez-vous

the end of this procedure the data initialized before the optimization are:

Isp = 2000 s

TOF = 292 days

m0 = 1000 kg

uk = [100, 100, 0]T mN for k = 1, 2, ..., N

(5.4)

The transfer is subdivided in N = 70 discretization stages. Differently from the previous
case, in order to show reliability of the algorithm, the objective function selected for this
study case consists in the maximization of the final mass mf .

Furthermore, stage constraints are also introduced here to show how the method deal
with such an eventuality. Indeed two constraints on the maximum thrust deliverable are
taken into account. The first one is related to the maximum absolute value on the thrust
that the engine can provide when it has access to the whole power needed. The other one
consider that during the interplanetary travel, if the source of power is provided by solar
panels (it is the typical situation, excluding the case when an RTG is used), it decreases
as the spacecraft gets far from the Sun. Consequently, the maximum thrust that can be
delivered will also decrease as a function of the square of Sun distance, the same trend of the
power decrement. Thus, the constraint is determined in order to have Tmax = 468.64 mN
in correspondence with Mars. They are at the end formulated in the following way:

||uk|| ≤ 700 mN

||uk|| ≤ 1300
(r0
r

)2
mN

(5.5)

where the distance from the Sun r is computed in the following way r = ã(1−f2−g2)
1+fcos(L)+gsin(L) .

The expression of the final state constraint mirrors what already described in the previous
section, the only thing that changes is that it is written in terms of equinoctial target
elements.
The tolerances set for the termination are again ϵopt = 10−4 and ϵfeas = 10−5.

5.3.2 Results

The optimal solution obtained present a final mass equal to 348.82 kg.
With the tolerances selected a final expected reduction ER0 = −7.6017× 10−7 and a final
state constraint violation f = 8.4972×10−6 are obtained. The optimal Lagrange multipliers
values and penalty parameter are reported in table 5.5.

59

Results

λa λf λg λh λk λL σ

-0.9077 -0.4821 1.2162 -0.1398 -0.1590 -0.2764 7.5938

Table 5.5: Values of Lagrange multipliers and Penalty Parameter for the optimal solution

(a) Norm of final state constraint violation for
all the iterations

(b) Absolute values of the expected reduction ER
for all the iterations

60

5.3 Interplanetary transfer: Earth-Mars rendez-vous

Figure 5.18: Initial Guess and Optimal trajectory represented in the scaled ’x,y,z’ reference
frame

Figure 5.19: Initial Guess and Optimal trajectory represented in the scaled ’x,y,z’ reference
frame

61

Results

An interesting feature to observe is the optimal control law obtained. As can be seen
from the figure 5.20, the development of the thrust magnitude of the optimal solution is
less regular than the one obtained in the previous study case. This is a consequence of the
different objective function chosen for the problem under consideration which, as mentioned
earlier, tends to generate solutions of this type, similar sometimes to those of a bang-bang
control problem. Nevertheless, it is interesting to note that the thrust always remains
below the limit values imposed by the two stage constraints introduced, which manifests
the ability of the HDDP to handle even this type of restrictions efficaciously.
As can be expected, the introduction of these constraints generates a solution which has an
optimal objective function value slightly worsened with respect to the unconstrained case.
Indeed, for this specific study case, their lack produces an optimal path with a final mass
equal to 413.62 kg, with a control featured by Tmax = 1075.97 mN .

Figure 5.20: Thrust magnitude of the optimal path with stage constraints

Another important aspect to note is the number of iterations in which the solution
converges. In this case, in fact, convergence was just achieved in 35 iterations, a symptom of
the algorithm’s good efficiency. This property is precisely due to the use of orbital elements
as a set of variables, instead of the classical Cartesian coordinates. The fact that the
former have smoother behaviour than the latter facilitates the algorithm in optimisation, as

62

5.3 Interplanetary transfer: Earth-Mars rendez-vous

manifested by the numerical results. As an example, consider case study number 3 presented
in [31]. It consists in an Earth-Mars transfer similar to the one proposed in this thesis work,
but which uses the classical set of Cartesian variables as a state vector. The results obtained
in terms of final state constraint violation and final trajectory are comparable to the case
study presented here, but the optimum is obtained over 172 iterations. Although no real
direct comparison can be made between these two problems, it is evident that there is a
considerable difference between the number of iterations with which the HDDP reaches
convergence when Cartesian coordinates rather than Orbital elements are used as a set of
variables.

63

Results

5.4 Multi-revolution low thrust transfer

The following case study is related to a modern field of application in the area of low-thrust
trajectories: multi-revolution transfers in a planetary environment.
Today, in fact, the aforementioned recent implications brought about by the use of electric
motors and the increasing miniaturisation capacity of satellites means that low-thrust so-
lutions are increasingly being chosen for transferring from one orbit to another, even when
close to a planet. In this context, the limited period associated with orbit combined with
low thrust leads to marginal changes in orbital elements after a single revolution. Hence the
need to makes a considerable number of revolutions around the attractor before reaching
the desired target orbit.

5.4.1 Description of the study case

Following what has just been described, the set of variables selected to describe the problem
are once again the equinoctial elements. Three dynamics are used to describe the problem,
each of which adopts a different independent variable: the time t, the eccentric anomaly
E and the true anomaly θ. An optimization for each dynamic will be performed with the
same tolerances, and then a comparison between the solution obtained will be made.
The chosen transfer must connect an inclined eccentric orbit, similar to a GTO, with a
geostationary orbit. The keplerian elements of the two are reported in table 5.6.

a [km] e [-] i [deg] Ω [deg] ω [deg]
Departure 16578 0.5851 35 0 270

Target 42378 0 0 0 0

Table 5.6: Classical Keplerian Orbital Elements associated to Initial and Target Orbits

The specific impulse is set to 1000 s, and the initial mass of the spacecraft is m0 =
1000 kg. The transfer is designed in order to perform a number of complete revolution
equal to 45 and the discretization stages is set to N = 300.
When the problem is formulated as a function of time, the TOF is fixed and the initial
guess is generated following the procedure exposed in the previous study cases, whereas
when eccentric anomaly or true anomaly are used as independent variable, the number of
revolutions is fixed and the magnitude of the control law is selected to generate an initial
guess similar to what obtained with time. At the end of this procedures, the final fixed val-
ues of the independent variable of each initial guesses are respectively TOF = 18.3635 days,
Eend = 286.583 rad and θend = 286.059 rad. For all the initial guesses the initial control
law is set to uk = [1, 1, 0]T for all the N stages.
It is important to remark that the solutions can slightly differ because when true or eccentric
anomaly are exploited as independent variable, the time of flight is not a fixed parameter.

64

5.4 Multi-revolution low thrust transfer

Vice versa, when time is exploited as independent variable, the final anomaly is not fixed.
Therefore, the trajectory can in general modify the "free" parameter in order match the
optimal solution.

The optimization consists in the minimization of an objective function similar to the
energy integral seen in the first study case. In this case it is represented by the integral on
time of the norm of the control, without the squaring. This choice is due to keep the equiv-
alence and avoid some issues in the case of eccentric/true anomaly. Indeed, in these latter
cases where the time of flight is not fixed, it can happen that the algorithm try to minimize
the objective function favouring the increase of the transfer time over the decrease of the
control magnitude, obtaining solutions that have little to do with a first approximation of
final mass maximisation. To avoid this situation, the balance between control magnitude
and dt will have to be revised by eliminating the squaring on the former. At the end, in
order to maintain the equivalence, the objective function in case of eccentric/true anomaly
is reformulated as:

Jt =
N∑
k=1

||ũk||∆t̃k =⇒ JE,θ =
N∑
k=1

||ũk||
(
dt̃

dν

)
k

∆νk (5.6)

The final state constraint does not impose any conditions on the true longitude (which is
equivalent to not imposing any conditions on the true anomaly) in case of time, neither on
time of flight in eccentric/true anomaly cases, in order to evaluate a transfer that fits the
target orbit efficiently.
The termination tolerances are set equal to ϵopt = 10−4 and ϵfeas = 10−5.

5.4.2 Results

At the end of the procedure presented before, the initial guess has the following shape.

65

Results

Figure 5.21: Initial Guess of the Multi-revolution Transfer

The three optimization produces optimal solutions similar to visualize, but the cases
of Eccentric anomaly and True anomaly are associated to a longer time of flight. Because
of that, the solution with time is featured by slightly grater values of thrust magnitude
required by the transfer.
In terms of final mass, the differences between the three solutions are small (less than 1% of
the initial mass); however, the most interesting data for a comparison is the number of iter-
ation required to reach convergence. Indeed, as reported by tab 5.7, the cases which exploits
anomalies as independent variable show an efficient behaviour, reaching convergence in just
approximately half the iterations needed by the time-dependent case. This demonstrates
the convenience of adopting anomalies as independent variable for problem that face a lot
of revolutions. The eccentric anomaly case presents itself as the best performing because
of the perfect spatial equidistribution of the nodes. However, the use of the true anomaly
also proves to be a case with very similar performances, despite the distribution not being
perfectly even. This is due, as mentioned earlier, to the fact that the distribution gener-
ated follows the same trend associated with the velocity of the dynamics, with a greater
accumulation of nodes in the areas where the latter is faster.

Regarding the development between the three solutions, as shown in the figure 5.23, we
can see that the development of the optimal solutions expressed in eccentric anomaly and
true anomaly is indeed very similar. The difference with the time-dependent case lies in

66

5.4 Multi-revolution low thrust transfer

the TOF . In fact, in the first two cases, the solution tends to first increase the semi-major
axis (and consequently the associated time of flight) in order to modify the inclination
later, while in the time-dependent case, in order to match the target orbit in the prescribed
time of flight, the solution is forced to modify the inclination more from the beginning,
maintaining a smaller major semi-axis.
To better visualise the differences between the time-dependent case and the cases where an
anomaly was chosen as the independent variable, two of the three solutions are shown in
Figures 5.24 and 5.25.

Independent Variable

Time Eccentric True
anomaly anomaly

ER0 [-] −7.8976× 10−6 −1.7905× 10−5 −3.4589× 10−5

f [-] 1.1994× 10−8 9.7499× 10−6 8.5004× 10−6

Final Mass [kg] 659.516 652.274 655.441

Time of flight [days] 18.3635 23.3078 23.4905

Number of revolutions [-] 45 45 45

Final True Anomaly [deg] 246.04 80.37 38.67

J∗ [N·s] 0.889246 0.889269 0.846263

Max Thrust [N] 3.403 3.141 3.399

Number of 78 36 42Successful Iterations [-]

Number of Total Iterations [-] 129 84 93

Table 5.7: Most relevant data associated with the 3 different optimal solutions

67

Results

(a) Time

(b) Eccentric Anomaly (c) True Anomaly

Figure 5.22: Norm of final state constraint violation for all the iteration depending on the
independent variable selected

68

5.4 Multi-revolution low thrust transfer

(a) Scaled semi-major axis

(b) Eccentricity (c) Inclination

Figure 5.23: Evolution in time of different orbital elements of the 3 optimal solutions and
the initial guess

69

Results

Figure 5.24: Optimal transfer when the independent variable is time

Figure 5.25: Optimal transfer when the independent variable is eccentric anomaly

70

5.5 Application to a real case: the OneWeb constellation

5.5 Application to a real case: the OneWeb constellation

5.5.1 Description of the study case

As a final case study, it has been decided to apply the method presented to a real mission
currently under development. The real application selected consider the orbit raising strat-
egy of the OneWeb satellite’s constellation. This constellation aims to build a broadband
satellite internet services, consisting in 648 operational satellites of 150 kg each. The plan
is to place them in groups of 36 on circular orbits 1200 km above the earth’s surface, in 18
different orbital planes. The operational orbits are near polar, at an inclination of 87°.

Figure 5.26: OneWeb Satellite

The first launches of this constellation began in 2019 by Roscomos via the Soyuz-2
rocket. Subsequently, following several financial misadventures of OneWeb Network Access
Associates Limited® and the beginning of the Russian-Ukrainian conflict, the company
signed a contract with SpaceX® and ISRO in April 2022 to launch the remaining satellites.
Thus, the latest developments see the launch of these bodies into orbit by means of the
American company’s Falcon 9 and the Indian LVM 3. The latter would release them on
almost circular orbits of identical inclination and orientation to those planned for actual
operation, but at lower altitudes, around 592 km above the earth’s surface4.
The satellites are equipped with Busek-BHT 350 motors, an Hall effect engine endowed
with a specific impulse of 1244 s and capable of providing a nominal thrust of 17 mN for a
maximum operational time of approximately 6 months5. With a variation in power input,
it also guarantees a certain level of throttleability, providing a thrust that can be modified
from a minimum of 10 mN and to a maximum of 30 mN.

In this context, therefore, the orbit rising strategy consists of moving from a release
4the exact data of the released orbit are a = 592 km and e = 0.0118
5As listed by the datasheet provided by the Busek official website https://www.busek.com/bht350

71

Results

orbit at an altitude of 592 km to an operational circular orbit at an altitude of 1200 km.
Although the orbital plane of the release orbit is designed to be identical to that of the
actual operational orbit, a variation of half-degree has been considered on the initial values
of inclination i and right ascension Ω, in order to take into account possible uncertainties
due to the imperfect alignment of the launcher’s release mechanism.

a [km] e [-] i [deg] Ω [deg] ω [deg]
Release Initial Orbit RTerra

6+592 0.0118 86.5 0.5 0
Operational Target Orbit RTerra+1200 0 87 0 0

Table 5.8: Classical Keplerian Orbital Elements associated to Initial and Target Orbits

The large number of revolutions leads to a challenging problem for the algorithm, which
requires a large number of discretization stages for a good description of the transfer tra-
jectory. The calculation time becomes considerable in this case, especially due to the
computation of the STMs. To limit this, it was decided to parallelize these cycles on the 4
cores available from the PC employed7. Furthermore, for the same reason, an attempt was
made to limit the number of iterations by using the eccentric anomaly E as the independent
variable of the dynamics.

As previously done for the other study case, the initial guess is determined by imposing a
simple planar control law (same tangential and radial component, with a magnitude slightly
greater than 17 mN, the nominal thrust provided by Busek engine) and some tests were
carried out to determine the number of revolutions (until a final semi-major axis is similar to
the target one). Once this had been estimated, a reasonable number of discretization nodes
N were derived with which the trajectory was subdivided. At the end of this procedure,
the main data to be initialized before the optimization are obtained, i.e.:

Isp = 1244 s

m0 = 150 kg

N = 2000

Nrev = 400

uk = [14, 14, 0]T mN for k = 1, 2, ..., N

(5.7)

The dynamic is written as a function of the eccentric anomaly as independent variable, and
the objective function selected is the energy integral, as already presented in the first case.
Due to the small plane change there are not the issues related to the choice of the cost
function encountered in 5.4.1, so, differently from the multi-revolution case, the objective

6RTerra = 6378 km
7It is a HP Pavillion 15 with, as processor, an Intel(R) Quad-Core(TM) i7-1065G7 @ 1.3 GHz

72

5.5 Application to a real case: the OneWeb constellation

function is simply written as:

J =
N∑
k=1

||ũk||2∆Ẽk (5.8)

Due to the remarkable sensitivity to the oscillation of the parameters, and because there
is no a prescribed time to reach the exact final position, it has been decided to constraint
the first 5 state variables but not the time of flight, as done in the study case presented
in section 5.4.1. In addition, because of what has been said earlier about the engine spec-
ification, the constraint on thrust is imposed, such that 10 mN ≤ T ≤ 30 mN for all the
stages.
The termination tolerances are, as always, set to ϵopt = 10−4 and ϵfeas = 10−5.

5.5.2 Results

The large number of discretization stages implies a long computational time per iteration,
mainly due to the numerical integration of first and second order STMs. However, because
of the small variation between initial and target values of the Keplerian elements, of the
almost planar situation, of the orbital elements exploitation and of the independent variable
selected, the method converges in a very limited amount of iterations, niter = 3. This result
highlights the potential of using orbital elements combined with HDDP for the optimisation
of problems with a large number of revolutions.
The optimal solution presents a final mass equal to 145.875 kg, which is the 97.25% of its
initial value, demonstrating a very low propellant consumption required for the transfer.
It is featured by an ER0 = −5.0175 × 10−14 and a final state constraint violation f =
8.3395× 10−11.
The optimal control law is reported in figure 5.29. As can be seen, even allowing for some
misalignment on the release orbit, the equipped engine is able to guarantee the feasibility
of the transfer, being the required thrust between a minimum of 14.43 mN and a maximum
of 25.29 mN.
Then, in figures 5.27 and 5.28 are reported in detail how semi-major axis and eccentricity
change during the transfer.

λa λf λg λh λk σ

-2.2364×10−6 9.6759×10−7 3.9520×10−10 -3.7379×10−6 3.7323×10−6 1×10−3

Table 5.9: Values of Lagrange multipliers and Penalty Parameter for the optimal solution

73

Results

Figure 5.27: Evolution of scaled semi-major axis a of optimal solution and initial guess

Figure 5.28: Evolution of eccentricity a of optimal solution and initial guess

74

5.5 Application to a real case: the OneWeb constellation

Figure 5.29: Thrust Magnitude of the optimal solution

Figure 5.30: Representation of the optimal transfer in the scaled ’x,y,z’ reference frame

75

6 | Conclusions

This thesis deals with optimal problems related to the development of low-thrust and
continuous-thrust trajectories in the various fields of application associated with them.
As anticipated, these types of transfers are currently an increasingly popular strategy due
to the consumption benefits of the new electric thrusters. In fact, they allow significant
savings in terms of propellant whenever flight time is not a primary concern.
From an algorithmic point of view, such paths present a number of complications due to
their intrinsic nature. In fact, they are associated with a considerable number of discretiza-
tion nodes (and consequently of decision variables) that pose a general increase in the
computational cost of current optimisation methods.
In this context, the application of differential dynamic programming is of particular inter-
est, as it allows results with accuracy comparable to indirect methods and at the same time
robustness typical of direct methods at a particularly limited computational cost.
This thesis proposes to combine the use of HDDP algorithm, the last validated upgrade
of differential dynamic programming approach, for trajectory optimization with the use of
orbital variables. This would allow, as confirmed by numerical results, speeding up conver-
gence in classical problems and increasing the number of revolutions that HDDP can deal
with for low-thrust transfers. The latter is a extremely hot-topic for current applications,
like orbit servicing, constellation’s satellites orbit insertion strategies and multiple target
missions. Hence the current relevance of this subject arises.
As confirmed by numerical results, differently from the adoption of classical Cartesian vari-
ables as state vector, the use of orbital elements (especially modified equinoctial elements)
in HDDP allows the possibility of dealing with multi-revolution problems effectively, with
a discretization that require fewer stages. In particular, the introduction of the Sund-
man transform, makes it possible to further reduce the number of iterations required by the
method to achieve convergence, resulting in an increase in the speed of the algorithm when-
ever it deals with multi-revolution problems. Until now, in fact, only few times optimal
multi-revolution transfers have been designed by means of HDDP. In these few cases, the
number of revolutions taken into account is however limited. The reformulation of the prob-

76

lem into orbital elements has considerable advantages for the optimiser, indeed it extends
the applicability to cases with a considerable number of revolutions that are impossible to
treat exploiting the classical Cartesian variables, as shown by the last study case.
For all these reasons, the thesis aims to introduce the possibility of dealing with low-thrust
optimisation problems in all its fields of application in an effective manner thanks this new
form, concerning especially multi-revolution cases in the planetary sphere, that prove to be
the most challenging problems.
However, the large number of decision variables still poses a significant computational cost
in calculating the STMs, a key step in the method. Future developments in this regard will
have to focus on reducing the computational cost by adopting methods that replace the
typical numerical integration of the latter matrices, such as the exploitation of analytical
ones, where this is possible.
The case studies analysed in this work constitute a preliminary optimisation for the real-
isation of the potential of HDDP and orbital element coupling, laying the foundation for
future developments and deeper investigations that can further improve the optimisation
method, especially in low-thrust trajectory field.

77

Bibliography

[1] Bliss G. A. Lectures on the Calculus of Variations. Chicago, USA: University of
Chicago Press, 1946. isbn: 978-0226058955.

[2] Petropoulos A.E. “Low-thrust orbit transfers using candidate Lyapunov functions
with a mechanism for coasting”. In: AAS/AIAA Astrodynamics Specialist Conference
and Exhibit (Providence, Rhode Island. 2004). url: https://doi.org/10.2514/6.
2004-5089.

[3] Petropoulos A.E. “Simple control laws for low-thrust orbit transfers”. In: AAS/AIAA
Astrodynamics Specialist Conference. Pasadena, CA (2003).

[4] Falb P.L. Athans M.A. Optimal Control: An Introduction to the Theory and Its Ap-
plications. New York, USA: Dover Publications, 2007. isbn: 978-0486453286.

[5] Keller H. B. Numerical Solution of Two Point Boundary Value Problems. SIAM, 1976.
isbn: 978-0-89871-021-2.

[6] Bertsekas B.P. Constrained Optimization and Lagrange Multiplier Methods. San Diego,
USA: Academic Press, 1982. isbn: 978-0120934805.

[7] Shetty C.M. Bazaraa M.S. Sherali H.D. Nonlinear Programming: Theory and Algo-
rithms. 3rd edition. Wiley-Interscience, 2006. isbn: 978-0471486008.

[8] Bulirsch R. Miele A. Stoer J. Well K. Betts J.T. “Trajectory optimization using
sparse sequential quadratic programming”. In: Optimal control, International Series
of Numerical Mathematics (1993).

[9] Erb S.O. Betts J.T. “Optimal low-thrust trajectories to the moon”. In: SIAM J. on
Applied Dynamical Systems vol. 2 (2003). doi: 10.1137/S1111111102409080. url:
https://doi.org/10.1137/S1111111102409080.

[10] Kluever C.A. “Simple guidance scheme for low-thrust orbit transfers”. In: J. of Guid-
ance, Control and Dynamics vol. 21, n. 6 (1998). doi: 10.2514/2.4344. url: https:
//doi.org/10.2514/2.4344.

i

https://doi.org/10.2514/6.2004-5089
https://doi.org/10.2514/6.2004-5089
https://doi.org/10.1137/S1111111102409080
https://doi.org/10.1137/S1111111102409080
https://doi.org/10.2514/2.4344
https://doi.org/10.2514/2.4344
https://doi.org/10.2514/2.4344

[11] Rayman M.D. Fraschetti T.C. Raymond C.A. Russel C.T. “Dawn: a mission in devel-
opment for exploration of main belt asteroids Vesta and Ceres”. In: Acta Astronautica
vol. 58 (June 2006), pp. 605–616. issn: 0094-5765. url: https://doi.org/10.1016/
j.actaastro.2006.01.014.

[12] Nugnes M. Colombo C. “Low-thrust Trajectory Optimisation through Differential
Dynamic Programming Method based on Keplerian Orbital Elements”. In: 70th In-
ternational Astronautical Congress (IAC), Washington D.C., United States, paper
C1.1.2 (2019).

[13] Radice G Colombo C. Vasile M. “Optimal low-thrust trajectories to asteroids through
an algorithm based on differential dynamic programming”. In: Celestial Mechanics and
Dynamical Astronomy vol. (2009).

[14] Toint P.L Conn A.R. Gould N.I.M. Trust-Region Methods. SIAM, Philadelphia. Philadel-
phia, USA: SIAM, 2000. isbn: 978-0898714609.

[15] Mayne D.Q. “A second-order gradient method for determining optimal control of non-
linear discrete time systems”. In: International J. of Control vol. 3 (1966), pp. 85–95.
doi: 10.1080/00207176608921369. url: https://www.tandfonline.com/doi/abs/
10.1080/00207176608921369.

[16] McReynolds S. Dyer P. The computation and theory of optimal control. Vol. vol. 65.
Academic Press, 1970. isbn: 978-0122262500.

[17] Whiffen G.J. “Static/dynamic control for optimizing a useful objective”. In: (2002).
url: https://www.freepatentsonline.com/6496741.html.

[18] Jacobson D.H. Gershwin S. “A discrete-time differential dynamic programming algo-
rithm with application to optimal orbit transfer”. In: AIAA J. vol. 8, n. 9 (1970). doi:
10.2514/3.5955. url: https://doi.org/10.2514/3.5955.

[19] Wright M.H. Gill P.E. Murray W. Practical Optimization. London, UK: Academic
Press, 1981. isbn: 0.12.283950.1.

[20] W.H. Goodyear. “Completely general closed-form solution for coordinates and partial
derivative of the two-body problem”. In: The Astronomical J. vol. 70 (1965).

[21] Curtis H.D. Orbital Mechanics for Engineering Students. 3rd edition. Butterworth-
Heinemann, 2013. isbn: 978-0080977478.

[22] Paris S.W. Hargraves C.R. “Direct Trajectory Optimization using Nonlinear Pro-
gramming and Collocation”. In: J. of Guidance vol. 10, n. 4 (Aug. 1987). doi: 10.
2514/3.20223. url: https://doi.org/10.2514/3.20223.

[23] Aziz J.D Parker J.S. Scheeres D. Englander J.A. “Low-Thrust Many-Revolution Tra-
jectory Optimization via Differential Dynamic Programming and a Sundman Trans-
formation”. In: J. of the Astronautical Sciences vol. 65 (2018), pp. 205–228. url:
https://doi.org/10.1007/s40295-017-0122-8.

https://doi.org/10.1016/j.actaastro.2006.01.014
https://doi.org/10.1016/j.actaastro.2006.01.014
https://doi.org/10.1080/00207176608921369
https://www.tandfonline.com/doi/abs/10.1080/00207176608921369
https://www.tandfonline.com/doi/abs/10.1080/00207176608921369
https://www.freepatentsonline.com/6496741.html
https://doi.org/10.2514/3.5955
https://doi.org/10.2514/3.5955
https://doi.org/10.2514/3.20223
https://doi.org/10.2514/3.20223
https://doi.org/10.2514/3.20223
https://doi.org/10.1007/s40295-017-0122-8

[24] Betts J.T. “Optimal low-thrust orbit transfers with eclipsing”. In: Optimal Control
Applications and Methods vol. 36 (2014), pp. 218–240. doi: 10.1002/oca.2111.

[25] Mayne D.Q. Jacobson D.H. Differential Dynamic Programming. New York, USA:
Elsevier, 1970. isbn: 9780444000705.

[26] Pontryagin L.S. Mathematical Theory of Optimal Processes. New York, USA: John
Wiley and Sons, 1962. isbn: 978-0470693810.

[27] Russell R.P. Lantoine G. “A Hybrid Differential Dynamic Programming Algorithm
for Constrained Optimal Control Problems. Part 1: Theory”. In: J. of Optimization
Theory and Applications vol. 154 (Apr. 2012), pp. 382–417. doi: 10.1007/s10957-
012-0039-0. url: https://doi.org/10.1007/s10957-012-0039-0.

[28] Russell R.P. Lantoine G. “A Hybrid Differential Dynamic Programming Algorithm
for Robust Low-Thrust Optimization”. In: AIAA/AAS Astrodynamic Specialist Con-
ference and Exhibit (Aug. 2008). doi: 10.2514/6.2008-6615. url: https://doi.
org/10.2514/6.2008-6615.

[29] Shoemaker C.A. Liao L. “Advantages of Differential Dynamic Programming Over
Newton’s Method for Discrete-Time Optimal Control Problems”. In: (Feb. 1993).

[30] Shoemaker C.A. Liao L. “Convergence in Unconstrained Discrete-Time Differential
Dynamic Programming”. In: IEEE Transactions on Automatic Control vol. 36, n. 6
(1991), pp. 692–706. doi: 10.1109/9.86943. url: https://ieeexplore.ieee.org/
document/86943.

[31] Maestrini M. “Hybrid Differential Dynamic Programming Algorithm for Low-Thrust
Trajectory Design Using Exact High-Order Transition Maps”. Master thesis. Politec-
nico di Milano, 2018.

[32] Nugnes M. “Robust Design of Low-thrust trajectories through Differential Dynamic
Programming enhancing the Effects of Orbital Perturbations”. Final dissertation for
the degree of Doctor of Philosophy in Aerospace Engineering. Supervisor: Camilla
Colombo. Politecnico di Milano, Faculty of Industrial Engineering, Department of
Aerospace Science and Technologies, 2023.

[33] Yakowitz S. Murray D.H. “Constrained Differential Dynamic Programming with Ap-
plication to Multi-Reservoir Control”. In: Water Resources Res. vol. 15 (1979), pp. 1017–
1027. doi: 10.1029/WR015i005p01017. url: https://doi.org/10.1029/WR015i005p01017.

[34] N. T. T. Program. Mystic low-thrust trajectory design and visualization software. url:
https://software.nasa.gov/software/NPO-43666-1.

[35] Bellman R. Dynamic Programming. Princeton: Princeton University, 1957. isbn: 978-
0691079516.

[36] Fletcher R. Practical Methods of Optimization. New York. New York, USA: Wiley,
2000. isbn: 9780471915478.

https://doi.org/10.1002/oca.2111
https://doi.org/10.1007/s10957-012-0039-0
https://doi.org/10.1007/s10957-012-0039-0
https://doi.org/10.1007/s10957-012-0039-0
https://doi.org/10.2514/6.2008-6615
https://doi.org/10.2514/6.2008-6615
https://doi.org/10.2514/6.2008-6615
https://doi.org/10.1109/9.86943
https://ieeexplore.ieee.org/document/86943
https://ieeexplore.ieee.org/document/86943
https://doi.org/10.1029/WR015i005p01017
https://doi.org/10.1029/WR015i005p01017
https://software.nasa.gov/software/NPO-43666-1

[37] Pellegrini E. Russel R.P. “A multiple-shooting differential dynamic programming al-
gorithm. Part 1: Theory”. In: Acta Astronautica vol. 170 (2020), pp. 686–700. issn:
0094-5765. url: https://doi.org/10.1016/j.actaastro.2019.12.037.

[38] Pellegrini E. Russel R.P. “A multiple-shooting differential dynamic programming al-
gorithm. Part 2: Applications”. In: Acta Astronautica vol. 173 (2020), pp. 460–472.
issn: 0094-5765. url: https://doi.org/10.1016/j.actaastro.2019.12.038.

[39] Dreyfus S. “Dynamic Programming and calculus of variations”. In: J. of Mathematical
Analysis and Applications vol. 1 (Sept. 1960), pp. 228–239. url: https://doi.org/
10.1016/0022-247X(60)90024-X.

[40] Bulirsch R. Stoer J. Introduction to Numerical Analysis. Springer, 2002. isbn: 978-
1441930064.

[41] Edelbaum T. “Propulsion Requirements for controllable satellites”. In: J. of American
Rocket Society vol. 31 (1961), pp. 1079–1089. doi: 10.2514/8.5723. url: https:
//doi.org/10.2514/8.5723.

[42] Edelbaum T. “Theory of maxima and minima”. In: Optimization Techniques, with
Applications to Aerospace Systems vol. 5 (1962), pp. 1–32. url: https://doi.org/
10.1016/S0076-5392(08)62089-5.

[43] Biegler L.T. Wacther A. “On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming”. In: Mathematical Programming vol.
10 (Mar. 2006).

[44] Alfano S. Wiesel W.E. “Optimal many-revolution orbit transfer”. In: J. of Guidance,
Control and Dynamics vol. 8 (1985), pp. 155–157. doi: 10.2514/3.19952. url:
https://doi.org/10.2514/3.19952.

https://doi.org/10.1016/j.actaastro.2019.12.037
https://doi.org/10.1016/j.actaastro.2019.12.038
https://doi.org/10.1016/0022-247X(60)90024-X
https://doi.org/10.1016/0022-247X(60)90024-X
https://doi.org/10.2514/8.5723
https://doi.org/10.2514/8.5723
https://doi.org/10.2514/8.5723
https://doi.org/10.1016/S0076-5392(08)62089-5
https://doi.org/10.1016/S0076-5392(08)62089-5
https://doi.org/10.2514/3.19952
https://doi.org/10.2514/3.19952

A | Trust region subproblem algorithm

In order to solve each iteration of the HDDP, is required to be solved a TRQP mentioned
in 3.4.1. This problem can be solved with some different methods, the one selected for this
work, due to the small size of control input m, is based on the eigendecomposition of the
Hessian Juu,k. The fundamental steps of this algorithm are reported here.

v

Algorithm 1: Adopted Trust region subproblem iterative solving method
Output: J̃uu,k, δuk
Input: Ju,k, Juu,k, ∆, D

INITIAL SHIFT
1: Compute eigenvalues λ1, λ2, ..., λm of Juu,k
2: if all λi > 0 then
3: ν = 0
4: else
5: ν = −2minλi
6: end if
7: H = Juu,k + νIm

CHOLESKY DECOMPOSITION OF H:
Find L matrix that H = LLT

FINAL SHIFT
1: s = −H−1Ju,k
2: while ||Ds|| > ∆ do
3: w = L−1s

4: ν = ν +

(
||Ds||
∆

− 1

)(
||Ds||
||Dw||

)2

5: H = Juu,k + νIm
6: end while

J̃uu,k = H
δuk = s

B | Optimisation parameters setting

An important aspect regarding the success of the optimization performed by the HDDP
algorithm is the correct setting of the characteristic parameters. These are a lot and each
takes on a different meaning, as explained in the section 3.4. The values set to obtain the
results seen for the different case studies are provided here. The table B.2 report the data
which are kept identical for all the study cases addressed, whereas the table B.1 report the
data which are modified for the 4 cases to reach convergence.

σ0 ∆0

Direct transfer 1 1
Earth-Mars Rendezvous 1 0.01
Multi-revolution transfer 0.001 0.001
One Web constellation 0.001 0.001

Table B.1: Some Values of the Parameters set for the optimisation

vii

Parameter Considered Value

ϵopt 10−4

ϵfeas 10−5

ϵ1 0.1
κ 0.25

kσ 1.5

∆max 103

∆min 0

Du

10 0 0
0 10 0
0 0 10

Dλ

0.001 0 0 0 0 0
0 0.001 0 0 0 0
0 0 0.001 0 0 0
0 0 0 0.001 0 0
0 0 0 0 0.001 0
0 0 0 0 0 0.001

Table B.2: Some Values of the Parameters set for the optimisation

List of Figures

3.1 Conceptual Representation of the Backward Induction Process, image adapted
from [31] . 16

3.2 Conceptual Representation of the Forward Propagation Process, image adapted
from [31] . 19

4.1 Different discretizations of an orbit with eccentricity e=0.8, depending on
the independent variable selected . 41

5.1 Different views of Initial and Target Position and Orbits in scaled ’x,y,z’ frame 44
5.2 Norm of constraint violation for all the iterations 46
5.3 Absolute values of the expected reduction ER for all the iterations 47
5.4 Evolution of Keplerian elements in time along the optimal transfer 48
5.5 Different views of Initial Guess and Optimal Trajectory in scaled ’x,y,z’ frame 49
5.6 Thrust Magnitude associated to the Optimal Trajectory 50
5.7 Mass of the Spacecraft for the Optimal Trajectory 50
5.8 Different views of Optimal Trajectories for different TOF in scaled ’x,y,z’ frame 53
5.9 Semi-major axis . 54
5.10 Eccentricity . 54
5.11 Inclination . 54
5.12 Right Ascension of the Ascending Node . 55
5.13 Anomaly of the Pericenter . 55
5.14 True Anomaly . 55
5.16 Thrust for different optimal solutions . 57
5.18 Initial Guess and Optimal trajectory represented in the scaled ’x,y,z’ refer-

ence frame . 61
5.19 Initial Guess and Optimal trajectory represented in the scaled ’x,y,z’ refer-

ence frame . 61
5.20 Thrust magnitude of the optimal path with stage constraints 62
5.21 Initial Guess of the Multi-revolution Transfer 66

ix

5.22 Norm of final state constraint violation for all the iteration depending on the
independent variable selected . 68

5.23 Evolution in time of different orbital elements of the 3 optimal solutions and
the initial guess . 69

5.24 Optimal transfer when the independent variable is time 70
5.25 Optimal transfer when the independent variable is eccentric anomaly . . 70
5.26 OneWeb Satellite . 71
5.27 Evolution of scaled semi-major axis a of optimal solution and initial guess . 74
5.28 Evolution of eccentricity a of optimal solution and initial guess 74
5.29 Thrust Magnitude of the optimal solution 75
5.30 Representation of the optimal transfer in the scaled ’x,y,z’ reference frame . 75

List of Tables

5.1 Initial and Target orbital elements of the direct transfer 43
5.2 Lagrange Multipliers and Penalty Parameter of Initial guess and Final Op-

timal Solution . 47
5.3 Major data of optimal trajectories with different TOF 52
5.4 Classical Keplerian Orbital Elements associated to Departure/Arrival date . 58
5.5 Values of Lagrange multipliers and Penalty Parameter for the optimal solution 60
5.6 Classical Keplerian Orbital Elements associated to Initial and Target Orbits 64
5.7 Most relevant data associated with the 3 different optimal solutions 67
5.8 Classical Keplerian Orbital Elements associated to Initial and Target Orbits 72
5.9 Values of Lagrange multipliers and Penalty Parameter for the optimal solution 73

B.1 Some Values of the Parameters set for the optimisation vii
B.2 Some Values of the Parameters set for the optimisation viii

xi

	Introduction
	Background
	Aim of the thesis
	Novel contributions
	Thesis structure

	Literature review
	Optimal Control Problem
	Optimisation methods
	Differential Dynamic Programming developments

	Differential Dynamic Programming
	Mathematical notation
	Problem formulation
	Differential dynamic programming
	Backward induction
	Forward propagation
	Limitations

	Hybrid Differential Dynamic Programming
	Improvements introduced by HDDP
	Limitations
	HDDP Algorithm

	HDDP in Orbital Elements
	Reference frames
	Orbital elements overview
	Advantages and precautions
	Precautions
	Advantages

	Challenges and Sundman Transformation

	Results
	Direct Transfer in Continuous Thrust
	Description of the study case
	Results
	Specific Impulse Refinement

	Sensitivity analysis
	Interplanetary transfer: Earth-Mars rendez-vous
	Description of the study case
	Results

	Multi-revolution low thrust transfer
	Description of the study case
	Results

	Application to a real case: the OneWeb constellation
	Description of the study case
	Results

	Conclusions
	Bibliography
	Trust region subproblem algorithm
	Optimisation parameters setting
	List of Figures
	List of Tables

