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Abstract

THE study of open quantum systems is often associated with the study of Quantum
Markov Semigroups (QMSs), namely weak* continuous semigroups of com-
pletely positive, identity preserving, normal maps on the set of bounded oper-

ators over an Hilbert space. They are associated with a generator which has a normal
form called the GKLS form. This depends on an operator H , called the Hamiltonian,
that describes the evolution of the system of interest as a closed system, and the set of
operators {L`}, called the Kraus’ operators, that describe how the environment inter-
feres with the closed evolution of the system. This thesis deals essentially with two
types of QMSs.

The first one is the class of Gaussian QMSs that models several physical systems
involving Bosons. In particular this forces us to deal with unbounded operators and
address their domain problems. The Hamiltonian in this case is a quadratic expression
of the so called creation and annihilation operators, while the Kraus’ operators are a
linear expression of the same operators. In this thesis we develop a thorough study of
this class of semigroups setting the foundation for future development. As a starter we
unify the different definitions of Gaussian QMSs that have emerged in the literature.
In particular this involves showing the equivalence between the GKLS form of the
generator that we introduced, an explicit formula for the action of the semigroup itself
and a qualitative definition of Gaussian QMSs involving preservation of the set of so
called Gaussian states. We also studied in depth the one dimensional case, completely
classifying irreducibility of the semigroup and existence of an invariant state, based
only on the parameters of the GKLS generator. Eventually we started the study also in
the multidimensional case, addressing some problems regarding the Decoherence-Free
subalgebra.

The second model deals with a very specific physical system, namely a chain of
Fermions that is linked on both ends to an independent reservoir at fixed temperature.
We successfully evaluated the energy transfer through the chain between the two ends
which turns out to be approximately proportional to the temperature difference of the
reservoirs, as expected from the classical counterpart.
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Introduction

GAUSSIAN Quantum Markov Semigroups (QMSs) have appeared in the literature
many times also under the name of quasi-free semigroups [20,21,44,72]. They
are first of all Quantum Markov Semigroups, i.e. a weakly* continuous semi-

group T = (Tt)t≥0 of weakly* continuous, completely positive, identity preserving
maps, acting on the set B(Γs(h)) of bounded operators over the Bosonic Fock space of
the complex separable Hilbert space h = Cd. They arise naturally in many physical
models for open quantum systems (see [6] or the end of Chapters 4, 5). In this thesis
we use this models as examples but focus instead on the properties of this class of semi-
groups in its entirety, which has traditionally been introduced either via the generator
or the explicit action on the Weyl operators of the Fock space. In the first case one
considers a generator in the GKLS form

L(x) = i [H, x]− 1

2

m∑
`=1

(L∗`L`x− 2L∗`xL` + xL∗`L`) , x ∈ B(Γs(H)),

where H is a self-adjoint, second order polynomial in creation and annihilation op-
erators, while (L`)`=1,...,m are a set of linearly independent, first order polynomial in
creation and annihilation operators (cf. (3.17), (3.18)). This definition needs some jus-
tification due to the unbounded nature of creation and annihilation operators but it can
be shown that is well posed (cf. Section 3.3). In the latter case instead one considers
the Weyl operators W (z), that generate the whole of B(Γs(h)) (cf. Proposition 1.51),
and uses them to introduce gaussian QMSs via the explicit formula

Tt(W (z)) = exp

(
−1

2

∫ t

0

Re
〈
esZz, CesZz

〉
ds− i

∫ t

0

Re
〈
ζ, esZz

〉
ds
)
W (etZz),

for some ζ ∈ H and some real linear operators Z,C satisfying a positivity condition
(cf. (3.10))

C + i (Z∗J + JZ) ≥ 0.

It can be shown that definition of a gaussian QMS through the GKLS generator implies
the explicit formula on Weyl operators (cf. Theorem 3.26) and this gives some intuition
on why they actually identify the same class of semigroups.
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An even stronger characterization for this class of semigroups (part of the original
content of this thesis) involves the set of gaussian states (cf. Chapter 2). They are iden-
tified, in analogy with classical gaussian random variables, as those whose (quantum)
characteristic function satisfies

ρ̂(z) = tr(ρW (z)) = exp

(
−i Re 〈ω, S〉 − 1

2
Re 〈z, Sz〉

)
, z ∈ H

with a mean vector ω ∈ H and a covariance operator S. Gaussian QMSs, as intro-
duced in the literature, preserve the set of gaussian states in its entirety in the sense that
the time evolution of a gaussian state through the semigroup yields another gaussian
state at all times (cf. Proposition 3.29). In particular they induce a time evolution of
the parameters of the state and this property can actually be used to define implicitly
gaussian QMSs. Indeed, if a QMS preserves the set of gaussian states in its entirety, to-
gether with some differentiability assumptions, it must also satisfy the explicit formula
on Weyl operators for some ζ, Z, C and it must have a GKLS generator of the form we
used to introduce gaussian QMSs (cf. Theorem 3.28). Therefore the definition of gaus-
sian QMSs as those that preserve the set of gaussian state, would still be identifying the
usual class of semigroup used in the literature.

The strong link between gaussian QMSs and gaussian states is highlighted also when
delving deeper in the one-mode case, namely when h = C. The low dimensionality of
the space allows one to study in detail many problems such as the invariant states and
obtain very explicit answers (cf. Chapter 4). In particular we can relate the parameters
used in the definition of a gaussian QMS with the existence of an invariant state and
irreducibility of the semigroup itself. Both these problems are completely solved (cf.
Theorem 4.27 and Figure 4.1) and strongly benefit for the low amount of parameters of
the one-mode case. Considering the invariant state problem one finds that for a gaussian
QMS it not always exists and that a necessary property is that in the operators (L`) the
annihilation operators “prevail” over the creation ones (cf. Remark 4.23). However,
a remarkable property is that whenever an invariant state exists it must be gaussian
(cf. Theorem 4.22). Moreover the study of the irreducibility property for gaussian
semigroups allows us to also state that an invariant state is always unique for this class.

When dealing instead with the general multi-mode case the treatment of the pre-
vious problems becomes much more convoluted. However another interesting result
comes from the analysis of the decoherence-free subalgebra. This is a well-known ob-
ject introduced as the biggest von Neumann subalgebra of B(Γs(h)) where every Tt is
a *-homomorphism. In particular on this set the semigroup acts as if it was a closed
quantum system (cf. Proposition 5.2). For gaussian QMSs the decoherence-free subal-
gebra is a factor (cf. Theorem 5.15) and it is determined by the spectral properties of
Z,C (cf. Corollary 5.16).

This thesis has the scope to present the original results obtained on this topic, which
are mostly contained in Chapters 3, 4, 5 and 6, but also to be as self-contained as
possible in order to provide all the necessary results in a unified notation. Whenever an
ancillary but well-known result has an easily accessible proof in the literature we will
just report its statement providing a reference to the source.

The content of the thesis is organized as follows.
Chapter 1 contains the introduction of the algebra of the Canonical Commutation

Relations (CCR algebra) and the Bosonic Fock space. This sets the ground for the
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definition of gaussian QMSs acting on B(Γs(h)) as well as providing all the results and
notations needed in the proofs and the rest of the thesis. In particular in this chapter it
is also presented a short introduction to symplectic spaces. This is needed both for the
definition of CCR algebra itself but also when dealing dealing with gaussian states and
the decoherence-free subalgebra (cf. Theorem 5.15).

Chapter 2 contains the results regarding gaussian states. They are introduced both
as states on the CCR algebra and as density matrices on the Fock space through some
very similar definitions involving quantum analogues to the characteristic function, as
previously noted. We provide a characterization property for covariance operator (cf.
Theorem 2.24, Theorem 2.40), mimicking the classical requirement of positive def-
initeness of the covariance matrix, and we construct transformations that change the
parameters of gaussian states. Eventually we provide a density result of these states in
the set of all density matrices. It is of note that the first part of the chapter is devoted to
recalling some relevant properties of real linear operators, such as Williamson’s normal
form. These kind of operators are necessary since the covariance operator itself is real
linear and their understanding is needed in order to obtain all the previous cited results.

Chapter 3 is devoted to presenting the results for the equivalence of the different
definitions of gaussian QMSs. It starts with the analysis of gaussian semigroups only
on the CCR algebra, as partially contained in [37, 72] and then recovers QMSs on
B(ΓS(H)) providing the anticipated result of equivalence of definitions (cf. Theorem
3.30). Part of this chapter is also devoted to showing that we can indeed construct a
unique QMS starting from an unbounded GKLS generator of the form (3.17), (3.18).

Chapter 4 deals with gaussian QMSs in the case h = C. The first section shows the
complete characterization of irreducibility of the semigroup in terms of the parameters
involved in the generator. The analysis is quite convoluted and long but it is fully
solved in the end (cf. Figure 4.1). This allows to understand when the evolution of the
semigroup could be reduced on a proper subspace and when, instead, this reduction is
not possible, corresponding to the irreducible case. The second section deals instead
with the study of invariant states and presents the result anticipated of existence and
uniqueness (cf. Theorem 4.22). The complete characterization of irreducibility plays
an important role in the proof of the uniqueness of the invariant state. In particular
it provides, in the same Theorem, a result of convergence towards the invariant state
starting from any other state.

Chapter 5 goes back to the general case h = Cd and studies the decoherence-free
subalgebra. It contains the anticipated (cf. Theorem 5.15) result along with the main
tool that is used in order to achieve the characterization, namely that we can write
the decoherence-free subalgebra as the generalized commutant of some operators (cf.
Theorem 5.4).

Chapter 6 deals with a completely different topic than the rest of the thesis. Here
we also concerned with QMSs defined through a GKLS generator but in this case all
the operators involved are bounded. The aim is to model a system which is weakly
coupled with two reservoirs at fixed temperatures and then study the energy currents
through the system that arise in this way. An explicit formula for the current is given
under some assumptions (cf. Theorem 6.7). Under very similar conditions we can also
provide a lower and an upper bound for the current, emphasizing the explicit depen-
dence on the difference of bath’s temperatures and recovering a sort of Fourier law for
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heat conduction (cf. Theorem 6.12). An explicit example of these formulas applied to
the one dimensional Ising chain is presented. Possible developments in the theory are
to study similar quantities but in the case of gaussian QMSs.

Last but not least, I would like to thank my supervisor Franco Fagnola for all the help
he gave me. Not only for the many ideas and suggestions he continuously had and that
shared with, or the amount of time he dedicated to me. But also for the great example
he was which is arguably even more valuable and difficult to find than everything else.
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CHAPTER1
CCR Algebra and the Fock Representation

In this chapter we introduce the basic spaces that will serve as foundations for the
work on the rest of the thesis. Most of the results of this part are very well known in
the literature and therefore their proof will be omitted, with some indication on where
to find them. The first section deals with the introduction of symplectic spaces, both
in the real and complex cases. We recall some of their basic properties and provide
some useful examples that will be used throughout the thesis. The results presented
are very well known in the literature and some basic references are [18, 23]. We then
use symplectic spaces to construct, in the second section, the algebra of the Canonical
Commutain Relations (CCR algebra). We provide an abstract definition and present the
result of its uniqueness. The third section is instead devoted to the introduction of the
Fock Space, and the Fock representation of the CCR algebra which will be essential in
the definition of gaussian Quantum Markov Semigroups. The basic reference for these
last two sections is [12].

1.1 Symplectic Spaces

Definition 1.1. Let V be a vector space over the field K. A symplectic form on V is a
bilinear form σ : V × V → R that is

(antisymmetric) σ(u, v) = −σ(v, u) for every u, v ∈ V ;

(non-degenerate) σ(u, v) = 0 for every v ∈ V implies u = 0.

The pair (V, σ) is called a symplectic space.

Remark 1.2. The antisymmetry condition implies σ(v, v) = 0 for every v ∈ V .

Definition 1.3. Let (V, σ) be a symplectic space. We say W is a symplectic subspace
of V if W is a linear subspace of V and if the restriction σ|W×W is non-degenerate.

1
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Chapter 1. CCR Algebra and the Fock Representation

Definition 1.4. Let (V, σ) be a symplectic space and let W ⊂ V be a linear subspace
of V . The symplectic complement W⊥σ of W is the set

W⊥σ = {u ∈ V | σ(w, u), for every w ∈ W} .
Remark 1.5. Suppose U,W are vector subspaces of V . Then

U⊥σ ∩W⊥σ = (U +W )⊥σ .

Indeed if v ∈ U⊥σ ∩W⊥σ then for every u ∈ U,w ∈ W we have

σ(u+ w, v) = σ(u, v) + σ(w, v) = 0.

Vice versa if v ∈ (U +W )⊥σ , then for every u ∈ U
σ(u, v) = σ(u+ 0, v) = 0,

and analogously for W .
Remark 1.6. Let (V, σ) a symplectic space and suppose W ⊂ V is a linear subspace of
V . Then W is a symplectic subspace if and only if W ∩W⊥σ = {0}.

From now on we will focus on a finite dimensional vector space V since it will be the
case of interest in future chapters. Suppose n is the dimension of V and fix (fk)k=1,...,n

a basis for the real vector space V . There is the natural identification of V with Kn

exploiting the decomposition of v ∈ V as v =
∑n

k=1 vkfk to the vector (vk)k ∈ Kn.
Under this identification the symplectic form σ is naturally identified with the matrix
(σ(fj, fk))j,k.
Notation 1.7. For simplicity in this case we identify

σ = (σjk)
n
jk=1 = (σ (fj, fk))

n
j,k=1 .

Remark 1.8. The matrix σ has zeroes on the main diagonal and is antisymmetric, since
the symplectic form is antisymmetric. Moreover σ is invertible, since the symplectic
form is non-degenerate.

Proposition 1.9. Let (V, σ) be a finite dimensional symplectic space. Then the dimen-
sion of V is even and there exists d ∈ N such that n = 2d. Moreover there exists (fj)

2d
j=1

a basis for V such that

σ =

(
0d 1d

−1d 0d

)
, (1.1)

where 0d,1d denote respectively the zero and identity matrices of dimension d× d.

Proof. See [18, Theorem 1.1]

Definition 1.10. Let (V, σ) be a symplectic space of dimension 2d. We say (fk)
2d
k=1 is

a symplectic basis for V if (fk)
2d
k=1 is a basis for V as a vector space and the symplectic

form σ has the matrix expression (1.1) through the identification induced by (fk)
2d
k=1.

Definition 1.11. Let (V1, σ1), (V2, σ2) be symplectic spaces and let T : V1 → V2 be a
linear map. We say T is a symplectic map if T preserves the symplectic forms, i.e.

σ2(T (v), T (w)) = σ1(v, w), ∀v, w ∈ V1.

Moreover we say T is a symplectomorphism or isomorphism of symplectic spaces or
Bogoliubov transformation if T is a symplectic map and an isomorphism of vector
spaces.

2



i
i

“PhDThesis_v_2” — 2022/1/24 — 12:17 — page 3 — #13 i
i

i
i

i
i

1.1. Symplectic Spaces

In order to clarify the definitions we just gave we now introduce three examples of
symplectic spaces that will moreover be used in the rest of the thesis.

Example 1.12. Let V = R2d with the usual scalar product 〈·, ·〉R2d and define the
bilinear form

σR

((
x1

x2

)
,

(
y1

y2

))
=

〈(
x1

x2

)
,

(
0d 1d

−1d 0d

)(
y1

y2

)〉
R2d

, ∀x1, x2, y1, y2 ∈ Rd.

It is easy to prove that σR is a symplectic form and it is called the canonical symplec-
tic form of R2d. the space (V, σR) is symplectic and the canonical basis for R2d is a
symplectic base for V for which

σR =

(
0d 1d

−1d 0d

)
.

Example 1.13. Let h = Cd with the usual scalar product 〈·, ·〉, antilinear in the first
component, as a complex vector space. It induces a real vector space which is given
by the set Cd with scalar product Re 〈·, ·〉. We use hR when referring to this real vector
space and h to the complex one. Consider the bilinear form on hR × hR given by

σ(z1, z2) = Im 〈z1, z2〉 , ∀z1, z2 ∈ hR.

σ is a symplectic form and (hR, σ) is a real symplectic space. Suppose (ek)
d
k=1 is the

canonical basis of C2d and define

fk = ek, fd+k = iek, ∀k = 1, . . . , d.

Then (fk)
2d
k=1 is a symplectic basis for (hR, σ).

Example 1.14. Consider (C2d,Re 〈·, ·〉 /2) which is a real vector space, where 〈·, ·〉
represents the usual scalar product on C2d, antilinear in the first component. We intro-
duce the real subspace

h :=

{(
z

z

)
: z ∈ hR

}
which is a symplectic subspace when equipped with the symplectic form

σh

((
z1

z1

)
,

(
z2

z2

))
=

1

2
Im

〈(
z1

z1

)
,

(
1d 0d

0d −1d

)(
z2

z2

)〉
= Im 〈z1, z2〉 ,

for all z1, z2 ∈ hR. Suppose (ek)
d
k=1 is the canonical basis of Cd as a complex vector

space and define

fk =

(
ek

ek

)
, fd+k =

(
iek

−iek

)
, ∀k = 1, . . . , d. (1.2)

Then (fk)
2d
k=1 is a symplectic basis for (h, σh).

Example 1.15. Consider (C2d, 〈·, ·〉 /2), where 〈·, ·〉 represents the usual scalar product
on C2d, antilinear in the first component. Consider the bilinear form

σC2d

((
z1

z2

)
,

(
z3

z4

))
=

i

2

〈(
z1

z2

)
,

(
0d 1d

−1d 0d

)(
z3

z4

)〉
, z1, z2, z3, z4 ∈ Cd.

3
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Chapter 1. CCR Algebra and the Fock Representation

The space (C2d, σC2d) is complex symplectic and a symplectic basis is given by (fk)
2d
k=1

defined in (1.2).

Remark 1.16. Every symplectomorphism maps a symplectic basis of V1 into one of V2.
Vice versa if T : V1 → V2 is a linear map that transforms a symplectic basis of V1 into
one of V2 then it is a symplectomorphism.

Proposition 1.17. Any two symplectic spaces over the same field K and with the same
dimension are symplectomorphic.

Proof. By proposition 1.9 both spaces have a symplectic basis. Since they have the
same dimension we can define a linear map by transforming each element of the first
basis in the corresponding one of the second basis and then extending it by linearity.
Using remark 1.16 we have that this is also a symplectomorphism.

Example 1.18. The spaces given by Examples 1.12, 1.13 and 1.14 are symplectomor-
phic. Moreover we can find the symplectomorphisms explicitly. Let z ∈ hR and sup-
pose z = x+ iy where x, y ∈ R2d then

TR2d : hR 3 z 7→
(
x

y

)
∈ R2d,

and

Th : hR 3 z 7→
(
z

z

)
∈ h,

are symplectomorphisms.

We often need to consider complexifications of symplectic spaces. So let us recall
the notion of complexification.

Definition 1.19. Let (V, 〈·, ·〉R) be a real vector space. The complexification of V de-
noted by VC is the complex vector space V ⊕ V . An element w ∈ VC will be denoted
by its unique decomposition w = u+ iv with u, v ∈ V and the scalar product on VC is
defined by

〈u1 + iv1, u2 + iv2〉C = 〈u1, u2〉R + 〈v1, v2〉R − i 〈v1, u2〉R + i 〈u1, v2〉R ,

for every u1, u2, v1, v2 ∈ V .
If σ is a real symplectic form over V , the complexification of the real symplectic space
(V, σ) is the complex symplectic space (VC, σC) where

σC (u1 + iv1, u2 + iv2) = σ(u1, u2)− σ(v1, v2) + iσ(u1, v2) + iσ(v1, u2),

for every u1, u2, v1, v2 ∈ V .

Proposition 1.20. Suppose V is a real vector space of dimension d. Then the complex-
ification VC has dimension d and they share the same basis.

Proof. Suppose (fk)
d
k=1 is a basis for V . We can identify each fk with an element

of VC and we will prove (fk)
d
k=1 is a basis of VC. Suppose u, v ∈ V such that u =∑d

k=1 ukfk, v =
∑d

k=1 vkfk with uk, vk ∈ R. Then

u+ iv =
d∑

k=1

(uk + ivk)fk ∈ VC,

4
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and (fk)
d
k=1 generates VC. Suppose now there exist uk, vk ∈ R such that

0 =
d∑

k=1

(uk + ivk)fk =

(
d∑

k=1

ukfk

)
+ i

(
d∑

k=1

vkfk

)
.

Then (
d∑

k=1

ukfk

)
=

(
d∑

k=1

vkfk

)
= 0,

and by linear independence of the basis (fk)
d
k=1 of the real vector space V uk = vk = 0

for all k = 1, . . . , d.

Proposition 1.21. Let V,W be real vector spaces and let T : V → W be a linear map.
There exists a unique map TC : VC → WC such that the diagram below commutes.

V W

VC WC

T

TC

Moreover in this case TC(u + iv) = T (u) + iT (v), for every u, v ∈ V and, if T is an
isomorphism, TC is as well.

Proof. Clearly TC defined in the Proposition makes the diagram commute. Suppose T ′C
is another complex linear map that does so. For every v ∈ V

T ′C(v) = T (v) = TC(v).

If u ∈ V we have

T ′C(u+ iv) = T ′C(u) + iT ′C(v) = TC(u) + iTC(v) = TC(u+ iv),

where we used complex linearity of both TC and T ′C. Therefore TC = T ′C.
Suppose now T is an isomorphism and let w1 + iw2, w3 + iw4 ∈ WC. We have

TC(w1 + iw2) = TC(w3 + iw4) ⇐⇒ T (w1 − w3) + iT (w2 − w4) = 0,

which implies w1 = w3 and w2 = w4, since T is an isomorphism. On the other hand
there exist u1, u2 ∈ V such that T (u1) = w1, T (u2) = w2 therefore

TC(u1 + iu2) = w1 + iw2.

Hence, TC is an isomorphism.

Definition 1.22. We say the map TC given by Proposition 1.21 is the complexification
of T .

Example 1.23. Consider the real symplectic space (R2d, σR) of Example 1.12. The
complexification of R2d is the complex vector space C2d with the usual scalar product
〈·, ·〉. The complexified symplectic form is given by

σC

((
z1

z2

)
,

(
z3

z4

))
=

〈(
z1

z2

)
,

(
0d 1d

−1d 0d

)(
z3

z4

)〉
,

for every z1, z2, z3, z4 ∈ Cd.

5
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Chapter 1. CCR Algebra and the Fock Representation

Example 1.24. Consider the real symplectic space (hR, σ) of Example 1.13. The com-
plexification of hR is not Cd because the complexification preserves the dimension and
hR has dimension 2d, while Cd ha dimension d as a complex vector space. The explicit
expression of the complexification of hR is not easy to use in practice but we will ex-
ploit the results of Proposition 1.21 and Example 1.18 and work with an isomorphic
space which is easier to use in computations.
Example 1.25. Consider the real symplectic space (h, σh) of Example 1.14. The com-
plexification of this symplectic space is given by (C2d, σC2d), introduced in Example
1.15.

1.2 CCR algebra

In this section we will introduce the CCR algebra as an abstract C* algebra and then
recover the ususal definition using operators on a Hilbert spcae. An abstract formulation
is convenient since we want to have a definition depending only on a symplectic space,
without requiring any additional structure. We follow the approach of [54, 67].

Consider (V, σ) a real symplectic space and let ∆(V, σ) defined as

∆(V, σ) = {F : V → C | F (v) 6= 0 for a finite number of v ∈ V } .
The following proposition holds

Proposition 1.26. Let (V, σ) a symplectic space. The set ∆(V, σ) equipped with point-
wise summation and pointwise multiplication by scalars, the multiplication rule and
involution given by

(FG)(v) =
∑
u∈V

e−iσ(u,v)F (u)G(v − u) =
∑
u∈V

eiσ(u,v)F (v − u)G(u),

F (v)∗ = F (−v),

and the norm
‖F‖1 =

∑
u∈V

|F (u)| ,

is a normed ∗-algebra.

Proof. Let us note that the sums in the definitions all make sense since just a finite
number of summands are non-zero. The proof of the proposition just requires us to
show submultiplicativity of the norm and the product rule for the involution. Let F,G ∈
∆(V, σ), for every v ∈ V

(FG)∗(v) = (FG)(−v) =
∑
u∈V

eiσ(u,−v)F (u)G(−v − u)

=
∑
u∈V

eiσ(u,v)G(u− v)F (−u) = (G∗F ∗)(v),

while

‖FG‖1 =
∑
u∈V

|(FG)(u)| =
∑
u∈V

∣∣∣∣∣∑
w∈V

e−iσ(w,u)F (w)G(u− w)

∣∣∣∣∣
≤
∑
u,w∈V

|F (w)| |G(u− w)| = ‖F‖1 ‖G‖1 ,

6
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1.2. CCR algebra

which concludes the proof.

We consider a notable system of elements in ∆(V, σ).

Proposition 1.27. Let (V, σ) a symplectic space and consider the functions

δv(u) =

{
1 u = v

0 u 6= v
, u, v ∈ V.

The set {δv : v ∈ V } is a basis for ∆(v, σ), δ0 is the neutral element and

δuδv = e−iσ(u,v)δu+v, u, v ∈ V (1.3)

δ∗v = δ−v = (δv)
−1 , v ∈ V. (1.4)

Proof. Let us start by showing {δv : v ∈ V } is a basis for ∆(v, σ). Consider F ∈
∆(v, σ) and observe we can write

F =
∑
u∈V

F (u)δu,

where the sum is on a finite number of summands, therefore {δv : v ∈ V } is a system
of generators. Suppose now there exist n ∈ N, λ1, . . . , λn ∈ C and v1, . . . vn ∈ V such
that

∑n
k=1 λkδvk = 0. Then we have

0 =

∥∥∥∥∥
n∑
k=1

λkδvk

∥∥∥∥∥ =
n∑
k=1

|λk| ⇐⇒ λk = 0 ∀k = 1, . . . , n.

The rest of the proof follows by a straightforward application of the definitions in
Proposition 1.26.

This normed ∗-algebra is not closed, therefore we consider ∆(V, σ) the closure of
∆(V, σ) with respect to the ‖·‖1 norm. We have thus obtained a Banach ∗-algebra which
does not need to be a C∗-algebra and infact is not one. In order to define a C∗-norm on
∆(V, σ) we shall use representations. Recall the following definitions from [13]

Definition 1.28. A representation of a normed ∗-algebra A is a pair (H, π) whereH is
a complex Hilbert space and π : A → B(H) is ∗ − homomorphism, i.e. a linear map
satisfying

1. π(AB) = π(A)π(B) for every A,B ∈ A,

2. π(A∗) = π(A)∗ for every A ∈ A.

Moreover we say (H, π) is non degenerate if {π(a)h : a ∈ A, h ∈ H} is dense in
H and faithful if π is an isomorphism between A and π(A).

Definition 1.29. Let (V, σ) a real symplectic space. A representation (H, π) of ∆(V, σ)
is regular if for every v ∈ V the function

R 3 t→ π(δtv) ∈ ∆(V, σ),

is strongly continuous.

7
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Chapter 1. CCR Algebra and the Fock Representation

Notation 1.30. Let us denote withR(V, σ) the set of regular, non-degenerate represen-
tations of ∆(V, σ).

We have now the following result from [54]

Proposition 1.31. Let (V, σ) a real symplectic space. For every F ∈ ∆(V, σ) we have

‖F‖ := sup
π∈R(V,σ)

‖π(F )‖ ,

is finite and thus ‖·‖ defines a norm on ∆(V, σ). Moreover for every F,G ∈ ∆(V, σ) it
satisfies

‖FG‖ ≤ ‖F‖ ‖G‖ , ‖F ∗‖ = ‖F‖ , ‖F ∗F‖ = ‖F‖2 .

Definition 1.32. Let (V, σ) a real symplectic space. The completion of ∆(V, σ) with
respect to the norm ‖·‖ introduced in Proposition 1.31 is the C∗ algebra of the Canonical
Commutation Relations or CCR algebra and will be denoted with CCR (V, σ).

We constructed explicitly the CCR algebra but we can show that actually there is
only one possibility for its definition, up to isometric *-isomorphism. Namely we have
the following result, which is standard in the literature and whose proof can be found
for example in [12, 61].

Theorem 1.33. Let (V, σ) a real symplectic space. Suppose A is a C∗-algebra gener-
ated by elements {δ′u : u ∈ V } that satisfy (1.3), (1.4). Then A and CCR (V, σ) are
isometrically ∗-isomorphic.

Corollary 1.34. Let (V, σ) be a real symplectic space and T a Bogoliubov transforma-
tion on V , i.e. invertible and such that

σ(Tu, Tv) = σ(u, v), ∀u, v ∈ V.

Then there exists Γ(T ) a unique isometric ∗-isomorphism of CCR (V, σ) such that

Γ(T )(δu) = δTu, ∀u ∈ V.

Proof. The proof follows since the set {δ′u = δTu : u ∈ V } satisfies (1.3), (1.4) and
therefore we can use the uniqueness result of Theorem 1.33.

Corollary 1.35. Let (V1, σ1), (V2, σ2) two real symplectic spaces and consider (V, σ)
the symplectic space obtained through the direct sum of the previous two, namely

(V1 ⊕ V2, σ1 ⊕ σ2).

Then CCR (V, σ) and CCR (V1, σ1)⊗ CCR (V2, σ2) are isometrically *-isomorphic.

Proof. Let {δv : v ∈ V1}, {δ′v : v ∈ V2} be the basis of CCR (V1, σ1) , CCR (V2, σ2)
respectively. Then, if v = v1 + v2 where v ∈ V , v1 ∈ V1, v2 ∈ V2, we can define

δ′′v = δv1 ⊗ δ′v2 .

The element of the set {δ′′v : v ∈ V } satisfy (1.3), (1.4), therefore we conclude the proof
via Theorem 1.33.

8
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Remark 1.36. By definition of the norm ‖·‖ of Proposition 1.31, for every F ∈ ∆(V, σ)
and every representation (H, π) ∈ R(V, σ)

‖π(F )‖ ≤ ‖F‖ .
Therefore there is a unique representation π′ of CCR (V, σ) such that

π′ |∆(V,σ)= π.

Notation 1.37. By virtue of Remark 1.36 we use the same symbolR(V, σ) to denote the
set of regular, non degenerate representations of CCR (V, σ). We will specify which
one we are using if it is not clear from the context.

Definition 1.38. Let (V, σ) be a real symplectic space. A Weyl system is a pair (H,W )
whereH is a complex Hilbert space and W : H → B(H) is a function such that

W (u)∗ = W (−u) = W (u)−1,∀u ∈ V
and that satisfies the Weyl form of the CCR:

W (u)W (v) = e−iσ(u,v)W (u+ v), ∀u, v ∈ V,
We say a Weyl system is regular if

R 3 t 7→ W (tv)

is strongly continuous for every v ∈ V . The operators W (v), v ∈ V are called Weyl
operators. We denote withW(V, σ) the set of regular Weyl systems over (V, σ),

We prove now the following result from [54]

Proposition 1.39. Let (V, σ) a real symplectic space. There is a bijection between
R(V, σ) andW(V, σ) which is explicitly given by

(H, π) 7→ (H, v 7→ π(δv)). (1.5)

Proof. The map (1.5) is well posed since for every representation (H, π) ∈ R(V, σ), π
is a *-homomorphism and the elements δv satisfy the properties of Proposition 1.27.

Consider now a Weyl system (H,W ) ∈ W(V, σ). We will show there is one and
only one function π : CCR (V, σ) → B(H) such that π(δv) = W (v) for every v ∈ V
and (H, π) ∈ R(V, σ). Uniqueness follow from the fact that if π(δv) = W (v) for every
v ∈ V , then for n ∈ N, λ1, . . . , λn ∈ C and v1, . . . , vn ∈ V we have

π

(
n∑
k=1

λkδvk

)
=

n∑
k=1

λkW (vk).

Therefore π is uniquely defined by a density argument and Remark 1.36.
It remains to be shown the existence of a representation where π satisfies π(δv) =

W (v) for every v ∈ V . But this is trivial by the *-homomorphism properties we require
for π and strong continuity of t 7→ W (tv) by definition of a Weyl system. Eventually
the representation is non degenerate because π(δ0) = W (0) = 1.

Notation 1.40. We denote via CCR (V, σ)W the C∗-algebra generated by the Weyl
operators of the Weyl system (H,W ). Since to each Weyl system corresponds a repre-
sentation of the CCR algebra CCR (V, σ), we say CCR (V, σ)W is the representation
of the CCR algebra on (H,W ) or simply on W . Theorem 1.33 shows that all these
CCR algebras are isometrically ∗-isomorphic.

9
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Chapter 1. CCR Algebra and the Fock Representation

1.3 The Symmetric Fock Space and the Fock Representation

Let H be a separable complex Hilbert space with inner product 〈·, ·〉, antilinear in the
first component. Let H⊗n = H ⊗ · · · ⊗ H denote the n-fold tensor product of H with
itself. The Fock space is defined as

Γ(H) =
⊕
n∈N

H⊗n,

whereH0 = C. A generic element ψ of Γ(H) is identified with a sequence (ψ(n))n∈N of
vectors ψ(n) ∈ H⊗n. In this way we can identify H⊗n as the subspace of Γ(H) where
the elements ψ have ψ(m) = 0 except for m = n. We are interested in the symmetric
Fock space that is a particular subspace of Γ(H). Consider the operator Ps on Γ(H)
acting onH⊗n as

Ps(f1 ⊗ · · · ⊗ fn) =
1√
n!

∑
ξ∈Sn

fξ(1) ⊗ · · · ⊗ fξ(n), ∀f1, . . . , fn ∈ H,

where Sn is the set of permutations of {1, . . . , n}. Extension by linearity of Ps gives
a densely defined operator with ‖Ps‖ = 1, therefore it can be extended to a bounded
operator of norm one. We still use Ps to denote this extensions.

Definition 1.41. Let H be a complex separable Hilbert space. The Symmetric Fock
Space, denoted with Γs(H), is

Γs(H) = PsΓ(H).

Remark 1.42. It is easy to see that if the Hilbert spaceH is the direct sum of two Hilbert
spaces H1,H2 H = H1 ⊕ H2 then Γs(H) is isometrically isomorphic to Γs(H1) ⊗
Γs(H2).

If U is a unitary operator onH we can define Un for every n ∈ N by U0 = 1 and for
every f1, . . . , fn ∈ H

Un(Ps(f1 ⊗ · · · ⊗ fn)) = Ps(Uf1 ⊗ · · · ⊗ Ufn).

Definition 1.43. We define the second quantization of a unitary operator U on H the
unitary operator obtained as

Γ(U) =
⊕
n∈N

Un.

Definition 1.44. Let H be a complex separable Hilbert space. An exponential vector
e(f) ∈ Γs(H), for f ∈ H is

e(f) =
∑
n∈N

f⊗n√
n!
.

We denote by E = span{e(f) : f ∈ H} the linear span of exponential vectors.

The following proposition from [57] gives some properties of the newly introduced
set.

10
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Proposition 1.45. LetH be a complex separable Hilbert space. The set {e(f) : f ∈ H}
of all the exponential vectors is linearly independent and total in Γs(H). Moreover,

〈e(f), e(g)〉 = e〈f,g〉, ∀f, g ∈ H. (1.6)

Exponential vectors can also be used to evaluate traces according to the formula of
the following Lemma whose proof can be found for example in [58].

Lemma 1.46. Let z = x+ iy, with x, y ∈ Rd, we have

1

πd

∫
R2d

e−|z|
2

|e(z)〉〈e(z)| dxdy = 1, (1.7)

where |a〉〈a| b = 〈a, b〉 a, for every a, b ∈ H and the integral has to be interpreted in
the weak sense. In particular we have

tr(ω) =
1

πd

∫
R2d

e−|z|
2

〈e(z), ω(e(z))〉 dxdy, (1.8)

for every trace class operator ω.

Proof. We will prove this result with d = 1, the proof in higher dimension follows along
the same lines. Let z = x+iy, z1 = x1+iy1, z2 = x2+iy2 where x, x1, x2, y, y1, y2 ∈ R.
We have〈
e(z1),

1

π

∫
Rd

e−|z|
2

|e(z)〉〈e(z)| dxdy e(z2)

〉
=

1

π

∫
R2

e−|z|
2+zz2+z1zdxdy

=
1

π

∫
R2

e−x
2−y2+x(z1+z2)+iy(z1−z2)dxdy

= exp

((
z1 + z2

2

)2

−
(
z1 − z2

2

)2
)

= ez1z2 = 〈e(z1), e(z2)〉 .

By Proposition 1.45 the set of exponential vectors E is total in Γs(H) therefore (1.7) is
proven. In order to prove (1.8) now we have

tr(ω) = tr
(
ω

1

π

∫
Rd

e−|z|
2

|e(z)〉〈e(z)| dxdy
)

=
1

π

∫
R2

e−|z|
2

〈e(z), ωe(z)〉 dxdy

Now let us fix the symplectic space (hR, σ) introduced in Example 1.13 and h = Cd

as a complex Hilbert space. Let us denote with H = Γs(h) and define the operators
W (z) ∈ B(H) for z ∈ hR that act on the set of exponential vectors as

W (z)e(f) = exp

(
−|z|

2

2
− 〈z, f〉

)
e(z + f).

Proposition 1.47. The pair (H,W ) is a Weyl system on (hR, σ).

11
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Chapter 1. CCR Algebra and the Fock Representation

Proof. It is easy to see that, for f ∈ H, u, v ∈ hR

W (u)W (v)e(f) = e−iσ(u,v)W (u+ v)e(f), ‖W (u)e(f)‖2 = ‖e(f)‖2 .

By totality of exponential vectors, from Proposition 1.45 the above equalities hold on
the whole H. Therefore W (u) satisfies the second requirement of Definition 1.38, and
W (u) are unitaries, so

W (u)W (u)∗ = 1 = W (0) = W (u)W (−u),

which concludes the first requirement. It remains to be proven just strong continuity of
the maps t 7→ W (tu), for t ∈ R. Note at first that

‖e(f + tu)− e(f)‖2 = e|f+tu|2 − 2 Re
(
e〈f+tu,f〉)+ e|f |

2 t→0−−→ 0,

therefore

‖W (u)e(f)− e(f)‖2 ≤ e−t
2|u|2−2tRe〈u,f〉 ‖e(f + tu)− e(f)‖2

+

∣∣∣∣e− t2|u|22
−t〈u,f〉 − 1

∣∣∣∣2 ‖e(f)‖2

which converges to 0 as t goes to 0. This yields strong continuity at t = 0 and we can
extend to the whole real line by noticing that

W ((t+ s)u) = W (tu)W (su),

and recalling that W (u) is unitary for every u ∈ hR therefore

‖W ((t+ s)u)e(f)−W (tu)e(f)‖2 = ‖W (tu) (W (s)e(f)− e(f))‖2

= ‖W (s)e(f)− e(f)‖2 s→0−−→ 0.

Definition 1.48. We will call the representation (H, π), induced by the Weyl system
(H,W ), the Fock representation.

Definition 1.49. A set M of bounded operators on a Hilbert Space H is said to be
irreducible if the only closed subspaces ofH which are invariant under the action of M
are the trivial ones, i.e. {0} and H. A representation (H, π) of C∗-algebra A is said to
be irreducible if π(A) is irreducible onH.

The following Lemma comes from [57]

Lemma 1.50. Let T any bounded operator on Γs(H) such that TW (z) = W (z)T for
every z ∈ hR. Then T is a scalar multiple of the identity.

Proof. See [57, Proposition 20.9].

Proposition 1.51. The Fock representation of the CCR algebra is irreducible and the
von Neumann algebra generated by the Weyl operators is B(Γs(h)).

12
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Proof. Let us start by showing irreducibility. Suppose there exists a subspace K ⊂ H
which is invariant for W (z) for every z ∈ hR. Since, by definition, W (z)∗ = W (−z)
we have K is a reducing subspace for W (z) for every z ∈ hR. Therefore, if p is the
projection operator onto K we have pW (z) = W (z)p for all z ∈ hR. By Lemma 1.50
this implies p is a multiple of the identity and therefore K = H.

Consider now span{W (z) : z ∈ h}, which is a unital *-subalgebra of B(Γs(h)).
Using Von Neumann’s bicommutant theorem K = {W (z) : z ∈ h}′′ is a *-subalgebra
of B(Γs(h)) closed in the strong topology. Irreducibility of the Fock Representation
now implies K′ = C and therefore

K = K′′ = B(Γs(h)).

There exists a generalization of the previous two results which has been proved
by Araki (see [7, Theorem 4]) and reformulated with a new simplified proof in [52,
Theorem 1.3.2].

Definition 1.52. For all subsetsM of h we denote byW(M) the von Neumann algebra
generated by Weyl operators W (z) with z ∈M.

Theorem 1.53. Let M ⊂ hR be a real vector subspace. Then

W(M)′ =W(M⊥σ),

where M⊥σ is the symplectic complement of M (cf. Definition 1.4).

Proof. See [52, Theorem 1.3.2].

Remark 1.54. By Proposition 1.51

W(h) = B(Γs(h)).

Using instead Theorem 1.53 we have h⊥σ = {0} and

W(h)′ =W(h⊥σ) =W({0}) = C1,

that implies, as in the proof of Proposition 1.51,

W(h) =W(h)′′ = (C1)′ = B(Γs(h)).

We introduce now some operators that are frequently considered in the Fock repre-
sentation of the CCR algebra. We will use them in future chapters when introducing
Gaussian QMSs.
Notation 1.55. The Fock representation is regular, therefore, for every u ∈ Γs(h) we
denote with p(u) the Stone generator such that

W (tu) = e−itp(u), ∀t ∈ R. (1.9)

These operators satisfy the following properties whose proof can be found in [57,
Proposition 20.4]

Proposition 1.56. Let E be the linear span of exponential vectors on Γ(h). It holds

13
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(i) E ⊂ D(p(u1) . . . p(um), for all m ∈M and u1, . . . , un ∈ Γ(h);

(ii) E is a core for p(u) for every u ∈ Γ(h);

(iii) [p(u), p(v)] e(w) = (2i Im 〈u, v〉) e(w), for every u, v, w ∈ Γ(h).

Consider now the following definitions for u ∈ h,

q(u) = −p(iu), a(u) =
q(u) + ip(u)

2
, a†(u) =

q(u)− ip(u)

2
. (1.10)

Proposition 1.57. Let a(u), a†(u) be defined by (1.10) for u ∈ h. For any operator
of the form T = T1 . . . Tn where Tj is one of the operators a(uj), a

†(uj) with uj ∈ h,
n ∈ N, it holds E ⊂ D(T ). Furthermore it holds:

(i) a(u)e(v) = 〈u, v〉 e(v), a†(u)e(v) = d
dt
e(v + tu) |t=0 for u, v ∈ h;

(ii)
〈
a†(u)ψ1, ψ2

〉
= 〈ψ1, a(u)ψ2〉, for every ψ1, ψ2 ∈ E;

(iii) [a(u), a(v)]ψ =
[
a†(u), a†(v)

]
ψ = 0, for every u, v ∈ h and ψ ∈ E

(iv)
[
a(u), a†(v)

]
ψ = 〈u, v〉ψ, for every u, v ∈ h and ψ ∈ E.

Notation 1.58. Let (en)dn=1 be an orthonormal basis for h and define

aj = a(ej), a†j = a†(ej), pj =
1√
2
p(ej), qj =

1√
2
q(ej).

They satisfy

[aj, ak] =
[
a†j, a

†
k

]
= 0,

[
aj, a

†
k

]
= δjk (1.11)

[qj, qk] = [pj, pk] = 0, [qj, pk] = iδjk. (1.12)

Moreover

aj =
qj + ipj√

2
, a†j =

qj − ipj√
2

, pj =
aj − a†j

i
√

2
, qj =

aj + a†j√
2

.

We also introduce N =
∑d

j=1 a
†
jaj .

Whit these notations we can now prove the following result.

Proposition 1.59. For every z = x+ iy ∈ h with x, y ∈ Rd, we have

W (z) = exp

(
−i
√

2
d∑
j=1

(xjpj − yjqj)

)
= exp

(
d∑
j=1

(
zja
†
j − zjaj

))
. (1.13)

Moreover, for every v, z ∈ h and ψ ∈ E

[a(v),W (z)]ψ = 〈v, z〉W (z)ψ,
[
a†(v),W (z)

]
ψ = 〈z, v〉W (z)ψ. (1.14)

14
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Proof. Equation (1.13) follows immediately from the notations 1.58 and (1.9).
In order to prove (1.14) we compute at first

[p(v),W (z)] =
∞∑
n=0

(−i)n

n!
[p(v), p(z)n] =

∞∑
n=1

(−i)n2ni Im 〈v, z〉
n!

p(z)n−1

= 2 Im 〈v, z〉W (z),

where all the computations are performed on ψ ∈ E and we used the commutation rules
of Proposition 1.56. Recalling now the definition of a(v), a†(v) in (1.10) we complete
the proof.

Example 1.60. SupposeH = Cd then there exists a unitary isomorphism U : Γs(H)→
L2(Rd) with the identification

Ue(z) =
1

4

√
(2π)d

exp

(
d∑
j=1

(
−
x2
j

4
+ xjzj −

z2
j

2

))
,

where zj represents the j-th component of z. Indeed the set {Ue(z) : z ∈ hR} is total
in L2(Rd) and

〈Ue(z1), Ue(z2)〉L2 =
1

(2π)
d
2

∫
R2d

exp

(
d∑
j=1

(
−xj

2
+ xjz2j + xjz1j −

z2
1j

2
−
z2

2j

2

))
dx

= exp (〈z1, z2〉) = 〈e(z1), e(z2)〉 .

By totality of exponential vectors, given by Proposition 1.45, we can extend U to a
unitary isomorphism on the entire Γs(H). Moreover if x, y ∈ Rd and z ∈ hR

(UW (y)e(z))(x) = e
∑d
j=1

(
−
y2j
2
−yjzj

)
(Ue(y + z)) (x)

=
e
∑d
j=1

(
−
y2j
2
−yjzj

)

4

√
(2π)d

exp

(
d∑
j=1

(
−
x2
j

4
+ xj(yj + zj)−

(yj + zj)
2

2

))

=
1

4

√
(2π)d

exp

(
d∑
j=1

(
−(xy − 2yj)

2

4
+ (xj − 2yj)zj −

z2
j

2

))
= (Ue(z))(x− 2y)

In particular therefore if x, y ∈ Rd and f = Ue(x)(
UW (x)U−1f

)
(y) = f(y − 2x). (1.15)

Analogously one can obtain

(
UW (ix)U−1f

)
(y) = exp

(
i

d∑
j=1

xjyj

)
f(y) (1.16)

15
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Chapter 1. CCR Algebra and the Fock Representation

and both equalities can be extended on the entire L2(Rd) by totality of the set {Ue(z) :
z ∈ hR}. Therefore we have

UpjU
−1f(y) = −i

√
2
∂

∂yj
f(y), UqjU

−1f(y) =
yj√

2
f(y).

Notation 1.61. Consider (ej)
d
j=1 an orthonormal basis of h. We can then construct the

occupancy number basis for Γs(h) considering (e(n1,...,nd))n1,...,nd∈N where

e(n1,...,nd) = Ps

(
e
⊗n1
1 ⊗ · · · ⊗ e⊗ndd

)
. (1.17)

We have the correspondence, for every z ∈ h

e(z)↔
+∞∑

n1,...,nd=0

zn1
1 . . . zndd√
n1! . . . nd!

e(n1,...,nd).

In particular using Proposition 1.57 and comparing the series expansions we obtain, the
action of creation and annihilation operators on the new basis is

aje(n1,...,nd) =
√
nje(n1,...,nj−1,nj−1,...,nd), (1.18)

a†je(n1,...,nd) =
√
nj + 1e(n1,...,nj−1,nj+1,...,nd), a

†
jaje(n1,...,nd) = nje(n1,...,nd). (1.19)

In particular introducing the subspaces

Dn := span{e(n1,...,nd) : n1 + . . . nd ≤ n}, D =
⋃
n∈N

Dn. (1.20)

one has aj(Dn) ⊂ Dn−1 and a†j(Dn) ⊂ Dn+1, which will be a useful insight for the
proofs in Chapter 4.

16
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CHAPTER2
Gaussian States

This chapter is devoted to the introduction of gaussian states. They are essential to
understanding the motivation and the properties of gaussian Quantum Markov Semi-
groups. In the first section however we present some mathematical properties of real
linear operators. They arise naturally when considering operators on a symplectic space
and when approaching the definition of gaussian states. Moreover they will be essen-
tial in the solution of some of the problems presented in the thesis. The second section
introduces gaussian states on the CCR algebra CCR (hR, σ). We study different equiv-
alent condition for a state to be gaussian and then present a partial order relation that
can be defined for those states. In the final section we define gaussian states as trace
class operators on the Fock space and then recover most of the properties we had in the
CCR algebra.

2.1 Real Linear Operators

In the following we will often deal with a complex finite dimensional Hilbert space h
with a complex scalar product 〈·, ·〉 antilinear in the first component and the associated
real Hilbert space hR with scalar product Re 〈·, ·〉, as in the Example 1.13. On the same
set h we can then have complex linear bounded operators, that will be denoted as usual
B(h) or B(hR), and real linear operators, that will be denoted as BR(h) or BR(hR). We
will denote the adjoint of an operator A ∈ BR(hR) as A]. Some of the results we will
show are valid also in this general context with some minor adjustments. Although,
since we will use them in the case h = Cd, we deal just with this finite dimensional
case. The notations for the rest of the thesis will be the one of Example 1.13.

Proposition 2.1. Let A ∈ BR(hR). There exists two unique operators A1, A2 ∈ B(hR)

17
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Chapter 2. Gaussian States

such that
Az = A1z + A2z, ∀z ∈ hR (2.1)

that are given by

A1z =
A− iAi

2
z, A2z =

A+ iAi

2
z, ∀z ∈ hR. (2.2)

Moreover in this case we have

A]z = A∗1z + AT2 z, (2.3)

where AT2 = A∗2.

Proof. We immediately see the decomposition (2.1) holds by simply plugging in the
expressions (2.2). To prove the first part it remains to be shown thatA1, A2 are complex
linear operators. We do this for A2, consider λ = x+ iy ∈ C with x, y ∈ R, we have

A2(λz) =
A+ iAi

2
((x− iy) z) = x

A+ iAi

2
z − yA+ iAi

2
(iz)

= x
A+ iAi

2
z + y

iA− Ai

2
z = x

A+ iAi

2
z + iy

A+ iAi

2
z

= λA2z.

The proof for A1 follows in a similar way.
We prove now (2.3). Let z1, z2 ∈ hR and observe that

Re
〈
A]z1, z2

〉
= Re 〈z1, Az2〉 = Re 〈z1, A1z2〉+ Re 〈z1, A2z2〉
= Re 〈A∗1z1, z2〉+ Re 〈A∗2z1, z2〉 = Re 〈A∗1z1, z2〉+ Re

〈
A∗2z1, z2

〉
.

which concludes the proof.

The next Proposition gives some useful insight on how to interpret real linear oper-
ators. Indeed it is not always easy to force oneself to think of Cd as a real space and
detach from all the built up automatisms one may have. For this reason it is useful to
think of it through some symplectomorphism with some other space which is naturally
2d-dimensional.

Proposition 2.2. Consider the real Hilbert spaces hR,R2d, h given by Examples 1.12,
1.14 that are isomorphic by Example 1.18 via TR2d , Th, respectively. There exists
a one to one correspondence between operators A ∈ BRhR and operators AR2d ∈
BR(R2d), Ah ∈ BR(h) such that

TR2dA = AR2dTR2d , ThA = AhTh. (2.4)

They are explicitly given by

AR2d

(
x

y

)
=

(
Re(A1 + A2) Im(A2 − A1)

Im(A1 + A2) Re(A1 − A2)

)(
x

y

)
, x, y ∈ Rd (2.5)

and

Ah

(
z

z

)
=

(
A1 A2

A2 A1

)(
z

z

)
, z ∈ h. (2.6)

18
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2.1. Real Linear Operators

Moreover it holds
TR2dA] = ATR2dTR2d , ThA

] = A∗hTh,

whereATR2d , A
∗
h are adjoints with respect to the real scalar product of R2d and the usual

complex scalar product of C2d.

Proof. It is easy to see through explicit calculations that (2.6), (2.5) satisfy (2.4). This
relation is one-to-one and onto since TR2d , Th are invertible. In the case R2d we can find
an explicit inversion formula. Indeed let S ∈ BR(R2d) given by

S =

(
S11 S12

S21 S22

)
,

and define

Az =

(
S11 + S22

2
+ i

S21 − S12

2

)
z +

(
S11 − S22

2
+ i

S12 + S21

2

)
z,

it holds AR2d = S.

Example 2.3. A notable example of a real linear operator is Jz = −iz, for z ∈ hR. In
particular we have J1 = −i1, J2 = 0, moreover

JR2d =

(
0 1

−1 0

)
, Jh =

(
−i1 0

0 i1

)
.

We have J ] = −J = J−1 = J∗. We can use J to rewrite the symplectic forms of
Examples 1.13, 1.12, 1.14 as

σ(u, v) = Re 〈u, Jv〉 , σR(x, y) = 〈x, JR2dy〉R2d , σh(h1, h2) =
1

2
Re 〈h1, Jhh2〉 ,

for all u, v ∈ V , x, y ∈ R2d and h1, h2 ∈ h.

Remark 2.4. It is often useful to consider spectra of real linear operators, which can
of course have also complex eigenvalues. For this reason it is often useful to consider
complexification of such operators, as one does when working in Rn. As noted in
Example 1.24, it is not easy to work with the complexification of hR and, by transitivity,
even with the complexification AC of an operator A ∈ BR(hR). It is much simpler to
first identify A with Ah and then consider the complexification hC of h and obtain
the complexified operator AhC which will be denoted A in boldface character. By
Proposition 1.21, hC and the complexification of hR are still isomorphic and

ThCAC = AThC .

Moreover A has the same matrix expression than Ah.
Of course it would be possible to use the complexification of AR2d instead, and in

fact it has been done (see [16, 58]). We prefer to use this approach since, from an
application point of view, it is easier to calculate Ah starting from the expression for A.
Notation 2.5. For A ∈ BR(hR) we denote with A, in boldface character, the complex-
ification of Ah. Moreover in the following whenever we speak of the complexification
of an operator A ∈ BR(hR) we are always referring to A implying this identification.

19
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Chapter 2. Gaussian States

The following result characterizes real linear operators that are Bogoliubov trans-
formations (cf. Definition 1.10.

Proposition 2.6. Let T ∈ BR(hR) be an invertible operator, the following are equiva-
lent:

(i) T is a Bogoliubov transformation;

(ii) T ]JT = J;

(iii) T TR2dJR2dTR2d = JR2d;

(iv) T ∗hJhTh = Jh.

In particular in that case TR2d and Th are Bogoliubov transformations on R2d and h
respectively.

Proof. Using the expression for σ in Example 2.3 we obtain

σ(u, v) = σ(Tu, Tv) ⇐⇒ Re
〈
u,
(
J − T ]JT

)
v
〉

= 0,

for every u, v ∈ hR. Therefore we have the equivalence between (i) and (ii). The
equivalence among (ii), (iii) and (iv) follows from Proposition 2.2.

Remark 2.7. If T ∈ BR(hR) is a Bogoliubov transformation then T ] and T−1 are as
well. Indeed by Proposition 2.6 we have T ]JT = J and clearly TT−1 = 1, therefore

J = (QQ−1)]JQQ−1 = (Q−1)]JQ−1.

Again by Proposition 2.6 we have Q−1 is a Bogoliubov transformation. Moreover the
product of Bogoliubov transformations is still a Bogoliubov transformation, since if S
is another Bogoliubov transformation

(TS)]J(TS) = S]T ]JTS = S]JS = J.

Therefore T ] = JT−1J−1 is a Bogoliubov transformation.
We consider a useful normal form for Bogoliubov transformations.

Proposition 2.8. Every symplectic automorphism T of hR admits a factorization T =
U1BU2, where U1, U2 are orthogonal operators on hR and B is a symplectic automor-
phism such that

BR2d =

(
A 0

0 A−1

)
,

where A is a positive operator on Rd.

Proof. In this proof we will always consider real linear operators as acting on R2d

through the identification of Proposition 2.2, therefore we will drop the subscript to
avoid cluttering notation. Consider the polar decomposition S = UH with U an or-
thogonal operator and H positive. The equivalent conditions of Proposition 2.6 for the
Bogoliubov transformation S yield

JUH = UH−1J = UJJ−1H−1J

20
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where JU and UJ are orthogonal operators and H , J−1H−1J are positive operators.
By the uniqueness of the polar decomposition we obtain

UJ = JU, H = J−1H−1J. (2.7)

Denote now with R0, R1, R2 the eigenspaces of H associated with eigenvalues smaller
than 1, equal to 1 and greater than 1, respectively. The second equation of 2.7 implies
that J maps R0 onto R2 and vice versa, while R1 is mapped onto itself, moreover H is
symplectic. Therefore R1 is a symplectic space. Since 〈x, Jx〉R2d = 0 for all x ∈ R2d,
similar to the proof of Proposition 1.9 we can find a basis of R1 given by

{xj, Jxj : j = 1, . . . ,m}

where 2m is the dimension of R1. We can then define R11, R12 as the subspaces
spanned by {xj : j = 1, . . . ,m} and {Jxj : j = 1, . . . ,m}, respectively, and introduce
M1 = R0⊕R11, M2 = R12⊕R2. Therefore R2d = M1⊕M2 and J maps M1 onto M2

and vice versa. Moreover H leaves both M1 and M2 invariant. Fix a basis {y1, . . . , yd}
of M1 and the canonical orthonormal basis (ej)

2d
j=1 of R2d. Define V the orthogonal

operator on R2d that acts as

V yj = −ej, V Jyj = ej+d, j = 1, . . . , d.

We have that V commutes with J and by construction

V HV −1 =

(
A 0

0 A−1

)
=: B

for some positive operator A. Therefore by setting U1 = UV −1, U2 = V we have

S = UH = UV −1V HV −1V = U1BU2.

The last result we need for real linear operators is a diagonalization result called
Williamson’s normal form. This results does not hold for general real linear operators
but just for positive ones. Recall that we say A ∈ BR(hR) is positive if Re 〈v,Av〉 ≥ 0
for every v ∈ hR and is strictly positive if A is also invertible. We start by stating the
classical result, due to Williamson [74] on R2d which requires a preliminary Lemma.

Lemma 2.9. Let A ∈ BR(R2d) an invertible operator such that AT = −A. Then there
exist unique λ1 ≥ · · · ≥ λd > 0 and U ∈ BR(R2d) an orthogonal operator such that

A = UT

(
0 D

−D 0

)
U, (2.8)

where D = diag(λ1, . . . , λd) is the diagonal matrix whose diagonal entries are given
in order by λ1, . . . , λd.

Proof. Since AT = −A we have that B := A2 satisfies BT = B. Let µ1, . . . , µ2d ∈ R
and f1, . . . , f2d corresponding eigenvectors. Notice that all the eigenvalues must be
strictly negative, since A is invertible and

µk = 〈fk, Bfk〉R2d = −〈Afk, Afk〉R2d < 0, ∀k = 1, . . . , 2d.
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Chapter 2. Gaussian States

Now notice that fk, Afk are linearly independent eigenvectors associated with the same
eigenvalue µk, indeed

BAfk = A3fk = µkAfk, 〈fk, Afk〉R2d = −〈fk, Afk〉 , ∀k = 1, . . . , 2d.

In particular every eigenspace has even dimension and we can find a basis (by induction
on the dimension of an eigenspace, similarly to the proof of Proposition 1.9) which is
composed of pairs (gk, Agk) where (gk) is a sequence of mutually orthogonal, normal-
ized eigenvectors. Therefore we can find an orthonormal basis for R2d defined by

uk = gk, ud+k =
λk
A
gk, λk =

√
−µk, k = 1, . . . , d.

Let U be the matrix whose rows are the vectors uk, by explicit computations of the
quantities 〈uj, Auk〉R2d one obtains (2.8).

We now prove uniqueness. Suppose there exists λ′1 ≥ · · · ≥ λ′d > 0 and U ′ an
orthogonal operator such that

A = U ′
T

(
0 D′

−D′ 0

)
U ′,

where D′ = diag(λ′1, . . . , λ
′
d). If V = UU ′T we have V is still orthogonal and

V

(
0 D′

−D′ 0

)
V T =

(
0 D

−D 0

)
.

Let (ek)
2d
k=1 the canonical orthonormal basis of R2d, we have

λkV
T ek+d = V T

(
0 D

−D 0

)
ek =

2d∑
j=1

(
0 D′

−D′ 0

)
〈ej, V ek〉 ej

=
d∑
j=1

(
〈ej, V ek〉λ′jej+d − 〈ej+d, V ek〉λ′jej

)
In particular this implies λk = λ′k for every k = 1, . . . , d.

We can now state the result for Williamson’s normal form in R2d.

Proposition 2.10 (Williamson’s normal form). Let A ∈ BR(R2d) be a strictly positive
operator. Then there exist unique λ1 ≥ · · · ≥ λd > 0 and T ∈ BR(R2d) a Bogoliubov
transformation such that

A = T T
(
D 0

0 D

)
T, (2.9)

where D = diag(λ1, . . . , λd), the diagonal matrix with entries given by λ1, . . . , λd.

Proof. Let A1/2 stand for the unique positive square root of A and define the real linear
operator

B = A1/2JR2dA1/2,
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where JR2d is the operator given in Example 2.3. We have BT = −B and B is in-
vertible, therefore by Lemma 2.9 there exist unique λ1 ≥ · · · ≥ λd > 0 and U an
orthogonal matrix such that

UTBU =

(
0 D

−D 0

)
,

where D = diag(λ1, . . . , λd) . Consider then the matrix

L =
√
AU

(
D−1/2 0

0 D−1/2

)
.

One has

LTJR2dL =

(
D−1/2 0

0 D−1/2

)
UT
√
AJR2d

√
AU

(
D−1/2 0

0 D−1/2

)

=

(
D−1/2 0

0 D−1/2

)(
0 D

−D 0

)(
D−1/2 0

0 D−1/2

)
= JR2d

and

L

(
D 0

0 D

)
LT = A1/2U

(
D−1/2 0

0 D−1/2

)(
D 0

0 D

)(
D−1/2 0

0 D−1/2

)
UTA1/2

= A.

We can then set T = LT , which is still a Bogoliubov transformation as pointed out in
Remark 2.7, and complete the proof.

Exploiting the symplectomorphisms given in Example 1.18 we can obtain the cor-
responding result to Williamson’s normal form also for real linear operators on hR and
h.

Corollary 2.11. Let A ∈ BR(hR) be a strictly positive operator. Then there exist λ1 ≥
· · · ≥ λd > 0 and T ∈ BR(hR) a Bogoliubov transformation such that

A = T ]DT, (2.10)

where D = diag(λ1, . . . , λd) ∈ BR(hR), the diagonal matrix with entries given by
λ1, . . . , λd. Similarly

Ah = T ∗h

(
D 0

0 D

)
Th,

and Th is a Bogoliubov transformation.

Proof. The proof follows from Proposition 2.10 noticing that

DR2d =

(
D 0

0 D

)
.

Eventually consider that by Proposition 2.6 if TR2d is a Bogoliubov transformation, T
is one as well. A similar proof can be used to prove the Corollary also on h.
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Chapter 2. Gaussian States

2.2 Gaussian States on the CCR algebra

In this section we define gaussian states on CCR (hR, σ) as a starting point to then
move towards their definition on B(Γs(h)). When it doesn’t require additional work
we provide definitions and results on the general case of the CCR algebra on a generic
symplectic space.

We first recall some basic definitions for states on a C∗ algebra.

Definition 2.12. Let A a C∗-algebra and S ⊂ A. We set S∗ = {a∗ : a ∈ S}, we say
S is self-adjoint when S = S∗. If A has a unit 1 and S is a self-adjoint subspace of A
containing 1 we say S is an operator system

Definition 2.13. Let A,B be unital C∗-algebras and let S ⊂ A be an operator system.
A function linear function φ : S → B is positive if φ(a) ≥ 0 whenever a ≥ 0. We say
a functional ω on A is a state if ω(1) = 1 and ω is positive, i.e. ω(x∗x) ≥ 0 for every
x ∈ A.

We recall the following properties.

Proposition 2.14. Let A a unital C∗-algebra, S ⊂ A an operator system and φ : S →
C a positive map then

1. φ(a∗) = φ(a), for every a ∈ S;

2. φ is bounded and ‖φ‖ = φ(1);

3. φ can be uniquely estended to a positive map φ on the closure S of S .

We are now ready to give the definition of a gaussian state. They have been intro-
duced in many articles and in different equivalent ways (see [16, 45, 46, 55, 58].

Definition 2.15. Let (hR, σ) the symplectic space introduced in Example 1.13. We
say ω a state on CCR (hR, σ) is gaussian or quasi-free if there exists µ ∈ hR and
S ∈ BR(hR) a positive, invertible operator such that

ω(δu) = exp

(
−i Re 〈µ, u〉 − 1

2
Re 〈u, Su〉

)
, u ∈ V. (2.11)

We say µ and S are the mean vector and the covariance operator, respectively, and we
denote the state ω as ω(µ,S).

We denote with Q the set of covariance operators of gaussian states.

This definition assumes a priori that ω is a state. However we will show that there is
an explicit condition on the operator S such that a functional that satisfies (2.11) defines
a state on CCR (hR, σ). In particular this will show that we can characterize operators
in Q and that it will be a proper subset of BR(hR). A fundamental tool in proving this
result is Proposition 2.18, but first let us recall the following definition.

Definition 2.16. Let X be any set andK a complex-valued function on X ×X is called
a positive definite kernel on X if for any m ∈ N, c1, . . . , cm ∈ C and x1, . . . , xm ∈ X
it holds

m∑
j,k=1

cjckK(xj, xk) ≥ 0.
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2.2. Gaussian States on the CCR algebra

Remark 2.17. Note that the kernel K is positive definite if and only if the matrix
(K(xj, xk))

m
j,k=1 is positive definite for every m ∈ N, c1, . . . , cm ∈ C and x1, . . . , xm ∈

X .

Proposition 2.18. Let (V, σ) a real symplectic space and G : V → C a function. Then
there exists a positive functional ω on CCR (V, σ) such that

ω(δv) = G(v), ∀v ∈ V, (2.12)

if and only if the kernel

V × V 3 (u, v) 7→ G(u− v)eiσ(u,v) (2.13)

is positive definite. Moreover, in that case, ω is a state if and only if G(1) = 1.

Proof. Let us start by proving the characterization of positivity for ω. Suppose ω is
positive and let n ∈ N, λ1, . . . , λn ∈ C, v1, . . . , vn ∈ V . Setting x =

∑n
k=1 λkδvk we

have

xx∗ =
n∑

j,k=1

λjλkeiσ(vj ,vk)δvj−vk ≥ 0.

Exploiting positivity of ω we obtain
n∑

j,k=1

λjλkeiσ(vj ,vk)G(vj − vk),

which is precisely positive definiteness of the kernel (2.13). On the other hand, by the
same argument, the positive definiteness of the kernel allows us to define a positive
functional ω on the operator system of finite linear combinations of {δv : v ∈ V } that
satisfies (2.12). By Proposition 2.14 we can uniquely extend ω to a positive functional
(still denoted ω) that acts on the closure of this set which is the whole CCR (V, σ).

Eventually the condition G(1) = 1 follows since by definition of a state

1 = ω(1) = G(1).

As anticipated, the previous Proposition will be the fundamental tool to characterize
gaussian states based solely on their parameters. Before proving the actual Theorem
however we need some preliminary Lemmas. The first one comes from [16, 61]

Lemma 2.19. Let (V, σ) a real symplectic space. If α(·, ·) is a positive symmetric
bilinear form on V then the following conditions are equivalent:

(i) The kernel (u, v) 7→ α(u, v)− iσ(u, v) is positive definite;

(ii) σ(u, v)2 ≤ α(u, u)α(v, v), for every u, v ∈ V .

The second one states a well-known property of the so called Hadamard product.

Lemma 2.20. Let A = (ajk)
d
jk=1, B = (bjk)

d
jk=1 be real positive semidefinite matrices.

Then (ajkbjk)
d
jk=1, the entry wise multiplication of A and B, and (eajk)djk=1, the entry

wise exponentiation of A, are still positive semidefinite matrices.
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Chapter 2. Gaussian States

Eventually we have the following result.

Lemma 2.21. Let A ∈ BR(hR) is a self-adjoint operator and consider the kernel

K : h× h 3 (u, v) 7→ 〈u,Av〉 .

K is positive definite if and only if A is positive as operator on C2d.

Proof. Suppose at first that A is positive definite. For every n ∈ N, c1, . . . , cn ∈ C and
u1, . . . , un ∈ h we have

n∑
j,k=1

cjck 〈uj,Auk〉 =

〈
n∑
j=1

cjuJ ,A

(
n∑
k=1

ckuk

)〉
≥ 0.

On the other hand if the kernel K is positive definite we have for all u ∈ h

Re 〈u,Au〉 =
1

2
〈u,Au〉 ≥ 0,

where we implied the identification of h with hR. Similarly, for u, v ∈ h

〈u+ iv,A (u+ iv)〉 = 〈u,Au〉+ 〈v,Av〉+ i 〈u,Av〉 − i 〈v,Au〉
= 2 Re 〈u,Au〉+ 2 Re 〈v,Av〉+ 2i (Re 〈u,Av〉 − Re 〈v,Au〉)
= 2 Re 〈u,Au〉+ 2 Re 〈v,Av〉 ≥ 0

Therefore A is positive.

We now start proving the characterization theorem for gaussian states. The proof
will be split into different results coming from from [16, 37, 58, 61]. In particular it
justifies different conditions that have been used to introduce gaussian states and proves
they are all equivalent. We start with the following proposition that gives two equivalent
conditions for S ∈ Q. It also shows that we can assess whether a a functional defined
by (2.11) is a gaussian states looking solely at S and checking if it belongs to Q. In
particular the mean vector doesn’t pose any problem in the definition of a gaussian
state.

Proposition 2.22. Let ω be a linear functional on CCR (hR, σ) such that

ω(δu) = exp

(
−i Re 〈µ, u〉 − 1

2
Re 〈u, Su〉

)
, u ∈ hR, (2.14)

where µ ∈ hR and S ∈ BR(hR) is an invertible self-adjoint operator. Then ω is a
(gaussian) state if and only if one of the following equivalent conditions holds:

(i) S ∈ Q;

(ii) S− iJ ≥ 0 on C2d;

(iii) S + iJ ≥ 0 on C2d;

Proof. We start the proof by showing equivalence between ω being a state and (i). If ω
is a state then S is positive, since otherwise there would be z ∈ hR such that |z| = 1 and
Re 〈z, Sz〉 < 0. Hence |ω(δz)| > 1, contradicting (2) of Proposition 2.14. Therefore ω
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2.2. Gaussian States on the CCR algebra

is a gaussian state and by definition S ∈ Q. On the other hand, if S ∈ Q there exists
µ0 ∈ hR and a gaussian state ω′ such that

ω′(δu) = G(u) = exp

(
−i Re 〈µ0, u〉 −

1

2
Re 〈u, Su〉

)
.

Now observe that ω(δu) = G(u) exp (i Re 〈µ0 − µ, u〉) and ω(1) = 1. By proposition
2.18 ω is positive if and only if the kernel

(u, v) 7→ G(u− v) exp (−i Re 〈µ0 − µ, u− v〉) eiσ(u,v),

is positive definite. But G(u − v)eiσ(u,v) is positive definite since ω′ is a state and the
kernel exp (−i Re 〈µ0 − µ, u− v〉) is trivially positive definite. Therefore their product
is still positive definite, by Remark 2.17 and Lemma 2.20.

This shows the equivalence between ω being a state and S ∈ Q. In particular then
we can always suppose that µ = 0 for the rest of the proof since it doesn’t play any
relevant role.

Suppose then µ = 0, we prove (ii), (iii) are equivalent with S ∈ Q. Using Proposi-
tion 2.18, S ∈ Q if and only if the kernel

K(u, v) = exp

(
−1

2
Re 〈v − u, S(v − u)〉+ iσ(u, v)

)
= exp

(
−1

2
Re 〈v − u, S(v − u)〉+ i Re 〈u, Jv〉

)
.

Now denote the kernel at the exponent of K by

N(u, v)− 1

2
Re 〈v − u, S(v − u)〉+ i Re 〈u, Jv〉 .

Positive definiteness of K is equivalent to that of

Mt(u, v) := K(
√
tu,
√
tv) = etN

for every t > 0. By a known result (see [60, Lemma 1.7]) this is equivalent to condi-
tional positivity of N or positive definiteness of

N(u, v)−N(u, 0)−N(0, v) +N(0, 0) = Re 〈v, Su〉 − i Re 〈v, Ju〉 (2.15)
= Re 〈u, Sv〉+ i Re 〈u, Jv〉 . (2.16)

By identification of hR into C2d through complexification we have equation (2.15),
(2.16) become

1

2

〈(
u

u

)
, (S± iJ)

〉(
v

v

)
.

Using Lemma 2.21 this is equivalent to S± iJ ≥ 0 on C2d.

We present now a result with some sufficient conditions for S ∈ Q.

Proposition 2.23. Let ω be a linear functional on CCR (hR, σ) that satisfies (2.14) for
some µ ∈ hR and S ∈ BR(hR) invertible and self-adjoint. The following are equivalent
sufficient conditions for ω to be a (gaussian) state:
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(i) J∗SJ ≥ S−1;

(ii) the map (u, v) 7→ Re 〈u, Sv〉 − i Re 〈u, Jv〉 is positive definite on hR.

(iii) σ(u, v)2 ≤ Re 〈u, Su〉Re 〈v, Sv〉, for every u, v ∈ hR.

Proof. We assume as in the proof of Theorem 2.24 that µ = 0. Consider G(u) =
exp

(
−1

2
Re 〈u, Su〉

)
. By Proposition 2.18 we have ω defined via (2.14) is a state if

and only if the kernel (2.13) is positive definite. This means that for every n ∈ N,
c1, . . . , cn ∈ C and u1, . . . , un ∈ hR

0 ≤
n∑

j,k=1

cjck exp

(
−1

2
Re 〈uj − uk, S (uj − uk)〉+ iσ(uj, uk)

)

=
n∑

j,k=1

(
cje−

1
2

Re〈uj ,Suj〉
)(

cke−
1
2

Re〈uk,Suk〉
)

exp (Re 〈uk, Suj〉 − iσ(uk, uj))

=
n∑

j,k=1

c′jc
′
k exp (Re 〈uk, Suj〉 − iσ(uk, uj)) .

This is true, by Lemma 2.20, if (ii) holds. Now Lemma 2.19 shows equivalence between
(ii) and (iii).

In order to show equivalence with (i) suppose at first that (iii) holds. By choosing
u = JSv one obtains

Re 〈v, Sv〉2 = Re 〈JSv, Jv〉2 ≥ Re 〈JSv, SJSv〉Re 〈v, Sv〉 ,

which implies
Re 〈v, Sv〉 ≤ Re 〈Sv, J∗SJSv〉 , ∀v ∈ hR.

Letting v = S−1w we obtain

Re
〈
w,
(
J∗SJ − S−1

)
w
〉
≥ 0, ∀w ∈ hR,

which is (i). Conversely for every u, v ∈ hR there exists w ∈ hR such that w = S−1Jv,
in that case

Re 〈u, Jv〉2 = Re 〈u, Sw〉2 = Re
〈√

Su,
√
Sw
〉2

≤ Re 〈u, Su〉Re 〈w, Sw〉 = Re 〈u, Su〉Re
〈
S−1Jv, Jv

〉
≤ Re 〈u, Su〉Re 〈J∗SJJv, Jv〉 = Re 〈u, Su〉Re 〈v, Sv〉 ,

where we used Cauchy-Schwartz inequality and (i).

Eventually we state the result for the characterization of a gaussian state based on
its parameters. This joins partial results contained in Propositions 2.22 and 2.23.

Theorem 2.24. Let ω be a linear functional on CCR (hR, σ) that satisfies (2.14) for
some µ ∈ hR and S ∈ BR(hR) invertible and self adjoint. Then ω is a gaussian state if
and only if one of the following equivalent conditions hold:

(i) S ∈ Q;
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(ii) S− iJ ≥ 0 on C2d;

(iii) S + iJ ≥ 0 on C2d;

(iv) J∗SJ ≥ S−1;

(v) the map (u, v) 7→ Re 〈u, Sv〉 − i Re 〈u, Jv〉 is positive definite on hR.

(vi) σ(u, v)2 ≤ Re 〈u, Su〉Re 〈v, Sv〉, for every u, v ∈ hR.

Proof. Proposition 2.22 shows already the statement for (i), (ii), (iii), while Proposition
2.23 shows sufficiency and equivalence of (iv), (v), (vi). The only missing step is to
prove that one of the latter conditions is also necessary. Suppose then ω = ω(µ,S) is a
gaussian state and consider (πω,Hω,Φ) the GNS triple associated with it.

As a first step we show that for every n ∈ N, v, v1, . . . , vn ∈ hR the vector πω(δv)Φ
is in the domain of the operator

p(vn) . . . p(v1).

We prove this by induction and to simplify the notation we will omit πω. Suppose that

η = p(vn−1) . . . p(v1)δvΦ,

to prove the assertion we need to show that the function t → δtvη is weakly differen-
tiable at t = 0. Consider now ξ = δuΦ with u ∈ hR, we have

lim
t→0

1

t
〈ξ, (δtvn − 1) η〉 = (−i)n

∂

∂t

∂n−1

∂tn−1 . . . ∂t1
〈Φ, δ−uδtnvn . . . δt1v1δtvΦ〉

= (−i)n
∂

∂t

∂n−1

∂tn−1 . . . ∂t1
ω (δ−uδtnvn . . . δt1v1δtv) ,

where all the derivatives are evaluated at the point t = tn−1 = · · · = t1 = 0. This
quantity is finite since the expression (2.11) for a gaussian state is analytic. Therefore
the weak derivative of t→ δtvη exists on the dense set D defined by

D = span{δvΦ : v ∈ hR}.

Using a similar computation one can also see that the quantity

C = lim
t→0

1

t
‖(δtvn − 1) η‖2

exists and is finite. Therefore

lim
t→0

1

t
〈ξ, (δtvn − 1) η〉 ≤

√
C ‖η‖

and the weak derivative exists also on the closure of D which is the wholeHω.
We can use this property to evaluate the following quantity

〈Φ, p(u)p(v)Φ〉 = (−i)2 ∂2

∂t∂s
〈Φ, δsu)δtv)Φ〉 = − ∂2

∂t∂s
e−itsσ(u,v)ω(δsu+tv)

= Re 〈v, Su〉 − iσ(v, u),
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Chapter 2. Gaussian States

for every u, v ∈ hR. Therefore, for every n ∈ N, c1, . . . , cn ∈ C and v1, . . . , vn ∈ hR
we have

0 ≤

〈
n∑
j=1

cjp(vj)Φ,
n∑
k=1

ckp(vk)φ

〉
=

n∑
j,k=1

ckcj (Re 〈vk, Svj〉 − iσ(vk, vj)) ,

which is (v).

Remark 2.25. The conditions of Theorem 2.24 imply that the covariance operator of a
gaussian state S is strictly positive. Indeed by definition S is self adjoint and for h ∈ h

0 ≤ 〈h+ ih, (S− iJ) (h+ ih)〉 = 〈h+ ih, Shh+ iShh〉 − i 〈h+ ih, Jhh+ iJhh〉
= 2 〈h, Shh〉

since the scalar product on the right hand side is real, hence symmetric, and 〈h, Jhh〉 =
0, since J∗h = −Jh. Therefore Sh ≥ 0 and this is equivalent to S ≥ 0, via Example
1.18. Eventually strict positivity follows from invertibility of S.

The following result comes from [59] and allows one to understand the condition
S ∈ Q from its Williamson’s normal form.

Proposition 2.26. Let S ∈ BR(hR) a strictly positive operator and let

S = T ]DT

be its Williamson’s normal form, given by Corollary 2.11 for some Bogoliubov trans-
formation T ∈ BR(hR) and D = diag(λ1, . . . , λd) where λ1 ≥ · · · ≥ λd > 0. Then
S ∈ Q if and only if

λ1 ≥ · · · ≥ λn ≥ 1.

Proof. Let us start by assuming S ∈ Q. Using the equivalent conditions of Theorem
2.24 and the characterization of Bogoliubov transformations in Proposition 2.6 we have

D− iJ = T−1
∗

(S− iJ)T−1 ≥ 0.

We can write this condition explicitly as(
D −i1

i1 D

)
≥ 0,

whose meaning is positivity of a complex matrix. Evaluating the minor of the second
order arising considering the rows and columns of indexes k, k + d, one obtains

d2
k − 1 ≥ 0,

for every k = 1, . . . , d, which proves the first implication.
The converse implication follows from this last consideration since we have there-

fore that

D− iJ =

(
D −i1

i1 D

)
≥ 0.

Therefore also
S− iJ = T∗ (D− iJ)T ≥ 0

and the proof is concluded via Theorem 2.24.
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Similar to the case with normal random variables we can transform the parameters
of a gaussian state that acts on CCR (hR, σ).

Notation 2.27. For every z0 ∈ hR consider the automorphism of the CCR (hR, σ) given
by

τz0(x) = δ−i
z0
2
xδi

z0
2
, ∀x ∈ CCR (hR, σ) . (2.17)

Proposition 2.28. Let µ ∈ hR, S ∈ BR(hR) an invertible, positive operator and ω(µ,S)

a gaussian state on CCR (hR, σ). For every z0 ∈ hR and T ∈ BR(hR) a Bogoliubov
transformation

ω(µ,S) ◦ τz0 = ω(µ+z0,S), ω(µ,S) ◦ Γ(T ) = ω(T ]µ,T ]ST), (2.18)

with τz0 given by (2.17) and Γ(B) introduced in Corollary 1.34.
In particular, if T ]ST = D is the Williamson’s normal form of S given by Corollary

2.11, then
ω(µ,S) ◦ τ−µ ◦ Γ(T ) = ω(0,D).

Proof. Let z ∈ hR. Using equation (1.3) we have

τz0(δz) = δ−i
z0
2
δzδi

z0
2

= exp (−i Re 〈z0, z〉) δz,

while Γ(T )δz = δTz. Therefore by explicit calculation one gets (2.18). We just need
to show that T ]ST ∈ Q. By Proposition 2.6 we have Jh = T ∗hJhTh and using its
complexified counterpart we obtain

T∗ST− iJ = T∗ST− iT∗JT = T∗ (S− iJ)T ≥ 0

since S − iJ ≥ 0. Eventually, since S is strictly positive from Remark 2.25, we can
apply Corollary 2.11 and equation (2.18) to conclude the proof.

We will further investigate maps that transform the parameters of a gaussian state
similar to (2.18) in Chapter 3.

2.2.1 Partial Order Relation on Gaussian States

In the final part of this section we define a partial order relation on the set of gaussian
states which was introduced by Fannes in Ref. [37]. It will be useful for the characteri-
zation of gaussian maps in Chapter 3.

Definition 2.29. Let S1, S2 ∈ Q and µ1, µ2 ∈ hR, we say

ω(µ1,S1) � ω(µ2,S2) ,

if there exists γ ∈ R such that

ω(µ1,S1) ≤ γω(µ2,S2) .

We report here a short proposition from [37] showing that this is indeed the defini-
tion of a partial order relation and that gives some necessary condition for it.

Proposition 2.30. Let S1, S2 ∈ Q and µ1, µ2 ∈ hR.
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1. If ω(µ1,S1) � ω(µ2,S2) then S1 ≤ S2 and µ1 − µ2 ∈ ker(S2 − S1)⊥.

2. � is a partial order relation.

Proof. We start by proving Item 1. Let γ be given as in Definition 2.29. Since τ−µ2 is a
positive transformation, via (2.18) we have

ω(µ1−µ2,S1) = ω(µ1,S1) ◦ τ−µ2 ≤ γω(µ2,S2) ◦ τ−µ2 = γω(0,S2).

Therefore ω(µ1−µ2,S1) � ω(0,S2). Consider now z ∈ hR and for n ∈ N let t1, . . . tn ∈ R,
c1, . . . cn ∈ C. Define x =

∑n
j=1 cjδtjz and observe that

x∗x =
n∑

j,k=1

cjckδ(tk−tj)z.

Exploiting the fact that

γω(0,S2)(x
∗x)− ω(µ1−µ2,S1)(x

∗x) ≥ 0

for all choices of tj, cj we have positive definition of the function

t 7→ γ exp

(
−t

2

2
Re 〈z, S2z〉

)
− exp

(
−t

2

2
Re 〈z, S1z〉 − i Re 〈µ1 − µ2, z〉

)
.

Via Bochner’s theorem its Fourier transform should therefore be positive, namely the
quantity

γ√
Re 〈z, S2z〉

e−
k2

2Re〈z,S2z〉 − 1√
Re 〈z, S1z〉

e−
|k+Re〈µ1−µ2,z〉|

2

2Re〈z,S1z〉 , (2.19)

is positive for all k ∈ R. What we obtained is the weighted difference of two one-
dimensional classical guassian kernels. The existence of a γ such that (2.19) is positive
for every k ∈ R implies, taking limits at ±∞ that

Re 〈z, S2z〉 ≥ Re 〈z, S1z〉 ,

for every z ∈ hR. Moreover in the case where the equality holds we have the further
restriction that the two densities must have the same mean, hence Re 〈µ1 − µ2, z〉 = 0.
These two conditions must hold for every z ∈ hR and this concludes the proof of Item
1.

To show 2 observe that reflexivity and transitivity follow easily from Definition
(2.29). Antisymmetry comes instead from what we have just proven.

In general it is not easy to translate � in terms of the parameters µ and S of the
gaussian states. However this can be done if we restrict ourselves to comparing states
whose covariance operators can be simultaneously diagonalized via Williamson’s Nor-
mal Form. The result and ideas will be similar to the one obtained in [37] but the
approach taken with the use of Williamson’s normal form is, in our opinion, easier to
understand and follow along.

Lemma 2.31. Let µ ∈ C and Sz = σz for some σ ≥ 1. Then S ∈ Q and

ω(µ,1) � ω(0,S)

if and only if either σ > 1 or σ = 1 and µ = 0.
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Proof. From Proposition 2.26 we immediately obtain S ∈ Q, since it is already in
Williamson’s normal form.

Let us proceed now assuming ω(µ,1) � ω(0,S). Via Proposition 2.30 we have S ≥ 1

and µ ∈ ker(S − 1)⊥. Therefore σ ≥ 1 and, if σ = 1, S − 1 = 0 hence

µ ∈ ker(0)⊥ = {0}.

We will now prove the converse implication of the Lemma. Clearly if σ = 1 and µ = 0
we have ω(µ,1) = ω(0,S) and the inequality is trivial. Let us assume σ > 1. In order
to prove the inequality we look at the Fock representation of the one dimensional CCR
algebra. The density matrices of the gaussian states are given by

ρ(µ,1) = W (−µ0) |e(0)〉〈e(0)|W (µ0) , ρ(0,S) = (1− e−s)e−sa
†a,

with µ0 := −iµ
2

and σ = coth s
2
. We postpone the proof of this to Remark 2.47 and

Example 2.46 respectively.
In order to conlcude the proof, now let x ∈ Γs(h), we have〈

ρ(µ,1)x, x
〉

= |〈x,W (µ0) e(0)〉|2 =
∣∣∣〈e−

s
2
a†ax, e

s
2
a†aW (µ0) e(0)

〉∣∣∣2
≤
∥∥∥e

s
2
a†aW (µ0) e(0)

∥∥∥2 〈
e−sa

†ax, x
〉

=

∥∥∥e
s
2
a†aW (µ0) e(0)

∥∥∥2

1− e−s
〈
ρ(0,S)x, x

〉
.

Note that W (µ0)e(0) ∈ Dom(e
s
2
a†a) and therefore it is sufficient to choose

γ =
∥∥∥e

s
2
a†aW (µ0)e(0)

∥∥∥2

/(1− e−s)

to conclude the proof.

This Lemma can be easily extended to states with non zero means and slightly more
general covariance operators.

Corollary 2.32. Let σ1, σ2 ≥ 1, Sjz = σjz for j = 1, 2, z ∈ C and µ1, µ2 ∈ C. Then

ω(µ1,S1) � ω(µ2,S2)

if and only if either σ2 > σ1 or σ1 = σ = 2 and µ1 = µ2.

Proof. Note at first that ω(µ1,S1) � ω(µ2,S2) is equivalent to ω(µ1−µ2,1) � ω(0,S1). Indeed,
using (2.18)

ω(0,S2) − ω(µ1−µ2,S1) =
(
ω(µ2,S2) − ω(µ1,S1)

)
◦ τ−µ2

and τµ is a *-automorphism. Eventually ω(µ1−µ2,1) � ω(0,S2−S1+1) is equivalent to
ω(µ1−µ2,1) � ω(0,S2−S1+1) via multiplication for the positive definite function

C 3 z 7→ exp

(
−1

2
(σ1 − 1) |z|2

)
,

and the use of Lemma 2.20. The Corollary then simply follows by applying Lemma
2.31.
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Chapter 2. Gaussian States

We are now ready to characterize the partial relation � in the multidimensional
CCR algebra if we restrict ourselves to considering covariance operators that can be
diagonalized with the same Bogoliubov transformation in Williamson’s Normal form.

Proposition 2.33. Let S1, S2 ∈ BR (hR), µ1, µ2 ∈ hR and suppose there exists a sym-
plectic transformation M such that

M ]SjM = Dj,

for j = 1, 2 where Dj are diagonal matrices. Then ω(µ1,S1) � ω(µ2,S2) if and only if
S1 ≤ S2 and µ1 − µ2 ∈ ker(S2 − S1)⊥.

Proof. Let Γ(M) be the *-automorphism of CCR (hR, σ) given by Corollary 1.34. Via
(2.18) we have

ω(µ1,S1)Γ(M) = ω(M]µ1,D1), ω(µ2,S2)Γ(M) = ω(M]µ2,D2).

This means that ω(µ1,S1) � ω(µ2,S2) if and only if ω(M]µ1,D1) � ω(M]µ2,D2). Let
(D1)j, (D2)j represent the diagonal entries of D1, D2 respectively for j = 1, . . . , d
and observe that

ω(M]µk,Dk) = ω((M]µk)
1
,(Dk)1) ⊗ · · · ⊗ ω((M]µk)

d
,(Dk)d),

for k = 1, 2, where we used the *-isomorphism introduced in Corollary 1.35:

CCR (hR, σ) 3 W (z) 7→ W (z1)⊗ · · · ⊗W (zd) ∈ (CCR (C, Im 〈·, ·〉))⊗d .

In particular ω(M]µ1,D1) � ω(M]µ2,D2) if and only if

ω(
(M]µ1)

j
,(D1)j

) � ω(
(M]µ2)

j
,(D2)j

), for j = 1, . . . d.

Using Corollary 2.32 this is equivalent to (D1)j ≤ (D2)j for every j = 1, . . . , d and if
(D1)j0 = (D2)j0 for some j0 then

(
M ]µ1

)
j0

=
(
M ]µ2

)
j0

. The first inequality is exactly
the condition S1 ≤ S2, while the second condition is equivalent to M ] (µ1 − µ2) ∈
ker(D2 −D1)⊥. But

ker(D2 −D1) = M (ker(S2 − S1)) ,

therefore M ] (µ1 − µ2) ∈ ker(D2 − D1)⊥ if and only if (µ1 − µ2) ∈ ker(S2 − S1)⊥,
which concludes the proof.

2.3 Gaussian States on the Fock Space

We introduce now gaussian states on B(Γs(h)) trying to replicate most of the results
obtained for gaussian states on CCR (hR, σ). Recall the following definitions

Definition 2.34. A state on B(Γs(h)) is a positive, normalized functional.
A state ω is normal if for every increasing net (xα)α of positive elements of B(Γs(h))

which has an upper bound, one has

ω(sup
α
xα) = supω(xα).

We denote with B(Γs(h))∗ the set of normal states on B(Γs(h)).
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2.3. Gaussian States on the Fock Space

One has the following classical result, whose proof can be found for example in [13,
Theorem 2.4.21].

Proposition 2.35. Let ω we a state on B(Γs(h)). The following conditions are equiva-
lent:

(i) ω is normal;

(ii) ω is continuous in the σ-weak topology;

(iii) there exists a density matrix ρ, i.e. a positive trace class operator ρ on Γs(h), with
ρ(1) = 1 such that

ω(x) = tr(ρx), x ∈ B(Γs(h)).

Notation 2.36. We will denote with L1(Γs(h)) the set of trace-class operators on Γs(h).
We introduce now the characteristic function of a normal state.

Definition 2.37. Let ρ ∈ L1(Γs(h)) be a density matrix. The quantum characteristic
function ρ̂ of ρ is the function

ρ̂(z) = tr(ρW (z)), ∀z ∈ h.

We give now the definition if a Gaussian State on B(Γs(h)).

Definition 2.38. We say that a normal state ω on B(Γs(h)) is gaussian if the quantum
characteristic function of its density matrix ρ satisfies

ρ̂(z) = exp

(
−i Re 〈µ, z〉 − 1

2
Re 〈z, Sz〉

)
, z ∈ h, (2.20)

for some µ ∈ h and an invertible, positive operator S ∈ BR(hR). Similarly to Definition
2.15 we say µ is the mean vector and S is the covariance operator. To avoid confusion
we identify ω with its density matrix ρ and denote it via ρ = ρ(µ,S).

We now want to establish some conditions for an operator S to be a covariance
operator of a gaussian state. For this reason we present an analogue result to Bochner’s
Theorem and Proposition 2.18.

Theorem 2.39. Let G : h→ C be a function. G is the quantum characteristic function
of the density matrix ρ if and only if:

(i) G(0) = 1, F (z) is continuous at z = 0;

(ii) the kernel
h× h 3 (z1, z2) 7→ G(z1 − z2)eiσ(z1,z2),

is positive definite.

Proof. Let us start by proving necessity, therefore suppose ρ is a density matrix. Clearly
1 = tr(ρW (0)) = G(0). Moreover, regularity of the Fock representation implies ρ̂(z)
is continuous at z = 0 and (i) is proved. Condition (ii) follows in a similar way to the
proof of Proposition 2.18 considering n ∈ N, c1, . . . , cn ∈ C, z1, . . . , zn ∈ h and

x =
n∑
k=1

ckW (zk).
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Chapter 2. Gaussian States

the proof follows evaluating tr(ρxx∗) ≥ 0.
We prove now sufficiency of the Theorem. At first we will prove that continuity

at z = 0 and (ii) imply uniform continuity of G. To show this consider n = 3 and
z1 = 0, z2, z3 ∈ h then (ii), along with Remark 2.17, implies positive definiteness of
the matrix  1 G(−z2) G(−z3)

G(z2) 1 G(z2 − z3)eiσ(z2,z3)

G(z3) G(z3 − z2)eiσ(z3,z2) 1

 .

Self-adjointness of the matrix implies that G(−z) = G(z) for every z ∈ h. Now, using
Sylvester’s criterion, positive definiteness translates in these requirements{

1 ≥ |G(z2)|2

1 + 2 ReG(z2)G(z3)G(z2 − z3)eiσ(z2,z3) ≥ |G(z2)|2 + |G(z3)|2 + |G(z2 − z3)|2 .

Rearranging the second inequality and using the first one we obtain

|G(z2)−G(z3)|2 ≤ 1− |G(z2 − z3)|2 − 2 ReG(z2)G(z3)
(
1−G(z2 − z3)eiσ(z2,z3)

)
≤
∣∣1−G(z2 − z3)eiσ(z2,z3)

∣∣2 + 2
∣∣1−G(z2 − z3)eiσ(z2,z3)

∣∣
≤ 2

∣∣1−G(z2 − z3)eiσ(z2,z3)
∣∣+ 2

∣∣1−G(z2 − z3)eiσ(z2,z3)
∣∣

≤ 4
∣∣1−G(z2 − z3)eiσ(z2,z3)

∣∣
which proves uniform continuity of G by continuity of G at z = 0.

We will now construct a representation of the CCR on another Hilbert space. Con-
sider ψ a function on h and for every z ∈ h consider the operator Ŵ (z) that acts as

Ŵ (z)ψ(z1) = e−iσ(z,z1)ψ(z + z1).

It is easy to check that the operators Ŵ (z) satisfy the CCR (1.3). Consider the linear
spaceH0 of the functions on h of the form

ψ(z) =

(
n∑
k=1

ckŴ (zk)

)
1(z) =

n∑
k=1

cke−iσ(zk,z), z ∈ z,

for some n ∈ N, c1, . . . , cn ∈ C, z1, . . . , zn ∈ h and 1(z) is the function which is
identically equal to 1. OnH0 we can consider the sesquilinear form

〈ψ1, ψ2〉0 =
∑
j,k

c1,jc2,kG(z1,j − z2,k)eiσ(z1,j ,z2,k),

where ψk =
∑

j ck,jŴ (zk,jj)1 for k = 1, 2. By (ii) we have

〈ψ, ψ〉0 ≥ 0, ∀ψ ∈ H0

and 〈·, ·〉0 is a pre-scalar product, moreover〈
Ŵ (z)ψ1, Ŵ (z)ψ2

〉
0

= 〈ψ1, ψ2〉0 , ∀ψ1, ψ2 ∈ H0, z ∈ h.
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2.3. Gaussian States on the Fock Space

We can therefore denote with Ĥ0 the completion ofH0 with respect to this scalar prod-
uct, which is now an Hilbert space. Of course Ŵ (z) extends uniquely to a unitary
operator on Ĥ0 for every z ∈ h. In particular we just need to show the continuity prop-
erty to have that the pair (Ĥ0, Ŵ ) is a Weyl system. Observe that for ψ1, ψ2 ∈ H0 we
have 〈

ψ1, Ŵ (z)ψ2

〉
=
∑
j,k

cjck exp (iσ(z1,j − z, z2,k + z))G(z1,j − z − z2,k).

For uniform continuity of G we have that for t ∈ R〈
ψ1, Ŵ (tz)ψ2

〉
t→0−−→ 〈ψ1, ψ2〉 .

Therefore∥∥∥(Ŵ (tz)− 1

)
ψ
∥∥∥2

=
〈(
Ŵ (tz)− 1

)
ψ,
(
Ŵ (tz)− 1

)
ψ
〉

t→0−−→ 0,

for every ψ ∈ H0, by sesquilinearity this holds on the whole Ĥ0. Note in particular that
we can define ρ0 ∈ L1(Ĥ0) as ρ0 = |1〉〈1| which is a density matrix, moreover

tr(ρ0Ŵ (z)) =
〈

1, Ŵ (z)1
〉

= G(z).

This is the density matrix that satisfies the Theorem, we just need to show that there
exists one in L1(H). Now by Theorem 1.33 the CCR algebras induced by the repre-
sentations (H,W ) and (Ĥ0, Ŵ ) are isometrically ∗-isomorphic. In particular the two
Hilbert spaces are unitarily equivalent and therefore we can define the density matrix ρ
by conjugating with the unitary that realizes said equivalence.

Since this result holds we can easily recover a result similar to Theorem 2.24, more
precisely:

Theorem 2.40. Let µ ∈ hR and S ∈ BR(hR) an invertible positive operator. Let
ρ ∈ L1(Γs(h)) that satisfies (2.20) and ω a functional on CCR (hR, σ) that satisfies
(2.11). ρ is a gaussian state if and only if ω is a gaussian state.

In particular ρ is a gaussian state if and only if S satisfies one of the equivalent
conditions of Theorem 2.24.

Analogously we can prove a similar result to the one of Proposition 2.28. Fist we
state the following Lemma, which is the specialization to finite dimension of a classic
result due to Shale [57, 66]

Lemma 2.41 (Shale). For every Bogoliubov transformation T on hR there exists a
unitary operator Γ(T ), unique up to a scalar of modulus unity , on Γs(H) such that

Γ(T )W (z)Γ(T )∗ = W (Tz)

Proposition 2.42. Let ρ = ρ(µ,S) be a gaussian state. For every Bogoliubov transfor-
mation T ∈ hR consider Γ(T ) the unitary operator on Γs(h) given by Lemma 2.41, it
holds

W (z)∗ρW (z) = ρ(µ−2iz,S), Γ(T )∗ρΓ(T ) = ρ(T ]µ,T ]ST).

37



i
i

“PhDThesis_v_2” — 2022/1/24 — 12:17 — page 38 — #48 i
i

i
i

i
i

Chapter 2. Gaussian States

Proof. The proof is exactly the one of Proposition 2.28, indeed

W (z)W (z1)W (z)∗ = exp (2i Re 〈iz, z1〉)W (z1), Γ(T )W (z)Γ(T )∗ = W (Tz),

and we conclude by the ciclicity property of the trace. Moreover T ]ST is a suitable
covariance operator by the same proof of Proposition 2.28 since Theorem 2.40 holds.

As a final result for this chapter we consider a connection between the two kinds of
gaussian states, recalling the following definition.

Definition 2.43. We say a functional ω on CCR (hR, σ) is normal if there exists a trace
class operator, positive with trρ = 1, such that

tr(ρπ(x)) = ω(x) ,

for every x ∈ CCR (hR, σ), where π is the Fock representation. We will denote with
CCR (hR, σ)∗ the set of normal functionals and with S(CCR (hR, σ)) the set of normal
states.

Remark 2.44. Gaussian states on CCR (hR, σ) are normal. Indeed by Theorem 2.40
to every gaussian state on CCR (hR, σ) ω(µ,S) for µ ∈ hR, S ∈ Q there corresponds a
gaussian state on B(Γs(h)) ρ(µ,S). Clearly

ω(µ,S)(δz) = tr(ρW (z)), ∀z ∈ hR

and by continuity of the trace and of the representation the equality holds for x ∈
CCR (hR, σ).

The following two examples provide the intuition for possible gaussian density ma-
trices.

Example 2.45. Using Lemma 1.46, we can show that

ρ(0,1) = |e(0)〉〈e(0)| .

Indeed 1 is an invertible positive operator and

tr(|e(0)〉〈e(0)|W (z)) =
1

πd

∫
R2d

e−x
2−y2 〈e(x+ iy), |e(0)〉〈e(0)|W (z)e(x+ iy)〉 dxdy

=
1

πd

∫
R2d

exp

(
−x2 − 〈z, x〉 − y2 − i 〈z, y〉 − |z|

2

2

)

= exp

(
−1

2
Re 〈z, z〉

)
,

which is precisely the quantum characteristic function of ρ(0,1).

Example 2.46. In this example let d = 1, σ > 1 and s ∈ R such that σ = coth(s/2).
We will show that

ρ(0,σ1) = (1− e−s)e−sa
†a
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Recall that

e−sa
†ae(z) =

∞∑
m,n=0

(−s)m

m!

zn√
n!

(a†a)men =
∞∑
n=0

(e−sz)
n

√
n!

en = e(e−sz).

Via the use of Lemma 1.46, we have

tr((1− e−s)e−sa
†aW (f)) =

1− e−s

π

∫
R2

e−|z|
2 〈
e(e−sz), e(z + f)

〉
e−
|f |2
2
−〈f,z〉dxdy

=
1− e−s

π

∫
R2

exp

(
−(1− e−s) |z|2 +

〈
e−sz, f

〉
− |f |

2

2
− 〈f, z〉

)
dxdy

=
1− e−s

π
e−
|f |2
2

∫
R

exp
(
−
(
1− e−s

)
x2 −

(
f − e−sf

)
x
)

dx

×
∫
R

exp
(
−
(
1− e−s

)
y2 − i

(
f + e−sf

)
y
)

dy

= exp

(
−|f |

2

2
+

(
f − e−sf

)2

4 (1− e−s)
−
(
f + e−sf

)2

4 (1− e−s)

)

= exp

(
−1

2
coth

(s
2

)
|f |2
)

= exp

(
−1

2
σ |f |2

)
.

which is precisely the quantum Fourier transform of ρ(0,σ1).

Remark 2.47. From Example 2.45 and Proposition 2.42 we have that

ρ(z,1) = W
(
−i
z

2

)
ρ(0,1)W

(
i
z

2

)
= W

(
−i
z

2

)
|e(0)〉〈e(0)|W

(
i
z

2

)
= e−

|z|2
4

∣∣∣e(−i
z

2

)〉〈
e
(
−i
z

2

)∣∣∣ .
In particular all normal states given by

e−|z|
2

|e(z)〉〈e(z)| , z ∈ h,

are gaussian.

We conclude this section by stating two results on gaussian states that will be useful
in the rest of the thesis. We recall the following definition

Definition 2.48. Let ρ ∈ L1(Γs(h)) a density matrix. We say ρ is faithful if

tr(ρx∗x) = 0⇐ x = 0, x ∈ B(Γs(h).

Instead we say ρ is pure if it is a projection, namely ρ2 = ρ,

For h = C we obtain the following result.

Proposition 2.49. A gaussian state on Γs(C) is ether faithful or pure. In particular it
is faithful if and only if

S− iJ > 0.
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Chapter 2. Gaussian States

Proof. By Corollary 2.11 and Proposition 2.42 we can always assume that we are deal-
ing with a gaussian state of the form ρ(0,σ1). Moreover, by Proposition 2.26, σ ≥ 1.
Therefore we are in either one of the cases of Examples 2.45, 2.46. In the first case the
gaussian state is obviously pure, while in the latter it is faithful.

In particular the case of a faithful gaussian state corresponds, by Example 2.46, to
the case σ > 1 which is precisely the condition for

S− iJ =

(
σ − 1 0

0 σ + 1

)
≥ 0.

Eventually we state this density Theorem for gaussian states whose proof can be
found in [38, 65].

Theorem 2.50. The linear span of gaussian states on CCR (hR, σ) and B(Γs(h))) are
norm dense in the set of normal states on CCR (hR, σ) and L1(Γs(h)), respectively.
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CHAPTER3
Characterization of Gaussian QMSs

This chapter is based mainly on the two articles [62, 63]. We introduce here one of the
main objects of this thesis, namely gaussian Quantum Markov Semigroups. We first
recall the following definition.

Definition 3.1. A Quantum Dynamical Semigroup on B(H) is a family T = (T )t≥0

with the following properties:

(i) T0 = 1, Tt+s = TtTs = TsTt for every t, s ≥ 0;

(ii) Tt is completely positive for all t ≥ 0;

(iii) Tt is a σ-weakly continuous (equivalently weak∗ continuous) operator for all t ≥
0;

(iv) the map t 7→ T(a) is σ-weakly continuous for all a ∈ B(H).

If moreover it holds Tt(1) = 1 we say T is a Quantum Markov Semigroup. If T
satisfies

lim
t→0
‖Tt − 1‖ = 0,

we say T is uniformly continuous.

Recall also

Definition 3.2. The predual semigroup of a quantum dynamical semigroup T on B(H)
is the semigroup T∗ of operators on the trace set of trace class operators over H such
that

tr (T∗t(ρ)a) = tr (ρTta) , ∀a ∈ B(H), ρ ∈ L1(H).

We do not dwell here on the properties of these semigroups but instead we immedi-
ately provide the definition of gaussian QMSs.
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Chapter 3. Characterization of Gaussian QMSs

Definition 3.3. Let T = (Tt)t≥0 be a QMS on B(H). We say it is gaussian if its predual
T∗ leaves the set of gaussian states invariant.

The main results of this chapter will be Theorem 3.30, that shows equivalence of
different definitions of gaussian QMSs that have appeared in the literature. The one
given in Definition 3.3 is a qualitative definition which motivates clearly the naming
choice of these QMSs. However it is not very practical to use in calculations and in
addressing properties of this class of semigroups. On the other hand, the remaining
definitions of gaussian QMSs involved in Theorem 3.30 are more explicit on the action
of the semigroup. For this reason, Theorem 3.30 ties in qualitative and quantitative
definitions for gaussian QMSs, making them a well behaved class to work with.

In the first section we focus on maps acting on CCR (hR, σ) that preserve the set
of gaussian states. Their characterization will be essential for the main result in gaus-
sian QMSs, since a semigroup that preserves the set of gaussian states at all times is
composed of that kind of maps. In the second section we state this characterization the-
orem while in the third we prove the anticipated main result of equivalence of different
definitions.

3.1 Gaussian Maps

In this section we will introduce one of the main objects needed to achieve the char-
acterization, namely we consider maps that preserve the set of gaussian states on the
algebra CCR (hR, σ). In particular we focus on the transformations that these maps
induce on the parameters of the gaussian states. We will obtaining a characterization
of all the possible transformations they can induce. This is an intermediate but neces-
sary step in order to consider semigroups of that preserve the set of gaussian states and
that are therefore ocmposed of maps preserving the set of gaussian states. Most of the
results in this section follow the ideas of [37], with a notable difference. We do not
restrict ourselves to considering just automorphism of the CCR algebra that preserve
gaussian states, but we deal with all maps that do this, whether they are automorphisms
or not. In particular we will recover their action on the CCR algebra only at a later
stage.

Definition 3.4. Let α be a norm continuous, linear transformation on the set of normal
functionals CCR (hR, σ)∗. We say α is a gaussian map if

1. α ◦ ω(µ,S) = ω(α1(µ,S),α2(µ,S)), for every µ ∈ hR, S ∈ Q.

2. the map (µ, S) 7→ (α1 (µ, S) , α2 (µ, S)) is continuous with respect to the product
topology.

As anticipated we will show in Theorem 3.9 that the maps α1, α2 in definition 3.4
cannot be arbitrary but instead should have a specific expression. Thanks to Theorem
2.50 we can show that α1, α2 chracterize the map α.

Lemma 3.5. Let α be a gaussian map, then α is also positive. Suppose now α′ is
another gaussian map such that

α1(µ, S) = α′1(µ, S) , α2(µ, S) = α′2(µ, S) ,

for all µ ∈ hR, S ∈ Q. Then α = α′.
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Proof. In order to prove positivity of α let η ∈ CCR (hR, σ)∗ be positive. Then η is
also bounded and therefore η0 := η/ ‖η‖ ∈ S(CCR (hR, σ)). Via Theorem 2.50 we
can then find a sequence (ωn)n of linear combinations of gaussian states that converge
to η0 in norm. Eventually, via norm continuity of α we have

α(η) = ‖η‖α(η0) = ‖η‖ lim
n→∞

α(ωn) ≥ 0 .

This proves positivity of α. Now let ω be a gaussian state. By hypothesis we have

α(ω) = ω(α1(µ,S),α2(µ,S)) = ω(α′1(µ,S),α′2(µ,S)) = α′(ω) .

In particular we have
(α− α′) (ω) = 0 ,

for every ω gaussian state. Using density of gaussian states, given by Theorem 2.50 we
obtain α = α′.

Example 3.6. Two notable examples of gaussian maps are those induced by τz0 with
z0 ∈ hR and Γ(B) with B a Bogoliubov transformation as in Proposition 2.28. They
are *-automorphisms of CCR (hR, σ). Their adjoint maps αz0 , αB defined via

αz0(ω) = ω ◦ τz0 , αB(ω) = ω ◦ Γ(B),

are still norm continuous and are therefore gaussian maps. In particular

αz0,1(µ, S) = µ+ z0, αz0,2(µ, S) = S,

αB,1(µ, S) = B]µ, αB,2(µ, S) = B]SB.

The gaussian maps introduced in the previous example cover almost all possible
gaussian maps. In fact we will show in Theorem 3.9 that the general action of a gaussian
map will be similar to the ones of the example. In order to prove this result we need
some preliminary Lemmas that come from [37]. We show the proof only of the first
one, since it uses a different method at the beginning, due to our characterization of the
ordering � in Proposition 2.33.

Lemma 3.7. Let α be a Gaussian map. Then for every S ∈ Q and every µ ∈ hR

α2(µ, S) = α2(0, S) = α2(S) .

Proof. Since S ∈ Q, as noted in Remark 2.25, we have S > 0 and let T be the
Bogoliubov transformation that diagonalizes S according to Corollary 2.11. For every
λ ≥ 0 we have Sλ := S+λT ]1T ∈ Q and Sλ is clearly simultaneously diagonalizable
with S. Therefore we can use Proposition 2.33 and obtain, for 0 < λ1 < λ2

ω(µ,S) � ω(0,Sλ1)
� ω(µ,Sλ2)

.

Composition with α preserves the relation �, since it is a positive transformation by
Lemma 3.5. Therefore by composition and application of Proposition 2.33 we get

α2(µ, S) ≤ α2(0, Sλ1) ≤ α2(µ, Sλ2) .

By the continuity property in Definition 3.4, taking the limit as λ1, λ2 → 0 we obtain

α2(µ, S) ≤ α2(0, S) ≤ α2(µ, S) ,

which concludes the proof.

43



i
i

“PhDThesis_v_2” — 2022/1/24 — 12:17 — page 44 — #54 i
i

i
i

i
i

Chapter 3. Characterization of Gaussian QMSs

Lemma 3.8. Suppose s ∈ R 7→ f(s) ∈ R is continuous and

π−
1
2

∫
R

e−s
2

eitf(s)ds = e−
1
4
t2 , ∀t ∈ R.

Then either f(s) = s or f(s) = −s for every s ∈ R.

We can now state the characterization theorem for Gaussian maps. It extends the
result of [37, Theorem 4.5] to maps that are not necessarily automporhisms of the CCR
algebra. The proof is exactly the one of [37] except in its final part. We report the entire
proof for clarity’s sake, since this will be an important result in the following.

Theorem 3.9. Let α be a Gaussian map. Then there exist T0, C0 ∈ BR(hR) and µ0 ∈ hR
such that

α1(z, S) = α1(z) = T ∗0 z + ζ0 , α2(S) = T ∗0ST0 + C0 . (3.1)

for every z ∈ hR and
C0 − i(J−T0

∗JT0) ≥ 0 , (3.2)

where positivity is intended on hC.

Proof. We use the notation |x〉〈y| , x, y ∈ hR to denote the operator acting on z ∈ hR as
|x〉〈y| z = Re 〈y, z〉x. For every r > 0, z, z0 ∈ hR and S ∈ Q one has

(πr)−
1
2

∫
R

e−
s2

r ω(sz+z0,S)ds = ω(z0,S+r|z〉〈z|) .

Let x ∈ hR, t ∈ R, by composition with α and evaluation on W (tx) we obtain

(πr)−
1
2

∫
R

e−
s2

r eitf(s)ds

= eitRe〈x,α1(S+r|z〉〈z|,z0)〉 exp

(
−1

4
t2 Re 〈x, (α2(S + r |z〉〈z|)− α2(S))x〉

)
,

where f(s) := Re 〈α1(sµ+ µ0, S), x〉 and we used Lemma 3.7. By Lemma 3.8 we
have then that f satisfies f(s) = f(0) + s(f(1)− f(0)). Equivalently we get

α1(sz + z0, S) = α1(z0, S) + s (α1(z + z0, S)− α1(z0, S)) .

Substituting it into the integral equation and performing integration we obtain the fol-
lowing conditions

α1(z0, S) = α1(z0, S + r |z〉〈z|) , (3.3)

α2(S) + r |α1(z + z0, S)− α1(z0, S)〉〈α1(z + z0, S)− α1(z0, S)|
= α2(S + r |z〉〈z|) . (3.4)

Since the right hand side of (3.4) does not depend on z0 it must hold

α1(z + z0, S)− α1(z0, S) = α1(z, S)− α1(0, S) . (3.5)

subtracting α1(0, S) on both sides we have the map

TS : hR 3 z 7→ α1(z, S)− α1(0, S) ∈ hR
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3.2. Gaussian Quantum Markov Semigroups

is linear. Moreover TS is also bounded since by definition of α we have α1 is continu-
ous. Now recall that we can write any S ∈ Q via its spectral decomposition and, using
(3.3) and continuity of α1, we get

α1(0, S1) = α1(0, S1 + S2) = α1(0, S2) =: µ0 ∈ hR.

In particular we have TS1 = TS2 =: T ∗0 , since equality between TS1 = TS2 holds for
any S1, S2 ∈ Q. We can then rewrite (3.4) using T0 and (3.5), obtaining

α2(S) + rT0 |z〉〈z|T ∗0 = α2(S + r |z〉〈z|) .

Let us define the operator C as

C(S) := α2(S)− T ∗0ST0 ,

we then have C(S) = C(S + r |z〉〈z|). By a similar argument than before we obtain
C(S1) = C(S2) =: C0, for every S1, S2 ∈ Q. This completes the proof of (3.1). In
order to prove (3.2) suppose there exists z ∈ hR such that

〈z, (C0 − i (J−T∗0JT0)) z〉 < 0 .

Then we can choose S ∈ Q such that

〈T0z, (S− iJ)T0z〉 < −〈z, (C0 − i (J−T∗0JT0)) z〉 .

But this is a contradiction since it would imply α2(S) 6∈ Q.

3.2 Gaussian Quantum Markov Semigroups

In this section we will extend the definitions and the results obtained in the previous
sections to QMSs on B(H). The Definition 3.3 of a gaussian QMS implicitly says that
each map in the predual semigroup T∗t transforms gaussian states into other gaussian
states exactly as gaussian maps did. This suggests we can use their characterization
theorem and obtain a similar result for T∗t. Moreover we can then induce a result
on Tt by exploiting the duality of T and T∗. We precisely state this in the following
proposition.

Proposition 3.10. Let T = (Tt)t≥0 be a gaussian QMS. Then for every t ≥ 0 there
exist Tt, Ct ∈ BR(hR) and µt ∈ hR satisfying

Ct − i (J−T∗tJTt) ≥ 0 , (3.6)

as operators on hC, such that

T∗t(ω(µ,S)) = ω(T ]t µ+ζt,T
]
t STt+Ct)

, (3.7)

for every µ ∈ hR and S ∈ Q. Moreover we have

Tt(W (z)) = exp

(
−1

2
Re 〈z, Ctz〉 − i Re 〈ζt, z〉

)
W (Ttz) , (3.8)

for every z ∈ hR.

45



i
i

“PhDThesis_v_2” — 2022/1/24 — 12:17 — page 46 — #56 i
i

i
i

i
i

Chapter 3. Characterization of Gaussian QMSs

Proof. We start by noticing that each T∗t can be extended to all normal functionals on
CCR (hR, σ). Indeed, as noted in Remark 2.44 gaussian states on CCR (hR, σ) are
normal and identified with guassian states on B(Γs(h)). By norm continuity of T∗t (in-
herited from the one of T ) and Theorem 2.50, T∗t can be extended to S(CCR (hR, σ))
and from it to the whole set of normal functionals on CCR (hR, σ). Let us denote with
T̄∗t this extension and note that it is still norm continuous and preserves the set of gaus-
sian states. Therefore each T̄∗t is a gaussian map on CCR (hR, σ)∗. We can now apply
Theorem 3.9 to show existence of Tt, Ct ∈ BR(hR) and ζt ∈ hR satisfying (3.7) and
such that

T̄∗t(ω(µ,S)) = ω(T ]t µ+ζt,T
]
t STt+Ct)

,

for every t ≥ 0, µ ∈ hR and S ∈ Q. But T̄∗ coincides with T∗ on gaussian states and
(3.7) follows. Eventually one can see that

tr
(
ω(µ,S)Tt(W (z))

)
= tr

(
T∗t(ω(µ,S))W (z)

)
= tr

(
ω(T ]t µ+µt,T

]
t STt+Ct)

W (z)
)

= tr
(
ω(µ,S) exp

(
−1

2
Re 〈z, Ctz〉 − i Re 〈ζt, z〉

)
W (Ttz)

)
,

for every z, ζ ∈ hR and S ∈ Q. By Theorem 2.50 the equality can be extended to every
normal state and thus to every normal functional. Therefore equation (3.8) holds by
duality.

We have therefore restricted the possible transformations that a gaussian QMS can
induce on the parameters of a gaussian state to the one of the kind (3.7). This fact
also yields an explicit expression for the action of the QMS on Weyl operators. By
assuming some regularity conditions and exploiting the fact that (Tt)t≥0 is a semigroup
we can further specify the action (3.8) and obtain what is usually seen in the literature
(see [3, 4, 72]).

Theorem 3.11. Let T = (Tt)t≥0 be a gaussian QMS and let Tt, Ct ∈ BR(hR) and
ζt ∈ hR be as given by Proposition 3.10. Suppose t 7→ Tt is continuous and t 7→ Ct,
t 7→ ζt are differentiable. Then there exists Z ∈ BR(hR) such that

Tt = etZ , ζt =

∫ t

0

esZ
]

ζds , Ct =

∫ t

0

esZ
]

CesZds , (3.9)

where

ζ :=
d
dt
ζt

∣∣∣∣
t=0

, C :=
d
dt
Ct

∣∣∣∣
t=0

.

Moreover, in this case,
C + i (Z∗J + JZ) ≥ 0 , (3.10)

as operator on hC, and, for every z ∈ hR, we can write Tt(W (z)) = ft(z)W (etZz)
where

ft(z) = exp

(
−1

2

∫ t

0

Re
〈
z, esZ

]

CesZz
〉

ds− i

∫ t

0

Re
〈

esZ
]

ζ, z
〉

ds
)
. (3.11)
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3.3. Construction of a Gaussian QMS via the generator

Proof. Proposition 3.10 allows us to write Tt(W (z)) = ft(z)W (Ttz) where

ft(z) = exp

(
−1

2
Re 〈z, Ctz〉 − i Re 〈ζt, z〉

)
.

Differentiability of t 7→ Ct and t 7→ ζt implies differentiability of ft(z) for every
z ∈ hR. Since T is a semigroup it must hold

W (Tt1+t2z)ft1+t2(z) = ft2(z)ft1(Tt2z)W (Tt1Tt2z) , (3.12)

for every t1, t2 ≥ 0 and z ∈ hR. This is equivalent to the requirements

Tt1+t2z = Tt1Tt2z, ft1+t2(z) = ft2(z)ft1(Tt2z) , (3.13)

for every z ∈ hR, t1, t2 ≥ 0. We also have T0 = 1, therefore (Tt)t≥0 is a uniformly
continuous semigroup and Tt = exp (tZ) where Z ∈ BR(hR) is its generator. Using
the second equation of (3.13) we can find the derivative of ft(z)

d
dt
ft(z) = ft(z)

d
ds
fs
(
etZz

)∣∣∣∣
s=0

. (3.14)

We can explicitly evaluate the derivative at s = 0 obtaining

d
ds
fs
(
etZz

)∣∣∣∣
s=0

= −i Re
〈
ζ, etZz

〉
− 1

2
Re
〈
etZz, CetZz

〉
,

since f0(exp (tZ) z) = 1. Solving the differential equation (3.14) for ft(z) with initial
condition f0(z) = 1 yields

ft(z) = exp

(
−i Re

〈∫ t

0

esZ
]

ζds, z
〉
− 1

2
Re

〈
z,

∫ t

0

esZ
]

CesZzds
〉)

. (3.15)

This proves (3.9) and (3.11). In order to show (3.10) we use the condition (3.6) for the
operators. The quantity involved in (3.6) with the new expressions for Ct, Tt becomes∫ t

0

esZ
∗
CesZds+ i

(
etZ
∗
JetZ − J

)
=

∫ t

0

esZ
∗

(C + i (Z∗J + JZ)) esZds .

Its positivity for every t ≥ 0 is equivalent to (3.10).

This result will be of great importance for the study of many related problems since
it gives an explicit action for the semigroup on Weyl operators and differentiability as-
sumptions are very natural. These problems include invariant states for the semigroups,
which turn out to be gaussian states (see [4] or Theorem 4.22), and the study of the de-
coherence free subalgebra (see [3] or Theorem 5.15). We proceed now to showing the
converse implication to the one of Theorem 3.11.

3.3 Construction of a Gaussian QMS via the generator

In this section we show that, whenever we fix Z,C ∈ BR(hR) and ζ ∈ hR satisfying
(3.10), we can define a QMS via the explicit formula (3.11) which is gaussian. In
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Chapter 3. Characterization of Gaussian QMSs

[20, 72] it is shown that such a semigroup exists proving at first the maps Tt, defined
on the CCR algebra, are completely positive and then extending them to B(H). Here
we follow a different approach using a generalized GKLS generator for the QMS and
showing that it generates a QMS that satisfies (3.11).

Recall at first the following definition.

Definition 3.12. The infinitesimal generator of the QMS T is the operator L whose
domain D(L) is the vector space of elements a ∈ B(H) for which the limit

L(a) = lim
t→0

Tt(a)− a
t

exists in the σ-weak topology.

For a uniformly continuous QMS its infinitesimal generator has the so-called Gorini-
Kossakowski-Lindblad-Sudarshan (GKLS) form:

L(a) = i [H, a]− 1

2

(∑
`≥1

L∗`L`a− 2
∑
`≥1

L∗`aL` −
∑
`≥1

aL∗`L`

)
. (3.16)

for some H, (L`)`≥1 ∈ B(H).
Let Ω, κ ∈ B(Cd), ζ ∈ Cd and U, V ∈ Mm×d(C), with m ≤ 2d, Ω = Ω∗, κ = κT

and ker(V ∗) ∩ ker(UT ) = {0}. Let us define

H =
d∑

j,k=1

(
Ωjka

†
jak +

κjk
2
a†ja
†
k +

κjk
2
ajak

)
+

d∑
j=1

(
ζ

2
a†j +

ζ

2
aj

)
, (3.17)

L` =
d∑
j=1

(
u`ja

†
j + v`jaj

)
, ` = 1, . . . ,m . (3.18)

We will use these operators to define a generator in the GKLS form. The problem we
are facing is that neither H nor L` are bounded operators and we will cope with it in
the next subsection. For now we address the motivation for the requirement ker(V ∗) ∩
ker(UT ) = {0}, which is there to avoid possible redundancies in the set {L` : ` ≥ 1}.
Definition 3.13. A GKLS representation of L is mimimal if the number m in (3.16) is
minimal.

A GKLS representation is minimal if and only if the following condition on V and
U .

Proposition 3.14. The pre-generator L has a minimal GKLS representation if and only
if

ker (V ∗) ∩ ker
(
UT
)

= {0}. (3.19)

Proof. The pre-generator (3.16) has a minimal GKLS representation if and only if
{1, L1, . . . , Lm} is a linearly independent set (see [57], Theorem 30.16), namely, α01+∑m

`=1 α`L` = 0 for α0, α` ∈ C implies α` = 0 for ` = 0, 1, . . . ,m. This identity is
equivalent to

α01 +
d∑
j=1

(V ∗α)jaj +
d∑
j=1

(UTα)ja
†
j = 0.
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3.3. Construction of a Gaussian QMS via the generator

Since
{
1, a1, a

†
1, . . . , ad, a

†
d

}
is a linearly independent set, the last equation is equiva-

lent to α ∈ ker(V ∗), α ∈ ker(UT ), α0 = 0 and the proof is complete.

We will assume this condition holds throughout the rest of the thesis.

3.3.1 Existence of a QDS

We now construct a QMS using the GKLS generator (3.16) with unbounded operators
defined by (3.17), (3.18). We use the minimal semigroup method, which is treated in
full details in [31], that starts considering a generalized form of the GKLS generator
(3.16). Namely, for every x ∈ B(H), and u, v in a suitable dense domain of H we
define the sesquilinear form £(x) via

〈u,£(x)v〉 = i 〈u, [H, x] v〉 − 1

2

m∑
`=1

(〈L`u, L`xv〉 − 2 〈L`u, xL`v〉+ 〈L`xu, L`v〉) .

(3.20)
Moreover consider the operator

G := −1

2

∑
`≥1

L∗`L` + iH, (3.21)

which can be taken as closed (see the proof of Proposition 3.17), we have the following
result, whose proof can be find in [31].

Theorem 3.15. Suppose that:

• The operator G is the infinitesimal generator of a strongly continuous contraction
semigroup (Pt)t≥0 overH,

• The domain of the operators (L`)`≥1 contains the domain of G and, for every
u ∈ D(G) we have

〈u,Gu〉+ 〈Gu, u〉+
∑
`≥1

〈L`u, L`u〉 ≤ 0. (3.22)

Then there exists at least one QDS T that satisfies

〈v, Tt(x)u〉 = 〈v, xu〉+

∫ t

0

〈v,£(Ts(x)u〉 ds, ∀t ≥ 0, u, v ∈ D(G). (3.23)

In order to apply this result in our case we just need to show the two hypotheses.
Let us start by recalling the following result due to Palle E.T. Jorgensen

Theorem 3.16. Let G be a dissipative linear operator on a Hilbert space H. Let
(Dn)n≥1 be an increasing family of closed subspaces of H whose union is dense in H
and contained in the domain of G and let PDn be the orthogonal projection of H onto
Dn. Suppose there exists an integer n0 such that GDn ⊂ Dn+n0 for all n ≥ 1.
Then the closure G generates a strongly continuous contraction semigroup on H and
∪n≥1Dn is a core forG, if there exists a sequence (cn)n≥1 in R+ such that, for all n ∈ N

‖GPDn − PDnGPDn‖ ≤ cn,
∞∑
n=1

c−1
n =∞.
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Proof. See [48, Theorem 2].

Before stating the result of interest recall the definition of the set D (1.20) as intro-
duced in Notation 1.61. This set will be the core for G as stated in Theorem 3.16. We
can now prove the following proposition

Proposition 3.17. The operator G is the infinitesimal generator of a strongly continu-
ous contraction semigroup onH and D is a core for this operator.

Proof. We will use Theorem 3.16 withDn given by (1.20). The operatorG is obviously
densely defined and dissipative, since H is symmetric. Therefore it is closable (see [13,
Lemma 3.1.14]) and its closure, denoted G is dissipative. Clearly, by the explicit form
of the action of creation and annihilation operators on vectors e(n1,...,nd), the operator G
maps Dn into Dn+2 for all n ≥ 0.

A straightforward computation using (3.21)) yields

(GPDn − PDnGPDn) = −1

2

d∑
k,j=1

(∑
`

v`ku`j + iκ

)
a†ka

†
j −

i

2

d∑
k=1

ζka
†
k,

namely the non-zero part is the one involving only a†s. Let us fix u =
∑
|α|≤n rαeα a

vector in Dn, where α = (α(1), . . . , α(d)) is a multi-index, |α| = α(1) + . . . + α(d),
and the vector eTα = (eα(1), . . . , eα(d)). Clearly a†ju ∈ Dn+1 and∥∥∥a†ju∥∥∥2

≤
∑
|α|≤n

|rα|2 (α(j) + 1)
∥∥eα+1j

∥∥2 ≤ (n+ 1) ‖u‖2 ,

where 1j corresponds to the multi-index with all entries 0s but for the j-th one which is
1. Therefore also∥∥∥a†ja†ku∥∥∥2

≤ (n+ 2)
∥∥∥a†ku∥∥∥2

≤ (n+ 2)(n+ 1) ‖u‖2 ≤ (n+ 2)2 ‖u‖2 .

This means

‖(GPDn − PDnGPDn)u‖ ≤ 1

2

∑
jk

∥∥∥∥∥∥
[∑

`

(
V`·
)∗
U`· + iκ

]
jk

a†ja
†
ku

∥∥∥∥∥∥+
∑
j

∥∥ζja†ju∥∥
≤ c

n+ 2

2
‖u‖

with c > 0 a constant that does not depend on n. Since
∑

n(n + 2)−1 diverges we can
use Theorem 3.16 and the proposition is proved.

Eventually we can state the existence result.

Corollary 3.18. There exists a quantum dynamical semigroup T that satisfied (3.23)
where £ and G are defined by (3.20) and (3.21) with H,L` given by (3.17), (3.18).

Proof. Proposition 3.17 shows that G satisfies the first hypothesis of Theorem 3.15.
Moreover looking at the definition of G (3.21) it easy to see that we can define L` on
the domain of G and, again by definition of G,

〈u,Gu〉+ 〈Gu, u〉+
∑
`≥1

〈L`u, L`u〉 = 0.

50



i
i

“PhDThesis_v_2” — 2022/1/24 — 12:17 — page 51 — #61 i
i

i
i

i
i

3.3. Construction of a Gaussian QMS via the generator

Therefore we can apply Theorem 3.15 and we can construct a quantum dynamical
semigroup that satisfies (3.23).

3.3.2 Existence and uniqueness of a QMS

In order to show that Tt(1) = 1, which is often referred to as the conservativity prop-
erty, we will use again a result from [31].

Theorem 3.19. Suppose that

• the operator G is the infinitesimal generator of a strongly continuous contraction
semigroup (Pt)t≥0 onH,

• the domain of the operators (L`)`≥1 contains the domain of G and for every u ∈
D(G) we have

〈u,Gu〉+ 〈Gu, u〉+
∑
`≥1

〈L`u, L`u〉 = 0. (3.24)

and moreover that there exist a self-adjoint operator C with domain D(G) and a core
D for C with the following properties

a) L`(D) ⊂ D(C
1
2 ) for all ` ≥ 1,

b) there exists a self-adjoint operator φ such that

−2 Re 〈u,Gu〉 = 〈u, φu〉 ≤ 〈u,Cu〉 , ∀u ∈ D,

c) there exists b > 0 such that

2 Re 〈Cu,Gu〉+
∑
`≥1

〈
C

1
2L`u,C

1
2L`u

〉
≤ b 〈u,Cu〉 , ∀u ∈ D. (3.25)

Then the quantum dynamical semigroup obtained by Theorem 3.15 is a QMS and is the
unique QMS satisfying (3.23).

As noted in the proof of Corollary 3.18 we have already proved the first two hy-
potheses. It remains to be shown that we can satisfy the other requirements. In order to
do this one should proceed with computations on quadratic forms. However, these are
equivalent to algebraic computations of the action of the formal generator £ on first and
second order polynomials in aj, a

†
j therefore we will go on with algebraic computations

in order to avoid cluttering notation.

Lemma 3.20. It holds

2£(ak) = a†
((
UTV − V TU − 2iκ

)
k•

)
+ a

((
U∗U − V ∗V + 2iΩ

)
k•

)
− iζk1,

(3.26)

2£(a†k) = a
((
UTV − V TU − 2iκ

)
k•

)
+ a†

((
U∗U − V ∗V + 2iΩ

)
k•

)
+ iζk1.

(3.27)

where the notation Ak• stands for the vector of entries (Akj)
d
j=1.
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Chapter 3. Characterization of Gaussian QMSs

Proof. Consider at first

£0(X) :=
∑
`

(
−1

2
L∗`L`X + L∗`XL` −

1

2
XL∗`L`

)
(3.28)

that can easily be rewritten as

£0(X) =
1

2

∑
`

(L∗` [X,L`] + [L∗` , X]L`) . (3.29)

By the CCR (1.11) one can evaluate

[ak, L`] =
∑
j

[ak, u`ja
†
j] = u`k1, [L∗` , ak] = [a†k, L`]

∗ =
∑
j

[a†k, v`jaj]
∗ = −v`k1

and obtain

£0(ak) =
1

2

∑
`

{(∑
j

v`ja
†
j + u`jaj

)
u`k − v`k

(∑
j

v`jaj + u`ja
†
j

)}
. (3.30)

Using again the CCR (1.11) one can calculate

[H, ak] = − iζk
2
1−

d∑
j=1

(
Ωkjaj + κkja

†
j

)
. (3.31)

that together with (3.30) leads to

£(ak) = i[H, ak] + £0(ak)

= −ζk
2
1− i

d∑
j=1

(
Ωkjaj + κkja

†
j

)
+

1

2

m∑
`=1

{(
d∑
j=1

v`ja
†
j + u`jaj

)
u`k − v`k

(
d∑
j=1

v`jaj + u`ja
†
j

)}
Using the last equality and £(a†k) = £(ak)

∗ we conclude the proof.

We recall now the following Lemma which holds for any generator in the GKLS
form (3.16).

Lemma 3.21. Let £ be given as (3.20), for some H , L`. Then, for x, y ∈ B(H),

£(xy) = x£(y) + £(x)y +
∑
`≥1

[L`, x
∗]∗[L`, y]. (3.32)

Proof. Let be £0 as per (3.28). For x, y ∈ B(H) we can have

£0(xy)− x£0(y)−£(x)y =
∑
`≥1

(L∗`xyL` + xL∗`L`y − xL∗`yL` − L∗`xL`y)

=
∑
`≥1

([L∗` , x] yL` − [L∗` , x]L`y)

= −
∑
`≥1

[L∗` , x] [L`, y] =
∑
`≥1

[L`, x
∗]∗ [L`, y] .
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3.3. Construction of a Gaussian QMS via the generator

Moreover

[H, xy] = Hxy − xyH + xHy − xHy = [H, x] y + x [H, y]

and so

£(xy)− x£(y)−£(x)y = £0(xy)− x£0(y)−£0(x)y =
∑
`

([L`, x
∗]∗ [L`, y]) .

This completes the proof.

The following proposition is a first step towards proving conservativity via Theorem
3.19.

Proposition 3.22. Let C =
d∑

k=1

aka
†
k. There exist a constant b > 0 such that

£(C) ≤ bC.

Proof. By Lemma 3.20 we have that

£(ak) =
d∑
j=1

(
wkja

†
j + zkjaj

)
− iζk

2
1, £(a†k) =

d∑
j=1

(
wkjaj + zkja

†
j

)
+

iζk
2
1

for some complex numbers wkj, zkj, ζj . While, by Lemma 3.21, we get

£(aka
†
k) = −iζkak/2 +

d∑
j=1

(
wkjakaj + zkjaka

†
j

)
+ iζka

†
k/2 +

d∑
j=1

(
wkja

†
ja
†
k + zkjaja

†
k

)
+ ‖v•k‖2

1

=
d∑
j=1

(
zkjaka

†
j + zkjaja

†
k + wkjakaj + wkja

†
ja
†
k

)
+

i

2

(
ζka
†
k − ζkak

)
+ ‖v•k‖2

1,

where v•k stand for the vector of entries (v`k)
m
`=1. Note that for each k, j we have∣∣∣a†j − zkja†k∣∣∣2 = aja

†
j + |zjk|2 aka†k − zkjaka

†
j − zkjaja

†
k ≥ 0,∣∣∣wkja†k − aj∣∣∣2 = |wkj|2 aka†k + a†jaj − wkjakaj − wkja
†
ka
†
j ≥ 0,∣∣∣a†k + iζk1

∣∣∣2 = aka
†
k + |ζk|2 1− iζka

†
k + iζkak ≥ 0.

That respectively lead to

zkjaka
†
j + zkjaja

†
k ≤ aja

†
j + |zjk|2aka†k, (3.33)

wkjakaj + wkja
†
ka
†
j ≤ |wkj|2aka

†
k + aja

†
j − 1, (3.34)

iζka
†
k − iζkak ≤ aka

†
k + |ζk|21. (3.35)
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Chapter 3. Characterization of Gaussian QMSs

Using (3.33),(3.34), and (3.35) in the expression for £(aja
†
j) we get

£(C) ≤

(
3d max

1≤k≤d

(
1 +

d∑
j=1

(|zkj|2 + |wkj|2)

)
C +

d∑
j=1

(
|ζj|2 + ‖v•j‖2

)
1

)

since C ≥ d1 then £(C) ≤ bC with

b = max

{
3d max

1≤k≤d

(∑ d∑
j=1

(|zkj|2 + |wkj|2)

)
,

d∑
j=1

(
|ζj|2 + ‖v•j‖2

)}
.

Now consider the following result.

Proposition 3.23. The closure Φ of the operator onH with domain D defined by

Φ =
m∑
`=1

L∗`L`, (3.36)

is essentially self-djoint. Moreover, if C is the operator introduced in Proposition 3.22,
there exists a constant λ > 1 such that

〈u,Φu〉 ≤ λ 〈u,Cu〉 , ∀u ∈ D, (3.37)

where D is the set given by (1.20).

Proof. We will prove essential self-adjointness of Φ by using Nelson’s analytic vector
theorem [64, Theorem X.39]. Indeed Φ is clearly symmetric and it is a second order
polynomial in a, a†, in particular we have

Φ =
m∑
`=1

d∑
j,k=1

(
v`jv`ka

†
jak + u`ju`kaja

†
k + v`ju`ka

†
ja
†
k + u`jv`kajak

)
.

Note that it holds
d∑

j,k=1

u`j`kaja
†
k =

1

2

d∑
j,k=1

(
v`jv`kaja

†
k + v`jv`kaja

†
k

)

=
1

2

d∑
j,k=1

(
v`jv`kaja

†
k + v`jv`kaka

†
j

)
.

Applying this to the expression for Φ and switching the order of summation we can
therefore find wjk, zjk,∈ C such that

Φ =
d∑

j,k=1

(
zkjaka

†
j + zkjaja

†
k + wkjakaj + wkja

†
ja
†
k

)
−

d∑
`=1

‖v`·‖2
1.

Using again inequalities (3.33), (3.34) and following a similar reasoning to the proof of
Proposition 3.22 we obtain (3.37).
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3.3. Construction of a Gaussian QMS via the generator

For every α multi-index and k ∈ N we have〈
eα, C

keα
〉

= |α|+ d,

therefore ∑
k∈N

∥∥Φkeα
∥∥2

k!
≤
∑
k∈N

λk
∥∥Ckeα

∥∥
k!

<∞.

This means we can use Nelson’s theorem and conclude the proof.

Now we can eventually state the result on conservativity.

Corollary 3.24. The QDS given by Corollary 3.18 is Markov and is the unique QDS
satisfying (3.23).

Proof. As stated at the beginning of the section we will use Theorem 3.19. We have
already shown in the proof of Corollary 3.18 that the first two hypothesis hold. In order
to prove the remaining conditions we choose the operator C given by

D(C) =

{
u =

∑
α

uαeα |
∑
α

|α|2|uα|2 <∞

}
, Cu = λ

d∑
j=1

aja
†
ju.

and the coreD as in the (1.20). In this way (a) is easily satisfied, while (c) follows from
Proposition 3.22. Eventually consider φ as the closure of the operator given in(3.36),
which is self-adjoint by Proposition 3.23. By the same proposition we also have (b).
Therefore the proof is complete.

Definition 3.25. We say the QMS given by Theorem 3.24 is the Gaussian QMS asso-
ciated with H and (L`).

We use this temporary definition to distinguish a gaussian QMS introduced via the
property of preservation of gaussian states, as in Definition 3.4, and those we just con-
structed with the minimal QDS method. We will show that these two definitions actu-
ally are the same.

Theorem 3.26. Let (Tt)t≥0 be the gaussian QMS associated withH,L` of (3.17), (3.18)
. For all z ∈ hR we have

Tt(W (z)) = exp

(
−1

2

∫ t

0

Re
〈
esZz, CesZz

〉
ds+ i

∫ t

0

Re
〈
ζ, esZz

〉
ds
)
W
(
etZz

)
(3.38)

where the Z,C ∈ BR(hR) are given by

Zz =
[(
U∗U − V ∗V

)
/2 + iΩ

]
z +

[(
UTV − V TU

)
/2 + iκ

]
z (3.39)

Cz =
(
U∗U + V ∗V

)
z +

(
UTV + V TU

)
z (3.40)

Proof. As before, all the calculations are rigorous when considering the operators in-
volved as quadratic form on exponential vectors. Here however we perform purely
algebraic calculations as to avoid clutter of the notation. Let’s rewrite the generator as

L(W (z)) = i [H,W (z)] +
1

2

m∑
l=1

(L∗l [W (z), Ll] + [L∗l ,W (z)]Ll) .
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Chapter 3. Characterization of Gaussian QMSs

Recalling that Ω = Ω∗, κ = κT and through some straightforward calculations using
(1.14) one gets

[W (z), Ll] = −W (z)
(
V z + Uz

)
l
, [L∗l ,W (z)] = W (z)

(
V z + Uz

)
l

Moreover we have

[H,W (z)] = W (z)
[
a (Ωz + κz) + a† (Ωz + κz) + Re 〈ζ, z〉

]
+W (z)

[
1

2
〈z,Ωz + κz〉+

1

2
〈z,Ωz + κz〉

]
,

m∑
l=1

[L∗l , [W (z), Ll]] = −
m∑
l=1

W (z)
(
V z + Uz

)
l

(
V z + Uz

)
l

= −W (z)
(〈
z, V ∗V z + V TUz

〉
+
〈
z, U∗Uz + UTV z

〉)
.

Using the previous results one finds that L(W (z)) = W (z)X(z) for some operator
X(z) which is explicitly given by

X(z) =a†
((

U∗U − V ∗V
2

+ iΩ

)
z +

(
UTV − V TU

2
+ iκ

)
z

)
− a

((
U∗U − V ∗V

2
+ iΩ

)
z +

(
UTV − V TU

2
+ iκ

)
z

)
+

1

2
〈z, iΩz + iκz〉 − 1

2
〈z, iΩz + iκz〉+ i Re 〈ζ, z〉

− 1

2

(〈
z, V ∗V z + V TUz

〉
+
〈
z, U∗Uz + UTV z

〉)
.

Let’s evaluate the derivative of (3.38) at t = 0. Using

d
dt
W (etZ) = W (z)

∑
j

(
(Zz)ja

†
j − (Zz)jaj +

1

2

(
zj(Zz)j − (Zz)jzj

))
one again has L(W (z)) = W (z)Y (z), where

Y (z) =
∑
j

(
(Zz)ja

†
j − (Zz)jaj +

1

2

(
zj(Zz)j − (Zz)jzj

))
− 1

2
Re 〈z, Cz〉+ i Re 〈ζ, z〉 .

Since X and Y should coincide for every z ∈ Cd the Theorem follows.

Corollary 3.24 and Theorem 3.26 show that we can construct a QMS satisfying a
relationship similar to (3.11), starting from some unbounded generator. The remaining
step for the converse result to Theorem 3.11 is to prove that via the generator approach
we can recover all possible gaussian QMS that satisfy the hypothesis of that Theorem.

We start with the following Lemma

Lemma 3.27. Let Z,C be the operator given by Theorem 3.26.
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3.3. Construction of a Gaussian QMS via the generator

1. We can write
C =

√
C
]√
C ≥ 0,

where
√
Cz := Uz + V z for z ∈ Cd.

2. It holds
C + i (Z∗J + JZ) ≥ 0, (3.41)

and the inequality holds strictly if and only if we have exactly m = 2d Kraus’
operators.

Proof. The decomposition of item 1 holds by direct computation and the inequality
holds consequentially. In order now to prove 2 note that

C + i (Z∗J + JZ) = 2

(
U∗U U∗V

V ∗U V ∗V

)
=
(
U V

)∗ (
U V

)
≥ 0, (3.42)

where (U V ) is a linear operator from C2d to Cm. From condition (3.19) we have

Ran
(
U V

)⊥
= ker

((
U V

)∗)
= {0},

therefore dim(Ran
(
U V

)
) = m. This leads to dim(ker

(
U V

)
) = 2d −m, which

implies the inequality of item 2 holds strictly if and only if m = 2d.

Eventually we can show the anticipated converse result.

Theorem 3.28. Let Z,C ∈ BR(hR) satisfy (3.41). Then there exist m ≤ 2d, U, V ∈
Mm×d(C), Ω, κ ∈ Md(C) such that Z,C coincide with the operators given by (3.39)
and (3.40).
In particular there exists a gaussian QMS T = (Tt)t≥0 associated with some H, (L`)
such that Tt satisfies (3.11) for every t ≥ 0.

Proof. As noted before the only missing step for the proof is to show that there is
a suitable choice of U, V,Ω, κ such that Z,C are given by formulae (3.39), (3.40).
Every real linear operator, as a linear operator on the Hilbert space hR, can be uniquely
decomposed into the sum of a self-adjoint and anti-self-adjoint part. In particular there
exist A,B ∈ BR(hR) such that, for every z ∈ hR,

Zz = Az +Bz = (A1z + A2z) + (B1z +B2z) , C = C1z + C2z , (3.43)

where A = A], B = −B] and therefore A1 = A∗1, A2 = AT2 , B1 = −B∗1 , B2 = −BT
2 ,

while C1 = C∗1 , C2 = CT
2 . Comparing (3.43) with (3.39), (3.40), by the uniqueness of

the decomposition we get Ω = −iB1, κ = −iA2 and

U∗U = A1 +
C1

2
, V ∗V =

C1

2
− A1 , UTV =

C2

2
+B2 . (3.44)

To conclude the proof we will now show there is a suitable choice of U, V that satisfies
(3.44). Since Z,C satisfy (3.41) there is x0 ∈ B(hC) such that

C + i (Z∗J + JZ) = x0
∗x0 ≥ 0 . (3.45)
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Chapter 3. Characterization of Gaussian QMSs

Let m := dimx0(hC), by restricting x0 to its range we can assume x0 ∈ Mm×2d(C)
and it still satisfies (3.45). Via direct computation, using (3.43), we get

x0
∗x0 = C + i (Z∗J + JZ) =

(
C1 + 2A1 C2 + 2B2

C2 − 2B2 C1 − 2A1

)
.

On the other hand for a Gaussian QMS, from (3.42), we have

C + i (Z∗J + JZ) = 2
(
U, V

)∗ (
U, V

)
,

where (U, V ) ∈ Mm×2d(C). Therefore it is sufficient to choose the matrices U, V
such that (U, V ) = x0/

√
2 in order to satisfy (3.44) and conclude the proof of the

theorem.

In particular we can explicitly obtain the evolution for the parameters of a gaussian
state induced from a gaussian QMS associated with some H, (L`).

Proposition 3.29. Let (Tt)t≥0 be the quantum Markov semigroup with GKSL generator
associated with H,L` as in (3.17), (3.18). If ρ = ρ(z0,S0) is a gaussian state then
ρt := T∗t(ρ) is still a Gaussian state for every t ≥ 0 and

ρt = ρ(zt,St) = ρ(T ∗t z0+ζt,T ∗t S0Tt+Ct)

where

Tt = etZ , ζt =

∫ t

0

esZ
]

ζds, Ct =

∫ t

0

esZ
]

CesZ ,

and Z,C are given by Theorem 3.38. In particular

zt = etZ
]

z0 −
∫ t

0

esZ
T

ζds (3.46)

St = etZ
]

S0etZ +

∫ t

0

esZ
]

CesZds. (3.47)

Proof. Applying the explicit formula (3.38) of Theorem 3.26 we can write, for z ∈ Cd,

ρ̂t(z) = tr(ρTt(W (z)))

= exp

(
−1

2
Re

〈
z,

∫ t

0

esZ
T

CesZzds
〉
− 1

2
Re
〈
z, etZ

T

S0etZz
〉)

· exp

(
i Re

〈∫ t

0

esZ
T

ζds, z
〉
− i Re

〈
etZ

T

ω0, z
〉)

.

Comparing the previous equation with (2.20) we find (3.47) and (3.46). Now for St to
be a suitable covariance matrix it should hold St − iJ ≥ 0. Indeed, using S0 − iJ ≥ 0
and Lemma 3.27, one gets

St − iJ ≥
∫ t

0

esZ
T

CesZds+ etZ
T

iJetZ − iJ

=

∫ t

0

esZ
T (

C + i
(
ZTJ + JZ

))
esZds ≥ 0.

Note that all the operators in the previous inequality were considered as complex linear
and therefore commutation with i was legit.
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3.3. Construction of a Gaussian QMS via the generator

We provide now a final result that summarizes the equivalent definitions introduced
in this chapter.

Theorem 3.30. Let T be a QMS, the following conditions are equivalent

(i) T is a gaussian QMS that satisfies the regularity condition of Theorem 3.11;

(ii) T is a gaussian QMS associated with some H, (L`);

(iii) T satisfies (3.11) for some Z,C ∈ BRhR that satisfy

C + i (Z∗J + JZ) ≥ 0.

Proof. From Theorem 3.11 we immediately obtain that (i) implies (iii).
From Theorem 3.28 we have instead that (iii) implies (ii).
Eventually Proposition 3.29 shows that (ii) implies (i).
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CHAPTER4
Gaussian QMSs on the one-mode Fock Space

In this chapter we deal with the study of irreducibility and invariant states for a gaussian
QMS that acts on B(Γs(C)), that corresponds to d = 1 in the general case. The low
dimensionality allows for simplification of the mathematical calculations and therefore
for the obtainment of explicit results. In this case the operatorsH, (L`)`≥1 of the GKLS
generator can be rewritten as

H = Ωa†a+
κ

2
(a†)2 +

κ

2
a2 +

ζ

2
a† +

ζ

2
a, L1 = u1a

† + v1a, L2 = u2a
† + v2a,

where Ω ∈ R and we dropped the subscript for creation and annihilation operators,
since there is only one mode. Even though we introduced to different Kraus’ operators
we still allow for the case u2 = v2 = 0 or the case in which there is only one Kraus’
operator. Indeed in the first section we deal with irreducibility in the case of exactly
two Kraus’ operators, while in the second section we study irreducibility with just one
of them. In the third section we consider instead the problems of finding invariant states
for a gaussian QMS. In the final section we apply these results to two explicit models.
The entire chapter is based upon [4]

4.1 Irreducibility: the case of two noise operators

We start the section by recalling two definitions

Definition 4.1. We recall that an element p ∈ B(H) is a projection if it is self-adjoint
and p2 = p. Moreover, if T = (Tt)t≥0 is a QMS, we say p is subharmonic(resp.
superharmonic) if Tt(p) ≥ p (resp. Tt(p) ≤ p) for every t ≥ 0.

Definition 4.2. A QMS T on B(H) is called irreducible if there exists no non-trivial
subharmonic projection p.
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Chapter 4. Gaussian QMSs on the one-mode Fock Space

In the study of the evolution of an open quantum system irreducibility plays a key
role because it guarantees that there is no proper subsystem which is invariant under
the evolution. Therefore the system has to be regarded as a whole and reduction to sub-
systems is not possible. In addition, irreducibility is a key assumption of many results
on the asymptotic behaviour of QMS (see [40]) and irreducible subsystems constitute
the building blocks in the analysis of the structure of normal invariant states of a QMS
(see [26]).

In this section we show that the Gaussian QMS with two linearly independent noise
operators L1, L2 is irreducible. Gaussian QMS with only one operator L will be con-
sidered in Section 4.2.

In both cases we will use this useful characterization of subharmonic projection,
whose proof can be found in [33, Theorem III.1].

Theorem 4.3. Suppose Hypothesis AA hold and suppose the minimal quantum dynam-
ical semigroup T = (Tt)t≥0 is Markov. Then a projection p is subharmonic for T if
and only if the range Rg(p) of p is invariant for the operators (Pt)t≥0 and

L`u = pL`u, (4.1)

for all u ∈ D(G) ∩ Rg(p), and all ` ≥ 1.

In view of this characterization of subharmonic projections, it is now intuitively clear
that, if there are two linearly independent Kraus operators, the range of a subharmonic
projection should be an invariant subspace for a and a† and so it will be trivial by irre-
ducibility of the Fock representation of the CCR. However, the necessary clarifications
on operator domains are now in order.

Let G0 be the operator defined on the domain D (1.20) by

G0 = −1

2

2∑
`=1

L∗`L` = −Φ

2
,

where Φ is the operator introduced in Proposition 3.23. By the same result the closure
of G0 is a self-adjoint operator. The following is the key result on the domain of the
operator G that we need for proving irreducibility. Recall that the number operator is
defined as

N = a†a.

Theorem 4.4. If there are two linearly independent noise operator L1, L2 the domains
of the operators G and G0 coincide with the domain of the number operator N .

We defer the proof to the next subsection and proceed to the main result of this
section. Note that the property D(G) = D(G0) = D(N) plays a key role in the proof.

Theorem 4.5. The gaussian QMS with generalized GKSL generator associated with
H as in (3.17) and two linearly independent noise operator L1, L2 as in (3.18) is irre-
ducible.

Proof. Let V be a non-zero closed subspace ofH which is invariant for the contraction
operators Pt of the semigroup generated by G and L` (D(G) ∩ V) ⊂ V for ` = 1, 2.
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4.1. Irreducibility: the case of two noise operators

By the linear independence of L1, L2, since D(G) = D(N) we have also

a (D(N) ∩ V) ⊂ D(N1/2) ∩ V a† ((N) ∩ V) ⊂ D(N1/2) ∩ V
a†a (D(N) ∩ V) ⊂ V aa† (D(N) ∩ V) ⊂ V

hence, denoting by p the orthogonal projection onto V ,

p⊥ap = 0 = pap⊥ p⊥a†p = 0 = pa†p⊥

on D(N) and, left multiplying by a† the first identity,

p⊥a†ap = 0 = pa†ap⊥.

It follows that, for all λ > 0, we have the commutation (λ1 +N) p = p (λ1 +N) and,
left and right multiplication by the resolvent (λ1 +N)−1 yields

p (λ1 +N)−1 = (λ1 +N)−1 p.

In particular, for all k > 0, considering the bounded Yosida approximations of N
Nk = kN (k1 +N)−1, that converge strongly to N on D(N) (see [29, Lemma II.3.4])
we have

p kN (k1 +N)−1 = kN (k1 +N)−1 p

and so p e−tNk = e−tNkp for all t, k > 0. Taking the limit as k → +∞, by the Trotter-
Kato theorem ( [29, Theorem III.4.8]) we find

p e−tN = e−tNp ∀t ≥ 0. (4.2)

Let v ∈ V , v 6= 0 with expansion in the canonical basis (1.17)

v =
∑
k≥k0

vkek

where k0 is the minimum k for which vk 6= 0. Clearly, by (4.2), e−tNv ∈ V for all t ≥ 0
and so

ek0te−tNv =
∑
k≥k0

e−(k−k0)tvkek = vk0ek0 +
∑
k>k0

e−(k−k0)tvkek ∈ V

for all t ≥ 0. Taking the limit at t → +∞, we find ek0 ∈ V . Acting on ek0 with
operators a and a† as per (1.18), (1.19) we can immediately show that every vector ek
of the basis belongs to V and the proof is complete. Since, by Theorem 4.3, the only
possible subharmonic projections would then be trivial.

4.1.1 Proof of Theorem 4.4

Before proving the Theorem we need some preliminary lemmas

Lemma 4.6. For all ξ ∈ Dom(N2) and all θ ∈ R we have∥∥(eiθa† + e−iθa
)
ξ
∥∥2 ≤ 2

∥∥∥(aa† + a†a
)1/2

ξ
∥∥∥2

∥∥(eiθa†2 + e−iθa2
)
ξ
∥∥2 ≤

∥∥(aa† + a†a
)
ξ
∥∥2

+ 3 ‖ξ‖2
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Chapter 4. Gaussian QMSs on the one-mode Fock Space

Proof. Computations below should be done on quadratic forms defined on the domain
D×D. However, we do only the algebraic computations to avoid clutter of the notation.

To prove the first inequality we begin by expanding

0 ≤
∣∣eiθa† − e−iθa

∣∣2 = a†a− e2iθa†2 − e−2iθa2 + aa†

which by (3.34) implies ∣∣eiθa† + e−iθa
∣∣2 ≤ 2

(
a†a+ aa†

)
and the first inequality is proved. To prove the second inequality, first note that

0 ≤
∣∣eiθa†2 − e−iθa2

∣∣2 = a2a†2 − e2iθa†4 − e−2iθa4 + a†2a2

and so
e2iθa†4 + e−2iθa4 ≤ a2a†2 + a†2a2

Now (
eiθa†2 + e−iθa2

)2 −
(
aa† + a†a

)2
= e2iθa†4 + a†2a2 + a2a†2 + e−2iθa4

− (aa†)2 − (a†a)2 − aa†2a− a†a2a†

≤ 2a†2a2 + 2a2a†2 − (aa†)2 − (a†a)2 − aa†2a− a†a2a†

The right hand side is equal to

2N(N − 1) + 2(N + 1)(N + 2)− (N + 1)2 −N2 − (N + 1)N −N(N + 1) = 3

and so (
eiθa†2 + e−iθa2

)2 ≤
(
aa† + a†a

)2
+ 3

The claimed inequality readily follows. �

We will show that the graph norms of G,G0 and N are equivalent. We recall that
the graph norm ‖·‖A of an operator A is defined on its domain as

‖x‖2
A = ‖Ax‖2 + ‖x‖2 . (4.3)

We present first two preliminary Lemmas.

Lemma 4.7. Let λ0 be the smallest eigenvalue of the 2× 2 matrix[
v1 v2

u1 u2

]
·
[
v1 u1

v2 u2

]
which is strictly positive by the linear independence of L1, L2. There exists a constant
c1 > 0 depending on v1, u1, v2, u2 and uniformly bounded for v1, u1, v2, u2 in a bounded
subset of C4 such that

(−2G0)2 ≥ λ2
0

(
a†a+ a a†

)2 − c1

(
a†a+ a a†

)
.
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4.1. Irreducibility: the case of two noise operators

Proof. Since −2G0 = L∗1L1 + L∗2L2,

G0 = −1

2

2∑
`=1

((
|v`|2a†a+ |u`|2aa†

)
+ v`u`a

†2 + v`u`a
2
)

for all ξ ∈ D, thinking of (a ξ, a†ξ) as a vector inH⊕H and of product of a row vector
with a column vector as the natural scalar product in H⊕H, we can write 〈ξ,G0ξ〉 as
follows

〈ξ,G0ξ〉 = −1

2

[
a†ξ, a ξ

] [ v1 v2

u1 u2

] [
v1 u1

v2 u2

][
a ξ

a†ξ

]
.

This notation is typical in the study of quadratic Hamiltonians (see, for instance, [22,
69–71]). Recall that, by linear independence of L1, L2, the above matrices have non-
zero determinant. Therefore their product is strictly positive definite and, calling λ1 its
biggest eigenvalue, we have

λ1

〈
ξ,
(
a†a+ a a†

)
ξ
〉
≥ 〈ξ,−2G0ξ〉 ≥ λ0

〈
ξ,
(
a†a+ a a†

)
ξ
〉

(4.4)

In a similar way, dropping the vector ξ and denoting by l.o.t. monomials of order 2 or
less in creation and annihilation operators we have the inequalities

(−2G0)2 =
∑
`

L∗` (−2G0)L` + l.o.t.

= [a†, a]

[
v1 v2

u1 u2

] [
−2G0 0

0 −2G0

] [
v1 u1

v2 u2

] [
a

a†

]
+ l.o.t.

≥ λ0 [a†, a]

[
v1 v2

u1 u2

] [
a†a+ aa† 0

0 a†a+ aa†

] [
v1 u1

v2 u2

][
a

a†

]
+l.o.t.

= λ0 a [a†, a]

[
v1 v2

u1 u2

] [
v1 u1

v2 u2

][
a

a†

]
a†

+ λ0 a
† [a†, a]

[
v1 v2

u1 u2

] [
v1 u1

v2 u2

][
a

a†

]
a+ l.o.t.

= λ0 a(−2G0)a† + λ0 a
†(−2G0)a+ l.o.t.

≥ λ2
0 a(a†a+ aa†)a† + λ2

0 a
†(a†a+ aa†)a+ l.o.t.

= λ2
0(a†a+ aa†)2 + l.o.t.

Since, by Lemma 4.6, we can control lower order terms with (2N + 1) =
(
a†a+ a a†

)
the proof is complete.

Lemma 4.8. The commutator [H,G0] is a second order degree polynomial in a, a† and

|〈ξ, [H,G0]ξ〉| ≤ c2

〈
ξ,
(
a†a+ a a†

)1/2
ξ
〉

for some constant c2 > 0 depending on all parameters in the model.
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Chapter 4. Gaussian QMSs on the one-mode Fock Space

Proof. A long but straightforward computation yields (summation on ` = 1, 2 is im-
plicit)

[H,G0] = i= (κ (v`u`))
(
a†a+ aa†

)
+

(
Ω (v`u`)−

κ

2

(
|v`|2 + |u`|2

))
a2

+
(
−Ω (v`u`) +

κ

2

(
|v`|2 + |u`|2

))
a†2

+

(
ζ

2
(v`u`)−

ζ

2

(
|v`|2 + |u`|2

))
a+

(
−ζ

2
(v`u`) +

ζ

2

(
|v`|2 + |u`|2

))
a†

The claimed inequality follows from Lemma 4.6 and the Schwarz inequality.

We are now ready to present the proof of Theorem 4.4

Proof. Clearly D(N) is contained in D(G0) and D(G).
In order to prove the opposite inclusion we show that there exist constants c3, c4

such that ‖Nξ‖2 ≤ c3 ‖G0ξ‖2 + c4 ‖ξ‖2 for all ξ ∈ D. The conclusion follows because
D is a core for G0 and G.

For all ξ ∈ D, ε > 0 by Lemma 4.7 and Young’s inequality, we have the following
inequalities

‖G0ξ‖2 =
〈
ξ,G2

0ξ
〉

≥ λ2
0

4

〈
ξ,
(
a†a+ a a†

)2
ξ
〉
− c1

4

〈
ξ,
(
a†a+ a a†

)
ξ
〉

≥ λ2
0

4

〈
ξ,
(
a†a+ a a†

)2
ξ
〉
− c1

4
‖ξ‖ ·

∥∥(a†a+ a a†
)
ξ
∥∥

≥ λ2
0

4

〈
ξ,
(
a†a+ a a†

)2
ξ
〉
− λ2

0

8

∥∥(a†a+ a a†
)
ξ
∥∥2 − c2

1

8λ2
0

‖ξ‖2

=
λ2

0

8

∥∥(a†a+ a a†
)
ξ
∥∥2 − c2

1

8λ2
0

‖ξ‖2 .

Since
∥∥(a†a+ a a†

)
ξ
∥∥2 ≥ 4 ‖Nξ‖2 we find the inequality

‖Nξ‖2 ≤ 2

λ2
0

‖G0ξ‖2 +
c2

1

4λ4
0

‖ξ‖2 (4.5)

for all ξ ∈ D implying that D(G0) ⊂ D(N).
In order to prove that the domain of G is also contained in the domain of N note

that G = G0 − iH on D and write

‖Gξ‖2 = 〈ξ, (G0 + iH)(G0 − iH)ξ〉 =
〈
ξ, (G2

0 +H2)ξ
〉

+ i 〈ξ, [H,G0]ξ〉 . (4.6)

Now by Lemma 4.8, 〈ξ,H2ξ〉 ≥ 0 and the previous inequality (4.5) we find

‖Gξ‖2 ≥
〈
ξ,G2

0ξ
〉
− c2

〈
ξ,
(
a†a+ a a†

)1/2
ξ
〉

≥ λ2
0

2
‖Nξ‖2 − c2

√
2 ‖ξ‖ ·

∥∥N1/2ξ
∥∥− c2

1

4
‖ξ‖2 .

We can now proceed as in the final part of the proof of (4.5) with an application of
Young’s inequality to show that D(G) ⊂ D(N).
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4.2 Irreducibility: the case of a single noise operator

In this section we study the case where there is a single operator

L = va+ ua† with v 6= 0 or u 6= 0.

This case is much more convoluted. We begin by considering the algebraic aspect of
the problem disregarding, for the moment, domain issues that will be considered later.

By Theorem 4.3 we are looking for common invariant subspaces for the operators
G and L and so also for the commutator [L,G]. A straightforward computation yields

−2 [L,G] = [L,L∗L+ 2iH]

= [L,L∗]L+ 2i (vΩ− uκ) a− 2i (uΩ− vκ) a† + 2i
(
vζ − uζ

) (4.7)

Thus the candidate subspace must be invariant for the operators

G = −1

2
L∗L− iH, L = va+ ua†, L̃ = (vΩ− uκ) a+ (vκ− uΩ) a†.

If the operators L and L̃ are linearly independent, corresponding ti the condition

det
[
vΩ− uκ vκ− uΩ

v u

]
6= 0, (4.8)

then the candidate subspace must be invariant for a and a† and so it should be trivial as
in the case of two Kraus operators L.

In the sequel, we prove that under condition (4.8), which is clearly a Hörmander-
type iterated commutator condition the QMS is irreducible. Otherwise, we will see that
irreducibility does not hold.

It is worth noticing here that a similar condition appears also in bilinear control
(see [28], Definition 3.6 (ii) p. 102, weak ad-condition) As a matter of fact, if, starting
from any initial non-zero vector ξ0 ∈ H with time evolution one can reach a total
set of vectors in H varying the control parameter z ∈ C in the differential equation
ξ̇t = Gξt + zLξt, then irreducibility holds.

Lemma 4.9. Suppose |v| 6= |u|. Then Dom(G0) = Dom(N) = Dom(G).

Proof. We begin by noting that D(N) ⊂ D(G0) and D(N) ⊂ D(G).
Conversely, note that for all r ∈ R, on the domain Dom(N) of the number operator,

in the same matrix notation of the proof of Lemma 4.7, we have

L∗L = |v|2a†a+ vu a†2 + vu a2 + |u|2aa†

=
(
|v|2 + r

)
a†a+ vua†2 + vua2 +

(
|u|2 − r

)
aa† + r1

=
[
a† a

] [ |v|2 + r vu

vu |u|2 − r

] [
a

a†

]
+ r1

The trace of the above 2× 2 matrix is strictly positive and the determinant

r
(
|u|2 − |v|2

)
− r2
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Chapter 4. Gaussian QMSs on the one-mode Fock Space

if we choose r = (|u|2 − |v|2) /2, it is equal to (|u|2 − |v|2)
2
/4 > 0 and the lowest

eigenvalue is (|v| − |u|)2 /2. It follows that

L∗L ≥ (|v| − |u|)2

2

(
aa† + a†a

)
+
|v|2 − |u|2

2
1

and, denoting by l.o.t. monomials of order 2 or less in creation and annihilation opera-
tors,

(L∗L)2 = L∗(LL∗)L = L∗(L∗L)L+ l.o.t.

≥ 1

2
(|v| − |u|)2 L∗

(
aa† + a†a

)
L+ l.o.t.

=
1

2
(|v| − |u|)2 (aL∗La† + a†L∗La

)
+ l.o.t.

≥ 1

4
(|v| − |u|)4 (a (aa† + a†a

)
a† + a†

(
aa† + a†a

)
a
)

+ l.o.t.

= (|v| − |u|)4 (a†a)2
+ l.o.t.

Therefore there exists a constant c > 0 such that

(|v| − |u|)4
∥∥a†a ξ∥∥2 ≤ ‖L∗L ξ‖2 + c ‖ξ‖2 (4.9)

for all ξ ∈ D and D(L∗L) ⊂ D(N). This shows the identity D(G0) = D(N).
In order to prove the other identity, for all ξ ∈ D, compute

‖Gξ‖2 = ‖G0ξ‖2 + ‖Hξ‖2 + 〈ξ, i[H,G0]ξ〉 .

Since the commutator [H,G0] is a second order polynomial in a, a† there exists a con-
stant c′ > 0 such that 〈ξ, i[H,G0]ξ〉 ≥ −c′‖N1/2ξ‖2. Recalling (4.9), by Young’s
inequality, we have

‖Gξ‖2 ≥ ‖G0ξ‖2 − c′‖N1/2ξ‖2

≥ (|v| − |u|)4

4
‖a†aξ‖2 − c‖ξ‖2 − (|v| − |u|)4

8
‖a†aξ‖2 − 4

c′2 (|v| − |u|)4‖ξ‖
2

=
(|v| − |u|)4

8
‖a†aξ‖2 − c′′‖ξ‖2

where c′′ is another constant. Thus D(G) ⊂ D(N) and the proof is complete.

We can now prove irreducibility when condition (4.8) holds.

Proposition 4.10. Suppose that condition (4.8) holds and, moreover, |v| 6= |u|. Then
the Gaussian QMS with m = 1,

L = va+ ua†,

and H as in (3.17) is irreducible.

Proof. Using the result of Lemma 4.9 D(G) = D(N) the proof essentially follows the
line of that of Theorem 4.5.
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Let V (V 6= {0}) be a subspace of H which is invariant for the operators Pt and
L (D(G) ∩ V) = L (D(N) ∩ V) ⊂ V for ` = 1, 2. Moreover, since

L (D(Nm)) ⊂ D(Nm−1/2), G ((Nm)) ⊂ D(Nm−1),

for all m ≥ 1, we have also

[G,L]
(
D(N3/2) ∩ V

)
⊂ V , L̃

(
D(N3/2) ∩ V

)
⊂ V .

However the commutator [G,L] is a first order polynomial in a, a†, therefore the previ-
ous inclusions can be extended to D(N1/2) ∩ V .

By the linear independence of L and L̃, we can now follow the argument of the proof
of Theorem 4.5, with L2 = L̃.

We study separately situations in which (4.8) does not hold distinguishing three
cases.

4.2.1 Kraus operator of annihilation type

We first consider the case where (4.8) does not hold and |v| > |u|. We recall the
definition of the squeeze operator

Proposition 4.11. For every z ∈ h let

S(z) = e(za†2−za2)/2. (4.10)

Then S is a unitary operator and if z = eiϕs with s = |z| then

S∗aS = cosh(s) a+ eiϕ sinh(s) a† S∗a†S = cosh(s) a† + e−iϕ sinh(s) a (4.11)

.

Proof. See for example [56]

When can then prove the following result, answering irreducibility for the case of
only one Kraus operator and |v| > |u|.

Proposition 4.12. The Gaussian QMS with GKSL generator with only one Kraus op-
erator L = va + ua†, |v| > |u| and Hamiltonian H as in (3.17) is irreducible if and
only if condition (4.8) holds. If it is not irreducible, it has a unique invariant state
e−|ν|2|e(ν)〉〈e(ν)| (pure) and all initial state converges to it in trace norm.

Proof. Using the squeeze operator (4.10), by (4.11) with z = seiϕ, we obtain

L′ = S∗LS =
(
v cosh(s) + e−iϕu sinh(s)

)
a+

(
u cosh(s) + eiϕv sinh(s)

)
a† (4.12)

and, by first choosing a ϕ such that u and eiϕv have the same phase, and an s such that

|u| cosh(s) + |v| sinh(s) = 0 ⇔ tanh(s) = −|u|/|v|
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Chapter 4. Gaussian QMSs on the one-mode Fock Space

we can assume that L′ is a strictly positive multiple (multiplying a Kraus operator by
a phase does not change the GKLS representation) of the annihilation operator, i.e.
u = 0. Of course also Ω, κ, ζ change to Ω′ = S∗ΩS, κ′ = S∗κS, ζ ′ = S∗ζS

Ω′ = Ω
(
cosh2(s) + sinh2(s)

)
+ 2 sinh(s) cosh(s)<(e−iϕκ)

κ′ = κ cosh2(s) + κ e2iϕ sinh2(s) + 2Ω eiϕ cosh(s) sinh(s)

ζ ′ = ζ cosh(s) + ζeiϕ sinh(s)

and condition (4.8) does not hold if and only if vκ′ = 0 i.e., by v 6= 0, κ′ = 0 and (up
to an irrelevant multiple of the identity operator in H)

L′ = v′a, H ′ = Ω′ a†a+
ζ ′

2
a†+

ζ
′

2
a, G′ = −

(
|v′|2

2
+ iΩ′

)
a†a− i

2

(
ζ ′a† + ζ

′
a
)

where v′ = (|v|2 − |u|2) cosh(s)/|v|, up to a phase factor. Eventually we have

〈u, S∗L(SxS∗)Sv〉 = 〈u,L′(x)v〉 , ∀x ∈ B(H), u, v ∈ H

therefore irreducibility of T is equivalent to irreducibility of the semigroup generated
by L′.

Dropping the ′ to simplify the notation, now we apply formula (3.38) with

Zz = −(|v|2/2 + iΩ)z, Cz = |v|2z.

Computing esZz = e−(|v|2/2−iΩ)sz and∫ t

0

<
(

esZz CesZz
)

ds = |z|2
∫ t

0

|v|2e−s|v|
2

ds = |z|2
(

1− e−t|v|
2
)

∫ t

0

<
(
ζesZz

)
ds = <

(
ζz

|v|2/2− iΩ

(
1− e−t(|v|

2/2−iΩ)
))

It follows that, for all g, f ∈ C,

lim
t→+∞

tr(|e(f)〉〈e(g)|Tt(W (z)) = e−|z|
2/2+i<(ζz/(|v|2/2−iΩ)) lim

t→+∞

〈
e(g),W (etZz)e(f)

〉
= e−|z|

2/2+2i=(iζz/(|v|2−2iΩ)) egf

Noting that, for all ν ∈ C

e−|ν|
2 〈e(ν),W (z)e(ν)〉 = e−|z|

2/2+2i=(νz),

defining ν = iζ/(|v|2 + 2iΩ) we find

lim
t→+∞

tr(|e(f)〉〈e(g)|Tt(W (z)) = egfe−|ν|
2 〈e(ν),W (z)e(ν)〉

In particular, e−|ν|2|e(ν)〉〈e(µ)| is a pure invariant state and the QMS is not irreducible.
Moreover, since linear combinations of linear functionals |e(f)〉〈e(g)| are dense in
the Banach space of trace class operators by totality of exponential vectors, the above
identity also proves that any initial state converges in trace norm to this pure invariant
state.
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4.2.2 Kraus operator of creation type

We consider the case where (4.8) does not hold and |v| < |u|. Using similar technques
to what we have already used we can prove the following.

Proposition 4.13. The Gaussian QMS with GKSL generator with only one Kraus op-
erator L = va + ua†, |v| < |u| and Hamiltonian H as in (3.17) is irreducible if and
only if condition (4.8) holds.

Proof. Clearly if condition (4.8) holds we can use Proposition 4.10 and obtain irre-
ducibility of the semigroup.

We suppose now that condition (4.8) does not hold and show that the semigroup is
not irreducible. Similar to the proof of Proposition 4.12 we start by considering a new
generator L′ through a squeezing operation. This time if z = seiϕ we choose ϕ such
that u and eiφv have the same phase, and then s such that tanh(s) = −|v|/|u|. In this
way we obtain v′ = 0 and L′ defined by (4.12) is a multiple of the creation operator.
Parameters Ω, κ, ζ are transformed to Ω′, κ′, ζ ′ accordingly and (4.8) does not hold if
and only if κ′ = 0, as in the proof of Proposition (4.12). In this way the given QMS is
transformed to the unitarily equivalent QMS generated by L′ with

L′ = u′a†, H ′ = Ω′ a†a+
ζ ′

2
a†+

ζ
′

2
a, G′ = −

(
|u′|2

2
+ iΩ′

)
a a†− i

2

(
ζ ′a† + ζ

′
a
)

where u′ = (|u|2 − |v|2) cosh(θ)/|u| up to a phase factor. In the sequel of the proof we
work with the semigroup generated by L′ but drop the ′ to simplify the notation.

Let V be the range of a non-zero subharmonic projection p. Since, by Lemma 4.9
the operators G and N have the same domain, by Theorem 4.3 we have

G(D(N) ∩ V) ⊆ V , L(D(N) ∩ V) ⊆ V . (4.13)

We can add to G a suitable multiple of L to obtain the operator

G̃ = −
(
|u|2

2
+ iΩ

)(
a a† + ηa+ ηa† + |η|21

)
= −

(
|u|2

2
+ iΩ

)
W (η)∗a a†W (η),

where η = iζ/(|u|2 − 2iΩ). By (4.13) we have

G̃(D(N) ∩ V) ⊆ V , L(D(N) ∩ V) ⊆ V ,

which is equivalent to G,L invariance, by definition of G̃.
Let w ∈ V with expansion w =

∑
k≥k0 wkW (−η)ek where k0 is the minimum k

for which wk 6= 0. Since G̃ is a multiple of the number operator with strictly negative
real part, arguing as in the last part of the proof of Theorem 4.5, we can show that
W (−η)ek0 ∈ V . As a consequence, by the commutation a†W (−η) = W (−η)(a†−η1),

LW (−η)ek0 = uW (−η)(a†− η1)ek0 = u
√
k0 + 1W (−η)ek0+1−u ηW (−η)ek0 ∈ V

Applying L we can show inductively that, for all k0 ≥ 0, the linear space generated
by vectors W (−η)ek with k ≥ k0 is an invariant subspace determining a subharmonic
projection and, in this case, the QMS associated with G,L is not irreducible.
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Chapter 4. Gaussian QMSs on the one-mode Fock Space

4.2.3 Self-adjoint Kraus operator

We consider here the case where |v| = |u|. We consider at first a transformation similar
to the previous subsections, here however there is no need for the squeeze operator.

Lemma 4.14. Irreducibility of the Gaussian QMS with GKSL generator with only one
Kraus operator L = va + ua†, |v| = |u| and Hamiltonian H as in (3.17) is equivalent
to irreducibility of the semigroup generated by L′ with

L′ = r
(
e−iθa+ eiθa†

)
, H ′ = Ωa†a+

|κ|
2

(
e2iφa†2 + e−2iφa2

)
+
(
ζa+ ζa†

)
,

for some r > 0, θ, φ ∈ R. In this case condition (4.8) does not hold if and only if

Ω = |κ| cos(2(φ− θ)). (4.14)

Proof. Since |v| = |u| consider v = reiα, u = reiα′ , for v > 0 and α, α′ ∈ R. We
can therefore multiply L by the phase e−i(α′−α)/2 and define 2θ = α + α′, to obtain the
expression for L′.

Similarly we can write κ = |κ| e2iφ to obtain the expression for H ′. A simple
computation now yields (4.14).

Remark 4.15. Using the expressions of Lemma 4.14 and defining the self-adjoint oper-
ator

qθ :=
e−iθa+ eiθa†√

2
,

we have

a† = e−iθ
(
qθ − iqθ+π/2

)
/
√

2 a = eiθ
(
qθ + iqθ+π/2

)
/
√

2 (4.15)

a†a+ aa† = q2
θ + q2

θ+π/2. (4.16)

Therefore L′ = r
√

2qθ and

H ′ =
Ω + |κ| cos(2(φ− θ))

2
q2
θ +

Ω− |κ| cos(2(φ− θ))
2

q2
θ+π/2 (4.17)

+
|κ|
2

sin(2(φ− θ))
(
qθqθ+π/2 + qθ+π/2qθ

)
+
(
ζa+ ζa†

)
− Ω

2
1.

Proposition 4.16. If condition (4.8) does not hold, th Gaussian QMS with GKSL gen-
erator with only one Kraus operator L = va+ ua†, |v| = |u| and Hamiltonian H as in
(3.17) is not irreducible.

Proof. Using Lemma 4.14 and Remark 4.15 we consider irreducibility of the semigroup
with L′ = r

√
2qθ and H ′ given by (4.17). We will drop the ′ to avoid clutter of the

notation.
We can now compute [

qθ+π/2, qθ
]

= −i1.

For every smooth function f : R → C, considering for example its Taylor expansion,
we have

[L, f(qθ)] = [L∗, f(qθ)] = 0,
[
qθ+π/2, f(qθ)

]
= −if ′(qθ).
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4.2. Irreducibility: the case of a single noise operator

Since condition (4.8) does not hold, we have (4.14) and therefore the quadratic term
q2
θ+π/2 in H vanishes. In particular using

[a, f(qθ)] =
eiθ

√
2

[
qθ − iqθ+π/2, f(qθ)

]
= − eiθ

√
2
f ′(qθ),[

a†, f(qθ)
]

=
e−iθ

√
2

[
qθ + iqθ+π/2, f(qθ)

]
=

e−iθ

√
2
f ′(qθ),

we obtain

L(f(qθ)) = i [H, f(qθ)] =
(

Im(ζe−iθ)/
√

2) + |κ| sin(2(θ − φ))qθ

)
f ′(qθ).

Reading again this generator as acting on functions over R we have obtained the gener-
ator of a deterministic translation process with drift (considering the generic case where
|κ| sin(2(θ− φ)) 6= 0) towards the point x∞ := Im(ζe−iθ)/(

√
2|κ| sin(2(θ− φ))) (Fig.

1 below).

x•
x∞ = −Im(ζe−iθ)/(

√
2|κ| sin(2(θ − φ)))

Fig. 1: deterministic translation process on the algebra generated by qθ.

The invariant density of the classical process is clearly δx∞ which does not induce a
faithful normal state on B(h). However this gives us some insight on the proof of non
irreducibility.

Indeed cfor all c > 0 consider the projection

x→ 1[x∞−c,x∞+c](x)

which is a candidate subharmonic projection because the classical process, starting
from a point in the interval [x∞−c, x∞+c] does not exit for all positive times. To prove
that this projection is indeed subharmonic, consider mollifier ϕ, namely a C∞ function
ϕ : R → R+ with support in the interval [−1, 1],

∫
R ϕ(x)dx = 1 and limε→0 ϕε(x) =

limε→0 ε
−1ϕ(x/ε) = δ0 and, for all ε < c define

fε(x) =

∫ x

−∞
(ϕε(y − (x∞ − c))− ϕε(y − (x∞ + c))) dy.

Note that, since
∫
R ϕε(x)dx = 1 for all ε > 0 we have fε(x) = 0 for |x− x∞| > c+ ε,

f(x) = 1 for |x − x∞| ≤ c − ε and f ′ε(x) ≥ 0 for x∞ − c − ε < x < x∞ − c + ε,
f ′ε(x) ≤ 0 for x∞+c−ε < x < x∞+c+ε. It follows that the multiplication operator by
fε(qθ), which belongs to the domain of the Lindbladian L because L(fε(qθ)) is bounded
satisfies L(fε(qθ)) ≥ 0 and so

Tt(fε(qθ)) ≥ fε(qθ)

for all t ≥ 0. Taking the limit as ε goes to 0, fε converges to the projection 1[x∞−c,x∞+c]

in L2 and almost surely, therefore Tt(1[x∞−c,x∞+c]) ≥ 1[x∞−c,x∞+c] for all t ≥ 0 and the
QMS is not irreducible. A similar argument applies in the case where sin(2(θ−φ)) = 0
and x∞ = +∞ (resp. x∞ = −∞) if Im(ζe−iθ) > 0 (resp. iIm(ζe−iθ) < 0) with
projections of the form 1[c,+∞[ (resp. 1]−∞,c]).
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Chapter 4. Gaussian QMSs on the one-mode Fock Space

We now consider the case where |u| = |v| and condition (4.8) holds. Again we
will make use of Lemma 4.14 and Remark 4.15 , where condition (4.8) becomes Ω 6=
|κ| cos(2(θ−φ)), and show that the QMS generated by L′ is irreducible. To this end we
will show coercivity of G2

0 +H2 + g2
l 1, for some constant g2

l , with respect to the graph
norm of the number operator N = (q2

θ + q2
θ+π/2 − 1)/2. Before proving this result we

need the following lemma.

Lemma 4.17. Let µ, λ, x, y ∈ R with λ 6= 0. For all r > 0 and w > 0 such that
w < min{1, (2x2)−1} there exists ε > 0 such that µ2 + r4 µx λµ

µx x2 λx

λµ λx λ2

 ≥ ε

 r4 0 1

0 −1/2 0

1 0 λ2w


Proof. The difference of the above matrices is µ2 + r4(1− ε) µx λµ− ε

µx x2 + ε/2 λx

λµ− ε λx λ2(1− wε)


which is positive, by the Sylvester’s criterion, if and only if all principal minors are
positive. For all ε > 0, the principal minor obtained by removing the first row and
column is positive if and only if wε < 1 and its determinant

λ2((1− 2wx2)ε− wε2)/2 = λ2ε((1− 2wx2)− wε)/2

is positive. This is clearly the case if ε < min{1, w−1, (1− 2wx2)/w} := ε1.
The principal minor obtained by removing the second row and column, namely[

µ2 + r4(1− ε) λµ− ε
λµ− ε λ2(1− wε)

]
has positive diagonal elements for 0 < ε < ε1 and determinant

λ2r4 + (2λµ− λ2µ2w − λ2r4(1 + w))ε+ λ2r4wε2

which is clearly strictly positive for all 0 < ε < ε2 for some ε2 < ε1. Finally, the
principal minor obtained by removing the third row and column, namely[

µ2 + r4(1− ε) µx

µx x2 + ε/2

]
which has positive diagonal elements for ε < 1, has determinant

r4x2 + (µ2 + r4 − 2r4x2)ε/2− r4ε2/2.

This is clearly positive for all ε small enough if x 6= 0 because it tends to r4x2 6= 0 but
also for x = 0 since, in this case it is equal to ε(µ2 + r4 − r4ε/2). This completes the
proof.
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4.2. Irreducibility: the case of a single noise operator

Theorem 4.18. If condition (4.8) holds there exist constants g2 > 0, g2
l ≥ 0 such that

G2
0 +H2 ≥ g2(q2

θ + q2
θ+π/2)2 − g2

l 1. (4.18)

In particular D(G) = D(N).

Proof. In this proof only, to reduce the clutter of the notation, we denote qθ by q, qθ+π/2
by p, c := cos(2(φ− θ)), s := sin(2(φ− θ)) and by {·, ·} the anticommutator.

As a first step note that, once we show that G2
0 + H2 ≥ g2

0(q2
θ + q2

θ+π/2)2 + l.o.t.
for some constant g2

0 > 0 then, reducing the constant g0 if necessary, we can get the
conclusion. Indeed, if the lower order term is, for instance, {a, q2 + p2} for all ξ ∈
D(N2) by the Schwartz and Young inequalities, we have〈

ξ, {a, q2 + p2}ξ
〉

=
〈
a†ξ, (q2 + p2)ξ

〉
+
〈
(q2 + p2)ξ, a ξ

〉
≥ −

∥∥a† ξ∥∥ · ∥∥(q2 + p2)ξ
∥∥− ‖a ξ‖ · ∥∥(q2 + p2)ξ

∥∥
≥ −ε

∥∥(q2 + p2)ξ
∥∥2 − ε−1

(
‖a ξ‖2 +

∥∥a† ξ∥∥2
)

= −ε
〈
ξ, (q2 + p2)2ξ

〉
− ε−1

〈
ξ, (q2 + p2)ξ

〉
for all ε > 0. Now, again by the Schwartz and Young inequalities we have also

−ε−1
〈
ξ, (q2 + p2)ξ

〉
≥ −ε−1 ‖ξ‖ ·

∥∥(q2 + p2)ξ
∥∥

≥ −ε
∥∥(q2 + p2)ξ

∥∥2 − ε−3 ‖ξ‖2

Therefore we find the inequality〈
ξ, {a, q2 + p2}ξ

〉
≥ −2ε

〈
ξ, (q2 + p2)2ξ

〉
− ε−3 ‖ξ‖2

and, choosing ε small enough, we can reduce the constant g2 in (4.18), increase g2
l and

get the claimed inequality. We can proceed in a similar way if the are more lower order
terms.

It is now clear that we can assume that G2
0 + H2 is a fourth order homogenous

polynomial in p, q, or, in an equivalent way, we can proceed as if H had no terms of
order 1 or 0. In this case the square of 2H is

(2H)2 = (Ω + |κ|c)2 q4 + (Ω− |κ|c)2 p4 + (Ω + |κ|c) (Ω− |κ|c) {q2, p2}
+ |κ|2s2{q, p}2 + (Ω + |κ|c) |κ|s

{
q2, {q, p}

}
+ (Ω− |κ|c) |κ|s

{
p2, {q, p}

}
and write (2H)2 as q2

{q, p}
p2


T  (Ω + |κ|c)2 (Ω + |κ|c) |κ|s (Ω + |κ|c) (Ω− |κ|c)

(Ω + |κ|c) |κ|s |κ|2s2 (Ω− |κ|c) |κ|s
(Ω + |κ|c) (Ω− |κ|c) (Ω− |κ|c) |κ|s (Ω− |κ|c)2


 q2

{q, p}
p2


We now apply Lemma 4.17 Appendix C on a 3 × 3 matrix as above with λ = Ω −
|κ|c, µ = Ω + |κ|c, x = |κ|s. Since L =

√
2rq and G0 = −r2q2, the operator (2G0)2 +

(2H)2 is associated with a 3 × 3 matrix as in Lemma 4.17 therefore is bigger than (r4

becomes 4r4)

ε
(
4r4q4 − { p, q }2/2 + { p2, q2 }+ λ2w q4

)
+ l.o.t.
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Chapter 4. Gaussian QMSs on the one-mode Fock Space

Note that { p2, q2 } − { p, q }2/2 = −(3/2)1 and { p2, q2 } ≤ p4 + q4 which implies

4(G2
0 +H2) ≥ ε

(
4r4q4 + λ2w q4

)
+ l.o.t.

≥ εmin{2r4, λ2w/2}
(
q4 + { p2, q2 } + p4

)
+ l.o.t.

= εmin{2r4, λ2w/2}
(
q2 + p2

)2
+ l.o.t..

The above inequality together with (4.6) implies existence of constants, g, g′ > 0 such
that

‖Nξ‖2 ≤ g‖Gξ‖2 + g′‖ξ‖2

for all ξ finite linear combination of vectors en of the orthonormal basis (1.17). There-
fore D(G) ⊆ D(N). The other inclusion is trivial and the proof is complete.

Theorem 4.19. Let T be the QMS with generator in a generalized GKSL form associ-
ated with a single Kraus operator L = va+ ua† and H as in (3.17). The following are
equivalent:

(i) Operators L and [H,L] are linearly independent i.e. 2Ω vu 6= v2κ+ u2κ,

(ii) T is irreducibile.

Proof. Let us start by showing (i) ⇒ (ii). If |u| 6= |v|, then Proposition (4.10) shows
irreducibility. If |u| = |v| then Theorem 4.18 shows D(G) = D(N) and with the same
proof as Theorem 4.5 we can prove irreducibility also in this case.

The implication (ii)⇒ (i) follows from Propositions 4.12, 4.13, 4.16.

Solution to the irreducibility problem is summarized by the following decision tree.

number of Kraus’ operators L`

irreducible consider 2Ω vu− v2κ− u2κ

irreducible not irreducible

two one

6= 0 = 0

Figure 4.1: Decision tree for irreducibility of a gaussian QMS on B(Γs(C))

4.3 Invariant states

In this section we characterize Gaussian QMS with normal invariant states in terms of
the parameters in the model. We start recalling the definition of an invariant state.

Definition 4.20. We say a density matrix ρ is invariant for the QMS T (equiv. for the
predual T∗) if

Tt∗(ρ) = ρ, ∀t ≥ 0.
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4.3. Invariant states

In virtue of the result of Chapter 3 we have that this semigroup preserves gaussianity
of the stated. Indeed we can also specialize Proposition 3.29 to obtain explicit formulas
for the mean vectors and the covariance operators of such states. A natural starting
point for the study of invariant states is therefore to consider just gaussian states, where
the problems can be transferred on the parameters.

To this scope we need this preliminary Lemma that further specifies the results of
Lemma 3.27.

Lemma 4.21. Consider the quantity

γ =
1

2

2∑
`=1

(
|v`|2 − |u`|2

)
. (4.19)

If γ 6= 0 then the operator C given by (3.40) is strictly positive

Proof. In virtue of Lemma 3.27 we have

C =
√
C
]√
C ≥ 0

where
√
Cz = Uz + V z, for every z ∈ hR. In order to prove strict positivity one only

needs to show that ker
√
C = {0}. By direct computation we have

√
Ch =

(
U V

V U

)
.

The minor corresponding to the first and third row (resp. the second and the fourth) is
|u1|2 − |v1|2 (resp. |u2|2 − |v2|). Therefore if γ 6= 0 at least one of the two minors is
non-zero and ker

√
C = {0}.

The quantity γ introduced by (4.19) will be relevant in addressing existence of an
invariant state. It has been introduced in this way since it will appear in this form when
evaluating the explicit expression of Zh (cf. (4.21)).

We now state the theorem of existence and uniqueness of invariant states.

Theorem 4.22. Let (Tt)t≥0 be the QMS with GKSL generator associated withH,L1, L2

as in (3.18), (3.17) or withH and a single Kraus operator. If γ > 0 and γ2+Ω2−|κ|2 >
0 the Gaussian state ρ = ρ(ω,S) with

ω = (Z])−1ζ =
(−γ + iΩ)ζ − iκζ

γ2 + Ω2 − |κ|2
, S =

∫ ∞
0

esZ
]

CesZds. (4.20)

is the unique normal invariant state for the semigroup. Moreover, for all initial state ρ0

lim
t→∞

1

t

∫ t

0

T∗s(ρ0)ds = ρ

in trace norm.

Proof. First note that, since γ2 + Ω2 − |κ|2 > 0, the matrix

Zh =

(
−γ + iΩ iκ

−iκ −γ − iΩ

)
(4.21)
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Chapter 4. Gaussian QMSs on the one-mode Fock Space

has only eigenvalues with strictly negative real part and the integral in (4.20) is well-
defined.

We now check that ρ is an invariant state. Proposition 3.29 implies that ρt = T∗t(ρ)
is still a Gaussian state with mean vector and covariance matrix given by equations
(3.46) and (3.47). The state ρ is invariant if and only if ωt = ω and St = S for every
t ≥ 0 that means∫ t

0

esZ
] (
Z]ω − ζ

)
ds = 0,

∫ t

0

esZ
] (
C + Z]S + SZ

)
esZds = 0

for all t ≥ 0. Since both esZ] and esZ are invertible, the invariance of ρ is equivalent to

ζ = Z]ω, Z]S + SZ = −C. (4.22)

Conditions on the parameters of the semigroup imply the existence of a pair (ω, S)
satisfying (4.22). Indeed γ2 + Ω2 − |κ|2 6= 0 implies invertibility of Z], which leads to
ω = (Z])−1ζ . Furthermore

Z]S + SZ =

∫ ∞
0

(
Z]esζ

]

CesZ + esZ
]

CesZZ
)

ds

=

∫ ∞
0

(
d
ds

eeZ
]

CesZ
)

ds =
[
esZ

]

CesZ
]

= −C,

and S ∈ Q since, as in the proof of Proposition 3.29,

S− iJ =

∫ ∞
0

esZ
T (

C + i
(
ZTJ + JZ

))
esZds ≥ 0,

where the integral exists since Z has only eigenvalues with negative real part.
we consider now the uniqueness part of the proof. Whenever the semigroup con-

sidered has two linearly independent Kraus’ operators it is irreducible, by Theorem
4.5. Moreover, since we have already proven it has an invariant state, this must be
faithful and its uniqueness follows from standard results on irreducible QMSs with a
faithful normal invariant state (see e.g. [40] Theorem 1 and Lemma 1). Convergence
towards the invariant state follows again from known results on QMS with faithful nor-
mal invariant states (see e.g. [39] Theorem 2.1). If the semigroup instead has only one
Kraus’ operator, since γ > 0 we are in the case of Subsection 4.2.1 and uniqueness and
convergence follow from Proposition 4.12.

Remark 4.23. Condition γ > 0 indicates an overall higher rate of transitions to lower-
level states. In order to interpret the other condition we begin by recalling that the
Hamiltonian H has discrete spectrum and the QMS generated by i[H, ·] has normal
invariant states if and only if |κ|2 < Ω2. In the case where Ω2−|κ|2 < 0 the Hamiltonian
H has only continuous spectrum and the additional condition γ2 > |κ|2 − Ω2 appears.
This means that transitions to lower-level states must be stronger to compensate the
effect of transitions induced by the Hamiltonian without eigenstates.

Theorem 4.22 shows that a faithful normal Gaussian invariant state exists and is
unique for all parameters (γ,Ω2 − |κ|2) lying in the open shaded region denoted by I
(Fig. 2 below).
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4.3. Invariant states

γ

Ω2 − |κ|2

I

I =
{

(γ,Ω2 − |κ|2) | γ > 0, γ2 + Ω2 − |κ|2 > 0
}

Fig.2: parameter region I (shaded) of QMS with Gaussian invariant states

We will now show that a normal invariant state, Gaussian or not, does not exist for
any choice of parameters (γ,Ω2 − |κ|2) lying outside of the region I.

Equations (3.38) and (4.20) suggest that the quantity <
(

esZz CesZz
)

plays an im-
portant role in the existence of invariant states. Therefore we begin by the following
two Lemmas, investigating the asymptotic behaviour of etZz and the convergence of
the integral (4.20).

Lemma 4.24. For all choices of parameters γ,Ω, κ such that (γ,Ω2−|κ|2) falls outside
the region I\{(0, 0)} there exist V+, a vector subspace of hR, such that

∣∣etZz∣∣ diverges
as t→∞ for every z ∈ V+ \ {0}.

Proof. Recall that the matrix representation of the operator Zh is given by (4.21). We
can divide the region I \ {(0, 0)} in 4 subsets:

1. γ < 0 and Ω2 ≥ |κ|2 : eigenvalues of Zh are −γ ± i
√

Ω2 − |κ|2 both with strictly
positive real part,

2. γ ≤ 0 and Ω2 < |κ|2 : eigenvalues of Zh are −γ −
√
|κ|2 − Ω2 < −γ +√

|κ|2 − Ω2. At least −γ +
√
|κ|2 − Ω2 is strictly positive,

3. γ > 0 and γ2 + Ω2− |κ|2 < 0 so that Ω2− |κ|2 < 0 : eigenvalues of Zh are −γ ±√
|κ|2 − Ω2. Only the biggest eigenvalue −γ +

√
|κ|2 − Ω2 is strictly positive,

4. γ = 0 and Ω = ± |κ| : the only eigenvalue of Zh is 0.

In each of the first three cases there is an eigenvalue λ+ and let z0 ∈ h be an eigenvector
associated with λ+. We have

∣∣etZhz0

∣∣ = et<λ+ |z0|. Setting V+ as the real vector
subspace generated by z ∈ hR corresponding to z0 ∈ h via Example 1.18.
In the fourth case, we see from (3.39) that Z 6= 0 but Z2 = 0. Hence etZ = 1 + tZ and
there exists z0 ∈ hR such that Zz0 6= 0. Therefore∣∣etZz0

∣∣ = |z0 + tZz0| ≥ t |Zz0| − |z0| .

and
∣∣etZz0

∣∣ diverges as t → ∞. It is then sufficient to choose V+ generated by z0 and
the proof is completed also in the last case.
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Chapter 4. Gaussian QMSs on the one-mode Fock Space

Lemma 4.25. For all choices of parameters γ,Ω, κ such that (γ,Ω2 − |κ|2) belongs to
the boundary of I except for the origin (0, 0) there exists a vector subspace V+ of hR
such that for every z ∈ V+ \ {0} the integral∫ t

0

Re
〈
esZz, CesZz

〉
ds (4.23)

diverges as t→∞.

Proof. Consider first the case γ > 0, γ =
√
|κ|2 − Ω2. Since γ2 + Ω2 − |κ|2 = 0, Zh

has 0 as an eigenvalue. Let z0 ∈ h be an associated eigenvector and fix V+ ⊂ hR as the
vector subspace generated by the element v0 ∈ hR associated with z0 through Example
1.18. For every z ∈ V+ \ {0} we have

Re
〈
etZz, CetZz

〉
= Re 〈z, Cz〉 .

This quantity does not depend on t and is also strictly positive, since C is invertible
thanks to Lemma 4.21. Therefore its integral (4.23) diverges as t→∞.

Consider now the case γ = 0, Ω2 > |κ|2. For every such choice of the parameters
Zh has two distinct eigenvalues, namely

λ± = ±i

√
Ω2 − |κ|2 = ±iδ

and thus it can be diagonalized. Let v+, v− ∈ h be two eigenvectors corresponding to
λ± respectively. and let w−, w+ ∈ hR be the corresponding element to v−, v+ respec-
tively, given by Example 1.18. If for c+, c− ∈ R we define z = c−w− + c+w+ we
have

etZz = c+eitδw+ + c−e−itδw−.

This implies in particular that the continuous function

fz(t) := Re
〈
etZz, CetZz

〉
is non negative and periodic. Now, since C is not identically 0, it exists z0 ∈ hR such
that fz0(0) = Re 〈z0, Cz0〉 6= 0. In particular therefore fz0 is not identically zero.
Setting V+ as the vector subspace generated by z0, the integral (4.23) diverges, since
its argument coincides with fz0 which is a non-negative, continuous, periodic function
which is not identically zero.

The previous two Lemmas can now be applied to prove the non-existence of invari-
ant states, for some choices of parameters γ,Ω, κ.

Proposition 4.26. Let W ⊂ hR be a vector subspace. If

w∗ − lim
t→∞
Tt(W (z)) = 0, ∀z ∈ W \ {0} (4.24)

( in the weak∗ operator topology) then T has no normal invariant state.
In particular, for any choice of the parameters γ,Ω, κ such that (γ,Ω2 − |κ|2) falls

outside of the region I a normal invariant states for the QMS T does not exist.
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Proof. Suppose ρ is a normal invariant state for T . Then for every z ∈ W \ {0}

tr(ρW (z)) = tr(ρTt(W (z)))

for all t ≥ 0. Taking the limit as t→∞, by Lemma 4.24, Lemma 4.25 and the explicit
formula 3.38, we get tr(ρW (z)) = 0. But this is not possible due to (i) of Theorem
2.39.

Observe now that if we are also outside of the region I\{(0, 0)} we can use Lemma
4.24 and fix z0 ∈ V+ \ {0}. Let f, g ∈ h, thanks to equation (3.38) we have

∣∣〈e(g),W (etZz0)e(f)〉
∣∣ = exp

{
−
∣∣etZz0

∣∣2
2

−
〈
etZz0, f

〉
−
〈
g, etZz0

〉
+ 〈g, f〉

}
.

Since
∣∣etZz0

∣∣ diverges as t→∞, we have thatW (etZz0) converges weakly to 0. More-
over the Weyl operators are unitary, hence the set {W (etZz0) : t ∈ R} is bounded
and the weak topology coincides with the weak* one. Therefore W (etZz0) converges
weakly* to 0 and

|tr(ρTt(W (z0)))| = |ct(z0)|
∣∣tr(ρW (etZz0))

∣∣ ≤ ∣∣tr(ρW (etZz0))
∣∣ ,

where ct(z0) is the constant multiplying the Weyl operator in equation (3.38). This
means Tt(W (z0)) converges to 0 in the weak* topology for every z0 ∈ V+\{0}. Hence,
for what we have proven at the beginning, there can be no normal invariant states.

Suppose we are now on the boundary of I except for the origin (0, 0). Let V+ ⊂ hR
be the subspace given by Lemma 4.25 and fix z0 ∈ V+ \{0}. Thanks to equation (3.38)
one has

|tr(ρTt(W (z0)))| ≤ exp
{
− 1

2

∫ t

0

z0
T esZ

T

CesZz0ds
}
,

since |tr(ρW (z))| ≤ 1 for every z ∈ h. Letting t → ∞ one has Tt(W (z0)) → 0 in the
weak* topology for every z0 ∈ V+ \ {0}. Hence also in this case there are no normal
invariant states.

Summarizing we proved the following complement to Theorem 4.22

Theorem 4.27. Let (Tt)t≥0 be the QMS with GKSL generator associated withH,L1, L2

as in (3.18), (3.17) or with H and a single Kraus operator. The QMS T has a normal
invariant state if and only if γ > 0 and γ2 + Ω2 − |κ|2 > 0. The normal invariant state
is also unique.

Proof. Existence and uniqueness is given by Theorem 4.22. Non-existence is given by
Proposition 4.26.

Note in particular that whenever it exists a normal invariant state it is a gaussian one,
justifying once more the naming choice of these semigroups. As a final result we can
given some conditions for the invariant state to be pure.

Proposition 4.28. The invariant state given by Theorem 4.22 is pure if and only if there
is a single Kraus’ operator L = v̄a+ ua† and

• κ = 0 and u = 0
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Chapter 4. Gaussian QMSs on the one-mode Fock Space

• κ 6= 0 both u 6= 0, v 6= 0 and

|v| |c±| = |k| |u| , uv = − |u| |v| κ
|κ|
|c±|
c±

, (4.25)

where c± = −Ω±
√

Ω2 − |κ|2.

In all the other cases it is faithful.

Proof. Thanks to Proposition 2.49 a Gaussian state is faithful if and only if S− iJ > 0
otherwise it is pure. As in the proof of Theorem 4.22 we can use

S− iJ =

∫ ∞
0

esZ
∗

(C + i (Z∗J + JZ)) esZds, (4.26)

and study its kernel. Clearly, if C + i (Z∗J + JZ) > 0, also S − iJ > 0, since esZ is
invertible. This happens whenever there are two Kraus operators, thanks to Lemma 3.27
. So the state can be pure only if there is a single Kraus’ operator. We restrict ourselves
to this case. Now the kernel of S − iJ is non-trivial if and only if the argument of the
integral (4.26). has a non-trivial kernel. Note that this can happen if and only if at
least one of the eigenvectors of Z belongs to ker(C + i(ZTJ + JZ)). Indeed suppose
there is z0 ∈ hC \ {0} such that (C + i(Z∗J + JZ))etZz0 = 0 for all t ≥ 0. We have
ker(C + i(ZTJ + JZ)) is one dimensional since it is not identically zero and it is non
trivial, by Lemma 3.27. Suppose it is generated by v0 ∈ hC, we have then etZz0 = λtv0

for some λt ∈ R \ {0}. In particular

λs+tv0 = e(t+s)Zz0 = λsetZv0

which means v0 is an eigenvector for etZ and therefore it is also an eigenvector for Z.
The converse implication is trivial.

Using again expression (4.21) we recall that eigenvalues of Z are λ± = −γ ±√
|κ|2 − Ω2 that are different whenever the parameters are in the region I, negative

and their associated eigenspaces are generated by

v± =

(
κ

c±

)
, if κ 6= 0, v+ = e1, v− = e2, if κ = 0,

where c± = −Ω±
√

Ω2 − |κ|2. Let us consider the case κ 6= 0 first. We have

(C + i(Z∗J + JZ))v± =

|u|
2 κ+ uv

(
−Ω±

√
Ω2 − |κ|2

)
uvκ+ |v|2

(
−Ω±

√
Ω2 − |κ|2

)
 . (4.27)

Since under the condition κ 6= 0 we have c± 6= 0 this forces u 6= 0 or v 6= 0 because
otherwise by setting the entries of (4.27) equal to zero if either u = 0 or v = 0 also
the other should vanish. In this way, setting the first entry of (4.27) equal to zero and
taking in consideration the modules we obtain

|v| |c±| = |k| |u| . (4.28)
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Plugging it back into the first entry and setting it again equal to zero we obtain the
further requirement

uv = − |u| |v| κ
|κ|
|c±|
c±

. (4.29)

Note that the requirements (4.28), (4.29) solve also the equation obtained by setting the
second entry of (4.27) equal to zero.

In the case κ = 0 we have

(C + i(Z∗J + JZ))e1 =

(
|u|2

uv

)
, (C + i(Z∗J + JZ))e1 =

(
uv

|v|2

)
.

For them to be equal to zero we should have u = 0 for v+ or v = 0 for v−. In particular
they satisfy (4.29) but since γ > 0 the case v = 0 is not possible.

In the case instead Ω2 = |κ|2 the eigenvectors v± coincide but the calculations go
through nonetheless.

4.4 Examples

In this section we present the application of our results in two remarkable cases. These
also serve to illustrate the relationships we have found between the parameters that
determine the behaviour of the dynamics.

4.4.1 Open Quantum Harmonic Oscillator

Let T be the QMS with generator in a generalized GKSL form with

L1 = µ a, L2 = λ a†, H = Ω a†a+
κ

2
a†2 +

κ

2
a2 +

ζ

2
a† +

ζ

2
a (4.30)

with λ, µ ≥ 0, Ω ∈ R, κ, ζ ∈ C. The special case where κ = ζ = 0 has been analyzed
in [17] providing the full spectral analysis of the generator L in the L2 space of the
invariant state for λ < µ.

In this model γ = (µ2 − λ2)/2. Moreover, in the case where both λ, µ are strictly
positive, the QMS is irreducible (Theorem 4.5) and admits a unique faithful normal
invariant state if and only if λ2 < µ2 and (µ2 − λ2)/ 4 + Ω2− |κ|2 > 0 (Theorem 4.22)
with the explicit mean vector ω and covariance operator S as in (4.20).

If µ = 0 and λ > 0 we obtain a QMS which is irreducible if and only if κλ2 6= 0,
namely κ 6= 0 and has no normal invariant state (subsection 4.2.2).
Finally, in the case where λ = 0 and µ > 0 we find a QMS which is irreducible if and
only if κµ2 6= 0 i.e. κ 6= 0. It admits invariant states if and only if |κ|2 < Ω2 + λ4/4;
these will be faithful if <(κ) 6= 0 and pure otherwise (subsection 4.2.1). For any initial
state ρ0, in both cases, t−1

∫ t
0
T∗s(ρ0)ds converges towards the unique invariant state by

Theorem 4.22.
It is worth noticing here that the Hamiltonian H is bounded from below or above if and
only if Ω2−|κ|2 ≥ 0, in which case it has discrete spectrum. Therefore condition |κ|2 <
Ω2 + λ4/4 appears as a relaxation of discreteness of spectrum that allows existence of
normal invariant states.
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Chapter 4. Gaussian QMSs on the one-mode Fock Space

4.4.2 Quantum Fokker-Planck model

The quantum Fokker-Planck (QFP) model is an open quantum system introduced to
describe the quantum mechanical charge-transport including diffusive effects (see [8]
and the references therein). In this subsection we show that a simple application of our
results allows one to study the dynamics.

The formal generator

L(x) =
i

2

[
p2 + ω2q2, x

]
+ ig {p, [q, x]}

− Dqq[p, [p, x]]−Dpp[q, [q, x]] + 2Dpq[q, [p, x]] ,

can be written in generalised GKLS form (3.16) with

H =
1

2

(
p2 + ω2q2 + g(pq + qp)

)
,

and L1, L2 are the operators

L1 =
−2Dpq + ig√

2Dpp

p+
√

2Dpp q , L2 =
2
√

∆√
2Dpp

p .

where ω2 > 0, Dpp > 0, Dqq ≥ 0, Dpq ∈ R and ∆ = DppDqq − D2
pq − g2/4 ≥ 0.

Clearly, L1, L2 are linearly independent if and only if ∆ > 0. Moreover

L1 =
−2iDpq − g

2
√
Dpp

(
a† − a

)
+
√
Dpp

(
a† + a

)
, L2 =

i
√

∆√
Dpp

(
a† − a

)
H =

ω2 + 1

2
aa† +

ω2 − 1 + 2ig

4
a†2 +

ω2 − 1− 2ig

4
a2 +

ω2 + 1

4

so that

v1 =
2iDpq + g

2
√
Dpp

+
√
Dpp, u1 = −2iDpq + g

2
√
Dpp

+
√
Dpp,

v2 = − i
√

∆√
Dpp

, u2 =
i
√

∆√
Dpp

,

Ω =
ω2 + 1

2
, κ =

ω2 − 1

2
+ ig

Compute

γ =
1

2

2∑
`=1

(
|v`|2 − |u`|2

)
= g, Ω2 − |κ|2 = ω2 − g2, γ2 + Ω2 − |κ|2 = ω2

Therefore, in the case where ∆ > 0 Kraus operators L1, L2 are linearly independent,
the QFP semigroup is irreducible and a Gaussian invariant state exists if and only if
g = γ > 0. This is given explicitly in Theorem 4.22. Moreover, it is also faithful and it
is the unique normal invariant state by irreducibility.

The case ∆ = 0 has to be considered separately (see [8]). By Theorem (4.19) the
QFP semigroup is irreducible if and only if 2Ωv1u1 = κv2

1 +κu2
1. Taking the imaginary

parts of this identity we find
gDpp = −ω2Dpq. (4.31)
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Taking real parts we find ω2
(
4D2

pq − g2
)

+ 4D2
pp = −8gDpqDpp and, from (4.31), we

find the identity

ω2
(
4D2

pq − g2
)

+ 4D2
pp = −8gDpqDpp = 8ω2D2

pq

namely 4D2
pp = ω2

(
4D2

pq + g2
)

and, by ∆ = 0 together with Dpp > 0

Dpp = ω2Dqq. (4.32)

Note that ∆ = 0 together with (4.31) and (4.32) are equivalent to conditions under
which, for γ > 0, the Gaussian normal invariant state of the QFP model is pure (see [8]
Lemma 9.1).

Clearly, they are equivalent to (4.25). Indeed, a straightforward computation shows
that the first identity is equivalent toDpq = −gDqq and the second one toDqq = g/(2δ)
which follows from ∆ = 0, (4.31) and (4.32) (see [8] Lemma 9.1 for details).

Convergence towards the unique invariant state of t−1
∫ t

0
T∗t(ρ0)ds holds for any

initial state ρ0 by Theorem 4.22.
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CHAPTER5
The Decoherence-free subalgebra of Gaussian

QMSs

The decoherence-free subalgebra is an important object in the study of an open quan-
tum system, in particular when trying to address long term properties of the evolution
(see [5, 26, 27, 36] and references therein). Here we try to compute it for the case of
gaussian QMSs. In the first section we recall the definition of the decoherence-free
subalgebra along with some of its properties and a general characterization theorem.
In the second section, we apply this theorem to the case of gaussian QMSs and obtain
a characterization of the decoherence-free subalgebra in this case. In the third section
instead we provide some examples of application to some specific models. This chapter
is base on [3].

5.1 The Decoherence-Free subalgebra

We work in the setting of gaussian QMSs, namely we set H = Γs(h). We recall the
definition of the decoherence-free subalgebra.

Definition 5.1. Let T be a QMS. The decoherence-free subalgebra of T , denoted
N (T ) is

N (T ) = {x ∈ B(H) | Tt(x∗x) = Tt(x∗)Tt(x), Tt(xx∗) = Tt(x)Tt(x∗), ∀t ≥ 0} .
(5.1)

We consider semigroups arising from a generator in a GKLS , either proper (as in
(3.16)) or weak (as in (3.20)). We recall here some of the known properties of this
subalgebra, whose proofs can be found in [30, Theorem 3.1].
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Chapter 5. The Decoherence-free subalgebra of Gaussian QMSs

Proposition 5.2. Let T be a quantum Markov semigroup on B(H) and let N (T ) be
the set defined by (5.1). Then

1. N (T ) is the biggest von Neumann subalgebra of B(H) on which Tt acts as a
*-homomorphism for every t ≥ 0.

2. For every x ∈ N (T ) we have

Tt(x) = e−itHxeitH , ∀t ≥ 0,

where H is the Hamiltonian of the GKLS generator.

The decoherence-free subalgebra of a QMS with a bounded generator, i.e. written
in a GKLS form (3.16) with bounded operators H,L` is the commutator of the set of
operators δnH(L`), δ

n
H(L∗`) with ` = 1, . . . ,m, n ≥ 0 where δH(x) = [H, x].

However, since we are interested in a situation where the operators of the generator
are unbounded we need a different result. It turns out that N (T ) can be characterized
in a similar way (see [27]) considering generalized commutators of a set of unbounded
operators.

Definition 5.3. For Y ⊂ B(H) we define the generalized commutant of Y , denoted Y ′,
as

Y ′ = {x ∈ B(H) | xy ⊂ yx,∀y ∈ Y }.

The characterization result for N (T ) is the following

Theorem 5.4. The decoherence-free subalgebra of a Gaussian QMS with generator
in a generalized GKLS form associated with operators L`, H as in (3.18),(3.17) is the
generalized commutant of linear combinations of creation and annihilation operators

δnH(L`), δnH(L∗`) ` = 1, . . . ,m, 0 ≤ n ≤ 2d− 1 (5.2)

where δH(x) = [H, x] denotes the generalized commutator and δnH denotes the n-th
iterate.

A first proof of this result appeared in [27]. Here we present a different version of it
which uses a more straightforward approach than the one in [27]. Before proceeding to
the proof, however, we provide a short version of it in the case where the operators L`
and H are bounded and the problem is mostly algebraic. Indeed most of the difficulties
of the general case appear due to domain problems of the operators

Proof. (in case H ,L` are bounded) We will use formula (3.32) in the case of a bounded
GKLS generator. Note that, if x ∈ N (T ) and y is arbitrary then, since Tt(y∗x) =
Tt(y∗)Tt(x) by Proposition 5.2, taking the derivative at t = 0 we get

L(y∗x) = L(y∗)x+ y∗L(x)

therefore ∑
`

[L`, y]∗[L`, x] = 0. (5.3)

If the operators L` are bounded, we are allowed to take x = y then [L`, x] = 0 for all
`. Moreover, since x∗ also belongs to N (T ), taking the adjoint [L∗` , x

∗] = 0, x also
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commutes with all the operators L∗` and L(x) = i[H, x]. Clearly, since N (T ) is Tt-
invariant via Proposition 5.2, L(x) = limt→0(Tt(x)− t)/t belongs toN (T ). Therefore
[L`, [H, x]] = 0 for all ` and, by the Jacobi identity

[x, [H,L`] ] = − [H, [L`, x] ]− [L`, [H, x] ] = 0.

In this way, one can show inductively that x commutes with the iterated commutators
(5.2).

If the operators L`, H are unbounded, one has to cope with several problems. The
operator L is unbounded and, even if we choose x, y in the domain of L, it is not clear
whether y∗x belongs to the domain of L. Multiplication of generalized commutators
[L`, y] [L`, x] may not be defined. If we choose a “nice” y ∈ D(L) then it is not clear
whether we can take x = y because we do not know a priori if our “nice” y belongs to
N (T ).

Eventually, before moving on to the proof of Theorem 5.4 we give an example to
show that inequality the n ≤ 2d− 1 is sharp.

Example 5.5. Consider the gaussian QMS with only one Kraus’ operator L`, i.e. m =
1 Using Notation 1.58 we define,

L1 = p1, H = q2
d +

d−1∑
j=1

pj+1qj

It is easy to see, using (1.12) that

δH(L1) = 2ip2, δ2
H(L1) = −4p3, ..., δ

d−1
H (L1) = (2i)d−1pd, δdH(L1) = −(2i)dqd

and consequentially
δd+1
H (L1) = (2i)d+1qd−1...

Iterating δd+k
H (L1) is proportional to qd−k so that, for k = d − 1 one gets q1. Clearly,

for all k with 0 ≤ k ≤ d− 1{
δjH(L1), δjH(L∗1) | j ≤ d+ k

}′
= L∞(Rd−1−k) as functions of p1, . . . , pd−1+k

Summing up, if we consider 2d− 1 iterated commutators we get all pj, qj andN (T ) is
trivial.

5.1.1 Proof of Theorem 5.4

We derive the characterization ofN (T ) in terms of iterated commutators. We begin by
illustrating the idea of the proof in the case where the operators L` and H are bounded.

Proof. (caseH ,L` bounded) For all x, y ∈ B(h), recall the formula (3.32) from Lemma
3.21. Note that, if x ∈ N (T ) and y is arbitrary then, since Tt(y∗x) = Tt(y∗)Tt(x) by
Proposition 5.2 1, taking the derivative at t = 0 we get L(y∗x) = L(y∗)x + y∗L(x)
therefore

m∑
`=1

[L`, y]∗[L`, x] = 0. (5.4)
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Chapter 5. The Decoherence-free subalgebra of Gaussian QMSs

If the operators L` are bounded, we are allowed to take x = y, then [L`, x] = 0 for
all `. Moreover, since x∗ also belongs to N (T ), taking the adjoint of [L`, x

∗] = 0, x
also commutes with all the operators L∗` and L(x) = i[H, x]. Clearly, since N (T ) is
Tt-invariant, L(x) = limt→0(Tt(x)−x)/t belongs toN (T ). Therefore [L`, [H, x]] = 0
for all ` and, by the Jacobi identity

[x, [H,L`] ] = − [H, [L`, x] ]− [L`, [H, x] ] = 0.

In this way, one can show inductively that x commutes with the iterated commutators
(5.2).

If the operators L`, H are unbounded, one has to cope with several problems. The
operator L is unbounded and, even if we choose x, y in the domain of L, it is not
clear whether y∗x belongs to the domain of L (see [32]). Multiplication of generalized
commutators [L`, y] [L`, x] may not be defined. If we choose a “nice” y ∈ Dom(L)
then it is not clear whether we can take x = y because we do not know a priori if our
“nice” y belongs to N (T ).

We begin the analysis of N (T ) by a few preliminary lemmas.

Lemma 5.6. The following derivative exists with respect norm topology for all z ∈ C

d

dt
Tt(W (z))eg

∣∣∣
t=0

= G∗W (z)eg +
m∑
`=1

L∗`W (z)L`eg +W (z)Geg

Proof. Note at first that the right-hand side operator G∗W (z) +
∑m

`=1 L
∗
`W (z)L` +

W (z)G is unbounded (for z 6= 0) therefore W (z) does not belong to the domain of
L but we can consider the quadratic form £(W (z)) on D × D. Differentiability of
functions t 7→ 〈ξ′, Tt(x)ξ〉 also holds for ξ, ξ′ in the linear span of exponential vectors
E. Therefore, for all such ξ, from (3.23)

〈ξ, (Tt(W (z))−W (z)− t£(W (z))) eg〉 =

∫ t

0

〈ξ,£(Ts(W (z))−W (z))eg〉 ds.

Recalling that Ts(W (z)) = ϕz(s)W (esZz) as in (3.38) for a complex valued function
ϕ such that lims→0 ϕz(s) = 1, the right-hand side integrand can be written as

(ϕz(s)− 1)
〈
ξ,£(W (esZz))eg

〉
+
〈
ξ,£(W (esZz)−W (z))eg

〉
A long but straightforward computation shows the function

s 7→ £(W (esZz)−W (z))eg

is continuous vanishing at s = 0 and the function s 7→ £(W (esZz))eg is bounded with
respect to the Fock space norm. Therefore, taking suprema for ξ ∈ Γ(Cd), ‖ξ‖ = 1, we
find the inequalities

‖(Tt(W (z))−W (z)− t£(W (z))) eg‖ ≤
∫ t

0

|ϕz(s)− 1|
∥∥£(W (esZz))eg

∥∥ ds

+

∫ t

0

∥∥£(W (esZz)−W (z))eg
∥∥ ds

The conclusion follows dividing by t and taking the limit as t→ 0+.
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Lemma 5.7. Let x ∈ N (T ). For all exponential vectors eg, ef and all Weyl operators
W (z) we have

m∑
`=1

〈[L`,W (−z)] eg, xL` ef〉 =
m∑
`=1

〈L∗` [L`,W (−z)] eg, x ef〉 . (5.5)

Proof. If x ∈ N (T ), then, for all g, f, z ∈ Cd and t ≥ 0 we have

〈eg, (Tt(W (z)x)−W (z)x)ef〉 = 〈eg, (Tt(W (z))Tt(x)−W (z)x) ef〉
= 〈eg, (Tt(W (z))−W (z))x ef〉+ 〈eg,W (z) (Tt(x)− x) ef〉
+ 〈(Tt(W (−z))−W (−z)) eg, (Tt(x)− x) ef〉

By Lemma 5.6 means the norm limit

lim
t→0+

(Tt(W (−z))−W (−z))eg
t

exists, therefore supt>0 t
−1‖Tt(W (−z))−W (−z))eg‖ < +∞. Moreover

‖(Tt(x)− x) ef‖2 = 〈ef , (Tt(x∗)− x∗) (Tt(x)− x) ef〉
≤ 〈ef , (Tt(x∗x)− x∗Tt(x)− Tt(x∗)x+ x∗x) ef〉

which tends to 0 as t→ 0+ by weak∗ continuity of Tt. As a result

lim
t→0+

t−1 〈eg, (Tt(W (z))−W (z)) (Tt(x)− x) ef〉 = 0,

therefore

lim
t→0+

t−1〈eg, (Tt(W (z)x)−W (z)x)ef〉 = lim
t→0+

t−1 〈eg,W (z) (Tt(x)− x) ef〉

+ lim
t→0+

t−1 〈(Tt(W (−z))−W (−z)) eg, x ef〉

and we get

〈Geg,W (z)x ef〉+
m∑
`=1

〈L`eg,W (z)xL`ef〉+ 〈eg,W (z)xGef〉

=

〈(
G∗W (−z) +

∑
`

L∗`W (−z)L` +W (−z)G

)
eg, x ef

〉

+ 〈GW (−z)eg, xef〉+
m∑
`=1

〈L`W (−z)eg, xL`ef〉+ 〈W (−z)eg, xGef〉 .

The first term in the left-hand side cancels with the third term in right-hand side and
last terms in both sides cancel as well. Noting that

G∗W (−z)eg +GW (−z)eg = −
∑
`

L∗`L`W (−z)eg
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Chapter 5. The Decoherence-free subalgebra of Gaussian QMSs

adding the first and fourth terms in the right-hand side, we find

m∑
`=1

〈L`eg,W (z)xL`ef〉 =
m∑
`=1

[〈L∗`W (−z)L`eg, x ef〉+ 〈L`W (−z)eg, xL`ef〉]

−
m∑
`=1

〈L∗`L`W (−z)eg, xef〉 .

Rearranging terms we get (5.5) which is a weak form of identity (5.4).

The following lemma serves to get (5.5) for each ` fixed without summation, taking
advantage of the arbitrariness of z.

Lemma 5.8. For all `• ∈ { 1, 2, . . . , d } fixed there exists z ∈ Cd such that

d∑
j=1

(vijzj + uijzj) = δi,`• =

{
1 if i = `•

0 if i 6= `•

Proof. Note that V z + Uz arises from the map composition

Jc
[
V |U

]
z →

[
z

z

]
−→ V z + Uz

Let (φ`)1≤`≤m be an orthonormal basis of Cm. We look for a z ∈ Cm solving the real
linear system [

V |U
]
Jc z = φ`•

Since

Ran
([
V |U

]
Jc
)

= ker
([
V |U

]
Jc)

T
)⊥

= ker
(
JTc
[
V |U

]T)⊥
,

Jc is one-to-one and, by the minimality assumption (3.19)

ker
([
V |U

]T)
= ker

([
V ∗

UT

])
= ker (V ∗) ∩ ker

(
UT
)

= {0},

we find Ran
([
V |U

]
Jc
)

= Cm and the proof is complete.

Proposition 5.9. The decoherence-free subalgebra x ∈ N (T ) is contained in the gen-
eralized commutant of the operators L`, L∗` 1 ≤ ` ≤ m.

Proof. For a Weyl operator W (z) we have

[L`,W (z)] =
d∑
j=1

[
v`jaj + u`ja

†
j,W (z)

]
=

d∑
j=1

(v`jzj + u`jzj)W (z).
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and (5.5) becomes

m∑
`=1

d∑
j=1

(v`jzj + u`jzj) 〈W (−z)eg, xL`ef〉

=
m∑
`=1

d∑
j=1

(v`jzj + u`jzj) 〈L∗`W (−z)eg, xef〉 .

By Lemma 5.8, choosing some special z` ∈ Cd, we find

〈W (−z`)eg, xL`ef〉 = 〈L∗`W (−z`)eg, xef〉

for all g, f ∈ Cd and all `. Therefore, by the arbitrariness of g and the explicit action of
Weyl operators on exponential vectors

〈ew, xL`ef〉 = 〈L∗`ew, xef〉

for all w, f ∈ Cd and all `. Since exponential vectors form a core for L∗` and L` is
closed, this implies that xef belongs to the domain of L` and L`xef = xL`ef , namely
xL` ⊆ L`x.

Replacing x with x∗ we find x∗L` ⊆ L`x
∗ and standard results on the adjoint of

products of operators (see e.g. [50] 5.26 p. 168) lead to the inclusions

xL∗` ⊆ (L`x
∗)∗ ⊆ (x∗L`)

∗ = L`x
∗.

It follows that x belongs to the generalised commutant of the set of Kraus operators,
namely {L`, L∗` | 1 ≤ ` ≤ m }.

Lemma 5.10. The domain Dom(Nn/2) is eitH-invariant for all t ∈ R and there exists
a constant cn > 0 such that∥∥Nn/2eitHξ

∥∥2 ≤ ecn|t|
∥∥Nn/2ξ

∥∥2
(5.6)

for all ξ ∈ Dom(Nn/2).

Proof. Consider Yosida approximations of the identity operator (1 + εN)−1 for all
ε > 0 and bounded approximations Nn

ε = Nn(1 + εN)−n of the n-the power of the
number operator N . Note that, the domain D is invariant for these operators and also
H invariant. For all u ∈ D, setting vε = (1 + εN)−nu we have

〈u, (Nn
ε H −HNn

ε )u〉 = 〈vε, (NnH(1 + εN)n − (1 + εN)nHNn)vε〉

Computing

(NnH(1 + εN)n − (1 + εN)nHNn) =
n∑
k=0

(
n

k

)
εk(NnHNk −NkHNn)

=
n∑
k=0

(
n

k

)
εkNk[Nn−k, H]Nk
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and noting that the commutator [Nn−k, H] is a polynomial in aj, a
†
k of order 2(n − k)

so that there exist a constant cn such that
∣∣〈u′, [Nn−k, H]u′〉

∣∣ ≤ cn‖N (n−k)/2u′‖2 (for
u′ ∈ D) we find the inequality

|〈u,Nn
ε Hu〉 − 〈Hu,Nn

ε u〉| ≤ cn

n∑
k=0

(
n

k

)
εk
〈
vε, N

n+kvε
〉

= cn 〈vε, Nn(1 + εN)nvε〉 = cn 〈u,Nn
ε u〉 .

The above inequality extends to u ∈ Dom(H) by density.
Now, for all u ∈ Dom(H) and t ≥ 0, we have

∥∥Nn/2
ε eitHu

∥∥2 −
∥∥Nn/2

ε u
∥∥2

=

∫ t

0

d

ds

∥∥Nn/2
ε eisHu

∥∥2
ds

= i

∫ t

0

(〈
eisHu,Nn

ε HeisHu
〉
−
〈
HeisHu,Nn

ε eisHu
〉)

ds

≤ cn

∫ t

0

∥∥Nn/2
ε eisHu

∥∥2
ds.

Gronwall’s lemma implies and a similar argument for t < 0 yield∥∥Nn/2
ε eitHu

∥∥2 ≤ ecn|t|
∥∥Nn/2

ε u
∥∥2

for all t ∈ R. Considering u ∈ D and taking the limit as ε goes to zero we get (5.6) for
ξ ∈ D and, finally for ξ ∈ Dom(Nn/2) because D is a core for Nn/2.

Lemma 5.11. For all j there exists Md(C) valued analytic functions H−,H+ such that

e−itH aj eitHξ =
d∑

k=1

(
H−jk(t) e−itH ak eitHξ + H+

jk(t) e−itH a†ke
itHξ

)
for all t ∈ R, ξ ∈ Dom(N).

Proof. For all ξ′, ξ ∈ Dom(N) we have

d

dt

〈
ξ′, e−itH aj eitHξ

〉
= lim

s→0

1

s

〈
ξ′,
(
e−i(t+s)H aj ei(t+s)H − e−itH aj eitH

)
ξ
〉

= lim
s→0

s−1
〈(

ei(t+s)H − eitH
)
ξ′, aj eitHξ

〉
+ lim

s→0
s−1
〈
a†je

itHξ′,
(
ei(t+s)H − eitH

)
ξ
〉

=
〈
iHeitHξ′, aj eitHξ

〉
+
〈
a†j eitHξ′, iHeitHξ

〉
.

Now, for all u, v ∈ D we have

〈iHv, aju〉+
〈
a†jv, iHu

〉
= −i 〈v, [H, aj]u〉 =

d∑
k=1

(
c−jk 〈v, aku〉+ c+

jk

〈
v, a†ku

〉)
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for some complex constants c−jk, c
+
jk. The left-hand and right-hand side make sense for

u, v ∈ Dom(N), therefore they can be extended by density and so

d

dt

〈
ξ′, e−itH aj eitHξ

〉
=

d∑
k=1

(
c−jk
〈
ξ′, e−itH ak eitHξ

〉
+ c+

jk

〈
ξ′, e−itH a†ke

itHξ
〉)

for all ξ′, ξ ∈ Dom(N). Considering the conjugate we find a differential equation
for
〈
ξ′, e−itH a†j eitHξ

〉
an so we get a linear system of 2d differential equations with

constant coefficients. The solution of the system yields analytic functions H−,H+ as
blocks of the exponential of a 2d× 2d matrix.

Proof. (of Theorem 5.4) Let G0 be the self-adjoint extension of −
∑d

`=1 L
∗
`L`/2. By

Proposition 5.9, for all y ∈ N (T ) and all v, u ∈ Dom(N), we have

〈G0v, yu〉+
m∑
`=1

〈L`v, yL`u〉+ 〈v, yG0u〉

= −1

2

m∑
`=1

(〈L∗`L`v, yu〉 − 2 〈L`v, yL`u〉+ 〈v, yL∗`L`u〉)

= −1

2

m∑
`=1

(〈L∗`y∗L`v, u〉 − 2 〈L`v, yL`u〉+ 〈v, L∗`yL`u〉) = 0

because L∗`y
∗ and L∗`y are extensions of y∗L∗` and yL∗` respectively, namely £(x) =

i[H, x] (as a quadratic form).
Now, recalling that N (T ) is Ts-invariant by Proposition 5.2 1. for all v, u ∈

Dom(N) also e−i(t−s)Hv and e−i(t−s)Hu belong to the domain of N by Lemma 5.10,
we have

d

ds

〈
e−i(t−s)Hv, Ts(x)e−i(t−s)Hu

〉
= 0

which implies
Tt(x) = eitH x e−itH .

From Tt-invariance ofN (T ) it follows that also eitH x e−itH belongs to the generalized
commutant of the operators L`, L∗` (` ≥ 1).

Since Dom(N) is eitH-invariant by Lemma 5.10, replacing ξ ∈ Dom(N) by eitHξ ∈
Dom(N) and left multiplying by e−itH the identity eitHx e−itHL`ξ = L` eitHx e−itHξ
becomes

x e−itHL` eitHξ = e−itHL` eitHx ξ

Taking the scalar product with two exponential vectors and differentiating n times at
t = 0 the identity 〈

v, x e−itH L` eitHu
〉

=
〈
e−itH L∗` eitHv, xu

〉
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with u, v ∈ Dom(N), we get

〈v, x δnH(L`)u〉 = 〈δnH(L∗`)v, xu〉 .

Since iterated commutators δnH(L`) are first order polynomials in aj, a
†
k, this means

that x belongs to the generalized commutant of δnH(L`). The same argument applies to
generalized commutators of δnH(L∗`) for all ` ≥ 1, n ≥ 0.

Conversely, if x belongs to the generalized commutant of operators δnH(L`), δnH(L∗`)
for all ` ≥ 1, 0 ≤ n ≤ 2d− 1, recall that each one of these generalized commutators is
a first order polynomial in aj, a

†
k and so determines two vectors (coefficients of creation

and annihilation operators) v, u ∈ Cd and, eventually, a vector [v, u]T ∈ C2d. Let Vn
be the complex linear subspace of C2d determined by vectors in C2d corresponding to
generalized commutators of order less or equal than n. Clearly, Vn ⊆ Vn+1 for all n
and so the dimensions dimC(Vn) form a non decreasing sequence of natural numbers
bounded by 2d. Moreover, if dimC(Vn) =dimC(Vn+1), then Vn = Vn+1 and so

δn+1
H (L`) =

n∑
m=0

(
zmδ

(m)
H (L`) + wmδ

(m)
H (L∗`)

)
+ ηn1,

δn+1
H (L∗`) =

n∑
m=0

(−1)m
(
wmδ

(m)
H (L`) + zmδ

(m)
H (L∗`)

)
+ ηn1,

for some z1, . . . , zn, w1, . . . , wn, ηn ∈ C. Iterating, it turns out that the linear part in
creation and annihilation operators of δn+m

H (L`) and δn+m
H (L`) depends on vectors in

Vn for all m ≥ 0. It follows that, starting from a value n0 ≥ 1 (corresponding to the
zero order commutators L` and L∗` ), the sequence of dimensions has to increase at least
by 1 before reaching the maximum value. As a consequence, this is attained in at most
2d− 1 steps.

Summarizing, if x belongs to the generalised commutant of the set of operators
δnH(L`), δnH(L∗`) for all ` ≥ 1, 0 ≤ n ≤ 2d−1, then it belongs to generalized commutant
of these operators for all n ≥ 0. By Lemma 5.11, we can consider the analytic function
on R

t 7→
〈
ξ′, x e−itHL` eitHξ

〉
−
〈
e−itHL∗` eitHξ′, x ξ

〉
for all ξ, ξ′ ∈ D. The n-th derivative at t = 0 is (−i)n times

〈ξ′, x δnH(L`)ξ〉 − 〈δnH(L∗`)ξ
′, x ξ〉 = 0

for all n ≥ 0 because x belongs to the generalized commutant of operators δnH(L`). The
same argument shows that x belongs to the generalized commutant of operators δnH(L∗`).
Applying Theorem 4.1 of [27] (with C = N and keeping in mind that [G,C], [G∗, C]

are second order polynomials in aj, a
†
k, therefore relatively bounded with respect to C

whence with respect to C3/2) it follows that Tt(x) = eitHx e−itH .
The same conclusion holds for x∗ and x∗x because they belong to the generalized

commutant of operators δnH(L`), δ
n
H(L∗`). Therefore x ∈ N (T ) and the proof is com-

plete.

5.2 The Decoherence-Free Subalgebra for Gaussian QMSs

In the sequel we provide a simpler characterization ofN (T ) in terms of real subspaces
of Cd and find its structure. In order to make clear the thread of the discussion, we
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forget, for the moment, technicalities related with unbounded operators, and we con-
centrate on the linear algebraic aspect of it.
Remark 5.12. A straightforward computation yields

[H,L`] =
d∑

i,j=1

[
Ωija

†
iaj +

κij
2
a†ia
†
j +

κij
2
aiaj +

ζj
2
a†j +

ζj
2
aj, v`kak + u`ka

†
k

]

=
d∑

i,j=1

(
−Ωijv`iaj + Ωiju`ja

†
i −

κij
2
v`ja

†
i −

κij
2
v`ia

†
j +

κij
2
u`jai +

κij
2
u`iaj

)
+

1

2
〈ζ, u`•〉 −

1

2
〈v`•, ζ〉

=
d∑

i,j=1

(
−
(
ΩTv`•

)
j
aj + (Ωu`•)ia

†
i − κijv`ja

†
i + κiju`jai

)
+

1

2
〈ζ, u`•〉 −

1

2
〈v`•, ζ〉,

where u`•, v`• stand for the vectors of entries (u`j)
d
j=1, (v`j)

d
j=1 respectively. Summa-

rizing

[H,L`] =
d∑
i=1

(
(Ωu`• −Kv`•)i a

†
i −
(
ΩTv`• −Ku`•

)
i
ai

)
+

1

2
〈ζ, u`•〉 −

1

2
〈v`•, ζ〉

which is again a linear combination of creation and annihilation operators with an added
multiple of the identity. Therefore the set of operators of which we have to consider the
generalized commutant, thanks to the canonical commutation relations, is particularly
simple and contains only linear combinations of creation and annihilation operators
together with a multiple of the identity 1 that plays no role when we consider the
generalized commutant.

It is now convenient to transfer the problem of commutators in a purely algebraic
one. Each linear combination of creation and annihilation operators is uniquely de-
termined by a pair v, u of vectors in Cd representing coefficients of annihilation and
creation operators so that, for example, the operator L` in (3.18) and its adjoint L∗` are
determined by

L` =
d∑
j=1

(
v`jaj + u`ja

†
j

)
 

(
v`•

u`•

)
, L∗` =

d∑
j=1

(
u`jaj + v`ja

†
j

)
 

(
u`•

v`•

)
In a similar way, after computing commutators,

[H,L`] 

(
−ΩT K

−K Ω

)(
v`•

u`•

)
, [H,L∗` ] 

(
−ΩT K

−K Ω

)(
u`•

v`•

)
Denote by H the above 2d× 2d matrix (built by four d× d matrices)

H =

(
−ΩT K

−K Ω

)
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then the operators involved to characterized N (T ) via (5.2) correspond to

H
n

(
v`•

u`•

)
, H

n

(
u`•

v`•

)
(5.7)

with ` = 1, . . . ,m and 0 ≤ n ≤ 2d− 1.
Notation 5.13. We denote with V be the real subspace of C2d defined as

V = spanR

{
H
n

(
v`•

u`•

)
,Hn

(
u`•

v`•

)
: ` = 1, . . . ,m, 0 ≤ n ≤ 2d− 1

}
. (5.8)

The definition of V allows us to give the following condition.

Lemma 5.14. An operator x ∈ B(h) belongs to N (T ) if and only if it belongs to the
generalized commutant of

{ q(iw) | w ∈M} (5.9)

where
M = LinR

{
i(v + u), v − u | [v, u]T ∈ V

}
⊂ Cd. (5.10)

Proof. By Remark 5.12 we know that the operators in the set (5.2) are linear combina-
tion of annihilation and creation operators up to a multiple of the identity operator and
the generalized commutant of (5.2) coincides with the generalized commutant of{

a(v) + a†(u) | [v, u]T ∈ V
}
. (5.11)

To conclude the proof we just need to show that the commutants of (5.9) and (5.11)
are the same. Notice at first that if [v, u]T ∈ V also [u, v]T ∈ V , indeed if δnH(L`) =
a(v) + a†(u) then δnH(L∗`) = (−1)nδnH(L`)

∗ = (−1)n
(
a(u) + a†(v)

)
on the domain D.

Now from (1.10) we obtain

q(i(u− v)) = i
(
a(v) + a†(u)

)
− i
(
a(u) + a†(v)

)
,

2(a(v) + a†(u)) = q(v + u)− iq(i(u− v)).

Therefore every element of (5.9) is a linear combination of elements of (5.11) and vice
versa, concluding the proof.

We can now prove the following.

Theorem 5.15. The decoherence-free subalgebra N (T ) is the von Neumann subalge-
bra of B(H) generated by Weyl operators W (z) such that z belongs to the symplectic
complement of (5.10). Moreover, up to unitary equivalence,

N (T ) = L∞(Rdc ;C)⊗B(Γ(Cdf )) (5.12)

for a pair of natural numbers dc, df ≤ d.

Proof. (Subscript c (resp. f ) stands for commutative (resp. full)) By Lemma 5.14 any
x ∈ N (T ) satisfies x q(iw) ⊆ q(iw)x for all w ∈ M. Therefore, for all real number
r, x(1 + irq(iw)) ⊆ (1 + irq(iw))x and, right and left multiplying by the resolvent
(1 + irq(iw))−1 which is a bounded operator

(1 + irq(iw))−1x = x(1 + irq(iw))−1.
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Iterating n times and considering r = 1/n we find

(1 + iq(iw)/n)−n x = x (1 + iq(iw)/n)−n

and, taking the limit as n goes to +∞, by the Hille-Yosida theorem [13, Theorem
3.1.10] we have

W (w)x = e−iq(iw)x = lim
n→∞

(1 + iq(iw)/n)−n x

= x lim
n→∞

(1 + iq(iw)/n)−n = xW (w)

and so x belongs toW(M)′ which coincides withW(M⊥σ) by Araki’s Theorem (The-
orem 1.53).

Conversely, if z belongs to the symplectic complement of M, then from (1.13),
(1.10) and Proposition 1.56 we have W (z)q(iw)eg = q(iw)W (z)eg for all w ∈M and
g ∈ Cd. Since the linear span of exponential vectors is an essential domain for q(iw),
for all ξ ∈ Dom(q(iw)) there exists a sequence (ξn)n≥1 in E such that (q(iw)ξn)n≥1

converges to q(iw)ξ. It follows that (q(iw)W (z)ξn)n≥1 converges and, since q(iw)
is closed, W (z)ξ belongs to Dom(q(iw)) and W (z)q(iw)ξ = q(iw)W (z)ξ, namely
q(iw)W (z) is an extension of W (z)q(iw). Therefore W (z) belongs to the generalized
commutant of all q(iw) with w ∈M and therefore to N (T ) by Lemma 5.14.

In order to prove (5.12) considerMc :=M∩M′ which is a real linear subspace of
bothM andM′. Consider nowMr andMf as the real linear complement ofMc in
M andM⊥σ respectively, i.e.

M =Mc ⊕Mr, M⊥σ =Mc ⊕Mf .

(Mc ⊥ Mr andMc ⊥ Mf , more precisely, they are orthogonal with respect to the
real part of the scalar product). We will show that Mf is a symplectic subspace of
Cd and that it is symplectically orthogonal to both Mc and Mr. Suppose z ∈ Mf

is such that =〈z, zf〉 = 0 for all zf ∈ Mf . By construction =〈z, zc〉 = 0 for all
zc ∈Mc =M∩M⊥σ . Therefore

Im〈z,m〉 = 0, ∀m ∈M⊥σ ,

sinceM⊥σ =Mc ⊕Mf . Therefore z ∈M⊥σ⊥σ =M, but then

z ∈M∩M⊥σ ∩Mf =Mc ∩Mf = {0}.

HenceMf is a symplectic subspace. Eventually,Mf ⊂ M⊥σ andM = M⊥σ⊥σ ⊂
(Mf )⊥σ . In particular Mf is symplectically orthogonal to both Mr,Mc. Let dc =
dimRMc and 2df = dimRMf which is even by Proposition 1.9. Still by Proposition
1.9 we can find a symplectomorphism B such that

B :Mc → LinR{e1, . . . , edc} ⊕ LinR{edc+1, iedc+1, . . . , edc+df , iedc+df},

where (ej)
dc+df
j=1 is the canonical complex orthonormal basis of Cdc+df . Eventually,

from Lemma 2.41, symplectic transformation in finite dimensional symplectic spaces
are always implemented by unitary transformations on the Fock space. From here we
obtain the final result.
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Chapter 5. The Decoherence-free subalgebra of Gaussian QMSs

We can then specialize this result to gaussian QMSs.

Corollary 5.16. Let T be a guassian QMS. The decoherence-free subalgebraN (T ) is
generated by Weyl operators W (z) with z belonging to real subspaces of ker(C) that
are Z-invariant.

Proof. By Theorem 5.15 it suffices to show that z belongs to the symplectic comple-
ment M⊥σ of (5.10) if and only if it belongs to a real subspace of ker(C) that is Z-
invariant.
If z belongs to M⊥σ then W (z) ∈ N (T ) and Tt(W (z)) = eitHW (z) e−itH for all
t ≥ 0, from Proposition 5.2. Comparison with (3.38) yields

eitHW (z) e−itH = exp

(
−1

2

∫ t

0

<
〈
esZz, CesZz

〉
ds+ i

∫ t

0

<
〈
ζ, esZz

〉
ds
)
W
(
etZz

)
Unitarity of both left and right operators implies <

〈
esZz, CesZz

〉
= 0 for all s ≥ 0

and esZz belongs to ker(C) for all s ≥ 0, namely, in an equivalent way, z and also Zz
(by differentiation) belong to ker(C).
Conversely, if z belongs to a real subspace of ker(C) that is Z-invariant, then esZz also
belongs to that subset for all s ≥ 0. The explicit formula (3.38) shows that

Tt(W (z)) = exp

(
i

∫ t

0

<
〈
ζ, esZz

〉
ds
)
W
(
etZz

)
therefore

Tt(W (z)∗)Tt(W (z)) = W
(
etZz

)∗
W
(
etZz

)
= 1 = T (W (z)∗W (z))

and, in the same way, Tt(W (z))Tt(W (z)∗) = T (W (z)W (z)∗). It follows that W (z) ∈
N (T ) and z belongs to the symplectic complement of (5.10) by Theorem 5.15.

5.3 Examples

In this final section we consider two examples of gaussian QMSs in which we compute
explicitly the decoherence-free subalgebra. The first one is a toy example whose pur-
pose is to better clarify the possible situations arising in the decomposition of Theorem
5.15. The second one instead shows its application to a physical model.

5.3.1 Single Kraus operator with Number Hamiltonian

The operators (3.18) and (3.17) are the closure of operators defined on D, defined in
(1.20)

L =
d∑
j=1

(
vjaj + uja

†
j

)
, H =

d∑
j=1

a†jaj (5.13)

(either v or u is non-zero). We compute recursively

δ2n+1
H (L) =

d∑
j=1

(
uja

†
j − vjaj

)
, δ2n

H (L) = L
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for all n ≥ 0, and, in the same way, δ2n+1
H (L∗) =

∑d
j=1

(
vja
†
j − ujaj

)
, δ2n

H (L∗) = L∗.
It follows thatM is the real linear space

LinR { v − u, v + u, i(v + u), i(v − u) } = LinR { v, u, iv, iu } = LinC { v, u } .

Thus M⊥σ is the orthogonal (for the complex scalar product) of the complex linear
subspace generated by v and u. Hence it is a complex subspace of Cd and

N (T ) =
{
W (z) | z ∈M⊥σ

}
= B(Γ(M⊥σ)).

If v, u are linearly independent, then the complex dimension of M⊥σ is d − 2, and
N (T ) is isomorphic to B(Γ(Cd−2)).

5.3.2 Single Kraus operator with no Hamiltonian

Let L be as in (5.13). If H = 0, then δH = 0. In particular

M = LinR{v − u, u− v, i(v + u), i(u+ v)} = LinR{v − u, i(v + u)}

and, since both v and u cannot be zero in our framework, dimRM is either 1 or 2. If
it is equal to 1 (first case), clearlyM∩M⊥σ = M andMr = {0} therefore dc = 1
and dr = 0. It follows that df = d − 1 and N (T ) is a von Neumann algebra unitarily
equivalent to L∞(R;C)⊗B(Γ(Cd−1)). If dimRM = 2 then, sinceMr is a symplectic
space, its real dimension must be even and so we distinguish two cases: dr = 0, dc = 2
(second case) and dr = 1, dc = 0 (third case). If dc = 2, againM∩M⊥σ = M, and
N (T ) is a von Neumann algebra L∞(R2;C)⊗B(Γ(Cd−2)).
If dc = 0, dr = 1, then df = d − 1 and N (T ) is a von Neumann algebra B(Γ(Cd−1)).
This classification is summarized by Table 5.1 in which the last column labelled “L”
contains possible choices of the operator L that realize each case.

dimRM dc dr df N (T ) L
1st 1 1 0 d− 1 L∞(R;C)⊗B(Γ(Cd−1)) L = q1
2nd 2 2 0 d− 2 L∞(R2;C)⊗B(Γ(Cd−2)) L = q1 + iq2
3rd 2 0 1 d− 1 B(Γ(Cd−1)) L = a1, L = a†1

Table 5.1: N (T ) that can arise with one L and H = 0

In the last part of the section we will characterize each case by just looking directly
at the operator L instead of computingM.

Suppose L is self-adjoint. In this case V is composed of only one vector which is of
the form [v, v]T . ThereforeM = LinR{iv} and dc = 1, while dr = 0 (1st case).
Consider now instead the case L normal but not self-adjoint. An explicit computation
shows that 0 = [L,L∗] = ‖v‖2−‖u‖2 onD. This condition shows thatM =M∩M⊥σ

since
=〈v − u, i(v + u)〉 = ‖v‖2 − ‖u‖2 = 0.

Moreover u 6= v since L is not self-adjoint, hence dc = 2 (2nd case). If L is not even
normal (i.e. ‖v‖2 6= ‖u‖2) then by the previous calculations dc = 0 and dr = 1 (3rd

case).
Summing up: the 1st case arises when L is self-adjoint, the case 2nd case arises when
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Chapter 5. The Decoherence-free subalgebra of Gaussian QMSs

L is normal but not self-adjoint and the 3rd case arises when L is not normal or, equiv-
alently ‖v‖2 6= ‖u‖2.
In the last case it can be shown that when ‖v‖2 > ‖u‖2 (resp. ‖v‖2 < ‖u‖2) there exists
a Bogoliubov transformation changing L to a multiple of the annihilation operator a1

(resp. creation operator a†1).

5.3.3 Two bosons in a common bath

The following model for the open quantum system of two bosons in a common envi-
ronment has been considered in [15]. Here d = 2 and H is as in equation 3.17 with
κ = ζ = 0. The completely positive part of the GKLS generator L is

1

2

∑
j,k=1,2

γ−jk a
†
jXak +

1

2

∑
j,k=1,2

γ+
jk ajXa

†
k (5.14)

where (γ±jk)j,k=1,2 are positive definite 2× 2 matrices.
Note that, by a change of phase a1 → eiθ1a1, a†1 → e−iθ1a†1, a2 → eiθ2a2, a†2 →

e−iθ2a†2, we can always assume that (γ−jk)j,k=1,2 is real symmetric. Write the spectral
decomposition

γ± = λ±|ϕ±〉〈ϕ±|+ µ±|ψ±〉〈ψ±|
where the vectors ϕ−, ψ− have real components. Rewrite the first term of (5.14) as∑

j,k=1,2

γ−jk a
†
jXak = λ−

∑
j,k=1,2

ϕ−j ϕ
−
k a
†
jXak + µ−

∑
j,k=1,2

ψ−j ψ
−
k a
†
jXak

= λ−

(∑
j=1,2

ϕ−j a
†
j

)
X

(∑
k=1,2

ϕ−k ak

)

+ µ−

(∑
j=1,2

ψ−j a
†
j

)
X

(∑
k=1,2

ψ−k ak

)
and write in a similar way the second term of (5.14)

∑
j,k=1,2

γ+
jk ajXa

†
k = λ+

(∑
j=1,2

ϕ+
j aj

)
X

(∑
k=1,2

ϕ+
k a
†
k

)

+ µ+

(∑
j=1,2

ψ+
j aj

)
X

(∑
k=1,2

ψ+
k a
†
k

)
We can represent L in GKLS form with a number of Kraus operators L` depending on
the number of strictly positive eigenvalues among λ±, µ±.

L1 = λ
1/2
−

∑
k=1,2

ϕ−k ak L2 = µ
1/2
−

∑
k=1,2

ψ−k ak

L3 = λ
1/2
+

∑
k=1,2

ϕ+
k a
†
k L4 = µ

1/2
+

∑
k=1,2

ψ+
k a
†
k

Relabelling if necessary we can always assume 0 ≤ λ− ≤ µ− and 0 ≤ λ+ ≤ µ+.
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We begin our analysis by considering, for the moment, the case where H = 0.
If λ− (or λ+ > 0) then there are four vectors v, u in the defining set ofM namely

M = LinR
{
ϕ−, ψ−, iϕ−, iψ−

}
(or = LinR

{
ϕ+, ψ+, iϕ+, iψ+

}
)

thusM⊥σ = {0} and N (T ) = C1.
Suppose now that λ+ = λ− = 0 and µ−, µ+ > 0 so that there are only two Kraus

operators, the above L2 and L4 and

M = LinR
{
ψ−, ψ+, iψ−, iψ+

}
.

It follows that, if ψ−, ψ+ are R-linearly independent, we have againM = C2 whence
M⊥σ = {0} and N (T ) = C1. Otherwise, if ψ+ is a real non-zero multiple of ψ−,
then, as ψ± and iψ± are R-linearly independent, the real dimension ofM andM⊥σ is
two,M =M∩M⊥σ =M⊥σ so that N (T ) is isomorphic to B(Γ(C)).

It is not difficult to see that, in any case, the dimension ofM =M∩M⊥σ =M⊥σ

cannot be 1 or 3 (because creation and annihilation operator always appear separately
in different Kraus operators L, never in the same).

Summarizing: N (T ) is non-trivial and isomorphic to B(Γ(C)) if and only if γ+ and
γ− are rank-one and commute.

Finally, if we consider a non-zero H , it is clear that N (T ) is always trivial unless
γ+ and γ− are rank-one, commute and their one-dimensional range is an eigenvector
for Ω and ΩT .
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CHAPTER6
Energy Transfer in Open Quantum Systems

Weakly Coupled with Two Reservoirs

In this chapter we depart from the analysis of gaussian QMSs or states and consider
a different problem. We study models of open quantum systems rigorously deduced
from the weak coupling limit. We consider a quantum system with non-degenerate
Hamiltonian HS coupled with two reservoirs in equilibrium at inverse temperatures
β1 ≤ β2 and study variation of energy due to couplings with each reservoir. Several
models have been proposed involving open quantum systems (see e.g. [10, 11, 73]),
mostly phenomenological, and also numerical simulations have been done showing
different behaviours. The interaction of the open quantum system with reservoirs is
described through interaction operators that appear in the GKLS generator L of the dy-
namics, while the Hamiltonian part is given by the commutator with the system Hamil-
tonian HS . However, when the GKLS generator is rigorously deduced from some
scaling (weak coupling or low density limit) both the system Hamiltonian and the in-
teraction operators appear in the GKLS generator L after non-trivial transformations
(see [1, 2, 19, 24, 25, 47]).

It is well-known (see Lebowitz and Spohn [68] (V.28)) that, by the second law of
thermodynamics, energy (heat) flows from the hotter to the cooler reservoir. The energy
flow, in general, is not proportional to the difference of temperature because of the non-
linear dependence of susceptibilities on temperature, namely an exact Fourier’s law
does not hold. However, we rigorously prove that it holds in an approximate way
when the temperatures of reservoirs are not too small or, as an alternative, differences
between nearest energy levels are small. More precisely, we show that the amount of
energy flowing through the system, Theorem 6.12, formula (6.19), is approximately
proportional to the product of the temperature differences and a constant (conductivity)
which can be interpreted as the average energy needed to jump from a level to the
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Reservoirs

following higher level.

6.1 Semigroups of weak coupling limit type

We consider an open quantum system with Hamiltonian HS acting on a complex sepa-
rable Hilbert space h with discrete spectral decomposition

HS =
∑
m≥0

εmPεm (6.1)

where εm, with εm < εn for m < n, are the eigenvalues of HS and Pεm are the
corresponding eigenprojectors. The system is coupled with two reservoirs each one in
equilibrium with inverse temperatures β1 ≤ β2 with interaction Hamiltonians

H1 = D1 ⊗ a†(φ1) +D∗1 ⊗ a−(φ1), H2 = D2 ⊗ a†(φ2) +D∗2 ⊗ a−(φ2).

where D1, D2 are bounded operators on h and A+(φj), A
−(φj) creation and annihila-

tion operators on the Fock space of the reservoir j.
It is well-known (see [2,19,24,68]) that, in the weak coupling limit, the evolution of

the system observables is governed by a quantum Markov semigroup (QMS) on B(h),
the algebra of all bounded operators in h, with generator of the form

L =
∑

j=1,2, ω∈B

Lj,ω (6.2)

where B is the set of all Bohr frequencies

B := {ω | ∃ εn, εm s.t. ω = εn − εm > 0}. (6.3)

For every Bohr frequency ω, Lj,ω is a generator with the GKLS structure (3.16)

Lj,ω(x) = i[Hj,ω, x]−
Γ−j,ω

2

(
D∗j,ωDj,ωx− 2D∗j,ωxDj,ω + xDj,ωD

∗
j,ω

)
−

Γ+
j,ω

2

(
Dj,ωD

∗
j,ωx− 2Dj,ωxD

∗
j,ω + xDj,ωD

∗
j,ω

)
(6.4)

for all x ∈ B(h), with Kraus operators Dj,ω defined by

Dj,ω =
∑

(εn,εm)∈Bω

PεmDjPεn (6.5)

where Bω = { (εn, εm) | εn − εm = ω }, Γ±j,ω = fj,ωγ
±
j,ω

γ−j,ω =
eβjω

eβjω − 1
, γ+

j,ω =
1

eβjω − 1
, fj,ω =

∫
{ y∈R3 | |y|=ω}

|φj(y)|2dsy

(ds denotes the surface integral) and Hj,ω are bounded self-adjoint operators on h com-
muting with HS of the form

Hj,ω = κ−j,ωD
∗
j,ωDj,ω + κ+

j,ωDj,ωD
∗
j,ω
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for some real constants κ±j,ω.
In the sequel, following a customary convention to simplify the notation, we also

denote D−j,ω := Dj,ω and D+
j,ω := D∗j,ω and write

Q±j,ω(x) = −1

2
D∓j,ωD

±
j,ωx+D∓j,ωxD

±
j,ω −

1

2
xD∓j,ωD

±
j,ω (6.6)

the term of the GKLS generator arising from the interaction with the bath j due the
Bohr frequency ω is

Lj,ω = Γ−j,ωQ−j,ω + Γ+
j,ωQ+

j,ω + i[Hj,ω, · ]

and the term arising from the interaction with the reservoir j is

Lj =
∑
ω∈B

Lj,ω.

We now make some assumptions on constants in such a way as to ensure bounded-
ness of operators Lj . First of all note that the series

∑
ωD

∗
j,ωDj,ω is strongly conver-

gent. Indeed, for all vector u =
∑

n≥0 Pεnu in h, we have∑
ω

〈
u,D∗j,ωDj,ωu

〉
=

∑
ω

∑
n,m≥0

〈Pεm−ωDjPεmu, Pεn−ωDjPεnu〉

=
∑
ω

∑
n≥0

〈DjPεnu, Pεn−ωDjPεnu〉

≤
∑
n≥0

‖DjPεnu‖
2

= ‖Dj‖2 ‖u‖2 .

As a consequence, if we assume

sup
ω∈B

Γ±j,ω < +∞, sup
ω∈B

∣∣κ±j,ω∣∣ < +∞,

for j = 1, 2 GKLS generators Lj turn out to be bounded. The above condition will be
assumed to be in force throughout the paper.

Remark 6.1. Note that Lj depends on the inverse temperature βj only through the con-
stants γ±j,ω. The above notation follows that of [1].

Notation 6.2. T j (resp. T j,ω and T j,ω∗ ) stand for the QMS generated by (resp. Lj,ω and
its predual semigroup). In this paper we are concerned with normal states, therefore
we shall identify them with their densities which are positive operators on h with unit
trace.

We end this section by checking that, if reservoirs have the same temperature β1 =
β2 = β and Zβ := tre−βHS < +∞, then the Gibbs state has density

ρβ = Z−1
β e−βHS (6.7)

and is stationary.

107



i
i

“PhDThesis_v_2” — 2022/1/24 — 12:17 — page 108 — #118 i
i

i
i

i
i

Chapter 6. Energy Transfer in Open Quantum Systems Weakly Coupled with Two
Reservoirs

Proposition 6.3. If β1 = β2 = β and

Zβ := tre−βHS =
∑
n≥0

e−βεndim(Pεn) < +∞

then the Gibbs state (6.7) is invariant for all QMSs generated by L, L1, L2.

Proof. We begin by observing that for (εn+ω, εn), (εn, εn−ω) ∈ Bω, we can compute
directly

(Lj,ω)∗(Pεn) =Γ−j,ω(Pεn−ωDjPεnD
∗
jPεn−ω − PεnD∗iPεn−ωDjPεn)+

Γ+
j,ω(Pεn+ωD

∗
jPεnDjPεn+ω − PεnDjPεn+ωD

∗
jPεn).

A state of the form ρ =
∑

n ρεnPεn , which is a function of the system Hamiltonian HS

(also called a diagonal state), satisfies

L∗j(ρ) =
∑
ω

∑
n

(Lj,ω)∗(ρεnPεn)

=
∑
ω

∑
(εn+ω,εn)∈Bω

(ρεn+ωΓ−j,ω − ρεnΓ+
j,ω)PεnDjPεn+ωD

∗
jPεn+

∑
ω

∑
(εn,εn−ω)∈Bω

(ρεn−ωΓ+
j,ω − ρεnΓ−j,ω)PεnD

∗
jPεn−ωDjPεn .

Now if β1 = β2 = β and ρεn = e−βεn as in (6.7), we have

Γ+
j,ω

Γ−j,ω
=
γ+
j,ω

γ−j,ω
= e−βω =

ρεn+ω

ρεn
,

for all j = 1, 2, so that L∗j(ρ) = 0 and ρ = e−βHS/Zβ is an invariant state for the QMS
generated by Lj . Since L = L1 +L2 it is an invariant state also for the QMS generated
by L.

6.2 Energy current

In order to compute the rate of energy transfer through the system we consider the
following definition (see [68] (V.28)).

Definition 6.4. The rate of energy variation in the system, in a state ρ, due to interaction
with the reservoir j is

trρLj(HS).

Therefore
trρL1(HS)− trρL2(HS) (6.8)

is twice the rate at which the energy flows through the system from the hotter bath to
the colder bath, namely, the energy current through the system.

Adapting a result by Lebowitz and Spohn [68] Theorem 2 and Corollary 1, it is
possible to prove that the energy current is non-negative for finite dimensional systems.
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6.2. Energy current

Theorem 6.5. Suppose that h is finite dimensional and let ρ be a faithful invariant state,
then the energy current (6.8) is non-negative.

Proof. If a system is weakly coupled to a single bath j at inverse temperature βj , it is
well-known that the Gibbs state ρβj = Z−1

βj
e−βjHS , with Zβj = tre−βjHS , is invariant.

Consider the relative entropy of ρ with respect to ρβj defined by

S(ρ|ρβj) = trρ(log(ρ− log ρβj)

which is a notoriously non-increasing function (see [61], Theorem 1.5), i.e.

S
(
T j∗t(ρ)|T j∗t(ρβj)

)
≤ S(ρ|ρβj),

for all ρ and t ≥ 0. States T j∗t(ρ), j = 1, 2 will still be faithful for small t, therefore
no problem arises when considering logarithms. Since ρβj is invariant, denoting ρt :=

T j∗t(ρ), and differentiating we find

d

dt
S(ρt|ρβj) =

d

dt
trρt(log ρt − log ρβj)

= trρ′t(log ρt − log ρβj) + trρt
d

dt
log ρt.

Since for every x > 0, log x =
∫ +∞

0

(
1

1+s
− 1

x+s

)
ds,

d

dt
log ρt =

∫ +∞

0

(s+ ρt)
−1ρ′t(s+ ρt)

−1ds

so that

trρt
d

dt
log ρt = trρ′t

∫ +∞

0

ρt(s+ ρt)
−2ds = trρ′t = 0.

By imposing ρβj = Z−1
βj
e−βjHS , and recalling that ρ′t = L∗j(ρt), trρ′t = 0 by trace

preservation, we obtain

d

dt
S(ρt|ρβj) = trρ′t(log ρt − log ρβj)

= trρ′t(log ρt + βjHS − logZ−1
βj

)

= trρ′t log ρt + βjtrρtLj(HS).

In particular trρ′t(log ρt) + βjtrρtL(HS) ≤ 0 by monotonicity of the relative entropy,
namely

−trL∗j(ρt) log ρt − βjtrρtLj(HS) ≥ 0.

In our context, the entropy production of the system due to interaction with the bath at
inverse temperature βj is

− trL∗j(ρt) log ρt − βjtrρtLj(HS) ≥ 0. (6.9)

Now, for all β, β1, β2 and ρ stationary state for the system S interacting with both baths,
By taking a sum over j of the inequality before (6.9), we obtain

β1trρL1(HS) + β2trρL2(HS) ≤ 0.
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Moreover, trρL1(HS) = −trρL2(HS) and so

(β2 − β1)trρL2(HS) ≥ 0

In view β1 ≥ β2, we have trρL1(HS) = −trρL2(HS) ≥ 0 and the proof is complete.

In this section we prove a general explicit formula for the energy current in a station-
ary state ρ which is a function of the system hamiltonian HS . This not only confirms
that it is positive also for possibly infinite dimensional systems if the eigenvalues of
stationary state are a monotone system (i.e. there are no population inversions), but it
allows us to establish proportionality to the difference of bath temperatures when they
are not too small, namely an approximate Fourier law.

Lemma 6.6. For all ω ∈ B and j = 1, 2 we have

Q−j,ω(HS) = −ωD∗j,ωDj,ω Q+
j,ω(HS) = ωDj,ωD

∗
j,ω (6.10)

and
Lj(HS) =

∑
ω∈B

ω
(
Γ+
j,ωDj,ωD

∗
j,ω − Γ−j,ωD

∗
j,ωDj,ω

)
. (6.11)

Proof. Writing HS as in (6.1) we compute

Q−j,ω(HS) = −1

2
D∗j,ωDj,ωHS +D∗j,ωHSDj,ω −

1

2
HSD

∗
j,ωDj,ω

=
∑

(εn,εm)∈Bω

(
εm PεnD

∗
jPεmDjPεn − εn PεnD∗jPεmDjPεn

)
= −

∑
(εn,εm)∈Bω

ωPεnD
∗
jPεmDjPεn

= −ωD∗j,ωDj,ω.

The proof of the other identity (6.10) is similar. Since [Hj,ω, HS] = 0 for all j, ω, (6.11)
follows immediately.

We can now prove our formula for the energy current in a stationary state ρ which
is a function of the system Hamiltonian HS . We suppose that the interaction of the
system with both reservoirs is similar; this property is reflected by the assumptions on
trPεnD∗jPεmDj and f1,ω. In the sequel, to simplify the notation we also write ρn instead
of ρεn .

Theorem 6.7. For any state ρ which is a function of the system Hamiltonian HS , i.e.

ρ =
∑
n≥0

ρnPεn (6.12)

we have

trρLj(HS) =
∑
ω∈B

ω
∑

(εn,εm)∈Bω

(
Γ+
j,ωρm − Γ−j,ωρn

)
trPεnD

∗
jPεmDj. (6.13)

If the state ρ is also stationary and, moreover,
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1. trPεnD∗1PεmD1 = trPεnD∗2PεmD2 for all n,m,

2. f1,ω = f2,ω for all ω,

then

trρL1(HS) =
1

2

∑
ω∈B

ω f1,ω

(
γ+

1,ω − γ+
2,ω

) ∑
(εn,εm)∈Bω

(ρm − ρn) trPεnD
∗
1PεmD1. (6.14)

Proof. The proof of (6.13) is immediate from (6.11) and the following identities (cyclic
property of the trace)

trPεmDj,ωPεnD
∗
j,ω = tr(PεmDj,ω)PεmD

∗
j,ω = trPεnD

∗
j,ωPεmDj,ω.

If the state ρ is stationary, then trρL1(HS) = trρL(HS) − trρL2(HS) = −trρL2(HS),
so that trρL1(HS) = (trρL1(HS)− trρL2(HS)) /2. Computing the right-hand side
difference by means of (6.13) with j = 1, 2 we can write 2trρL1(HS) as∑

ω∈B

ω f1,ω

∑
(εn,εm)∈Bω

(
γ+

1,ωρm − γ−1,ωρn − γ+
2,ωρm + γ−2,ωρn

)
trPεnD

∗
1PεmD1

=
∑
ω∈B

ω f1,ω

∑
(εn,εm)∈Bω

(
(γ+

1,ω − γ+
2,ω)ρm − (γ−1,ω − γ−2,ω)ρn

)
trPεnD

∗
1PεmD1.

Since γ−j,ω = γ+
j,ω + 1 for all j, ω, then γ+

1,ω − γ+
2,ω = γ−1,ω − γ−2,ω and (6.14) follows.

Remark 6.8. Note that the above identity trPεnD∗1PεmD1 = trPεnD∗2PεmD2 holds
whenever there exists an isometry R on h, commuting with HS , such that D2 =
RD1R

∗. Indeed, in this case, R commutes with all spectral projections of HS and

trPεnD
∗
2PεmD2 = trPεnRD

∗
1R
∗PεmRD1R

∗

= trPεnD
∗
1PεmD1R

∗R

= trPεnD
∗
1PεmD1.

We will see later (Section 6.4) that this happens when the system interacts in the same
way with the two baths.

Formula (6.14) can be applied to effectively compute the energy current in several
models highlighting the dependence on the difference of temperatures. Indeed, one
readily sees that, for β1, β2 very close the term ω

(
γ+

1,ω − γ+
2,ω

)
is an infinitesimum of

order β−1
1 − β−1

2 while the other terms are close to some non-zero values. Moreover, it
is also clear from (6.14) that the energy current is non-negative whenever the invariant
state satisfies ρm > ρn for all n,m such that εm < εn i.e. population inversion does not
occur.

However, in order to find more explicit formulae we need additional information on
the invariant state. This problem will be studied in the next section. We end this section
by the following example

Example 6.9. Let h = Cn+1 with orthonormal basis (ek)0≤k≤n. Consider an n-level
system with Hamiltonian

HS =
n∑
k=0

k|ek〉〈ek|
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and interaction operators D1, D2 acting as

Djek = ek−1 for k = 1, . . . , n Dje0 = 0.

Clearly B = {1, 2, . . . , n} but the only non-zero Dj,ω are those corresponding to the
frequency ω = 1 and D1,1 = D1, D2,1 = D2. Moreover, since εk = k,

trPεkD
∗
1Pεk−1

D1 = trPεkD
∗
2Pεk−1

D2 = 1

for k = 1, . . . , n. By Theorem 6.7 formula (6.13) we have

trρLj(HS) =
n−1∑
k=0

(
Γ+
j,1ρk − Γ−j,1ρk+1

)
.

If all Γ±j,1 (j = 1, 2) are nonzero, a straightforward computation shows that the unique
stationary state is

ρ =
1− ν

1− νn+1

n∑
k=0

νk|ek〉〈ek|, ν :=
Γ+

1,1 + Γ+
2,1

Γ−1,1 + Γ−2,1

and the energy current due to interaction with reservoir j is

trρLj(HS) =
1− ν

1− νn+1

n−1∑
k=0

(
Γ+
j,1ν

k − Γ−j,1ν
k+1
)

=
1− νn

1− νn+1

(
Γ+
j,1 − νΓ−j,1

)
.

Note that, dropping the index 1 corresponding to the unique effective frequency ω to
simplify the notation, we have

Γ+
j − νΓ−j = Γ−j

(
Γ+
j

Γ−j
− Γ+

1 + Γ+
2

Γ−1 + Γ−2

)

= Γ−j

(
γ+
j

γ−j
− f1 γ

+
1 + f2 γ

+
2

f1 γ
−
1 + f2 γ

−
2

)

= Γ−j

(
e−βj − f1 (eβ2 − 1) + f2 (eβ1 − 1)

f1 eβ1(eβ2 − 1) + f2 eβ2(eβ1 − 1)

)
= Γ−j

(
e−βj − f1 e−β1(1− e−β2) + f2e−β2(1− e−β1)

f1(1− e−β2) + f2(1− e−β1)

)
.

For j = 1 we find

Γ+
j,1 − νΓ−j,1 = Γ−j f2(1− e−β1)

e−β1 − e−β2

f1(1− e−β2) + f2(1− e−β1)

and so

trρL1(HS) =
1− ((Γ+

1 + Γ+
2 )/(Γ−1 + Γ−2 ))n

1− ((Γ+
1 + Γ+

2 )/(Γ−1 + Γ−2 ))n+1

Γ−1 f2(1− e−β1)(e−β1 − e−β2)
f1(1− e−β2) + f2(1− e−β1)
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Since Γ+
j < Γ−j , this formula, for n big and β1, β2 small becomes

trρL1(HS) ≈ f1f2(e−β1 − e−β2)
f1(1− e−β2) + f2(1− e−β1)

≈ f1f2(β2 − β1)

f2β1 + f1β2

=
f1f2

(
1
β1
− 1

β2

)
f1
β1

+ f2
β2

showing that, in a certain regime of high temperature a Fourier law holds for all choices
f1, f2 of the interactions strength.

6.3 Dependence of the energy current from temperature difference and
conductivity

In this section we consider systems whose Hamiltonian HS has simple spectrum, that
is to say each spectral projection Pεn is one-dimensional, and make explicit the depen-
dence of the energy current on the difference of temperatures 1/β1 and 1/β2.

We begin by noting that, if spectral projections Pεn are one-dimensional one can
associate with the open quantum system a classical (time continuous) Markov chain
with state space V the spectrum sp(HS) of HS in a canonical way. Indeed, for every
bounded function f on V , we have

L(f(HS)) =
∑
n≥0

f(εn)L(Pεn)

=
∑

ω∈B, (εn,εm)∈Bω

(∑
j

Γ−j,ωPεnD
∗
jPεmDjPεn

)
(f(εm)− f(εn))

+
∑

ω∈B, (εn,εm)∈Bω

(∑
j

Γ+
j,ωPεmDjPεnD

∗
jPεm

)
(f(εn)− f(εm))

and we find a classical Markov chain with transition rate matrix Q = (qnm)

qnm =


∑

j Γ−j,εn−εm trD∗jPεmDjPεn , if εn > εm,∑
j Γ+

j,εm−εntrDjPεmD
∗
jPεn , if εn < εm,

−
∑

m6=n qnm, if n = m.

Now, if we consider the conditional expectation

E : B(h)→ `∞(V ;C), E(x) =
∑
m≥0

PεmxPεm ,

where `∞(V ;C) is the abelian algebra of bounded functions on V , we have that

E ◦ L = L ◦ E . (6.15)
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Therefore, by defining the predual map E∗ such that trE∗(ρ)x = trρE(x), if ρ is an
invariant state, we have also 0 = E∗(L∗(ρ)) = L∗(E∗(ρ)) and

(πn) 7→
∑
n≥0

πnPεn

gives a one-to-one correspondence between diagonal invariant states of the open quan-
tum system and invariant measures of the associated Markov chain.

In the following, in order to have at hand an explicit formula for the invariant mea-
sure, we suppose, for simplicity, that the graph associated with the above Markov
chain is a path graph and jumps can occur only to nearest neighbour levels, namely
qnm = 0 for |n − m| ≥ 2. This assumption may hold, for instance, if the Hamilto-
nian HS is generic in the sense of [14], namely it is not only non-degenerate but also if
εn − εm = εn′ − εm′ then εn = εn′ and εm = εm′ . Moreover, we assume that qnm 6= 0
for |n−m| ≤ 1. In this case the associated classical Markov chain has a simpler struc-
ture allowing one to make explicit computations and describe explicitly the structure of
invariant states (see also [26] in a more general situation).

The explicit expression for the invariant state is ρ =
∑

n ρnPεn where

ρn =
∏

0≤k<n

qk,k+1

qk+1,k

ρ0 (6.16)

with

qk,k+1 =
2∑
j=1

Γ+
j,εk+1−εk trDjPεk+1

D∗jPεk ,

qk+1,k =
2∑
j=1

Γ−j,εk+1−εk trD∗jPεkDjPεk+1

provided that the normalization condition∑
n≥1

∏
0≤k<n

qk,k+1

qk+1,k

< +∞ (6.17)

holds, in which case ρ0 is the inverse of the sum of the above series increased by 1.
With the explicit formula for the invariant state we can find a Fourier’s law for the

energy current through the system. We begin by a technical lemma

Lemma 6.10. The following inequalities hold

e−(β1+β2)ω/2

1
β1
− 1

β2
1
β1

+ 1
β2

≤
1

eβ1ω−1
− 1

eβ2ω−1

eβ1ω
eβ1ω−1

+ eβ2ω
eβ2ω−1

≤
1
β1
− 1

β2
1
β1

+ 1
β2

, (6.18)

for all 0 < β1 ≤ β2 and ω > 0.

Proof. Note that 1/(eβ1ω−1)−1/(eβ2ω−1) ≤ 1/(β1ω)−1/(β2ω) because the function
x 7→ 1/(exω − 1)− 1/(ωx) is increasing on ]0,+∞[ since

d
dx

(
1

exω − 1
− 1

ωx

)
=

1

ωx2
− ω

(eωx/2 − e−ωx/2)
2 ≥ 0
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by the elementary inequality eωx/2 − e−ωx/2 ≥ ωx. Moreover, by another elementary
inequality 1− e−βjω ≤ βjω, we have

eβ1ω

eβ1ω − 1
+

eβ2ω

eβ2ω − 1
=

1

1− e−β1ω
+

1

1− e−β2ω
≥ 1

β1ω
+

1

β2ω

and the second inequality (6.18) follows.
In order to prove the first inequality we first write the right-hand side as

(eβ1ω − 1)−1 − (eβ2ω − 1)−1

eβ1ω(eβ1ω − 1)−1 + eβ2ω(eβ2ω − 1)−1

=
eβ2ω − eβ1ω

eβ1ωeβ2ω/2(eβ2ω/2 − e−β2ω/2) + eβ2ωeβ1ω/2(eβ1ω/2 − e−β1ω/2)

= e−(β1+β2)ω/2 e(β2−β1)ω/2 − e−(β2−β1)ω/2

(1− e−β2ω) + (1− e−β1ω)

Noting that

e(β2−β1)ω/2 − e−(β2−β1)ω/2 ≥ 1 +
(β2 − β1)ω

2
−
(

1− (β2 − β1)ω

2

)
(1− e−β2ω) + (1− e−β1ω) ≤ (β1 + β2)ω

we find

(eβ1ω − 1)−1 − (eβ2ω − 1)−1

eβ1ω(eβ1ω − 1)−1 + eβ2ω(eβ2ω − 1)−1
≥ e−(β1+β2)ω/2 (β2 − β1)ω

(β1 + β2)ω
.

This completes the proof.

Remark 6.11. Note that the inequalities of Lemma 6.10 provide a sharp estimate in
terms of the inverse temperature difference β2 − β1 for small β1, β2, i.e. when the
average of temperatures T1, T2 is big. Indeed, the difference of the right-hand side and
left-hand side is equal to (

1− e−(β1+β2)ω/2
) β2 − β1

β1 + β2

and for temperatures Tj > kB ·180 K= 2.49 ·10−21 J (approximately the lowest natural
temperature ever recorded at ground level) we have βj < 1/(kB · 180 K) = 4.02 ·
1020 J−1 so that the quantity that multiplies β2 − β1 is

1

β1 + β2

< 1.24 · 10−21J.

Theorem 6.12. Suppose that

1. trPεnD∗jPεmDj = 1 for all n,m and all j = 1, 2,

2. fj,ω = 1 for all ω and all j = 1, 2,

3. Jumps can occur only to nearest neighbour levels,
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4. Formula (6.17) holds so that the state ρ defined by (6.16) with ρ0 determined by
the normalization condition is invariant.

Then

κm

1
β1
− 1

β2
1
β1

+ 1
β2

κ(ρ,HS) ≤ trρL1(HS) ≤
1
β1
− 1

β2
1
β1

+ 1
β2

κ(ρ,HS) (6.19)

where κm = infm≥0 e−(β1+β2)(εm+1−εm)/2 and

ĤS =
∑
m≥0

εm+1Pεm , κ(ρ,HS) = trρ(ĤS −HS).

Proof. By applying (6.14) in this context, we have

trρL1(HS) =
1

2

∑
n≥0

(εn+1 − εn)(ρn − ρn+1)
(
Γ+

1,εn+1−εn − Γ+
2,εn+1−εn

)
=

1

2

∑
n≥0

(εn+1 − εn)

(
1− qn,n+1

qn+1,n

)
ρn
(
Γ+

1,εn+1−εn − Γ+
2,εn+1−εn

)
=
∑
n≥0

(εn+1 − εn)ρn
Γ+

1,εn+1−εn − Γ+
2,εn+1−εn

Γ−1,εn+1−εn + Γ−2,εn+1−εn
.

Now the proof follows applying Lemma 6.10 with ω = εn+1 − εn to estimate the
right-hand side ratio.

Remark 6.13. Formula (6.19) shows that the energy current trρL1(HS) h as an ex-
plicit dependence on the difference β−1

1 − β−1
2 of the reservoirs’ temperatures. This

dependence holds only through two inequalities, but it suggests the existence of an
“approximate” Fourier law (see [9, 51]) for the current. Clearly there can be further
dependencies through the term κ(ρ,HS), however it holds

inf
k

(εk+1 − εk) ≤ κ(ρ,HS) ≤ sup
k

(εk+1 − εk) .

Therefore the energy current depends on the temperature difference mainly through the
explicit term and one could say that there really is an “approximate” Fourier Law. Fur-
thermore it is worth noticing that, for β1, β2 fixed, the inequality (6.19) is better the
smaller is supm≥0(εm+1 − εm) so that κm is close to 1 and the inequalities are approxi-
mately equalities. However, it should also be noted that, in this case, κ(ρ,HS) becomes
small as well. Eventually note that, due to the nature of our system, we cannot investi-
gate spatial properties of energy flow. Therefore our discussion of the Fourier’s law is
concerned with proportionality to temperature difference and not with dependency on
size.

Remark 6.14. Since the above QMS are of weak coupling limit type, one can write
explicitly the entropy production (in the sense of [34, 35]).

It is tempting to study in detail what happens when supm≥0(εm+1 − εm) tends to 0
so that the eigenvalues ofHS increase in number and form a set more and more packed.
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In a more precise way, for all n ≥ 1 we assume that the system Hamiltonian is a self-
adjoint operator H(n)

S on an (n+ 1)-dimensional Hilbert space h with simple pure point
spectrum (ε

(n)
k )0≤k≤n with ε0 = 0 and, for all a, b with 0 ≤ a < b ≤ +∞, we have

lim
n→∞

card
{
k | a < ε

(n)
k ≤ b

}
n

= µ(]a, b]) (6.20)

for some continuous probability density µ on [0,+∞[. In other words, the empirical
distribution of eigenvalues of H(n)

S converges weakly to a probability distribution on
[0,+∞[ . Suppose, for simplicity, that µ has no atoms, i.e. µ({r}) = 0 for all r ≥ 0.

We can now prove the following result on the distribution of eigenvalues of the
stationary state and energy in stationary conditions.

Theorem 6.15. Under the assumptions of Theorem 6.12, for all n ≥ 1, let H(n)
S be as

above and suppose that (6.20) holds. Let ρ(n) be the L-invariant state (6.16) and let

β̃ = 2 (1/β1 + 1/β2)−1

be the harmonic mean of the inverse temperatures (i.e. β̃−1 is the arithmetic mean of
β−1

1 , β−1
2 ).

(i) Eigenvectors ρ(n)
k of ρ(n) satisfy

lim
n→∞

∑
{ k | a<εk≤b}

ρ
(n)
k =

∫ b
a

e−β̃rdµ(r)∫∞
0

e−β̃rdµ(r)

(ii) The average energy in the system satisfies

lim
n→∞

trρ(n)H
(n)
S =

∫∞
0

e−β̃r rdµ(r)∫∞
0

e−β̃rdµ(r)
.

This result reminds the one in [49] where the steady state can be described by a
generalized Gibbs state and the steady-state current is proportional to the difference in
the reservoirs’ magnetizations.

In the proof we need the following Lemma.

Lemma 6.16. Let β̃ = 2/
(
β−1

1 + β−1
2

)
be the harmonic mean of inverse temperatures

(i.e. β̃−1 is the arithmetic mean of β−1
1 and β−1

2 ). For all 1 ≤ k ≤ n and for supj ωj <
1/(3β2),

1− β̃ ωk ≤
qk,k+1

qk+1,k

≤ 1− β̃ ωk +
(
β̃ ωk

)2

(6.21)

where ωk = εk+1 − εk and

e−β̃εk(1+β̃ supj ωj) ≤
k−1∏
j=0

qj,j+1

qj+1,j

≤ e−β̃εk(1−β̃ supj ωj) (6.22)
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Proof. By the elementary inequality 1− e−βjωk ≤ βjωk we have

qk,k+1

qk+1,k

=

1
eβ1ωk−1

+ 1
eβ2ωk−1

eβ1ωk
eβ1ωk−1

+ eβ2ωk
eβ2ωk−1

= 1− 2

(1− e−β1ωk)−1 + (1− e−β2ωk)−1

≥ 1− 2ωk
1/β1 + 1/β2

In the same way, by the elementary inequalities 1 − e−βjωk ≥ βjωk − (βjωk)
2 /2 and

1/(1− βjωk/2) ≤ 1 + βjωk, we find for βjωk < 1

qk,k+1

qk+1,k

≤ 1− 2ωk
1/ (β1 (1− β1ωk/2)) + 1/ (β2 (1− β2ωk/2))

≤ 1− 2ωk
1/β1 (1 + β1ωk/2) + 1/β2 (1 + β2ωk/2)

≤ 1− 2ωk
1/β1 + 1/β2 + 2ωk

= 1− β̃ ωk

1 + β̃ ωk

and so (6.21) follows.
In order to prove the upper bound in (6.22), note that, since log(1− x) ≤ −x

log

(
k−1∏
j=0

qj,j+1

qj+1,j

)
≤

k−1∑
j=0

log
(

1− β̃ ωj
(

1− β̃ ωj
))
≤ −

k−1∑
j=0

β̃ωj

(
1− β̃ωj

)
,

as a consequence

log

(
k−1∏
j=0

qj,j+1

qj+1,j

)
≤ −

k−1∑
j=0

β̃ωj

(
1− β̃ sup

l
ωl

)
= −β̃εk

(
1− β̃ sup

l
ωl

)
.

For the lower bound, we begin by the inequality

log

(
k−1∏
j=0

qj,j+1

qj+1,j

)
=

k−1∑
j=0

log

(
qj,j+1

qj+1,j

)
≥

k−1∑
j=0

log
(

1− β̃ωj
)

Note that log(1 − x) + x + x2 ≥ 0 for 0 ≤ x ≤ 2/3 and, since β̃ωj < 2/3 by our
assumption, we have

log

(
k−1∏
j=0

qj,j+1

qj+1,j

)
≥ −

k−1∑
j=0

β̃ωj

(
1 + β̃ sup

l
ωl

)
= −β̃εk

(
1 + β̃ sup

l
ωl

)
.

This completes the proof.
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6.3. Dependence of the energy current from temperature difference and conductivity

Proof of Theorem 6.15. Let µn be the empirical distribution of the eigenvalues of H(n)
S

i.e.

µn =
1

n+ 1

n∑
k=0

δεk

and note that ∑
{ k | a<εk≤b}

ρ
(n)
k =

1
n+1

∑
{ k | a<εk≤b}

∏k−1
j=0

qj,j+1

qj+1,j

1
n+1

∑n
k=0

∏k−1
j=0

qj,j+1

qj+1,j

. (6.23)

Clearly, by Lemma 6.16,

1

n+ 1

∑
{ k | a<εk≤b}

k−1∏
j=0

qj,j+1

qj+1,j

≤ 1

n+ 1

∑
{ k | a<εk≤b}

e−β̃εk(1−β̃ supj ωj)

≤ eβ̃
2b supj ωj

∫
]a,b]

e−β̃εk dµn(r)

and also

1

n+ 1

∑
{ k | a<εk≤b}

k−1∏
j=0

qj,j+1

qj+1,j

≥ e−β̃
2a supj ωj

n+ 1

∑
{ k | a<εk≤b}

e−β̃εk

= e−β̃
2a supj ωj

∫
]a,b]

e−β̃εk dµn(r)

Since supj ωj goes to 0, probability measures µn converge weakly to µ and the function
r → e−β̃r is bounded continuous on [0,+∞[, taking the limit as n→∞, we have

lim
n→∞

1

n+ 1

∑
{ k | a<εk≤b}

k−1∏
j=0

qj,j+1

qj+1,j

=

∫
]a,b]

e−β̃εk dµ(r).

In the same way, taking a = 0 and b = +∞, we see that the denominator of (6.23)
converges to ∫ +∞

0

e−β̃r dµ(r)

and the proof of (i) is complete. The proof of (ii) is similar. �

Remark 6.17. Theorem 6.15 (i) shows that, if µ has density µ′, then the asymptotic
distribution of eigenvalues of the stationary state is

λ 7→ e−β̃λµ′(λ)∫ +∞
0

e−β̃rµ′(r)dr
.

The asymptotic average energy in the system can be easily computed in some remark-
able cases noting that the integral of e−β̃r with respect to µ is the moment generating
function φ of µ evaluated at −β̃ and so the asymptotic average energy in the system is

−
d
dβ̃φ(−β̃)

φ(−β̃)
= − d

dβ̃
log
(
φ(−β̃)

)
.
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We can easily find an explicit result in two cases:

µ normal distribution N(m,σ2) average energy m− β̃σ
µ gamma distribution Γ(α, θ) average energy α/(β̃ + θ)

The asymptotic average energy in the system is decreasing in β̃, i.e. increasing in the
average temperature as expected, for all probability measure µ because the moment
generating function of a probability distribution is log-convex and the derivative of a
convex function is increasing.

Remark 6.18. Note that, by choosing a suitable spacing of eigenvalues εn we can con-
trol the rate of convergence to 0 of κ

(
ρ(n), H

(n)
S

)
at will, as n tends to +∞.

6.4 One dimensional Ising chain

In this section we consider a one-dimensional Ising chain with nearest neighbour inter-
action. We will show that, in this case, if the heat baths interact locally at both ends of
the chain, then the energy current is zero. Spin interaction (see 6.24) occurs only in the
z component. In the case where also the other components interact the derivation of
the GKSL generator turns out to be really difficult (see [10]). Indeed, starting from the
diagonalized HS , one finds a cumbersome expression for the operators Dω.

In spite of the simple system Hamitonian HS (6.24) Theorems 6.12 and 6.15 do not
apply to this model because its spectrum is degenerate.

The system space is h = C2⊗N with N > 2. Define Pauli matrices

σx =

(
0 1

1 0

)
σy =

(
0 −i

i 0

)
σz =

(
1 0

0 −1

)
with respect to the orthonormal basis e+ = [1, 0]T, e− = [0, 1]T of C2.

Consider the one dimensional Ising chain with Hamiltonian

HS = Jz

N−1∑
j=1

σzjσ
z
j+1, Jz > 0, N > 2 (6.24)

Subsequently let us define

eα := ⊗Nj=1eα(j), α ∈ {−1, 1}N ,

as a basis of h, where e−1 := e− and e+1 := e+. Vectors {eα}α form an eigenbasis for
HS and the spectrum is

sp(HS) = { Jz (2k − (N − 1)) | k = 0, . . . , N − 1 }.

The eigenspace associated with the eigenvalue εk = Jz(2k − (N − 1)) is the linear
span of the elements eα such that exactly k neighbouring elements in α have the same
sign. Thus one can define the sets

Ak :=
{
α ∈ {−1, 1}N

∣∣∣ ∑N−1
j=1 α(j)α(j + 1) = 2k − (N − 1)

}
,
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6.4. One dimensional Ising chain

and the spectral projection associated with the eigenvalue εk is given by

Pk :=
∑

α∈Ak |eα〉〈eα| .

The system is coupled with two heat reservoirs at inverse temperature β1, β2 with β1 ≤
β2 through the interaction

H1 = σu1 ⊗ (A−(φ1) + A+(φ1)), H2 = σvN ⊗ (A−(φ2) + A+(φ2)). (6.25)

where u, v ∈ R3 and σui is defined as

σui = u1σ
x
i + u2σ

y
i + u3σ

z
i .

The set of positive Bohr frequencies is given by

B := { 2Jz(n−m) = εn − εm | n,m ∈ {0, . . . , N − 1}, n > m }.

while the operators Dj,ω are given by(6.5). Thus one has

D1,2Jz = (u1 − iu2)
∑

α∈Cl++

σx1 |eα〉〈eα|+ (u1 + iu2)
∑

α∈Cl−−

σx1 |eα〉〈eα|

where C l
++ (resp. C l

−−) denotes the set of configurations α ∈ {−1,+1}N with ++
(resp. −−) in the first two sites (l stands for left). While D1,ω = 0 for every ω ∈
B − {2Jz} because the Pauli matrices act only on the first site and so the number of
neighbouring sites with the same sign can vary of at most one after the action of σu1 and
for ω = 2Jz one has

D1,2Jz =
N−1∑
n=1

∑
α∈An

∑
β∈An+1

〈eα, σx1eβ〉 |eα〉〈eβ| .

With similar arguments one can see that D2,ω = 0 for every ω ∈ B− {2Jz}, while

D2,2Jz = (v1 − iv2)
∑

α∈Cr++

σxN |eα〉〈eα|+ (v1 + iv2)
∑

α∈Cr−−

σxN |eα〉〈eα|

where Cr
++ (resp. Cr

−−) denotes the set of configurations with ++ (resp. −−) in the
last two sites (r stands for right).

From now on we will drop the subscript 2Jz and only deal with operators related to
that Bohr frequency, as the others vanish.
Recalling the definition of linear maps (6.6) and the constants

γ+
i = 1/(e2Jzβi − 1), γ−i = e2Jzβi/(e2Jzβi − 1),

we can write the GKLS generator of the evolution as follows

L =
∑

i∈{1,N}

γ−i Q−i + γ+
i Q+

i .
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A close scrutiny at the operators Di, D
∗
i shows that, for each fixed configuration α ∈

{−1,+1}N−2 of the N − 2 inner sites of the chain the 4-dimensional projections pα on
subspaces

hα := span { eα | α(j) = α(j) for all 2 ≤ j ≤ N − 1; α(1), α(N) ∈ {−1, 1} }

commute with both Di and D∗i for i ∈ {1, N}, then subalgebras pα1B(h)pα2 are invari-
ant for the semigroup T generated by L. This commutation allows us to restrict our
study only to cases where the invariant state is of the form

ρ =
∑

α∈{−1,1}N−2

pαρpα =
∑

α∈{−1,1}N−2

λαρα, (6.26)

where ρα is an invariant state supported only on hα and λα are real costants that sum up
to 1. Indeed the off diagonal terms, pα1ρpα2 with α1 6= α2, do not contribute to current
flow, since

trpα1ρpα2L1(HS) = trpα1ρL1(HS)pα2 = 0.

Moreover all the conditional expectations Eα(x) := pαxpα commute with L, ensuring
that both

∑
α Eα,∗(ρ) and every Eα,∗(ρ) must also be invariant states on their own. As a

further refinement we can repeat the same argument using the conditional expectation
E(x) :=

∑N−1
k=0 PkxPk. Indeed E commutes with the Lindbladian L and

trPk1ρPk2L1(HS) = trPk1ρL1(HS)Pk2 = 0

for k1 6= k2, since the spectral projections commute with DjD
∗
j , D

∗
jDj and L1(HS) is

a linear combination of these operators by Lemma 6.6, equation (6.10). In this way we
can focus our study on invariant states of the form (6.26) with

pαρpα = ρα =


ρα11 0 0 0

0 ρα22 ρα23 0

0 ρα32 ρα33 0

0 0 0 ρα44

 ,

where we expanded the state with respect to the basis of four vectors denoted by ec α c,
edα c, ecαd, edαd and defined as follows: ecαc is the vector eα(2),α(2),...,α(N−1),α(N−1), ecαd
corresponds to eα(2),α(2),...,α(N−1),−α(N−1) and vectors edαc, edαd are defined in a similar
way.

Now we have reduced and simplified the class of states we want to use when looking
for a invariant state, without, however, losing any contribution to the current flow. In
order to find the invariant state, first of all it is not too difficult to show that L∗ leaves
invariant the subspace of diagonal elements. Then compute

L∗(ρα23 |edα c〉〈ec α d|) = −1

2

[
Γ+

1 + Γ−1 + Γ+
N + Γ−N

]
ρα23 |edα c〉〈ec α d| ,

and similarly

L∗(ρα32 |ec α d〉〈edα c|) = −1

2

[
Γ+

1 + Γ−1 + Γ+
N + Γ−N

]
ρα32 |ec α d〉〈edα c| ,
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where Γ±1 = ‖u1 + iu2‖2 γ±1 and Γ±N = ‖v1 + iv2‖2 γ±N . (The above Γ±i slightly differ
from the constants in Section 6.1). Therefore the invariant state condition L∗(ρ) = 0
implies ρα23 = ρα32 = 0. We can now just consider the reduced dynamics on diagonal
elements of pαB(h)pα, given by

L∗ =


−(Γ−1 + Γ−N) Γ−1 Γ−N 0

Γ+
1 −(Γ+

1 + Γ−N) 0 Γ−N
Γ+
N 0 −(Γ+

N + Γ−1 ) Γ−1
0 Γ+

N Γ+
1 −(Γ+

N + Γ+
1 )

 ,

The unique invariant law for the time-continuous Markov chain generated by the
above matrix is

π = Z−1
[
1, e2Jzβ1 , e2Jzβ2 , e2Jz(β1+β2)

]
,

where Z−1 is a normalization constant that is independent of u, v and is the same for
all α. Therefore the unique T -invariant state supported on hα is

ρα = Z−1
(
|ecαc〉〈ecαc|+ e2Jzβ1 |edαc〉〈edαc|

+ e2Jzβ2 |ecα d〉〈ecα d|+ e2Jz(β1+β2) |edα d〉〈edα d|
)
.

Recalling (6.26) we can now write any invariant state for the semigroup T .
We can now evaluate the energy flow trρL1(HS) via the expression

L1(HS) =
∑
ω∈B+

ω
(
γ+

1,ωD1D
∗
1 − γ−1,ωD∗1D1

)
= 2Jz

(
γ+

1 D1D
∗
1 − γ−1 D∗1D1

)
that, together with the formula for ρα, yields

Z trρL1(HS) = Z tr
∑

α∈{−1,1}N−2

λαραL1(HS)

=
∑

α∈{−1,1}N−2

2Jzλα
(
γ+

1 eβ1ω + γ+
1 e(β1+β2)ω − γ−1 eβ2ω − γ−1

)
= 0

Remark 6.19. ForN = 2, it can be shown by direct computation that the energy current
is strictly positive. Indeed, because of low dimensionality the ends of the chain can
interact directly.
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