
Relationship between attenuation
and phase delay due to rain in the
10-100 GHz frequency range

Tesi di Laurea Magistrale in
Space Engineering - Ingegneria Aerospaziale

Author: Salim ABBOUDI

Student ID: 963735
Advisor: Prof. Lorenzo Luini

Academic Year: 2021-2022



i

Abstract

The aim of this dissertation is to present an analytical relationship linking attenuation to
phase delay due to rain based on a statistical model of the horizontal rain rate structure
-EXCELL and depending on the link parameters.

The EXCELL model constitutes a simple but solid model to represent the rain structure:
by simulating the different scenarios between the station and the satellite, and using a
combination of exponential cells, results can be used to derive the fitting relationship
between phase delay and attenuation.

This relationship is investigated to derive an analytical global model linking attenuation
to phase delay along the path as a function of three main parameters : frequency, projec-
tion of the slant path on the ground LH involving the rain height and the elevation angle
θ and finally µ value characterising the gamma drop size distribution

Keywords: EXCELL, attenuation, phase delay, frequency, horizontal slant path, drop
size distribution



Abstract in lingua italiana

Lo scopo di questa tesi è presentare una relazione analitica che lega l’attenuazione al ri-
tardo di fase dovuto alla pioggia, basata su un modello statistico della struttura orizzontale
del tasso di pioggia -EXCELL e dipendente dai parametri del collegamento. guida

Il modello EXCELL costituisce un modello semplice ma solido per rappresentare la strut-
tura della pioggia: simulando i diversi scenari tra la stazione e il satellite e utilizzando
una combinazione di celle esponenziali, i risultati possono essere utilizzati per ricavare la
relazione di adattamento tra ritardo di fase e attenuazione.

Questa relazione viene studiata per ricavare un modello analitico globale che collega
l’attenuazione al ritardo di fase lungo il percorso in funzione di tre parametri principali:
la frequenza, la proiezione del percorso obliquo sul terreno LH che coinvolge l’altezza della
pioggia e l’angolo di elevazione θ e infine il valore µ che caratterizza la distribuzione delle
dimensioni delle gocce gamma.

Parole chiave: attenuazione , ritardo di fase, frequenza, percorso obliquo orizzontale,
distribuzione delle dimensioni delle gocce
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Introduction

Shifting to new high frequency bands typically above 10 GHz like Ka, Q or even V bands
has became recently vital to comply with the increasing demands in high bandwidth,
data rate and availability but more importantly to overcome the lower frequency bands
’s crowding, the next future wireless telecommunications systems are expected to provide
reel time multimedia availability to meet with ever increasing customer services [18]. How-
ever the higher frequencies are considerably affected by rainfall; attenuation and phase
delay are major aspects putting in jeopardy the user requirements meeting, therefore it is
necessary to mitigate rain attenuation to ensure the quality of the link, to this purpose,
dynamic attenuation mitigation methods or fade mitigation techniques(FMT)[2] are im-
plemented alongside attenuation prediction models to predict the projected attenuation
of the link. Many studies have been conducted on this issue worldwide,where by investi-
gating geographically distributed locations, we can develop and analyze rain attenuation
models applicable over a wide frequency range, apply FMT first, plan the link budget and
finally design the system ensuring the best quality for the service.
It was shown that rain attenuation could reduce the throughput of a link compared to
sunny weather conditions [8], likely by deploying an appropriate rain attenuation model,
even in the rain, a terrestrial link’s throughput can be kept unchanged compared to a case
without deploying any FMT and with the condition that other parts are usually working,
an appropriate model requires the collection of factors impacting attenuation like path
length, frequency, elevation angle, polarisation angle, rain drop size distribution (DSD)...
Thus, rain attenuation models play a significant role in the FMT operation in a transmis-
sion system, the reader can find in [19] a holistic and critical review of 18 well-known rain
attenuation prediction models assessed,classified,evaluated,compared, and summarized .
At high frequencies the most serious problems in system design come from attenuation,
depolarization and scattering interference by precipitation particles along the radio path.
The statistical description of these effects, which is needed by system engineers, can be
obtained by two different approaches: direct measurements of the quantities of interest
or their evaluation through simulations or models taking into account the characteristics
of precipitation. Since Radar measured data are not always available ,the second reason
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behind developing rainfall models is to aggregate those characteristics and build a suitable
rain framework capable of escaping the necessity of radar measurements.

Several measurements and modeling of rain attenuation exist in the literature, and [19]
summarizes the majority of models that have been used, this abundance unlikely is faced
by a rarity of phase delay models, the reason why deriving a relationship linking the latter
to attenuation is crucial as a solid baseline to extend the model for several sites, thus with
reference to [14] where an analytical model is developed based on the synthetic storm
technique(SST), the SST can generate rain attenuation and phase delay (or phase) time
series at any frequency and polarization, for any slant path above about 10 degrees, at
any site. A synthetic storm is obtained by converting a rain rate time series, recorded at a
point by a rain gauge, to a rain rate space series along a line, by using an estimate of the
storm translation speed to transform time to distance, .This thesis work uses therefore the
EXCELL model [5] to establish a similar analytical relationship, but includes moreover
the drop size distribution as one of its parameters.

EXCELL, unlike the other radar-measured ground rain models, is used to devise and as-
sess its use in some of the future telecommunication applications. The model is based on
cells of exponential profile (which is shown to reproduce best the point rain rate cumula-
tive distribution function CDF); both rotational and bi axial symmetries are considered
for the horizontal cross sections.

Past works have shown that the relationship between the specific rain attenuation γR in
dB/km and the rain rate (R) can be modelled using a simple power-law expression [13].
The same is valid for the relationship between the phase shift φR in degrees/km and rain
rate (R).

The EXCELL model was then used to calculate both attenuation and phase delay and
dissect their relationship dependency on the link main parameters : frequency- DSD- rain
height- elevation angle, the last two parameters were combined in a new variable: the
projection of the slant path on the ground, which is the key parameter for a horizontal
rain rate profile (EXCELL).

Notwithstanding the few studies on rain attenuation and phase delay conducted in the
past, no comprehensive models are available to describe analytically the specific attenu-
ation due to rain and phase delay relationship using a physical model EXCELL and as a
function of frequency, horizontal path and different DSDs.
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This work aims then at filling the gap in the literature by presenting an analytical model
for the attenuation and delay due to rain relationship as a function of different drop
size distributions in the 10-100 GHz range. The procedure analyzes at first different
parameters affecting attenuation and phase delay, then once identified, the attenuation-
phase delay data is fitted with an analytical model depending on three main parameters.
In order to compute its error ,two different approach were used, once is numerical and the
other is statistical using the cumulative distributed function generated considering the
SC-EXCELL given site and the given parameters. The model is tuned iteratively until its
error is accepted. Finallly, the final model found is compared to Matricciani’s one [15].
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1| Effect Of Rain On

Telecommunications Systems

To be successful, a satellite service must be competitive with a terrestrial alternative if
one is available. The level of service must equal or exceed the terrestrial service at a
comparable cost if the satellite solution is to gain acceptance among potential customers.
When there are two alternatives, the choice of a satellite system will involve considera-
tions of cost, the amount of user equipment, ease of use and reliability. For example, a
potential broadband customer would have an expectation of an affordable subscription
rate, convenient installation, superior performance and high availability. One of the fac-
tors that affects availability in a satellite communication link is rain.An electromagnetic
wave, propagating in rainy conditions is affected in three different ways :

• The wave is attenuated

• The wave polarisation is changed

Both mechanisms can be combined simultaneously causing a degradation in the received
signal quality. At C-band (4-8 GHz ) the effects are minor and at Ku-band(11-20 GHz),
while they are noticeable, can be accommodated. But at higher frequencies, such as Ka-
band (27-40 GHz) or V-band (40-70 GHz), the degradation can be so great that it simply
cannot be compensated for to reach the level of availability usually expected for lower
frequencies.

1.1. Attenuation

The first, and most well known, effect of rain is that it attenuates the signal. The atten-
uation is caused by the scattering and absorption of electromagnetic waves by drops of
liquid water [16]. The scattering diffuses the signal, while absorption involves the pen-
etration of the wave within the drops, with following dissipation of the EM energy into
heat. Absorption increases the molecular energy, corresponding to a slight increase in
temperature, and results in an equivalent loss of signal energy. Attenuation is negligible
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for snow or ice crystals (up to the W band), in which the molecules are tightly bound and
do not interact with the waves.

The attenuation increases as the wavelength approaches the size of a typical raindrop,
which is about 1.5 millimeters. Wavelength in a hydrometeor depends on the phase
constant β

λ =
2π

β

The propagation constant γ depends also on the attenuation constant α

γ = α + iβ (1.1)

We recall the Helmolthz equation for the electric field E, derived from Maxwell’s equations
in a lossy medium :

∇2E = γ2E (1.2)

Where :

γ2 = i
2π

f
µ(σ + i

2π

f
ϵ) (1.3)

f is the frequency, σ is the medium conductivity, ϵ is medium’s permittivity and µ is
the medium’s permeability.eq. (1.3) depicts the relationship between the wavelength and
frequency and for example, at the C-band downlink frequency of 4 GHz, the wavelength
is 75 millimeters. The wavelength is thus 50 times larger than a raindrop and the signal
passes through the rain with relatively small attenuation. At the Ku-band downlink
frequency of 12 GHz, the wavelength is 25 millimeters. Again, the wavelength is much
greater than the size of a raindrop, although not as much as at C-band. At Ka-band,
with a downlink frequency of 20 GHz, the wavelength is 15 millimeters and at V-band,
at a downlink frequency of 40 GHz, it is only 7.5 millimeters. At these frequencies, the
wavelength and raindrop size are comparable and the attenuation is quite large.

Considerable research has been carried out to model rain attenuation mathematically and
to characterize rainfall throughout the world. For example, experimental measurement
and methods of analysis are discussed in the book Radiowave Propagation in Satellite
Communications by Louis J. Ippolito [9]. The standard method of representing rain
attenuation is through an integration along the slant path L of an equation of the form

A =

∫
x,y∈L

aRb(x, y) (1.4)
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which can be simplified as:

A = aRbLequ (1.5)

where A is the rain attenuation in decibels (dB), R is the rain rate in millimeters per
hour, Lequ is an equivalent path length (km), and a and b are empirical coefficients that
depend on frequency, elevation angle... The equivalent path length depends on the angle
of elevation to the satellite, the height of the rain layer, and the latitude of the earth
station.

The rain rate enters into this equation because it is a measure of the average size of the
raindrops. When the rain rate increases, i.e. it rains harder, the raindrops are larger and
thus there is more attenuation. Rain models differ principally in the way the effective
path length L is calculated. Two authoritative rain models that are widely used are the
Crane model and the ITU-R (CCIR) model.

The original Crane model is the global model. A revision of this model that accounts
for both the dense center and fringe area of a rain cell is the so-called two component
model. These models are discussed in detail in the book Electromagnetic Wave Propaga-
tion Through Rain by Robert K. Crane [7] which is accompanied by spreadsheet add-in
software.

In the design of any engineering system, it is impossible to guarantee the performance
under every conceivable condition. One sets reasonable limits based on the conditions that
are expected to occur at a given level of probability. For example, a bridge is designed
to withstand loads and stresses that are expected to occur in normal operation and to
withstand the forces of wind and ground movement that are most likely to be encountered.
But even the best bridge design cannot compensate for a tornado or an earthquake of
unusual strength.

Similarly, in the design of a satellite communications link one includes margin to compen-
sate for the effects of rain at a given level of availability. The statistical characterization
of rain begins by dividing the world into rain climate zones. Within each zone, the max-
imum rain rate for a given probability is determined from actual meteorological data
accumulated over many years.

For a digital signal, the required signal power is determined by the bit rate, the bit error
rate, the method of coding, and the method of modulation. The performance objective is
specified by the bit error rate. If the maximum allowed rain rate is exceeded, the bit error
rate would increase at the nominal bit rate, or else the bit rate would have to decrease to
maintain the required bit error rate.
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At C-band, the rain attenuation for an elevation angle of 40 degrees and a maximum rain
rate of 22.3 mm/h in Washington, DC is 0.1 dB. This is practically a negligible effect.
At Ku-band, under the same conditions, the attenuation is 4.5 dB. This is a large but
manageable contribution to the link budget. However, at the Ka-band downlink frequency
of 20 GHz, the attenuation is 12.2 dB. This would be a significant effect, requiring over
16 times the power called for in clear sky conditions. At the uplink frequency of 30
GHz, the attenuation would be 23.5 dB, requiring over 200 times the power. At the V-
band downlink frequency of 40 GHz, the attenuation would be 34.6 dB and at the uplink
frequency of 50 GHz the attenuation would be 43.7 GHz. These losses simply cannot be
accommodated and thus the availability would be much less.

In practice, these high rain attenuations are sometimes avoided by using site diversity,
in which two widely separated earth stations are used. The probability that both earth
stations are within the same area of rain concentration is small. Alternatively, a portion of
spectrum in a lower frequency band may be used where needed. For example, a hybrid Ka-
band/Ku-band system might be designed in which Ka-band provides plentiful spectrum
in regions of clear weather, but Ku-band is allocated to regions in which the rain margin
at Ka-band is exceeded

1.2. Depolarisation

Rain also changes the polarization of the signal somewhat. Due to the resistance of
the air, a falling raindrop assumes the shape of an oblate spheroid. Wind and other
dynamic forces cause the raindrop to be rotated at a statistical distribution of angles.
Consequently, the transmission path length through the raindrop is different for different
signal polarizations and the polarization of the received signal is altered.

For a satellite communication system with dual linear polarizations, the change in polar-
ization has two effects. First, there is a loss in the signal strength because of misalignment
of the antenna relative to the clear sky orientation given by

L = 20log(cos(t)) (1.6)

where t is the tilt angle relative to the polarization direction induced by the rain. Second,
there is additional interference noise due to the admission of a portion of the signal in the
opposite polarization. The average canting angle with respect to the local horizon can be
taken to be 25 degrees.
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It is an interesting property of earth-satellite geometry that a linearly polarized signal is
not oriented with the local horizontal and vertical directions, even though a horizontally
polarized signal is parallel to the equatorial plane and a vertically polarized signal is
perpendicular to the equatorial plane when transmitted from the satellite. Thus the optics
of the earth station antenna must be correctly rotated in order to attain the appropriate
polarization alignment with the satellite. The earth station feed rotation angle q is :

tan(q) = G
sinδl

tanf
(1.7)

where f is the latitude of the earth station, δl is the difference in longitude, and G is a
geometrical factor that for a geostationary satellite is nearly unity. For example, in Milan
, at a latitude of 45.46 degrees, the antenna polarization must be rotated by about 9.7
degrees if the difference in longitude between the earth station and satellite is 10 degrees.

Since in this thesis work we focus only on the first aspect i.e attenuation and phase
delay , in the next subsection we will introduce some theoretical aspects to investigate
the reason behind both attenuation and phase delay .

1.3. Specific Attenuation and phase delay

When a plane electromagnetic wave with polarization vector ê is incident on a raindrop
at the origin, it induces a transmitted field in the interior of the drop and a scattered field.
Assuming that the incident wave with unit amplitude and frequency f is propagating in
direction K̂1, the scattered electric field, Es, toward direction K̂2 may be written in the
far-field region as:

Es = f
(
K̂1, K̂2

) 1

r
exp (−γ0r) (1.8)

where vector function f
(
K̂1, K̂2

)
, often referred to as "scattering amplitude", denotes

the amplitude, phase, and the state of polarization of the scattered field, r is the distance
from the origin to the observation point, and γ0 is the free-space propagation constant
defined by i2πf/c0, where c0 is the speed of light in free space. An exp(+i2πft) time
convention is assumed and is suppressed.

The propagation constant, γ, in a space containing many raindrops is given by :

γ = γ0 +
2π

γ0

∫
D

ê · f
(
K̂1, K̂1, D

)
n(D)dD (1.9)
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where f
(
K̂1, K̂1, D

)
denotes the forward scattering amplitude of a raindrop with diameter

D, and n(D)dD is the number of drops per cubic meter in space with diameter D in range
dD and is a function of rainfall rate R. Since the propagation factor in a rain medium is
exp(−γr), the real ℜ and imaginary part ℑ of γ are respectively responsible for attenuation
and phase shift of the wave propagating in the rain medium.
The specific attenuation due to rain γR, and specific phase delay due to rain φR, are then
given in dB/km and deg/km and can written

γR = ℜ(γ) = 2π ℜ(
∫
D

ê · f
(
K̂1, K̂1, D

)
γ0

n(D)dD) (1.10)

φR = ℑ(γ) = 2πf

c
+ 2π ℑ(

∫
D

ê · f
(
K̂1, K̂1, D

)
γ0

n(D)dD) (1.11)

Hence eqs. (1.10) and (1.11) give theoretical hints on the specific attenuation and specific
phase delay calculations , further explanations can be found in [17].
Drop-size distribution n(D) can be obtained by measuring the size distribution of rain-
drops reaching the ground, and converting it to a distribution in space with the aid of
the fall velocity of raindrops. The drop-size distribution is a function of the rainfall rate,
and depends on rain types. Although the measurements were made more than sixty years
ago, the distribution by Laws and Parsons, among others, is considered to be typical of
the average distribution both for widespread rain (in the lower rainfall-rate range) and
for convective rainfall (in the higher rainfall-rate range).Nowadays measurements of drop
sizes are extrapolated with enhanced distributions like the Gamma distribution or lognor-
mal distribution , These distributions gave a more accurate description of the real drop
size distribution. Especially they solve the former problem of the overestimation of the
number of small drops with exponential approaches. Disdrometers measure DSDs of hy-
drometeors during a rain event in real time. Modern systems operate in the optical regime
(Rogers 1976). Furthermore, since the terminal velocity varies with drop size, Doppler
spectra of electromagnetic signals show the size distribution by applying this relation of
drop radius to terminal velocity
[13] provides an empirical procedure based on the approximate relation between γ (dB/km)
and rain rate R (mm/h), which is fitted by L-P distribution, the relationship between spe-
cific attenuation γ and rain rate R with a power-law is:

γR = kRα (1.12)
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Phase delay results mainly from the imaginary part of the propagation constant ; eq. (1.11)
,the phase delay can be inherently translated to a delay in picoseconds , which is the typical
order of magnitude for terrestrial link delay due to atmospheric propagation .
[13] provides similarly an empirical procedure based on the approximate relation between
φR (deg/km) and rain rate R (mm/h), which is fitted by L-P distribution, the relationship
between the phase P and rain rate R with a power-law is:

φR = hRβ (1.13)

1.4. Specific phase delay and attenuation parameters

In eqs. (1.12) and (1.13) there are 4 coefficients: k, α, h, β, since attenuation and delay
are simply the integration of their specific quantities along the slant path, and since our
goal is to link attenuation to delay, it is vital to visualize how the coefficients k, α, h, β
vary with frequency f , elevation angle θ of the link...
In fact, this work was developed in the thesis An analytical model for the attenuation
and phase delay due to rain in the 6-100 GHz range by Guanjun Li, [11]. Therefore it’s
interesting to present some of its important results.
This study presents the analytical model as a function of different drop size distribution
(DSDs) in the 6-100 GHz range. The values of specific attenuation and phase delay for
horizontal and vertical polarizations are obtained using the T-Matrix method to calculate
the rain drop scattering amplitude and considering different Gamma DSDs. For each
frequency, elevation angle and DSD type, the results obtained for various rain rates are
fitted using the customary power law expression and, finally, such coefficients are studied
as a function of frequency to provide a fully analytical model receiving as input the
frequency and the DSD type.
Values of the coefficients k and α are determined as function of frequency, f(GHz), ranging
from 1 to 1000GHz. In recommendation ITU-R P.838-3 [10], coefficients k and α are
calculated by vertical and horizontal polarizations, the formulas are

log10 k =
4∑

j=1

ajk exp

[
−
(
log10 f − bjk

cjk

)2
]
+mk log10 f + ck (1.14)

α =
5∑

j=1

ajα exp

[
−
(
log10 f − bjα

cjα

)2
]
+mα log10 f + cα (1.15)
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Similarly for h and β we can write :

log10 h =
4∑

j=1

ajh exp

[
−
(
log10 f − bjh

cjh

)2
]
+mh log10 f + ch (1.16)

β =
5∑

j=1

ajβ exp

[
−
(
log10 f − bjβ

cjβ

)2
]
+mβ log10 f + cβ (1.17)

where f is frequency (GHz), k is either kH or kV , α is either aH or aV .for horizontal and
vertical polarisations respectively,
The coefficients ajk, bjk, cjk,mk, ck, ajα, bjα, cjα,mα, cα, ajh, bjh, cjh,mh, ch, ajβ, bjβ, cjβ,mβ, cβ

are constants that depend on the drop size distribution . The latter is a gamma distribu-
tion whose main parameter is µ varying in the range {-3,-2,...8} The coefficients kH and
kV , aH and aV can be converted into k and α using the following equations:

k =
[kH + kV + (kH − kV ) cos

2 θ cos 2ψ]

2

α =
[kHαH + kV αV + (kHαH − kV αV ) cos

2 θ cos 2ψ]

2k

(1.18)

Similarly , the coefficients hH and V , βH and βV can be converted into m and β

h =
[hH + hV + (hH − hV ) cos

2 θ cos 2ψ]

2

β =
[hHβH + hV βV + (hHβH − hV βV ) cos

2 θ cos 2ψ]

2h

(1.19)

Table 1.1: Coefficients in horizontal and vertical polarization

µ f(GHz) αH αV kH kV βH βV mH mV

−3 10 1.18636 1.10570 0.01912 0.01687 0.81640 0.77993 1.55130 1.50701
0 10 1.21836 1.17192 0.01158 0.01161 0.88791 0.85845 1.24040 1.23360
3 10 1.13989 1.12094 0.01112 0.01044 0.92987 0.91704 1.15828 1.13195
5 10 1.10068 1.08864 0.01084 0.01000 0.94308 0.93444 1.14611 1.11340
8 10 1.06484 1.05692 0.01053 0.00971 0.95431 0.94903 1.14289 1.10719

−3 30 0.94778 0.92119 0.19791 0.17887 0.65309 0.67604 4.80198 4.54586
0 30 1.02064 0.99834 0.18239 0.17000 0.73860 0.74919 4.44365 4.18556
3 30 1.06418 1.04816 0.15987 0.14987 0.86380 0.86262 3.84752 3.68708
5 30 1.06467 1.05229 0.15338 0.14386 0.90231 0.89895 3.70679 3.56385
8 30 1.05809 1.04842 0.14830 0.13907 0.93202 0.92839 3.62167 3.48999
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Where θ is the link elevation angle and ψ is the wave polarisation angle. Hence, the
coefficients k, α, h, β depend mainly on frequency, elevation angle, polarisation angle, and
the parameter µ characterizing the gamma drop size distribution which is detailed in
section 3.1.8. The table 1.1 shows vertical and horizontal coefficients variation with the
parameter µ, for 2 frequencies: 10 GHz and 30 GHz

Figure 1.1: kH Variation with frequency

Figure 1.2: kV Variation with frequency
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Figure 1.3: αH Variation with frequency

Figure 1.4: αV Variation with frequency

It’s also interesting to present the dependency of these coefficients, in order to avoid being
cumbersome, we plot only the frequency dependency of k, α in horizontal and polarisations
figs. 1.1 to 1.4, but the reader is addressed to [11] for further plots and elaborations. For
each plot, we can see how the value µ changes the results, the ITU-R 838-3 model[10] has
been plotted also for comparisons.
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1.5. Rain Mitigation Techniques

As mentioned in the introduction, rain effect on telecommunications can be sometimes
critical, the reason why developing mitigation techniques is crucial for better services.
Rain loss at Ka-band can be mitigated, but it cannot be totally compensated. Few
commons techniques are used :

• One technique is site diversity. Two earth stations separated by a distance of about
15 km to 30 km and connected by a terrestrial link can be used. It is unlikely that
both earth stations would experience the same rain intensity simultaneously.

• Another technique is to reserve bandwidth to permit more robust Forward error
correction coding that will maintain the same bit error rate at the specified bit rate
at a lower carrier power. In addition, the bit rate itself may be lowered below the
nominal value during periods of heavy rain.

• Another possibility is the selective allocation of an alternative frequency, such as
Ku-band, as needed in areas encountering rain at a particular time. The rain degra-
dation at Ku-band could be within the allocated margin even though the margin
was exceeded at Ka-band.

The reader is addressed to [12] for further details on rain mitigation techniques .
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2| Rainfall Models

Rain rate is the most familiar measure for rain. This value is both made public by the
weather services and used by scientists of weather-related subjects.
table 2.1 classifies different rain rates together with their common terms

Table 2.1: Rain categories and corresponding rates in mm/h.

Rain Rate
0.25 Drizzle
1 Light Rain
4 Moderate Rain
16 Heavy Rain
100 Extremely Heavy Rain

A lot of work in the literature has been dedicated to developing rain attenuation models
, these models no matter how different they are , can be classified into 5 categories

• Empirical Model : The model is based on experimental data observations rather
than input-output relationships that can be mathematically described. The model
is then classified as an empirical category

• Physical Model : The physical model is based on some of the similarities between
the rain attenuation model’s formulation and the physical structure of rain events

• Statistical Model : This approach is based on statistical weather and infrastruc-
tural data analysis, and the final model is built as a result of regression analysis in
most cases.

• Fade Slope Model : In the fade slope model, the slope of attenuation from the rain
attenuation versus time data was developed with a particular experimental setup.
Later, these data were used to predict rain attenuation.

• Optimization-based Model ; In this type of model, the input parameters of
some of the other factors that affect the rain attenuation are developed through
optimization (e.g., minimum error value) process
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The Models considered in this thesis work belong to physically based/statistical models ,
The method is based on a recently devised statistical model of the rain horizontal structure
[4], whose parameters can be determined on the basis of the local statistical distribution of
the point rainfall intensity. A test of the ability of this method in predicting attenuation
statistics is performed using data collected in Europe with the satellites SIRIO and OTS
(COST 205, 1985). The excellent results obtained encourage the application of the model
to the statistical prediction of other parameters pertaining to propagation

2.1. EXCELL

The parameters of the EXCELL model [4],[5] for the horizontal rain structure can be
determined based on the local statistical distribution of the point rainfall intensity. The
model was validated using the COST 205, 1985 database. This model consists of several
rain cell structures, collectively refereed to as kernels. In such a rain cell, the rainfall rate
at a distance l from the center is given by:

R = Rpeak e
−l/l0 . (2.1)

Where Rpeak is the cell’s peak rain rate, and l0 is an equivalent radius i.e for which the
rain rate decreases by a factor of e−1.
The probability of attenuation equation:

P (A) =

∫ ∞

RE

E ·
[
0.5 ln2 (Rpeak /RE) + r ln (Rpeak /RE)

]
·
[
−P (Rp)

′′′] d (lnRpeak ) (2.2)

Where r = 1/4πl̄0 Rain distribution can be modeled as:

P (R) = P0 ln
n

(
R∗

R

)
. (2.3)

A simplified version of the model with the point rain intensity at point (x, y) can be
defined ine biaxial case as

R(x, y) = RMe
−
√
( x
lx
)
2
+
(

y
ly

)2

(2.4)

along a monoaxial cell radius:

R(x, y) = RMe
−
√

x2+y2

l0 . (2.5)
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In the sense of the rain attenuation model, this model does not provide attenuation.
However, it facilitates the generation of a synthetic rain rate from which attenuation ,
phase delay can be predicted using a suitable prediction model [13] . There are critics that
the exponential rain peak is not present in nature, and the model does not differentiate
between stratiform and convective rain.

2.2. SC Excell

An upgraded version of the exponential cell (EXCELL) rain attenuation model called
sc-Excell was developped to predict attenuation through a cellular representation of pre-
cipitation, but, in addition, is able to discriminate between stratiform and convective rain
by means of an embedded algorithm. Accordingly, two separate physical rain heights,
derived from the ERA-15 database, are used to calculate stratiform and convective rain
attenuation and.Eventually, the predicted cumulative distribution function (CDF) of ex-
cess attenuation is the combination of the contributions due to stratiform and convective
precipitation types. The complete procedure for estimating attenuation due to rain in the
sc-excell framework includes the following steps:

1. The yearly cumulative distribution function (CCDF)P (R) of the rain rate can be
discriminate between stratiform and convective rain, the equation is given by:

P (R)year = P (R)str + P (R)cnv (2.6)

2. The bright band effect should be considered in stratiform rain, from the calculation
of [6], the average equivalent bright band height, HBB is:

HBB(f) = 4.58e−0.0675f + 0.51( km) (2.7)

3. The ERA-15 database, which is provided by the ECMWF(European Centre of
Medium-Range Weather Forecast), derives the new mean physical rain height. The
monthly mean values of the 0◦C isothermal height of stratiform (hstr) and convective
(hcnv) are calculated.

4. Considering the melting layer, the effective rain height of stratiform is defined:

HstrRain = hstr +HBB(f)(km) (2.8)
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5. The effective convective rain height considered increasing 20% by the value of hcnv,
which defined as:

Hcnv Rain = 1.2hcnv( km) (2.9)

6. Through the EXCELL model, the stratiform and convective cells contribution to
attenuation PC(A)str and PC(A)cnv can be estimated by using P (R)str, HstrRain and
P (R)cnv, Hcnv Rain respectively.

7. Add the plateau contribution to attenuation for stratiform and convective attenua-
tion CDFs respectively:

P (A)str = PC(A)str + PP (A)str (2.10)

P (A)cnv = PC(A)cnv + PP (A)cnv (2.11)

8. Summing the probability values of stratiform and convective contributions:

P (A)tot = P (A)str + P (A)cnv (2.12)

starting from new analytical model in this study, which provides the specific phase in
terms of deg /km, the SC EXCELL model will give the phase ϕ in deg by integrating
along the path. Conversion from phase ϕ in deg to the phase delay τ in picoseconds
is well explained in chapter 3
Note that the same procedure can be followed to derive the CDF of phase delay .

For further details and explanations , the reader is addressed to [6] on the SC EXCELL
model.

2.3. MultiEXCELL

MultiEXCELL, a new rainfall model oriented to the analysis of radio propagation impair-
ments which was developed on the basis of a comprehensive rain field database collected
by the weather radar sited in Spino d’Adda (Italy), Single rain cells are modeled by an an-
alytical exponential profile which best represents real single-peaked rain structures. The
rain cells’ probability of occurrence is analytically derived from the local rainfall statis-
tics. The spatial features of the rain field at midand large-scale are investigated through
their natural aggregative process. The clusters (aggregates) of cells are studied in terms
of distance between individual cells, number of cells per aggregate, and distance between
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aggregates. Finally, the fractional area covered by rain, on which the rainfall spatial corre-
lation strongly depends , is derived from radar data through the comparison with the same
quantity provided by global long-term numerical weather products. The MultiEXCELL
procedure for the generation of spatially correlated synthetic rain fields is duly presented
and the model’s accurateness is preliminary assessed against the available radar dataset.
Although MultiEXCELL is mainly oriented to propagation-related applications, its cel-
lular approach may reveal useful also in hydrology, for the prediction/management of
water resources, and in meteorology, for the nowcasting of the temporal evolution of rain
structures. The MultiEXCELL model assumes that the exponential profile has a global
validity, what changes from site to site is the rain cells’ probability of occurrence, so that,
for instance, in tropical areas, convective cells prevail over stratiform ones, whereas in
temperate sites, their relative occurrence is more balanced. Accordingly, the following
relationship expresses the superposition of the cells’ contributions to generate the P (R)
and links the rain cells’ probability of occurrence, N (RM , ρ0), to the local rainfall statistic
(for clarity’s sake, although N (RM , ρ0) is identified as a probability, its dimensions are[
1/

(
km2 · km ·mm/h

])
P (R) =

∫ ∞

R

∫ b

a

A (RM , ρ0, R)N (RM , ρ0) dρ0dRM

RM ≥ 5 mm/h

(2.13)

where A (RM , ρ0, R) = π [ρ0 ln (RM/R)]
2 is the area of the exponential cell derived from

eq. (3.2) The rain rate probability can be fitted into the following law :

P (R) = P0 ln
n

(
Ra +Rlow

R +Rlow

)
(2.14)

The probability of occurrence for a certain cell (RM , ρ0) is then deduced by inverting
eq. (2.13)

N (RM , ρ0) =− 1

π (ψm − ψM) exp (2σ2 (RM) + 2µ (RM))

× d3P (R)

d ln(R)3

∣∣∣∣
R=RM

· 1

ρ0σ (RM)
√
2π

× exp

[
−
(
ln (ρ0)− µ (RM)√

2σ (RM)

)2
] (2.15)
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where

ψm = ψ

[
µ (RM) + 2σ2 (RM)− ln(a)√

2σ (RM)

]
and

ψM = ψ

[
µ (RM) + 2σ2 (RM)− ln(b)√

2σ (RM)

] (2.16)

For further details and explanations , the reader is addressed to[12] on the multi-EXCELL
model

fig. 2.1 shows a typical rain field observed by the radar located at Spino d’Adda: the inner
ellipse on the left identifies a single rain cell, the two small circles in the bottom right
corner indicate two of the cells pertaining to the same aggregate, and, finally, the large
ellipses delimit two aggregates. It appears from the figure that rain is organized on three
spatial scales

• The small-scale (up to approximately 20 km) which involves single rain cells

• The mid-scale (roughly from 20 km to 50 km) that is related to how cells cluster
together to form an aggregate, and finally

• The large-scale (from 50 km to about 300 km) which is related to the mutual position
of the aggregates on the map.

,

Figure 2.1: Aggregates of rain cells in the multi Ex-cell
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Attenuation And Delay

This chapter defines the core of the thesis work, for the seek of clarity, we present the
chapter map in fig. 3.1. At first, we will exploit the EXCELL model to generate some data
for both attenuation and phase delay. The next step is to see how does their relationship
change varying some parameters like: frequency and elevation angle, once identified, the
main features are used to fit the data generated with an analytical formula. The error
of the model is computed using the data used in the fitting, and the data emerging from
the SC-EXCELL model based on the measured ccdfs of attenuation and delay, the delay-
attenuation relationship is derived from an iterative process until the the error is accepted
.

Figure 3.1: Map of the Chapter
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3.1. Parameters Identification

3.1.1. EXCELL generation

In this section we generate a numerical representation of the analytical profile in fig. 3.2,
the exponential cell is characterized by 2 parametersRM and ρ0 representing the maximum
rain rate inside the cell and its equivalent radius i.e the radius for which the rain rate
decreases by a factor of e−1. The rain rate profile inside one cell can be expressed as :

R(ρ) = RM exp [−ρ/ρ0] . (3.1)

The radius of the cell is constrained by a threshold value Rth since the most commonly
accepted definition of rain cell is “the continuous area inside which the rain rate is higher
than a given threshold ", we fix then this threshold to Rth = 0.5mm/h. The radius of the
cell can be written :

Rcell = ρ0 log(
RM

Rth

) (3.2)

Working in the cartesian framework, we can write the cell radius as :

ρ =
√
x2 + y2 (3.3)

Note that the coordinate x and y have to be sampled in accordance to the radius of
the cell because smaller cells entail a refined sampling to explicitly exhibit their variation
on the map . For this reason it has been decided that a sampling pace of rcell/30 ( sec-
tion 3.1.2 ) is suitable for the cells generation .

Remarks

• In fig. 3.2, the rain cell modeling clearly depicts the exponential profile for a value
of RM = 10mm/h and an effective radius of ρ0 = 5km we get a cell radius of 15
Km chosen to not exceed the boundary Rth .

• We can see also that the sampling distance gives a smooth plot for the cell’s rain
rate

• Note that the rain rate is stored as a 2d matrix and since the exponential profile
is rotational ( invariant ) with respect to the azimuth , the path attenuation and
delay are thereby be independent on the azimuth angle
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Figure 3.2: Excell rain rate Profile

3.1.2. Attenuation And delay

[13] provides an empirical procedure based on the approximate relation between γ (dB/km)
and rain rate R (mm/h), which is fitted by Laws and Parsons (L-P) distribution, the re-
lationship between specific attenuation γ and rain rate R is described with a power law:

γR = kRα (3.4)

Similarly, an empirical procedure based on the approximate relation between φR (deg/km)
and rain rate R (mm/h) can be used, which is fitted by L-P distribution, the relationship
between the phase and rain rate R with a power-law is:

φR = hRβ (3.5)

Finally, the phase can be linked to the phase delay in picoseconds and frequency f in GHz
through

τR =
1000

360f
φR (3.6)
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The attenuation along the slant path can be written as :

A =

∫
Slantpath

γR =

∫
Slantpath

kRα (3.7)

Whilst the delay can be written as

τ =
1000

360f

∫
Slantpath

φR =
1000

360f

∫
Slantpath

hRβ (3.8)

Let θ be the elevation angle of the link, HR the rain height, L the slant path , LH the
horizontal path length, from fig. 3.3 we can write :

tan(θ) =
HR

LH

cos(θ) =
LH

L
(3.9)

Since the EXCELL model hinges only on the horizontal variation on the path ( no de-
pendence on the height ), eqs. (3.7) and (3.8) can be written :

cos(θ)A =

∫
LH

γR =

∫
LH

kRα (3.10)

cos(θ)τ =
1000

360f

∫
LH

φR =
1000

360f

∫
LH

hRβ (3.11)

Remark : Since the goal is to find an analytical formula linking attenuation to phase
delay, and since the term cos(θ) is present for both , we can forget it henceforth.

Data Generation Refering to the map of this work: fig. 3.1, we will explain how we
generate the data i.e vector of attenuations and phase delays starting from the EXCELL
map of rain rates fig. 3.2, since this is a critical procedure and the most important one,
and for the seek of clarity we will present the general picture of the data generation .
In fact, in fig. 3.4 we can see the rotational profile of the EXCELL model, whose peak is
in the center,and cell radius covers the map dimension. Simulating two random positions
of the satellite and the station inside the EXCELL cell, we can perform integration along
their relative distance (horizontal path length LH) eqs. (3.10) and (3.11)
Thus, for a fixed LH , the one cell approach leads to a couple (τ, A). In order to simulate
all the scenarios, i.e all the possible LH between the ground station and the satellite , we
move the satellite mapping all the possible points in the map, for each scenario we get a
couple (τ, A), hence for each EXCELL map (RM , ρ0), we get a vector of attenuations and
phase delays that we can plot in a scatter plot fig. 3.6
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Figure 3.3: Sketch slant path and elevation angle

Figure 3.4: satellite and station positions inside the cell
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Space resolution effect The map resolution : dr is the space sampling distance used
to generate the rain rate map in fig. 3.2, in cartesian coordinates we choose the same
resolution for both x and y i.e :

dr = dx = dy (3.12)

The choice of the map resolution is critical since all the results and their accuracy depend
on this step , in order to first visualize its effect , we generate an EXCELL profile and a
link with the following properties

Cell properties Link properties
RM ρ0 rcell Rth f θ HR µ
[mm/h] [Km] [Km] [mm/h] [Ghz] [deg] [km] [—]
20 2 7.37 0.5 10 30 4 0

Table 3.1: One Cell and Link properties

Figure 3.5: Effect of the map resolutio dx
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Figure 3.6: One cell results

As we can notice ,fig. 3.5 shows the effect of the map resolution, in fact, for a sufficiently
small resolution results are smooth, while for the second case (dx = rcell/10) there are
some jumps in the probability levels.
Note that lower resolution dr means more calculations ( higher number of pixels ) but
we found that the best compromise between accuracy and time consumption is for a
resolution :

dr =
rcell
30

(3.13)

fig. 3.6 shows that with the chosen resolution, we get a good scattering plot that follows
the trend of a powerlaw .Recall that each point of this scatter plot corresponds to a certain
scenario ( relative distance between the station and the satellite but also its location within
the EXCELL map ) fig. 3.4
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Multiple cells generation The first curiosity that arises when generating a single cell
profile, and dissecting the given results, is whether the scatter plot τ = f(A) depends
on the couple (RM , ρ0) characterizing an EXCELL cell, which leads us to investigate the
multi cells approach . In order to do that, we conserve the link properties of table 3.1 but
this time we generate a grid 20x 20 of exponential cells where RM ∈ [15, 100] mm/h and
ρ0 ∈ [0.6, 20] Km, thus for a fixed horizontal path and for every couple (R(i)

M , ρ
(j)
0 ) we get

a certain scatter plot fig. 3.6. But this is only possible when :

HHor < r
(i,j)
cell = ρ

(i)
0 log(

R
(j)
M

Rth

) (3.14)

We recall also that for every r(i,j)cell the map generation is changed accordingly .

dr(i,j) = dx(i,j) = dy(i,j) =
r
(i,j)
cell

30
(3.15)

Now, following the same procedure explained in the previous section for the one cell
approach, but this time plotting all the plots together(for all 20x20 cells) we can see how
the curve changes slightly with each profile (R(i)

M , ρ
(j)
0 )

Figure 3.7: Multi-cell approach
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In fig. 3.7 the global trend is always a power law, for higher rain rates, we can see the
divergence of the plots for different cells. with reference to the chapter’s map fig. 3.1,
we are still in the data generation block, but as we can see in fig. 3.7, having data that
depends on 400 cells and involve many parameters is cumbersome, we decide then to fit
all of these scatter-plot with one single plot for two reasons :

1. Since the EXCELL model is used only to generate data for attenuation and delay,it
should not be a fitting parameter, thus we have to retain data that best represent
any scenario for the rainfall

2. By fitting all the cells with one single plot, i.e one single vector of attenuations + one
single vector of phase delays, we can first identify clearly the parameters changing
the plot and second, fit it easily to the main parameters.

3.1.3. Multi exponential cell fitting

As explained in the previous section, we are trying to fit all the 400 scatter plots with
a single plot that best represents the data, for this purpose we will use the least square
approach, we would like to present its theoretical milestones.

Least Square approach Least square method is the process of finding a regression line
or best-fitted line for any data set that is described by an equation. This method requires
reducing the sum of the squares of the residual parts of the points from the curve or line
and the trend of outcomes is found quantitatively. The method of curve fitting is seen
while regression analysis and the fitting equations to derive the curve is the least square
method. The objective consists of adjusting the parameters of a model function to best
fit a data set. A simple data set consists of n points (data pairs) (xi, yi) , i = 1, . . . , n,
where xi is an independent variable and yi is a dependent variable whose value is found by
observation. The model function has the form f(x,β), where m adjustable parameters are
held in the vector β. The goal is to find the parameter values for the model that "best"
fits the data. The fit of a model to a data point is measured by its residual, defined as the
difference between the observed value of the dependent variable and the value predicted
by the model:

ri = yi − f (xi,β) .

The least-squares method finds the optimal parameter values by minimizing the sum of
squared residuals

S =
n∑

i=1

r2i .
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An example of a model in two dimensions is that of the power law. the model function is
given by f(x,β) = β1x

β2 . The sum S is minimized then for

β1 =

∑n
i=1 (ln yi)− b

∑n
i=1 (lnxi)

n

β2 =
n
∑n

i=1 (lnxi ln yi)−
∑n

i=1 (lnxi)
∑n

i=1 (ln yi)

n
∑n

i=1 (lnxi)
2 − (

∑n
i=1 lnxi)

2

(3.16)

In Matlab , the command fitobject = fit(x,y,fitType) creates the fit to the data in x and
y with the model specified by fitType (power law in our case) has been used in this step .
Henceforth , all the 400 cells will be represented by the fitting curve fig. 3.8 that regardless

Figure 3.8: Multi-cell approach Fitting

the EXCELL profile , depends mainly on the horizontal path . We can also see that the
relation between attenuation and delay for the parameters f=10 GHz , θ=30 deg , µ=0 is

τ = 16.34A0.74 (3.17)

Which gives already an idea about the power law linking attenuation to phase delay.
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3.1.4. Parameters variation

In this section, we dissect the full range of parameters involved, in order to select the most
important ones (fig. 3.1). As explained in section 1.3 and since this thesis work uses the
analytical model developed in [11] for the coefficients k, α, h, β eqs. (3.6) and (3.7) The
full range of parameters potentially influencing the relationship τ = f(A) can be listed
below :

• Frequency f : used in [11]

• Elevation Angle θ used in [11]

• Rain HeightHR influencing attenuation and delay through LH eqs. (3.10) and (3.11)

• Gamma DSD parameter µ used in [11]

• Polarisation Angle ψ used in [11]

For each parameter, we generate data fixing all the other parameters and using the multi-
cell approach,we fit it as explained in the previous section, we plot finally the delay-
attenuation τ = f(A) scatter plot varying the parameter selected .

3.1.5. Frequency

Frequency,as explained in chapter 1, is a critical parameter on which attenuation and
delay intrinsically depend. In this thesis work frequencies are limited in the range 10-100
GHz. In order to depict this effect along frequency, we choose 3 frequencies 20, 50 and 90
GHz , we represent the cluster of the multi-cells curves and their fitting curve as well .

Comments

• Referring to fig. 3.9 we can first see that the frequency changes drastically the
coefficients a and b ( τ = aAb )

• As we discussed inchapter 1 , higher frequency leads to higher attenuation and lower
phase delay thanks to eq. (3.6)

• As frequency increases, the coefficient a tends to decrease so does b, thus we can
say that the functions linking a and b to frequency are decreasing functions, this
part is going to be investigated in the parameters fitting section 3.2
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Figure 3.9: Frequency Effect on τ -A plot

3.1.6. Elevation Angle

Here we present the results of changing the elevation angle along the slant path , fixing
always the frequency , rain height and drop site distribution .
In fact as we can see in fig. 3.10

θ1 < θ2 ⇒ H(2)
p < H(1)

p (3.18)

The smaller the angle of elevation is , the larger is the distance that a propagated wave
must pass through the Earth’s atmosphere. As distance increases, the signal quality
deteriorates , thus we must set a lower limit for the elevation angle i.e like in [15] we
choose to limit θ to θmin = 20◦. And since the EXCELL profile depends only on the
horizontal path, we expect higher elevation angles to be less attenuated and less delayed
.
Indeed , fig. 3.11 shows clearly that higher elevation angle attenuates and delays the signal
less reaching the limit of zero delay and attenuation due to rain for a station pointing
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upwards with an angle of θ = 90◦

Figure 3.10: Elevation angle change Sketch

Comments

• The first thing we can notice , is how close are all the plots i.e the elevation angle
variation is less influencing the τ -A plot than frequency , i.e θ is not a genuine
variable of the problem since it changes merely the results , though must be taken
into account probably once combined with other variables can constitute a real
variable of the problem

• The elevation angle variation basically doesn’t act on the exponent as we can notice
the fitting of the three elevation angles plots , leads to the same exponent ≈ 0.74

• As we can see in fig. 3.11 and referring to the scheme fig. 3.5 ,the longer is the
horizontal path ( low elevation angle ) the less are the points used in theτ -A plot
, i.e less are the possibilities for the relative positions between the station and the
satellite . That’s why we expect for higher elevation angles ( lower horizontal path
) denser plots . The zoomed figure in the plot shows a different thing which brings
us to understand the reason behind .
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Figure 3.11: Elevation Angle Variation Effect

In fact , since we are using 20x20 cells ,as the cell’s radius increases the number of
pixels used for the integration decreases for a fixed HHor

Npixels =
HHor

dx
=
HHor30

rcell
(3.19)

Let’s take for example 2 cases θ1 = 20◦ and θ2 = 30◦ since H(1)
Hor > H

(2)
Hor for a given

rain cell , we have

N
(1)
pixels =

H
(1)
Hor30

rcell
> N

(2)
pixels =

H
(2)
Hor30

rcell
(3.20)

As the cell radius increases , the higher value of H(1)
Hor makes that it compensates

the denominator rcell so that the number of pixels remains sufficiently enough to
perform integration N

(1)
pixels ≥ 2 whilst for N (2)

pixels the decrease due to 1/rcell leads
many times to N (2)

pixels ≤ 1 the point is then discarded from the scatter plot ,since
the station and the satellite positions can’t occur in the same pixel leading to zero
attenuation , at this stage it should be clear why for higher elevation angles , the
plots are less dense
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3.1.7. Rain Height

Rain height is also an important feature to study the τ -A. In recommendation ITU-R
P.839-4 [20], the mean yearly rain height above mean sea level:

hR = h0 + 0.36 km (3.21)

where h0 is the height of the 0◦C isothermal layer, values of h0 corresponding to different
latitude and longitude which can be found in [20], which also reports the yearly average
0◦C isothermal height above mean sea level as in the figure above. Typically we can set
HRain to vary in the range [1.5km,5km ] , since the extreme cases correspond either polar
regions or in north China .

Figure 3.12: Isothermal Layer latitude

Comments In fig. 3.13, we notice that the rain height likewise elevation angle θ is not
a real variable since it only drives small changes in the Attenuation-Delay power law, we
can still notice the density of points for higher rain heights likewise the elevation angle
plots, and the highest attenuation and delay are for higher rain altitudes for the same
reason explained in the previous section.
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Figure 3.13: Rain Height Variation Effect

3.1.8. Drop size distribution

The Drop Size Distribution (DSD) represents the number of raindrops in a unit volume
and for a given size. DSD is an important information to study the effects of drops on
electromagnetic waves. There exist different DSD such as : Laws-Parson distribution ,
Marshell-Parson(MP) distribution , Gamma distribution , Joss distribution , log-normal
distribution , Weibull distribution... Theoretically, rainfall rate is a function of DSD and
rain drop terminal velocity [3], the equation is:

R = 6× 10−3π

∫ ∞

0

N(D)v(D)D3dD
(mm

h

)
(3.22)

where v(D) is the terminal velocity of drops, the equation is:

v(D) = 9.65− 10.3e−600D
(m
s

)
(3.23)

In this thesis work ,we pick a gamma distribution since its model was already developed
in the thesis work [11]. The Gamma distribution introduces a shape factor µ into the
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M-P distribution, its model can be written as :

N(D) = N0D
µe−ΛD (0 ≤ D ≤ Dmax) (3.24)

where the value of µ typically falls in the range between −1 and 4 , but values have been
also measured in the interval between −3 and 8, N0 is the scaling parameter, Λ (mm−1)

is the slope parameter.
Remark : As the reader might have noticed in the previous sections and also in chapter 1,
we say that the value µ is the only parameter characterizing the distribution gamma, in
fact in eq. (3.24) N0 and λ depend on µ and R so that the only free parameter is µ.
Compared with the M-P distribution, thanks to its flexibility, the gamma distribution
can fit all kinds of raindrop size distribution well, especially for small droplets. The
parameter estimation of the gamma distribution is more complicated than that of the
M-P distribution, especially the factor µ. Hence, the gamma distribution hinges mainly
on the parameter µ , the relationship τ -A must investigate it as well .

Figure 3.14: DSD Effect varying µ
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Comments As we can clearly see in fig. 3.14, changing the parameter µ changes dras-
tically the relationship τ -A , since changing the DSD means, under the hood, increasing
or decreasing the number of drops of a given size scattering the signal. Dissecting the
results , we can drop some important comments:

• The results show that the highest attenuation is for µ=-3 whilst the highest phase
delay is for µ=8

• eq. (3.22) depicts the dependency of the rain rate (mm/h) on the drop size diameter
, the latest is exposed to µ+3 inside the integral, thus for µ = −3 N(D) is maximal
so is the rain rate the reason why the µ=-3 plot gives the highest attenuation .

• the same thing can be said about the upper case µ= 8 where inside the integral
, there is a positive power ( µ + 3 =11 ) of the drop size , since the integral is
dominated by smaller rain drops eq. (3.22) then for µ=8 we get a minimum rain
rate thus a minimum attenuation

3.1.9. Polarisation angle

Polarization is important in wireless communications systems.Since horizontal and vertical
polarisations undergo different propagations, so at least our model should target those two
cases, and if it is a main parameter it is important to know its effect on the attenuation
and the phase delay relationship Since the polarisation ψ can vary in the range [0,π] we
can pick 3 particular cases for the polarisation angle :

• ψ = 0◦ : Vertical linear polarisation

• ψ = 180◦ : Horizontal linear polarisation

• ψ = 90◦ : Circular polarisation

• ψ = 45◦ : random elliptical polarisation

Comments It’s important to mention the following aspects about the polarisation angle

• we can notice in figs. 3.15 and 3.16 all the scatter plot follow the same trend

• The linear polarisation (ψ ≡ 0[π]) knows a slightly higher attenuation while the
circular one gives rise to the minimum attenuation

• Conclusion since the polarisation angle doesn’t change considerably the τ -A re-
lationship, we can pick a polarisation angle of ψ=45◦ and thus this variable woun’t
be investigated in the parameters fitting section 3.2
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Figure 3.15: ψ Scatter-plot dependency

Figure 3.16: ψ Fitting Relationships



3| Analytical Model For Path Attenuation And Delay 45

3.1.10. Final Parameters

As we have seen, the previous study unveiled that frequency, µ parameter are pivotal
variables, while elevation angle θ, rain height HRain are semi variables, and finally po-
larisation angle ψ can be fixed henceforth . Since the EXCELL model involves a key
parameter which is the horizontal path and considering that cells profile is horizontal
and the whole integration is equivalently performed on the horizontal path eqs. (3.10)
and (3.11), one way to combine both variables θ and HRain is then the horizontal path ,
we recall that

LH =
HRain

tan(θ)

Even though taking LH as a variable of the problem might look not rigorous because it

involves two variables, but since the rain height variation is investigated by the interna-

tional telecommunications union ITU[20], so the knowledge of the elevation angle is the

only thing needed from the user, θ is defined beforehand knowing the station and the

satellite positions .

Thus, the choice of LH is well justified, we can ultimately formulate the following task of

fitting as : find the functions a and b such that :

ψ = 45◦

LH = HRain
tan(θ).

τ = a((f, LH , µ) A
b(f,LH ,µ)

(3.25)

Where :

• HRain is the rain height

• θ is the link elevation angle

• f is the link frequency

• LH is the horizontal path i.e : projection of the slant path on the ground

• µ Gamma distribution parameter for the drop size distribution

• ψ is the fixed polarisation angle
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3.2. Parameters Fitting

In this section, we fit the generated curve using multi-cells fitting (section 3.1.3), repre-
senting the Data, to the parameters defined in the previous section, these parameters are
bounded, so, it’s important to remind their limits .

3.2.1. Parameters bounding

• Frequency The thesis work is limited for frequencies in the range 10-100 GHz, for
which atmospheric attenuation is more relevant.

• µ The parameter µ characterizing the gamma function eq. (3.24) is an integer that
varies in the set {-3,-2,..8}

• LH The horizontal path limits are found from elevation angle and rain height limits
respectively , in fact :

– θ Most telecommunication links don’t go beneath 20◦ since they have to deal
with more attenuation , thus we set θ in the range [20°,90°]

– HRain As we discussed in section 3.1.7, the typical rain height is in the range
1.5 Km to 5 Km , and finally recalling eq. (3.9) we can set the horizontal path
LH variable between : 0 and 13.73 Km

• ψ As we discussed in the previous section, ψ doesn’t affect the results so we can fix
it to ψ = 45◦, results of other polarisation angles should not be so different from
the results shown in this work .

Remark For the seek of simplicity, during all this chapter, we fix µ, since µ = 0 is the
most probable one for the gamma distribution, we focus on this case only, but for other
values, the reader is addressed to appendix A where important results are shown .

µ = 0 (3.26)

3.2.2. Fitting Structure

In order to clarify the procedure used to derive the analytical model linking attenuation
to delay.We present the general scheme for fitting. In fact, once fixing µ, the remaining
parameters are frequency and horizontal path, as we can see in fig. 3.17, we generate 2 lists
for both frequency and horizontal path, then for each couple f, LH we generate the data
(vector of phase delays and attenuations), and we fit both with the known relationship
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τ = aAb, finally we get 2 matrices a(f, LH) and b(f, LH).We first fix LH and we fit the a
and b to frequency. Once done , we vary LH and we fit the coefficients of the first fitting
to horizontal path.

Figure 3.17: Fitting structure

3.2.3. Frequency Mapping

In this first mapping , we fix certain values for (HRain, θ) i.e a value of LH and we plot
the dependency of both a((f, LH , µ = 0) and b (f, LH , µ = 0). We can see in fig. 3.18
that the a coefficient follows a power law while the frequency trend for b is a polynomial
shape. We try therefore to fit a with a power law of frequency, and b with a fourth degree
polynomial, we don’t know if this is the most accurate model, but the fourth polynomial
law already gives good fitting for b. We will confront different models in section 3.2.5 to
finally pick up the best one. We can write already :{

a(f) = a1f
a2

b(f) = b1f
4 + b2f

3 + b3f
2 + b4f + b5

(3.27)

For the fitting procedure, 100 frequencies spanning the domain 10-100 GHz were used
to fit the model, we can see in fig. 3.18 that we have a good fitting especially for the
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coefficient a whose dependency follows well a power law, for b there are some inaccuracies
for low frequencies but we can say that the model follows roughly a fourth polynomial
trend .

Figure 3.18: Frequency Fitting results

3.2.4. Horizontal Path Mapping

Both elevation angle θ and rain height HR can be combined as a single variable i.e the
slant path LH . Likewise the frequency , since we don’t know beforehand the shape of
the dependency on the horizontal path , it’s worthwhile to draw the variation of the
coefficients found in the first frequency mapping step i.e a1, a2, b1, b2, b3, b4, b5 along the
horizontal path LH .

a coefficients

It appears in figs. 3.19 and 3.20 that a polynomial can fit the data , we can have a pretty
good fitting for both a1 and a2 using a fifth polynomial ,indeed we can write :



3| Analytical Model For Path Attenuation And Delay 49

∀i ∈ {1, 2} ai =
5∑

j=0

aijL
j
H (3.28)

Figure 3.19: a1 Horizontal Path Fitting results

Figure 3.20: a2 Horizontal Path Fitting results

b coefficients

We can see in fig. 3.21, to fig. 3.25 that a polynomial function is indeed a good candidate to
fit the five coefficients b1,...b5 dependency to LH , we can notice that high order coefficients
(b1, b2) are very small, in fact, in eq. (3.27), they are multiplied by the forth and the third
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power of frequencies that are in the range 10 ,102 .For example the terms b1, b2 bring, in
average, a correction in the order of

b1f
5 ≈ 10−9105 = 10−4 b2f

4 ≈ 10−6104 = 10−2

These terms are therefore adding more corrections to the model , we see also that the
dominant part in the exponent is held by the last term b5 whose average value is around
0.7 . Thus, choosing a fifth degree polynomial we can write :

∀i ∈ {1, 2, 3, 4, 5} bi =
5∑

j=0

bijL
j
H (3.29)

Figure 3.21: b1 fitting along the Horizontal Path Variation
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Figure 3.22: b2 fitting along the Horizontal Path Variation

Figure 3.23: b3 fitting along the Horizontal Path Variation
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Figure 3.24: b4 fitting along the Horizontal Path Variation

Figure 3.25: b5 fitting along the Horizontal Path Variation
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Model for µ=0

At this stage , for a fixed value µ = 0 we have the complete model involving :

• A power law for a(f) eq. (3.27)

• A fourth polynomial for b(f) eq. (3.27)

• A fifth polynomial for the horizontal path dependency for:a1, a2, b1, b2, b3, b4, b5
eq. (3.28),eq. (3.29)

For the seek of simplicity, this first analytical model will be referred in the rest of this
work as Model 1, we can explicit all the coefficients involved in table 3.2

Table 3.2: Analytical Model for µ = 0

µ = 0 τ = aAb

a = a1f
a2 b = b1f

4 + b2f
3 + b3f

2 + b4f + b5

a1 a2 b1 b2 b3 b4 b5

Model
j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

c6 0.0142 -1.61 10−6 -2.05 10−14 3.6 10−12 -7.6 10−11 -1.9 10−8 1.56 10−6

c5 -0.589 6.5 10−5 6.09 10−13 -9.82 10−11 -2.68 10−11 7.4 10−7 −5.78 10−5

c4 9.456 -1.04 10−3 -4.87 10−12 5.36 10−10 6.75 10−8 -1.1 10−5 8 10−4

c3 -73.44 0.008 -4.45 10−12 4.95 10−9 −1.1 10−6 8.1 10−5 -0.0055

c2 292.5 -0.026 1.46 10−10 -4.6 10−8 5.51 10−6 -2.7 10−4 0.0155

c1 305.7 -1.686 -9 10−9 2.13 10−6 -2 10−4 0.005 0.696
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3.2.5. Error of the model

With reference to the map of the chapter fig. 3.1, we arrived at the error computation, in
fact, in order to validate Model 1 (section 3.2.4), it’s important to compute its error, first,
we will observe how close is the analytical formula from "data" (section 3.1.3) for some
examples of f and LH fig. 3.26 and then we will see how this error changes as a matrix
of f and LH fixing always µ to zero. Once the matrix error is computed, we can define
a threshold for the error, in order to pick the best model. let’s explore how well is the
model in 4 cases whose properties are summarized in table 3.5

Horizontal Path LH

Short

Frequency

Case 1 :Low Case 2 :High

Large

Frequency

Case 3:Low Case 4 :High

Figure 3.26: 4 different cases

Table 3.3: Link properties

Link properties
f θ HR µ ψ LH

Case 1 10 Ghz 60 deg 1.5 Km 0 π/4 0.86
Case 2 70 Ghz 60 deg 1.5 Km 0 π/4 0.86
Case 3 10 Ghz 20 deg 5 Km 0 π/4 13.73
Case 4 70 Ghz 20 deg 5 Km 0 π/4 13.73

Comments

• At the first glance, fig. 3.27 to fig. 3.30 show that the analytical model follows pretty
well the trend of data, with perfect fitting for small attenuation levels, and some
divergences ( depending on the case) for high attenuations.

• It’s also important to notice that only in the fourth case fig. 3.30 that the analytical
model underestimates the phase delay ( the red curve is below the data curve ).

• The 4 cases clearly show that a complete analysis is needed, covering multiple cases
and evaluating the error in each case, and that leads us to the next section .
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Figure 3.27: Case 1 comparison

Figure 3.28: Case 2 comparison



56 3| Analytical Model For Path Attenuation And Delay

Figure 3.29: Case 3 comparison

Figure 3.30: Case 4 comparison

Error Analysis

Based on the last figures, we can see that sometimes the analytical curve is much closer to
the data curve, while sometimes it’s not the case, thus, we need to find a way to quantify
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the quality of the fitting i.e define an error figure, the classical way of defining the error
between the analytical results and the data is:

ϵ = τAnaly − τData (3.30)

Or similarly, the absolute error in percentage :

ϵ = 100.
τAnaly − τData

τData

(3.31)

We would better use the error figure in eq. (3.32) which prevents the strong increase in
for τ approaching 0 . This error figure has been defined by ITU-R P.311-13 [1] to deal
with low value of attenuation, but can be used also for phase delay :

ε =


100

(
τdata
10

)0.2
ln
(
τanaly
τdata

)
τdata < 10ps

100 ln
(
τanaly
τdata

)
τdata ≥ 10ps

(3.32)

we can see that for low values of phase delay , the error is compensated by the term(
τdata
10

)0.2 to avoid divergence .
Now, having defined the error figure, the idea is to represent every couple (f,LH) by a
value representing how well is the fitting between the analytical model and data, for this
purpose, we generate a list of frequencies and a list of horizontal paths, and for each value
we evaluate the root mean square ( rms ) of the vector error defined in eq. (3.32).
The first results of fig. 3.31 show that globally the rms is below 10 % with a mean value
of 8 %, a maximum of 26.2% and a minimum value of 0.06%, we notice that :

• The plots shows 2 critical regions where the rms of the error is higher than 20 % :

1. very short horizontal path LH ≤ 0.7 Km i.e high elevation angles θ for a fixed
rain height and high frequencies ( 70-100) GHz

2. High horizontal path LH ≥ 10 Km i.e low elevation angles θ for a fixed rain
height and very high frequencies ( 90-100) GHz

Those regions if kept, might be a shortcoming of the model, thus we need to limit
the validity of the actual model if kept or improve it to fit better the data.

• There is a region of green-blue color where the rms is between 10% and 15% where
the fitting is not good but not bad, the error in this region might be eliminated
increasing the degree of the polynomial used in the fitting.
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Figure 3.31: Root mean square of the error figure

Let us now see what happens to the error if we use a higher order polynomial for equations
eq. (3.27) ,eq. (3.28) ,eq. (3.29) leading to a new model: Model 2

• As we saw in previous sections, the power law fits well the data, therefore we keep
eq. (3.27) for the coefficient a, i.e a(f) = a1f

a2

• A ninth degree polynomial for the frequency dependency for the b eq. (3.27) i.e

b(f) =
i=10∑
i=1

bif
i−1 (3.33)

• A ninth degree polynomial for LH for a1 ,a2 eq. (3.28) and bi eq. (3.29)

a1(LH) =

j=10∑
j=1

a1jL
i−1
H a2(LH) =

j=10∑
j=1

a2jL
i−1
H bi(LH) =

j=10∑
j=1

bijL
i−1
H (3.34)
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Defining the same error figure of eq. (3.32) and calculating its rms, we can plot the root
mean square of the error figure for the Model 2.

Figure 3.32: Root mean square of the error figure

The results of fig. 3.32 show that globally the rms is much lower than the one in model
1 with a mean value of 3.5 % , a maximum of 28.3% and a minimum value of 0.06%, we
can drop the following comments :

• As expected, the mean value dropped by 5 %, the minimum value did not change
and the maximum value increased a little bit , since for higher frequencies and high
horizontal path we are overestimating the phase delay.

• We can see that we the region in the middle of model 1 with a rms between 15-20
% shrunk and now is more accurate the the one in model 1

• model 2 knows also 2 critical regions: the one involving lower horizontal paths is
more accurate now, whilst the one in the top right corner is less accurate than before
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Generally, we can see that with a developed model we approach more the data, until now
we notice that model 2 is more accurate than model 1 since its mean value of the error
is only of 3% while model 1 has a 8% mean value, in order to compare the models but
using real data and as explained in fig. 3.1 , we will use the ccdf of attenuation and phase
delay found using the SC-EXCELL model , data measured from real simulation in given
sites, to reveal important hints about the Experimental accuracy of both models.

Exceedance probability analysis

As explained before, until now we did not compute the accuracy of neither Model 1 nor
Model 2 once confronted to experimental data. In this framework we would like to to
use the output of the SC-EXCELL in terms of cumulative distribution functions for both
attenuation and phase delay. In fact, one of the applications of the SC-EXCELL model
[6] is the probabilistic analysis of attenuation and phase delay in terms of exceeding a
certain probability level, in this section we try to take advantage from this powerful tool
emerging from direct measurement using radars to see how good is our analytical model .
For this purpose, the steps to derive the probability of exceedance for both attenuation
and phase delay are briefly summarized in section 2.2 and fully explained in [6] .
Let’s see first an example about the output of the SC-EXCELL cumulative distribution
functions for the site : Milan whose characteristics are shown in table 3.4

Table 3.4: Site properties

Link properties
Latitude Longitude Station Height Stratiform

rain height
Convective

rain height
45.4 ◦ 9.5◦ 0.081 Km 2.6117 Km 3.3731 Km

The SC-EXCELL model gives the attenuation and phase delay exceedance probability in
percent, the function depends among others on the elevation angle, DSD, frequency but
also on the site characteristics, we can see in fig. 3.33 that the phase delay and attenuation
ccdf follow the same trend. In Milan , the probability to exceed 10 ps in delay is 0.1 %
while the probability to exceed 7 db in attenuation is 0.1% , we decide to limit the curve at
the probability level 10−3 since going below is very low and doesn’t have a physical utility .

Note that the probability level is presented in logarithmic scale
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Figure 3.33: Milan phase delay and attenuation ccdf

Before we delve into results and comparison, we must spend few words to explain the
procedure used .
For a given site and for certain parameters f, LH , µ

1. Generate the attenuation cumulative distribution function FA(t) = P (A ≥ t)

2. Generate the phase delay cumulative distribution function Fτ (t) = P (τ ≥ t)

3. Use the relationship eq. (3.25) to find the analytical ccdf of phase delay from FA

For the latter , having the analytical model g for µ = 0, linking phase delay to attenuation

τ = g(A)
f,LH

eq. (3.25)

We can write :

Fτ (t) = P (τ ≥ t) = P (g(A)
f,LH

≥ t)

= P (A ≥ g−1

f,LH

(t))

= FA(g
−1

f,LH

(t))

(3.35)

(3.36)

(3.37)

Since the model g is a power law , it can be easily inversed , thus we compare the phase
delay cumulative exceedance function Fτ and the cumulative exceedance function FA◦ g−1

f,LH

representing the analytical ccdf
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A practical way to this is to set FA=Fτ= P i.e look at the same probability level P and
compare τ giving Fτ which is noted as τdata and τanaly = g(A)

f,LH

where A giving FA

The error can be defined in the same way [1], looking at the same probability level P and
evaluating the absolute error for between the τanaly and τdata, we can write:

ε(P ) =


100

(
τdata(P )

10

)0.2

ln
(
τanaly(P )
τdata(P )

)
τdata(P ) < 10ps

100 ln
(
τanaly(P )
τdata(P )

)
τdata(P ) ≥ 10ps

(3.38)

Then for a couple ( f ,LH), we calculate the rms of the error ε taking into account prob-
abilities higher than 10−3 since probabilities below are not interesting. At first, we start
to explore the first analytical model i.e Model 1 .

Figure 3.34: CCDF rms of the error between Analytical and experimental phase delay
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Comments

• In fig. 3.34, the mean value of the rms is around 13.84 % , the maximum value is
63.55% while the minimum value is 0.88 %

• Likewise the first approach ,The plot shows that for LH < 1 the error is around 45
% which constitute a layer to exclude definitely , the error outside this region has a
mean value of only 6% showing thus a great fitting for the analytical model

• In order to visualize how far we are from the data , it’s important to visualize the
red zone and the blue zone for this purpose we pick the following parameters :

Link properties
f θ HR µ ψ LH

Case 1 20 GHz 45 deg 1.5 Km 0 π/4 2.8 Km
Case 2 20 GHz 75 deg 1.5 Km 0 π/4 0.41 Km

Table 3.5: Link properties

Figure 3.35: Case 1 ccdf plot comaprison vs data

• As we can see from figs. 3.35 and 3.36 the first case represents a good fitting with
respect to data , whilst the second one is pretty far from the real ccdf, we can
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Figure 3.36: Case 2 ccdf plot comaprison vs data

confirm that the reduced model works pretty well for the validation, once the red
part is eliminated, the results are pretty satisfying with an mean value of 6%

Let’s explore now the results of the full extended model i.e Model 2 involving a ninth
polynomial for the frequency dependency and a ninth polynomial for the horizontal path
dependency, limiting always the probability at 10−3, defining the same error figure and
calculating its rms for the same values of frequencies and horizontal paths of the first
model, we can plot the root mean square of the error figure eq. (3.32) for the extended
model .

Comments

• Comparing fig. 3.37 to fig. 3.34 we can clearly notice that the extended model gives
less good results with the blue part shrinking and the yellow ,red parts are expanding
infig. 3.34 leading to a rms mean value of 21.3 % , a maximum value of 81% and a
minimum value of 0.33 %

• The extended model knows also an inaccurate red zone but this time larger LH ≤ 1.6

limiting the validity of the model
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Figure 3.37: CCDF rms of the error between Analytical and experimental phase delay

• The current results show that no matter how the first approach is more accurate for
the extended model, the second approach using real data leads us to avoid extending
the model

3.2.6. Model Trade-off

Once developing an analytical model fitting some data ,there are always 2 concepts em-
bracing the model development :

• Complexity : It means how complex the model is , if it’s a formula , how many
coefficients are involved to describe the dependency
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• Accuracy: how accurate is the model, that is to say , how much is the model close
from the real data or how small is the model’s error

As the reader can notice, we have presented only two analytical models : where Model
1 is less complex involving a fourth degree polynomial depending on frequency "Pf" and
a fifth degree polynomial depending on the horizontal path "PLH

" i.e 5x6 coefficients ,
whilst the second one involves two ninth degree polynomials i.e 10² coefficients. Clearly
the second model is more Complex involving three more times coefficients, but the fitting
process idea was to start from a very complex model whose theoretical rms is very small(
Model 2 and then start to reduce the degree of each polynomial Pf and PLH

until the
model is no more accurate , i.e until we surpass a certain threshold for the error rms
eq. (3.39) , not only for the theoretical approach but more importantly the experimental
approach using the ccdf . Two constrains were used to find the thresholds used to limit
the model according to eqs. (3.32) and (3.38)

mean(rmsTheo) ≤ 10% mean(rmsExper) ≤ 10% (3.39)

Decreasing the degrees of Pf and PLH
, we notice that the average theoretical rms goes up

whilst the average experimental one goes down, the best trade-off was then found to be
the one involving a fourth degree polynomial depending on frequency and a fifth degree
polynomial depending on the horizontal path i.e : Model 1

3.2.7. Final Model and Limitations

For the seek of clarity, let’s recap what we have done until now : we have started from
a Complex model(Model2 ): eqs. (3.33) and (3.34) to represent the relationship between
delay and attenuation for a given couple (f,LH). In order to assess the accuracy of the
model, 2 approaches were used :

• A theoretical one based on fitting 20 x 20 exponential cells with a curve representing
the relation shape τ=f(A) and then validate how well the curve fits with an analytical
formula .

• An experimental one based on the SC-EXCELL model , whose outputs are ex-
ceedance probabilities for both delay and attenuation , the analytical model helped
to transit from A to τ and validate the ccdf of the analytical phase delay

Both approaches were useful to rate the performance of the model through eq. (3.39),
once this requirement is not met, we change the model (reduce its complexity) until the
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requirement of accuracy eq. (3.39) is met. The attenuation-phase delay relationship is
then picked, and this is the last branch of the map fig. 3.1.
At the end, model 1 was chosen, we would like to refine its accuracy by cutting zones
where the error is slightly higher than the average error, i.e discard the red zones from
both figs. 3.31 and 3.34
Indeed:

1. The region LH ≤ 1 in fig. 3.34 has to be discarded since the average rms in there is
around 45%

2. The region f ≥ 90 GHz in fig. 3.31 has to be discarded since the average rms in
there is around 20 %

The final figures for both approaches are shown in figs. 3.38 and 3.39, and their properties
are depicted in table 3.6

Figure 3.38: Rms of the error between Analytical and experimental phase delay
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Figure 3.39: CCDF rms of the error between Analytical and experimental phase delay

Table 3.6: Error between the analytical model and data

Theoretical Approach Ccdf Approach

Final Model

Mean Value Min Max Mean Value Min Max

7.36% 0.06 % 15.92 % 8.19% 0.88% 23.55%

As we can see both approaches show similar mean value for the error , with a maximum
error 23.55 % for the ccdf approach , finally it’s useful to recall the model



Data : ψ = 45◦, µ = 0

Model

τ = a1f
a2Ab1f

4+b2f
3+b3f

2+b4f+b5

a1(LH) =
∑j=6

j=1 a1jL
j−1
H

a2(LH) =
∑j=6

j=1 a2jL
j−1
H

∀i ∈ {1, 2, ..5} bi(LH) =
∑j=6

j=1 bijL
j−1
H

Constrains : 10GHz ≤ f ≤ 90GHz,LH ≥ 1Km

(3.40)
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3.2.8. Final Comparison

In this section we compare our model eq. (3.40) to the one developed by Emilio Matricciani
[15], since we used two different approachs to accurately define our model section 3.2.5,
we have to confront the matricciani’s model to both approachs ( the one involving the
EXCELL model generating data from 20x20 cells and the one involving the SC-EXCELL
generating ccdfs for both attenuation and delay). Matrciciani’s model can be written :

zMatri =

{
(860, 4− 4, 82θ)f−1,71A0,73 θ ∈ [20◦, 44◦]

648, 3f−1,71A0,73 θ ∈ [44◦, 90◦].
(3.41)

Since eq. (3.41) involves only the elevation angle i.e no horizontal path is present, we can
compare both models choosing a certain value for HRain e.g the mean value:

HRain =
1.5 + 5

2
= 3.25Km (3.42)

Thus, for a couple of frequency and elevation angle θ, we compare the phase delay
zMatri(f, θ) in eq. (3.41) to the one in eq. (3.40) : τ(f, 3.25

tan(θ
) ) eq. (3.9)

EXCELL Data Comparison

In this comparison , we confront the model developed by Emilio Matricciani [15] , to the
curve "data" obtained fitting 20x20 exponentiel cells section 3.1.3
The attenuation vector in eqs. (3.40) and (3.41) can be found using the 20x20 exponential
cells approach section 3.1.2 and the error between the analytical formula eq. (3.41) and
the data can be computed using the error figure used before eq. (3.32)
We can see in fig. 3.40 that we have a pretty good match between the models with the
following properties :

Table 3.7: Error between Matricciani’s model and data

Error RMS

EXCELL based
Mean Value Min Max

Comparison 11.8609% 0.27 % 31.55 %

Where the error is mostly less than 15% except for :

• High elevation angles i.e low horizontal path which is beyond the limitation , we
recall that our model gives high error for LH ≤ 1
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Figure 3.40: Models error comparison

Figure 3.41: Models comparison example
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It’s important also to notice that

• Comparing fig. 3.41 to fig. 3.31 we can notice that the region f ≥ 90GHz is no
longer a region of high error for the Matricciani’s model.

• Comparing table 3.7 to table 3.6 we can notice the model developed in this thesis
eq. (3.40) gives better results.

In fig. 3.41 we plot the data vs Matricciani’s model,we can notice some divergences espe-
cially for high attenuations.

SC-EXCELL Data Comparison

In this subsection, we confront the Matricciani’s model to the output of the SC-EXCELL,
we will follow the same procedure for the same site Milan table 3.4 utilized in section 3.2.5
but this time we will utilize eq. (3.41) to transit from attenuation to phase delay(eq. (3.25)

Table 3.8: Error between Matricciani’s model and data

Error RMS

SC-EXCELL based
Mean Value Min Max

Comparison 12.67% 0.68 % 32.85 %

Comments

• in fig. 3.42, the error is satisfying, with a mean value of 12.67 %, we can say that the
model reproduces well the ccdf of phase delay starting from the ccdf of attenuation.
We can see also that for high frequencies that the error gets higher ( also encountered
for Model 1 fig. 3.39)

• Comparing table 3.8 to table 3.6, we can see that our model eq. (3.40) gives better
results also for the experimental data using the ccdf.

Generally the Matricciani’s model works well, in order to give an idea about its accuracy
in mapping the attenuation ccdf into the phase delay ccdf, we plot the results for certain
values of elevation angle and frequency fig. 3.43
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Figure 3.42: Models error comparison

Figure 3.43: Models comparison example
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4.1. Conclusions

This thesis work could be one of the applications of the cellular model EXCELL developed
in 1981 by capsoni, in fact, we saw that starting from a simple exponential law for rain
rate distribution, and simple power laws for specific attenuation and phase delay that we
can integrate on the slant path to get both attenuation and delay, we can build a general
analytical model linking attenuation to phase delay depending on frequency, horizontal
path and DSD. In this work, we generated data for both attenuation and phase delay by
using many exponential cells with different peak rain rates RM and characteristic lengths
l0, we realized that this data follows a power law τ = aAb, this dependency was then
represented by a single curve for a triplet of frequency,horizontal path and DSD,fixed to
its most probable value 0.
In the fitting section, we have seen how to fit the curve representing the data with suitable
laws constituting the analytical model. The accuracy of this model was computed through
two main approachs , one is based intrinsically on the data vs analytical formula error
calculation, while the second recalled the SC-EXCELL model deriving experimental ccdfs
of attenuation and delay, the analytical model was used to map attenuation ccdf to phase
delay ccdf and compare it to the experimental one. Both approaches were useful to choose
the best model τ = aAb linking attenuation to delay, this model involved :

• A power law dependency of frequency for a i.e a(f) = a1f
a2

• A fourth degree polynomial for b i.e b(f) =
∑i=5

i=1 bif
i−1

• A fifth degree polynomial for the dependency on horizontal path for a1, a2and bi

The study concluded that the model chosen has a rms error of 7.36 % and 8.19 % for
the theoretical and the experimental approach respectively . Finally, a comparison with
the Matricciani’s model was presented and concluded that the model developped in this
thesis gives better results.



74 4| Conclusions and future works

4.2. Future Works

This thesis work can be considered a continuation, even though based on a different model
" EXCELL" ,of the Matricciani relationship since it includes more parameters and gives
better results, but during the elaboration of the work, we noticed different features that
can be exploited, here are some recommendations for future add-ons.

• Try to overcome limitations of the developed model especially for high elevation
angles and frequencies in the range 90-100 GHz

• Explore different cell models :[19] : MultiEXCELL for example...
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A| Appendix A

In this Appendix we present the analytical model linking phase delay to attenuation for
each value of mu, we recall that we adopted the same model as the one presented in the
thesis i.e a fourth polynomial for the frequency dependency and a fifth polynomial for the
horizontal path dependency .

A.1. µ=-3 analytical model

Table A.1: Analytical Model for µ = −3

µ = −3 τ = aAb

a = a1f
a2 b = b1f

4 + b2f
3 + b3f

2 + b4f + b5

a1 a2 b1 b2 b3 b4 b5

Model
j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

c6 0.0058 -1.69 10−6 1.25 10−14 -4.32 10−12 5.77 10−10 -3.7 10−8 1.56 10−6

c5 -0.246 7 10−5 −4.8 10−13 1.61 10−10 -2.11 10−8 1.32 10−6 −5.79 10−5

c4 4.036 -1.14 10−3 -6.98 10−12 -2.26 10−9 2.87 10−7 -1.69 10−5 8.13 10−4

c3 -32.11 0.009 -5.07 10−11 1.54 10−8 −1.84 10−6 9.82 10−5 -0.0054

c2 133.7 -0.031 2.11 10−10 -5.96 10−8 6.37 10−6 -2.96 10−4 0.015

c1 117.1 -1.43 -3.8 10−12 2.31 10−8 -1.15 10−5 0.0011 0.6926
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A.2. µ=-2 analytical model

Table A.2: Analytical Model for µ = −2

µ = −2 τ = aAb

a = a1f
a2 b = b1f

4 + b2f
3 + b3f

2 + b4f + b5

a1 a2 b1 b2 b3 b4 b5

Model
j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

c6 0.0055 4.16 10−6 3.59 10−15 -2.71 10−12 5.36 10−10 -4.25 10−8 1.68 10−6

c5 -0.236 −1.5 10−4 −2.01 10−13 1.1510−10 2.09 10−8 1.53 10−6 −6.22 10−5

c4 3.874 0.0019 4.33 10−12 -1.92 10−9 3.12 10−7 -2.02 10−5 8 10−4

c3 -30.73 -0.01 -4.4 10−11 1.58 10−8 −2.23 10−6 1.2 10−4 -0.0057

c2 123.3 0.0357 2.11 10−10 -6.5 10−8 7.75 10−6 -3.65 10−4 0.0165

c1 137.9 -1.502 -3.4 10−9 8.44 10−7 -8.49 10−5 0.0019 0.6708
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A.3. µ=-1 analytical model

Table A.3: Analytical Model for µ = −1

µ = −1 τ = aAb

a = a1f
a2 b = b1f

4 + b2f
3 + b3f

2 + b4f + b5

a1 a2 b1 b2 b3 b4 b5

Model
j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

c6 0.008 1.6910−6 -1.35 10−14 1.5210−12 1.58 10−10 -3.05 10−8 1.65 10−6

c5 -0.35 −5.91 10−5 3.73 10−13 -2.84 10−11 -8.18 10−9 1.13 10−6 −6.13 10−5

c4 5.799 6.8 10−4 -2.26 10−12 -2.53 10−10 1.64 10−7 -1.57 10−5 8.63 10−4

c3 -45.58 -0.003 -1.41 10−11 8.21 10−9 −1.56 10−6 1.02 10−4 -0.0057

c2 181.7 0.009 1.55 10−10 -7.09 10−9 6.41 10−6 –3.2410−4 0.01

c1 196.5 -1.584 -7.09 10−9 1.69 10−6 -1.6 10−4 0.0044 0.6736
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A.4. µ=0 analytical model

Table A.4: Analytical Model for µ = 0

µ = 0 τ = aAb

a = a1f
a2 b = b1f

4 + b2f
3 + b3f

2 + b4f + b5

a1 a2 b1 b2 b3 b4 b5

Model
j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

c6 0.0142 -1.61 10−6 -2.05 10−14 3.6 10−12 -7.6 10−11 -1.9 10−8 1.56 10−6

c5 -0.589 6.5 10−5 6.09 10−13 -9.82 10−11 -2.68 10−11 7.4 10−7 −5.78 10−5

c4 9.456 -1.04 10−3 -4.87 10−12 5.36 10−10 6.75 10−8 -1.1 10−5 8 10−4

c3 -73.44 0.008 -4.45 10−12 4.95 10−9 −1.1 10−6 8.1 10−5 -0.0055

c2 292.5 -0.026 1.46 10−10 -4.6 10−8 5.51 10−6 -2.7 10−4 0.0155

c1 305.7 -1.686 -9 10−9 2.13 10−6 -2 10−4 0.005 0.696



A| Appendix A 81

A.5. µ=1 analytical model

Table A.5: Analytical Model for µ = 1

µ = 1 τ = aAb

a = a1f
a2 b = b1f

4 + b2f
3 + b3f

2 + b4f + b5

a1 a2 b1 b2 b3 b4 b5

Model
j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

c6 0.024 -3.74 10−6 -1.48 10−14 3.6 10−12 - 10−10 -1.31 10−8 1.44 10−6

c5 -0.98 1.4 10−4 4.09 10−13 -7.34 10−11 8.45 10−10 5.39 10−7 −5.36 10−5

c4 15.49 -0.002 -2.21 10−12 1.85 10−10 5.82 10−8 -8.73 10−5 7 10−4

c3 -117.8 0.015 -2.08 10−11 7.33 10−9 −1.08 10−6 6.91 10−5 -0.005

c2 458.8 -0.048 1.81 10−10 -5.07 10−8 5.39 10−6 -2.4 10−4 0.014

c1 498.1 -1.81 -9.71 10−9 2.32 10−6 -2 10−4 0.006 0.725



82 A| Appendix A

A.6. µ=2 analytical model

Table A.6: Analytical Model for µ = 2

µ = 2 τ = aAb

a = a1f
a2 b = b1f

4 + b2f
3 + b3f

2 + b4f + b5

a1 a2 b1 b2 b3 b4 b5

Model
j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

c6 0.039 -4.54 10−6 -5.68 10−15 1.31 10−12 -4.19 10−11 -1.02 10−8 1.32 10−6

c5 -1.59 1.7 10−4 9.15 10−14 -1.88 10−11 -1.05 10−9 4.3 10−7 −4.9 10−5

c4 24.73 -2.5 10−3 1.72 10−12 -4.9210−10 7.97 10−8 -7.3 10−6 6.9 10−4

c3 -184.8 0.017 -4.18 10−11 1.09 10−8 −1.17 10−6 6.07 10−5 -0.0046

c2 705.6 -0.055 2.21 10−10 -5.66 10−8 5.39 10−6 -2.19 10−4 0.0133

c1 846.8 -1.948 -9.38 10−9 2.26 10−6 -1.98 10−4 0.0058 0.7559
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A.7. µ=3 analytical model

Table A.7: Analytical Model for µ = 3

µ = 3 τ = aAb

a = a1f
a2 b = b1f

4 + b2f
3 + b3f

2 + b4f + b5

a1 a2 b1 b2 b3 b4 b5

Model
j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

c6 0.054 -4.18 10−6 2.56 10−15 -1.92 10−13 2.24 10−11 -8 10−9 1.2 10−6

c5 -2.16 1.5 10−4 −1.82 10−13 3.07 10−11 -2.99 10−9 3.44 10−7 −4.45 10−5

c4 32.93 -2.2 10−3 4.83 10−12 -1.04 10−19 9.74 10−8 -6.01 10−6 6 10−4

c3 -241.1 0.0157 -5.51 10−11 1.31 10−8 −1.19 10−6 8.1 10−5 -0.004

c2 894.8 -0.0494 2.29 10−10 -5.64 10−8 5 10−6 -1.83 10−4 0.012

c1 1263 -2.05 -8.33 10−9 2.05 10−6 -1.7 10−4 0.005 0.784
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A.8. µ=4 analytical model

Table A.8: Analytical Model for µ = 4

µ = 4 τ = aAb

a = a1f
a2 b = b1f

4 + b2f
3 + b3f

2 + b4f + b5

a1 a2 b1 b2 b3 b4 b5

Model
j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

c6 0.067 -3.18 10−6 7.39 10−15 -1.07 10−12 -5.25 10−11 -5.5 10−9 1.07 10−6

c5 -2.658 1.2 10−4 −3.34 10−13 5.77 10−11 -3.69 10−9 2.44 10−7 −3.98 10−5

c4 39.78 -1.7 10−3 6.30 10−12 -1.28 10−9 9.77 10−8 -4.48 10−6 5.6 10−4

c3 -284.6 0.016 -5.85 10−11 1.34 10−8 1.11 10−6 4.02 10−5 -0.0037

c2 1019 -0.035 2.18 10−10 -5.26 10−8 4.41 10−6 -1.4 10−4 0.0010

c1 1787 -2.144 -6.9 10−9 1.74 10−6 -1.5 10−4 0.004 0.8127
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A.9. µ=5 analytical model

Table A.9: Analytical Model for µ = 5

µ = 5 τ = aAb

a = a1f
a2 b = b1f

4 + b2f
3 + b3f

2 + b4f + b5

a1 a2 b1 b2 b3 b4 b5

Model
j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

c6 0.076 -2.0110−6 5.12 10−15 -4.91 10−13 -5.86 10−12 -2.05 10−9 9.63 10−7

c5 -2.963 7.42 10−5 −2.35 10−13 3.310−11 -1.28 10−9 1.12 10−7 −3.54 10−5

c4 43.79 -1.05 10−3 4.59 10−12 -8.74 10−10 5.88 10−8 -2.52 10−6 4.98 10−4

c3 -308.2 0.0071 -4.51 10−11 1.02 10−8 −8.2 10−6 2.66 10−5 -0.0033

c2 1075 -0.02 1.93 10−10 -4.66 10−8 3.76 10−6 -1.07 10−4 0.0094

c1 2368 -2.22 -4.75 10−9 1.27 10−6 -1.11 10−4 0.003 0.8381
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A.10. µ=6 analytical model

Table A.10: Analytical Model for µ = 6

µ = 6 τ = aAb

a = a1f
a2 b = b1f

4 + b2f
3 + b3f

2 + b4f + b5

a1 a2 b1 b2 b3 b4 b5

Model
j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

c6 0.077 -5.95 10−7 9.12 10−15 -1.35 10−12 -2.86 10−11 3.46 10−11 8.55 10−7

c5 -2.97 1.94 10−5 -3.51 10−13 5.8 10−11 -2.10 10−19 2.68 10−8 −3.15 10−5

c4 43.49 -2.5 10−4 5.37 10−12 -1.04 10−9 5.83 10−9 -1.14 10−6 4.4 10−4

c3 -300.9 0.0018 -4.04 10−11 9.33 10−9 −6.76 10−7 1.52 10−5 -0.0029

c2 1018 -0.026 1.25 10−10 -3.19 10−8 2.56 10−6 -6.09 10−5 0.0083

c1 2946 -2.27 -3.6 10−9 1.04 10−6 -9.64 10−5 0.002 0.8585
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A.11. µ=7 analytical model

Table A.11: Analytical Model for µ = 7

µ = 7 τ = aAb

a = a1f
a2 b = b1f

4 + b2f
3 + b3f

2 + b4f + b5

a1 a2 b1 b2 b3 b4 b5

Model
j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

c6 0.07295 4.84 10−7 1.2 10−14 -2.11 10−12 8.05 10−11 1.47 10−10 7.66 10−7

c5 -2.8 −2.13 10−5 −4.48 10−13 8.3510−11 -3.81 10−19 1.82 10−8 −2.81 10−5

c4 40.726 3.2 10−4 6.42 10−12 -1.33 10−9 7.67 10−8 -9.06 10−7 310−4

c3 -280.8 -0.002 -4.43 10−11 1.05 10−8 −7.43 10−7 1.24 10−5 -0.026

c2 944.4 -0.0085 1.304
10−10

-3.39 10−8 2.61 10−6 -4.86 10−5 0.0074

c1 3523 -2.31 -3.1 10−9 9.55 10−7 -8.86 10−5 0.002 0.875
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A.12. µ=8 analytical model

Table A.12: Analytical Model for µ = 8

µ = 8 τ = aAb

a = a1f
a2 b = b1f

4 + b2f
3 + b3f

2 + b4f + b5

a1 a2 b1 b2 b3 b4 b5

Model
j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

j=6∑
j=1

cjL
j−1
H

c6 0.0632 1.4510−6 1.044 10−14 -1.79 10−12 4.42 10−11 2.82 10−9 6.87 10−7

c5 -2.41 −5.85 10−5 −3.78 10−13 6.96 10−11 -2.30 10−9 -8.27 10−8 −2.52 10−5

c4 34.87 8.5 10−4 5.17 10−12 -1.07 10−9 5.12 10−8 5.71 10−7 3.5 10−4

c3 -238.5 -0.0055 -3.33 10−11 8.21 10−9 −5.29 10−7 2.09 10−6 -0.0023

c2 788.4 0.026 9.17 10−11 -2.545 10−8 1.87 10−6 -1.8 10−5 0.0067

c1 3793 -2.328 -2.03 10−9 7.29 10−7 -7 10−5 0.0014 0.8888
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In this appendix, we include the validation results for both approaches for the cases
µ = −2 et µ = 2 since they are the most probable ones .

B.1. µ = −2 error analysis

The analytical model linking attenuation to delay can be found in table A.2 .

Figure B.1: Rms of the error between Analytical and experimental phase delay



90 B| Appendix B

Figure B.2: CCDF rms of the error between Analytical and experimental phase delay

Table B.1: Error between the analytical model and data

Theoretical Approach Ccdf Approach

µ = −2 Model

Mean Value Min Max Mean Value Min Max

8.66% 0.13 % 24.56 % 11.06% 1.16% 30.92%
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Comments

• Note that the results shown already include limits for frequency and horizontal path
, we recall :

– 10 GHz ≤f ≤ 90 GHz

– LH ≥ 1 Km

• Looking at fig. B.2 ,we can confirm that the theoretical rms of the error is satisfying
, it’s not that good as the original model µ = 0 but with a mean value of 8.66 %,
the model still works perfectly

• Concerning the experimental validation fig. B.2 , we have a slighly higher value than
the original model (µ = 0) whose mean value is 8.19% .

B.2. µ = 2 error analysis

The analytical model linking attenuation to delay can be found in table A.6 .

Figure B.3: Rms of the error between Analytical and experimental phase delay
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Figure B.4: CCDF rms of the error between Analytical and experimental phase delay

Table B.2: Error between the analytical model and data

Theoretical Approach Ccdf Approach

µ = 2 Model

Mean Value Min Max Mean Value Min Max

3.76% 0.08 % 14.61 % 6.48% 0.63% 21.77%

Comments

• Looking at fig. B.4, we can confirm that the theoretical rms of the error is very
satisfying, it’s much better than the original model µ = 0 with a mean value of 3.76
%, the model is very accurate

• Concerning the experimental validation fig. B.4, we have very good results with an
error mean value of only 6.5%,also much better than the original model µ = 0.

We conclude finally that our analytical model: eq. (3.40) shows that among the three
studied cases (µ = 0,µ = ±2), the best fitting is for µ = +2
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