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Abstract 
This study focuses on enhancing land cover classification by coregistering PRISMA hyperspectral L2D imagery 

with Sentinel-2 Level 2A satellite images. Utilizing the eFolki algorithm for this task, we achieved a residual 

error below 0.18 pixels in the coregistration process, a crucial factor in ensuring accurate pixel alignment. This 

precision was validated using the forward-backward criterion, confirming the effectiveness of the alignment. 

 

A vital step in our methodology was the preprocessing of PRISMA data. Through histogram analysis, we 

identified and removed noisy spectral bands, significantly improving data quality for classification. In the initial 

classification phase, we applied Random Forest and Support Vector Machine (SVM) models to an imbalanced 

dataset. This approach yielded notable accuracies of approximately 94.60% with Random Forest and 96.97% 

with SVM. 

 

Further refining our technique, we applied the SVM model to a balanced dataset, which substantially enhanced 

the classification accuracy. This resulted in an overall accuracy of approximately 99.39%, demonstrating the 

effectiveness of our method in providing highly accurate land cover classifications. 

 

These findings highlight the importance of precise coregistration and careful data preprocessing in land cover 

classification from satellite imagery. By integrating detailed image analysis with advanced algorithmic 

approaches, this study offers a robust framework for environmental monitoring and sets a precedent for future 

remote sensing applications. 
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Introduction to the remote sensing 

Remote sensing is a technique employed to gather information about objects or areas from a distance, typically 

from aircraft or satellites. This technology enables the observation and analysis of the Earth's surface and 

atmosphere without direct contact. Through the use of various sensors mounted on different platforms, it captures 

information about the Earth’s surface and atmosphere, providing invaluable insights across a myriad of 

applications [1]. The technology has evolved significantly over the years, transitioning from simple aerial 

photography to the use of sophisticated satellite-based sensors that capture data across various spectral bands [2]. 

 

History of remote sensing 

In 1859, Gaspard Tournachon captured a slanted photograph of a small village near Paris from a hot air balloon, 

marking the beginning of earth observation and remote sensing. His work inspired others around the world to 

explore this field. For instance, during the Civil War in the United States, balloon-based aerial photography played 

a crucial role in uncovering defense positions in Virginia, as noted by [3]. This period also saw rapid advancements 

in photography, lenses, and the airborne application of these technologies. 

A significant progression in remote sensing occurred in Europe between the two World Wars. Aircraft, being more 

dependable and stable than balloons, were extensively used for photoreconnaissance during World War I [4]. In 

the interwar period, civilians began using aerial photography in various fields such as geology, forestry, agriculture, 

and mapmaking, leading to advancements in cameras, films, and interpretation equipment. World War II saw major 

developments in aerial photography and image interpretation, as well as the emergence of other imaging systems 

like near-infrared photography, thermal sensing, and radar. These technologies proved invaluable for 

distinguishing actual vegetation from camouflage and for nighttime bombing missions. The first successful 

airborne imaging radar, developed in Great Britain in 1941, was primarily used for military purposes. 

In the 1950s, after the wars, remote sensing technologies continued to develop based on wartime innovations. 

Color infrared (CIR) photography became a valuable tool in plant sciences, aiding in the classification and 

recognition of vegetation types, as well as in the identification of diseased, damaged, or stressed vegetation. This 

decade also saw substantial progress in radar technology. 

The first weather satellite, TIROS-1, was sent to space in 1960, creating new opportunities for watching the 

atmosphere. This event was a starting point for the many remote sensing satellites we have now [5]. With years 

passing, improvements in how we gather, and handle information have enhanced what remote sensing can do, 

turning it into a crucial tool for researchers, people making decisions, and various experts [6].  

 

Types of remote sensing 

1. Passive Remote Sensing 

Passive remote sensing involves the detection of natural radiation emitted or reflected by the target. This category 

includes optical and infrared sensors that capture sunlight reflected off the Earth’s surface, as well as thermal 

sensors that detect emitted heat [7]. 
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2. Active Remote Sensing 

Active remote sensing, in contrast, emits its own signal towards the target and measures the reflected energy. Radar 

and LiDAR are prime examples, emitting microwave and laser energy, respectively, and are widely used for 

topographic mapping and vegetation analysis [8]. 

 

Remote Sensing Platforms 

1. Satellites 

Satellites are the most common spaceborne platforms, providing extensive coverage and the ability to monitor 

large-scale phenomena [9]. 

2. Aircraft and Drones 

Aircraft and drones offer higher resolution data and flexibility, making them ideal for localized studies [10]. 

3. Ground-Based Platforms 

Ground-based platforms, including towers and mobile units, are crucial for calibrating and validating data 

collected from airborne and spaceborne sensors [11]. 

 

Remote Sensing Data Processing 

Data processing is a critical step in transforming raw remote sensing data into usable information. This involves a 

series of preprocessing steps such as calibration, atmospheric correction, and geometric correction [12]. Advanced 

techniques such as machine learning and data fusion are increasingly used to enhance the quality of the data and 

extract meaningful information [13]. 

 

Remote Sensing Applications 

1. Agriculture 

Remote sensing plays a crucial role in precision agriculture, providing information on crop health, soil conditions, 

and irrigation needs [14]. It aids in optimizing agricultural practices, enhancing productivity, and minimizing 

environmental impacts [15]. 

2. Environmental MonitoringIn the realm of environmental monitoring, remote sensing is used to track 

biodiversity, assess water quality, and monitor the impacts of climate change [16]. It provides critical data for 

conservation efforts and sustainable resource management [17]. 

3. Urban Planning 
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Remote sensing supports urban planning through land use mapping, infrastructure development, and traffic 

management [18]. It aids in creating sustainable urban environments and managing the challenges of urbanization 

[19]. 

4. Disaster Management 

In disaster management, remote sensing provides timely and accurate information for response and recovery 

efforts during natural disasters such as floods, earthquakes, and wildfires [20]. It enhances situational awareness 

and aids in damage assessment, contributing to more effective disaster response [21]. 

5. Climate Change Studies 

Remote sensing is instrumental in studying the effects of climate change, providing long-term data sets that are 

crucial for understanding global climate patterns and predicting future changes [22]. It plays a key role in climate 

modeling and the assessment of climate change impacts on various ecosystems [23]. 

6. Forestry 

In forestry, remote sensing aids in forest management, species identification, and monitoring of deforestation and 

forest health [24]. It provides valuable data for sustainable forest management and conservation efforts [25]. 

 

Overview of the PRISMA Satellite: 

The PRISMA satellite, managed by the Italian Space Agency, is a major progress in observing Earth and collecting 

detailed hyperspectral remote sensing data. It was sent into space in March 2019 and carries advanced tools that 

can take both hyperspectral and panchromatic imagery, providing comprehensive and detailed views of the Earth's 

surface. 

PRISMA's payload includes a hyperspectral sensor with a spectral range of 400 to 2500 nm, as well as a high-

resolution panchromatic sensor. The hyperspectral sensor provides detailed spectral information across 239 

contiguous bands, while the panchromatic sensor delivers imagery with a 5-meter spatial resolution. This 

combination of sensors enables comprehensive and detailed analysis of the Earth’s surface, facilitating a variety 

of applications in fields such as agriculture, environmental monitoring, and natural resource management. 

PRISMA operates in a sun-synchronous orbit, ensuring consistent lighting conditions for imagery acquisition. The 

satellite's design and capabilities are a testament to Italy's commitment to advancing space-based Earth observation 

technologies. 

Through its sophisticated sensors and advanced operating modes, PRISMA provides valuable data to the scientific 

community, contributing to our understanding of the Earth's systems and supporting sustainable management of 

natural resources [26]. 

 

Products and Processing Levels:  

PRISMA provides a suite of products at different processing levels, catering to diverse user needs and applications: 
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Level 1 (L1): L1 products consist of raw data and basic radiometric corrections. They serve as the foundation for 

higher-level processing and analysis. 

Level 2 (L2): L2 products undergo additional processing, including geometric and atmospheric corrections. This 

level includes various sub-products such as L2A (reflectance data) and L2B (brightness data). 

Level 2D (L2D): The L2D product includes atmospherically corrected hyperspectral data, providing users with 

data that is ready for analysis and interpretation. It is a key product for users interested in extracting quantitative 

information from the imagery. 

 

All products cover a standard scene with size 30x30 km2 as a result of segmentation of longer data take strips. The 

geolocation accuracy of PRISMA’s imagery is crucial for its applications. The imagery undergoes orientation and 

orthorectification processes to correct distortions and align it with real-world coordinates. PRISMA faces unique 

challenges in this regard, requiring specialized procedures for image orientation (2). The L2D product level from 

the PRISMA satellite is one of the higher-level processed data products, and it typically includes geolocated and 

atmospherically corrected hyperspectral imagery. The geolocation accuracy of L2D products would be 200m 

without GCPs CE90 and less than 15 with GCPs CE90[26].  

 

The alignment of PRISMA with Sentinel-2 imageries  

Image registration: Image registration is a technique that can be used to align two images. The first objective of 

the study is to develop a methodology for aligning PRISMA and Sentinel-2 imageries. This is a challenging task 

due to the different spectral resolutions, sensor characteristics, and acquisition geometries of the two types of 

imageries. The registration can be done using a variety of methods, such as feature-based registration, intensity-

based registration, and sensor model-based registration. 

Feature-Based methods: 

In feature-based registration methods, strong and distinct image features are identified and extracted from both the 

reference and sensed images. Following this, a matching process is carried out to establish correspondences 

between the features of the two images, leading to the identification of correct matches. Utilizing these matched 

pairs, the transformation that relates the two images is calculated. Subsequently, this transformation is applied to 

the sensed image, resulting in the aligned, registered image. Prominent methods within this category include Scale 

Invariant Feature Transform (SIFT) (27), Speeded Up Robust Features (SURF) (28), Local Self-Similarity (LSS) 

(29), and Shape Context (30). 

Key considerations in feature-based registration include: 

• Repeatability: This metric assesses the stability of feature detection, advocating for the extraction of 

feature points at corresponding locations across both input images to enhance repeatability (31). 

• Number of Correct Matches (NCM): Achieving a high number of accurate matching pairs is crucial for 

improving positional accuracy in the registration process. 

• Controllability: A feature-based method should allow for control over the quantity of features extracted, 

ensuring a sufficient number of features are identified for reliable registration (32). 
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• Correct Matching Rate (CMR): Defined as the ratio of correct matches to the total number of matches 

(inclusive of both correct and incorrect matches), a higher CMR indicates more reliable matching (33). 

• Distribution of Matching Pairs: Uniform distribution of matching pairs is essential for estimating a 

transformation model capable of handling local distortions in remote sensing images (32). 

• Distinctiveness: Feature descriptors should be unique to enhance the accuracy of the matching process. 

• Robustness: Descriptors need to be resilient, capable of handling substantial geometric and radiometric 

variations between input images, as well as noise. 

 

Intensity-Based methods 

In intensity-based registration methods, the goal is to compute a similarity metric utilizing the input images to 

derive the registered image. These methods typically employ some form of optimization strategy to expedite the 

registration procedure. Utilizing an optimizer to fine-tune the registration function results in multiple 

transformations of the sensed image over the reference image, continuing until a peak in similarity between the 

two images is reached. The primary aim in this context is to pinpoint the transformation �ϕ that maximizes this 

similarity. Following the identification of this transformation, the sensed image is altered accordingly to produce 

the registered image. Cross correlation (CC) and mutual information (MI) are commonly recognized similarity 

metrics employed in intensity-based registration methods (34). 

 

Deep learning-based methods 

At times, both feature-based and intensity-based approaches may struggle to accurately register images that are 

significantly deformed or impacted by noise (35). Traditional feature-based techniques rely on manually crafted 

features such as edges, corners, textures, and gradients, which do not encapsulate higher-level semantic 

information (36). These techniques do not incorporate feedback between the extraction and matching of features, 

leading to a direct impact on the efficacy of feature matching when there is a lack of robust features. To address 

these challenges, deep learning has become a widely adopted methodology for remote sensing image registration 

(37; 38; 39; 35; 40; 36; 41). Methods based on deep learning autonomously derive features, utilizing the hidden 

and output layers of neural networks for the purposes of feature extraction and matching.  

The developed methodology will be evaluated using a variety of datasets, including the PRISMA and Sentinel-2 

imageries. The results of the evaluation will be used to improve the methodology and to make it more robust.  

 

Land cover classification using coregistered data 

The second objective of the thesis is to apply the methodology to study land cover changes. This will be done by 

using the Coregistered PRISMA imageries to classify land cover over time. The results of the land cover 

classification will be used to study the changes in land cover, such as deforestation and urbanization.  

Studying changes in land cover is important to understand how human activities impact the environment. The 

findings from this study can help in making plans and taking actions to reduce the negative effects of these land 

cover changes. 
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A review of state-of-the-art techniques in image registration 

Geometric registration serves as a vital component in ensuring precision for a wide range of remote sensing image 

processing and analytical tasks, including the creation of image mosaics, image fusion, and chronological analysis. 

In the past few decades, this area has captured substantial interest within the remote sensing community, resulting 

in extensive research on this topic. Nonetheless, there exists a paucity of systematic examinations of its current 

state and an in-depth exploration of its developmental directions. Furthermore, as new methodologies continue to 

emerge, several unresolved issues remain. Hence, this review offers a comprehensive review of the state-of-the-

art techniques for remote sensing image registration, spanning intensity-based, feature-based, and hybrid methods. 

It also consolidates information on optical flow estimation, methods based on deep learning, as well as software-

assisted registration and assessment of the registration process. Building upon recent progress, this work also 

identifies and discusses potential future directions. 

 

Overview 

Remote sensing imagery, obtained from diverse sensors, during different time periods, and from various 

perspectives, provides supplementary data about specific areas and observations of the Earth's surface. Due to a 

variety of factors such as the Earth’s rotation, its curvature, and variations in platform altitudes, these images 

exhibit systematic geometric distortions. These distortions can only be partially corrected without high-precision 

elevation data and ground control points. While the true digital orthophoto map offers precise spatial positions, it 

is expensive and not easily accessible to the general public. As a result, most available remote sensing images still 

retain minor geometric distortions after correction, leading to spatial discrepancies between objects in different 

images. This review highlights the importance of geometric registration techniques, which aim to align multiple 

images of the same scene, acquired at different times, from various viewpoints, and with different sensors [1]. This 

alignment is crucial for numerous practical applications in remote sensing, including image mosaicking [2], image 

fusion [3], land cover change detection [4], [5], and disaster evaluation [6], [7]. 

 

Additionally, the review delineates the distinction between image registration and coregistration, emphasizing their 

specific applications, particularly in aerial and unmanned aerial vehicle imagery. It traces the historical 

development of geometric registration back to the 1970s, documenting its expansion and evolution across various 

domains such as remote sensing, computer vision, and medical image processing. The review also presents a 

thorough analysis of literature from 1979 to January 2022, showcasing the growth of research in this area. 

 

In subsequent sections, the review categorizes and elaborates on various classical and contemporary methods of 

remote sensing image registration, with a particular focus on deep learning-based approaches, optical flow 

estimation, and software-based registration methods. Additionally, it analyzes development trends and potential 

future directions in the field, from our perspective. The review underscores the crucial role of transformation 

models and resampling techniques in achieving image alignment, highlighting the significance of preliminary steps 

such as feature extraction and matching in the registration process. 
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Intensity-Based Alignment Techniques 

Intensity-based alignment methodologies leverage the original or modified pixel values, such as image gradients, 

for aligning remote sensing imagery. This category encompasses traditional area-based methods as well as optical 

flow estimation, which directly computes the incremental displacement of corresponding pixels using their 

intensity values, classifying it as an intensity-based registration technique. 

 

Area-Based Techniques 

Area-based alignment generally follows a predetermined similarity criterion, employing an optimal search strategy 

to iteratively discover the transformation model parameters that maximize or minimize the similarity measure, 

resulting in the spatial alignment of images. Unlike image matching, typically associated with template matching, 

area-based methods directly utilize pixel intensity values, but aim to find the centroids of matched windows to 

establish feature points, which is a crucial step but not the final goal of geometric registration. This section delves 

into area-based registration, highlighting the significance of similarity metrics, explored through both spatial- and 

frequency-domain strategies [11], [16], [17]. 

 

Approach in Spatial Domain 

The techniques within the Spatial Domain focus on employing the intensity variance and statistical attributes of 

all the pixels, circumventing any form of image transformation. Generally, there are two main methodologies 

employed in this domain: the correlation-like technique and the mutual information (MI) algorithm. 

 

Technique of Correlation-Like Similarity Metric 

This method aims to ascertain the spatial correspondence between images by directly evaluating the similarity of 

corresponding pixel values. However, it is susceptible to variations in intensity, which can be attributed to various 

factors such as noise, cloud cover variability, and discrepancies in the photosensitive elements of different sensors. 

The cross-correlation (CC) algorithm serves as a fundamental similarity metric within this domain, where it 

calculates the disparity between corresponding pixels and iteratively aligns images until a maximum CC value is 

achieved. This technique proves effective for minor rigid-body and affine transformations [18], [19]. There exists 

a plethora of correlation-like similarity metrics, including but not limited to the sequential similarity detection 

algorithm [20], correlation coefficient [21], [22], normalized CC (NCC) [23]–[25], sum of squared differences 

[26], Hausdorff distance [26], along with various other minimum distance criteria. Among these, NCC stands out 

due to its resilience to linear intensity variations, making it a popular and extensively utilized metric [23], [27], 

[29]. In recent developments, the central points of windows that exhibit a high degree of match according to NCC 

have been utilized as feature points, aiding in the determination of transformation model parameters [30], a process 

also referred to as image matching. Letting ρ(R, S) represent the NCC coefficient for matched windows, the NCC 

is computed as follows: 
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ρ(𝑅, 𝑆) =
∑ (𝑅(𝑖) − μ𝑅)(𝑆(𝑖) − μ𝑆)𝑚×𝑛

𝑖=1

√∑ (𝑅(𝑖) − μ𝑅)2𝑚×𝑛
𝑖=1 √∑ (𝑆(𝑖) − μ𝑆)2𝑚×𝑛

𝑖=1

, 

 

where a predefined window encompasses (𝑚 × 𝑛) pixels, (𝑅(𝑖)) and (𝑆(𝑖)) denote specific positions within the 

windows of the reference and sensed images, respectively, and ( 𝜇𝑅) and (𝜇𝑆) represent the average intensity values 

within a specified window. This algorithm has been refined to generate tie points that can withstand complex 

geometric deformations [31], [30], [31], and has been recently amalgamated with innovative feature descriptors 

(such as the local self-similarity (LSS) descriptor) to enhance feature extraction robustness in multimodal remote 

sensing image registration [28]. Although NCC outperforms traditional correlation-like similarity metrics, it 

struggles with nonlinear radiometric differences, a common issue for metrics of this kind. 

 

Approach Based on Mutual Information (MI) 

The application of Mutual Information (MI) in the field of image registration has gained prominence more recently 

compared to correlation-like techniques. It has demonstrated considerable success in the registration of 

multispectral and multisensor images, showcasing resilience to nonlinear radiometric disparities [32]– [34], as 

typically formulated in equation (2). The Normalized Mutual Information (NMI) method represents a variant of 

MI, characterized by its independence from fluctuations in the marginal entropies of the two images within their 

overlapping region [35], [36]. Both MI and NMI fall under the category of statistical similarity metrics, yet they 

remain susceptible to registration inaccuracies. 

 

Building upon these methodologies, the region-based MI approach was introduced, incorporating structural 

information into the analysis [37]. Extending this concept further, the rotationally invariant regional MI takes into 

account not only spatial details but also the impact of local intensity variations and rotational transformations on 

the computation of the probability density function [36]: 

 

𝑀𝐼(𝑅, 𝑆)  =  𝐻(𝑅)  +  𝐻(𝑆)  −  𝐻(𝑅, 𝑆), 

 

𝐻(𝑅) = − ∑ 𝑃(𝑟)

𝑟∈𝑅

log2 𝑃 (𝑟) 

 

 

𝐻(𝑆) = − ∑ 𝑃(𝑠)

𝑠∈𝑆

log2 𝑃 (𝑠) 
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𝐻(𝑅, 𝑆) = − ∑ 𝑃(𝑟, 𝑠)

𝑟∈𝑅,𝑠∈𝑆

log2 𝑃 (𝑟, 𝑠) 

 

where (𝐻(𝑅)) and (𝐻(𝑆)) denote the Shannon entropies of the reference and sensed images respectively, and 

(𝐻(𝑅, 𝑆)) represents the joint entropy. The marginal probability distributions for the reference and sensed images 

are given by (𝑃(𝑟)) and (𝑃(𝑠)), while (𝑃(𝑟, 𝑠)) indicates their joint probability distribution. The latter is typically 

determined through 2D histogram binning, treating the variables as discrete. 

 

In addition to these methods, there is an MI-based registration technique that employs displacement maps, drawing 

parallels with optical flow estimation methods. Within this variational framework, MI serves as the similarity 

metric for the computation of displacements [38]. 

 

In summary, MI-based algorithms, rooted in information theory, provide a measure of statistical dependence 

between two datasets, rendering them particularly apt for registration tasks involving different imaging modalities. 

Nonetheless, the computational demands of these methods can be substantial, which may pose challenges given 

the typically large size of remote sensing images. 

 

Approaches in the Frequency Domain 

Frequency-domain techniques approach image registration by transforming image data to the frequency domain, 

leveraging the spectral characteristics for alignment purposes. This method proves advantageous for rapidly 

processing small geometric distortions. Fourier-based methods are quintessential examples of frequency-domain 

registration and were initially applied to align images undergoing translational shifts [39]. Phase correlation 

methods, utilizing the Fourier transform, are employed to identify the optimal global match between reference and 

sensed images, locating the peak in the cross-power spectrum [15], [40]– [42], [44]. These methods take advantage 

of the translational and rotational properties of the Fourier transform to deduce the necessary transformation 

parameters [44]. 

 

The robustness of frequency-domain approaches to frequency-dependent noise and variations in illumination 

contributes to their computational efficiency [45]. Unlike feature-based methods that require feature extraction, or 

spatial domain approaches that necessitate optimization, frequency-domain methods circumvent these 

complexities [44]. Nevertheless, the Fourier transform's limited spatial localization can be a drawback, potentially 

addressed by employing wavelet transforms, known for their superior spatial and frequency localization [46]. This 

adaptation has found application in the registration of remote sensing images [47]. 

 

Phase congruency (PC) is a more recent development, serving as a structural information representation in remote 

sensing images. Its uniqueness lies in its invariance to contrast and brightness variations, setting it apart from 

traditional image gradients [48], [49]. 
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In summary, while many correlation-like methods are statistical similarity metrics lacking structural information 

and exhibiting high computational complexity, they are still widely used for registration evaluation due to their 

straightforward hardware implementations [50]. Fourier techniques stand out for their computational efficiency 

and noise robustness, but they face challenges when dealing with image pairs of significantly different spectral 

content. Mutual Information (MI) methods demonstrate superior performance compared to the aforementioned 

techniques; however, they may not always yield a global maximum across the entire transformation search space, 

particularly in cases of limited information or reduced overlap between scenes, affecting their robustness [11], 

[17]. Ultimately, intensity-based approaches, relying directly on pixel values, provide high-precision registration 

without accumulating errors, yet they are time-intensive and can struggle with large rotations, translations, scale 

variations, and similar challenges. 

 

Optical Flow Estimation for Remote Sensing Images 

Optical flow estimation, akin to area-based methodologies, deduces the motion of objects through direct and 

indirect constraints based on pixel intensity, a technique prevalent in computer vision for assessing motion. 

Recognizing the parallels between the displacements of corresponding pixels under a unified coordinate system 

and the optical flow associated with an object, several research endeavors have applied optical flow estimation for 

the registration of remote sensing imagery [51], [52]. Distinct from area-based methods, optical flow estimation 

determines pixel displacement through constraints on intensity and gradient consistency, subsequently 

recalculating coordinates. Following resampling, intensity values are allocated to new, non-integer positions, 

resulting in the acquisition of an aligned image [53]. 

 

Optical flow represents a two-dimensional displacement field, capturing the perceived movement of brightness 

patterns across two consecutive images [54]. This concept was initially introduced by Gibson [55]. In 1981, Horn 

and Schunck (HS) [54], as well as Lucas and Kanada (LK) [56], presented a differential method for calculating 

optical flow. Since that time, numerous adaptations and enhancements have been proposed, primarily in the context 

of video image processing [57]– [58]. Given that optical flow estimation in remote sensing is still in its infancy, 

current research primarily concentrates on differential techniques, exploring various facets of image registration 

in this domain. 

 

Estimation of Dense Optical Flow 

The HS differential methodology for computing dense optical flow is typically referred to as the standard global 

approach [54]. This dense optical flow technique determines the motion of each pixel within a scene. The HS 

optical flow method incorporates both the brightness constancy assumption and a global smoothness constraint to 

estimate pixel motion in both the x and y directions. However, the intensity value constancy assumption is notably 

sensitive to minor brightness variations [59], a common occurrence in remote sensing imagery. Integrating the 

spatial gradient constancy assumption into the HS equation, as shown in equation (3), is a prevalent practice in 

studies focusing on multitemporal remote sensing image registration [53], [59]: 

 

𝐸(𝑢, 𝑣) = ∫ ψ(|𝐼(𝑥 + 𝑤) − 𝐼(𝑥)|2 + γ|∇𝐼(𝑥 + 𝑤) − ∇𝐼(𝑥)|2)𝑑𝑥
Ω

+ α ∫ ψ(|∇3𝑢|2 + |∇3𝑣|2)𝑑𝑥
Ω
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In this equation, (𝑤 = (𝑢, 𝑣, 1)𝑇)represents the pixel displacement to be determined, (𝑋 = (𝑥, 𝑦, 𝑡)𝑇)denotes a 

pixel's coordinates, (𝜓(𝑠2) = √𝑠2 + 𝜀2)is an increasing concave function, and ( 𝜀) is a constant. The weights for 

the gradient and smoothness terms are represented by ( 𝛼) and ( 𝛾) respectively, while (𝛻3 =

(𝜕𝑥 , 𝜕𝑦, 𝜕𝑡)
𝑇

)implies a spatiotemporal smoothness assumption, frequently substituted with the spatial gradient for 

remote sensing image registration. 

The pixel-by-pixel computation of optical flow allows for the elimination of very local deformations caused by 

terrain elevations. However, occlusions pose a significant challenge for precise dense optical flow calculations 

[57], akin to LU and LC changes in remote sensing imagery [53]. In such situations, an object visible in the 

reference (or sensed) image may be absent in the sensed (or reference) image, leading to anomalies in pixel 

displacement. These anomalies can alter the content of the aligned image, even if it is well-matched geometrically 

to the reference image, contradicting the fundamental principle of image registration. After correcting these 

abnormal displacements, the recalculated displacement aligns more consistently with the surrounding region, and 

the aligned image is both content-consistent and spatially aligned with the reference image. 

 

Addressing large-scale movements, another challenge in applying optical flow for remote sensing image 

registration, an enhanced method was suggested in [60]. Here, the initial motion estimator for global optical flow 

is determined using the extended phase correlation technique, facilitating general remote sensing image 

registration, particularly for large-scale deformations [60]. Nonetheless, the real-time registration of large images 

remains a challenge with dense optical flow estimation, despite its ability to deliver high-precision results. 

 

Estimation of Sparse Optical Flow 

Sparse optical flow estimation has garnered more favor for the task of remote sensing image registration compared 

to its dense counterpart. This method is characterized by local differences and is usually constrained within specific 

local regions, such as the locations of feature points identified by well-known extraction techniques like the Scale-

Invariant Feature Transform (SIFT. This strategy presupposes uniform pixel motion within localized areas, and it 

derives the optical flow through the execution of least-squares regression on a series of analogous equations [57]. 

The Lucas-Kanade (LK) gradient-based method [56] stands as a foundational approach, holding equal standing 

with the Horn-Schunck (HS) model for motion estimation in video imagery. Derived from the LK approach, the 

GeFOLKI algorithm has been developed and implemented on graphics processing units, facilitating real-time and 

robust optical flow estimation [51], [61]. Furthermore, GeFOLKI has found applications in the coregistration of 

heterogeneous datasets, such as SAR lidar images and SAR optical images [52]. Subsequent developments, 

considering the disparate imaging mechanisms of SAR and high-resolution optical images, have leveraged the 

high registration precision of optical flow estimation. In these cases, two dense feature descriptors supplant raw 

intensities during image alignment through an optical-to-SAR flow, integrating both global and local optical flow 

estimation methods [62]. 

Sparse optical flow, by focusing on specific and distinct pixels, offers computational time savings. However, its 

accuracy in remote sensing image registration tends to be lower than that achieved with dense optical flow 

methods. Moreover, it demonstrates resilience to Land Use-Land Cover (LU-LC) changes, as it does not rely on 

similar features for sparse optical flow estimation in regions undergoing change. 
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To encapsulate, the development of optical flow estimation has spanned several decades within the domain of 

computer vision, particularly for motion estimation in superresolution reconstruction. Its application to remote 

sensing image registration is comparatively nascent. Optical flow estimation stands out for its ability to precisely 

calculate pixel displacements, proving especially valuable in scenarios involving localized deformations, such as 

those induced by terrain elevation changes, which significantly impact high-resolution image registration [52]. 

Nonetheless, when employing this technique in remote sensing, one must consider its efficiency, given the 

typically wide field of view (WFV) characteristic of remote sensing imagery. Furthermore, due to societal 

progression and seasonal variations, LU-LC changes frequently occur in multitemporal remote sensing images. 

Dense optical flow methods are particularly sensitive to such alterations, potentially leading to abnormal 

displacements and modifications to the content of aligned images. Consequently, efficient and precise correction 

mechanisms should be integrated into the initial phase of optical flow estimation when it is utilized for registration 

purposes. 

 

Feature-Based Registration Approach 

The feature-based methodology leverages abstract characteristics of an image for the purpose of registration, as 

opposed to relying on pixel intensity values. In this context, a "feature" is defined as a unique geometric or 

advanced attribute that is derived through a specific extraction method. Geometric features encompass distinct 

elements such as points, line segments, and defined boundary regions within a remote sensing image, and can be 

identified using existing or newly developed techniques. On the other hand, advanced features are complex 

descriptions of local areas, often extracted via neural networks (NN), particularly within deep learning 

frameworks, serving to encapsulate the essence of the original image. Within the realm of feature-based 

registration, geometric features are recognized as traditional, whereas the employment of advanced features 

represents a more contemporary approach. 

 

Traditional Approach to Feature-Based Registration 

Typically, prominent, and unique features like points, line segments, and enclosed boundary areas are identified 

within remote sensing imagery, either manually or through automated processes. Following this, correspondences 

between features in the reference image and the sensed image are established based on a comparative analysis of 

their respective descriptors. This process facilitates the determination of the geometric relationship, which in turn 

guides the alignment of the sensed image with the reference image. The final step involves transforming the 

coordinates within the sensed image. It is noteworthy that these transformed coordinates often take on non-integer 

values, necessitating interpolation to determine their associated intensity values. In the ensuing discussion, we 

delve into the extraction and matching of geometric features, given that this area has been a focal point of 

traditional feature-based registration methodologies. 

 

Feature Extraction Process 

The process of feature extraction encompasses both the identification and the detailed description of distinctive 

attributes within an image. The initial stage, feature detection, involves pinpointing unique elements in the image 

and establishing their precise locations. Following this, the feature extraction stage takes over, where a distinct 

descriptor is meticulously crafted to uniquely characterize each identified feature. In earlier practices, the selection 



17 
 

of features was predominantly a manual task. This traditional method continues to find application in contemporary 

settings, such as within the “image-to-image registration” functionality of the Environment for Visualizing Images 

(ENVI) software. However, it is important to note that this manual approach demands a substantial investment of 

time, particularly when dealing with extensive remote sensing images. In response to these challenges, a plethora 

of methodologies have been developed to facilitate the automatic extraction of representative features. Within this 

context, common geometrical features can be identified and selected. These include prominent points like 

intersections of lines, corners, curves with significant curvature, and points where roads cross [63], [64]. 

Additionally, linear features such as roads, contours, and edges [33], [65], as well as enclosed areas like closed 

boundary regions and bodies of water [66], are also extracted.  

 

Feature Points and Their Extraction 

Feature points in an image are local areas where there is a significant variation in gray value from multiple 

directions. These include specific types of points such as corner points, inflection points, and T-intersection points. 

The field of computer vision has seen numerous efforts to extract these feature points, which has in turn influenced 

similar developments in the domain of remote sensing. 

 

The journey of feature point extraction began with Moravec's introduction of a corner detection method in 1977 

[67]. Despite its rapid computational speed, the algorithm's sensitivity to noise and susceptibility to image rotation 

limited its adoption in remote sensing applications. A more robust alternative came with the Harris corner detector, 

introduced in 1988 [68]. This algorithm maintains its performance under variations in gray-scale and rotation, 

making it a more suitable choice for remote sensing image processing, particularly in the realm of multiscale 

corner detection [30], [64], [69], [70]. 

 

The smallest unvalued segment assimilating nucleus operator, proposed by Smith and Brady [71], showed 

resilience to local noise and exhibited a strong anti-interference capability [72]. However, its application in remote 

sensing image registration remains limited [73]. On the contrary, the Scale-Invariant Feature Transform (SIFT) 

algorithm has gained widespread adoption in this field [36], [49], [64], [74]–[80]. Introduced by Lowe [82], SIFT 

remains invariant to changes in rotation, scale, and translation [83], and has spawned numerous enhanced versions 

including principal component analysis SIFT [84], scale-restriction (SR) SIFT [27], [85], affine SIFT [86], and 

uniform robust SIFT [87], [88]. 

 

Addressing the time-intensive nature of SIFT, especially for large-scale remote sensing images, Bay et al. proposed 

the Speeded-Up Robust Features (SURF) algorithm [89]. This method employs an integral image for the 

computation of image derivations and succinctly quantifies gradient orientations [90]–[92], [93]. Other 

algorithms such as the Features from Accelerated Segment Test (FAST) [94], Binary Robust Independent 

Elementary Features (BRIEF) [95], Oriented FAST and Rotated BRIEF [96], [97], Kaze [98], and Accelerated 

Kaze [99] also offer rapid descriptor construction, albeit with less prevalence in remote sensing applications. 

 

Emerging approaches are exploring the combination of corners and blobs to enhance the matching of key points 

in remote sensing image registration [100]. Additionally, robust and innovative feature descriptors are being 
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employed to characterize detected feature points, particularly in the context of multimodal remote sensing images 

with varying intensity levels. Examples of these descriptors include the Local Self-Similarity (LSS) descriptor, 

which accounts for nonlinear intensity differences [28]; the histogram of oriented phase congruency (PC), drawing 

from structural similarity metrics [48]; and the maximally stable PC, a novel descriptor that is both affine and 

contrast-invariant [101]. Significantly, all these descriptors incorporate PC information, which is analogous to the 

image gradient, capturing structural details while remaining resilient to changes in illumination [102]. This 

highlights a growing trend towards leveraging phase consistency information for the development of robust feature 

descriptors tailored for multimodal remote sensing imagery. 

 

Feature Line Representation and Utilization 

Feature lines, also referred to as line features, extend the concept of feature points, encompassing entities such as 

general line segments [103], object contours [65], roadways, coastlines [104], and river paths [105]. With a richer 

set of attributes compared to feature points, feature lines serve as control features [106] and have seen incremental 

adoption in both general image registration [107] and remote sensing image registration specifically [106], [108], 

[109]. 

 

Traditional methodologies for detecting feature lines include standard edge detection techniques, with the Canny 

detector [110], [112] and Laplacian of Gaussian-based detectors [113] being prominent examples [11]. In more 

recent times, innovative detectors that yield precise and robust line segments have been introduced [114], [115], 

demonstrating their aptitude for line detection within remote sensing imagery. 

 

Despite their potential, feature lines are not as prevalently employed in remote sensing as feature points, primarily 

due to the challenges associated with their matching process. Often, feature lines are reduced to simpler elements 

such as corners, midpoints, or endpoints, which are then used as the final features for registration purposes [11]. 

This reduction process, while simplifying the matching task, also leads to a loss of the intrinsic geometric 

information that feature lines inherently possess. 

 

Feature Regions 

The term "feature region" encompasses all closed boundary areas within an image that are of a substantial size, 

such as lakes [116], wooded areas [117], structural entities [103], and urban regions [118]. In the times preceding 

the advent of robust feature point extraction methodologies, feature regions played a pivotal role in the indirect 

derivation of feature points. This was typically achieved through the application of high-contrast region 

extraction techniques, involving processes such as filtering [119] and image segmentation [120], followed by the 

characterization of these regions using moment-invariant descriptors [121], [122]. 

 

These extracted regions were commonly represented by their centers of gravity [119], [123]–[124], a method 

offering invariance to transformations such as rotation, scaling, and skewing, while also maintaining stability in 

the face of random noise and variations in gray levels [11].  
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However, in comparison to feature points and lines, the focus on the extraction and description of feature regions 

has somewhat diminished over time, especially in the context of recent advancements in feature-based registration 

methods. This shift reflects the evolving landscape of feature extraction and registration techniques in image 

processing and remote sensing. 

 

Feature Matching and Mismatched Feature Removal 

The process of aligning reference and sensed images is achieved by identifying correspondences through the 

examination of detected feature points, lines, and regions, utilizing a variety of feature descriptors [11], [125], 

[126]. In the course of performing feature matching, mismatched features invariably arise, necessitating their 

removal to refine correspondences and facilitate the generation of highly accurate transformation models. Even in 

the presence of radiometric variations, noise, and image distortions, features with similar characteristics are 

deemed suitable for matching. 

 

To navigate these challenges and ensure the integrity of the matching process, it is crucial to employ robust 

measures for feature matching. Broadly speaking, feature matching strategies can be categorized into two distinct 

groups: feature similarity and spatial relations. These methodologies serve as the foundation for establishing 

precise correspondences between the features of the reference and sensed images. 

 

Feature Similarity Assessment 

In the realm of image registration, the establishment of correspondences between extracted features from reference 

and sensed images is facilitated through the comparison of feature similarity, utilizing the constructed descriptors. 

This assessment of similarity transpires within the feature space, primarily employing the Euclidean distance ratio 

between the nearest and second-nearest neighbors as the basis for comparison [82]. 

 

To enhance the efficiency of this process, algorithms such as the k-dimensional tree and best-bin-first are 

implemented, aiding in the swift and accurate determination of feature similarity [83], [127]. Moreover, various 

matching methodologies, including clustering techniques [129], chamfer matching [130], and phase consistency 

(PC) models, are routinely applied. Notably, these approaches maintain their invariance to intensity variations 

during the matching process, ensuring a robust and reliable performance [1]. 

 

Spatial Relationships for Image Registration 

Focusing on the matching of tie points in areas with limited texture, there have been developments in methods that 

leverage spatial relationships. A notable example is the application of graph-based matching for feature points, 

wherein the feature points are treated as nodes within a graph. The challenge of feature matching is subsequently 

reformulated as a problem of establishing node correspondences, which is addressed through graph matching 

techniques [116], [131]. 
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While graph matching has proven effective for correlating image features, it is important to note that it does not 

inherently possess affine invariance [132]. To address this, a method involving the creation of a consensus nearest-

neighbor graph from potential matches has been introduced, leading to the development of a graph-transformation 

matching approach [133]. 

 

To further refine the process, particularly in regions with scant textural information, an additional graph matching 

technique has been proposed, enhancing the accuracy of tie point matching [91]. In a separate development, Xiong 

and Zhang have proposed an innovative method for matching interest points in high-resolution satellite imagery. 

This method utilizes relative positions and angles to diminish ambiguity and mitigate the risk of incorrect matches, 

proving effective for cases involving image shifts and rotations. However, it does not extend to affine and large-

scale transformations [134], [133]. 

 

Mismatched Feature Elimination 

Despite the meticulous matching of extracted features from a reference image to those in a sensed image using the 

methods described previously, the occurrence of non-matching feature points is unavoidable, which can 

subsequently influence the accuracy of estimating the transformation model [24], [66]. Consequently, it is crucial 

to employ a specific technique to eliminate these inconsistent features [135], [136].  

 

Typically, the Random Sample Consensus (RANSAC) method is utilized for this purpose, leveraging the initial 

matching results. RANSAC iteratively selects random subsets of the matched features, identifies the largest group 

of consistent features, and then computes the final transformation model parameters based on this consensus set 

[25], [137]. This method has proven to be robust and effective, especially when the proportion of mismatched 

features (outliers) is less than 50% [133], [138], [139]. 

 

To further refine the matching precision, an algorithm that merges local structural details with global information 

has been developed. This method, known as the restricted spatial order constraints algorithm, precisely identifies 

and aligns the correctly matched features between the reference and sensed images [133]. 

 

Additionally, leveraging the affine-invariance characteristic of the triangle-area representation (TAR), a robust 

sample consensus judging algorithm has been introduced. This algorithm efficiently discerns incorrect matches, 

ensuring high accuracy with minimal computational demand [140]. In situations involving images with simple 

patterns, substantial affine transformations, and limited overlapping areas, a mismatch elimination principle based 

on the TAR values of the k-nearest neighbors, termed k-nearest neighbors–TAR, is recommended [149]. 

 

An enhanced version of RANSAC, named fast sample consensus, has also been developed to achieve accurate 

feature matching in fewer iterations [139], [141]. As a result, the majority of the retained feature points in the 

reference image correspond precisely to the intended feature points in the sensed image. This alignment contributes 

significantly to the accuracy of the transformation model estimation in the subsequent stage. 
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The feature-based registration approach, which relies on distinct geometrical features rather than pixel intensity 

information, is proficient and adept at handling significant rotations, translations, and scale variations between 

reference and sensed images. However, it is important to acknowledge that positional inaccuracies in the 

automatically extracted features are unavoidable, and some non-matching features may persist. This scenario can 

lead to a slightly reduced registration precision when compared to intensity-based registration methods. 

 

Deep Learning-Based Advanced Feature Registration 

Deep learning introduces a novel paradigm for aligning remote sensing images, predominantly through enhanced 

feature extraction capabilities [142]. With its roots in computer vision and a rich history [143], deep learning has 

recently found applications in remote sensing, including tasks like image blending [144], [145], land cover 

classification [146], [147], and image segmentation [148]. Its data-driven nature allows it to derive image features 

from large training datasets based on specific principles [147], making it a fitting choice for remote sensing image 

alignment. 

 

Various studies have delved into feature matching using deep learning [147], [149], often employing a Siamese 

network architecture to train a deep neural network (DNN) [150]–[151]. This structure typically consists of two 

segments: one for extracting features from pairs of image patches and another for evaluating the similarity between 

these features for image matching. In one instance, a DNN inspired the creation of a deep learning framework 

specifically for remote sensing image registration [151]. Additionally, generative adversarial networks (GANs) 

have been applied to this task, translating images to make their intensities and features more comparable, thus 

enhancing matching performance [152], [153], [154]. These methods have showcased significant improvements 

in registration results. Addressing the limitations of scale-specific neural networks, multitask learning has been 

introduced to enhance registration precision [155]. Wang et al. have pioneered an end-to-end network that learns 

the mapping functions and matching labels for patches in remote sensing images [151]. More recently, Li et al. 

have adopted a direct approach, learning the displacement parameters for image blocks, diverging from traditional 

methods [156]. 

 

Deep learning surpasses traditional registration techniques with its flexibility and ability to theoretically model 

any complex mapping function. It extracts higher-level semantic information, providing a more intuitive 

understanding of images and resulting in robust feature extraction. Nevertheless, it is not without challenges. Its 

performance heavily relies on the availability and quality of image samples, and the lack of annotated data remains 

a significant hurdle. Additionally, its complexity and hardware demands may limit its applicability. 

 

In summary, while remote sensing image registration via deep learning is still emerging and its frameworks are 

not fully matured, it has demonstrated potential to match or even exceed the performance of traditional methods. 

We foresee deep learning-based methods playing a pivotal role in achieving real-time, high-precision remote 

sensing image registration in the future. 
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Method of Registration through Combined Techniques 

In this discussion, it is noteworthy that both feature- and intensity-based methodologies exhibit distinct advantages. 

Additionally, various feature extraction instruments demonstrate different levels of accuracy. To optimally harness 

these strengths, methodologies that combine these approaches have been devised. Typically, these combined 

methods encompass both feature- and area-based strategies; however, there are instances where two geometric 

feature-based techniques, such as SIFT and Harris detectors, are merged. 

 

Fusion of Feature- and Area-Based Methods 

Generally, feature-based strategies are more applicable to images rich in structural content than in intensity details. 

Nevertheless, the effectiveness of these methods is limited by the distribution and precision of the features 

identified. Conversely, area-based strategies are more suited for images with pronounced intensity details, 

necessitating a correlation between the intensity data of the reference and target images. Consequently, these two 

methodologies offer a set of complementary advantages and disadvantages. To enhance the precision and stability 

of registration, several studies have explored the combination of geometric feature- and area-based techniques 

[157]. Huang et al. [158] introduced a mixed approach for aligning images based on intensities within a scale-

invariant feature region. Additionally, a wavelet-based feature extraction method was amalgamated with an area-

based method using NCC to mitigate local distortions due to terrain variations [159]. In a hierarchical pyramid 

framework based on wavelets, Mekky et al. [160] suggested a mixed method utilizing MI and SIFT. By applying 

the preliminary registration parameters from the area-based method to MI, the incidence of false positives from 

SIFT was reduced. Furthermore, Gong et al. [80] proposed a novel coarse-to-fine registration framework, 

combining the robustness of SIFT with the precision of MI for the registration of optical and SAR remote sensing 

images. For the registration of multisensor SAR images, Suri et al. [161] developed a multi-stage registration 

strategy, initially estimating the transformation model's rough parameters using MI, and subsequently introducing 

this model during the SIFT matching phase to augment the number of tie points. Utilizing the combination of SIFT 

and MI, Heo et al. [162] presented a stereo matching technique for generating precise depth maps. Collectively, 

these methodologies can be categorized as coarse-to-fine processing chains, aiming to refine the results obtained 

from feature-based methods through optimization processes derived from area-based techniques [80], [157]. 

 

Integration of Dual Geometric Feature-Based Approaches 

Beyond the fusion of feature- and area-based strategies, merging two distinct geometric feature-based approaches 

is emerging as a technique for high-precision registration. This process typically involves utilizing feature points 

identified through different methods to register images in two stages. For instance, Yu et al. [64] employed SIFT 

to extract feature points for the initial registration of images from various sensors. In the subsequent fine 

registration stage, the Harris algorithm was applied for corner point detection, followed by point matching using 

the NCC algorithm. Similarly, Lee [164] utilized SURF for feature point extraction from a low-resolution image, 

followed by Harr wavelet transformation, constituting the rough registration phase. The fine registration phase 

mirrored the approach advocated by Yu et al. More recently, Ye et al. [28] applied SR–SIFT for feature point 

extraction in the preliminary registration stage, aiming to eliminate significant translation, rotation, and scale 

differences. 
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To optimize the registration process further, the Harris algorithm was employed for feature point detection in both 

the reference and prealigned images, with the LSS method used for point matching [28]. To register large, high-

resolution remote sensing images, a strategy combining the Harris–Laplace detector with the SIFT descriptor has 

been proposed. After initial registration, the image is subdivided into smaller, manageable blocks for fine-tuning 

[165]. Additionally, a novel two-step registration process has been introduced, initially calculating an approximate 

spatial relationship using deep features via a convolutional neural network, and subsequently adjusting the results 

based on locally extracted features [166]. Another technique merges feature point and feature line methods for 

image registration in scenarios with low-texture content, commonly encountered in computer vision applications 

[167]. Given that low- and repeated-texture regions are prevalent in remote sensing imagery, the inclusion of 

feature lines can augment the number of feature points available, underscoring the potential of integrating different 

geometric features for high-precision remote sensing image alignment [14]. 

 

Software-Based Registration Exploration 

Numerous reviews have highlighted the growing array of image registration techniques, many of which build upon 

existing methods to accommodate increasingly large and complex images [11], [168]. However, there has been 

limited evaluation of the performance of embedded image registration modules within various software packages 

and tools designed for geometric image registration [169]. In this context, we explore several notable examples. 

 

Renowned software packages such as ERDAS, ENVI, PCI Geomatica, ER Mapper, and ArcGIS offer a suite of 

tools for remote sensing image processing, including modules for image registration. ERDAS, having acquired 

ER Mapper, integrates both manual and automatic registration functionalities. ENVI, for instance, enables the 

registration of remote sensing images or the alignment of an image with a corresponding map, with users manually 

identifying tie points based on observable features across the images. While this process can be laborious and 

subjective, especially for images requiring wide field view registration, ENVI also facilitates automatic alignment. 

However, the accuracy of the tie points, whether manually or automatically extracted, may not always meet the 

required precision, particularly for high-resolution images with localized deformations. 

ERDAS, developed by the ERDAS Corporation in the United States, offers more precise location accuracies for 

tie points and a wider array of transformation models compared to ENVI. It also incorporates elevation data into 

the registration process, enhancing the precision of alignments, particularly for mountainous remote sensing 

images. Both ArcGIS and PCI Geomatica, despite being primarily utilized for different applications, include image 

registration modules, employing various transformation models to achieve high-precision registration of complex 

remote sensing images. Nonetheless, the results can sometimes be suboptimal due to non-uniform distribution and 

insufficient numbers of tie points. 

Newer software solutions, such as Pixel Information Expert developed by Beijing Aerospace Hongtu Information 

Technology, specialize in multimodal remote sensing image registration, addressing issues of dislocation in 

multisource, heterogeneous remote sensing images. Other software options, including both commercial and open-

source packages, offer additional tools for geometric registration. 

 

Given the critical nature of high-resolution image registration in remote sensing image processing, considerable 

emphasis has been placed on developing effective strategies. One such approach combines SURF with an adaptive 
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binning SIFT descriptor to extract dense tie points representing local geometric relationships, guiding the 

registration process to a precise result [170]. The MATLAB code for this algorithm, along with experimental data, 

is available at https://www.researchgate.net/publication/320354469_HRImReg. However, the code is encrypted, 

and the parameters are not adjustable, limiting its use to comparative experiments for evaluating proposed 

approaches. For simulation experiments assessing feature point detectors or evaluating mismatched elimination 

approaches with real data, the progressive sparse spatial consensus algorithm can be employed [171]. The code 

and experimental data are publicly accessible at https://github.com/jiayi-ma?tab=repositories, although 

modifications may be necessary for application to remote sensing images. Beyond these tools, a plethora of 

commercial and open-source software packages and tools are available for geometric registration, offering various 

perspectives and methodologies that warrant deeper exploration in future discussions. Regardless of the tool or 

method chosen, it is imperative to conduct a thorough evaluation of the registration approach to ensure the aligned 

image meets the necessary standards and requirements. 

 

Assessment of Image Registration Precision 

In aligning spatial data from remote sensing images, it is crucial to provide an accurate measure of how precise 

the registration is. This challenge of evaluating accuracy is a common theme across various studies in the field of 

remote sensing image registration. In this discussion, we focus on three key areas for assessing registration 

precision: the identification of tie points, the efficacy of the transformation model, and the measurement of 

alignment errors. Let's delve into the fundamental methods used in evaluating alignment. 

 

Precision in Identifying Tie Points 

The accuracy and number of tie points play a critical role in achieving precise image registration. It is vital to have 

an adequate number of redundant tie points, as well as to correctly compute the parameters for the chosen 

transformation model. We generally aim to utilize as many tie points as possible for this computation. Additionally, 

it is necessary to account for a residual ((𝛥𝑥𝑖, 𝛥𝑦𝑖))for each feature point extracted, relative to the image’s origin 

[172]. Given ( 𝑁 ) tie points, the root-mean-square error (RMSE) can be calculated as follows: 

 

RMSE𝑡𝑝 = √
1

𝑁
∑((Δ𝑥𝑖)2 + (Δ𝑦𝑖)2)

𝑁

𝑖=1

 

 

This RMSE should be normalized to the pixel size for a standardized comparison. Moreover, evaluating the 

proportion of incorrect points (those with residuals exceeding a certain threshold) is essential. This evaluation can 

help in assessing the quality of the extracted feature points. Additionally, the distribution of tie points should be 

uniform, and several studies have suggested methods for extracting feature points within specific subregions to 

achieve this [22]. However, it's important to note that while tie points significantly impact registration accuracy, 

they are not the only factor. 
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Performance of the Transformation Model 

The transformation model serves as an abstract representation of the geometric mapping function, transforming 

data from the sensed image to the reference image. Obtaining the actual geometric distortion between images is 

challenging without prior information, making it necessary to estimate the transformation to approximate the real 

geometric relationship. A portion of the matched feature points is used to estimate the mapping function, while the 

remaining points in the sensed image serve as test points to be transformed into the reference image system [172]. 

The residual, or the distance between the transformed coordinate and the corresponding point in the reference 

image, represents the precision of the estimated transformation model. This residual can be expressed as: 

 

RMSEN−T = √
1

N − T
∑((x − Hx′)2 + (y − Hy′)2)

N−T

j=1

 

 

Here, (𝐻) represents the estimated transformation model derived from (𝑇) pairs of tie points, and (x, y) and (x', y') 

denote the corresponding points in the reference and sensed images, respectively. Additionally, a (Chi-square) 

goodness-of-fit test [172] can be applied to check if the residuals are uniformly distributed across all quadrants. 

However, it is crucial to be wary of "overfitting," where a model with too many degrees of freedom might show 

zero error, potentially leading to suboptimal registration results. 

 

Alignment Error 

Estimating the accuracy of registration alignment is crucial, and this has traditionally been done through visual 

inspections by experts in the field, a method that is highly effective yet subjective and lacks quantitative measures 

[11], [172]. Currently, this evaluation is often conducted using professional software tools like ENVI and ArcGIS, 

utilizing similarity metrics such as Mutual Information (MI), Normalized Mutual Information (NMI), and Cross-

Correlation (CC) [50]. However, these metrics can be affected by changes in image information and variations in 

radiation levels. To provide a quantitative measure of alignment error, the Root Mean Square Error (RMSE) is 

calculated using feature points that have been manually identified by specialists, following the formula presented 

earlier [75]. Since there is no universally accepted reference image for remote sensing image registration, multiple 

criteria are typically used to evaluate the results, each with its own strengths and limitations. 

 

Prospective Developments in Remote Sensing Image Registration 

The domain of remote sensing image registration has witnessed numerous individual research endeavors, primarily 

focusing on the enhancement of robust feature descriptors and the mitigation of feature mismatches. With 

advancements in sensor technologies and evolving application demands, emerging opportunities and challenges 

necessitate innovative approaches in remote sensing image registration. We anticipate a shift towards more 

advanced strategies, including accelerated, integrated, heterogeneous, cross-scale, and intelligent image 

registration techniques, which we will elaborate upon below. 
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Advancements in Speed for Remote Sensing Image Registration 

The continuous progress in sensor technology has led to remote sensing images with higher spatial resolutions, 

capturing a larger array of detailed features. This increase in detail, however, has made the path to real-time image 

registration more challenging, particularly when dealing with extensive images. Consequently, the process of 

constructing descriptors and matching features becomes notably time-intensive, especially for Wide Field of View 

(WFV) images. To address this, there is a suggestion to employ cloud platforms for remote sensing image 

registration, utilizing finite-state chaotic compressed sensing theory to enhance efficiency and approach real-time 

registration as closely as possible [43]. In addition to cloud computing solutions [81], specific hardware systems 

might also play a crucial role in hastening the image registration process. Currently, one of the more 

straightforward solutions is parallel computing [128], where an image is subdivided into various sections. The 

features within each section are then concurrently extracted and processed using parallel processors, following 

consistent methodologies for both feature extraction and transformation model construction. This parallelization 

approach is readily implementable on platforms such as MATLAB, facilitating a more efficient image registration 

process. 

 

Integrated Strategies for Image Alignment 

Advancements in imaging sensor technology have led to enhanced resolutions in remote sensing imagery, making 

local distortions more pronounced. Issues such as geometric distortions arising from terrain undulations and tall 

structures result in registration inaccuracies [28], posing challenges for applications of remote sensing images. For 

instance, when both flat and mountainous terrains are concurrently present in the reference and sensed images. 

When determining the pixel displacements necessary for spatial alignment. While the displacement magnitudes 

and directions in the flat areas are relatively consistent, they diverge significantly in the mountainous regions. In 

this scenario, a single-stage registration process employing a global mapping function falls short of accurately 

capturing the spatial relationship between the reference and sensed images, as does the application of a local 

transformation model. 

 

Acknowledging the variability of displacements across different terrains, segmenting images into various regions 

and applying tailored registration methods can lead to more precise alignment, demonstrating the efficacy of 

integrating diverse techniques. Specifically, in flat regions, the transformation model is calculated using distinct 

tie features, enabling the estimation of displacements guiding pixels toward alignment, rather than direct 

acquisition of the aligned flat region. In contrast, for mountainous terrains, dense optical flow estimation, a concept 

borrowed from the field of computer vision, is employed to determine the displacement of each corresponding 

pixel. Subsequently, the displacement fields derived from the various terrain regions are seamlessly merged (for 

instance, utilizing the inverse distance weighted function for smooth transitions in image stitching) to generate a 

comprehensive displacement field for the entire image [163]. This approach represents an innovative 

amalgamation of varied registration methods, applied in a coordinated manner, and stands apart from the serially 

executed combined approaches discussed in the “Registration Based on the Combination Method” section. 

Consequently, regional registration, tailored to accommodate complex geometric relationships that vary with 

terrain, is poised to emerge as a prominent direction in remote sensing image registration. This approach 

maximizes the registration benefits of different methodologies across diverse terrain regions.  
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Integration of Diverse and Multiscale Image Alignment 

The simultaneous and sequential acquisition of heterogeneous and cross-scale images provides a rich blend of 

information, enhancing our comprehension of entire scenes, whether for Earth observation or disaster response 

efforts. Nevertheless, challenges arise due to the substantial differences in spatial resolution, brightness levels, 

noise characteristics, and geometric properties, attributed to varied imaging techniques. Research endeavors have 

delved into spatial registration challenges, encompassing the alignment of optical and Synthetic Aperture Radar 

(SAR) images, the correlation of optical and infrared imagery, as well as the integration of satellite data with maps 

[28], [48]. These studies have underscored the necessity of developing robust descriptors capable of withstanding 

variations in intensity, noise, and other influential factors. 

 

The pronounced scale disparities in cross-scale images, often exceeding fourfold resolution differences as seen 

between panchromatic and multispectral imagery, complicate the task of extracting geometric features from low-

resolution images that align well with their high-resolution counterparts. Consequently, establishing tie features 

for cross-scale images to aid in the construction of transformation models, even in the context of high-precision 

registration, presents a formidable challenge. The quest for efficient and effective methods for heterogeneous and 

cross-scale image registration remains a pressing research frontier, warranting further exploration in the coming 

years. 

 

A pertinent example can be found in the near-real-time registration of optical and SAR images, which has the 

potential to expedite the analysis of disaster-stricken areas, thereby aiding rescue efforts through timely 

comparisons of pre- and post-event imagery. Such applications are crucial for the swift coordination of rescue 

operations. To fulfill the demands of these high-stakes, real-time applications, the development of precise and 

efficient methodologies for heterogeneous and cross-scale image registration is imperative.4. Smart Remote 

Sensing Image Registration 

 

The conventional approach of aligning multiple images on a frame-to-frame basis is both time-intensive and 

resource-heavy. A more efficient strategy involves designating a reference image and aligning all other images to 

this reference, thereby saving memory and improving computational efficiency. However, this method needs 

further refinement, especially for images with minimal overlap. 

 

Intelligent Alignment of Remote Sensing Imagery 

The task of aligning multiple remote sensing images can be approached by transforming the challenge of multi-

image registration into a series of pair-to-pair alignments. This method, drawing inspiration from the simultaneous 

stitching of multiple frames, involves selecting a reference image to which all other images are aligned. In practice, 

this necessitates reading in the images to be registered, extracting the coordinates of their four corners, and 

subsequently determining the reference image through a comparative analysis of these coordinates. This approach 

stands out from frame-to-frame methods, as it requires the specification of only the reference image, eliminating 

the need for repeated input and output of intermediate results, thereby conserving memory and enhancing 

computational efficiency. This streamlined process, which we regard as a form of intelligent registration, is 

particularly advantageous for generating Wide Field of View (WFV) images. Nonetheless, the approach 

necessitates further refinement and intelligence when dealing with overlapping images. 
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In addition, there may be instances where the images to be registered share only minimal overlapping areas. Such 

limited overlap poses a significant challenge for achieving high-accuracy alignment, given the scarcity of 

geometric and intensity features available for the construction of the transformation model. Addressing this issue, 

particularly in the context of registering images with minimal overlapping regions, requires the development of 

intelligent solutions. These images are commonly utilized in the production of WFV images through stitching 

techniques, underscoring the need for innovative solutions in the future. 

 

Consequently, the task of accurately aligning high-resolution, heterogeneous, and cross-scale remote sensing 

images, particularly when they exhibit large-scale, complex distortions, emerges as a critical area of focus for 

future research endeavors. In these complex scenarios, traditional single-registration methods may fall short of the 

required performance standards. Instead, a synergistic approach that combines various alignment techniques with 

high-performance computing holds considerable promise for achieving real-time, high-precision registration 

outcomes. 

 

Conclusions 

In this review, we have provided an extensive and detailed analysis of various approaches to aligning remote 

sensing images, covering intensity-based, feature-based, and hybrid methods. We have explored both traditional 

techniques and innovative applications of deep learning and optical flow methodologies. The effectiveness of 

different image registration software and tools has been critically assessed. Furthermore, we introduced innovative 

evaluation methods to facilitate accurate and reliable assessment. The ultimate goal of any registration method is 

to enhance the precision of alignment, which is a crucial preprocessing step in handling remote sensing images. 

This review has systematically reviewed numerous strategies developed for this purpose. 

 

Nevertheless, the advent of high-resolution imagery has underscored the issue of local distortion inconsistencies, 

particularly those caused by skyscrapers and terrain variations, which are not adequately addressed by current 

transformation models. Additionally, the production of Wide Field of View (WFV) images is becoming a prevalent 

trend in satellite imagery, aiming to capture an entire Region of Interest (ROI) in a single frame. This trend, 

however, brings its own set of challenges, especially concerning real-time registration capabilities and memory 

requirements during the registration process. Looking ahead, we anticipate that future research in remote sensing 

image registration will focus on speeding up the registration process, employing combined methodologies, 

addressing the challenges of heterogeneous and cross-scale image registration, and developing intelligent 

registration solutions. Despite the progress made, numerous challenges persist, necessitating extensive further 

research. We are optimistic about the future of this field, especially considering the relatively low barriers to entry 

compared to the generation of Three-Dimensional Orthophoto Maps (TDOM). 
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A review of the state of art classification methods 

Numerous investigations into land cover have been conducted over time, utilizing data from a variety of sensors, 

each with unique resolutions, and employing diverse techniques and data processing methods [173] [185] [212] 

[213]. The objective of these studies has predominantly been to map and monitor changes in land use and cover. 

The methodologies employed can be categorized into supervised, semi-supervised, and unsupervised 

classifications, while the classifiers themselves can be divided into parametric and non-parametric, rigid, and 

flexible, or pixel/subpixel and object-based approaches [183] [207]. 

 

Parametric classifiers, such as the maximum likelihood, minimum distance, and Bayesian classifiers, rely on 

probabilistic theories. They establish decision boundaries between classes using a predetermined number of 

parameters, which remain constant regardless of the sample size, and employ global criteria for classification 

[214]. On the other hand, non-parametric classifiers, including support vector machines (SVM) and artificial neural 

networks (ANN), determine class groupings based on digital numbers or spectral reflectance, in addition to other 

attributes like shape and texture. These classifiers operate independently of the image value distribution, focusing 

on the local data structure and necessitating a large number of samples for effective classification [215] [216] [217] 

[218]. 

 

Recent advancements in object pattern recognition, driven by artificial intelligence and machine learning, have 

played a significant role in the development of sophisticated non-parametric classifiers. These are now commonly 

found in both commercial and open-source GIS and Digital Image Processing software [216]. 

 

The pixel-based approach, exemplified by Random Forest and spectral matching techniques, utilizes spectral 

information of individual pixels to assign them to specific classes, based on the likelihood of pixel belonging to a 

particular class [216] [219]. In contrast, the Object-Based Image Analysis (OBIA) approach classifies land use and 

cover using geographic objects as the basic unit, reducing within-class variation and mitigating the "salt and 

pepper" effect of isolated misclassified pixels. OBIA also allows for the integration of additional information 

sources, such as texture, shape, and position, in the classification process [215] [216] [219]. However, selecting 

the appropriate segmentation scale and managing various steps in the process can introduce variability if not 

handled carefully. 

 

The sub-pixel-based approach addresses limitations in pixel-based classification, particularly in differentiating 

land uses and cover within mixed pixels. This approach is well-suited for sensors with medium to low spatial 

resolutions and is commonly used in regional, continental, or even global mapping projects [211] [212] [220]. 

Various statistical and set theory-based algorithms, including Maximum Likelihood (Maxver), Linear Mixture 

Model (LSMM), Possibilistic C-Means (PCM), and Fuzzy C-Means (FCM), are employed for sub-pixel 

classification and are incorporated into various image processing software options, both proprietary and open 

source. However, selecting the most appropriate classifier remains a complex and challenging task, as each method 

has its own set of strengths and weaknesses, as illustrated in Table 1. 
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In this context, Ackom et al. [222] and Mohammady et al. [223] advocate for the adoption of hybrid approaches, 

which have grown increasingly potent and diverse thanks to the emergence of sophisticated and advanced 

classifiers. 

 

Classification 

approach 

Algorithm Advantages Disadvantage Reference 

 

 

Pixel-Based 

 

Artificial 

Neural 

Networks 

Manage well large feature 

space; Indicate strength of 

class membership; Resistant 

to training data deficiencies- 

requires less training data 

than DT 

Needs parameters for network 

design; Tends to overfit data; 

Black box (rules are 

unknown); Computationally. 

Intense Slow training 

 

 

[216] 

Sub-pixel 

Based 

Spectral 

Unmixing 

Clear physical meaning and 

being able to estimate 

fractional distribution 

Hard to find a proper 

endmember in larger scale 

 

[230] 

 

 

Object Based 

Support 

Vector 

Machines 

(SVM) 

Manages well large feature 

space; Insensitive to Hughes 

effect; Works well with 

small training dataset and 

does not overfit 

Needs parameters: 

regularization and kernel; Poor 

performance with small feature 

space; Computationally 

intense 

 

[216] 

Table 2.1 classifiers and their Advantages and Disadvantage 

 

Additionally, there is the option to integrate strategies capable of deducing vegetation cover proportions, 

commonly referred to as vegetation indices. Among the most frequently utilized indices are the Normalized 

Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Soil-adjusted Vegetation 

Index (SAVI), Normalized Difference Built Index (NDBI), and the Spectral Mixture Analysis Modified Soil 

Adjusted Vegetation Index (MSAVI). However, it is crucial to acknowledge that the effectiveness of this 

methodology is contingent upon various factors, including the quality of the preprocessing, the expertise of the 

analyst, and the efficacy of the classifier. 

 

When confronted with complex subjects, Gómez et al. [207] highlight the necessity of considering several criteria 

in the selection of an appropriate classification algorithm. These criteria encompass the type of data, the statistical 

distribution of classes, the desired level of accuracy, as well as practical considerations such as ease of use, speed, 

scalability, and interpretability. Adhering to these considerations is essential to ensure not only the attainment of 

satisfactory accuracy but also the judicious utilization of available resources, as detailed in Table 4. 

 

Machine Learning Algorithms 

Machine Learning (ML) encompasses algorithms and models designed to learn from data and make informed 

decisions in future scenarios. These algorithms are categorized into two primary types: Lazy (e.g., k-nearest 

neighbor, Case-based reasoning) and Eager (e.g., Decision Tree, Naive Bayes, Artificial Neural Networks). 

Furthermore, ML algorithms are broadly classified into four main categories: supervised learning, unsupervised 

learning, semi-supervised learning, and reinforcement learning [241] [242]. 
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As outlined by Galván et al. [241], a substantial portion of machine learning algorithms (MLAs), whether they be 

based on trees, rules, or functions, are categorized as eager learning methods. This implies that these algorithms 

generalize and make predictions beyond the training data before being exposed to new instances. They serve as 

potent instruments for training Artificial Intelligence (AI) models, enhancing automation, and optimizing 

operational efficiency in complex systems such as robotics, autonomous driving, manufacturing, and supply chain 

logistics [242]. 

 

Classification tasks in ML can be Binary (involving two class labels), Multiclass (with more than two class labels), 

or multi-label (an extension of multiclass classification where classes are hierarchically structured, and examples 

may belong to multiple classes at each hierarchical level) [242] [243]. 

 

Numerous studies have applied machine learning classifiers to land use and land cover mapping [173] [176] [183] 

[217] [244]. Classifiers such as Classification and Regression Trees (CART), Random Forest (RF), k-Nearest 

Neighbor (k-NN), Support Vector Machine (SVM), Artificial Neural Network (ANN), Multinomial Logistic 

Regression (MLR), C5.0, and J48 (Decision Tree) have demonstrated superior efficiency compared to 

conventional methods. 

 

Shetty [183] explains that classifiers like SVM identify a subset of training data as support vectors to optimally 

separate two classes with a hyperplane. CART constructs simple decision trees from training data, ANN mimics 

neural network patterns building multi-layered nodes for data processing, RF constructs multiple decision trees 

using random subsets of training data, and so on. 

 

These classifiers have shown a 10% to 20% increase in accuracy when dealing with complex data spanning large 

areas [207]. Their success is attributed to their non-reliance on parametric statistical assumptions, making them 

well-suited for analyzing multimodal, noisy, or incomplete data, combining categorical and continuous auxiliary 

data, reducing pre-processing steps required in traditional methods, and performing efficiently in cloud computing 

environments such as Google Earth Engine (GEE) [175] [245]. 

 

GEE is a cloud-based platform, hosting multiple petabytes of data and providing parallel computing and data 

catalog services for global geospatial analysis. It aggregates data from various geospatial development agencies 

like the USGS and ESA, offering a wide array of data sets ranging from surface reflection data from Landsat to 

Sentinel data sets, global land cover data, and climate data sets. GEE supports image pre-processing and houses a 

vast repository of functions for various operations on images and vectors [183]. Li et al. [246] provide an example 

of ML applications in remote sensing in their article published in the Remote Sensing Journal.  
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Classification 

Approach 

Method  Algorithm Data/product/Place Software/ 

Platform used 

References 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pixel Based 

Supervised 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Unsupervised 

 

 

 

 

 

 

 

Hybrid 

SVM 

 

 

 

MKNN 

 

 

ML 

 

 

ISODATA 

 

 

Hierarchical 

Clustering 

 

K-Mean 

 

 

 

 

ML-ISODAT 

 

 

CA-Marcov 

Chain 

 

 

ISODATA-

Decision 

 

 

LP-SVM 

(SMCF) 

Sentinel-2, Cartosat-

DEM, Multi-temporal, 

Vietnam India  

 

Landsat, single date, 

India  

 

Landsat, Time series, 

Turkey  

 

Landsat/sentinel, Time 

series, Ethiopia Vietnam  

 

IRS-P5, Single date, 

India 

 

Landsat 

8/Sentinel2/ALOS 2 

PALSAR, Multi-

temporal, Finland   

 

Sentinel, time-series, 

Australia  

 

Landsat, Multi-

temporal, India  

 

 

Landsat, Multi-

temporal, Ghana  

 

Rule Based Landsat, 

Multi-temporal, Iran.  

 

Hyperspectral (not 

specified), China  

GEE, OBT  

 

 

 

Not reported  

 

 

IDRISI, ArcGIS  

 

 

Not reported 

Envi/ArcGIS  

 

ERDAS 

IMAGINE  

 

Forestry TEP 

 

 

 

 

GEE  

 

 

ERDAS 

IMAGINE, 

ENVI, ArcGIS  

 

QGIS  

 

 

ArcGIS  

 

 

Matlab  

 

 

[233] [234] 

 

 

 

[235] 

 

 

[236] 

 

 

[237] [238] 

 

 

[239] 

 

 

[240] 

 

 

 

 

[241] 

 

 

[242] 

 

 

 

[221] 

 

 

[222] 

 

 

[227] 

 

 

 

 

 

Sub pixel  

 

SMA  

 

 

 

 

 

 

Fuzzy analysis 

 

LSMA  

 

 

MESMA  

 

 

 

Fuzzy Rule 

Based  

 

 

Landsat/MODIS/SRTM, 

Time series, Brazil  

Hyperspectral 

(APEX)/Sentinel-2, 

Single date Belgium  

 

 

IRS-P6, India   

 

 

 

Not reported  

 

LAStools  

 

 

 

 

Erdas 

IMAGINE  

 

 

 

[230] 

 

[229] 

 

 

 

 

[243] 
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Fuzzy C-

Mean (FCM)  

IKONOS, single date, 

Netherlands  

 

Not reported  [244] 

 

 

 

 

 

 

 

 

 

 

 

 

Object Based 

 

 

 

 

 

OBIA 

 

 

 

 

 

 

 

 

 

Knowledge 

Based 

 

Decision 

Rule  

 

 

Nearest 

Neighbor  

 

 

RF  

 

 

 

 

Expert rule  

 

 

Expert-

Knowledge  

 

Landsat/IRS/ASTER-

GDEM, Multi-temporal, 

India 

 

Landsat, Malawi 

 

 

 

Landsat/MODIS/Google 

Earth, Time Series, 

USA 

 

 

Landsat, Time Series, 

Brazil  

 

Gaofen (GF-1)/Ziyuan 

(ZY-3)/ASTER-GDEM, 

China  

 

WorldView-2, 

Multitemporal. Italy  

 

 

eCognition 

developer 

 

 

Not reported 

 

 

 

Trimble 

eCognition 

Developer  

 

 

GEE  

 

 

Not reported  

 

 

 

Not reported  

 

[245] 

 

 

 

[246] 

 

 

 

[247] 

 

 

 

 

[248] 

 

 

[249] 

 

 

 

[250] 

                 

Table 2.2 Distinct approaches and algorithms for handling spatial data. 

ML-Maximum Likelihood; MKNN-Modified k-nearest Neighbors; TEP-Thematic Exploitation Platform; SMCF-

Superpixel and Multi-Classifier Fusion; MESMA-Multiple Endmember Spectral Mixture Analysis; APEX-

Airborne Prism Experiment; LSMA- Linear Spectral Mixture Analysis; NN-Nearest Neighbor; GEE-Google Earth 

Engine. 

 

Time Series/Multi-Temporal, Multi-Scale/Multi-Source  

Optical data time series with medium spatial resolution yield significant outcomes, particularly when contrasted 

with single-scene analyses. This approach demonstrates a robust capability to depict environmental phenomena, 

capturing both trends and discrete events, and facilitating the detailed characterization and identification of 

changes in land use and cover [212] [247] [248]. 

 

Chi et al. [182] outline traditional data fusion methodologies, categorizing them into pixel-level, feature-level, and 

decision-level fusion. However, the burgeoning field of big data in remote sensing encompasses diverse scales and 

formats. Huang and Wang [178] elaborate on Big Spatial Data (BSD), highlighting its potential to amalgamate 

data from varied sources, thereby yielding a holistic perspective. This integration process necessitates managing 

data from disparate formats, devices, or systems, and attributing geographic context to enable comprehensive 

analysis. Challenges arise in harmonizing data features that may significantly differ, such as spectral signatures in 
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optical remote sensing, electromagnetic radiation in microwave data, structural text features, or unstructured image 

features from digital cameras. 

 

Leveraging multi-source data enhances land use and cover mapping, as well as classification accuracy [176] [185] 

[215] [246]. This enhancement is achieved by acquiring high-resolution samples and fusing products from 

different sensors (e.g., optical/optical or optical/radar), resulting in clearer target differentiation. 

 

Häme et al. [230] employed Hierarchical Clustering to detect and identify land cover changes using paired data 

from Sentinel-2/Sentinel-2, Landsat-8/Sentinel-2, and Sentinel-2/ALOS 2 PALSAR over an area spanning 12,372 

km^2 in Finland. Joshi et al. [249] conducted a comprehensive review of 112 studies focusing on the fusion of 

optical and radar data, which provide unique spectral and structural information for land cover and use 

assessments. Their analysis revealed that in 32 studies where the benefits of data fusion for land use analysis were 

assessed, a predominant majority (28 studies) reported enhanced results with data fusion compared to using single 

data sources. 

 

MateoGarcia et al. [250] introduced and applied a methodology utilizing GEE for cloud masking (Cloud Mask) to 

map a specific biome type based on OLI/Landsat-8 data. The employed algorithms, FMask and ACCA, 

demonstrated significant quantitative performance improvements, enhancing classification accuracy by 4% to 5% 

and reducing commission errors by 3% to 10%. Additional applications and methodologies are presented by 

Adamo et al. [240] and Samal and Gedam [235]. 

 

Validation and Accuracy Assessment  

Effective monitoring and management of territorial landscapes necessitate precise land cover information. The 

quest for accurate land use and land cover maps is a perpetual task for professionals in the field [183]. Validating 

land cover products is crucial, as it demonstrates the reliability of remote sensing products for informed decision-

making. Providing evaluations and reports using suitable information metrics is vital for the user community [207]. 

Various factors, including the size and quality of training samples, thematic accuracy, classifier selection, and the 

study area's dimensions, significantly influence the precision of classified maps [179] [180] [183] [251]. 

 

Understanding these influencing factors is essential to determining the appropriate accuracy classification for a 

specific research problem [183]. The selection of samples should adhere to statistical criteria, encompassing the 

type and method of sampling. Mastella and Vieira [217], along with Shetty [183], note that simple and stratified 

random sampling are predominantly used in remote sensing, with a majority of validation indices relying on simple 

random sampling. However, some researchers advocate for systematic sampling methods when studying land use 

and land cover, citing their ability to yield accurate results, even though they do not provide an unbiased variance 

estimate [183]. 

 

Accuracy assessment stands out as a crucial component in the utilization of remote sensing data for map creation, 

as it enables the evaluation of different classifiers and the impact of sampling methods [176]. The literature advises 
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incorporating an error or confusion matrix in this process [179] [180], which aids in identifying class 

misclassifications and potential error sources [183] [207] [217]. Additionally, quantitative metrics derived from 

the confusion matrix, such as global accuracy, producer accuracy, user accuracy, Kappa index, Tau, and statistical 

Z, along with their respective confidence intervals, offer valuable insights. These metrics collectively assess how 

closely the classified map aligns with the actual conditions and provide a weighted measure of accuracy across 

different areas. 
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Overview of the coregisteration method 

eFolki stands as an efficient and resilient technique for estimating optical flow, drawing its methodology from the 

gradient-based Lucas–Kanade (LK) method [1]. The inception of the eFolki [2] algorithm is firmly anchored in 

the FOLKI optical-flow estimator, a creation within the field of computer vision [3]. Its versatility is evident 

through its widespread utilization across various domains, notably in particle imaging velocimetry [4], particularly 

within the context of wind tunnels’ fluid velocimetry. In these settings, the algorithm demonstrates its capacity to 

process vast datasets with both high precision and scalability. 

The structure of eFolki is notably straightforward and amenable to parallelization, rendering it an optimal choice 

for deployment on massively parallel computing architectures, especially when tasked with managing large-scale 

images. The computational complexity and execution time of eFolki are directly proportional to the quantity of 

pixels present. Consequently, its practical implementation enables computations to be conducted at a rate of 6 ms 

per megapixel, maintaining a linear relationship with pixel count. To illustrate, processing all pixels in an image 

sized at 10,000 × 10,000 can be accomplished in a mere 600 ms when utilizing a Titan GPU.A.  

 

Description of the Algorithm 

To provide a straightforward explanation, we initiate our discussion by detailing the FOLKI optical flow method, 

followed by an introduction to the modifications made in the eFolki algorithm. We conclude with an analysis of 

the principal parameters associated with these algorithms, particularly emphasizing their significance when applied 

to optical images. For an in-depth exploration and justification of the various components of the eFolki algorithm, 

readers are directed to reference [2]. 

 

Consider the task of aligning two images, denoted as ( 𝐼1 ) and ( 𝐼2 ), which are situated on a two-dimensional 

plane ( 𝑆 ) within the real number space (𝑅2). In optical terminology, the dense optical flow represents the 

requisite shift needed to align the two images. This shift is mathematically expressed as (𝑢: 𝑥 → 𝑢(𝑥) ∈ 𝑅2). The 

Lucas-Kanade (LK) algorithm, a member of the local or window-based category of methods, determines (𝑢(𝑥))as 

the value that minimizes a specific criterion calculated across a localized window centered at ( 𝑥 ): 

 

𝐽(𝑢; 𝑥) = ∑ 𝜔(𝑥′ − 𝑥) (𝐼1(𝑥′) − 𝐼2(𝑥′ + 𝑢(𝑥)))
2

𝑥′∈𝑆

 (1) 

 

Here, ( 𝜔) denotes a separable weighting function, which can either be uniform or Gaussian, and is confined to a 

limited support ( 𝜔). Typically, ( 𝜔) is represented as a square window of dimensions ((2𝑟 + 1) × (2𝑟 + 1)), 

with ( 𝑟 ) being the parameter that determines the radius of the window. 

 

The minimization process is executed using an iterative Gauss–Newton method, which incorporates a first-order 

Taylor expansion to approximate the image intensity variations around a previously estimated displacement, 

denoted as (𝑢𝑘).This approach categorizes the Lucas-Kanade (LK) algorithm as gradient-based, distinguishing it 

from block matching techniques that perform exhaustive searches within confined regions. Furthermore, 



50 
 

contemporary iterations of the LK algorithm employ a multiresolution strategy, utilizing a pyramid of images to 

calculate ( 𝑢 ) at different scales, adhering to a coarse-to-fine methodology. 

In the context of the eFolki algorithm, two primary modifications are introduced. Firstly, the cost function (1) is 

altered to: 

 

𝐽(𝑢; 𝑥) = ∑ 𝜔(𝑥′ − 𝑥) (𝑅(𝐼1)(𝑥′) − 𝑅(𝐼2)(𝑥′ + 𝑢(𝑥)))
2

𝑥′∈𝑆

 (2) 

 

In this revised equation, (𝑅(𝐼))represents a rank function applied to image ( 𝐼 ). This function determines the 

filtered value based on the local ordering of gray levels. The rank function is mathematically expressed as: 

 

𝑅(𝐼)(𝑥) = #{𝑥′: 𝑥′ ∈ 𝑆𝑅(𝑥) with |𝐼(𝑥)| > |𝐼(𝑥′)|} (3) 

 

Here, (𝑆𝑅(𝑥))denotes the neighborhood surrounding pixel ( 𝑥 ). Through these modifications, eFolki introduces a 

novel approach to optical flow estimation, enhancing the robustness and accuracy of the process. 

The rank transform imparts a nonlinear filtering effect, significantly condensing the dynamics of the signal. In 

practical terms, this transformation reduces a float signal with 232 levels to a signal possessing (𝑑2 − 1)levels, 

where ( 𝑑 ) is the diameter of the rank filter window. This compression of the signal's gradient serves to enhance 

the robustness of motion estimation. It also facilitates the computation of motion between optical images that are 

relatively dissimilar. 

 

The second major adjustment within the eFolki algorithm pertains to the adaptive resizing of the windows ( 𝜔), 

following a coarse-to-fine approach during the iterative phase at each level of multiscale resolution. This particular 

modification is necessitated by the use of a dyadic pyramid in the multiscale solving process. For instances of 

large motion, it becomes crucial to smoothly transition between different scales to ensure proper convergence of 

the algorithm. 

 

For the optimal application of eFolki to optical images, it is imperative to carefully select and adjust four key 

parameters: 

1. The weighting function ( 𝑤 ); 

2. The radius ( 𝑟 ) of the window. 

3. ( 𝐾 ), representing the number of iterations at each pyramid level. 

4. ( 𝐽 ) , denoting the total number of levels in the pyramid.  
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These adjustments are crucial to tailor the algorithm for effective and accurate motion estimation within optical 

imagery. 

The performance of coregistration can be effectively evaluated using a metric known as the forward–backward 

criterion [5]. This process entails calculating the displacement from image 1 to image 2, and subsequently from 

image 2 back to image 1, to derive the residual displacement, termed as the forward–backward flow. Ideally, this 

cumulative displacement should equate to zero. Consequently, the forward–backward error serves as a reliable 

measure of the accuracy of the estimated displacement, even in the absence of ground truth data. 

 

This criterion proves instrumental in identifying the most appropriate window radius, ( 𝑟 ). Empirical testing has 

revealed that larger window radii tend to yield superior results. While this may initially seem counterintuitive, it 

is primarily attributed to the fact that a broader window facilitates a smoother estimation of motion, as depicted in 

Fig. 2. In this illustration, displacement profiles are computed for various radii to align a pair of images, with an 

artificial 9-pixel shift introduced at pixel number 1750 in one of the images. Typically, for optical images with 

relatively straightforward displacement patterns, achieving the smoothest possible spatial function is 

advantageous. This, in turn, enhances the effectiveness of the forward–backward criterion, particularly when 

estimating displacement in both directions, from image 1 to image 2 and vice versa. This trend may also be 

influenced by the reduced susceptibility to speckle effects when utilizing larger window sizes. 

 

Parallel testing conducted on the number of iterations yielded insights that deviate from those observed in optical 

imaging scenarios. Optimal results were attained with a limited number of iterations. Excessive iteration tends to 

make the function ( 𝑢 ) overly conform to the data, attempting to discern details at higher frequencies, which 

ultimately proves detrimental to the criterion's effectiveness in assessing coregistration performance. 

 

Data pre-processing  

Our study utilized Level 2D sceneries from the PRISMA hyperspectral satellite, each containing 239 spectral bands 

across wavelengths of 402 to 2497 nm. With a 30-meter resolution, they are orthorectified to correct terrain 

distortions and atmospherically corrected to minimize environmental noise. The data is available in the efficient 

HDF5 format, which supports complex datasets and simplifies spectral data handling for analysis. 

 

Table 3.1 PRISMA data we used for the co-registration process. 

 

 

PRISMA  

PRS_L2D_STD_20220818034527_20220818034531 

PRS_L2D_STD_20211107034543_20211107034547 

PRS_L2D_STD_20220326034528_20220326034533 

PRS_L2D_STD_20221113034523_20221113034527 

PRS_L2D_STD_20230208034531_20230208034535 

PRS_L2D_STD_20200308034830_20200308034834 
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The EnMap Box plug-in for QGIS, developed under the EnMAP preparatory science program, was employed to 

process PRISMA hyperspectral imagery. This tool is equipped with functionalities for basic image processing and 

visualization, alongside sophisticated methods for image analysis applicable across diverse research domains [6]. 

Initially, the plug-in was utilized to transform the PRISMA scenes into geolocated files in the Geotiff format, a 

widely used standard in geospatial analysis that facilitates further processing and compatibility with various GIS 

software. Subsequently, for each pixel within our area of interest, we applied a specific equation [7] to translate 

the Digital Number (DN) values into actual reflectance measures. This step is crucial for accurate remote sensing 

analysis. The formula utilized is as follows: 

 

Reflectance = 𝐿2𝑆𝑐𝑎𝑙𝑒Min + (DN ×
𝐿2𝑆𝑐𝑎𝑙𝑒Max − 𝐿2𝑆𝑐𝑎𝑙𝑒Min

65535
) 

 

Here, "XXX" denotes the specific dataset under consideration, which could be the panchromatic "PAN", the visible 

and near-infrared "VNIR", or the short-wave infrared "SWIR" bands. which is 0 for 𝐿2𝑆𝑐𝑎𝑙𝑒Min  and 1 for  

𝐿2𝑆𝑐𝑎𝑙𝑒Max according to the PRISMA product specification. This normalization is critical in adjusting for sensor-

specific variances and the range of values captured by the sensor's 16-bit format. 

 

Complementing the PRISMA data, Sentinel-2A Level 2A (L2A) scenes, accessible from the Copernicus Open 

Access Hub, were acquired for the identical study areas to assist in image co-registration. The Sentinel-2 scenes, 

captured via the Multi-Spectral Instrument (MSI), have a substantial coverage area of 100 x 100 km and include 

13 spectral bands. These bands provide a multi-resolution view of the surface with spatial resolutions of 10, 20, 

and 60 meters, catering to various wavelengths ranging from 440 to 2190 nm. To ensure the highest quality of 

data, we selected scenes with minimal cloud interference, specifically those with cloud cover below 5%. 

Additionally, to maintain consistency with the PRISMA data, these Sentinel-2 scenes underwent both 

orthorectification and atmospheric correction processes, thereby standardizing the datasets and ensuring an 

accurate and reliable comparison for co-registration tasks. 

 

Table 3.2.Sentinel 2 data we used for the co-registration process. 

 

To maintain the integrity of the spectral information while aligning the spatial resolution of the Sentinel-2 datasets 

with that of the PRISMA tiles, which have a resolution of 30 x 30 meters, we employed the bicubic interpolation 

method. This approach is particularly adept at preserving the intensity values of each pixel during the resampling 

process, minimizing the loss of image quality. Bicubic interpolation, a more sophisticated technique than nearest 

Sentinel 2 Data cloud cover 

L2A_T48QVJ_ 2022_11_29  5.8 

L2A_T48QVJ_ 2021_11_29  2.8 

L2A_T48QVJ_ 2022_04_03  0.6 

L2A_T48QVJ_ 2022_12_19  0.00 

L2A_T48QVJ_ 2023_02_27  0.15 

L2A_T48QVK_2020_03_09 0.04 
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neighbor or bilinear interpolation, uses the values of surrounding pixels to calculate the new value of a pixel in a 

way that smoothly transitions from one pixel to another, which is crucial when detailed spectral information is 

needed for precise environmental analysis. 

 

For the Sentinel-2 optical data, we applied a simple conversion to change the Digital Number (DN) values into 

reflectance measurements. Reflectance is often used in remote sensing because it directly relates to the 

characteristics of the surfaces being observed. This conversion is a standard step in preparing the data, making 

sure that Sentinel-2's information matches well with other types of data and is easier to work with. The formula 

we used for this conversion is basic but essential to make sure our data is consistent and can be compared with 

information from other sensors: 

 

DN = 10000 × Reflectance 

 

Table 3 illustrates our approach to coregistering various bands and red band combinations from PRISMA data with 

the red band of Sentinel-2 imagery. We chose to downsample the Sentinel-2 data to match PRISMA's spatial 

resolution. This decision was made because upscaling PRISMA to Sentinel-2's resolution would unnecessarily 

extend computational time without enhancing performance, as there is no additional detail to be gained below the 

30 x 30 m resolution of PRISMA. 

 

PRISMA bands 

Red  

Blue 

Green 

Red bands (655.41876 ,664.9841, 674.46436, 684.13727) nm combined with max operator 

Red bands (655.41876 ,664.9841, 674.46436, 684.13727) nm combined with sum operator 

Red bands (655.41876 ,664.9841, 674.46436, 684.13727) nm combined with average operator 
Table 3.3. PRISMA bands used for the coregisteration 

 

Coregistration 

Figure 1 presents the images prior to the registration process. Upon visual inspection, it is evident that the two 

images are misaligned, as indicated by the non-coinciding green and white lines, which should ideally overlap if 

the images were correctly registered. To address this misalignment, we employed the 'gefolki' Python code [8] to 

perform the co-registration. In this process, we designated the PRISMA scene as the slave image, referred to 

as ( 𝐼2 ), and the Sentinel-2 image as the master image, denoted as ( 𝐼1 ). The choice of Sentinel-2 as the master 

image was based on its broader spectral coverage and higher temporal resolution, which provides a stable reference 

framework for the registration. By applying the co-registration algorithm, we aimed to correct spatial discrepancies 

and achieve a precise overlay of the images, which is critical for subsequent analyses that require accurate pixel-

to-pixel correspondence between the datasets. 
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Figure 3.1Images before the co-registration 

 

In the absence of Ground Control Points (GCPs) for our study area, which are often crucial for ensuring precise 

image alignment, we employed the parameter values specified in Table 3, we proceeded with the coregistration, 

wherein we assigned the weighting function a value of one. This decision was made under the premise that no 

single pixel holds greater significance over another within the scope of our analysis, ensuring uniformity in the 

treatment of each pixel during the process, thus promoting a uniform and unbiased registration. 

 

Table 3.1 Gefolki parameters used for the coregisteration of PRISMA with Sentinal2 images. 

 

From the experiments we did, we employed the same parameters for the co-registertion of the six PRISMA images 

the figures below show the images before and after coregisteration. The results of this co-registration are 

effectively demonstrated in Figure 2. This figure distinctly confirms the success of the co-registration, as it shows 

the green and white lines now perfectly coinciding, indicating accurate alignment of the images post-registration. 

 

 

 

 

Parameters Values 

r 512,280,128,100,64 

j 8,4,3,2 

k 8,6,4 

R 4 
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Figure 3.2 After the co-registration 

 

Performance assessment  

To evaluate the efficacy of our co-registration process, we implemented the forward-backward criterion, as 

outlined in [9]. This technique calculates the displacement from the first image to the second and then reverses the 

process. A key indicator of successful co-registration is that the total calculated movement approaches zero, 

implying that the images are accurately aligned. The forward-backward error thus becomes a vital quantitative 

measure of the co-registration's precision, especially useful in the absence of ground truth data for direct 

comparison. 

The significance of this criterion lies in its ability to provide a numerical assessment of the co-registration's quality. 

It is particularly adept at uncovering subtle alignment issues that might not be immediately apparent through mere 

visual inspection of the images. By analyzing the forward-backward error, we gain a deeper understanding of the 

alignment accuracy, ensuring the co-registration meets the necessary standards for any subsequent analysis’s 

dependent on the precise alignment of these images. 

Figure 6 further complements this approach by visually depicting the error distribution resultant from the 

registration process. This graphical representation serves as an additional tool to evaluate and confirm the co-

registration’s reliability. A minimal error in this distribution is indicative of a high degree of precision in the 

alignment of the images, which is crucial for the integrity of any further applications or studies utilizing these co-

registered images. 
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Figure 3.1 The residual error of the coregisteration using different radii. 

 

The ideal window radius r can be determined using this criterion. As shown in Fig. 3, the displacement profiles 

were calculated for a variety of window radii in order to coregister our pair of images. At that point, estimating 

the displacement in both directions, from 1 to 2 and from 2 to 1, becomes advantageous for the criterion. This 

may seem counterintuitive, but it is mainly because the estimated motion is smoother when the window is wider. 

as shown in fig. 4,5 the histogram of the residual error for small and large window radius, it’s also possible that 

these trends are caused by the facet’s small windows will adapt to small-scale motion. Causing some confusion 

and lead to distortion in the output registered images as we examined in our experiments. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 The histogram of the residual error using 100 pixels radius. 
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For the number of iterations, the same tests were run. Again, a higher number of iterations yields the best results. 

The registration has not been initialized by homologous points, so as we iterate more, we have new initial values 

with different starting points. As a result, the criterion avoids the local minimum, which is good for our final 

criterion. The higher the level of the pyramid, the worse the result, it has been demonstrated through testing that 

results stabilize at levels 4 and below, which is in accordance with the algorithm's manual that the level should be 

the smallest but greater than the maximum displacement to be estimated. Our results show a mean error of 0.065 

pixels, and Figure 4 shows the spatial distribution of the residual error which lies between 0.02 pixels and never 

exceeds 0.18 pixels. The RMSE of the coregistration obtained is 2.31 m (0.0777 pixels) which is in The RMSE 

ranges between 2.3 m and 5.8 m of coregistration of optics in the literature [23].  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 The spatial distribution of the norm of the residual error 

Figure 3.3 The histogram of the residual error using 512 pixels radius. 
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Data preprocessing for landcover classification 

In the preprocessing stage of our analysis, a critical step was addressing the quality of the PRISMA imagery, 

specifically the spectral bands characterized by a low signal-to-noise ratio (SNR). Bands with poor SNR can 

significantly impair the performance of classification models by introducing noise that may be misconstrued as 

meaningful data. To mitigate this issue and enhance the robustness of subsequent analyses, such bands must be 

carefully identified and excluded from the dataset. 

 

The selection of bands for removal is not a one-size-fits-all procedure but rather a tailored approach that must 

consider the unique spectral characteristics of the study area and the specific classification objectives. For example, 

bands that may be irrelevant or counterproductive for distinguishing certain land cover classes could be vital for 

others. Therefore, the identification of bands to be excluded demands a thorough review of the spectral signatures 

pertinent to the desired classification outcomes. 

 

In our research, we carefully reviewed the PRISMA data to identify any spectral bands that might negatively affect 

our classification work. Identifying noisy bands usually involves looking at each band's Histogram, a step that's 

detailed but slow and sometimes misses noisy bands. With the help of EnmapBox's statistical tools, we filtered out 

bands with unusual histogram patterns, like sharp peaks or skewed distributions as shown in fig 7. The following 

list details the bands we removed from our analysis due to their unsuitability: [1 to 36, 104 to 112, 147 to 150, 156, 

157, 160 to 163, 227 to 233]. By refining our dataset in this manner, we aim to improve the overall effectiveness 

of our classification efforts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 The histograms visualization of the PRISMA bands 
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Dataset creation 

Creating an accurate dataset is paramount for any remote sensing classification task. To this end, we turned to the 

Dynamic World v1 platform within Google Earth Engine, which offers a near-real-time land cover mapping at a 

resolution of 10 meters. Our intention was to leverage this resource as a surrogate for ground truth, aligning our 

classification categories with the same number of land cover classes as provided by Dynamic World. 

 

Given the temporal constraints and the necessity for temporal proximity between our PRISMA data and the 

Dynamic World dataset, we conducted a meticulous search within a specified time window. Our goal was to 

identify the closest match in terms of date and time to the PRISMA scenes. Although finding an exact temporal 

correspondence was not feasible, our methodological approach was to minimize the temporal gap, thereby 

ensuring the highest possible relevance and accuracy of the land cover data in relation to our PRISMA imagery. 

Fig shows an example of dynamic world images used for the creation of the dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Dynamic World V1 (LC) dataset 

 

We acknowledge that even small temporal discrepancies can lead to differences in land cover due to natural 

dynamics or human activities. Therefore, we paid special attention to the selection process, prioritizing dates that 

would likely reflect the land cover status as accurately as possible. This careful temporal alignment is critical, as  

it directly influences the reliability of the land cover data used for training and validating our classification models. 

By doing so, we aimed to create a robust dataset that would serve as a solid foundation for our land cover 

classification, ensuring that our models are trained on the most accurate and representative ground truth data 

available within the constraints of our project timeline. 
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Dynamic World v1 Time span 

20200308034834_composite_hillshade 01/03/2020 to 10/03/2020 

20211107034547_composite_hillshade 07/11/2021 to 17/11/2021 

20220326034533_composite_hillshade 01/03/2022 to 10/03/2022 

20220818034531_composite_hillshade 18/08/2022 to 31/08/2022 

20221113034527_composite_hillshade 03/11/2022 to 13/11/2022 

20230208034535_composite_hillshade 08/02/2023 to 13/02/2023 
Table 3.1 The dynamic world v1 data 

 

To create a feature vector from Dynamic World scenes, we initially employed the ACATAMA plugin in QGIS for 

the sampling design. However, the ACATAMA plugin tended to overlook the less represented classes. As a result, 

we manually added samples for these underrepresented classes using the Semi-Automatic Classification Plugin 

(SCP). 

 

Our goal was to outline nine different land cover classes. We worked directly with the raw Dynamic World data, 

without making any changes like overlaying or adjusting transparency. 

 

In our first dataset, which we initially created, we collected 20 samples for most classes, except for the snow and 

ice class, where we had 18 samples. This dataset was imbalanced, meaning that it had varying numbers of samples 

for each land cover class, with some classes having more samples than others. 

 

Subsequently, recognizing the importance of balance for training and evaluating our classification model, we 

created a second dataset. In this second dataset, we balanced the number of samples for each class by 

undersampling, ensuring that each land cover class had an equal representation of 15 samples. This balanced 

dataset allowed us to improve the fairness and accuracy of our classification model. 

 

Additionally, we collected 5 samples from each class to create a separate test dataset. This test dataset served as 

an independent evaluation set to assess the performance of our land cover classification model. 

 

We carefully drew polygons to represent each land cover class based on what we saw in the original Dynamic 

World data. This ensured that our vector features accurately reflected the real-world characteristics captured by 

the Dynamic World sensor. 

 

The result was a set of precisely defined polygons that accurately represented how the nine land cover classes were 

distributed in our study area, using the original Dynamic World data. These polygon datasets, including the 

imbalanced initial dataset, the balanced second dataset, and the test dataset, played crucial roles in training, 

validating, and assessing the accuracy of our land cover classification model. 
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Classification model and its assessment  

In our land cover classification process, we used the Dzetsaka plugin within QGIS to work with the datasets 

derived from Dynamic World V1 raw data. Initially, we employed both the Random Forest (RF) and Support 

Vector Machine (SVM) algorithms to classify the first, imbalanced dataset. 

 

The RF algorithm constructs multiple decision trees during training and outputs the class that is most frequently 

predicted. SVM, on the other hand, is known for its powerful classification capabilities and outperformed the RF 

model in our specific scenario. 

 

Recognizing SVM's superior performance, we trained and classified the balanced dataset using the SVM 

algorithm, resulting in classified images displayed in Figure 8, 9, and 10.  

 

During this process, Dzetsaka provided us with confusion matrices for each model. These matrices helped us 

calculate overall accuracy, as well as user and producer accuracies, which are essential metrics for evaluating the 

classification performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Classified PRISMA image using RF with imbalanced dataset. 
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Figure 3.2 Classified PRISMA image using SVM with imbalanced dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Classified PRISMA image using SVM with Balanced dataset. 
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4. Results 
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Result of the co-registration process 

 

Table 4.1 coregistration result of PRS_L2D_STD_20220326034528_20220326034533 

 

Table 4.2 coregistration result of PRS_L2D_STD_20220818034527_20220818034531 

 

Table 4.3 coregistration result of PRS_L2D_STD_20211107034543_20211107034547 

PRS_L2D_STD_20220326034528_20220326034533 RMSE (Pixels) 

Red  0.11 

Blue 0.29 

Green 0.23 

Red bands combined with max operator 0.11 

Red bands combined with sum operator 0.11 

Red bands combined with average operator 0.11 

PRS_L2D_STD_20220818034527_20220818034531 RMSE (Pixels) 

Red  0.03 

Blue 0.56 

Green 0.33 

Red bands combined with max operator 0.03 

Red bands combined with sum operator 0.04 

Red bands combined with average operator 0.26 

PRS_L2D_STD_20211107034543_20211107034547 RMSE (Pixels) 

Red  0.98 

Blue 0.55 

Green 0.68 

Red bands combined with max operator 0.94 

Red bands combined with sum operator 0.93 

Red bands combined with average operator 0.93 
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.                                             Table 4.4 coregistration result of PRS_L2D_STD_20221113034523_20221113034527    

  

 

Table 4.5  coregistration result of PRS_L2D_STD_20200308034830_20200308034834 

 

 

Table 4.6 coregistration result of PRS_L2D_STD_20230208034531_20230208034535 

PRS_L2D_STD_20221113034523_20221113034527 RMSE (Pixels) 

Red  0.35 

Blue 0.80 

Green 0.36 

Red bands combined with max operator 0.31 

Red bands combined with sum operator 0.32 

Red bands combined with average operator 0.32 

PRS_L2D_STD_20200308034830_20200308034834 RMSE (Pixels) 

Red  0.07 

Blue 0.27 

Green 0.19 

Red bands combined with max operator 0.07 

Red bands combined with sum operator 0.07 

Red bands combined with average operator 0.07 

PRS_L2D_STD_20230208034531_20230208034535 RMSE (Pixels) 

Red  0.07 

Blue 1.82 

Green 0.08 

Red bands combined with max operator 0.07 

Red bands combined with sum operator 0.07 

Red bands combined with average operator 0.07 
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Figure 4.1 PRISMA image co-registeration results 

 

Result of classification process 

 

Actual \ 

Predicted 

Water Trees Grass Flooded 

Vegetation 

Crops Shrub 

and 

Scrub 

Built Bare Snow 

and 

Ice 

Total 

Actual 

Water 29 1 0 3 5 5 10 4 0 57 

Trees 35 5534 35 11 35 11 20 26 8 5715 

Grass 3 1 36 0 1 0 4 0 0 45 

Flooded 

Vegetation 

2 0 1 8 1 3 2 4 0 21 

Crops 3 7 1 8 73 5 2 2 1 102 

Shrub and 

Scrub 

4 2 3 9 4 114 10 5 0 151 

Built 9 0 0 3 10 6 49 2 1 80 

Bare 1 2 1 0 0 0 1 3 0 8 

Snow and 

Ice 

0 0 0 0 1 0 0 0 1 2 

Total 

Predicted 

77 5547 77 34 130 144 99 46 10 
 

Table 4.7 Random Forest Model Confusion Matrix for imbalanced dataset 
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Actual \ 

Predicted 

Wate

r 

Tree

s 

Gras

s 

Flooded 

Vegetation 

Crop

s 

Shrub 

and 

Scrub 

Built Bar

e 

Snow 

and 

Ice 

Total 

Actua

l 

Water 67 2 3 1 2 9 10 5 0 99 

Trees 4 5531 13 5 25 4 1 8 2 5593 

Grass 0 5 57 0 1 0 1 1 0 65 

Flooded 

Vegetation 

6 0 4 20 8 2 4 2 0 46 

Crops 3 6 0 6 90 1 2 0 0 108 

Shrub and 

Scrub 

0 1 0 4 1 122 4 1 0 133 

Built 6 0 0 6 3 5 76 4 0 100 

Bare 0 2 0 0 0 1 0 25 3 31 

Snow and 

Ice 

0 0 0 0 0 0 0 0 6 6 

Total 

Predicted 

86 5547 77 42 130 144 97 46 11 
 

Table 4.8 SVM Model Confusion Matrix for imbalanced dataset 

 

 

Actual \ 

Predicted 

Water Trees Grass Flooded 

Vegetation 

Crops Shrub 

and 

Scrub 

Built Bare Snow 

and 

Ice 

Total 

Actual 

Water 26 2 2 0 0 2 0 0 1 34 

Trees 5 4076 3 6 5 5 4 2 1 4109 

Grass 0 0 41 0 0 1 6 0 1 52 

Flooded 

Vegetation 

0 0 0 11 3 0 0 0 0 18 

Crops 0 0 0 1 38 3 1 1 1 50 

Shrub and 

Scrub 

2 1 0 0 2 40 0 0 0 51 

Built 2 0 5 0 1 1 60 5 0 81 

Bare 0 0 0 0 0 0 0 16 0 24 

Snow and 

Ice 

0 2 0 0 0 1 0 0 6 18 

Total 

Predicted 

36 4083 54 22 54 59 78 32 19  

Table 4.9 SVM Model Confusion Matrix for balanced dataset 
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Overall Accuracy Calculation 

For both models, the overall accuracy is calculated with the formula: 

Overall Accuracy =
Sum of diagonal elements (True Positives)

Total number of predictions
 

 

Random Forest Overall Accuracy: 

 

Overall Accuracy =
29 + 5534 + 36 + 8 + 73 + 114 + 49 + 3 + 1

57 + 5715 + 45 + 21 + 102 + 151 + 80 + 8 + 2
≈ 94.60\% 

 

SVM Overall Accuracy: 

Overall Accuracy =
67 + 5531 + 57 + 20 + 90 + 122 + 76 + 25 + 6

99 + 5593 + 65 + 46 + 108 + 133 + 100 + 31 + 6
≈ 96.97\% 

 

SVM for balanced dataset Overall Accuracy: 

 

Overall Accuracy =
26 + 4076 + 41 + 11 + 38 + 40 + 60 + 16 + 6

36 + 4105 + 52 + 15 + 44 + 50 + 75 + 16 + 9
≈ 0.9939 ≈ 99.39\% 

 

 

User's Accuracy (Precision) 

User's Accuracy for each class is calculated as the number of true positives (diagonal element) divided by the total 

predicted for that class (column total). 

 

User's Accuracy (Precision) =
True Positives (TP)

TP + False Positives (FP)
 

 

 

Producer's Accuracy (Recall) 

Producer's Accuracy for each class is calculated as the number of true positives (diagonal element) divided by the 

total actual occurrences of that class (row total). 

 

Producer's Accuracy (Recall) =
True Positives (TP)

TP + False Negatives (FN)
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Class User's Accuracy (Precision) 

Water 33.72% 

Trees 99.77% 

Grass 46.75% 

Flooded Vegetation 19.05% 

Crops 56.15% 

Shrub and Scrub 79.17% 

Built 50.00% 

Bare 6.52% 

Snow and Ice 9.09% 
Table 4.10 User's Accuracy (Precision) for Random Forest 

 

 

Class Producer's Accuracy (Recall) 

Water 50.88% 

Trees 96.83% 

Grass 80.00% 

Flooded Vegetation 38.10% 

Crops 71.57% 

Shrub and Scrub 75.50% 

Built 61.25% 

Bare 37.50% 

Snow and Ice 50.00% 
Table 4.11 Producer's Accuracy (Recall) for Random Forest 

 

 

Class User's Accuracy (Precision) 

Water 77.91% 

Trees 99.71% 

Grass 74.03% 

Flooded Vegetation 47.62% 

Crops 69.23% 

Shrub and Scrub 84.72% 

Built 77.55% 

Bare 54.35% 

Snow and Ice 54.55% 
Table 4.12 User's Accuracy (Precision) for SVM 
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Class Producer's Accuracy (Recall) 

Water 67.68% 

Trees 98.89% 

Grass 87.69% 

Flooded Vegetation 43.48% 

Crops 83.33% 

Shrub and Scrub 91.73% 

Built 76.00% 

Bare 80.65% 

Snow and Ice 100.00% 
Table 4.13 Producer's Accuracy (Recall) for SVM 

 

 

Class Precision (User Accuracy) 

water 72.20% 

trees 99.30% 

grass 79.30% 

Flooded vegetation 73.30% 

crops 86.00% 

Shrub and scrub 80.00% 

built 90.90% 

bare 100.00% 

Snow and ice 66.70% 

Table 4.14 User's Accuracy (Precision) for SVM for balanced dataset 

 

 

Class Recall (Producer Accuracy) 

water 72.20% 

trees 99.30% 

grass 79.30% 

flooded vegetation 73.30% 

crops 86.00% 

Shrub and scrub 80.00% 

built 90.90% 

bare 100.00% 

Snow and ice 66.70% 

Table 4.15 Producer's Accuracy (Recall) for SVM for balanced dataset 
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Discussion 

In assessing the co-registration accuracy through Root Mean Square Error (RMSE) metrics across various spectral 

bands—Red, Blue, Green—and combined Red with operations such as max, sum, and average, it is evident that 

lower RMSE values correlate with heightened accuracy. For instance, the dataset 

PRS_L2D_STD_20230208034531_20230208034535 and PRS_L2D_STD_20200308034830_20200308034834 

exhibit exceptionally low RMSE values across all bands, indicative of a high-precision co-registration process. 

Conversely, datasets PRS_L2D_STD_20220818034527_20220818034531 and 

PRS_L2D_STD_20221113034523_20221113034527 demonstrate moderate RMSE values, signifying satisfactory 

but less optimal co-registration. 

The dataset PRS_L2D_STD_20211107034543_20211107034547, however, manifests the highest RMSE values, 

signaling potential discrepancies in the co-registration accuracy. This divergence may stem from variable 

atmospheric conditions and cloud coverage at the time of image capture, which can introduce additional error 

sources do not present in the other datasets. Furthermore, the higher cloud coverage in the Sentinel-2 images 

corresponding to this period likely exacerbates the co-registration challenges, demanding a more nuanced 

approach to address these atmospheric inconsistencies. 

In light of these observations, future research should incorporate atmospheric correction techniques and cloud 

masking strategies to mitigate the effects of varying cloud coverage and atmospheric conditions. Additionally, 

leveraging temporal analysis to align image acquisition dates with optimal atmospheric clarity could further refine 

the co-registration process. Such methodological enhancements will ensure the reliability of multi-temporal 

analyses and the robustness of subsequent land cover classifications. 

 

In an analysis of the Random Forest and SVM models using their respective confusion matrices, distinct patterns 

emerge in terms of their performance across various classes. The Random Forest model exhibits a variable user's 

accuracy, with a notably high accuracy of nearly 100% for the 'Trees' class, but a substantially lower accuracy of 

6.52% for the 'Bare' class. This disparity in accuracy across classes could be indicative of the model's challenges 

in dealing with class imbalances or complex decision boundaries. The overall accuracy of the Random Forest 

model stands at about 94.60%. 

 

The producer's accuracy for the Random Forest model, which reflects its ability to correctly identify actual 

occurrences of each class, reveals similar disparities. The model's performance varies across different classes, 

suggesting potential overfitting issues or a lack of adaptability to certain class characteristics. 

 

When comparing this to the SVM model, a notable improvement in user's accuracy is observed. The SVM model 

not only outperforms the Random Forest model in overall accuracy, with a figure of approximately 96.97%, but 

also shows enhanced user's accuracy across all classes. This is particularly evident in classes with limited sample 

sizes, such as 'Bare' (80.65% vs. 37.50%) and 'Snow and Ice' (100% vs. 50%). The higher accuracies in these 

classes suggest the SVM's superior ability to effectively delineate between different classes, even in scenarios of 

limited data. 
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Producer's accuracy for the SVM model, calculated similarly to that of the Random Forest model, also indicates a 

consistent improvement across all classes. This consistent performance across both user's and producer's accuracy 

metrics underscores the SVM model's robustness and its capability to handle the challenges posed by class 

imbalance and complex feature spaces more effectively than the Random Forest model. 

 

The Random Forest model, while generally robust, shows a marked variability in its ability to accurately predict 

certain classes. This variability might stem from the model's tendency to overfit, especially when dealing with 

classes that have complex decision boundaries or that are underrepresented in the training data. For instance, the 

lower accuracy rates in classes like 'Water', 'Flooded Vegetation', and 'Bare' suggest difficulties in differentiating 

between classes that are potentially similar or not well-represented. 

 

Conclusion 

The co-registration process using the Gefolki algorithm and forward-backward method yielded varying degrees of 

accuracy across different datasets, as indicated by RMSE values. the 

PRS_L2D_STD_20200308034830_20200308034834 and PRS_L2D_STD_20230208034531_20230208034535 

datasets stand out for their superior co-registration outcomes with Sentinel-2, as evidenced by the lowest RMSE 

values, particularly when employing the max operator in the red band analysis. The consistency of these images 

in yielding the best results across different metrics highlights its superior coregistration quality. The success of the 

coregistration of those images could be attributed to various factors, including optimal imaging conditions, 

effective coregistration techniques, or inherent characteristics of the scene that made alignment more precise. 

Understanding why this particular image performed the best could provide valuable insights for enhancing 

coregistration techniques in future applications. 

 

 

In summary, the classification models performed well, with the SVM model on a balanced dataset showing 

superior accuracy. This suggests that the SVM model, particularly with a balanced dataset, is highly effective for 

land cover classification tasks when using coregistered PRISMA with Sentinel-2 images. Its ability to handle high-

dimensional spaces effectively and to maintain robustness against overfitting is particularly beneficial, especially 

in cases where data for certain classes is limited. On the other hand, the Random Forest model, despite its overall 

good performance, might require further tuning and strategies to address its shortcomings in dealing with class 

imbalance and complex decision boundaries. 
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Recommendations 

• Optimization of Co-registration: For datasets with higher RMSE values, investigate the causes and 

optimize the co-registration process to improve accuracy. 

 

• Temporal Consistency: Examine the impact of temporal factors on co-registration and classification 

accuracy, considering seasonal changes and image acquisition times. 

 

• Algorithm Optimization: While the Gefolki algorithm has shown satisfactory results, there might be 

room for further optimization, especially in the preprocessing stage to reduce RMSE. 

 

• Data Augmentation: For classes with very few samples, such as 'Snow and Ice', using data augmentation 

techniques to increase the number of training samples could improve the Random Forest model's 

performance. 

 

• Feature Engineering: For the Random Forest model, deeper analysis into feature selection and 

engineering might provide improved classification boundaries. 

 

• Model Tuning: Both models would benefit from hyperparameter tuning; for SVM, exploring different 

kernel functions might yield better decision boundaries, while for Random Forest, adjusting the number 

of trees and depth could prevent overfitting. 

 

• Cross-validation: Implement k-fold cross-validation to assess the models' robustness and their 

performance variance across different subsets of the data. 

 

• Ensemble Techniques: Combining the predictions from both models through ensemble techniques might 

capitalize on their strengths and mitigate their weaknesses, potentially leading to a more accurate and 

robust classifier. 

 

• Address Class Imbalance: Use techniques like SMOTE or adjust class weights in the SVM to handle the 

class imbalance problem better. 

By adopting these recommendations, there is potential to improve both the co-registration accuracy and the 

predictive capabilities of the models, particularly for classes that are underrepresented in the dataset. 
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