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Abstract

During the 21st century, the most significant challenge the world is facing is the fight
against climate change. The exploitation of biomass for energy production represents a
practical solution to reduce the carbon dioxide emission impact (i.e., decarbonization).
Anaerobic digestion transforms organic material into biogas by microbiological reactions
in the absence of oxygen. This process is widespread today, but the lack of a detailed
engineering approach constrains its further deployment. In addition, the purity of the pro-
duced biogas has high standard requirements. Among the pollutants, the most appendant
is hydrogen sulfide, a highly toxic for humans and an inhibiting agent for microorganisms.
However, it is possible to inject a small amount of oxygen into the digester to convert H2S
to elemental sulfur, which is much easier to remove, being solid. This solution is named
microaeration and can positively impact the sulfide removal process. This work proposes
a model-based control system to minimize oxygen injection while ensuring efficient and
sufficient sulfide removal.

The control algorithm lays its basis on a lumped model capable of predicting the sul-
fate reduction and the microaerobic oxidation mechanism. Consequently, the Anaerobic
Digestion Oxygen Control System (ADOCS) model is developed and further validated
with literature data and an industrial case. The model provides a good compromise be-
tween accuracy and complexity and can be efficiently employed in practical contexts. The
model efficacy for a control action is later evaluated by applying it in a complete control
algorithm. The outcomes confirm that a preventive oxygen injection based on predictive
model results efficiently avoids excessive sulfide concentration in the biogas.

Keywords: anaerobic digestion, modeling, microaeration, control, predictive





Abstract in lingua italiana

Nel corso del XXI secolo, la sfida più importante che il mondo sta affrontando è la lotta al
cambiamento climatico. Le biomasse sono risorse molto promettenti per ridurre l’impatto
delle emissioni di anidride carbonica derivanti dalla produzione di energia. Il processo di
digestione anaerobica trasforma il materiale organico in biogas, mediante reazioni micro-
biologiche in assenza di ossigeno.Questo processo è oggi molto diffuso, ma la mancanza di
un approccio ingegneristico dettagliato ne limita l’ulteriore diffusione. Inoltre, la purezza
del biogas prodotto ha requisiti di standard elevati. Tra gli inquinanti, il più importante
è l’idrogeno solforato, altamente tossico per l’uomo e inibitore dei microrganismi. Tut-
tavia, è possibile iniettare una ridotta quantità di ossigeno nel digestore per convertire
efficacemente l’acido solfidrico in zolfo elementare, molto più semplice da rimuovere es-
sendo solido. Questa soluzione prende il nome di microaerazione e può semplificare il
processo di rimozione dei solfuri. Questo lavoro propone lo sviluppo di un sistema di con-
trollo basato su un modello matematico in grado di minimizzare l’iniezione di ossigeno,
garantendo al contempo una sufficiente rimozione dei solfuri. L’algoritmo di controllo si
basa su un modello a parametri concentrati in grado di prevedere la riduzione dei solfati
e il meccanismo di ossidazione microaerobica. In primo luogo, viene sviluppato il modello
Anaerobic Digestion Oxygen Control System (ADOCS), confrontandolo con dati presenti
in letteratura e con un caso industriale. I risultati ottenuti permettono di dimostrare che il
modello proposto offre un buon compromesso tra accuratezza e complessità, permettendo
una sua applicazione in contesti pratici. L’efficacia del modello in un’azione di controllo
viene poi valutata applicandolo a un completo algoritmo di controllo. I risultati confer-
mano che un’iniezione preventiva di ossigeno, basata sui risultati del modello predittivo,
è efficace nell’evitare un’eccessiva concentrazione di solfuri nel biogas.

Parole chiave: digestione anaerobica, modellazione, microaerazione, controllo, predit-
tivo
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1

Introduction

During the 21st century, the world is facing the issue of climate change and sustainable
transition. A broad range of new technologies, processes, and opportunities are already
arising and will keep increasing, both in number and effectiveness, helping face these
challenges. Biomass is considered one of this era’s most valuable raw materials. It is
intrinsically capable of reducing the impacts of CO2 emissions in various sectors. Indeed,
biomass can be converted to a variety of bio-fuels which are less impacting than their fossil
counterpart from a double perspective. Firstly, their combustion releases fewer pollutants.
Secondly, the carbon dioxide emitted during the final stage derives from that absorbed
by the organic matter during its growth.

The most common utilization of biomass for energy purposes consists of biogas production
by anaerobic digestion. This microbial-mediated process converts organic materials into
a gaseous mixture mainly composed of methane and carbon dioxide, with other minor
gases as impurities. The process in the last year is well-established in its practical terms.
However, a large margin for optimization is still present due to the complexity of the
reactions involved and the consequent difficulties in its mathematical modeling. The
varieties of substrates and feedstock utilized only sometimes reflect the optimal choice
regarding process efficiency and add additional complexity to the system control.

Biogas is typically used in combined heat and power plants (CHPs), which are burnt
in combustion engines to recover energy. This gas can be applied in all of these con-
texts where fossil fuel methane is now employed, dramatically reducing the associated
environmental impact. However, worthy of interest are some higher-value applications of
more recent development. These include upgrading biogas to biomethane, where the CH4

content is more than 95%.

Raw biogas usually contains a large share of methane (50-75%), with the remaining frac-
tion mainly composed of carbon dioxide (25-50%) and other impurities (less than 5%).
Among these contaminants, some do not affect the product quality, such as water vapor
or oxygen traces, while others can have a significant impact. It is the case of hydrogen
sulfide, H2S, produced from the digestion of sulfur-containing substrates such as proteins.
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This toxic, poisonous, and odorous compound produces sulfur oxides if burnt in a com-
bustion engine. Furthermore, it rapidly corrodes any metallic equipment with which it
comes in contact, leading to a life-shortening of the pieces of equipment employed if no
adequate removal is performed.

The most widespread methods for sulfide removal include physical, chemical, or chemical-
physical treatments. These are usually expensive, space, and energy-consuming. A pos-
sible solution for H2S removal is to use another family of bacteria that intervene in an
anaerobic digestion system under certain circumstances. This microbial family, named
sulfide-oxidizing bacteria (SOBs), can convert the gaseous hydrogen sulfide into solid el-
emental sulfur, greatly simplifying its removal. However, SOBs are aerobic bacteria and
thus require oxygen to live and perform their metabolic reactions, opposite to the envi-
ronment of biogas production systems which is, by definition, anaerobic.

The condition of adding a limited amount of oxygen in an anaerobic digestion system
is known as microaeration. It is proven effective in improving such processes in different
stages. Indeed, a minimal quantity of oxygen is helpful in hydrolysis enhancement, reactor
stabilization, and, as mentioned, sulfide removal. Microaeration has been applied at
different scales and for various primary purposes. This solution has been mainly performed
with a lack of rigorous scientific basis and limited assessment of its effects. To be a
helpful technique and be effectively applied at an industrial scale, there is the need for
standardized methods to assess microaeration impact and eventually provide solutions for
optimal oxygen injection timing and quantity.

The present work aims at defining a first estimation of a model-based control system to
dynamically optimize the microaeration for sulfide removal in an anaerobic digestion sys-
tem. Such a system is hypothesized as inserted within a complete control algorithm based
on the dynamic model of anaerobic digestion also presented. The resulting method trig-
gers a control action whenever, according to the simulated results, an excessive amount of
hydrogen sulfide results from the anaerobic digestion of a given influent feedstock. More-
over, a predictive algorithm is also defined to preventively increase the oxygen injection
rate when a critical sulfide content is supposed to be reached.

The most critical part of the control algorithm is that it depends on a simulative math-
ematical representation of the process, and accuracy is thus fundamental. The model
should also be flexible to changes in the influent and operating conditions to be applica-
ble in various situations. This work presents a new lumped model that accounts for the
effect of oxygen and sulfate reduction processes and is used in the control algorithm. The
overall model produced is named ADOCS (Anaerobic Digestion Oxygen Control Systems)



| Introduction 3

to highlight its feature regarding control purposes. It is derived from the Anaerobic Diges-
tion Model No. 2 (AM2), also referred to as AMOCO from the name of the organization
within it has been developed. This latter is considered to be the state-of-the-art within
models applicable for control purposes in anaerobic digestion since it depends on a few
parameters estimable from experimental data.

The work starts by presenting an overview of the transition that the world has to face and
the regulatory framework, along with the role that biomass, and bioenergies, in particular,
can have. The subsequent chapters present the general features of anaerobic digestion
and its mathematical modeling, which is the foundation upon which a dynamic control
system should be built. Chapter four presents a potential improvement in the parameter
calibration of the AM2 model. Subsequently, chapter five presents the ADOCS model,
describing the added reactions and processes. The results are presented within a base-
case scenario used as an explicative example, with a final application in an industrial case
study. Finally, a preliminary dynamic optimization based on the model mentioned above
is performed to show the potential for an application at a full-scale level to achieve a
successful microaeration-based sulfide removal. This last chapter also compares a model-
predictive and not control system, highlighting the first’s potential to avoid excessive
sulfide in the resulting biogas.
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1| The Sustainable Transition of

the XXI Century

The major challenge of the present century is undoubtedly the struggle against climate
change and its consequences, with global warming among all. Although the scientific
community has issued numerous warnings since the late 1900s, it has only been in the last
decade that the majority of the general population has become aware of the significance
and urgency of the issue [1]. Thanks to the divulgation by magazines, newspapers, and

Figure 1.1: Cover page of Time magazine special issue on global warming (Apr. 03, 2006)
[2].

televisions, a technical topic came into the lives of the people, who finally got the intrinsic
importance of the message. Today climate change is a fact: it is recognized unanimously
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by the scientific community, and many people are involved in the fight against it.

The second decennium of the 2000s has been a game-changing period, with the mass
manifestations favoring climate and the environmental issue as a pillar of most govern-
ments’ agendas. In 2015, under the supervision of the United Nations (UN), two historical
treaties were to make effective the sustainable transition: the Paris Agreement [3] and the
2030 Sustainable Development Agenda [4]. These two agreements are interconnected but
aim at two different targets: the first is dedicated to climate change, with exact figures
to respect to limiting global warming, while the latter has a broader perspective, posing
the concrete aspects of developing and improving the living standards of all the people of
the world by respecting the planet.

1.1. The Paris Agreement

Every year since 1995, in the scheme provided by the United Nations Framework Con-
vention on Climate Change (UNFCCC), an annual conference is held to evaluate the
progress against global warming: the Conference of the Parties (COP). These meetings
are those where the world’s leaders have reached the most relevant results for environ-
mental issues. Indeed, during COP3, held in Kyoto, Japan, in 1997, the Kyoto Protocol
was signed, marking the first international climate awareness milestone. This conven-
tion has been subsequently amended in Doha during COP18 (2012) and set the bases
for the most ambitious agreement regarding climate: the Paris Agreement. This historic
and legally binding international agreement was adopted at COP21, which took place
in Paris in December 2015 [3], and is intended to serve as the blueprint for combating
climate change in the early years of this century. Announcing the treaty, then-President
of the United States Barack Obama stated that its target was to “leave to our children
a world that is safer and more secure, more prosperous, and freer” [5]. In fact, despite
the appearance that this most recent treaty solely replaces the Kyoto Protocol, it may be
different. The older agreement focused on developing countries reducing their greenhouse
gas (GHG) emissions. Conversely, the Paris Agreement mandates that all nations take
action to combat climate change in its broadest sense, keeping the average temperature
rise below two degrees Celsius above pre-industrial levels and continuing to work toward
limiting it to 1.5 °C. The treaty poses dedicated deadlines and a regulatory framework
on how the more vulnerable countries may get the help that they need from the more
developed ones, along with measures related to market and financial systems [6]. By 2020,
all the nations propose their plans for emissions reduction, named Nationally Determined
Contributions (NDCs), and their Long-Term Low greenhouse gas Emission Development
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Strategies (LT-LEDS). These documents should finally assess the progress made in emis-
sions and actions taken, with insights on the help received or provided, if it is the case.
Moreover, a key aspect regards the emissions control system. It has been defined as mak-
ing the countries respect their commitments by reporting every five years on their status.
This procedure, called Global stocktake, will start in 2023 and consists of the confluence
of all the countries’ Enhanced Transparency Framework (ETF). [7].

1.2. The 2030 Agenda for Sustainable Development

The result of the UN General Assembly of September 2015 as the framework for a global
transition in the upcoming years is the 2030 Agenda for Sustainable Development [4],
[8]. This resolution is a universal call for action which aims at universal and sustainable
growth toward a peaceful and prosperous planet facing poverty and environmental harm.
Indeed, it implies the participation and the shared responsibility of all the 193 countries’
signatories, which commonly pledged to leave no one behind. TheAgenda defines five main
areas of relevant importance for sustainable growth which inspire the plan:

People End hunger and poverty, ensuring that all people can live in dignity, equality,
and health;

Planet Guarantee the respect of the planet against degradation, supporting the needs of
the present and future generations by employing sustainable production and con-
sumption policies. Urge actions against climate change;

Prosperity Ensure prosperous lives for everybody, with adequate and environmentally-
friendly technological, social, and economic progress;

Peace Promote peaceful, just, and inclusive societies without fear or violence. It is
considered the necessary but not sufficient condition for sustainable development.;

Partnership Implement the Agenda has to be in a spirit of global solidarity, focusing
on a common response to the needs of the poorest and most vulnerable.

These dimensions, also known as the 5Ps, are at the center of the Sustainable Development
Goals (SDGs), the real focus of the 2030 Agenda.

1.2.1. The Sustainable Development Goals

The UN established 17 common goals to meet the requirements of the 2030 Agenda to
provide a clearer perspective and idea of the topics that must be addressed [9]. These goals,
which include 169 additional specific targets, were created to succeed in the Millenium
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Development Goals, which, even though they have not yet been fully attained, can be
seen as the first joint effort towards a shared sense of sustainability. Each of the 17 goals,
presented in Figure 1.2, is integrated and interconnected with the others and typically
has 8-12 targets, divided into "outcome targets" or "means of implementation." Indeed,
not all the indicators can be quantitatively measured. Such an approach has been used to
guarantee better achievability in most countries, adopting measures of various sectors. To
facilitate monitoring of the progress of the various signatories: data and information from
each region are collected and processed by the UN System to produce annually an SDG
Progress Report based on a global framework of 232 indicators. Moreover, to facilitate
the access of the general public to these data, an online SGDs tracker is available from
2018 [10]. The SDG Report 2022 [11] provides insight into how quickly it is necessary to

Figure 1.2: UN 17 Sustainable Development Goals [9].

act to meet the goals by their deadline. The cause of this is the number of interconnected
crises, including COVID-19, climate change, and wars, which have come to a head while
undoing years’ progress. The pandemic’s effects have increased the number of people
living in poverty and reduced the ability of sanitary systems to prevent the spread of
previously curable diseases like malaria and tuberculosis. With the Russian invasion
of Ukraine sparking one of the worst crises in recent memory, consequences are also
seen in the forced migration of refugees due to the growing poverty in conflict-ridden
nations. Furthermore, rising interest rates and inflation make it more challenging for
many countries to transition to more sustainable energy sources, which is why they have
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difficulty meeting their climate change and greenhouse gas emission goals. The focus on
sustainable development should be increased in light of the current challenges. In contrast,
a more robust coordinated response to the crisis is required if the 2030 Agenda becomes
a reality and results in significant advancements for both people and the environment.

1.3. The European Green Deal

The European Union (EU) is undoubtedly one of the prominent actors in the interna-
tional geopolitical scheme and is one of the leading advocates and parties of the Paris
Agreement. This role implies extensive responsibilities since the Union represents most
western economies and their people. Indeed, European countries are at the center of what
is considered to be the new industrial revolution, which will lead the world toward a more
sustainable and efficient economy. The European Union and its organisms have taken the
challenge from the beginning, defining the ecological transition as a fundamental issue of
the present and setting it as a priority of the new legislative actions for the upcoming
years. [12].

The future roadmap for the European Union has been defined by the European Commis-
sion in the European Green Deal [13], an ambitious set of policies approved between 2019
and early 2020, with the primary objective of making the EU climate neutral by 2050.
This framework poses the bases for building a competitive, sustainable, resource-efficient,
and environmentally friendly continent, able to lead the world in the fight against climate
change under the Paris Agreement of 2015. Indeed, the primary purpose of the Green
Deal is to turn Europe into the first climate-neutral continent in the world. To do so,
more and less ambitious targets have been set as milestones for the years up to 2050, with
the ultimate goal of reaching net zero impact in terms of greenhouse gas emissions by that
date. European countries agreed to reduce, by 2030, by at least 55% compared to the
1990s level. These pledges are pretty ambitious and must be accompanied by concrete
actions at all levels of governance and in different sectors of everyone’s lives.

The abandonment of fossil fuels and oil-based products is one of the significant challenges
that every country which intends to decrease its impact on the planet needs to face. After
the COVID-19 pandemic outbreak, the European Union delivered the NextGenerationEU
Recovery Plan [14], an instrument defining measures to recover from the social and eco-
nomic crisis caused by the actions adopted to fight against the virus. This legislative
package is, however, more than just a stimulus to restore the pre-existing status quo. The
Green Deal, which was modified to operate in the new post-pandemic framework, will
continue to be at the core of the European ecological transition. Indeed, it is a turning
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point in European history, being the most extensive package ever approved, with more
than 2 trillion euros available. It aims at developing a stronger Europe, which will be
greener, more digital, and more resilient [15]. Although the current laws have not been
abandoned, they will most likely benefit from the more considerable funds provided by
NextGenerationEU to accomplish their objectives.

The transition to a green economy without leaving anyone behind involves numerous
intermediate steps for the EU to accomplish the targets for 2050. The 55% reduction of
greenhouse gases by 2030 is undoubtedly the significant and more widespread milestone
set, which includes a set of legislative actions grouped as Fit for 55, presented by the
Commission in 2021 and generally approved by the European Council on June 2022 [16],
[17]. This legislative package includes all the policies governments are willing to take to
respect the final target of having a fair transition toward a green and competitive Union.
The central principles of this body of legislation are an increase in energy efficiency for both
buildings and industries, new viewpoints on cars and transportation systems, a higher
percentage of energy coming from renewable sources, and the development of sustainable
management of the agricultural system and carbon sinks. Additionally, it includes steps to
adjust markets to the new era, such as an upgrade to the Emissions Trading System (ETS),
new vehicle and transportation laws, and a reformed product taxation system to account
for all factors that have an impact on the environment. In terms of percentages, the
Members of the European Union committed to a target of 40% of energy from renewable
sources by 2030 to achieve the target of greenhouse gas emissions reduction set by this
regulation.

The year 2022, with the Russian invasion of Ukraine, forced the international governments
to change plans regarding their geopolitical settlements. The consequences are also re-
flected in the energy market, and the European Union is no exception. The Commission
persuaded all the members to accelerate the transition by reducing their dependence on
Russian fuel sources, namely oil and natural gas, with the latter accounting for almost
four-tenths of all the European gas imports. Therefore, to allow for the continent’s energy
independence while pursuing the ecological transition, the European Commission devised
a new action plan to be included within the larger context of the Green Deal. This new
strategic policy set, named REPowerEU, looks even closer to the other programs previ-
ously mentioned since it has been developed to efficiently tackle an imminent external
cause [18]. Despite this, the highlights reflect those that have been settled by the Green
Deal, eventually looking forward to more ambitious targets [19]. Indeed, with the RE-
PowerEu program, the renewable share to be reached by 2030 is raised at 45%, updating
the figures set by Fit for 55 plan just after two years. The discussion on details of this
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new body of measures is still a matter of debate within the Council and in the European
Parliament. However, surely there will be many efforts needed by both the governments
and the scientific world, with research in the broad matter of renewable energies will be
the principal focus of the present decade, and the European Union will be a lead actor in
this process. [20].

1.3.1. The Italian Situation

Italy is the largest beneficiary of the funds from the NextGenerationEU Recovery Plan,
being the first and probably the heaviest hit country in Europe by COVID-19. These
investments are an enormous opportunity for a country with delays and below-the-average
indicators regarding digitalization, efficiency, and investments in research and education.
Thanks to the plan, Italy is supposed to enormously increase its level of digital skills in
crucial roles, such as public administration and businesses, along with enhancements in
the scholar, healthcare, and social inclusion [21], [22]. The other central pillar of Italy’s
recovery and resilience plan - Piano Nazionale di Ripresa e Resilienza (PNRR) - ecological
transition, shows measures for a share of 37% of the total funds.

The environmental part of the PNRR shows actions that will foster those presented in
the Piano Nazionale integrato per l’Energia e il Clima (PNEC), the national proposal to
fulfill the requirements of the Green Deal, presented in 2019 [23]. As requested by the
legislators, the document’s key points involve reforms to increase the share of renewables,
decarbonization, and energy efficiency. It satisfies the European requirements for these
topics. In particular, Italy pledges to reach a 33% greenhouse-gas reduction and the 30%
of totally consumed coming from renewable sources, which will be the summary of 55%
in the electric sector, 33,9% in the thermal and 22% in transportation.

1.4. The Role of Biomass

The term "biomass" can describe various organic fractions, including algae, agricultural
and urban waste, trees, and plants. In the ecological transition, bioresources will be
crucial for materials and energy. Indeed, biomass is currently the largest renewable energy
source in the EU, accounting for almost 60% of total energy consumption. This value rises
even further considering the heat and cooling sector only because bioenergy—defined as
energy derived from biological resources—outperforms all other renewable sources, making
up 75% of the total. This large share is because most nations where those resources
are much use forestry and other solid biofuels as their primary heating sources on a
large scale. Despite having clear advantages over other traditional options, it is essential
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to emphasize that biomass is not a replacement for a greenhouse gas-free solution [24].
Indeed, bioenergies play and will play a significant role in the energy transition towards
the European targets, in particular to the closest ones [25]. However, the central policies
suggest that their use should be prioritized for high-value-added applications, leaving other
greener alternatives, such as wind or solar, the central roles of energy production. In this
way, bioenergy could be used in those sectors where decarbonization is difficult or lagging,
like parts of transportation, such as shipping and aviation. Moreover, biobased solutions
have great potential to replace many petroleum-based commodities and compounds, such
as many alcohols.

Biomass must adhere to a few sustainability-related requirements outlined in the Green
Deal to fully play its relevant part in the transition [26]. The woody materials must
originate from nations with legislation that complies with the requirements for proper
forestation and soil consumption and effective harvesting systems to be used as an energy
source. Because forests are such effective carbon sinks, proper ecosystem management
can ensure more significant benefits in terms of emissions. Policies that prioritize the
value of biomass in its total capacity as a potential carbon-negative actor in the current
system should be used to enforce this. These policies should aim to preserve and enhance
the biodiversity that biomass can guarantee in most places. Consequently, the planet’s
resources will be optimized if the principles of the circular economy and cascading, or
usage in hierarchical and sequential phases, are fully recognized and utilized.

1.5. Biogas and Biomethane in the Energy Transition

Biogas is a mixture of methane (CH4) and carbon dioxide (CO2) in different percentages,
usually with a prevalence of the first (50-70%). Such gas is typically obtained from
different sources, such as agricultural wastes, sewage sludge, or animal and vegetal by-
products, by a natural process of biomass degradation in the absence of oxygen, named
anaerobic digestion (AD) Ṫhe dedicated chapter will give a detailed description of both
the product and the operations. Currently, exploitation of biogas is for the majority in
plants that generate both electricity and heat simultaneously - CHP (Combined Heat
and Power). A more recent, attractive exploitation is the so-called biogas upgrading to
biomethane. Such a process consists in increasing the fraction of methane to obtain a
product similar to natural gas, which can thus be directly injected into the grid or as
vehicle fuel [27].

The development of a biogas production system started in Europe in the 90s and has
constantly been growing at a high pace, reaching more than 10 GW of installed capacity
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in recent years, as shown in Figure 1.3. Nowadays, countries like Germany, Italy, France,
the Czech Republic, Austria, and Sweden are leading the market of biogas technology and
are among the most significant worldwide developers of upgrading solutions [28].

Figure 1.3: Installed capacity of biogas plants in the world [29].

Biofuels, including biomethane and biogas, release GHG during combustion but do not
increase the overall amount in the atmosphere because they come from sources that,
during their growth, have, directly or indirectly, absorbed CO2. The sum allows for a
closed carbon cycle, potentially generating zero or negative net emissions. Biogas has
been shown to reduce GHG emissions by up to 240%. This value might be inflated, given
the strict assumptions about the substrate and technology. In general, it is possible to
state that both biogas and biomethane, when used to replace fossil fuels, can guarantee
an emissions reduction of at least 80% [30], [31]. The counts for carbon dioxide are just
one of the advantages of these bioenergies. Indeed, after upgrading, the product is one
of the most flexible energy carriers. Production does not depend on seasonality and does
not require any modification to the existing grid. In addition, it is relevant to consider
that the production process accounts for two main by-products: the digestate during the
anaerobic digestion and a CO2-rich stream obtained along with biomethane during the
upgrading. These two by-products have considerable potential, being able to be utilized
as fertilizers, in the case of the digestate, or as valuable raw material for many chemical
processes in the case of carbon dioxide. As discussed later, bioenergies production enables
smart management of various resources that would otherwise be disposed of as waste,
leading to the development of waste-to-energy (WtE) solutions, another important tenet
of the sustainable transition. Additional advantages are also present, such as lessening
the harmful effects of other activities by avoiding their direct emissions, as in the case of
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agricultural manure [27], [32].

1.5.1. Bioenergies and Sustainability Targets

Above is a summary of a few advantages that could aid in expanding the bioenergy sector.
These and other factors were taken into consideration by policymakers, which enacted and
recommended crucial measures to successfully implement sustainable sources to meet the
challenges of the energy transition.

European Commission significantly sets the role that biogas can have in the RePowerEU
plan, recognizing the potentialities in energy security, sustainability, and economics [33].
Indeed, apart from all the considerations regarding emissions reduction, biomass sources
are widely available in European countries at a constant and reasonable price. Indeed the
final cost of biogas and biomethane is estimated to be between € 40 and € 120 per MWh,
with the relevant benefit of not being subjected to the large market fluctuations of natural
gas prices that Europe has realized recently [27]. The Commission defined some key points,
and other high-level associations have introduced more to give bioenergies the necessary
and deserved role in profitably combining with other renewables for decarbonization. This
series of steps should maximize the benefits of biogas and its conversion into biomethane,
setting up the conditions for a long-term supply of this fuel and its introduction into the
grid. The final goal is to fully exploit the biomethane potential to reach a production of
35 bcm (billions of cubic meters) by 2030, as clearly outlined in the RePowerEU, and 95
bcm by 2050. These figures are relevant considering that EU nowadays consumption is
around 400 bcm, 155 of which were imported from Russia and will thus have to be almost
eliminated, standing to the RePowerEU guidelines. That large production is coherent with
the feedstock available in European countries and could be further expanded using more
advanced sources and technologies. The challenge is relevant, considering that today EU
production is almost half what it should be by 2030, with the whole industry producing
almost 18 bcm, divided by 15 bcm of biogas and three bcm of biomethane [34]. The
incentive for the improvement will need to favor the demand side in the use of biobased
sources over natural gas, for example, in transportation or grid injection, as well as the
supply side. Regarding the latter, the plant capacities should be fully exploited with
non-limited contracts and better investments, along with dedicated national and shared
strategies to guarantee feedstock sustainability and the needed support for industrial
partnerships. Regarding the sources, one relevant measure is already in sight at the
European level: from 2024, all the organic waste will have to be collected separately and
processed in a dedicated facility which, in many cases, will be a biogas production plant
[33], [35].
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Although Europe is the largest biogas producer, this source can provide considerable ad-
vantage to the transition on a global scale. Indeed, this industry can benefit all the three
areas which define the triple bottom line of sustainable development: social, environmen-
tal, and economical. It should not surprise that biogas can have a direct and quantifiable
impact on global targets, such as the SDGs, given that the concepts of bio-economy and
circularity are acknowledged to be among the foundational elements of the green tran-
sition. The SDG most affected by an enhancement of biogas production will be SDG
7: Affordable and Clean Energy, but, as already said, a cleaner source is not the only
advantage that bioenergies can offer. Many other benefits can be undoubtedly related to
this technology, and most of them can significantly impact those areas most in need of
development. It is possible to fully capitalize on the WtE capacity of these processes to
reach significant milestones connected to waste management (SDG 11: Sustainable cities
and communities) and wastewater utilization and treatment (SDG 6: Clean water and
sanitation). Expanding the lens to include the entire supply chain can also emphasize
sustainable biofuel production’s benefits on agriculture and soil (SDG 15: Life on land).
Indeed, an adequately grown biomass, after serving as a carbon sink throughout its life,
acts as both a food source (SDG 2: Zero hunger) and a substrate for anaerobic digestion
or other biobased processes [36], [37].

Above is just a brief description of what biogas and biobased solution can help accomplish
in the future. These resources have much potential, and even though their issues are not
entirely resolved, they should be included in the range of strategies used to combat climate
change and build a fair and sustainable world for future generations.
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Anaerobic digestion is a biological process in which microorganisms degrade organic mat-
ter without oxygen. Such process may occur naturally, in the soil or some water basins,
or dedicated facilities: the anaerobic digesters. The metabolism of the bacteria involved
biomass transformation in two major products of interest: biogas and digestate. The first
contains a high content of methane (CH4, 50-70 &vol) and carbon dioxide (CO2, 30-50
%), with traces of byproducts, like H2S and water vapour. The digestate represents the
nutrient-rich solid residue and part of the liquid fraction, commonly used as fertilizer.

2.1. The Process of Anaerobic Digestion

AD is regarded as one of the most cost-effective and environmentally benign methods
of converting biomass, particularly organic wastes, into renewable energy. Compared to
other bioenergy production technologies, the AD process is relatively simple and afford-
able, with a lower carbon footprint and a higher net energy return. Furthermore, it
provides a wide range of applications from its core products, broadening the field for a
circular economy within the waste management discipline.

2.1.1. The Metabolic Reactions

Anaerobic digestion relies on a complex microbial consortium consisting of interdependent
biochemical steps. In general, it is possible to recognize four main phases: hydrolysis,
acidogenesis, acetogenesis and methanogenesis. A previous step, named disintegration,
may be relevant in the case of complex feedstocks, which have to be broken down into
simpler organic polymers.

Hydrolysis In this phase, the long polymeric chains, which constitute the biomass, car-
bohydrates, lipids, and proteins, are hydrolized into their smaller constituents: monomers
or oligomers. These reactions refer to the cleavage of the covalent bonds by water, by
which sugars, amino acids, and lipids are formed. The involvement of the protons of water
can involve the release of cations and anions, which may affect the pH of the solution,
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Figure 2.1: Aerial view of a biogas production facility, including basins for post-digestion
and feedstock storage basins, [38].

which usually decreases at this moment. This step is necessary since the latter compounds
are directly soluble and thus available for other bacteria to perform the subsequent steps
of digestion. It is relevant to say that this phase is the slowest and can be considered as
the Rate Determining Step of the whole process. The reaction rate can be enhanced by
performing some pretreatments, such as milling, grinding, and contact with high temper-
atures or chemicals. Moreover, this process is usually catalyzed by extracellular enzymes
secreted by the microorganisms which will utilize the products. There are four main
families of enzymes, classified according to which polymer they will work on: cellulase,
amylases, proteases and lipases.

Acidogenesis This set of reactions involves the transformation of hydrolysis products
into fatty acids. The most relevant products are the volatile fatty acids (VFA) : those
with a C4 carbon backbone, such as valeric and butyric acids, and the C5 propionic
acid. This phase is performed by the acidogenic bacteria, a family able to tolerate acidic
conditions and with fast growth kinetics. Along with the desired products, it is possible
to have a production of secondary metabolites in this phase, including long-chain fatty
acids (LCFA) as well as carbon dioxide, hydrogen, and acetic acid, as well as other minor
by-products (ethanol, lactic acid, or H2S). CO2, H2, and acetic acid are valuable products
for the later stages since they are the growth source for methanogens microorganisms.
Indeed, the primary purpose of this phase is to provide metabolites for the subsequent
bacteria, which will then produce the acetate needed in methanogenesis. This phase and
the subsequent one are sometimes generally referred to as fermentation.
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Figure 2.2: Scheme of main phases and intermediates of anaerobic digestion [39].

Acetogenesis This phase produces the primary substrate for methane producers: acetic
acid (CH3COOH). This molecule is produced either directly by fermentative reduction of
VFA or subsequently from the other main product of that reaction, H2, which is also an in-
hibitor for some acetogenic species. This second pathway reduces the CO2 to CH3COOH,
utilizing part of the by-products produced during the acidogenesis.

Methanogenesis The last and most crucial step of the AD process when the main
product is obtained. Here strictly anaerobic strains of bacteria and archaea can convert
part of the molecules previously produced into CH4 and CO2, the significant components
of biogas. This is possible thanks to two principal pathways: carbon, the final electron
acceptor, and oxygen’s role in respiration.

One family of methanogens, the Hydrogenotrophic, grows utilizing hydrogen and carbon
dioxide as substrate (R1), and commonly are the most abundant strain inside the reactor.

CO2 + 4H2 CH4 + 2H2O (R1)

The other strain of methanogens is represented by the Acetoclastic microorganisms. These
are less abundant, but despite this, they can usually provide the majority of the total
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methane by converting acetic acid, as reported in (R2).

CH3COOH CH4 + CO2 (R2)

A last, smaller apart of methane can be produced, depending on the fermenter conditions.
by ethanol decarboxylation (R3). This pathway also gives acetic acid, which can be
exploited accordingly to (R2).

2CH3CH2OH + CO2 CH4 + 2CH3COOH (R3)

2.1.2. The Feedstock

Along with the production of valuable fuel, AD has a significant advantage that does
not need any fresh raw material to be performed. Indeed it almost relies on wastes as
feedstock, which, however, can have different natures and thus different properties.

In general, it is possible to identify four macro-categories of source for AD: manure,
agricultural waste, organic waste, and sludge. They are all by-products of other sectors,
which can fully exploit their value thanks to AD. This can surely be a positive point
from a global perspective, but as long as it is considered just the process of digestion,
there are some specific properties to consider. Indeed, even though almost any organic
compound can be digested, every source has its putrescibility to define its possibility to
be anaerobically degraded. From a chemical point of view, this means considering the
oxidative state of carbon found in the feedstocks. The more reduced the carbon is, the
higher will be the methane potential [40]. The other key parameter regards the feedstock
composition, which optimally should have a carbon-to-nitrogen ratio (C/N) of 20-30.
Typically, this is not the case: manure ranges around 10, agricultural wastes about 50,
and sludge and organic wastes between 10 and 20. To overcome this issue, adopting
co-digestion is becoming common practice, blending different available feeds to maximize
the methane potential [41], [42]. Other relevant parameters for AD are the Biochemical
Oxygen Demand (BOD) and the Chemical Oxygen Demand (COD). The first is a measure
of the biodegradable organics in sludge that can be used as a metric for the overall efficacy
of an anaerobic digester. It indicates dissolved oxygen microbial metabolism levels in a
specific sludge sample. Similarly, COD measures the amount of oxygen in a sample of
sludge that can be consumed in a reaction with oxidizing agents. It generally indicates
the number of organics contained in sludge and provides for the evaluation of process
efficiency in AD: COD decrease can reveal the amount of degradation occurring within
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an anaerobic digester since it reflects organics consumption [43].

The value of the feedstock has a significant impact also on the sustainability of the whole
AD process. Indeed, as presented in the previous chapter, a plant should rely on local
or proximate feedstocks, possibly without any possibility of being utilized in higher-value
applications. Moreover, the whole supply chain impacts the life-cycle-assessment of an
AD facility, considering that crops and other biomass should be cultivated sustainably
and securely.

2.1.3. The Products

The main products of interest of AD are two: biogas and digestate. In addition to those,
there is also the residual liquid phase, constituted by the residual moisture of the feedstock
and by the water produced by microbial reactions during the process.

Biogas constitutes the most relevant product, a renewable energy source with a vast
potential for application. It is composed for the major part by methane and carbon
dioxide, with some pollutants as by-products, as reported in Table 2.1. It can be used
directly to produce electricity and heat, after a natural purification, in the cogenerative
heat and power (CHP) plants or for more practical applications after further treatments.
In particular, the reduction of the H2S amount is of great importance, which, in the
presence of moisture, quickly corrodes the equipment and mechanical parts with which
it gets in contact. Its uses can vary from the mentioned energy generation by burning
in boilers or via CHP units. It can also be used as a feedstock for advanced chemical
processing, for example, in syngas. Suppose the biogas is upgraded, increasing its CH4

content above 95%. The H2S should be as low as possible and generally at most 10-20
ppm. In that case, it is possible to inject the product directly, named biomethane, into the
existing grid or use it in the form of compressed natural gas (CNG) as a transportation
fuel. A strictly controlled amount of pollutants is also required in these latter cases.

Digestate is the second relevant product of AD and can be considered as the residual from
the feedstock. While most of the carbon and hydrogen are converted to gas, the effluent
is rich in minerals such as nitrogen, potassium, and phosphorous, making it valuable as a
fertilizer to increase the activity of soil microbes. Digestate nature varies accordingly to
the feedstock, giving rise to a variety of effluents both in terms of state and composition.
Indeed, raw materials with a high cellulose content will provide a very fibrous effluent,
which direct application in the soil can be complex. In this case, some post-treatments
may be applied, such as pyrolysis, to reduce the recalcitrant nature of carbon and produce
bio-char or bio-oil without wasting the heating potential. In the opposite case, naming an
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Compound Formula Quantity Unit
Methane CH4 50-75 % vol/vol

Carbon Dioxide CO2 25-50 % vol/vol
Nitrogen N2 0-6 % vol/vol
Water H2O 0-5 % vol/vol

Oxygen O2 0-10 % vol/vol
Hydrogen H2 0-1 % vol/vol

Hydrogen Sulfide H2S 0-4000 ppm
Ammonia NH3 < 100 ppm
Siloxanes (OSiH2)n 80-500 ppm

Table 2.1: Typical ranges of biogas composition [39], [40], [44]

effluent with a high-liquid content usually requires a dewatering procedure, consequently
requiring further proper wastewater management.

2.1.4. The Operating Conditions

Anaerobic digestion systems traditionally rely on well-established technologies, and from
a reactor perspective, it is difficult to see significant differences among different reactor
classes and operating parameters. However, some generalities are presented below. It
is important to note that the unique parameter is pressure, which is usually considered
atmospheric. Complete digestion is frequently performed in two reactors to optimize the
operating conditions for each digestion phase.

T he most common design for AD reactors resembles those of the CSTR (Continuous
Stirred Tank Reactor). It is known for its reliability and easiness of operation. Usually, it
has a double phase, and a continuous or intermittent impeller gives the mixing. The main
drawbacks are related to microbial biomass, which may suffer damage from the stirring
effect and is lost with the outlet flow of sludge.

Alternatives have been dedicated to developing solutions to retain the valuable biomass
inside the reactor and fully exploit its potential. Some technological solutions can be seen
in the fluidized bed reactors, from which the UASB reactor has been developed (Upflow
Anaerobic Sludge Blanket Reactor) and with the fixed film reactors [45].

T he temperature of operation is defined according to the microorganism which has to
grow inside the digester and, consequently, on the type of feedstock utilized.
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Figure 2.3: Schematic view of a CSTR anaerobic digester [46]

It is possible to define two ranges of operating conditions: mesophilic within 35-45 °C
and thermophilic above 55 °C. The latter has a rate advantage due to increased kinetics
concerning lower temperatures, potentially resulting in higher biogas yields. However,
this is commonly not the best solution since these conditions stimulate the production of
acids as by-products, reducing the final product globally. Moreover, the energy needed
to reach thermophilic conditions is only sometimes justified by the results. A commonly
accepted standard temperature is 37 °C [47].

I t is the amount of time necessary to complete the decay of organic materials. It can
be associated with microbial growth and process conditions, including reactor design.
Moreover, it is related to the global organic loading rate (OLR) , using it as a way to
define the plant flow rate.

Generally, two main definitions are the most relevant: HRT (Hydraulic Retention Time)
and SRT (Solid Retention Time). . The first refers to the residence reactor time of the
reactor, and it is defined as follows: HRT = V/Q, where V is the digester volume and
Q is the inlet liquid flow rate. The SRT parameters refer instead to the average time
that the bacteria spend inside the digester and can be equal or different from the HRT
according to the reactor design and performances requested.

An effective HRT, necessary for substrate degradation, depends on feedstock composition
and OLR, but generally, it is between 15-30 days. Lower times will yield higher VFA
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accumulation, whereas a higher time will be unnecessary [48].

T he operating pH has a direct impact on the digestive process and products. The
optimal pH range for AD has been reported to be in the neutral range of pH 6.8-7.4.
Indeed, each of the subphases of anaerobic digestion has its optimum window, and a
trade-off between them has to be assessed. The hydrolysis phase strictly depends on the
type of substrate and operative enzymes, but in most cases, it lowers the system pH by
releasing protons. Conversely, acidogenesis and methanogenesis depend on the optimum
of their microbial communities. The first performs better when carried out at slightly
more acid conditions, with pH levels around 6. On the contrary, literature ranges for pH
for methanogenesis stand between 6.6 and 8, with a sizeable kinetic decrease when the
value drops below [48].

2.1.5. Biogas Sulfur Chain

Among the many compounds present during the anaerobic digestion of biomass, sulfur-
related compounds are critical. They interact in many aspects of AD, the most notable
being the limitation of methane yield. Sulfates are commonly found in feedstocks and
participate in various metabolic reactions, the most common of which are sulfate reduc-
tions (SR) mediated by specific bacterial families. In these reactions, organic electron
donors such as propionate, butyrate, acetate, and hydrogen are commonly used. As a
result, sulfate-reducing bacteria (SRB) and methanogens competed for substrates, ex-
plaining why CH4 formation is reduced. Sulfates are converted into sulfides due to these
reactions, [49]. These compounds are inhibitory for the biochemical processes already at
low concentrations (0.05 - 0.43 kg S m−3) and will further limit microbial activity. This
inhibition is usually associated with the sulfate concentration in the influent, which is
more easily determined. Severe inhibition is not seen when the SO –

42: COD is below 0.1,
or when the COD concentration is so high that makes sulfur conversion not significantly
relevant [50]. However, in some cases, such as vinasses, algae, protein-rich substrates, or
specific wastewaters, this value can be significantly higher, leading to a significant impact
of sulfur contents in the overall process [49], [51], [52]. As seen in Figure 2.4, Sulfides
impact more than just the production of liquid products. The gas phase of H2S is a sig-
nificant pollutant of biogas, causing problems in the machines and lowering the product
value. As a result, the sulfur chain must be monitored and investigated to avoid any
problems during AD’s reactive and purification stages.
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Figure 2.4: Representation of the sulfur-chain in anaerobic digestion [49]

2.2. Biogas Purification

As mentioned previously, depending on the type of feedstock, there can be a range of
various compounds which can be detected in biogas as impurities. Those usually are
non-desirable for different reasons, particularly corrosion of components and reduced heat
exchange. Consequently, when biogas is intended to be burnt for electricity and heat gen-
eration purposes, it is essential to consider the potential presence of undesired elements
carefully. In the case of upgrading to biomethane, the requirements of purity are even
stricter, leading to the necessity of minimizing the pollutants present in the final product.
Purifying undesired components should be done in two key moments: efficiently remov-
ing them during the upgrading process and avoiding unnecessary production during the
anaerobic digestion phase by tuning the process feedstock and parameters. Biogas purity
is fundamental since strict requirements are required for each utilization. The variety of
applications, however, leads to various possibilities and opportunities according to differ-
ences in countries’ national legislation and tax systems, feedstocks and spaces available,
transportation possibilities, and so on [44], [53].

T he CO2 removal is unnecessary for many CHP and simpler combustion biogas appli-
cations. For more demanding scopes, like advanced engines, the heating value of the value
has to be increased by reducing the carbon dioxide content. The most widespread method
involves physical and chemical absorption by exploiting the solubility of CO2 in water or
other organic solvents. When a high purity is required, as is the case for the upgrading
to biomethane, often the traditional methods are combined to maximize their outcome.
Moreover, it is possible to add membrane separation systems to remove small impurities
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and achieve methane content higher than 99%. Often in these last cases, a pure stream
of carbon dioxide is also recovered and sent to higher-value-added applications.

T he biogas leaving the digester is saturated with water, which amount depends on tem-
perature. At 35° C, its content is around 5%. For most of the applications, especially for
those where high purity is required, a drying phase is necessary. The main effects of water
traces rely on lowering the overall heating value and, in some cases, being of considerable
importance, reactions with hydrogen sulfides to form aggressive ionic compounds. The
removal of water content is probably the easiest among all the trace elements contained
in biogas and can be achieved physically by condensation or chemically by adsorption in
glycols or silica-based gels [44].

2.2.1. Hydrogen Sulfide Removal

Hydrogen sulfide H2S is a poisonous and odorous molecule commonly present in biogas in
concentrations up to 4000 ppm depending on the feedstocks, and eventually higher when
digested by some particularly protein-rich substrates [54]. The main effects of its presence
in the biogas produced stand on the damages it may cause to concrete and metallic
equipment, facilitating their corrosion. Moreover, toxic compounds such as sulfur dioxides
are produced when sulfides are burnt in the engines along with biogas. Consequently, H2S
concentration in biogas for combustion should not exceed 100 ppm, while for biomethane
upgrading, a small concentration, lower than five ppm, is required [55]. This compound
has to be removed as early as possible in the upgrading process, preferentially already in
the digester.

Employed methods for H2S removal use physical or chemical techniques to separate it
from the biogas stream. Absorption in liquids exploits the affinity of hydrogen sulfide
with water or organic compounds, such as ethers or glycols. This method can be coupled
with the CO2 removal to reduce the total costs associated with the process. Chemical
methods rely on the possibility of making reactions with H2S to form either more soluble
salts, which can be precipitated, or insoluble compounds, which can be directly removed,
usually by also forming elemental sulfur Sx. Among the most widespread reactants are
those where Fe3+ can act as a chelating agent, forming elemental sulfur when reduced to
Fe2+ or partial oxygenation with small oxygen dosing. Adsorption on activated carbons
is also an applied technology. Carbons can be virgin or impregnated by oxides or alkaline
solutions, such as sodium carbonate (Na2CO3), potassium iodide (KI), sodium hydroxide
(NaOH) and potassium permanganate (KMnO4). The operation is usually under pressure
(6-8 bar), with swings when the sieve is fully loaded and needs replacement. Indeed, the
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Figure 2.5: Example of H2S removal by adsorption on activated carbon [44]

regeneration of the sorbent is the most significant drawback of this technology, which
to operate continuously needs at least two scrubbing columns to allow regeneration, as
shown in Figure 2.5. More recently, membrane technology is starting to be also applied
in this field, potentially easing the removal of the smaller pollutants residues [44], [56].

Biodesulfurization, the biological-mediated technique to remove sulfur compounds from
biogas, is a well-known and relatively cheap purification method. However, their applica-
tion is flexible, primarily due to a need for more knowledge in the fields. It is possible to
perform efficient purification (more than 95% of H2S removed) with bio trickling filters:
systems consisting of biomass adhered to packing materials, such as polymeric foams or
rings. Their development, related to microorganisms’ activity, strictly depends on oper-
ational parameters such as temperature and pH. Consequently, a full-scale application is
only sometimes viable and requires constant control to guarantee adequate performance.
In the family of biological methods for sulfide removal is also classified the oxidation by
sulfur-oxidizing bacteria (SOB) [55], [56]. Since this technology is strictly connected with
oxygenation, it will be discussed more in-depth in section 2.3.

2.3. Microaeration in Anaerobic Digestion

Microaeration, namely the injection of small amounts of air (oxygen) into an anaerobic
digester, is considered a highly efficient, simple, and cost-effective technique for removing
hydrogen sulfide from biogas. Due to a lack of standardization of the oxygen injec-
tion methodologies and definitions, the terminology is different among different literature
sources: micro-oxygenation, limited aeration, micro-aeration, and other synonyms com-
monly refer to the same concept. These differences in the nomenclature also lead to a
vague engineering definition of the process: the addition of oxygen can be one time for
a digester, intermittent, continuous, and eventually with differences in the dosage point.
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Figure 2.6: Different levels of oxygen injection define different aeration levels. Elaboration
from [54]

Some scientific reviews have tried to generalize the idea by giving a quantitative definition
of what should be identified as microaeration.

The most useful and practical approaches define it according to the proportion of oxygen
with some process parameters or to reactor oxidation-reduction potential (ORP) [54],
[57]. While the concept of the first definition is relatively simple, the more oxygen is
added, the more aerobic effects there will be; the definition of ORP needs a more detailed
discussion. Indeed, a ratio based on the flowrates is practicable only for continuous or
semi-continuous injection, considering conditions for microaeration when the amount of
oxygen added is lower than 1-1.5 LO2 L−1

feed. Figure 2.6 provides a semiquantitative
assessment of different possible aeration levels based on this parameter [54]. Even more
general can be the case of considering the oxygen added by comparing it to the reactor
volume. In this case, microaeration usually defines the addition of oxygen ranging from
0.005 to 5L O2/Lreactor/day).

A more standardized method could be related to the measurements of oxidation-reduction
potential. Indeed, ORP measures the propensity of an aqueous solution to accept or
donate electrons and therefore is frequently used to assess whether the environment in the
aqueous phase is oxidative (more positive values) or reductive (more negative values) with
respect to the standard hydrogen electrode (SHE). This method can thus be employed to
detect small changes in dissolved oxygen concentrations, which is critical to measure with
traditional methods due to shallow values. It is also possible to quantitatively describe
changes in the amount of oxygen present, thanks to the fact that ORP varies linearly
with the logarithmic of O2 concentration. In fact, during microaeration conditions, the
dissolved oxygen does not exceed the value of 0.1 mg/L.

To compare with the amount of dissolved oxygen (DO), it is possible to consider that the
ORP value of -50 mV corresponds to the detection limit of the DO probe at 0.1 mg/L, and
ORP values become more negative as DO reduces further. Consequently, microaerobic
conditions may be defined as an aqueous media with ORP value in the range of 0 to
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Figure 2.7: ORP (mV with SHE) of redox couples and various microorganisms partici-
pating in AD [57]

-300 mV with reference to SHE. As it is possible to see from Figure 2.7, every phase of
AD leads to a specific ORP value, allowing for easy monitoring of the process with a
simple measurement probe. Dosing air or oxygen to an anaerobic process elevates the
ORP to a more positive value, slowly decreasing with the consumption of injected O2 by
facultative bacteria. Globally, a wide range of values has been reported as microaeration,
probably since oxygen addition has not always been performed at the same process phase.
A good compromise for microaeration to optimize anaerobic digestion has been found in
the 230-260 mV SHE range.

2.3.1. Effects in the Anaerobic Digestion Process

As it is possible to imagine, adding oxygen to an anaerobic system can impact the overall
process, even in small quantities. A schematic view of those is presented in Figure 2.8
The presence of small amounts of DO can allow the co-existence of facultative and anaer-
obic bacteria, which will thus not be exposed to oxygen. Indeed, oxygen is helpful in
the hydrolysis phase by allowing the establishment of a more diverse microbial commu-
nity. Diverse microorganisms lead to an increase in the direct activity and the secretion
of more extracellular hydrolytic enzymes, eventually improving the hydrolysis of more
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Figure 2.8: Overview of the effects of oxygen in the AD process [58]

complex biomasses without an expensive pretreatment. The co-existence of obligate and
facultative anaerobes has beneficial effects throughout the process. Indeed, microaeration
has been shown to maintain constant pH via partial oxidation of VFAs by aerobic respira-
tion or selective oxidation of acetate via acetate-oxidizing bacteria syntrophic interaction
between facultative bacteria and hydrogenotrophic methanogens. In general, microaer-
ation helps stabilize the AD process, avoiding some of the shocks that may decrease
microbial functions. It also may improve the removal of some of the most recalcitrant
pollutants and substrates which would not be completely digested in complete anaerobic
conditions [57], [58]. Finally, it is essential to remark that air containing oxygen can form
flammable mixtures with biogas containing methane. However, when microaeration is
considered, the low oxygen concentration resulting does not fall inside the flammability
region, defined between the range of 5-15 % of methane in air [59].

Microaeration for sulfides removal

When sulfur compounds are present in the substrate, sulfate-reducing bacteria (SRB)
convert it to the toxic and corrosive hydrogen sulfide H2S, present also in the aqueous
phase in the dissolved form H2S/HS–. The end-product of their metabolism is one of many
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problems related to these families of microorganisms since they compete with methanogens
for the substrate. They usually grow on acetate and hydrogen and have kinetic rates
similar to or eventually faster than those of methanogens, thus reducing the overall biogas
yield.

Sulfides can then be treated with some of the methods present in section 2.2.1 or con-
verted to other compounds in the presence of oxygen. The most relevant sulfide removal
bioconversion is represented in reactions R4, R5, R6, respectively yielding to elemental
sulfur, sulfate, and thiosulfate. Under microaerobic conditions, the primary product is
elemental sulfur, while thiosulfate is more favored when chemical oxidation is favored with
respect to the biological pathway [54]. The formation of sulfur and sulfate can be con-
trolled by the amount of oxygen supplied. Theoretically, 0.5 mol O2/mol S2- is necessary
for the oxidation of sulfide to elemental sulfur (R4) [60]. These biological reactions are
carried out by the bacteria family of sulfur-oxidizing bacteria (SOB), belong to phylum
Proteobacteria with Thiobacillus, Halothiobacillus, Sulfuricurvum, and Acinetobacter as
the main genus. SOBs are chemolitrophs, using oxygen as the final electron acceptor and
sulfides as electron donors. Consequently, the addition of oxygen-enhanced SOB activity
leads to significant removal of H2S [54].

2HS– + O2 2 S0 + 2OH–

2HS– + 4O2 2 SO 2–
4 + 2H+

2HS– + 2O2 S2O
2–
3 + H2O

(R4)

(R5)

(R6)

The whole set of sulfur reactions is strictly dependent on one from the other, as seen
from figure 2.9. SOBs are generally attached to the reactor headspace walls or at the
gas-liquid interphase, thus preventing most oxygen from reaching the liquid phase. The
fact that most of the oxidative bacteria operate there is the reason why, in most cases,
oxygen is injected directly into the headspace, making the residence time in this region
the dominant criterion for H2S removal efficiency. Sometimes the liquid phase has also
been reported as an oxygen dosage point. However, hydrogen sulfide removal efficiency
from the gas was reduced in these cases. Indeed, a solution of this kind will be more
helpful when the main scope of microaeration is to stabilize the reactor or activate some
facultative microorganisms. When the purpose is sulfide removal, oxygen control may also
be referred to H2S concentration, and biogas flow [61]. In this case, a proportional-integral-
derivative (PID) controller may be applied, where the oxygen supply varies according to
the difference between measured H2S concentration and the fixed target. It is proved that
such an approach and its relations with biogas production can be a simple but effective
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Figure 2.9: Relationships between microbial communities in microaerobic conditions [57].

method for microaeration control when sulfide removal is the primary purpose. Reference
values are between 3.5 and 5 LO2 per m3 of biogas.

2.3.2. Current Limitations

A more detailed study of microaeration will be fundamental for its proper application at
a significant industrial level. Current limits involve a not fully exploited knowledge of
the microbiological reactions occurring and the influence oxygen presence can have on the
metabolic pathways of sulfide oxidation.

From a more process-oriented perspective, it is clear that a lack of mathematical models
representing such a process is undermining its applicability in many cases. This does
not allow for monitoring and controlling the process of microaeration, which is almost
always done following rule-of-thumb considerations. Indeed, while a few studies have
been conducted to consider the sulfur reactions inside the AD environment, more needs
to be done to consider the effects of small concentrations of oxygen, in particular related
to sulfide removal.
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Process modeling is a fundamental chemical engineering branch that evolved alongside
computer capabilities advances. Modeling is the mathematical representation of real-
world problems and industrial processes. This method enables the development and sim-
ulation of complex systems without actual experiments. The implications in the industry
have been enormous, allowing process operations to be performed and established in such
a way as to optimize their economic or technical output.

Anaerobic digestion systems are not an exception: the possibility of representing and
simulating their processes can allow better and optimized operations, fully exploiting
biomass potential. However, developing models for an adequate representation of AD has
always been, and in most cases remains, loaded with difficulties and complexities. Such
difficulty is mainly because AD systems are usually different from each other, both in terms
of operating conditions and, more importantly, in terms of substrates and microorganisms.
Different substrates lead to different kinetics, yields, and ways of growth or inhibitions
for organisms that work with them. Moreover, similar feedstocks may behave differently
if they are in different proportions or are treated in slightly different conditions.

Various approaches can be considered to produce models of AD processes. The most tradi-
tional is the one that aims to accurately represent all reactions occurring in the digester,
depicting the reactor as a white box (this definition follows the idea that the knowl-
edge of the process goes decreases on a black-white scale, where black-box defines pure
data-driven models and white box fully mechanistically ones, with grey models those in
between). Over time, it has become increasingly clear that a model capable of accurately
representing AD processes would have been highly complex, requiring many parameters,
equations, and computing power. Indeed, an adequate representation of each microbial
family participating in the digesting activity could be performed by considering an in-
creasing number of stages of the process and, consequently, more biochemical reactions.

Many models of this kind have been presented in the last years of the XX century. Most
of them are highly specific to the substrate on which they developed. As a result, the
need for general optimization and process development models emerged as a significant
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driver in AD engineering research. Among them, a general approach for the most com-
mon AD substrate, activated sludge, has been developed in the last years of the previous
century, resulting in Activated Sludge Models ASM1, ASM2, and ASM3. By considering
the substrate on a COD basis, these models laid the groundwork for the development of
the most advanced and, to the best of the author’s knowledge, most current AD model:
the Anaerobic Digestion Model No. 1. (ADM1) [62]. This model, provided in section
3.1.1, is regarded as the state-of-the-art in anaerobic digestion process modeling, describ-
ing a large set of reactions and currently, even though developed originally for wastewater
treatment, applicable to a wide range of substrates.[63]. ADM1 uses numerous param-
eters to generate a system representation that is as close to reality as feasible. Indeed,
its primary applications are in plant-wide simulations for design or optimization rather
than in control systems. For this, plant-wide simulations and particular and dedicated
improvements have been assessed over the years.

For the development of monitoring and control algorithms, there is a need to develop
models independent of the system’s phenomenological behavior. Ideally, such models
should not depend mainly on their parameters and should be able to describe any change
relevant to the dedicated control system in different situations [64], [65]. This outcome
can be achieved by grouping several parameters and different reactions into more general
families and working on global mass balances and model reactions. Such a procedure
results in the construction of hybrid and semi-mechanistic models capable of bridging the
gap between accuracy, complexity, stability, and adaptability. This approach aims to rep-
resent the process satisfactorily, without detailed knowledge of the influent characteristics
and thus with a reduced number of experimental data required [66], [67].

A third family of models has been developed in recent years thanks to the advancement in
machine learning and the data science field, the so-called data-driven models [66]. These
models are based on the assumption that no knowledge of the process is needed if there are
enough data to train artificial intelligence to interpret them correctly. A few applications
of this artificial neural network modeling AD process are present in the literature [68].
However, their discussion will not be carried on further in the present work, representing
an approach more applicable to energy system modeling [67].

3.1. Detailed Models

This section covers all of these models, aiming to describe all AD processes accurately
without aiming at the use of a reduced set of variables. Consequently, the number of
parameters and equations considered can be very high, according to the number of differ-
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ent carbohydrates, proteins, lipids, fatty acids, alcohols, and other compounds. In many
cases, complete parameter estimation and validation can be almost impractical. These
white-box models are the ones on which the researchers focus their attention first. Dy-
namical models of AD have been developed since the late 1960s and early 1970s with
the works of John F. Andrews, who also included the modeling end-product inhibition
to improve control of digester stability [69]–[71]. The first models tried to represent the
basic steps of anaerobic digestion, following the actual knowledge of microbial kinetics.
First attempts provided a prediction of biogas production following the rate-limiting re-
action, namely the methanogenesis [70]. Subsequently, such models have been developed
by adding the second primary reaction, which has to be considered: the production of
acetate from other VFAs with the acidogenesis reaction. These reactions have been tradi-
tionally modeled following the Monod-type equation, which considers a growth limited by
one single substrate [72]. This empirical equation (Eqn. 3.1 represents the actual growth
rate of a microorganism µ [d−1] according to its maximum growth rate (µmax [d

−1], the
actual concentration of limiting substrate [S]([g L−1] and a parameter named half-velocity
constant [KS] [g L

−1]. The latter indicates the value of the substrate for which the actual
growth is half the maximum.

µ = µmax
[S]

[S] +KS

(3.1)

This reaction gave positive results, but it has been noted that methanogenesis also showed
inhibition from VFA concentration, thus leading to the necessity of a new definition for this
reaction step. This has been done following the Haldane reaction mechanism (Eqn. 3.2),
where [V FA] [g L−1] is the concentration of VFA and [KI] [g L−1] its inhibitory constant
[70].

µ = µmax
[S]

1 + KS

[S]
+ [V FA]

KI

(3.2)

More reactions and dependencies were incorporated during the next two decades to con-
struct sophisticated anaerobic digestion models. Those trying to add the phase of organics
solubilization to the ones of acidogenesis and methanogenesis have the largest effect. In-
deed, to improve model prediction, it has been necessary to act in two ways. To begin,
improve the modeling of soluble organics digestion by adding the kinetics of more aci-
dogenic and methanogenic reactions and enhancing the existing ones [73]. On the other
hand, a significant advancement is considering how soluble molecules are formed from
solid substrates, resulting in good modeling of the hydrolytic reactions. These reactions
are influenced by both the concentration of substrate and the concentration of acidogenic
bacteria, which secrete the necessary hydrolytic enzymes. A detailed representation will
thus require an advanced kinetic mechanism, which should also consider the different
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natures of the substances to be hydrolyzed. The first and easiest approach is to use
a first-order kinetic equation (Eqn. 3.3. There, ρhyd [g L−1 d−1] is the hydrolysis rate;
khyd [d

−1] the kinetic constant; [SP ] [g L
−1] the concentration of solid particulate), which

is, however, an apparent description of many more different sub-reactions. Indeed, it has
been demonstrated that its kinetic hydrolyzed khyd largely varies by considering differ-
ent substrates [74]. As a result, this reaction has applicability in lumped models, while
various approaches have been investigated for mechanistic models. The most relevant
are surface-based kinetics, which can consider enzyme attachment to solids and, eventu-
ally, shape-related interactions, or multiple-step reactions, primarily following a dual-step
approach.[75], [76].

ρhyd = khyd · [SP ] (3.3)

Further relevant additions in developing detailed models include pH definitions and their
relationships, as well as the effects due to the presence of minor compounds inside the
fermentation environment. Indeed, certain substances can cause substantial inhibitions
and limitations in the AD process. These can include molecules naturally present in
feedstocks, such as ammonia, nitrates, and sulfur-derived compounds, as well as some
non-indigenous molecules that can be considered contaminants in a stricter sense, such
as metals or toxic organic compounds. Consequently, more models look into how to ade-
quately describe the reciprocal interaction between all the substrates of AD, in particular
by having a deeper looking into inhibition effects [77]–[79].

By the late 1990s, a consistent body of literature was dedicated to AD models due to all
of the investigations. Still, there needed to be more generality and rigorous substrate-
specificity, resulting in a lack of plant and industrial application. As previously antic-
ipated, a group of researchers working as a task group sponsored by the International
Wastewater Association (IWA) began designing a general anaerobic digestion model, giv-
ing rise to the ADM1.

3.1.1. ADM1

During the 8th World Congress on Anaerobic Digestion in 1997, the International Wastew-
ater Association (IWA) defined the need to develop and deepen the construction of math-
ematical representations of AD, proposing a generalized model. Consequently, it proposed
a dedicated board to tackle that challenge: the IWA Task Group for Mathematical mod-
eling of Anaerobic Digestion Processes. The outcome of this challenge was visible in 2002
when the Anaerobic Digestion Model No. 1 (ADM1) was published [62].
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Variable Unit of measure Description

XC kgCOD m−3 Composites

Xpr kgCOD m−3 Proteins

Xch kgCOD m−3 Carbohydrates

Xli kgCOD m−3 Lipids

XI kgCOD m−3 Particulate Inerts

SI kgCOD m−3 Soluble Inerts

Ssu kgCOD m−3 Monosaccharides

Saa kgCOD m−3 Amino acids

Sfa kgCOD m−3 Total LCFA

Sva kgCOD m−3 Valerate

Sbu kgCOD m−3 Butyrate

Spro kgCOD m−3 Propionate

Sac kgCOD m−3 Acetate

Sh2 kgCOD m−3 Hydrogen

Sch4 kgCOD m−3 Methane

SIC mol m−3 Inorganic Carbon

SIN mol m−3 Inorganic Nitrogen

Xsu kgCOD m−3 Sugar degraders

Xaa kgCOD m−3 Amino acids degraders

Xfa kgCOD m−3 LCFA degraders

Xc4 kgCOD m−3 Valerate and butyrate degraders

Xpro kgCOD m−3 Propionate degraders

Xac kgCOD m−3 Acetate degraders

Xh2 kgCOD m−3 Hydrogen degraders

Scat mol m−3 Cations

San mol m−3 Anions

Table 3.1: ADM1 state variable and their characteristics

The primary goal of this model was to provide a usable foundation for practical and
industrial applications, thereby overcoming the existence of primarily substrate-specific
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formulations. In fact, by starting with an approach inspired by the wastewater ASM,
the ADM1 is intended as a valuable starting point for many improvements and different
substrates. The model structure comprises biological and physicochemical conversion
processes and could be implemented as a differential algebraic equations (DAEs) system
or as a system of differential equations (DE). According to the execution method selected,
it consists of 26 dynamic state variables and eight implicit algebraic variables, which, in
the case of the DE implementation, can be calculated together with the other dynamic
ones. An overview of the 26 relevant process variables of ADM1 is presented in Table 3.1
[62].

ADM1 model was developed on a shared COD basis for feedstock and biomass. More-
over, the influent substrate consists of a portion of inert and a portion of the degradable
substance. This method maximizes the range of applicability while preserving standard
reaction parameters and identifying the distinct steps of the process based on the COD
flux along them. Indeed, while considering the total influent COD, it is vital to remember
that not all of it can participate in AD and produce valuable products, with a portion, in
some cases significant, serving as an inert and so being excluded. Figure 3.1 provides an
overview, partially simplified, of the different steps considered and the possible reactive
pathways that the COD flux can follow in ADM1. Many intermediate products are formed

Figure 3.1: Scheme of COD flux and reactions represented by ADM1 model [80].

in the model’s biochemical stages, produced in five major phases that run in succession
and, in peculiar cases, with parallel reactions. Microorganisms only control the three
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strictly biological steps, namely acidogenesis, acetogenesis, and methanogenesis. On the
other hand, Extracellular stages are represented by two partially non-biologically regu-
lated substrate solubilization reactions: disintegration and extracellular hydrolysis. This
division comes from the description of influent composite as a homogeneous substrate,
which can produce the three main biochemical polymers (i.e., carbohydrates, proteins,
and lipids) with disintegration-hydrolysis sequential steps. Following the previously de-
scribed approach, in this case, the representation of this step has been assumed to follow
a first-order kinetic [81], [82]. The subsequent phases resemble all the microbial-assessed
phases, lumping similar substrates (such as sugar, represented as glucose only) to pro-
vide a model with a reasonable number of parameters. However, the number of reactions
considered is still relevant, allowing us to define ADM1 as a detailed model. A detailed
description of all the assumptions, the reaction considered, and the reasons for those
choices can be found in the book report dispensed to present the ADM1 [83]. Some
general concerns that are pertinent to the current work are listed below. Monod-type ki-
netics account for substrate uptakes in intracellular biochemical processes. As illustrated
in equation 3.4, limiting effects are introduced for each inhibitory factor with appropriate
functions. There, the first part resembles the inhibited Monod equation for the rate of
a −j reaction, in terms of Monod constant (kM [g L−1 d−1]. The inhibitory terms are
represented by the I1...n terms, each representing an effect on the kinetics of that reaction
and consequently appropriately defined for each compound.

ρj = km · Sj

KS,j + Sj

Xj · I1 · I2 . . . In (3.4)

Each microbiological group for which the response rate is computed has its inhibition
function. For example, pH inhibition affects all groups, whereas hydrogen affects acido-
gens. Most functions are derived from empirical or semi-empirical laws, with parameters
estimated from literature and experimental studies.

Along with the biochemical processes, major physicochemical ones are also represented
simultaneously due to their impact on the system. These processes include interphase or
intraphase interactions, such as liquid/gas transport, ionic dissociations, and acid-base
equations. These transformations are essential for system design because, as expected,
they directly impact critical process variables across all gas flows and transfer rates. Fur-
thermore, as illustrated in figure 3.2, most biochemical conversions have direct interaction
and link with physicochemical conversions. Notably, these later reactions are modeled as
reversible and dependent on equilibrium constants, whereas biochemical reactions are de-
fined as mono-directional.
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Figure 3.2: Representation of biochemical (vertical axis) and physicochemical (horizontal
axis) steps of ADM1 [83].

Since its first release, ADM1 has been used and thoroughly tested in various applications
and simulations. Its validity has been demonstrated in a wide range of domains, from the
ones for which it was created to more complex ones, such as agro-derived waste digestion
and co-digestion scenarios [84], [85]. In rare cases, especially when working with full-scale
applications, ADM1 may need to obtain the actual values of the process variable. How-
ever, broad trends have always been correctly anticipated, even in these scenarios. As
anticipated by the authors, the main critique was the lack of precise characterization of
the influent COD and the validity of kinetic parameters. This feature is an inherent char-
acteristic of the detailed models, of which ADM1 is the state-of-the-art representation in
the AD field [86], [87]. Furthermore, the stoichiometry of the processes chosen to identify
ADM1 and its COD link is solely based on catabolic metabolism. However, anabolic re-
sponses may substantially influence under substrate-limiting conditions, opening the view
to criticalities in these circumstances [88].

In conclusion, IWA, successfully with ADM1, reached its scope of providing an adequate
general AD model for potential use in industrial design and optimization applications.
Moreover, the ADM1 structure provides a solid basis for many further developments
and improvements, thus defining, after some decades of lack of standards, a common
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framework for AD modeling [87].

3.1.2. ADM1-based Models

ADM1 was designed to serve as a standard structure for AD modeling at the industrial
level. As a result, it did not aim to be a perfect model capable of accurately describing
each of the innumerable possibilities that can be encountered when analyzing AD systems
worldwide. The main goal of the IWA task group was to establish and define a common
working ground, which could have aided researchers in defining more accurate case-by-
case models by referring to the most general but accurate one. In this regard, ADM1
has pioneered numerous developments and enhancements over the years. Below is a
description of those deemed most relevant for the current work.

Plant-wide simulations

Due to its inherent origin from aspects mainly regarding wastewater digestion modeling,
ADM1 has been first applied to such systems. Indeed, its applicability in plant-wide
simulations could have broadened its utilization at the industrial level. Consequently, it
has been tested for such a system since its release. In practice, wastewater treatment
plants (WWTP) and all biogas-producing facilities are made up of numerous intercon-
nected units, of which the AD reactor is just a relevant one. The COST/IWA BSM1
model (Benchmark Simulation Model No. 1) was made available in 2001 by IWA and
the European Cooperation for Science and Technology association [89]. Its goal has been
to develop a platform for benchmarking control strategies for activated sludge systems
on a plant-wide basis. Indeed, a broad monitoring control of all the units included in
a plant is fundamental and much more effective than one based on individual processes.
An extension of the previous benchmark has also been made available to improve the
challenges of these topics, including a larger plant layout and more rigorous evaluation
criteria, and the possibility to assess dynamic inputs. This extension allows a new stable
and rigorous benchmark model for plant-wide simulations of WWTP, presented as the
Benchmark Simulation Model No. 2 (BSM2) [90]. Within BSM2, ADM1 took place as
the reference model for anaerobic digestion, and aspects of its implementation to facilitate
stability and reduce its stiffness have been extensively analyzed [91].

Oxygen Influence

Typically, AD models do not investigate oxygen effects in depth. The conventional view
that oxygen is toxic for AD processes is not entirely correct; in some cases, a proper
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dosage of this compound can also result in beneficial results [57], [92]. Up to now, the most
developed model able to represent oxygen effects in the AD environment is represented by
the ADM1-Ox model [93], [94]. This model completely follows the logic behind the ADM1
in terms of COD flow, kinetic expressions, and other assumptions but adds one extra
variable standing for dissolved oxygen. Moreover, it adds three new processes to account
for aerobic uptakes by the three acidogenic groups. As said, the kinetic expressions recall
the traditional ADM1, presenting a Monod saturation expression for the aerobic processes.
An example is provided in equation 3.5, where the terms are those already described for
ADM1, declined for the aerobic reaction. A further term is added to the factorial of
inhibition functions to produce the Ij inhibitory term for all the reactions, according to
equation 3.6 [93].

ρj,aer = km,aer ·
Sj,aer

KS,j,aer + Sj,aer

SO2

KS,O2 + SO2

Xj · Ij (3.5)

IO2 =
KO2

KO2 + SO2

(3.6)

New parameters, such as yield and saturation coefficients, must be adopted and esti-
mated. The other significant addition concerns hydrolysis and is required due to oxygen’s
theoretical effect on that process. Indeed, increased rate constants could be used to sim-
ulate a faster hydrolysis process, but the authors chose a more mechanistic approach. By
assuming that hydrolysis is catalyzed by extracellular enzymes secreted by the respective
acidogenic biomass groups, the new reactions are modified to consider the concentration
of these families.

This model successfully predicted the behavior of an aerated digester in the lab, but it
has yet to be applied to larger plants [93]. It also included a quantitative description of
the oxygenation effects, which may inspire future research. Indeed, it demonstrated that
aeration, particularly if intermittent and limited in some cases, can benefit the global
system by improving stability and, eventually, overall methane yield. [94].

Sulfur Influence

Sulfate reduction processes are an essential feature of anaerobic digestion systems. The
original ADM1, however, did not consider any of those. This feature makes the model
unsuitable for applications with relevant sulfur-based compounds, such as vinasses or
cane-molasses [49]. In these cases, the influent sulfates undergo reduction processes to
produce an excessive amount of sulfides in the gas and reduce methane yield in a un
unpredicted way.
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Consequently, sulfate reduction (SR) models have been developed over the years. Effec-
tive integration of the ADM1 model was done in 2003 with an extended version of ADM1
[95] by including some concepts and modeling assumptions previously assessed [79]. The
major highlight of this model is that it models the sulfate reduction process by adding four
new reactions, where the electron donor is represented by butyrate, propionate, acetate,
and hydrogen, respectively. Consequently, as sulfate-reducing bacteria, four new groups
of microorganisms must also be included. The kinetics of the process are represented by
following the ADM1 principle, with two-substrates Monod-type kinetics (Equation 3.7.
Also, in this case, an inhibitory function Isulfide is added to the global inhibitory func-
tion Ij to account for an excessive amount of sulfides which limit the microbe growths
(Equation 3.8) [95].

ρj = km · Sj

KS + Sj

SSO4

KS,SO4 + SSO4

Xj · Ij (3.7)

Isulfide = 1− H2S
KIsulfide

(3.8)

A similar model, but with different assumptions and applied in cases with industrially
applicable conditions of sulfur loading, has also been developed by other researchers [96].
This latter model is built on the same basis as ADM1, thus being depicted as another
extended version accounting for sulfate reduction. This version includes only three new
SRB families, not considering the effects of sulfate reduction on butyrate as a substrate.
Moreover, it includes acid-base equilibrium reactions and a more detailed parameters
calibration and sensitivity analysis. As a result, it has been tested against industrial
sulfate-rich wastewater. The model was able to predict a correct value for the most
relevant process variable, including methane production decrease when sulfide content
becomes significant. A relevant addition to this model is the inclusion of the gas phase
transfer, allowing us to assess the concentration of contaminant H2S in the biogas.

According to the literature available, these two examples are the most relevant ones in the
field of modeling sulfate reduction in terms of the quality of their results. Other models
have been designed to represent sulfur-derived compounds’ impacts in AD correctly. In
fact, by pairing different models’ outcomes and experimental data, it has been proved
that a balance between complexity and simplicity may be helpful when deriving models
for sulfate processes [97]. Indeed, while detailed representations of SR processes for all
microbial families can be helpful in some cases, such a complication is only sometimes
required. Some conclusions can be drawn by considering the effect of each microbial
activity separately. Accounting for hydrogen leads to poor performances when considering
processes based on a single substrate, while acetate produces some errors. If the model is
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built on pairs of substrates instead, it is possible to obtain good results even when only
acetate and hydrogen are considered. As a result, employing more SRB families may only
sometimes be necessary, potentially reducing the number of equations required to predict
the phenomenon in an acceptable manner [97].

Sulfate Reduction and Oxidation Models

As introduced before, microaeration can effectively reduce the amount of hydrogen sulfide
in produced biogas. However, there needs to be more approachability to such technology
from an engineering perspective, particularly regarding its modeling and control [54], [55].
This gap in the literature is because, as previously stated, sulfur reduction and sulfide
oxidation, or oxygen effects, have typically been treated as separate concepts. However,
they are inextricably linked, and to produce effective models of microaeration and its
effects, they must be modeled concurrently.

These considerations led to the development of a new ADM1-based model, accounting for
both processes of reduction and oxidation of sulfur-derived components, named ADM1-
S/O [98], [99]. This model stands on the basis defined by ADM1 and by the previous
works on both sulfate reduction (SR) and sulfides oxidation (SO) kinetics [95], [100],
but incorporating them in a singular model able to effectively represent the impacts of
microaeration. One relevant model represented both SR and SO as dependent processes,
with valid results for a lab-scale system [101]. However, it needed more connection with
all the other process variables, and such a gap was still waiting to be filled. According to
the published literature results, ADM1-S/O includes four reactions for sulfate reduction
and one for sulfide oxidation, as well as the respective liquid-gas transfer rates and the
correspondingly modified mass balances. The model is fully described in the dedicated
report, where it has been tested and applied to a UASB reactor. The model has also been
effectively used to validate assumptions about microaeration conditions quantitatively,
and product distribution [98].

ADM1-S/O contains both equations, with a Monod-kinetic scheme for the biochemical
and a power law relation for the oxidative chemical scheme. It demonstrated a relation
between pure chemical (anoxic) and biochemical oxidation of sulfides and the latter’s
benefits. The model proved that in the presence of oxygen, sulfides are converted into
their oxidative state by both pathways. The microbe-mediated one accounts for more
than 60% of the total and can be up to 2.5 times faster (in the experimental conditions
29.5 mg SL−1d−1 for biochemical versus 12 mg SL−1d−1 for chemical oxidation) obtaining
values similar to those already present in the literature. Accordingly, it also simulated
that in microaeration conditions, elemental sulfur is the main product of oxidation, and
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thiosulfate presence is almost always negligible, especially considering the biochemical
reaction. [99], [102].

Another model in the literature with potential industrial applications is the Anaerobic
Digestion Enhancement (ADE), which aims to be an upgraded version of ADM1 and
a digital twin of an AD plant [103]. It uses generalized parameters to represent the
kinetics of H2S production and the effects of O2 injection. This approach may enable the
definition of optimal aeration conditions for AD, with flexibility for industrial conditions
of co-digestion scenarios. This model may allow for the definition of optimal aeration
conditions for AD, with flexibility for industrial co-digestion scenarios. Its stiffness and
complexity, however, remain significant for its effective use in real-time control systems.

3.2. Lumped Models

Detailed models are a powerful tool in many situations, but due to their intrinsic complex-
ity are only sometimes viable tools. Such mechanistically inspired models could indeed
have many benefits and potentialities, but their requirements for parameter identification
and lack of flexibility make them challenging to use for control purposes [65]. Conse-
quently is helpful to reduce models’ complexity by deriving more simple expressions and
variables to facilitate practical applications. It has been proved that only some of the
reactions and intermediates of AD have the same relative importance, and as a result, it
is possible to remove or lump some of them [104]. Typically, these lumped variables (i.e.,
variables that represent a combination of different, eventually similar, components) are
derived by working on global reactor mass balances and extrapolating the desired reaction
from them.

In the literature, it is possible to find such lumped models, which are direct reductions of
ADM1 [105] or others that are lumped by following the biochemical and mechanistic char-
acteristics of the systems [65], [106]. This latter category has been chosen as the starting
point of the present work. In particular, the choice has fallen on the AMOCO model[106].
This model founds extensive applicability in different conditions, especially for control-
oriented simulations, and it is considered the most critical lumped model regarding AD
developed so far [66], [67], [107], [108]. The following section will thus cover the AMOCO
model’s description and development, which, according to the authors’ knowledge, is the
most relevant.
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3.2.1. AM2: AMOCO Model

In 2001, a model was developed within the AMOCO - FAIR European program’s frame-
work to be an easily identifiable model for control purposes in anaerobic digestion[106].
This model, lately named AMOCO or, in a few cases, AM2 (Anaerobic digestion Model
No.2) [108], includes two bacterial populations, namely the acidogenic (X1) and the
methanogenic (X2) microorganisms, and the two respective general reactions of acido-
genesis from a solubilized substrate (R8) and of methanogenesis (R8), considering acetate
as a reference species standing for all the VFAs.

k1 S1 X1 + k2 S2 + k4 O2

k3 S2 X2 + k5 CO2 + k6 CH4

(R7)

(R8)

For both reactions, the individual rate is given by a common kinetic relation, accounting
for both a specific growth rate (µi [d

−1]) and for the species concentration Xi [g L
−1], as

shown in equation 3.9, where the reaction rate is ri [g L
−1].

ri = µiXi (3.9)

The specific growth rates are obtained with Monod and Haldane expressions for acido-
genic and methanogenic reactions, respectively, for the reasons explained in section 3.1.
Bacterial biomass is measured in volatile solids (VS), which is the most commonly used
organic matter content quantification in environmental engineering. For the same reasons
why ADM1 developers made that choice defined by ADM1, COD (chemical oxygen de-
mand) has been chosen as the unit of measure for the organic substrate because it reflects
the chemical energy content that is made available for the growth of X1 and X2. As a
result, S1 is defined in terms of [g COD L−1]; X1 and X2 as [g V S L−1]; VFA, alkalinity
(Z), inorganic carbon (C), bicarbonate(B), carbon dioxide in solution (CO2) , and total
alkalinity (Z) are described as molar concentrations in [mmol L−1].

The model results in a system of six differential equations derived from a mass-balance
approach (Equations 3.10 - 3.15). The other variables, particularly the gas flows (qC for
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carbon dioxide; qM for methane), are derived by simple algebraic equations.

dX1

dt
= (µ1 − αD)X1

dX2

dt
= (µ2 − αD)X2

dZ

dt
= D(Zin − Z)

dS1

dt
= D(S1,in − S1)− k1µ1X1

dS2

dt
= D(S2,in − S2) + k2µ1X1 − k3µ2X2

dC

dt
= D(Cin − C)− qC + k4µ1X1 + k5µ2X2

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

The gaseous flow rates are calculated assuming no methane is dissolved in the liquid
phase. Consequently, the amount produced by the methanogenesis reaction entirely goes
out from the digester (Equation 3.16). Conversely, for CO2, its dissolved amount in the
liquid must also be accounted for. Assuming that equilibrium is reached between liquid
and gaseous phase, and it follows Henry’s equation (kLa[d−1];KH = 16[mmol L−1 atm−1],
the outlet flowrate is computed accordingly (Equation 3.17).

qM = k6µ2X2

qC = kLa(CO2 − KHPC)

(3.16)

(3.17)

In the dedicated reference, it is possible to find a complete description of the model
variables, assumptions, and equations [106]. However, the appendix is provided with a
brief recap of those.

The identifiability of a lumped model’s parameters determines its reliability, robustness,
and, thus, applicability. Indeed, the AMOCO model has its identification procedure based
on linear regressions on steady-state data and influent characteristics of the process. This
procedure allows the estimation of the kinetic parameters for the biomass, the gas-liquid
transfer coefficient, and the six yield coefficients ki. The lasts are obtained with a two-
step approach, first obtaining four ratios and, subsequently, the single values. The reason
for this approach is that usually, no data about biomass concentration are assumed to
be available. Consequently, the second step uses the total suspended solids’ data and
a parameter accounting for the ratio of acidogens and total biomass. A more detailed
description of the parameters identification is given in section 4.

The model validation by the authors showed a good representation of the steady state and
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its dynamic predictions in various operating conditions. Some discrepancies are present
in the pH, inorganic carbon, and alkalinity trends, most likely due to a need for more
information about their influent value. [106]. Moreover, reports of its usage are present
in the literature, both in terms of a dynamic simulation model and as control algorithms’
starting point [109]–[111].

3.2.2. AM2HN

The primary limits of the original AM2 model lie in its assumption of starting from a fully
hydrolyzed substrate, as well as a poor description of the variables related to inorganic
carbon during the simulation. Consequently, two relevant improvements of the AMOCO
structure are presented in this section, one accounting for the nitrogen effects (AM2N)
and one for the hydrolysis stage (AM2HN). Since those two upgrades are one consequence
of the other, it will just be described as the final result, named AM2HN [112], [113].

Biomass Decay Term

The first modification regards the mass balance equation of the two biomasses (3.10, 3.11),
which, in the case of long-term simulations with high retention times, fail in predicting the
values of the variables. This result is a consequence that in the original model, no terms
describing the cells’ death are present. A new version of these equations is proposed,
stating that the decay terms account for a constant percentage of the maximum growth
rate [112]. The resulting equations (3.18, 3.19) contain the new terms ki = 0.1·µi,max[d

−1],
stating that the decay term is given by the 10% of the individual µmax

dX1

dt
= (µ1 − αD − kd,1)X1

dX2

dt
= (µ2 − αD − kd,2)X2

(3.18)

(3.19)

The addition of this term, which seems to be nothing else than a new addendum in the
differential equations, has more relevant implications. This term modifies the steady-
state expression for the two biomass terms, forcing a non-linear procedure for the kinetic
parameters identification.

Nitrogen Role

AMOCO defines alkalinity as a non-reactive species, accounting for the sum of dissociated
acids in the liquid phase. These are represented by VFAs and bicarbonate, while nitrogen
contribution is neglected. However, this can lead to misleading results since free ammonia
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strongly affects bicarbonate concentration. Moreover, ammonium ions are not constant
throughout the process since they derive from biochemical reactions occurring in the
system, above all, protein hydrolysis.

AM2 has consequently been modified to account for reactive nitrogen species N , account-
ing for its contents within substrate S1, NS,1, and for those contained in the biomass,
Nbac. The first varies according to the substrate consumption, whereas the second term
depends on the growth rate of the biomass. The new variable, dynamically described by
its equation, be grouped to the original alkalinity (3.12 to have a new definition of Z given
by equation 3.20.

dZ

dt
= D(Zin − Z) + (k1NS1 −Nbac)µ1X1 −Nbacµ2X2+

+ kd,1Nbacµ1,maxX1 + kd,2Nbacµ2,maxX2

(3.20)

This equation includes nitrogen dynamics and alkalinity by keeping the same number of
state variables and differential equations. The results show that the precision regarding
all the variables well estimated by the original AM2 is still the same. At the same time,
relevant improvements are obtained in the dynamic description of the variable related to
inorganic carbon. As a result, the model becomes more precise with the same level of
complexity.

Hydrolysis Inclusion

To overcome the second major limitation of the AM2/AMOCO model lies in seeing the
substrate as entirely soluble. This approach can be an applicable limit since it has been
recognized that, in most cases, particulate hydrolysis is the rate-determining step of the
whole process [76]. Including such a mechanism widens the model’s range of applicability,
allowing for a better description of the substrate conversion in many real scenarios.

The second improvement of AM2, derived from the AM2N, is the AM2HN, which includes
the hydrolysis of particulate matter [113]. Indeed, this is done by adding a new state
variable XT [gCOD L−1], which states for all the hydrolyzable mixture which can be
converted to soluble substances, according to the model reaction R9.

XT S1 (R9)

To close the system, consequently, there is the need to add one differential equation
describing the particulate substrate mass balance and to modify accordingly the one
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describing S1, which has to account for the product of the hydrolysis reaction (3.13).
The results are given as follows (3.21,3.22) where, analogously as the ADM1, the reaction
rate is expressed by a first-order kinetic of the type rhyd = khydXT , also defining a new
parameter to be identified.

dXT

dt
= D(XT,in −XT )− khydXT

dS1

dt
= D(S1,in − S1 − k1µ1X1 + khydXT

(3.21)

(3.22)

The overall AM2HN model has been assessed in its dynamic comparisons against ADM1
results in terms of dimensionless variables y ∗ (t) (i.e., y ∗ (t) = y(t)/y0, as it was for
AM2N) to represent its potentialities in control systems. The good results regarding
inorganic carbon species already discussed in the previous section are still the same for
the new variable. Additionally, there has been a remarkable improvement of the S1

dynamic which now better represents the response at a step-wise input of a first-order
system. Also, other simulations with reliable influent deviations and different feedstock
characteristics almost perfectly reproduce the adimensional gas flows, making this model
a promising tool for control systems in AD [108], [113].
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Procedure

The most crucial step in creating a mathematical model is parameter identification. Each
model requires parameters, typically estimated from available experimental data, to rep-
resent them and ensure their applicability adequately. The model’s realism and accuracy
will be determined because any mathematical representation can be good if it relies on
a good fit with experimental data. Indeed, the model must reflect reality, not the other
way around.

4.1. AM2 and AM2HN Model Calibration

Robust parameter calibration is essential, particularly for these models, which are in-
tended to be used in various industrial contexts. Since this is the ultimate purpose of
lumped models, of which AM2/AMOCO and its derivatives are part, extensive attention
has been paid to assessing the calibration’s quality. This section will give an overview
of how the parameters of the two models presented before are given. Please refer to the
dedicated reference for a complete description of everything which may be omitted [106],
[113].

4.1.1. AM2 Identification

This model has thirteen parameters to be identified from experimental data. These can be
divided into three groups, including six kinetic parameters (µ1,max, KS1,mu2,max, KS2, KI2,

α); one interphase transfer coefficient (kLa); and six yield coefficients (k1−6). The descrip-
tion of all the mentioned parameters had already been given in the previous, except for
the parameter α. Indeed, this specification refers to the fraction of the biomass in the
liquid phase, and it is used to represent the reactor design mathematically simply: its
values are between 0 and 1, where α = 0 stands for an ideal fixed-bed reactor and α = 1

for an ideal CSTR.
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All the parameters are estimated according to steady-state and influent data at different
dilution rates D, deriving the asymptotic expressions for the differential equations 3.10-
3.15 and see how this fit with the data by linear regressions methods. Kinetic parameters
are calculated from the equations regarding their growth rates and the substrates S1

and S2, which dynamics and equilibrium are, in fact, directly affected by the microbial
kinetics. The liquid-gas transfer coefficient, calculated from the assumptions only for
CO2, its value is estimated from carbon dioxide outlet molar flow (3.17). The procedure
is slightly more complex for the yield coefficients and is carried out following a two-step
approach. The authors of the AM2/AMOCO model, assuming that measures of biomass
quantities are commonly not easily obtained, derive a more simplistic approach to finalize
the parameter identification. Firstly, four ratios of the six coefficients are estimated by
manipulations of the gas flow equations (3.16, 3.17), and only afterward the single values
are obtained. Indeed, it has been demonstrated that these values are only needed when
assessing the biomasses’ quantities. Consequently, measurements related to those are
required to determine individual values. The frequently measured value of VSS is used
to assess the total biomass quantity (X1 + X2). The concentrations of the individual
families are subsequently computed with the ratio ν between acidogenic and methanogenic
bacteria, estimated from literature sources and exploited as shown in equation 4.1. This
equation, further manipulated and adjusted to the available quantities, will provide the
value of k1 and, afterward, k3. These two individual figures and the four ratios will provide
all the six yield coefficients required.

ν = X1/(X1 +X2) (4.1)

This procedure shows how it can be possible to identify practical values for the parameters
of the developed model from industrially available measurements. However, some of these
parameters show quite a high standard deviation, particularly those related to kinetic
expressions, since deriving from rough approximations of the actual rates.

4.1.2. AM2HN Identification

This section covers the modified identification procedure described for AM2HN, which
basis has been previously set by the AM2N. Since this is the model from which the present
work started, much detail will be provided. Adding new terms leads to an increase in the
number of parameters to be estimated. Moreover, AM2HN changes the source of its data
to measurements based on the output of ADM1 simulations. This new approach has
been made possible by the advancements in process modeling (in 2001, when the original
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AM2 was released, the ADM1 was still in the embryonal phase) discussed, opening the
possibility of direct comparisons between the variables. AM2HN also converts ADM1 and
AM2 variables used in the present work.

The AM2HN model requires the evaluation of 15 parameters specific to the feedstock
and reactor configuration. These are represented by: 6 yield coefficients (k1−6 [−]); the
mass transfer coefficient (kLa [d−1]); the hydrolysis kinetic coefficient (khyd [d−1]); two
biomass maximum growth rates (µ1−2,max [d

−1]); the VFA inhibition coefficient for VFAs
(KI2 [kg m

−3]); two semi-saturation constants (KS,1−2 [kg m
−3]) and two biomass decay

kinetic coefficients (kd,1−2 [d
−1]). Immediately, by comparing these with the ones of AM2,

it is possible to see that α is not identified anymore. This decision is taken to simplify the
subsequent step by considering that this is an operational parameter and, thus, is com-
monly known or can be easily estimated by the reactor design and conditions. Following
the approach of the AMOCO model also, in this case, the identification is carried out
from the steady state conditions of the material balances at different dilution rates. The
different conditions are obtained by varying this parameter in different ADM1 simulations
instead of having different real scenarios. This solution can ease the way by which data
are collected, providing quick access to a variety of different possible conditions. Such an
approach relies on the fact that ADM1 simulations must be reliable, at least regarding
their steady-state conditions.

Starting the discussion from the estimation of kinetic coefficients, adding the decay terms
directly impacts the direct linearization of the expressions. Indeed, the mass balances
used, related to S1 (Equation 4.2) and S2 (Equation 4.3) cannot be adequately solved,
both being underspecified by one parameter. The index ss specifies that the actual
variable value is at steady-state conditions.

S1,ss =
µ1,max − kd,1
αD(1 +KS,1)

S1,ss −KS,1 · kd,1

S2,ss = KS,2
kd,2 + αD

µ2,max − αD − kd,2
+

S2
2,ss

KI2

kd,2 + αD

µ2,max − αD − kd,2

(4.2)

(4.3)

To try to reduce the system and solve it, it is necessary to fix the value of one parameter
or find a third equation. In AM2HN this has been accomplished by defining the value
of kd,1, fixed as the 10% of the respective µi,max (0.1µi,max). The equations can so be
rewritten as follows:
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S1,ss =
1

µ1,max

αDS1,ss

0.9
+

KS,1

µ1,max

αD

0.9
+ 0.11 ·KS,1

S2,ss =
1

µ2,max

αDS2,ss

0.9
+

KS,2

µ2,max

αD

0.9
+

1

µ2,maxKI2

αDS2
2,ss

0.9

+
0.11

KI2

S2
2,ss + 0.11 ·KS,1

(4.4)

(4.5)

In this way, equation 4.4 becomes now a multi-variable-linear expression, while the second
(4.4) retains its nonlinearity and thus requires specific non-linear algorithms to regress
the value of its parameters.

Expression 4.4 contains two angular coefficients to be determined. These are represented
by the reciprocal of the maximum specific growth rate of the first biomass µ1,max and the
ratio between the former and the relative semi-saturation constant (KS1). The intercept
represents the semi-saturation constant itself. The independent variables are the dilution
rate (D) and the concentration of substrate S1. The equation 4.5 has four angular coeffi-
cients. The first two are the correspondent of the previous equation for biomass two. The
third is represented by the multiplication of the first by the reciprocal of the inhibition
coefficient coming from Haldane kinetic expression – which reflects the methanogenesis
biomass poisoning due to high VFA concentration. The fourth and last one is simply the
reciprocal of the inhibition coefficient itself. Also, in this case, the intercept is represented
by the semi-saturation constant relative to substrate S2. Both equations are so specified
and solvable. However, introducing the fixed decay rate coefficient to relate the decay of
the biomass to its maximum rate of production introduces an assumption that may not
always be true, leading to instability in the solution and eventually to no precise results.

The coefficient of liquid-gas transport kLa is obtained accordingly to the expression ob-
tained in AM2 from the values of the carbon molar outflow as represented in equation 4.6.
Equation 4.7 is another representation of the same expression in which the value of the
concentration of dissolved CO2 is calculated by the inorganic carbon, pH, and dissociation
constant for bicarbonate (pKb).

qC,ss = kLa (CO2,ss − KHPc)

qC,ss = kLa

(
Css

1

1 + 10 pHss−pKb
CO2,ss − KHPc

) (4.6)

(4.7)

In contrast to what has been done in AM2, estimating the yield coefficients k1−6, khyd

follows a one-by-one approach. Indeed, the advantage of using simulated values from
ADM1 as steady-state data is that it also gives information about biomass. The lack of
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such information was why a two-step approach was previously chosen. Linear regressions
indeed obtain the single values on equations.

D(XT,in −XT,ss) = khydXT,ss

D (S1,in − S1,ss) + khydXT,ss = k1αDX1,ss

[D (S2,in − S2,ss)] = k3 αDX2,ss − k2 αDX2,ss

[(qC,ss −D(Cin − Css)] = k5 αDX2,ss − k4 αDX1,ss

qM,ss

X2,ss

= k6 αD

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

The regression of khyd (equation 4.8) is straightforward and stable, while it is not the
same for all the other stoichiometric coefficients. As said, the values of the parameters
obtained from the regressions above may not always be reliable, retrieving negative or
misleading values, which will be the cause for misleading results in the final simulation.

4.2. Improvement in Calibration

AM2HN presented excellent and remarkable results in dimensionless variables y∗(t) =

y(t)/y0, but no results were available regarding the absolute value of those variables. This
decision is justified because it is a model devoted to controlling purposes. The main
interest is consequently given more in the dynamics than in the variables’ actual value.
However, a robust and reliable model should also adequately represent the actual value
of a process variable.

With the data available from the reports [112]–[114], the AM2HN model has been repro-
duced to validate the assumption of considering only the dimensionless quantities. The
data are those of the implementation of ADM1 in the BSM2 benchmark [91]. At first,
the same identified parameters have been applied to the same base-case scenario: assess
the response of a system, originally in steady state conditions, at a 20% step increase of
particulate influent (XT,in) after 20 days and a step decrease back to original conditions
at the 100th day. A summary of the input data used is given in A.2.

The results shown in figure 4.1 are identical to those given in AM2HN presentation [113],
confirming that the model has been correctly reproduced. A deeper assessment has then
been done by considering not only the dimensionless quantities and their actual value.
This analysis shows that the parameters identified with the AM2HN approach give mis-
leading results. Indeed, even though from a dimensionless perspective, everything seems
to be coherent, this is not the case when the actual quantities are considered. It has been
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Figure 4.1: Gas flows dimensionless variables of AM2HN with original identification pro-
cedure.

chosen to show the results regarding the gaseous outflows for two main reasons. They are
the most relevant regarding an industrial plant since they give the plant profits. Also, any
error present before can be highlighted since those are the ultimate result of the model.
As shown in figure 4.2, the resulting biogas from the simulation is primarily composed of
CO2, with a molar composition (directly comparable to the volumetric, under ideal gases
assumption) of around 25% methane. This result does not seem realistic just by consid-
ering what biogas is, and it can be confirmed further by comparing this figure to those
computed by ADM1 output. This value was available from the data and gave a methane
fraction of around 64%. This low CH4 concentration, resulting from the comparison be-
tween ADM1 and AM2HN results, is primarily due to a significant overestimation of the
carbon dioxide gas, which, consequently, derives from the excessive estimation of the CO2

produced by bacteria. As a result, while the AM2HN model has been demonstrated to de-
scribe AD variables effectively, further effort is required to estimate its parameters better.
This improvement should allow the same dynamic trends and more realistic estimation of
the process variables, particularly those related to inorganic carbon.
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Figure 4.2: Absolute values of gaseous flows and methane molar fraction of AM2HN with
original identification procedure.

4.2.1. Proposed Hybrid Identification

A new hydbrid identification approach has been developed, aiming at tackling the issue
that arose. This modified calibration method aims to complement the data available from
the ADM1 and used in AM2HN with the concepts presented in AM2. The experimental
data and fitting results are compared in graphs for each dataset used. The final goal
was to obtain a new set of parameters that, implemented in the AM2HN, give the same
dynamic trend and a more realistic estimation of the absolute values of the variables.

Kinetic Parameters

Kinetic parameters for both microorganism families must be identified from experimental
data. For methanogens, these are the maximum specific growth rate µmax,1−2, the half-
saturation constant KS,1−2, and the VFA inhibition constant KI,2, as it was in the original
procedure of AM2HN. As an additional improvement to the regression method, the esti-
mation of the biomass decay constants kd,1−2 is proposed. This decay term is calculated
as a percentage of the maximum specific growth rate using a decay proportionality coef-
ficient Cd,1−2 to keep the regression as stable as possible. This method is relatively stable
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because it restricts its value between 0 and 1, avoiding unfounded results and producing
reliable decay kinetics values. In AM2HN, a similar procedure was used, where the value
was not calibrated but set to 0.1. The equation obtained is still derived from 4.2 and 4.3
to identify parameters for X1 and X2, respectively. In this case, also Cd, 1 − 2 are not
defined and have to be estimated from the regressions on equations 4.13 and 4.14.

S1,ss =
α

(1− Cd,1)µ1,max

DS1,ss +
αKS,1

(1− Cd,1)µ1,max

D +
Cd,1

1− Cd,1

KS,1

S2,ss =
α

(1− Cd,2)µ2,max

DS2,ss +
αKS,2

(1− Cd,2)µ2,max

D+

+
α

(1− Cd,2)µ2,maxKI,2

DS2
2,ss +

Cd,2

(1− Cd,2)KI2

S2
2,ss +

Cd,2

(1− Cd,2)
KS,1

(4.13)

(4.14)

(a) Visualization from first perspective. (b) Visualization from second perspective.

Figure 4.3: Tri-dimesional visualization of fitting for results of multi-variable regression
on equation 4.13 for X1 kinetic parameters.

As discussed before, the expression on S1 can be regressed as a multi-variable linear
regression of the form y = α1x1 + α2x2 + α3, where x1 = DS1,ss,x2 = D, y = S1,ss

and αi are the parameters of the regression. On the contrary, the equation related to
S2 requires a non-linear analysis, with D and S2,ss as independent variables, and thus
requires a non-linear regression algorithm to establish its parameters. Finally, the kinetic
parameters can be then easily computed from the regressed coefficients. As it is possible
to see from figure 4.3, the linearity of the multi-variable regression cannot be represented
in a bi-dimensional environment. Aiming to provide a compelling visualization of the
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Figure 4.4: Results against each single independent variable.

fitting, the tri-dimensional representation and its projections on each plane are given by
x1,2/y, presented in figure 4.4 with the highlighted the fitting evaluation at coordinates
corresponding to the data. Figure 4.5 shows the nonlinearity of the equations against
the independent variable, which is associated with the parabolic shape, providing the
algorithm’s efficacy also in that case.

Figure 4.5: Results of regression on equation 4.14 for X2 kinetic parameters.

Gas-Liquid Transport Coefficient

For the kLa, the same approach of AM2 first and AM2HN later has been chosen. This
approach carries out a regression on the equation expressing the CO2 gas flow (3.17),
according to equation 4.6, which directly uses the carbon dioxide concentration in the
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liquid phase, available from ADM1 simulations. Given the values CO2 molar flow, qC,ss,
dissolved carbon dioxide concentration, CO2, and partial pressure of it in the digester
headspace, Pc, the regression are usually simple and stable, as shown by figure 4.6. That
equation is also repeated below for the sake of simplicity.

qC,ss = kLa (CO2,ss − KHPc) (4.6)

Figure 4.6: Results of regression on equations 4.6 for kLa mass transport coefficient.

In equation 4.6, another parameter given as input is a physical constant related to
the system: Henry’s constant KH . This term is related to Henry’s law of equilib-
rium and gives quantitative information regarding the solubility of a compound into
another, in the present case of CO2 in water [115]. In the previous works a value of
KH = 16 [mmol L−1 atm−1] was given as a reference value. However, this value must be
carefully evaluated in terms of measure unit and density dependency, directly affected by
temperature. As a result, in the present work, the value of Henry’s constant is calculated
using an empirical expression that gives the solubility in water of a specific component in
the gas phase.

Under the assumption that Henry’s law is valid for dilute solutions up to 1 atm, it is
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possible to calculate the respective constant obtained as the reciprocal of the compound
solubility in water. In most cases, Hi is provided as the proportional constant for the
species −i of Henry’s law p = Hpx, where p is the compound partial pressure [atm] and x

its mole fraction in the aqueous liquid phase [atm]. The immediate dimensional analysis
leads to the unit of measure of Hp, which is in [atm] as well and thus not adequate to
be directly inserted in the model. The subscript p indicates that this is Henry’s constant,
referred to as pressure. To convert it for an appropriate unit of measure is possible to
divide its value by the molar density of water [molm−3], obtaining the constant for a
relation accounting for molar concentration Hc [116]. The reciprocal of the latter is the
required KH for the AM2 model, in [mmol L−1 atm−1]. All the calculations now described
are reported in equations 4.15-4.17.

Hp =
1

exp(A+B/T + C · ln(T ) +D · T )

Hc =
Hp

ρV,H2O(T )

KH =
1

Hc

(4.15)

(4.16)

(4.17)

The inputs are system temperature T [K] and a set of experimental parameters, given
for CO2 in table 4.1. The density of water, which also depends on temperature, is as-
sumed constant in the range of operating temperatures commonly utilized and equal to
its value at 25 °C of 55 342 [molm−3]. This method allows obtaining the value of Henry’s

Table 4.1: Parameter values for evaluation of solubility in aqueous solutions [116]

Species A B C D

CO2 -159.854 8741.68 21.6694 -1.10261E-03

constant, in the correct unit of measure, for every temperature as long as the empiri-
cal parameters are valid. Figure 4.7 shows the results within the available temperature
range. It is worth noting that the commonly used value, KH = 16 [mmol L−1 atm−1], is
obtained at a temperature of 62° C, which is practically impossible to reach in a fermen-
tative system. In most cases, anaerobic digestion occurs at temperatures ranging from
35 to 45° C, corresponding to the temperatures at which bacteria thrive in mesophilic
and thermophilic environments. In this case, Henry’s constant value varies between
KH = 26.5 − 21.5 [mmol L−1 atm−1]. As a result, this approach is used to upgrade
the identification procedure properly.
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Figure 4.7: Trend of Henry’s constant value for AM2/AM2HN model. Highlighted the
ranges corresponding to typical operating conditions and the reference value from [106].

Yield Coefficients

In this case, the proposed procedure differs from the original identification of stoichiomet-
ric coefficients. This approach aims to simplify, speed up and improve the identification
procedure’s reliability and stability by adapting the dual-step approach initially proposed
in AM2/AMOCO. Firstly, the rate constant khyd for hydrolysis is obtained in the same
way proposed by the AM2HN identification method, from equation 4.8. The result of
this first single variable linear regression is shown in figure 4.8. A two-step procedure
inspired by AM2 calibration is then used for the six coefficients of biochemical reactions.
At first, four are identified ratios, followed by two individual coefficients, which can close
the system of unknowns. The two singular yield coefficients for substrate S1 consumption
(k1) and methane production (k6)are obtained from regressions on equations 4.9 and 4.12,
indicating the steady state conditions for the respective process variable. Equations 4.9
to 4.12 are then reorganized to get two linear expressions explicit for CH4 and CO2 specific
flow rate (equations 4.18 and 4.19). In this transformation, ratios between stoichiometric
coefficients are performed and used as parameters for two multi-variable regressions ac-
cording to AM2 approach [106]. In particular, the ratios k6/k3 and k2/k1 are from the
methane flow rate, while k4/k1 with k5/k6 are in the carbon dioxide flow rate instead. In
conclusion, the computation of each of the remaining individual coefficients (k2, k3, k4, k5)
is performed by multiplication of the ratios for the respective single coefficient previously
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Figure 4.8: Results of regression on equations 4.8 for khyd hydrolysis rate constant.

obtained. The complete set of equations used in the regressions is reported below in the
new order of utilization for completeness.

D(XT,in −XT,ss) = khydXT,ss

D (S1,in − S1,ss) + khydXT,ss = k1αDX1,ss

qM,ss

X2,ss

= k6 αD

qM =
k6
k3

D
(
Sin
2 − S2

)
+

k6
k3

k2
k1

[
D

(
Sin
1 − S1

)
+ khydXT

]
qC −D (Cin − C) =

k4
k1

[
D

(
Sin
1 − S1

)
+ khydXT

]
+

k5
k6

qM

(4.8)

(4.9)

(4.12)

(4.18)

(4.19)

The results of these regressions are shown in the next figures. For the two single-variable
regressions, only the bi-dimensional plane is shown (Figure 4.9) along with the fitting
line. For multi-variable regressions giving the yield coefficient ratios are presented both
the tri-dimensional (Figure 4.11) and their bi-dimensional representation (Figure 4.10),
following the method mentioned above.
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(a) Regression for k1. (b) Regression for k6.

Figure 4.9: Results of regression on equations 4.9 (Fig. 4.9a) and 4.12 (Fig. 4.9b) for
singular yield coefficients.

(a) Equation on methane molar flow.

(b) Equation on carbon molar flow.

Figure 4.10: Bi-dimensional visualization for results on multi-variable regressions on equa-
tions 4.18 (Fig. 4.10a) and 4.19 (Fig. 4.10b).
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(a) Equation on methane molar flow. (b) Equation on carbon molar flow.

Figure 4.11: Tri-dimensional visualization for results on multi-variable regressions on
equations 4.18 (Fig. 4.11a) and 4.19 (Fig. 4.11b).

Parameters Results

The parameters under the label AM2HN are obtained following the regression approach
used in the original report. These parameters are not calculated for dataset one since they
are available from [113]. For dataset two, they are instead resulting from implementing
that method. Finally, the results indicated as New Approach result from the new identi-
fication method described. A comparison of parameters obtained with the new approach
and with the original one is given in this section.

Table 4.2 shows the results for those parameters for which identification is directly derived
from AM2HN, namely those for bacteria kinetic equations and the mass transfer coefficient
kLa. It is possible to not be similar among these numbers due to the same equations.
However, the AM2HN approach gives a negative value with dataset two in one case, for
KI2, which was not given by the new procedure, which, conversely, gave a considerably
large number. This result is probably due to the insensitivity of the non-linear regression
performed on this parameter. Moreover, it is possible to see how the decay constants are
now derived from experimental data and not assumed to be equal to 0.1. Results for yield
coefficient estimation, the most innovative section of the new approach, are presented
in table 4.3. As expected, no differences are shown for the hydrolysis rate constant,
whereas a more considerable difference is shown for the other parameter in some cases.
In particular, it is interesting to note that for dataset one, the original approach gives
a value of k5 remarkably larger than that of k6. This conclusion is not realistic, if not
impossible, since both are coefficients for the products of the methanogenesis reaction,
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Table 4.2: Comparison of results obtained from calibration for kinetic parameters and
mass transport coefficients.

mu1,max KS1 mu2,max KS2 KI2 cd,1 cd,2 kLa

DATASET
1

AM2HN 0.33 0.4 0.13 2.93 207 0.100 0.100 24
New
Approach

0.32 0.4 0.14 3.05 199 0.071 0.173 23

DATASET
2

AM2HN 0.30 0.3 0.34 0.07 -6 0.100 0.100 28
New
Approach

0.30 0.4 0.36 4.69 6.75E+08 0.074 0.089 122

and the first stands for the CO2 produced, the latter for CH4 produced. It follows that
k6 should be higher than k5 to represent the reaction correctly.

Table 4.3: Comparison of results obtained from calibration for yield coefficients.

khyd k1 k2 k3 k4 k5 k6

DATASET

1

AM2HN 5.02 20 464 514 310 600 253

New

Approach
5.00 19 815 956 10 191 253

DATASET

2

AM2HN 0.30 10 -2 34 87 21 280

New

Approach
0.30 20 128 136 78 115 256

4.3. Model Results with Modified Approach

The new identification method leads to a new set to be applied in AM2HN and improve
its results. The results are compared with an own simulation of ADM1, based on the
same input data and influent deviations, in Python language based on PyADM1 [117].
The major drawback of the original AM2HN, namely the not realistic biogas composition
with a CO2 majority, is not present anymore. Indeed, as it is possible to see in fig-
ure 4.12, the absolute values of the outlet gaseous flows are better represented, even with
the comparison with ADM1. However, a margin for improvement is still present, being
the value of carbon molar flow under-estimated. Results available from the AM2HN in
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dimensionless variables are also compared with those from the new identification method
against ADM1 output. The results show a slightly larger error for dimensionless CO2 flow
rate with the new method when a system deviation is given. However, this deviation is
because the absolute value of that variable is remarkably lower, and consequently, any
deviation is amplified when a ratio is considered. The considerable improvement obtained

Figure 4.12: Comparison of results for gaseous outlet flow rates. ADM1 : results PyADM1
simulation; Original : results AM2HN with parameters from [113]; New : results AM2HN
with parameters from the new identification method.

with the new set of estimated parameters is seen clearly when the biogas composition is
considered, as seen in figure 4.13. Reminding that according to the AM2 hypothesis, the
resulting gaseous flow is composed of CH4 and CO2 only, it is possible to see that the new
results are more realistic than the originals. The methane percentage is too high due to
underestimating the carbon dioxide molar flow. This first conclusion can be misleading
since the error has just been switched from one variable to another. However, the value
of methane percentage now falls under a realistic range, even if in the upper percentile.
Moreover, it has been noted that the regression which leads to the estimation of carbon
dioxide production coefficient k4 is almost insensitive to that parameter in a particular
range. An improvement of the regression algorithm may thus lead to a higher value for
this yield coefficient, which will raise the value qC and, finally, a more precise value of
xCH4.
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Figure 4.13: Comparison of results for gaseous outlet composition.ADM1 : results
PyADM1 simulation; Original : results AM2HN with parameters from [113]; New : re-
sults AM2HN with parameters from the new identification method.

Results for the other affected process variables lead to the same considerations for better
quality for absolute results, and are presented in appendix B.2. In some cases, a slight
overshoot is present due to a smaller absolute value of that variable, as already discussed
for the CO2 flow rate.

In general, the proposed identification method effectively improves the results of the
AM2HN model, mainly when dealing with absolute values of the process variables.

4.3.1. Second Dataset Simulation

A test on the second dataset has been performed to prove the validity of the new procedure.
The dataset represents another example of the application of the BSM2 framework for
ADM1 [118]. Here the results are consequent to a deviation of +20% for the influent
particulate XT . In ADM1, this is equally divided between the variable related to the
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influent particulate material: Xpr, Xch, Xli. Xxc does not show deviations since its value
is null from the start of the simulation according to the data provided. This approach
assumes a substrate that can be a degraded influent to a WWTP. The most relevant
fact on this simulation is that it is provided as an intensive treatment, with a very high
flow rate. Indeed, the HRT is of only five days, compared to the 20 days of the previous
dataset. Nevertheless, the estimation of the parameters took the same examples into
account. In some cases, to obtain better results, it might be appropriate to proceed
with an identification over a narrower range closer to the case under consideration. In

Figure 4.14: Comparison of results for gaseous outlet composition.ADM1 : results
PyADM1 simulation; Original : results AM2HN with parameters from [113]; New : re-
sults AM2HN with parameters from the new identification method.

this case, the results obtained for the gaseous rates and composition ((figure 4.14) with
the parameters of the original procedure are more coherent with reality. Nevertheless,
the new identification approach guarantees better accuracy for most variables in their
dimensional and dimensionless representation. Moreover, the new parameters provide
remarkable results and improvements in the accuracy of the total absolute flow rate, as
shown in figure 4.15. This crucial process indicator is almost perfectly predicted by the
model with the new identification method, even though the subdivision between the two
gases does not reach this level of precision. Obtained results reinforce the idea that a
better algorithm for parameter estimation may further improve these results.
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Figure 4.15: Comparison of results for total outlet gaseous flow rate.ADM1 : results
PyADM1 simulation; Original : results AM2HN with parameters from [113]; New : results
AM2HN with parameters from the new identification method.
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Up to now, the models presented have represented anaerobic digestion with a focus on
biogas and the biochemical reactions occurring prevalently in the liquid phase. When the
model aims to assess the impact of microaeration for sulfide removal, it is also necessary
to investigate what happens in the reactor headspace. There it is where SOBs are living
and, consequently, where oxidation occurs. To realize that target the conceptualization
of the digestion system requires further steps. ADM1 and AM2 models are interested in
something other than the reactor’s gaseous phase, which is considered an inert volume
before the outlet.

The present study represents the sulfide removal happening in the headspace and thus
requires a modelization of that reactor region. According to the typical AD modeling ap-
proach, the headspace is considered a continuous stirred tank reactor (CSTR) and mod-
eled accordingly to provide a reasonably low complexity. The scheme proposed accounts
for two different influent streams: one consisting of the gaseous products of anaerobic
digestion and one for oxygen (or air, depending on the case) injected. The injection is
assumed to be directly in the headspace since this is the most widespread solution nowa-
days and can also be readily applied as a retrofit to actual plants. In order to increase
the model’s reliability, a fictitious liquid gas equilibrium unit (flash) is inserted between
the liquid phase and the gas phase. This addition should increase the model’s reliability
in describing the species distribution between the two phases considered and, according
to the author’s knowledge, is not present in any other model of this kind.

The liquid phase is modeled following the reaction of a lumped model, such it can be
the AM2. Due to the improvements obtained by AM2HN, this latter version is used as
starting point for current developments. All the newly added terms and equations will be
described in the following sections but briefly summarized here. As a first addition, the
water content in the influent stream is considered explicitly. The reason is that, in some
cases, as in WWTP, water is a consistent amount of the influent and may significantly
alter the vapor-liquid equilibrium. Moreover, it affects the reactor’s liquid level, which
is no longer assumed constant and is evaluated according to the influent deviations at
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every step. A second significant addition is the presence of sulfur-reducing bacteria,
which convert part of the substrate to sulfide during digestion, representing the sulfate
reduction process. All these steps are grouped into the developed Anaerobic Digestion
and Oxygen Control System (ADOCS) model presented in this section.

The overall scheme described is shown in figure 5.1 and can be summarized in a few key
points:

• The liquid phase of the reactor, where biochemical reactions occur, is modeled as
a CSTR according to the equations of the AM2HN model, accounting for sulfur
reduction and water stream.

• The products of the CSTR enter a fictitious flash unit: the vapor outlet stream will
enter the headspace, whereas the liquid represents the digestate.

• The vapor flow exiting the flash, raw biogas, enters the headspace, where oxygen
is added. The sulfide oxidation is modeled by considering this region as a second
CSTR.

• The outlet flow from this reactor is the global gaseous flow rate of the AD system
after sulfide oxidation.

(a) Correspondence between digester areas
and model blocks considered.

(b) Segregated blocks perspective.

Figure 5.1: Graphical representation of different blocks considered to model the anaerobic
digestion system.
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Table 5.1: Definition of deviations assigned to influent variables for the base-case scenario
presented. Effects of each value A on each influent variable xin as xin(t) = A · xin(t = 0).

time
[days]

S1,in

[g/L]
S2,in

[mmol/L]
Cin

[mmol/L]
Nin

[mmol/L]
XT,in

[g/L]
Qin

[m3/d]

0 1 1 1 1 1 1
1 1 1 1 1 1 1.1
8 1 1 1 1 1.1 1.1
15 1 1 1 1 1 1.1
22 1 1 1 1 1 1

5.1. Methodological Note

All the simulations have been carried out by implementing the models in Python language.
The choice is because it is a flexible, innovative, and relatively simple programming lan-
guage. Moreover, its open-source nature allows for a large personalization and possibilities
for industrial applications without great economical efforts. The two most utilized in the
present work are the numerical library numpy and the optimization library scipy. For
regressions, the algorithms of sklearn have been used, while for data visualizations, mat-
plotlib and scienceplots.

5.1.1. Case Study Definition

In this chapter, all the results will be presented according to a base-case definition. This
approach allows assessing the system response to specific deviations in the influent in
organic concentration and total flow. The system’s initial conditions are the steady-state
values of the variables defined with the influent at the initial time. The case study is
associated with the BSM2 implementation of ADM1 and has already been used in the
AM2HN presentation. Its data for identification and influent condition are given in the
appendix A.2 as Dataset 1. The simulation has been carried out for a 30 days time
span. In tablen 5.1 are shown all the deviations assigned, where the value is the factor of
multiplication assigned to the value of the influent at the initial time: xin(t) = A · x0

in. A
is a value in the table, xin each of the influent variable. The four deviations are chosen
to present, singularly, both the effect of a positive or negative deviation assigned to the
organic concentration, XT and the input flow rate, dotQin. Hours [h] is the basic time
unit in most simulations to allow a short computation period. In some cases, however,
the results are presented for days [d] for notational or practical reasons.
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5.2. Liquid Phase

The AM2HN model, a modified version of the AM2/AMOCO model containing hydrolysis
and nitrogen dynamics representation, is utilized as starting point for the representation
of biochemical reactions in the liquid phase. In this section, a constant volume of the
reactor is defined and assumed equal to a project parameter. Consequently, the dilution
rate is computed as D = Q̇/Vreactor [d−1]. The parameter identification is performed
according to what is described in 4.3.1. The water content of the influent flow is added
as an explicit term. However, it does not affect this section since all the variables are
expressed in concentration, implicitly accounting for it. The AM2HN model is solved
by numerical integration with the odeint solver, available from the Scipy library. All
the equations are the same as the AM2HN model, except for S2 balance. It includes an
additional sulfate reduction term described in the next paragraphs.

5.2.1. Sulfate Reduction Modeling

Processes of sulfate reduction by sulfate-reducing bacteria (SRBs) have two impacts on
the AD system, reducing the methane yield by consuming part of the VFAs and inhibiting
the activity of the methanogens. The present model is intended to preserve the simplicity
of AM2HN. Consequently, the explicit inclusion of all the sulfate reduction processes has
been immediately excluded. According to the results that show that a good compromise
between complexity and accuracy may be reached by including acetate and hydrogen only
as a substrate for sulfate reductions [97], the approach followed that pathway. However,
AM2HN does not include hydrogen but defines S2 as the only substrate for methanogens.
Consequently, the choice has been to consider SRB as a family of bacteria similar to the
methanogens, which grows on the same substrate (S2) but produces a different molecule.
The biochemical equation represented as descriptive of sulfate reduction processes is thus
the following:

CH3COOH + H2SO4 2H2O + 2CO2 + H2S (R10)

As a result, two state variables are added to the model: Xsrb [g L−1], representing the
microbial population of sulfate reducers; and Ss [mmol L−1], which defines the dissolved
sulfide, lumped together. To avoid adding too many variables and ultimately being in-
terested in the sulfide which will pollute the biogas, it has been decided not to include a
detailed description of the species related to sulfur (i.e., sulfates, sulfide, thiosulfates) and
of their interactions. Such an approach has certain limitations, as it does not allows for an
estimation of the rate for reaction R10 on a biochemical basis. As a result, direct inclusion
of the sulfate reduction process within the dynamic equations of AM2HN has not been
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possible. The addition of that influence a posteriori has consequently been chosen, also
allowing to minimize the computational complexity to be added.

Due to a lack of detailed biological knowledge of the system, the SR process has been
modeled mathematically inspired. Such an approach intends to reduce the number of
parameters to be estimated or defined as much as possible. The considerations taken into
account are the following:

• The SRB bacteria population grows in a way similar to methanogens

• During their growth, SRBs consume a part of substrate S2 and have sulfide produc-
tion, Ss, as a result of their metabolism.

• Substrate consumption, sulfide production, and growth rate are related by a yield
coefficient Ysrb.

Regarding the last point, the assumptions are those widely available in the literature
for a Monod-type kinetic expression. Specifically, for sulfate reduction, the examples are
those cited in the dedicated chapter [96], [98]. The result is that it could represent the
SRB process occurring using an expression to describe the SRB population, a second one
accounting for their growth rate and a yield coefficient. The inclusion in the AM2 reaction
model can be described by a modification of reaction R8 as follows in reaction R11,
where ksrb is ultimately represented from the yield coefficient, arising from a different
mathematical description.

k3 S2 X2 + Xsrb + k5 CO2 + k6 CH4 + ksrb Ss (R11)

A mathematical recap based on the description above and the examples cited are given
in 5.1. The definition of the function f(t) describing the bacteria population will be
discussed in the next paragraph; µsrb [g L−1 d−1] is the microbial growth rate, which
could be associated to dXsrb/dt. This can be obtained also from the substrate uptake
rate ρuptake,srb [mmol L−1 d−1], according to Monod description. The yield coefficient
Ysrb [g mmol−1] has been obtained from the value presented by literature references [98]
as the one referred to acetate (0.0342 gsrb g

−1
COD,ac) and converted to the appropriate unit

of measure, accounting also for the COD basis. The expression referred to S2 indicates,
with the subscript −s, that this is the influence of sulfate reduction, which has to be
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added to the defined AM2 equation for that state variable (Equation 3.14).
Xsrb = f(t)

dSs

dt
= (1− Ysrb) µuptake,srb =

1−Ysrb

Ysrb
µsrb

dS2,s
dt

= −ρuptake,srb = − 1
Ysrb

µsrb

(5.1)

The description of the microbial population is the most important and complex step. The
present work aims at providing a modelization that could be accurate while not adding
significant complexity to the calculations. So, the SRB population is not represented
with a differential equation included in the system but explicitly with an equation of the
Gompertz family. Gompertz equations are widely used to represent a population dynamic
thanks to their sigmoidal shape and require a relatively low number of parameters. A
modified version of the Gompertz equation, specific for applications in biological systems,
is now a well-established mathematical approach to representing bacteria population. It
allows for simple estimation of its parameters; it is flexible and can represent it accurately
from a quantitative point of view in many cases [119]. The mathematical representation
is given as follows:

X(t) = A exp

{
−exp

[
Kz e

A
(Tlag − t) + 1

]}
(5.2)

X(t) is the bacteria population in time t, the parameter Kz reflects a growth rate co-
efficient, and Tlag is the "lag time," the recovering period occurs when a population is
transferred from a system to another. The parameter A reflects the upper asymptote of
the curve [120].

The parameters of this equation have been compared to available variables and parameters
to apply to the actual situation.In particular, the population X indicates the concentration
of sulfate reducers Xsrb [g L−1]. The Tlag parameter is excluded or posed to zero since
the environment does not change significantly in an AD system. Moreover, it has also
been noted that it only partially impacts the final results. To define the upper asymptote
A, it is of help to refer to the relationship between the biomass Xsrb and its product Ss.
In fact, by integrating the respective equation in 5.1, it is possible to explicitly see the
relationship between the two variables, resulting in equation 5.3.

Ss(t) =
1− Ysrb

Ysrb

Xsrb(t)

Ss(t) =
1− Ysrb

Ysrb

A exp

{
− exp

[
Kz e

A
(Tlag − t) + 1

]} (5.3)

(5.4)
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Equation 5.4 is obtained by inserting 5.2 into 5.3 and represents the trend of the dissolved
sulfide concentration. It is not properly a Gompertz equation because the term outside
the brackets is not the same as the one at the fraction’s denominator inside. However, the
upper asymptote is still represented by the first term, which can be named Ss,max and gives
equation 5.5. If this term is known, the upper asymptote for the bacteria population A,
which can be now named Xs,max (the name Xs,max is used in this case instead of Xsrb,max

to simplify the notation), can be calculated immediately with equation 5.6.

Ss(t) = Ss,max exp

{
− exp

[
Kz e

Ysrb

1−Ysrb
Ss,max

(Tlag − t) + 1

]}
(5.5)

Xs,max = A =
Ysrb

1− Ysrb

Ss,max (5.6)

The problems are so reduced to the computation of Ss,max [mmol/L] following the sub-
sequent approach to keep the model simple while providing an adequate system repre-
sentation. That value, potentially different each time, represents a direct product of S2

conversion. Thus such a dependence should be included. Moreover, it is derived only
from that entering compounds containing sulfates, which quantity can be available or
estimated in a simple term. Consequently, equation 5.7 defines the maximum value, at
each time considered, for the sulfide concentration. It allows accounting for the substrate
biochemical reaction dynamics up to S2 and for a fraction defining the sulfur compounds
present in the influent. An additional term is added to convert the sulfur fraction to a
COD basis and to have the correct dimensions for the other equations. The parameter
γS,in [−], defines the sulfate content which is present in the influent and can potentially be
available to the SRB. It can be estimated on chemical measurements or as a percentage
of the total protein content of the influent.

Ss,max(t) = γS,in(t)S2(t)
1000

64
(5.7)

Finally, for the only remaining term, Kz, of the modified-Gompertz equation, an approach
based on similarities between the SRB and the methanogens has been perceived. Indeed,
that term may be referred to as a tangent of the line described by the Gompertz equation.
The present model should assess the fluctuation of bacteria state within the overall system
more than bacterial population dynamics. Consequently, it has been chosen to provide
the tangent value in such a way as to make the SRB population follow the trend described
by methanogens dynamics, which in turn are determined from biochemical assumptions.
The result is the following: the absolute value is added to guarantee a positive value,
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Figure 5.2: Kinetics of SRB bacterial growth. Total population and relative growth rate.

which is necessary for the Gompertz term. To improve the numerical stability of the
solution, a minimum boundary can also be applied in specific cases. It should be defined
accordingly to the value of the methanogens concentration.

Kz,srb =

∣∣∣∣X2(t)−X2,0

t− t0

∣∣∣∣ (5.8)

As a result of the mentioned assumptions and parameters definition, equation 5.2 can be
rewritten as:

Xsrb(t) = Xs,max exp

{
−exp

[
Kz,srb e

Xs,max

(−t) + 1

]}
(5.9)

Once the SRB population is known, it is possible to compute the associated dissolved
sulfide Ss according to equation 5.5, with the appropriate value of Kz,srb. Figure 5.2
shows the value of the bacteria population during the case study, from 5.9, as well as
their relative growth rate, defined in equation 5.16. The latter is not null even when the
population is not increasing since it implicitly accounts for bacteria death and population.
It is also possible to see that when a higher influent is fed to the system, the population
increases accordingly.

Finally, from the amount of dissolved sulfide, the corresponding equilibrium concentration
in the gaseous phase is calculated according to Henry’s equation (5.10). The resulting spe-
cific H2S gaseous flow rate (qS [mmol L−1 d−1]) is then computed from equation 5.13, where
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qtot = qM+qC from AM2 variables. Pdig [atm] is the digester headspace pressure, typically
1 atm or slightly larger. KH,S [Latmmmol−1] is the Henry’s constant obtained in the
form described in section 4.2.1. Its value has been computed as KH,S = HS,p(T )/ρwater,
with HS,p(T ) = (0.13677 · T + 2.0181) · 100 [116], where T [K] is digester’s absolute tem-
perature.

yS =
KH,S SS

Pdig

(5.10)

The stoichiometry is then respected by a normalization of the obtained molar fraction
equation 5.11 for each species −i. Consequently, the total specific outlet flow rate is
recalculated to satisfy the mass balance 5.11 and from that, the actual value of the H2S
gaseous stream (5.13).

ynormi =
yi∑3
i=1 yi

qtot =
qM
yM

qS = yS qtot

(5.11)

(5.12)

(5.13)

This approach implies that the value total specific flow rate computed following AM2
equations is modified to include H2S as well, and it is possible to the low value of that
variable, typically present as an impurity. The results obtained with the new approach
for flow rates and molar fraction are presented in figure 5.3 and compared with those of
AM2HN. As it is possible to see, the effects of normalization can be considered acceptable
and not affecting significantly the results. The principal reduction is observed in yCH4 ,
which also considers the effects of inhibition described in the next paragraph. In fact,
for CO2, the difference is almost negligible, confirming the validity of the assumption.
The concentration of H2S is also in the range expected, being lower than 5%, with a
value oscillating around 2%. It is also possible to see that the dynamics of the variables
follow those defined by AM2HN and already validated. The methane flow rate presents
the typical first-order response to deviations, increasing or decreasing. The new variable
H2S has the same methane trend due to the similarities assumed by the two microbial
families producing these molecules. Conversely, for CO2, the steady state is reached af-
ter the overshoot caused by the acidogenesis reaction. The impact of a 10% deviation
in organics concentration is slightly more significant than the percentage applied to the
total influent flow rate. The inhibition of hydrogen sulfide on methanogens is considered
with a new term added in equation 3.16. The approach follows the one used to describe
inhibitory terms in ADM1. A term IS, comprised between 0 and 1, is added to the un-
inhibited expression of methane production. This solution is possible because, in AM2,
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(a) Biogas flow rates resulting from the model. (b) Biogas composition resulting from the model.

Figure 5.3: Comparison of variables related to gaseous stream obtained with AM2HN
(dashed lines) and with ADOCS (full lines) models.

this expression is also evaluated outside the differential equation system. Thus no sig-
nificant modifications are required. The shape of the inhibition function, linear, and the
KIS = 0.014272 [mmol L−1] term have been chosen and calibrated according to a set of
experimental values available in the literature [121].

IS = (1−KIS) · SS

qM = k6 µ2X2 IS

(5.14)

(5.15)

Results of the inhibition term on the system are shown in figure 5.4b, where the reduction
of methane production is directly comparable with the inhibition function. The latter is, in
turn, commensurate to sulfide concentration and the symmetrical shape as per the shape
of the function used. Figure 5.4a shows how the inhibitory term behaves at increasing SS

concentration. It has a maximum value of 1, meaning that no inhibitory effects are present
when sulfide concentration is null. Further discussion is required to detail the second
limitation occurring due to sulfate reduction presence, namely the acetate depletion to
grow the SRB. Also, in this case, the similarity with methanogens is used as a basis
for the implementation. Indeed, since both families of bacteria grow on S2, their relative
growth rate can be considered as substrate-limited growth, according to a Haldane kinetic
mechanism (equation 3.2). Consequently, the growth rate of the SRB population can be
represented as follows:

µsrb(t) = µ2(t)
Xsrb(t)

X2(t)
(5.16)
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(a) Shape of IS with respect to sulfide con-
centration.

(b) Effect on methane production with respect to sul-
fide concentration.

Figure 5.4: Sulfide inhibition function and its effect on the system.

The term µ2 is represented as in AM2 by the Haldane equation and is the same as depicting
the methanogens (X2) growth. The ratio allows us to account for proportionality between
the absolute growth rate of Xsrb and X2. This growth rate is distinct from the Gompertz
derivative, as it can be the case in many other applications of such an approach.

As a result, in the dynamics of S2 the SRB uptake term has to be added following
equations 5.1. Consequently, equation 3.14 is transformed into equation 5.17.

dS2

dt
= D (S2,in − S2) + k2µ1X1 − k3µ2X2 −

1

Ysrb

µsrb (5.17)

The effects of SRB population and SR processes on the two variables that are affected,
S2 and qM , are described in figure 5.5. As it is possible to see, the most significant
effect is the direct inhibition of methanogenesis, which, in the case conditions, is reduced
by more than 2% in certain moments. The differences between the absolute values are
more evident when the influent increases. At the same time, S2 dynamics are eventually
positively affected by the SRB population during the first days of a reduction in the feed.



82 5| ADOCS Model

(a) Effects of sulfide inhibition on S2.. (b) Effects of sulfide inhibition on qM .

Figure 5.5: Sulfide inhibition effects on the system with the relative difference with the
uninhibited term.

Overall, this section adds a new gaseous stream which, in the AM2 approach, will leave
the digester along with methane and carbon dioxide. In the system description chosen in
the present work, that stream will instead enter into a fictitious ideal separation unit to
more precisely describe the liquid-vapor interactions, accounting for water presence.

5.2.2. Liquid Level Dynamics

The global reactor mass balance is added to the model, externally from the aforementioned
equations, to allow the computation of the liquid level inside the digester. This addition
is done for two reasons:

• to express the gaseous flow rates as extensive variables, it is necessary to account
for a volume.

• the ultimate purpose of the ADOCS model is to assess the headspace dynamics for
which the gaseous volume is needed. The gaseous volume is not a fixed quantity
but varies according to the liquid level, which has to be determined.

The modelization starts from the assumptions that dilution rate, influent flow rate, and
liquid volume are related by the expression D = Q̇/Vliq, as in the dynamic equations
describing the microbial balances. In that case, a fixed term Vreactor has been used to
obtain different dilution rates for each influent deviation. That term is assumed to be the
nominal specification of the liquid volume. Once the dynamic results are obtained, it is
more accurate to define a fixed value of dilution rate D, which can be a design parameter
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of the reactor, and from that, calculate the liquid volume Vliq. This approach is, of course,
a simplification aimed at keeping the shape of the AM2HN model for ADOCS and avoids
adding a further differential equation to be solved simultaneously. The correctness of the
simplifaction is higher when influent differences are not large, and thus Vliq is almost equal
to the nominal value Vreactor for most of the time.

The mass balance is defined as follows (5.18- 5.20, where the variables with dot notation
express fluxes and h [m] are the liquid level.

dmliq

dt
= ṁin − ṁout

ρliq
dVliq

dt
= ρliq Q̇in − ρliq Q̇out

π

4
D2

R

dh

dt
= Q̇in −D

π

4
D2

R h

(5.18)

(5.19)

(5.20)

To get equation 5.19 from 5.18 is explicated the relationship between mass and volume
through density ρliq. This density is assumed constant during digestion since the liquid
phase is generally mostly composed of water, and the transformations occurring do not
largely affect this term. Constant density allows to transform equation 5.19 into 5.20.
The outlet flow rate is assumed to depend directly on the liquid level, as typically done
for a cylindrical tank. A digester is typically compared to that shape, at least when the
region where the liquid phase is considered. Consequently, Qout = DVliq = D π

4
D2

R h.
The reactor diameter, an additional required input, is expressed as DR [m], and D [d−1]

is the nominal operative dilution rate.

Equation 5.20 can be manipulated to give equation 5.21. The latter is a first-order dif-
ferential equation of the form αy′ + βy = γ, which can be solved to give the level height
profile in time as a function of the total influent flow rate 5.22. The term SR [m2], stand-
ing for reactor surface, is the result of SR = π

4
D2

R, and H0 is the initial condition for
the solution. Also in this case its value is defined as the variable value in steady-state
conditions.

π

4
D2

R

dh

dt
+D

π

4
D2

R h = Q̇in(t)

h(t) =
Q̇in(t)

SR D

(
1− e−Dt

)
+H0 e

−Dt

(5.21)

(5.22)

The stream Qin present in equation 5.22 is a real value, and thus a discontinuous step-
increase for it does not correspond to what practically happens. When a step increase
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is assigned to that variable, it represents the set-point value, which is reached with a
particular dynamic according to the characteristics of the system employed. To adequately
represent a step increase, as in the case study, it is thus necessary to model Qin so that
it does not have any not-realistic discontinuity. This modification can be done in two
ways, whether information on the existing system is available. In the first case, the
problem is simple: once the setpoint is defined, it provides information on the controlled
variable according to the system and pipe design. If no specific knowledge is available, it
is possible to tackle the problem with a general approach, which validity varies according
to the specific case.

As a manipulated variable, it is assumed that the influent flow rate approaches the new
steady-state according to a logistic shape after a step increase to its setpoint value. In
particular, the upper branch of a logistic correctly represents the dynamics of a simple
proportional controller for a first-order system. The logistic curve is obtained from a par-
ticular solution of Richard’s differential equation [120] and defined for any time-dependent
variable Y (t) as:

Y (t) =
A

(1 + βe−kd(t−t0)

with: β = 1− A

Y0

(5.23)

(5.24)

Equation 5.23 contains the parameter A, which is the upper asymptote, the initial condi-
tion Y (t = t0) = Y0, and the shape parameter kd, which defines the slope of the function.
For the actual purposes, it can be rewritten as:

Qin(t) =
Qin,SP

(1 + βe−kd(t−t∗)

with: β = 1− Qin,SP

Q∗
in

(5.25)

(5.26)

In this equation, the new value to be reached regarding the influent setpoint, occurring
at time t = t∗, is defined as Qin,SP . The initial condition is thus the value assumed by
Qin at the time of the change, namely Q∗

in = Qin(t = t∗). The shape parameter kd is the
only value to be provided by the user and can be related to the proportionality constant
of a controller or defined according to experimental data. In the present study, its value
has been posed equally to 1 from the analysis of the results.

The resulting flow Qin is the one used throughout the whole simulation. The differences
between a step increase and the proposed modification are shown in figure 5.6, where the
results for the full-time span and detail for both the positive and the negative deviation are
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Figure 5.6: Differences between theoretical step increase (Dashed Line) and realistic value
(Full line), with details of both deviations.

present. The dynamics are reasonably slow since the reactor diameter is high (20 meters
in the case study, even more in some large-scale plants) and produces a slow response.

Consequently, the liquid level dynamics results are presented in figure 5.7. In figure 5.7a,
the results regarding the liquid level hliq are shown, and the plot of the influent flow
rate is also repeated to simplify the comparison. Figure 5.7b shows the dynamics of the
liquid volume Vliq [m3], calculated by assuming a cylindrical shape as in equation 5.27,
which follows the shape defined by tank height. It also shows the results for the gaseous
volume Vgas [m3], which is the one used as a volumetric variable in the CSTR equation
for the headspace will be detailed later. This latter variable is computed by accounting
for a design-defined Vheadspace, which is never occupied by the liquid, and a variable part
dependent on the liquid level. The result is shown in equation 5.28, where Vreactor [m3]

is the nominal liquid volume of the digester; Vheadspace [m3] the area over the maximum
allowed liquid height; and Vliq is the liquid volume calculated previously. In the case
study, the value of Vgas is always lower than Vheadspace since the liquid volume is always
higher than its nominal value. That is a result of the deviations assigned to Q̇in, which
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never decreases to a lower value concerning the beginning.

Vliq =
π

4
D2

R h

Vgas = Vheadspace + (Vreactor − Vliq)

(5.27)

(5.28)

(a) Liquid volume dynamics and individual en-
tering flow rate.

(b) Gaseous volume dynamics resulting from
fixed term, Vheadspace, and from a variable term
related to liquid level.

Figure 5.7: Results of level dynamics for liquid and gaseous volume

A value for maximum and minimum height can also be provided to the model, which will
output an error message and suggest reducing or increasing the entering if this limit is
overcome.

5.3. Vapor-Liquid Equilibrium

The additional improvement to AM2HN results is the addition of the vapor-liquid equilib-
rium to assess the thermodynamic condition of the produced biogas. Up to the moment,
it is assumed that what is not converted to biogas remains in the liquid phase. Conse-
quently, no interactions with the rest of the system are considered. On the contrary, the
present work aims at giving a preliminary evaluation of the thermodynamic conditions of
the system.

It is assumed that the biogas produced accordingly to the equations already discussed
enters, along with water, a vapor-liquid separation unit where it reaches the equilibrium.
Water is the only element added to those constituting biogas because it is typically the
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principal constituent of the liquid phase. Its effect on thermodynamic equilibrium is the
most relevant. Consequently, the effects of the solids and the organic species are neglected.

At first, the specific flow rates given as output following the AM2 approach must be con-
verted into the correspondent extensive variable. This derivation is done by multiplying
the specific rate by the liquid volume Vliq obtained in 5.27. The resulting molar flow rates
Fi [mol h−1] are obtained for species i = {CH4,CO2,H2S} from equation 5.29, whereas
the one for is obtained accordingly to equation 5.30. The other terms are for the most
conversion units, except from γw [−], which defines the water fraction of the influent.
This value is typically known and, in the present study, is set to 0.97. This large value
is normal for WWTP, the type of plant considered in the present scenario. With all the
flows available, it is then possible to compute the feed molar fractions zi [−] for all the
four compounds considered: chCH4, CO2, H2S, and H2O, with 5.31. NC stands for the
number of components; thus, it is equal to four in the present case. As it is possible to see
from figure 5.8, the flow is mostly composed of water (consider the different scales in 5.8a),
which varies only according to deviation assigned to Qin. This result is reasonable since
water constitutes almost the entire digester influent stream and does not participate in
biochemical reactions. Conversely, the other streams result from digestion processes and
thus, as expected, vary when there is either a deviation in influent organic concentration
(days 8 and 15) or the total influent flow (days 1 and 22).

Fi(t) = qi(t)
Vliq(t)

24

FW (t) = γw · Q̇in(t) · ρH2O
1000

18 · 24
zi =

Fi∑N
i=1 CFi

(5.29)

(5.30)

(5.31)

The resulting molar flows are those that enter the separation unit, which is modeled
as an isothermal and isobaric flash separation, with one feed, F [mol h−1], and outlet
streams, one for vapor, V [mol h−1], and one liquid L [mol h−1]. For such a unit, it is
possible to derive from mass balances and stoichiometric equation the so-called Rachford-
Rice equation [122], which solution allows to determine the liquid-vapor equilibrium. This
method is commonly used in chemical engineering to estimate how a stream can be divided
between two phases accurately enough for many purposes.

f(α) =
NC∑
i=1

zi (Ki − 1)

1 + α (Ki(T )− 1)
= 0 (5.32)
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(a) Influent molar flow rate. (b) Influent molar fraction.

Figure 5.8: Flash influent stream characteristics.

Rachford-Rice equation (5.32) has to be solved for the vaporization ratio α = V
F

, with
F =

∑NC
i=1 Fi] as the total feed flow rate, and V =

∑NC
i=1 Vi as total outlet vapor flow rate.

The equilibrium equations have the shape described by equation 5.33, where yi and xi

are the molar fraction in the vapor and the liquid phase, respectively. The equilibrium
coefficient Ki assumes a different form according to the hypothesis of an ideal or real
gas mixture. For an ideal mix, it is given by Ki = P 0

i (T )/P , where P 0
i (T ) [atm] is the

compound vapor pressure at system conditions of T [K] and P [atm]. For supercritical
components, such as CH4, CO2 and according to system conditions eventually also H2S,
its value is given by P 0

i (T ) = Hi(T ), following Henry’s equation.

yi = Ki(T )xi (5.33)

The parameter α is obtained with the solution of the Rachford-Rice equation, and with
that value is possible to obtain the total liquid and vapor flow rates with 5.34 and 5.35.
The α dynamic trend is shown in figure 5.9, which generally shows an extremely low value
for that parameter, meaning that most of the influent flow is retained in the liquid phase.
This result is correct since most of the feed is water, which is the less volatile compound.
A consequence of the large quantity of water is the peaks corresponding to the deviations
of Qin. These peaks are not present when the deviation is assigned to XT,in because the
overall volatility change is more controlled when the difference comes from one of the
volatile species produced from organics degradation. Afterward, their composition can
be immediately obtained with equation 5.36 and 5.37. Once these values are known, it
is possible to compute also the value of the individual streams. The computation follows
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Figure 5.9: Flash vapor fraction from Rachford-Rice solution.

Vi = yi V for the vapor and Li = xi L.

V = αF

L = F − V

xi =
zi

1 + α (Ki − 1)

yi = Ki xi =
Ki zi

1 + α (Ki − 1)

(5.34)

(5.35)

(5.36)

(5.37)

The resulting streams are presented in figure 5.10 and 5.11 for vapor and liquid, respec-
tively. As it is predictable, the liquid stream is almost entirely constituted by water, with
a minor part of dissolved CO2 and H2S. Despite being more abundant than the other
two compounds in the influent, methane is less retained in the liquid phase due to its
extremely low solubility. For the gaseous stream, it is interesting to note that the water
percentage is not null, and neglecting its presence could have caused misleading results
in the definition of headspace reactions. Generally, the trends follow those defined by
the influent and, even, may not be perceived from the representation; also, the H2O and
H2S curves have a not constant trend. While the obtained liquid stream will define the
digestate and is thus not investigated anymore, the vapor stream goes from the liquid to
the headspace section of the digester. Consequently, this stream will constitute CSTR’s
feed according to the definition given at the beginning of this section.
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(a) Vapor stream molar flow rate. (b) Vapor stream molar fraction.

Figure 5.10: Flash outlet vapor stream characteristics.

(a) Liquid stream molar flow rate. (b) Liquid stream molar fraction.

Figure 5.11: Flash outlet liquid stream characteristics.

5.4. Headspace Dynamics

This section covers the ultimate purpose of the ADOCS model: the oxygen effect for
sulfide removal. Indeed, model additions made in the previous sections of the chapter
are general considerations that can also be applied to models such as AM2HN. Here
will instead describe the digester area where are not occurring the typical reactions of
anaerobic digestion are not occurring: the headspace. In fact, following the digester
description given in Chapter 2.3.2, this is the area where the microorganisms responsible
for sulfide oxidation are present, the sulfide-oxidizing bacteria (SOB), and their metabolic
reaction occurs.
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5.4.1. Mass Balances

The modeling approach is relatively simple and considers the headspace behaves like
a CSTR reactor, as shown in figure 5.1, as is commonly the case for anaerobic diges-
tion processes. This reactor has two influent streams, represented by the products of
anaerobic digestion and the oxygen injected to guarantee the microaerobic conditions for
SOBs. Then, a single mixed stream will leave the digester after a specific residence time
τheadspace [h]. The equation representing such a system is derived from the classical CSTR
balance in molar terms:

dni

dt
= ṅi,IN − ṅi,OUT + ri Vr (5.38)

Equation 5.38 has to be written for every species present in the system so that i = CH4,
CO2, H2S, H2O and O2. A new species, Sx, is also added to represent the elemental
sulfur produced by oxidation. It includes a term of accumulation dni

dt
[mol h ∗ −1]; the

influent and outlet molar flow ṅi,IN [mol h−1] and ṅi,OUT [mol h−1]; the term accounting
for generation or consumption due to reactions occurring ri [mol h−1m−3] and the reactor
volume Vr. The application of equation 5.38 to the headspace, as in the present case,
results in equation 5.39. There, the influent flow is the flash outlet vapor flow Vi, to
not confuse with a volume, and the reactor volume is Vgas, as defined in equation 5.28.
The reactive term rSOB is attributed only to SOB bacteria, assuming that that is the
only reaction occurring. Note also that in equation 5.38, the stoichiometric coefficient is
included in the reactive term, whereas it has been explicated in 5.39 as νi.

dni

dt
= Vi − ṅi,OUT + νirSOB Vgas (5.39)

Following the description given in the dedicated chapter, the reaction chosen to repre-
sent the system describes the conversion of sulfide into elemental sulfur, neglecting those
representing oxidation to other compounds. The model reaction is reported below:

2H2S + O2 2 Sx + 2H2O (R12)

Consequently, according to reaction R12, two species, CH4 and CO2, are treated as inerts,
and consequently, their outlet flow rate is equal to the rate entering the headspace. The
other species, namely H2S, H2O, O2, and Sx, are considered reactants or products and
thus require a dynamic representation. In particular, H2S, H2O, O2 are gaseous species,
and the influent flows are defined as the gaseous stream exiting the flash for the first two
and as an externally manipulated variable for oxygen. Conversely, Sx is a solid species
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whose influent flow is null, whereas the outlet is neglected. It implies that all the sulfur
produced will be retained inside the digester, as commonly occurs when microaeration is
performed. The complete set of equations describing the headspace is given below:

ṅM,OUT = VM

ṅC,OUT = VC

dnS

dt
= VS − ṅS,OUT − νSrSOB Vgas

dnW

dt
= VW − ṅW,OUT + νW rSOB Vgas

dnO

dt
= ṅO,IN − ṅO,OUT − νOrSOB Vgas

dnSx

dt
= νSxrSOB Vgas

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)

The influent flows are given by Vi [mol/h] for all the species originating from the flash. The
term for oxygen is instead given by ṅO,IN [mol/h] since it is determined externally. The
stoichiometric coefficients are not defined explicitly from reaction R12 apart from their
sign since their experimental value may slightly differ from the theoretical one, as will
be discussed in the section dedicated to the kinetics considered. Equations 5.40 and 5.41
represent the two inert species for which no reactions occur. Equations 5.42 to 5.45
are those describing the SOB kinetics and are related by the reactive term rSOB, which
shape will now be discussed. Moreover, the direct dependence on the gaseous volume
also considers the reactor’s residence time, which is a significant parameter impacting
microaeration effects [99]. The presence of the headspace, where the gas streams will
be retained for a certain amount of time, inserts a lag-time to the system. In fact, a
molecule entering the headspace at t = t0 will exit it a tout = t0 + tauheadspace(t = t0).
The terms tauheadspace [h] is the headspace residence time, defined as tauheadspace =

Vgas

Qvap
,

where Qvap [m3 h−1] is the volumetric equivalent of the CSTR influent flowrate from the
flash V . Consequently, when analyzing the results, it should be kept in mind that they
need to be shifted to tout, even though they will be presented according to the inlet
time t to help the comparison. An idea of the difference between the two times is given
in 5.12, where the headspace residence time is plotted against both the defined time
vectors. Furthermore, it is relevant to highlight that the obtained residence times of 1 to
5 hours well match industrial values present in the literature [54]. It is also important to
consider that oxygen is an inhibitory term for anaerobic bacteria, such as methanogens.
The approach is already described and follows the ADM1 way of expressing inhibitions.
The methane outlet molar flow rate nM,OUT is multiplied by an inhibition function for
oxygen IO2 (Equation 5.48), which value is in the range [0-1], where one represents a
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Figure 5.12: Headspace residence time on two axes. Lower axis refers to the absolute time
t; upper axis refers to shifted time tout.

null effect of inhibition. The effect is analogous to the inclusion of an additional term in
the AM2 expression describing methanogenesis (Equation 3.16), which has been already
modified to account for sulfide inhibition as given in 5.15. The full result of this approach
could be seen as 5.47, which is, however, not implemented as it is directly comprised in
equation 5.48. The effect of inhibition is consequently added a posteriori to the produced
methane stream. It should require a re-estimation of the flash-CSTR system to bring
the system to convergence. However, the modification added by this term is practically
irrelevant; thus, that step can be avoided. The shape of the inhibition function and its
constant KI,O2 = 3.293807642e−3 [kg m−3] have been determined according to literature
sources [98], [121]. The term SO [kg m−3] refers to the oxygen concentration in the liquid
medium, inhibiting the methanogens, and is calculated from the gaseous concentration
with Henry’s equation. It has been noted that its value is typically low, as it should
also be by accounting for the oxygen solubility in water and the activity of the facultative
microorganisms, and so almost null will also be the inhibition effect. This is shown in 5.13,
where the value of IO2 is presented according to the gaseous oxygen fraction (Figure 5.13a).
The almost irrelevant effect on methanogenesis is also shown in figure 5.13b, where it is
possible to observe that the reduction caused by oxygen is orders of magnitudes lower
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than that caused by sulfide (note the y-axis scale).

IO =
1

1 +
KI,O2

SO

qM = k6 µ2X2 IS IO

ṅinhib
M,OUT = ṅM,OUT · IO

(5.46)

(5.47)

(5.48)

(a) Oxygen Inhibition function as a function of
headspace oxygen molar fraction.

(b) Effects of oxygen inhibition on qM .

Figure 5.13: Oxygen inhibition function and its effects on the system, with the relative
difference with the uninhibited term.

5.4.2. SOB Kinetics

There are two possible approaches to describe the kinetics of sulfide oxidation. The first
follows biochemical-inspired reasoning and includes the SOB population’s representation,
their sulfide uptake, and their sulfur production. This approach is used in ADM1-S/O [98]
and requires at least three additional differential equations to be solved simultaneously.
A second approach is more mechanistic and assumes that it is possible to fully describe
the sulfide oxidation with a power law kinetic expression. That is of the type rSOB =

kSOB cαS cβO, where kSOB is an experimental kinetic constant; cS and cO are reactants (H2S
and O2) concentration, and α and β are experimental parameters. Such an approach
is commonly used and has proved efficacy in describing chemical oxidation [55], [98].
In contrast, there are few references, but with positive feedback, for its applicability to
biochemical oxidation [102].
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During SOB activity, a combination of chemical and biochemical oxidation has been
proved, with the latter being slightly more relevant and faster [99]. The fact that ADOCS
is thought of as a lumped model which aims to describe the microaeration effect with a
little computational effort and with a few numbers of parameters has guided the choice to-
wards the description of sulfide conversion as a single process, including both biochemical
and chemical oxidation under a common expression. Consequently, a power-law kinetic
has been used to define the reaction rate occurring in the headspace.

To define the parameters to be used with a lack of experimental capacity, literature sources
have been investigated [99], [102]. A large parameter variability is present due to different
environments and estimation methods. However, a common basis is to have the kinetic pa-
rameters in terms of mass instead of moles, giving rSOB [gS m

−3 h−1]. The concentration
is so defined as wi [gim

−3] to simplify the notation and limit the possibility of confu-
sion, and can be directly derived from their molar equivalent with simple manipulations.
Consequently, the kinetic constant assumes the unit of

[
(gS m

−3)
1−α

(gO2 m
−3)

1−β
h−1

]
.

Despite the differences, some common considerations can be derived from those parame-
ters available in the literature. It is important to remind that these values usually refer
to or are calculated for chemical oxidation. In particular, there is usually a linear de-
pendence from sulfide concentration, giving α close to 1 in most cases. Conversely, there
is less consensus regarding the term for oxygen concentration, but most models agree in
defining a low dependence from that variable, posing β between 0 and 1. Regarding the
last parameter, kSOB, there is a large variability in the results available, but in general, a
value in the range 0.1 − 1.5 seems to be accepted. In conclusion, the stoichiometric coeffi-
cients are often defined in terms of mass and equal to Rb = 2 gS g

−
O2
1 for pure biochemical

oxidation, equal to the theoretical molar ratio. However, when chemical oxidation is also
considered, it can be possible to reduce this value to 1.7 or 1.8. The major study that
proposed and validated a power-law expression accounting also for biochemical oxidation
has been used as the main reference for the present case [102].

Equations 5.42 to 5.45 can be finally completed to describe the headspace dynamics, pro-
viding the following set of equations, where the reactive term is divided by the molecular
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weight of sulfur MWS [gS mol−1] to convert it to a molar basis.

dnS

dt
= VS − ṅS,OUT − rSOB Vgas

MWS

dnW

dt
= VW − ṅW,OUT +

rSOB Vgas

MWS

dnO

dt
= ṅO,IN − ṅO,OUT − rSOB Vgas

MWO2 Rb

dnSx

dt
= +

rSOB Vgas

MWS

with: rSOB = kSOB wα
S wβ

O

(5.49)

(5.50)

(5.51)

(5.52)

(5.53)

In the present simulation, an example influent flow rate for oxygen has been defined at each
time step according to the individual biogas flow rate as QO,IN = 0.015 ·Qbiogas [m

3 h−1].
Moreover, according to Euler’s backward method, the differential equations are solved in
their discretized form to increase the system’s stability. To do this, the number of moles
for each species is related to the respective flow rate by ni(t) = ṅi,OUT (t) · τheadspace(t).

The results obtained for the CSTR modeling approach of the headspace are reported in the
graphs 5.14 and 5.15. Figure 5.14 presents what occurs to the gaseous stream, with full

(a) Biogas molar flow rate. (b) Biogas molar composition.

Figure 5.14: Headspace biogas stream characteristics. Full lines: digester outlet; dashed
lines: headspace influent.

lines representing the variables of the outlet and dashed lines representing the respective
headspace influent for variables where that presentation is relevant. It is possible to notice
the large reduction in H2S concentration (shown in [ppm], as it is commonly done) thanks
to SOB activity. Being the influent oxygen defined as a constant flow, it is less abundant
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in the outlet stream when a larger amount of sulfide is present in the influent. This
result is because the more H2S enters, the more will be present in the CSTR. This rise
increases the reaction rate, leading to larger oxygen consumption. It is rarely the case
since microaeration, by definition, leads to small oxygen concentrations. However, an alert
message should be prompted if the oxygen reaches the flammability region for the mixture.
Figure 5.15 shows two process parameters that are also useful to assess the quality of the

(a) Sulfide removal efficiency. (b) SOB reaction rate.

Figure 5.15: Results of SOB activity in the headspace. Full lines: instantaneous value;
dashed lines: averaged value.

model presented, despite the lack of experimental data. Indeed, it is possible to see that
for both the removal efficiency, defined as ηremoval =

nS,IN−nS,OUT

nS,IN
, and the reaction rate

rSOB fall within ranges reported in the literature [54], [99]. In particular, the average value
of the latter of 1.18 mg L−1 h−1 = 28.32 mg L−1 d−1 is in good agreement with average
reference values ranging within 12 − 60 mg L−1 d−1, considering those referred either to
chemical or biochemical oxidation [99], [102]. Moreover, the model also represents the
relationship between headspace residence time and removal efficiency, with the latter
substantially reduced when τheadspace decreases. As clear from the comparison emerging
from this picture, the impact of reaction rate on the efficiency is not comparable with the
one of the reactor headspace, which largely affects the results. This demonstrates how
vital it is to model the digester’s liquid level to obtain a dynamic headspace volume.

5.5. Industrial Case Study

In order to prove the model’s validity in industrial scenarios, is performed a comparison
with data provided by a company. The data refer to a plant owned by Thöni GmbH,
referring to a medium-size digester that produces 1 MW of power. The data available
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were not highly detailed, so several assumptions must be made in some cases.

The available data refer to an entire winter month, specifically January 2022. Their
origin is from an unknown plant in the Trentino-Alto Adige region, where microaeration
for sulfide abatement is carried out. The plant is constituted of one digester and one
post-digester. Consequently, only the first is modeled, and the absolute values of the
data are considered accordingly. Data available are the amount of influent and its origin,
measured daily. From that, rough information about the organics’ composition can be
deduced and used in the model. Moreover, it is assumed that the influent is a constant
flow since no field information is available. Moreover, data regarding the resulting gas
composition are available before and after the microaerobic treatment.

The oxidative flow is constituted by air, and its flow is not subjected to a detailed mea-
surement. Consequently, the possibility of having air instead of pure oxygen is added to
the ADOCS model. As a rough indicator, a range of 8−10 m3 h−1 is therefore considered,
accordingly to the given information.

The identification is performed to obtain the model parameters as described in the current
work. It must be highlighted that, due to a lack of detailed information, the ADM1 sim-
ulations may need to be more accurate. The information about the influent is converted
into the respective concentrations of protein, carbohydrates, lipids, and inert fractions to
have acceptable entering values for ADM1. For ADOCS, the given input is condensed
into two variables: Qin [m3 d−1] and XT,in [kgCOD m−3], standing for total influent flow
rate and organics concentration, respectively. The data manipulated as ADOCS input for
all the days available are shown in 5.16.

5.5.1. Results Comparison

The results are shown for two weeks, starting from January 14th. This period is chosen
because the impact of the first influent data available is seen after some time due to the
lag times typical of AD systems. After fourteen days, it is reasonable to assume that the
outputs are affected only by the known data and not by whatever happened before the
information became available.

Overall, the model predicted represents quite well the system behavior, even though, in
some cases, the dynamics could be more perfectly reflected. Consequently, it is possible to
conclude that the ADOCS model satisfactorily represents a complicate system with large
fluctuations and instabilities. In particular, figure 5.17a shows how the model well-predicts
the general absolute values for methane production and sulfate reduction processes. It is
also interesting to highlight that ADOCS perfectly reflects the ADM1 results for the CH4
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Figure 5.16: Given influent data expressed as ADOCS variables

fraction. ADM1 does not represent the minimal deviations present in the data, making
it possible to conclude that the available input data are probably insufficient to reflect all
the occurrences.

Figure 5.17b shows that, despite some incorrect trends, the general behavior is adequately
predicted. The ultimate goal of ADOCS is to asses whether the injected oxygen is enough
to reduce the sulfides to an acceptable value. This result can be assessed by looking at
absolute results for concentration.

(a) Pre-microaerobic treatment results. (b) Post-microaerobic treatment results.

Figure 5.17: Comparison between industrial data and model predictions.
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The ADOCS model is developed to provide a possible application within a real-time
control system for sulfide reduction by microaeration. Such a technology can be obtained
by implementing the sections described in the previous chapters. Indeed, while the base-
case study has been described with predefined influent deviations, it is possible to use data
obtained from an actual plant instead. The data required are, in fact, commonly available
and frequently measured: total flow rate, organics, carbon and nitrogen concentration,
and pH for the influent; design parameters such as diameter and volume of the reactor to
provide the extensive variables.

Figure 6.1: Proposed control algorithm for practical applications of ADOCS model.

The proposed control algorithm to be adopted is shown in figure 6.1. It is built on three
macro-blocks: the ADOCS model, the identification procedure, and the control action.
These are all called, directly or indirectly, from the main code, which retrieves the influent
data at each period considered. The identification has to be performed in two cases, at the
beginning and in case of large influent deviations. If it is the first time using the model
in that plant and there are no parameters available, there are no other choices but to
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estimate them. Consequently, steady-state data should be obtained for different retention
times with ADM1 simulations, and then the identification can be performed as described
in chapter 4.3.1. Eventually, it could also be possible to use the AM2 identification
approach and thus use field measurements for this purpose. However, the validity of
this hypothesis is not further investigated since the ADOCS model has been built with
its identification procedure. In another case, identification may be required: when the
influent variables are consistently different from the ones for which the estimation has
been carried out. This situation does not frequently happen since, most of the time,
anaerobic digesters are designed to operate within a well-defined and specific range of
influent conditions. In fact, for deviations to values relatively close to the one assessed
initially, a re-parametrization is not necessary, as the lumped approach suggests limiting
the computational efforts needed. As a rule-of-thumb, it is possible to say that a new
identification is required if the influent variable varies by more than the 70% of their
original values for the most sensitive variables: influent total flow rate Qin and influent
organic concentration XT,in. That value can be higher if a significant deviation is limited in
time. Whenever proceeding with a new identification, a rough estimation can be done by
changing the influent variables without changing the steady-state dataset, thus avoiding
the ADM1 simulations. This approach, however, produces misleading results since it
implies that different sets of influent data will produce the same steady-state process
variables. As a result, proceeding to new ADM1 runs should be preferred whenever it is
needed to re-parametrize the model.

When the parameters are obtained, it is possible to perform the simulation of anaerobic
digestion according to the ADOCS model for the desired time horizon. If an oxygen
injection is present, it will be considered to evaluate the SOB activity. At this point,
the model will assess if the predicted H2S concentration in the exiting biogas is lower
or higher than the acceptable threshold, fixed by the operator according to the biogas
usage. An acceptable concentration can result in adequate oxygenation or low production
of sulfides by SRB. The latter situation can be the case, for example, when the digestion
of sulfate-deficient substrates occurs.

If the prediction of sulfide content in biogas is not acceptable, namely because H2S con-
centration is higher than the threshold value, the oxygen injection will be increased to
reduce it. As can be seen in the diagram, the connector between the control action and
the ADOCS model is bidirectional. This representation occurs because the control action
is not defined by itself and is added to the model. In contrast, it is defined according to
the effects it produces in the system as calculated by the ADOCS model. This approach
allows the estimation of the correct timing and the magnitude of oxygen injection that
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will keep the existing sulfide concentration within the acceptable range if the intrinsic
characteristics of the system make it possible. The sulfur concentration can be so high,
or the threshold so low, that microaeration cannot reduce enough sulfide content, for
example, because it would require an amount of oxygen too large to be sustained.

More details on the procedure established to perform a first predictive optimization of
the oxygen injection are provided in the next section.

6.1. Oxygen Injection Control

This section will present several examples to define and headline the importance of having
a control system based on a predictive model. The established procedure to assess the
oxygen dosage is thus described for two possible solutions: one where the oxygen injection
is based on a non-predictive scenario and the second where a predictive approach is
pursued. The latter’s advantages are consequently highlighted, and such a procedure is
applied to the base-case scenario.

The study examples are obtained with values for the variables obtained from partial
simulations of the base-case scenario. However, they do not represent in any manner
the case study. The first results are thus only used to describe the injection technique
defined, which is applied to the base-case scenario in the last section of this chapter. The
influent variables are those entering the headspace, namely the amount of biogas produced
resulting from digestion (constituted by CH4, CO2, and H2S) and of oxygen injected from
the outside. The values of composition are reported following general industry standards.
Consequently, H2S fraction is referred to in terms of [ppm] (parts per million), whereas
the [%] (percentage) is used for all the other species considered. In all the examples
proposed, the headspace residence time is constant, so the effects of sulfide removal are
only dependent on the concentration of the reactants according to the power law kinetic
equation applied. In addition, a maximum value of O2 flow rate is also assigned to provide
more realistic results. This constraint can be reasonably defined according to the available
system, for example, the pipes of the injection system in real applications; or as a certain
percentage of the biogas produced. The latter method should be preferred when a limit
in the existing concentration is desired.

Finally, no dynamics are designed for influent oxygen flow rate. Consequently, the results
shown can be considered the setpoint value for this variable. This approach can lead to
slightly misleading results in some cases. However, due to typical periods (fraction of hours
or more) for control routines of AD systems, the error produced by this simplification is
often negligible.
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6.1.1. Non-predictive Injection

In this case, the ADOCS model is used to evaluate the impact of microaeration in that
the amount of oxygen injected is increased only when the H2S concentration is detected to
be above the defined threshold. The simulation starts from stationary conditions where
a constant O2 addition is performed, providing an exciting sulfide concentration lower
than the threshold. In this case, the maximum value for injected O2 is defined as 1.5%
of the total biogas flow rate, according to the rules of thumb of microaeration described
in the dedicated section. To highlight the effects of microaeration, for H2S are reported
both the entering and the exiting compositions. As it is possible to see from figure 6.2, at

(a) Composition of gaseous stream, with the H2S
threshold highlighted.

(b) Oxygen injection flow rate, with its maximum
value.

Figure 6.2: Results of oxygen injection control based on a non-predictive control system.

t = t∗ = 20 h, it is assigned an increase in the headspace influent concentration of H2S.
This step increase in the influent results in a value of measured - calculated - concentration
in the exiting stream yH2S,out [−] above the threshold. Consequently, the amount of oxygen
injected is increased to return the yH2S,out to an acceptable value. The way by which the
entering oxygen flow rate is adjusted can be described as follows:

• A constant value is defined as the minimum flow rate possible (in this case, it is
2.2 mol h−1).

• When this value is not enough to produce a concentration lower than the threshold,
it is raised by a certain amount ∆n (in this case, by 0.1 mol h−1). In the present
case, it occurs at the time t = t∗ when the deviation is assigned. The value obtained
by adding ∆n to the starting value corresponds to the possible regulations which
can be provided to the injecting system.
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• The resulting value will produce a new result for exiting sulfide concentration. If
this value is acceptable, the next time step can be evaluated. Otherwise, the loop
is repeated by increasing the oxygen dosage rate again by ∆n.

• If the maximum influent flow rate is reached, but the yH2S,out is still higher than
its threshold, the loop is also broken, and the next time step t = t∗+1 is evaluated.
This situation means that microaeration for that system needs to reduce the sulfide
concentration more.

Microaeration succeeds in finalizing the control action yielding outlet concentrations lower
than the defined threshold. However, this approach leads to some criticalities.

The H2S outlet concentration is lowered to an acceptable value with an oscillatory be-
havior. Consequently, the biogas contains a too high amount of sulfide for a certain time
range. In some cases, this is unacceptable since the threshold must be strictly respected
to avoid critical issues in the later phases of biogas processing. Moreover, in a real sce-
nario, the critical value of yH2S,out triggering the control action is detected only at the
moment when the biogas leaves the digester, producing a further delay in the injection
and consequently a more extensive time with impure biogas. It can be noted that no
limits are given to the oscillatory behavior of the entering flow rate. That is done to allow
the algorithm to detect the exact amount of oxygen dosage for each time unit considered,
but of course, such frequent changes are rare to be seen in an actual application. Again,
this is an ideal first approach to a possible control system subjected to additional physical
boundaries in a defined application.

6.1.2. Predictive Injection

A predictive oxygen injection can limit and avoid the overshoot in exiting sulfide con-
centration when the control action is performed, keeping its value consistently below the
defined threshold of acceptability. The term predictive means that the control scheme
can estimate what will occur in the system and act consequently. This method allows
anticipating the control action accordingly to what a deviation to system conditions will
create, keeping its effect consistently below the acceptable range. The basis upon which a
predictive control system lies is the mathematical model of the process examined, which
should give the representative prediction of the system behavior.

A better explanation of what occurs when predictive oxygen injection is done is given
by applying it to the examples presented in section 6.1.1 for a non-predictive injection.
In that case, the yH2S,out shows an oscillatory behavior after the control action, bringing
values above the threshold for a certain period.
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The resulting example, with a predictive oxygen control action, is reported in figure 6.3.
From a quick view, it is possible to see that the control action, triggered by the not accept-
able yH2S,out, is anticipated by a certain time. This anticipation allows acting previously
on the system and preparing it for the upcoming deviation. As a result, the value of the
exiting sulfide concentration is always below the defined threshold.

(a) Composition of gaseous stream, with the H2S
threshold highlighted.

(b) Oxygen injection flow rate, with its maximum
value.

Figure 6.3: Results of oxygen injection control based on a predictive control system.

The logic behind the anticipation, obtained by upgrading the non-predictive one of the
control action, is explained as follows:

• When the simulation reaches the time t = t∗ at which a critical H2S concentration is
obtained, at first, the control action is the same as in the non-predictive approach.
Consequently, the influent flow is increased step-by-step when either an acceptable
value of the exiting H2S fraction is obtained or the influent flow reaches its maximum.
At this point, the non-predictive control shows its limit, and the next time step
(t = t∗+1) is evaluated. In the predictive approach, a different procedure is instead
performed.

• The value of the influent oxygen flow rate is increased up to its maximum (i.e., fully
open valve) at the previous time step (t = t∗−1). The simulation is then repeated
between that instant and the actual time t = t∗ to assess the impact of the new
condition.

• The resulting yH2S,out(t
∗) new value is then compared with the threshold. If it is

below, thus acceptable, the anticipation is enough, and it is possible to proceed to
the next time instant t = t∗+1. On the contrary, if the new sulfide concentration is
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still too high, the anticipation is not enough. Consequently, the algorithm returns
one step more to t = t∗−2.

• The loop is then repeated until the anticipation allows to have an acceptable value
for yH2S,out(t

∗). It is possible that the anticipation goes back to the initial time of
the simulation t = t0, and an acceptable value for the considered concentration still
needs to be obtained. In this case, the initial conditions and the system design
cannot sufficiently reduce the sulfide quantity. An example of this situation is given
in figure 6.6.

The schematic view of the described algorithm is provided in figure 6.4. In a non-predictive
solution, after reaching the maximum flow rate for the current time, the next time step
is evaluated instead of entering the larger loop. The efficacy and the robustness of the

Figure 6.4: Schematic of the proposed algorithm for the control action in the predictive
control system.

method established are also evaluated in two other examples. The first one is derived from
the previous example by including a negative deviation; the second aims to estimate the
system response to a larger number of deviations instead. Figure 6.5 shows how the system
behaves when a lower value enters the headspace after a period with a rich H2S influent.
If the entering oxygen is not modified, a lower sulfide concentration also results in a low
concentration at the headspace outlet. However, the aim of the control action is not to
reduce as much as possible the sulfide concentration, but to keep it below a given threshold.
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(a) Composition of gaseous stream, with the H2S
threshold highlighted.

(b) Oxygen injection flow rate, with its maximum
value.

Figure 6.5: Results of oxygen injection control based on a predictive control system.

In this case, the previous oxygen flow rate is too large and unnecessary to reach this target
since a minor quantity could be utilized, reducing the associated operating costs. As a
result, when the algorithm detects this kind of situation, the minimum amount of oxygen
is injected. This situation occurs, in the example, at t = 60 h, and the influent is set back
to one, which is the minimum arbitrarily assigned. Eventually, this minimum can also be
set to zero to avoid unnecessary oxygen consumption.

The last example provided, which results are shown in figure 6.6, aims at simulating a
scenario with a large number of deviations in the headspace influent concentration of
sulfide. Consequently, a large variability is obtained for the oxygen injection flow rate.
This practical example provides two important considerations previously anticipated from
the theoretical point of view. At first, it is possible to see a case in which microaeration
fails to satisfy the requirements of sulfide reduction. In fact, as a consequence of the large
H2S influent concentration between hours 10 and 20, the anticipation of the control action
goes back to the initial time. There needs to be more, and the exiting sulfide concentration
is still above the threshold for a certain period. This issue can be tackled either by
increasing the allowed flow rate of oxygen or by going further back in anticipating the full
opening of the injecting valve (clearly, in the example proposed, this is only possible after
the start of the simulation is reached).

The other important consideration emerging from this example is that it minimizes the
injected oxygen quantity. The starting point for oxygen dosage quantity is null, and the
injection will occur only when needed. As it is possible to see, between hours 20 and
30, the exiting sulfide concentration is lower than the threshold, and thus the injection
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(a) Composition of gaseous stream, with the H2S
threshold highlighted.

(b) Oxygen injection flow rate, with its maximum
value.

Figure 6.6: Results of oxygen injection control based on a predictive control system.

is stopped. Also, the oxygen concentration within the headspace gradually lowers. Since
that is directly responsible for the amount of sulfide converted when it is too low, the
reaction occurs too slowly. The sulfide concentration will rise again even if the entering
is constant. As a result, at a certain point, more oxygen is to be added to the system to
reestablish acceptable conditions.

6.2. Application to the Base Case

The predictive control action is finally presented compared to a scenario with an un-
controlled microaeration. The example shows how intermittent and controlled oxygen is
beneficial for the system in avoiding an excessive oxygen dosage.

The base case is presented with an oxygen injection proportional, at each moment, to the
total biogas flow rate. In particular, it is considered that Qin,O2 = 0.03 · Qtot,biogas. Such
value is coherent to commonly applied standards and can almost always keep the sulfide
concentration under the threshold defined. That maximum amount is arbitrarily set to
500 ppm to guarantee a reasonable removal efficiency (around 80%) without overloading
the control action requirements. An arbitrary value of maximum influent flow rate for
predictive addition is also defined and set equal to 10% of total biogas. The minimum
injection is set to 0.1 m3 h−1 to guarantee always a minimum amount of oxygen and to
avoid any numerical issue in the simulation.

Figure 6.7a shows how the uncontrolled injection of oxygen leads to exceeding the thresh-
old when the influent amount of sulfide is higher, which is never reached in the controlled
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(a) Composition of gaseous stream, with the H2S
threshold highlighted.

(b) Oxygen injection flow rate, with its maximum
value.

Figure 6.7: Results of controlled and comparison with uncontrolled injection for base case
scenario.

case. On average, it is possible to note that during specific periods the uncontrolled sce-
nario leads to a lower amount of sulfide in the treated biogas. This behavior is a result of
the optimization approach chosen, which, as discussed before for the case, does not aim
at providing the minimum amount of sulfide. The target is to keep the H2S concentration
in the treated biogas below the defined threshold with the minimum amount of oxygen.

When an entering peak is present, there is also an increase in the inlet oxygen flow
in order to bring the final sulfide below the critical zone. This situation is confirmed
by figure 6.7b, which presents the injected flow rate. In fact, during the first days, a
minimal injection is enough to keep the sulfide concentration below 500 ppm. These
results also highlight that, in a close-to-reality scenario, the oscillations of the influent
observed before are not present, and neglecting the dynamics of the control action is
a reasonable assumption. Furthermore, within the thirty days of the simulation, the
automatic control action guarantee a saving of more than 900 m3 of oxygen.
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The present work aims to provide a preliminary quantitative assessment of microaeration
for sulfide removal in practical contexts. A first lumped model describing sulfate reduc-
tion processes and sulfide oxidation is presented. That model is ultimately applied in a
complete control algorithm for oxygen injection.

Overall, it is possible to conclude that the proposed model can adequately predict the
sulfide fraction in biogas. Applying the model in the control algorithm satisfies the ex-
pectations regarding the intermittence of the oxygen injection, providing it only when
required.

7.1. Limitations of the Work

Despite the tentatives done to describe the effects of microaeration within anaerobic di-
gestion completely, the present work is subject to significant limitations. Those will be
therefore explained in this section.

The interest in ADOCS application is to get good results for ADM1 steady-state vari-
ables, which are easier to predict with a limited number of parameters than more complex
models. The model parameters are estimated according to ADM1 results. Consequently,
ADOCS can be accurate only if ADM1 provides data accurate enough to obtain a suc-
cessful calibration. According to ADM1 required inputs, this situation can take much
work to be obtained in some cases. However, continuous improvements and increasing
applications are enlarging ADM1’s range of use, with validated results and parameters
for more and more substrates. Thus, it can be reasonable to assume that the present
limitation will be reduced with time.

The complete control algorithm is built on several inter-dependencies between the input
data, the model, and the control action definition. Consequently, its real-time applica-
tion may suffer instability if the data are not managed correctly or if the periods are not
defined carefully. Moreover, the ultimate definition of acceptability for the H2S concen-
tration prediction relies on the representation of oxidation reaction. It has already been
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highlighted the fact that the lack of detailed information about its kinetic parameters is
a relevant constraint.

For a possible application of the ADOCS model in an industrial context, which is its
ultimate purpose, a complete acceptance of the mentioned limitations is needed. The
model is valid enough if its results are compared to referenced literature values. However,
every single real case shows a large variability in its conditions. Sometimes it is easy
to convert the influent available data to model inputs. The reactor design can only
sometimes be compared to the one assumed by the ADOCS model (i.e., CSTR-cylindrical
tank reactor type, with headspace varying accordingly to the level of liquid phase). The
oxidation kinetics, expressed with power-law kinetics, may largely depend on bacteria
concentration. Thus, avoiding their representation by a proper microbial kinetic equation
may only sometimes be correct. The industrial scenario presented highlights traits that
must be assessed for such an application. However, in that case, acceptable results have
been obtained by reconciling the available data to the results arising.

The definition of the control system presented does not include any consideration of the
characteristics of the dynamics of the practical controller implemented. This choice is
made because it is impossible to know a priori which type of actuator is going to be
used. Furthermore, the dynamics may not be impacting since, in a real-case scenario, the
control action is evaluated with a relatively significant time step (10-30 minutes). The
difference between the set-point values is slight, considering that typically axial pumps
are used for oxygen injection, and these can perform step variations of flow rates quite
quickly. It is thus reasonable to assume that the manipulated variable, at every time step
considered, is not strongly affected by the control dynamics.

7.2. Further Research

The current work aims to serve as a startig point for further investigation into optimizing
microaeration effectively in anaerobic digestion systems. Therefore, it is noteworthy to
highlight some possible modifications that could increase the current work’s accuracy and
robustness while reducing the influence of the previously indicated limitations.

More attention must be paid to the identification procedure. It is necessary to look
more closely at the stability of the proposed method employing ADM1, which may only
sometimes be coherent. More precisely, it is critical to understand how to estimate ADM1
steady-state outcomes simply when only limited information is provided. Furthermore, a
possible generalization of the reactor scheme proposed should be investigated, including
the addition of non-idealities in the evaluation of phase equilibrium.
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In general, extra experimental validation should be carried out for practical applications.
The development of more precise parameters for the kinetics of sulfide oxidation and the
validation of those used in the sulfate reduction models can thus benefit from more on-the-
field data. It can also be of interest to add the control system dynamics for completeness
and to verify the magnitude of the error eventually arising from the assumption.
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A.1. Steady-state Data for Identification

This section collects the steady state data resulting from ADM1 simulations (or obtained
from the literature) for the three cases presented.

• Dataset 1: AM2HN Simulation comparison and reference for the base-case

• Dataset 2: Second set used for further validation of the identification procedure
presented

• Dataset 3: Industrial case used to validate the ADOCS model
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A.2. Model Inputs

Table A.4: Base Case Operating Conditions

D [1/d] T [°C] P [atm] Dr [m] Vreactor [m3] Vheadspace [m3]

0.5 35 1 20 3400 350

Table A.5: Industrial Case Operating Conditions

D [1/d] T [°C] P [atm] Dr [m] Vreactor [m3] Vheadspace [m3]

0.0725 42.5 1 30 4050 350

Table A.6: Base Case Influent Conditions

S1,in

[gCOD/L]

S2,in

[mmol/L]

Cin

[mmol/L]

Zin

[mmol/L]

XT,in

[gCOD/L]

Qin

[m3/d]

pHin

[-]

γS,in

[-]

xW,in

[-]

0.012 0.000499 40 10 32 170 6.78 0.02 0.97

Table A.7: Industrial Case Study Influent Conditions

S1,in

[gCOD/L]

S2,in

[mmol/L]

Cin

[mmol/L]

Zin

[mmol/L]

XT,in

[gCOD/L]

Qin

[m3/d]

pHin

[-]

γS,in

[-]

xW,in

[-]

0.00 0.00 0.1 0.0026 41.08 290.7 6.5 0.0024 0.053
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Table A.8: Base Case Influent Deviations

Dev. time [day] S1,in S2,in Cin Nin XT,in Qin γS,in xW,in

1 1 1 1 1 1 1.1 1 1

8 1 1 1 1 1.1 1.1 1 1

15 1 1 1 1 1 1.1 1 1

22 1 1 1 1 1 1 1 1
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Table A.9: Industrial Case Study Influent Deviations

Dev. time [day] S1,in S2,in Cin Nin XT,in Qin γS,in xW,in

1 1 1 1 1 0.998 0.993 0.982 0.89

2 1 1 1 1 0.996 0.985 0.963 0.77

3 1 1 1 1 0.996 0.985 0.963 0.77

4 1 1 1 1 0.996 0.985 0.963 0.77

5 1 1 1 1 0.996 0.985 0.963 0.77

6 1 1 1 1 0.997 0.989 0.972 0.83

7 1 1 1 1 0.997 0.989 0.972 0.83

8 1 1 1 1 1.000 1.000 1.000 1.00

9 1 1 1 1 1.000 1.001 1.002 1.01

10 1 1 1 1 1.001 1.004 1.011 1.07

11 1 1 1 1 1.001 1.004 1.011 1.07

12 1 1 1 1 1.001 1.004 1.009 1.06

13 1 1 1 1 1.001 1.004 1.009 1.06

14 1 1 1 1 1.002 1.007 1.018 1.11

15 1 1 1 1 1.002 1.007 1.018 1.11

16 1 1 1 1 1.002 1.007 1.018 1.11

17 1 1 1 1 1.000 1.044 1.005 1.08

18 1 1 1 1 1.000 1.044 1.005 1.08

19 1 1 1 1 1.000 1.044 1.005 1.08

20 1 1 1 1 1.001 1.047 1.014 1.13

21 1 1 1 1 1.002 1.051 1.023 1.18

22 1 1 1 1 1.002 1.051 1.023 1.18

23 1 1 1 1 1.002 1.051 1.023 1.18

24 1 1 1 1 1.006 0.979 1.050 1.26

25 1 1 1 1 1.006 0.979 1.050 1.26

26 1 1 1 1 1.009 0.906 1.082 1.36

27 1 1 1 1 1.009 0.906 1.082 1.36

28 1 1 1 1 1.009 0.906 1.082 1.36

29 1 1 1 1 1.009 0.906 1.082 1.36

30 1 1 1 1 1.009 0.906 1.082 1.36

31 1 1 1 1 1.009 0.906 1.082 1.36
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B.1. Identification

(a) Equation on methane molar flow. (b) Equation on carbon molar flow.

Figure B.1: Tri-dimensional visualization for results on multi-variable regressions on equa-
tions 4.18 and 4.19.

Figure B.2: Gaseous Variables for Dataset 2
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Figure B.3: Process Variables results for Dataset 1
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Figure B.4: Process Variables results for Dataset 2
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B.2. ADOCS Model

Relevant results for comparison
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