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Abstract

Recommender System is an information filtering system applied to predict the rating that
a user would give to an item. With the user’s history behaviors and item attributes, the
system can generate a personalized recommendation list consisting of the items which a
user may like in the future. To seek to improve satisfaction in users’ shopping experience
and engagement with a product service, the recommender system always plays an impor-
tant role in the field of electronic commerce. In recent years, due to the rapid development
of machine learning algorithms and the continuous expansion of application domains, e.g.
virtual assistants and healthcare, the attempt to apply deep learning algorithms to Rec-
ommender Systems has also become an increasingly popular research direction, aimed at
providing customers with more accurate potential purchase products. However, in some
cases, these deep learning models may be over-complex and most of the modeling capac-
ity may come from other simpler parts. Therefore, this paper presents a novel algorithm
that replaces the deep-learning part of the Simple-HGN model, a method described in
the paper "Are we really making much progress? Revisiting, benchmarking, and refining
heterogeneous graph neural networks"[33], with adding an attention mechanism which is
implemented by matrix factorization. The thesis initially validates the replicability of the
outcomes achieved by Simple-HGN as documented in the paper, subsequently conducts
an ablation study to assess the individual contributions of various components within
the Simple-HGN model. Following this, the novel model named Attention-based Matrix
Factorization is devised and implemented. Additionally, a comparison is made between
Simple-HGN and a collection of well-optimized baselines, utilizing several datasets em-
ployed within the paper.
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Sommario

Il Recommender System è un sistema di filtraggio delle informazioni applicato per
prevedere la valutazione che un utente darà a un articolo. Grazie ai comportamenti
storici dell’utente e agli attributi dell’articolo, il sistema può generare un elenco di rac-
comandazioni personalizzate composto dagli articoli che potrebbero piacere all’utente in
futuro. Per cercare di migliorare la soddisfazione dell’esperienza di acquisto degli utenti
e l’impegno nei confronti di un prodotto, il recommender system svolge sempre un ruolo
importante nel campo del commercio elettronico. Negli ultimi anni, grazie al rapido
sviluppo degli algoritmi di apprendimento automatico e alla continua espansione dei do-
mini di applicazione, ad esempio gli assistenti virtuali e l’assistenza sanitaria, il tentativo
di applicare algoritmi di deep learning ai recommender system è diventato una direzione
di ricerca sempre più popolare, con l’obiettivo di fornire ai clienti potenziali prodotti di
acquisto più accurati. Tuttavia, in alcuni casi, questi modelli di deep learning possono
essere troppo complessi e la maggior parte della capacità di modellazione può derivare
da altre parti più semplici. Per questo motivo, il presente documento presenta un nuovo
algoritmo che sostituisce la parte di deep learning del modello Simple-HGN, un metodo
descritto nel documento "Are we really making much progress? Revisiting, benchmarking,
and refining heterogeneous graph neural networks"[33], con l’aggiunta di un meccanismo
di attenzione implementato tramite matrix factorization. La tesi inizialmente convalida
la replicabilità dei risultati ottenuti da Simple-HGN, come documentato nell’articolo, e
successivamente conduce uno studio di ablazione per valutare i singoli contributi dei vari
componenti all’interno del modello Simple-HGN. In seguito, viene ideato e implemen-
tato il nuovo modello denominato Attention-based Matrix Factorization. Inoltre, viene
effettuato un confronto tra Simple-HGN e un insieme di linee di base ben ottimizzate,
utilizzando diversi set di dati impiegati nel documento.





v

Ringraziamenti

During the process of completing this paper, I have received help from many individuals,
and I would like to express my gratitude to each of them. First and foremost, I would
like to thank my advisor, Maurizio Ferrari Dacrema. Whenever I had questions or en-
countered difficulties that needed to be resolved, he always provided timely and highly
effective advice. He also proactively shared important insights to help me navigate my
practical work, saving me time and energy. Throughout it all, he has been dedicated and
responsible. Although we have never met in person, our communication has been solely
through emails.

Next, I would like to express my gratitude to my family and friends. While they may not
be able to provide solutions to my academic problems, they have always been there for
me during the lengthy process of completing this paper. Whenever I lacked confidence
or felt stuck in my progress, they consoled and encouraged me in various ways. It could
be a video call with my mother and grandmother, chatting with my best friend Tang
Yihan. It could be enjoying a cocktail with my neighbor Wang Hui, going for a drive
with Luca to participate in various activities, or having pizza or a delicious dinner with
Roberto. These activities allowed me to relax and provided me with the motivation to
seek solutions, overcome challenges, and for that, I am extremely grateful to them.

Lastly, I would like to express my gratitude to myself. I appreciate my continuous efforts,
and I am satisfied that I was able to solve all the problems I encountered throughout the
entire process. I am also delighted to witness the completion of my master’s thesis. At
the end, I want to once again thank each and every person mentioned earlier. I am truly
grateful to have had your companionship on my journey of growth.





Contents

Abstract i

Sommario iii

Ringraziamenti v

Contents vii

List of Figures 1

List of Tables 5

Chapter 1: Introduction 7

Chapter 2: State of the art 9

Chapter 3: Simple-HGN 31

Chapter 4: Model 35

Chapter 5: Experiments 49

Chapter 6: Results 63

Chapter 7: Conclusion 93

Bibliography 95





1

List of Figures

2.1 Example of an unweighted bipartite graph in which the user nodes are
connected to the items they interacted with. . . . . . . . . . . . . . . . . . 18

2.2 Example of three steps of jumping in P 3, which is the route marked in red 20
3.1 The architecture of HGNN in the Simple-HGN model . . . . . . . . . . . . 32
4.1 The three-step jumping starting from a user node u to reach an item node

i by firstly walking by a feature node m . . . . . . . . . . . . . . . . . . . . 38
4.2 The three-step jumping starting from a user code u to reach an item node

i by firstly walking by another item node j . . . . . . . . . . . . . . . . . . 39
5.1 The user frequency of the number of items ratings on dataset MovieLens . 50
5.2 Item popularity and user interest in popular items on dataset MovieLens . 51
5.3 The user frequency of the number of items ratings on dataset Yelp-2018 . . 52
5.4 Item popularity and user interest in popular items on dataset Yelp-2018 . . 52
5.5 The user frequency of the number of items ratings on dataset LastFM . . . 53
5.6 Item popularity on dataset LastFM . . . . . . . . . . . . . . . . . . . . . . 54
5.7 Ratio of popular items for different users on dataset LastFM . . . . . . . . 54
5.8 The user frequency of the number of items ratings on dataset Amazon-book 55
5.9 Item popularity and user interest in popular items on dataset Amazon-book 55
6.1 Comparison between the recommended results of each algorithm and the

actual user profiles in AP on dataset MovieLens, the AP value of user
profiles is marked by the red dotted line and the right part of it shows the
∆AP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2 Comparison of the Gini index of the item popularity in the recommendation
results of each algorithm on dataset MovieLens . . . . . . . . . . . . . . . 67

6.3 Comparison of the proportion distribution of popular and non-popular
items in each algorithm’s recommendation results on dataset MovieLens . . 68

6.4 Comparison of the frequency distribution of popular and non-popular items
in each algorithm’s recommendation results on dataset MovieLens . . . . . 69



2 | List of Figures

6.5 The comparison between the recommended results of each algorithm and
the actual user profiles in AP on dataset Yelp-2018, the AP value of user
profiles is marked by the red dotted line and the right part of it shows the
∆AP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.6 Comparison of the Gini index of the item popularity in the recommendation
results of each algorithm on dataset Yelp-2018 . . . . . . . . . . . . . . . . 73

6.7 The comparison of the proportion distribution of popular and non-popular
items in each algorithm’s recommendation results on dataset Yelp-2018 . . 73

6.8 The comparison of the frequency distribution of popular and non-popular
items in each algorithm’s recommendation results on dataset Yelp-2018 . . 74

6.9 The comparison between the recommended results of each algorithm and
the actual user profiles in AP on dataset LastFM, the AP value of user
profiles is marked by the red dotted line and the right part of it shows the
∆AP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.10 Comparison of the Gini index of the item popularity in the recommendation
results of each algorithm on dataset LastFM . . . . . . . . . . . . . . . . . 79

6.11 The comparison of the proportion distribution of popular and non-popular
items in each algorithm’s recommendation results on dataset LastFM . . . 80

6.12 The comparison of the frequency distribution of popular and non-popular
items in each algorithm’s recommendation results on dataset LastFM . . . 80

6.13 The comparison between the recommended results of each algorithm and
the actual user profiles in AP on dataset Amazon-book, the AP value of
user profiles is marked by the red dotted line and the right part of it shows
the ∆AP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.14 Comparison of the Gini index of the item popularity in the recommendation
results of each algorithm on dataset Amazon-book . . . . . . . . . . . . . . 84

6.15 The comparison of the proportion distribution of popular and non-popular
items in each algorithm’s recommendation results on dataset Amazon-book 85

6.16 The comparison of the frequency distribution of popular and non-popular
items in each algorithm’s recommendation results on dataset Amazon-book 86

6.17 The effect of the latent factor dimension on the performance of MF algo-
rithms on dataset MovieLens, taking Recall with cutoff at 20 as the measure
metric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



| List of Figures 3

6.18 The effect of the latent factor dimensions on the performance of AMF on
dataset MovieLens, taking Recall with cutoff at 20 as the measure metric.
K is the latent factor of user-item weight matrix, M is the latent factor of
the MF that calculates attention weights for user similarities, and N is the
latent factor of the MF that calculates attention weights for item similarities. 90





5

List of Tables

2.1 Confusion matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1 The statistics of MovieLens dataset . . . . . . . . . . . . . . . . . . . . . . 50
5.2 The statistics of Yelp-2018 dataset . . . . . . . . . . . . . . . . . . . . . . 51
5.3 The statistics of LastFM dataset . . . . . . . . . . . . . . . . . . . . . . . 53
5.4 The statistics of Amazon-book dataset . . . . . . . . . . . . . . . . . . . . 54
5.5 The statistics of four datasets after splitting . . . . . . . . . . . . . . . . . 56
5.6 The result of Recall and NDCG for reproducing work in four datasets with

cutoff at 20, the reproduction results are shown in bold, the one marked in
red color means that it deviates from the result range provided by the author 57

5.7 The results of Recall and NDCG for ablation study in MovieLens dataset
with cutoff at 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.8 The results of Recall and NDCG for ablation study in Yelp-2018 dataset
with cutoff at 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.9 The results of Recall and NDCG for ablation study in LastFM dataset with
cutoff at 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.10 The results of Recall and NDCG for ablation study in Amazon-book dataset
with cutoff at 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.1 The performance evaluation of algorithms on dataset MovieLens with cutoff
at 20. The red font highlights the result of AMF, and the bold font indicates
the better performance than AMF. . . . . . . . . . . . . . . . . . . . . . . 63

6.2 The comparison and ranking of NDCG with cutoff at 20 for all models on
dataset MoiveLens, excluding the rank of TopPop as it is already included
in the carousel. ∆Rank represents the difference between the rank when
evaluated individually and the rank when evaluated in the carousel layout.
A negative ∆Rank indicates that the model is in a lower ranking position. 65

6.3 The performance evaluation of algorithms on dataset Yelp-2018 with cutoff
at 20. The red font highlights the result of AMF, and the bold font indicates
the better performance than AMF. . . . . . . . . . . . . . . . . . . . . . . 70



6 | List of Tables

6.4 The comparison and ranking of NDCG with cutoff at 20 for all models on
dataset Yelp-2018, excluding the rank of TopPop as it is already included
in the carousel. ∆Rank represents the difference between the rank when
evaluated individually and the rank when evaluated in the carousel layout.
A negative ∆Rank indicates that the model is in a lower ranking position. 71

6.5 The performance evaluation of algorithms on dataset LastFM with cutoff at
20. The red font highlights the result of AMF, and the bold font indicates
the better performance than AMF. . . . . . . . . . . . . . . . . . . . . . . 76

6.6 The comparison and ranking of NDCG with cutoff at 20 for all models on
dataset LastFM, excluding the rank of TopPop as it is already included
in the carousel. ∆Rank represents the difference between the rank when
evaluated individually and the rank when evaluated in the carousel layout.
A negative ∆Rank indicates that the model is in a lower ranking position. 77

6.7 The performance evaluation of algorithms on dataset Amazon-book with
cutoff at 20. The red font highlights the result of AMF, and the bold font
indicates the better performance than AMF. . . . . . . . . . . . . . . . . . 82

6.8 The comparison and ranking of NDCG with cutoff at 20 for all models
on dataset Amazon-book, excluding the rank of TopPop as it is already
included in the carousel. ∆Rank represents the difference between the rank
when evaluated individually and the rank when evaluated in the carousel
layout. A negative ∆Rank indicates that the model is in a lower ranking
position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.5 Comparison of RECALL values of MF algorithms with cutoff at 20 in
different latent factor intervals, the bold value indicates the maximum value
of change in each interval, and the underlined value indicates the minimum
value of change in each interval. . . . . . . . . . . . . . . . . . . . . . . . . 90



7

Chapter 1: Introduction

Recommender System is an information system that can provide users with personalized
and relevant suggestions by analyzing their behaviors and product attributes. Nowadays,
it plays an important role and there are numerous companies applying it to improve sales,
customer satisfaction, and stickiness. There are various algorithms used for building
recommender systems, including Collaborative Filtering, Content-Based Filtering, and
Hybrid methods. In recent years, the direction of research in recent years started to
focus on combining deep learning algorithms with Recommendation algorithms for seeking
higher recommendation quality. However, it may bring a problem that the model becomes
more complex and most of the modeling capacity may be from the simpler parts.

There is a paper named Are we really making much progress? Revisiting, benchmark-
ing, and refining heterogeneous graph neural networks[33] issued in 2021, in which the
authors proposed a new and effective method called Simple Heterogeneous Graph Neu-
ral Networks model(Simple-HGN) which consists of two parts, one is the heterogeneous
graph neural networks as the deep modeling part, the other one is pre-trained embeddings
with Matrix Factorization BPR as the non-deep part. Matrix Factorization is a class in
Collaborative Filtering, it decomposes the User-Rating Matrix into the product of several
sub-matrices. This research presents a new algorithm which is Attention-based Matrix
Factorization(AMF) that replaces the deep graph part of Simple-HGN model with a non-
deep part using an attention mechanism that is implemented by Matrix Factorization.

The structure of this thesis is as follows. In Chapter 2, we explain the current state-of-the-
art and the necessary references to understand fully this research. In particular, we outline
the description of recommender systems and the relevant equation of models. Then, in
Chapter 3, Simple-HGN serves as the reference model for AMF model proposed in this
paper. The overall structure of Simple-HGN and each component will be introduced in
detail. Building upon this, Chapter 4 will provide a detailed description of how AMF
evolves from Simple-HGN, as well as the overall structure and each component of AMF.
The chapter will conclude with an overview of the subsequent experimental work on
constructing, training, and analyzing the results of AMF model. Moving on to Chapter
5, the experimental work will be further described in detail, including the reproduction
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work and ablation study of Simple-HGN, the analysis of features in the training dataset,
and the description of the methodology and results of its segmentation. Additionally,
an outline will be provided for the aspects from which the model’s performance can be
assessed. Finally, a thorough comparative analysis and discussion of the specific model
performance results will be conducted in Chapter 6, followed by a comprehensive summary
of AMF performance in Chapter 7.



9

Chapter 2: State of the art

This chapter will fully present the detailed description of Recommender Systems, main-
stream collaborative filtering algorithms, and metrics for evaluating model performance
will be fully presented.

First of all, we introduce some basic concepts of Recommender Systems in Section 2.1,
which mainly contains the introduction, the main methods, and the type of data. Sec-
ondly, in Section 2.2, we focus our narrative on K-nearest neighbors based model which
is one sub-class in collaborative filtering, in terms of the idea behind it, the equations
of similarities, and its categories. Next, in Section 2.3, we introduce another sub-class
which is machine learning models by presenting the principles of different models,such as
SLIM, matrix factorization, graph-based models,etc.. Finally, the evaluation techniques
and metrics of Recommender Systems are outlined in Section 2.4.

2.1 Basics of Recommender Systems

Recommender Systems(RS) are information filtering systems that tackle the problem of in-
formation overload[26] by filtering important information fragments out of large amounts
of dynamically generated information according to the user’s preferences, interests, or
observed behavior about an item[34]. With the exponential growth of data stored in en-
terprises, and with the goal of increasing profits and improving user retention, RS plays a
more and more important role in e-commerce. For example, Netflix is a famous stream-
ing platform, according to McKinsey, 75% of what users watch on it comes from movie
recommendations[7], and RS can help them improve the retention rate, which in turn
translates to savings on customer acquisition (estimated $1B per year as of 2016)[9]. Be-
hind RS, there are three strategies that should be combined with each other to increase
the recommendation quality[12]:

• Global: providing users with the most frequently purchased, trending, or popular
items.

• Contextual: relying on the item attributes, and purchased items together, also can
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combine user attributes such as geolocation, and age to divide into different groups.

• Personalised: require not only contextual data but also the user’s behavior data,
such as viewing, clicking, and purchasing history.

2.1.1 Main Methods

There are six different types in RS[4]. However, three main techniques of them are to be
described in this section: Collaborative Filtering, Content-based Filtering, and Hybrid.

• Content-based Filtering(CB): recommending similar items to a user based on
their past preferences. This kind of algorithms match the attributes of a user’s
profile, where their preferences and interests are stored, with the attributes of an
item to recommend new, interesting items to the user[32]. For example, if a user
watched a romantic movie performed by a specific actor, another romantic movie
performed by the same actor will be recommended to this user.

• Collaborative Filtering(CF): as opposed to considering item attributes, focuses
on filtering or assessing items based on the feedback of other users[39]. It recom-
mends a user an item based on the items purchased or rated by similar users[12].
The underlying concept behind this approach is that the rating given by a user to
an unrated item can be predicted based on the observed ratings provided by other
similar users or items. For example, if user A likes apples, bananas, and mangoes,
and user B likes apples, mangoes, and peaches. Then bananas are recommended
to user B, and peaches are recommended to user A as they share the high similar
interests.

• Hybrid: combining multiple algorithms together to take advantage of the strength
of each algorithm. Since each algorithm has its weaknesses and strength, it can
achieve synergy between them by fusing together[5], for example, CF is unable
to recommend the new items since it based on past user interactions, which is a
problem in many domains[58], while CB can fix this problem by considering the
similarity between item attributes. With high flexibility, different components in
this technique can be developed separately and also can be integrated[12].

2.1.2 Data Type

In this section, we discuss two different matrices as input to RS, the Item-Content Matrix,
and the User-Rating Matrix.
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• Item-Content Matrix(ICM): a rectangular matrix containing the information of
items and attributes, each row represents an item, and each column represents an
attribute. In simple form, ICM is filled with binary values (0 and 1), if the value
is set to 1, it means that the corresponding item has the specific attribute. In a
more practical form, the values in the matrix are positive real, which represents how
important an attribute is in an item.

• User-Rating Matrix(URM): a rectangular matrix containing the opinions of
users towards items. Each row represents a user, and each column represents an
item. The value of the matrix, called rating, can be expressed both in implicit or
explicit presentation.

– Implicit Rating: the rating is a binary value, 1 indicates a user performs a
positive interaction on an item, while 0 indicates there is no information that
can indicate a positive interaction between a user and an item. Implicit data
is easy to collect and usually is extracted from users’ behaviors[23].

– Explicit Rating: the rating is a range of numbers given by a user to an item.
Similarly, 0 indicates we do not have information on the interaction between a
user and an item. Explicit data is hard to collect as it needs users to impose
additional behaviors, such as ratings purchased items[23].

The focus of this paper lies in CF algorithms. The key advantage of these algorithms
is their independence from machine-analyzable content, enabling them to deliver precise
recommendations. Therefore, it doesn’t require the item’s attributes, the main input is
URM. K-nearest neighbors (KNN) based methods and machine learning methods as the
two main sub-classes of CF will be described in the following part.

2.2 KNN Methods

This kind of recommendation algorithms accesses all the data in URM and defining the
similarity between users or items, and then provides recommendations by utilizing the
behavior of the K most similar ones which are selected by leveraging the KNN technique[1].
KNN is a simple concept, it is based on a similarity metric between the users or items
in URM, and find the K closest items, where K is a hyper-parameter that should be
specified, a hyper-parameter is a parameter that is not learned by the model itself but
must be specified before the model begins the learning process and it control the learning
process of an algorithm and influence the final parameters of the model[2].

When it comes to similarity metric, there are several options. More specifically, given a
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set of items I and a set of users U, for any two users u, v ∈ U , the similarity between them
can be simply expressed as the vector of ratings that user u gave to each item i, times the
vector of ratings that user v gave to these items:

suv = u⃗ · v⃗ =
∑
i∈I

rui · rvi (1)

However, in the more realistic scenario, cosine similarity and Pearson’s correlation are
popular similarity measures, the former is mainly applied for implicit URM, and the
latter is for explicit URM.

• Cosine Similarity:

suv =

∑
i∈I rui · rvi√∑

i∈I r
2
ui

√∑
i∈I r

2
vi + C

(2)

Actually, cosine similarity calculates the angle between two vectors, the more similar
the two vectors are, the greater it is. It is important to note that when the number
of common ratings between user u and v is too small, the calculated similarity is
not reflective of the true level, so to solve this problem a shrink term C is added to
the denominator, it is a hyper-parameter, and is a constant value.

• Pearson Correlation Coefficient:

suv =

∑
i∈I(rui − r̄u)(rvi − r̄v)√∑

i∈I(rui − r̄u)2
√∑

i∈I(rvi − r̄v)2 + C
(3)

In particular, a correlation coefficient takes a value between -1 and 1, and when it is
1 indicates a perfect positive correlation, whereas one variable increases, the other
variable also increases proportionally. When it is -1 indicates a perfect negative
correlation, whereas one variable increases and the other variable decreases propor-
tionally. While, when it is 0 indicates no correlation or a very weak correlation
between the two variables.

According to the object on which the similarity is calculated, the KNN methods are
further divided into two main types: user-based CF and item-based CF[53].

2.2.1 User-based CF

User-based CF makes recommendations based on the opinions on an item from users who
are similar to the active user(the user that we want to predict). The set of similar users
should be defined as a group of top-N similar users from all users in URM[52]. It is defined
that each user’s rating for item i is represented as rvi, the similarity to the active user
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is represented as suv. Therefore, the estimated rating a user u gives to an item i can be
defined as

r̃ui =

∑
v∈KNN(u) rvi · suv∑

v∈KNN(u) suv
(4)

2.2.2 Item-based CF

Item-based CF suggestes the items similar to the other items liked by the active user.
Accordingly, the set of similar items and the way of calculating the similarity between
items apply the same idea. The estimated rating a user u gives to an item i can be defined
as

r̃ui =

∑
j∈KNN(i) rvj · sji∑

j∈KNN(i) sji
(5)

2.3 Machine Learning Methods

KNN-based CF suffers from two problems in terms of sparsity, and scalability[19]. If most
users rated on a few items, it means that URM has high sparsity, which would make it
hard to learn accurate and diverse results. If the size of URM is large, a lot of computa-
tional resources and time are required to make recommendations, in this case called low
scalability, which can make the RS slow and inefficient. However, those challenges can be
effectively addressed by exploiting machine learning models. SLIM, Matrix Factorization,
graph-based, graph neural network based are the four most presentative models of this
type, which will be well-presented in the following sections.

2.3.1 SLIM

Sparse LInear Models(SLIM[24]) generates top-N recommendations by aggregating from
user rating profiles, is a powerful and efficient algorithm that has demonstrated superior
performance compared to other collaborative filtering methods in accuracy and effective-
ness. It aims to learn a sparse aggregation coefficient matrix W that estimates the pairwise
similarity between items, and the predict rating r̃ui that a user u would give to an item i
is calculated as a sparse aggregation of items that have been purchased by this user, that
is:

r̃ui =
∑
j∈I

ruj · wji (6)

the matrix notation presents as:

R̃ = R ·W (7)
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where R is URM, W is the item similarity matrix with the shape of n × n, where n is
the number of items in URM. It is important to note that the matrix W should not be
an identity matrix, as this would result in the recommendation of the target item itself
which should be excluded from R by setting rui = 0 or from W by setting the elements of
diagonal is 0. To learn the sparse matrix W, we take the MSE with regularization terms
as error function:

minW∥R−RW∥2 + α∥W∥2 + β∥W∥1 (8)

where values of W are both positive (W ≥ 0), Diag(W)=0, the hyper-parameters α > 0

and β > 0.

2.3.2 Matrix Factorization

Borrowing the idea that the rating of a user on an item can be thought of as how much the
user likes each attribute of the item, times how much importance each attribute in this
item[35]. Matrix Factorization (MF) decomposes URM into two sub-matrices, the user
feature matrix, and the item feature matrix. In this case, the attributes of the item are
called latent factors. Accordingly, a user can be represented as a vector x⃗u ∈ Rd measuring
the extent of interest the user has in different features, an item can be represented as a
vector y⃗i ∈ Rd measuring the extent to which the item possesses this features[27]. The
dot-product of two factors, x⃗u · y⃗i is the estimated rating of the user on the item. If we
expand to a given set of users and items, the number of users is nu, and the number
of items is ni, and the number of latent factors is nk, the estimated rating can expand
to express as a matrix representation which is composed by estimated rating matrix R
with the shape of nu × ni, user feature matrix X with the shape of nu × nk, and item
feature matrix Y with the shape of nk × ni. The relationship between them is depicted
as following:

R̃ = X · Y (9)

To get the best-estimated value of X, and Y, the following two different methods of
defining the loss function can be utilized:

• Mean Squared Error(MSE): uses the square 2-norm to minimize the mean square
error between the true rating matrix (URM) and the predicted matrix.

minX,Y ∥R− R̃∥2 (10)

Since MF is a machine learning technique, thus it’s crucial to avoid over-fitting the
model. To address this issue, one solution is to add the regulation terms for matrices
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X and Y into the loss function, these regulation terms can push matrices X and Y
to be sparse. Moreover, the importance of the regulation terms is determined by
two parameters λ1 and λ2. Therefore, the loss function becomes as follows:

minU,V ∥R− R̃∥2 + λ1∥X∥+ λ2∥Y ∥ (11)

• Bayesian Personalized Ranking(BPR): is a loss function used for pairwise
learning. This approach is useful in situations where implicit ratings are provided,
such as user clicks, views, and purchases. It firstly attempts to reconstruct the
personalized preference ranking for each user u in URM, denoted by >u. Based
on the assumption of taking missing values as negative ratings, and if a user u has
interacted with an item i, called positive item i, it assumes that the user prefers this
item over any other non-interacted item j which is called negative item j, denoted
by i >u j. Then, it defines the predicted rating difference r̃u,ij with the predicted
ratings from user u on item i and j, r̃ui, r̃uj as:

r̃u,ij = r̃ui − r̃uj (12)

Given these information, the individual probability that user u prefers item i over
item j can be described with the logistic sigmoid function:

p(i >u j|θ) = 1

1 + e−r̃u,ij
(13)

where θ is the parameter that determines the personalized ranking. Next, based on
the knowledge of Bayesian analysis of the problem using the prior probability for
the model parameter p(θ)[37], we can convert the last probability equation to the
following one:

p(θ|i >u j) = p(i >u j|θ) · p(θ) (14)

The objective of BPR is to optimize the ranking of items in a pairwise comparison
for a given user by maximizing the above probability. Since log function is an
incremental function, and we assume that each parameter is subject to a normal
distribution:

p(θ) ∼ N(0,Σθ) (15)
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Therefore the probability can be defined as:

p(θ|i >u j) =
∑

(u,i,j)∈Ds

log
1

1 + e−r̃u,ij
+ logp(θ)

=
∑

(u,i,j)∈Ds

log
1

1 + e−r̃u,ij
− λ∥θ∥2

(16)

where Ds := {(u, i, j)|i ∈ I+u ∧ j ∈ I \ I+u }, λ is the regularization factor.

Finally, to lean the parameter θ, BPR uses a approach called stochastic gradient
descent which is an algorithm calculates the gradients by randomly choosing a few
samples instead of the whole training dataset and update the parameter. The up-
dating rule which is defined as:

θ = θ + α(
1

1 + er̃u,ij
· ∂r̃u,ij

∂θ
+ λθ) (17)

where α is the learning rate.

In this case, when MF and BPR are combined together, we refer to this approach
as MF BPR.

Apart from the basic model, there are other commonly used techniques, such as PureSVD,
FunkSVD, Asymmetric SVD, and Alternate Least Square.

PureSVD

PureSVD is a dimensionality reduction technique to identify the underlying features in
URM. It assumes all missing values are zero and generates recommendations by recon-
structing the matrix by using the truncated singular value decomposition(SVD)[10]. SVD
decomposes URM into three different matrices: X, Σ, and Y T.

R̃ = X · Σ · Y T (18)

X is an orthogonal matrix of nu×nk shape that represents the user features, Σ is a diagonal
matrix of nk ×nk shape that represents the singular values, and Y T is also an orthogonal
matrix of of nk × ni shape that represents the item features. The singular values are
non-negative and they correspond to the importance of each feature in characterizing the
users and items in R. As for truncated SVD, it only keeps top-k important singular values
and the rest are set to zero such that reduces the dimensionality of data and improve the
efficiency on computation.
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Alternate Least Square(ALS)

The goal of ALS is the same as the basic MF task, to find the optimal values for two
sub-matrices: the user feature matrix X, and the item feature matrix Y, see Equation 9 for
the prediction function. However, the difference is that instead of using regulation terms
to simplify the model, ALS relies on the idea of iteratively optimizing one matrix, while
keeping the other one fixed. The prerequisite of it is that the optimization sub-problem
can be analytically solved[21].

FunkSVD

FunkSVD is a technique based on the idea of ALS, the prediction function does not
change. However, unlike ALS, FunkSVD does not compute all factors at once. It begins
with setting the number of latent factors to 1, therefore, the matrices X and Y are initially
a user vector and an item vector, respectively, which means the URM is factorized as the
scalar product of these two vectors. Then, ALS is applied to find the optimal values of
vectors, and after minimizing the error, another feature is added. During the process of
optimizing the vectors for the new feature, the previous feature is fixed.

The operation of incrementally increasing features is repeated until either the desired
number of latent factors is achieved, or the error is minimized to the desired value. Note
that matrix X and Y need to be recalculated whenever a new user appears in R.

Furthermore, SVD++ can be regarded as an enhanced iteration of FunkSVD as it incor-
porates global effects. These global effects encompass three aspects: the overall average
rating given by a user, the average rating assigned by the user to all rated items, and the
average rating received by an item from all users who rated it.

Asymmetric SVD

Asymmetric SVD avoids recomputing the estimated ratings from scratch by decomposing
matrix U into two sub-matrices: R and Z. The matrix R of nu × ni shape that contains
user ratings for items, while the matrix Z of ni×nk shape that captures the extent of the
importance of different features in those items. With matrix Y, the estimated ratings are
represented as the product of those three matrices, which is shown as following:

R̃ = R · Z · Y (19)
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2.3.3 Graph-based Models

Unlike content-based and collaborative filtering techniques using metrics of similarity
to generate the recommendation, Graph-based RS employs graph theory to represent
and model the associations between users, items, and other side information, and has
the ability to effectively leverage the heterogeneous information present in networks by
extending the reach of neighborhoods, and they can calculate the closeness between users
and items[42]. Moreover, graph-based models can effectively address issues of scalability
and data scarcity by utilizing a small amount of user preference data, as it is possible to
establish connections between items.

With this approach in RS, users and items are represented as nodes, and relationships
between them are represented as edges, eventually, the URM is converted as a bipartite
user–item interaction graph, which means user nodes can not connect to other user nodes,
only connect to item nodes and vice versa. In an unweighted bipartite graph, all edges
have the same weight or importance, see Figure 2.1. While in a weighted one, each edge
is assigned a weight or a numerical value that represents its importance or strength, such
as an explicit rating a user gives to an item.

Figure 2.1: Example of an unweighted bipartite graph in which the user nodes are con-
nected to the items they interacted with.

We can define the problem as follows:

Given a set of users U, a set of items I, and a set of ratings L, we can depict them as a
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bipartite graph G = (V,E), where V = U + I, E = (u, i) : u ∈ U, i ∈ I, u −→ i ∈ L.

Therefore, the recommendation task transforms into the link prediction task by taking the
existing graph(observed ratings) to predict the probability of an edge between unpaired
vertices[29, 30]. To solve it, we generate random walk paths starting from a user-item
pair and then calculate the probability of jumping from one node to another node based
on the paths.

Random walk

In the context of graph theory, a random walk is a mathematical model used to describe a
path consisting of a series of random steps taken on a graph. The random walk starts from
a specific node within the graph and then randomly selects an adjacent node to travel
to at each step, by following the graph’s edges. Typically, at each step, the likelihood
of moving to any adjacent node is equivalent. However, the probabilities may also be
modified based on various factors such as the edge weight, or node degree. Random walks
are an example of Markov processes which is a stochastic model that characterizes a series
of potential events, where the probability of each event is only determined by the state
obtained in the previous event.

In RS, we mainly focus on the scenario of implicit ratings. We denote the number of
outgoing links (the number of ratings in RS) from node u as deg(u), and if we take it as
the current node at k step, then the probability of arriving at node vi ∈ {vi|u −→ v} at the
step k+ 1 is 1

deg(u)
. If we consider the Markov chain generated by this random walk, the

probability of traveling from node i to node j can be inducted as pij=
1

deg(i)
[41]. Based

on this, we can first obtain the probability of arriving at node j at step 1 by summing up
the probabilities of arriving at all previous nodes at step 0, times the probability of these
nodes moving to j,

Π
(1)
j = Π

(0)
1 p1j +Π

(0)
2 p2j + ...+Π(0)

n pnj =
∑

i:(i,j)∈E

Π
(0)
i pij (20)

We then extend the scenario to any step k,

Π
(k+1)
j =

∑
i:(i,j)∈E

Π
(k)
i pij (21)
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P 3

Now, we introduce a simplified version by using this technique, which is P 3. The idea is
instead of performing infinite random walks, the algorithm fixes length 3 starting from
a target user vertex(Figure 2.2), since from this user u after three steps of jumping, it
arrives at a new item node i.

Figure 2.2: Example of three steps of jumping in P 3, which is the route marked in red

In this case, the probability can be represented as follows:

r̃ui = Πi =
∑
l∈U

Πlpli =
∑
j∈I

∑
l∈U

Πjpjlpli =
∑
u∈U

∑
j∈I

∑
l∈U

Πupujpjlpli (22)

Since node u is the first node, the probability of arriving at it from previous nodes is equal
to 1, thus the equation can be simplified as:

r̃ui =
∑
j∈I

∑
l∈U

pujpjlpli (23)

If we move summation on l to close to the term pjlpli, we can find that it actually calculates
the item similarity sij based on the preferences of user l.

r̃ui =
∑
j∈I

pujsij =
∑
j∈I

ruj
deg(u)

sij (24)
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Moreover, we can disregard the constant term deg(u), this is possible because the de-
nominator does not affect the relative ordering of the scores, which is the aspect we are
evaluating (the same would not apply if we were to evaluate the rating prediction) and
finally we get the formula as

r̃ui =
∑
j∈I

rujsij (25)

Therefore, it is equivalent to a KNN item-based collaborative filtering algorithm, where
the similarity matrix is calculated by taking the dot product of the probability vectors.
Based on P 3, P 3α raises the transition probabilities to the power of a fitted parameter α
which has been demonstrated to enhance precision in this model[49].The probability pui

to move from user u to item i is computed from the implicit URM as pui = (rui/deg(u))
α

[17]

2.3.4 Heterogeneous Graph Neural Networks

Heterogeneous Graph Neural Networks(HGNNs) are known as applying graph neural
networks(GNNs) to heterogeneous graphs(HGs), and in recent years they have become
an increasingly popular area of research. The goal is to learn low-dimensional embeddings
that capture both the heterogeneous structure and semantics of the data, which can be
used in downstream tasks[45]. Many existing HGNNs inherit mechanisms from GNNs
for homogeneous graphs, such as the attention mechanism and multi-layer structure and
those mechanisms make the model become more complex[54]. In this section, we will
briefly discuss the concept of HGs and GNNs, introduce two common networks in GNNs.

Heterogeneous Graphs

HGs are also called heterogeneous information networks. An information network is a
conceptualization of the real world that focuses on the objects and the relationships that
exist between them[48]. When there is more than one type of object or relationship,
the network is a heterogeneous one, i.e. a heterogeneous Graph. For example, in the
scenario of movie recommendations, different types of nodes in the graph could be such
as users, movies, actors, genres, and directors. The edges could represent different types
of relationships, such as "watched", "liked", "acted in", or "directed".

We can define it as follows: Given a set of nodes V and a set of edges E, the sets of types
of nodes and edges are denoted as OV and RE, respectively, the graph G={V,E,OV , RE}.
When |OV | = |RE| = 1, the graph is homogeneous one.
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Graph Neural Networks

Graph Neural Networks(GNNs) are a type of deep learning method designed to process
data in the form of graphs. It can learn representations of nodes and edges in a graph by
aggregating and combining feature information from their local neighborhood nodes[55].
In a standard Graph Neural Network, each node in the graph is associated with a vector
or a tensor, called a node embedding, which encodes its features and attributes. The GNN
operates by iteratively updating these node embeddings by combining information from
the node’s neighboring nodes and edges, using a set of learnable parameters. In contrast,
the method like P 3

α, although graph-based, do not learn embeddings but rather rely on a
heuristic approach. Here we detailed discuss two representative networks which are good
at modeling homogeneous graphs,

• Graph Convolution Networks(GCNs): employs convolutional aggregations,
GCNs architectures usually comprise several graph convolutional layers, which are
stacked one after the other, and each layer learns more complex features than the
previous layer. To achieve this, GCNs concatenates the inputs derived from node
features and graph adjacency matrices[57]. Here is an example of a layer-wise prop-
agation rule introduced by Kipf & Welling, 2017[25]

H(l) = σ(D̂− 1
2 ÂD̂− 1

2H(l−1)W (l)) (26)

where H(l) is the representation of all nodes in the l-th layer,W (l) is a weight matrix,
σ(·) is a non-linear activation function, Â is an adjacency matrix with self-loops,
which is defined as Â = A+ I, A is the adjacency matrix of the user-item graph, I
is the identity matrix, and D̂ is the diagonal node degree matrix of Â.

• Graph Attention Networks(GATs)[51]: neural network architectures are
specifically designed to learn the significance of nodes and edges in a graph. They
achieve this by employing attention mechanisms, which enable models to concen-
trate on specific aspects of input data during predictions. This is accomplished by
assigning weights to different input elements based on their relevance to the given
task. As a result, the model can focus on the most relevant information rather than
the entire sequence. This is accomplished by allowing each node to focus on its neigh-
bors and assigning different weights based on their importance. GATs implement
attention using self-attentional layers, where each node in the graph is represented
by a feature vector. The feature vectors of neighboring nodes are combined using
attention weights, which are learned during training.
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According to the given description, the initial step in computing a weight αij in
the attention mechanism a involves calculating attention coefficients eij. These
coefficients reflect the significance of node j’s features in relation to node i.

eij = a(Wh⃗i,W h⃗j) (27)

where W remains the same representation, a weight matrix, h⃗ represents a node
feature.

In this scenario, the computation of eij is limited to nodes j ∈ Ni, where Ni rep-
resents the neighborhood of node i in the graph. Furthermore, to facilitate compa-
rability across various nodes, we normalize the coefficients by applying the softmax
function to all possible choices of j. This process yields the preliminary version of
the attention weight, which is described as follows:

αij = softmaxj(eij) =
exp(eij)∑

k∈Ni
exp(eik)

(28)

The attention mechanism a, is actually a single-layer feedforward neural network. It
is parameterized by a weight vector a⃗ and incorporates the LeakyReLU nonlinearity.
This leads to the final description of the weight as follows:

αij =
exp(LeakyReLU (⃗aT [Wh⃗i||Wh⃗j]))∑

k∈Ni
exp(LeakyReLU (⃗aT [Wh⃗i||Wh⃗k]))

(29)

where ·T is the symbol of transposition, || is a concatenation operation.

By stacking multiple self-attentional layers, GATs are able to capture increasingly
complex relationships between nodes. This method avoids depending on prior
knowledge of the graph structure or resorting to expensive matrix operations like
inversion.

Moreover, to improve performance, GAT applies the multi-head attention mech-
anism which is an attention mechanism module that performs multiple attention
computations in parallel, each one is called an attention head. In this way, the
model is able to simultaneously focus on various aspects of the input, from differ-
ent feature subspaces and at different positions. The results of these independent
computations are then combined by concatenating them and passing them through
a linear transformation to obtain a final attention score.[50]
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2.4 Evaluation

To determine how well a recommender algorithm is able to predict the preferences of
users, and how relevant the recommended items are, we need to apply some methods to
evaluate its performance, which is a challenging task in the field of RS[22]. It comes down
to three main reasons, the first one is the effectiveness of an algorithm varies depending
on the scale of data. Some certain algorithms work well on smaller datasets, but as the
scale of data grows, the accuracy decreases. The second one is some indicators have an
inherent contradiction between them, such as the accuracy indicator and the diversity
indicator. The last one is various indicators need to be measured by different testing and
evaluation methods[8]. There are three experiments used to evaluate the performance,
online evaluation, user studies, and offline evaluation.

• Online Evaluation: executing large-scale experiments on a deployed system. It
is achieved by real users carrying out real tasks[8]. For example, to collect users’
feedback by asking them to fill in the questionnaires, or by conducting A/B tests,
where two different versions of recommender systems are deployed to users and then
compare the behavior of users.

• User Studies: with offering some kind of compensation, a selected user group
is asked to complete a series of tasks by using the system, and then collect their
feedback from questionnaires or interviews[44].

• Offline Evaluation: different from the two previous methods, instead of involving
the interactions from real users, it relies on existing datasets which should be similar
to the ones generated from the systems after they are deployed online[8]. As this
thesis takes offline evaluation as the evaluation method, therefore detailed descrip-
tions including dataset partitioning, and evaluation metrics will be presented in the
following part.

2.4.1 Offline Evaluation

The basic method for conducting Offline evaluation in RS is a standard practice in ML.
Dataset partitioning involves splitting the whole dataset into multiple disjoint sets for
training, validation, and testing of the algorithms. The objective of partitioning is done
to evaluate how well the model generalizes by constructing the model on the training
dataset and then evaluating the performance on the testing dataset[20]. In this thesis, for
performing hyper-parameter tuning the dataset is split into three sets:

• Training Set: as an input to train the model, in general, is the biggest set compared
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to the other two sets.

• Validation Set: a smaller subset of the original dataset that is held out from the
training set and is used to tune the hyper-parameters and estimate the algorithm’s
performance.

• Test Set: a completely independent dataset that has not been used in the training
and evaluation phase. It is used to provide a conclusive evaluation of the model,
focusing on assessing the ability of generalization.

In RS, there are several methods used to divide the dataset, here the main two of them
are introduced:

• Hold-out: URM is divided into three parts by randomly selecting certain percent-
ages of ratings or just selecting k ratings of each user, called leave-k-out. This
technique is simple to implement and widely used. Moreover, it is also efficient for
evaluating the performance on a large dataset.

• K-Fold Cross-validation: URM is partitioned into k equally sized sets, and for
each iteration of the cross-validation process, the models are trained using k-1 sets
and tested using the one remaining set. The model error is calculated based on
the observed-simulated pairs from all k iterations of the process. When the dataset
is small or imbalanced, this technique can be particularly advantageous because it
diminishes the variability of the evaluation metric and provides more dependable
estimates of the model’s performance.

2.4.2 Evaluation Metrics

Evaluation metrics are quantitative methods used to measure the recommendation qual-
ity of recommender algorithms, to determine how well the RS is performing regarding
its objective of presenting personalized and relevant recommendations to users. However,
for different tasks, we usually choose to use different metrics. For example, in the rating
prediction scenario, the performance evaluation relies on error metrics as they measure
inaccuracies between predicted ratings and user ratings. While in the top-N recommen-
dation task, our focus changes from predicting a specific rating to arranging the items
based on the user’s preferences. In this case, ranking metrics measure the accuracy of
ranking between the predicted items and actual items.
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Error Metrics

In some cases, the goal of RS is to predict the rating a user would give to an item. To
measure how close predicted ratings are to the actual user ratings in the test set T which
is consisted of user-item pairs, there are two commonly used and easy interpreted metrics:

• Mean Absolute Error(MAE): measures the absolute difference between pre-
dicted ratings and actual ratings.

MAE =
1

|T |
∑

(u,i)∈T

|rui − r̃ui| (30)

• Root Mean Squared Error(RMSE): similar to MAE, but measures the average
of squared difference with normalization.

RMSE =

√
1

|T |
∑

(u,i)∈T

(rui − r̃ui)2 (31)

Classification Metrics

Classification metrics evaluate the decision-making capacity of RS. They measure the
amount of correct and incorrect classifications as relevant or irrelevant items by ignoring
the exact ratings and ranking of items[40]. In general, these metrics such as Recall and
Precision, are calculated based on the confusion matrix which represents four results
from RS, if a recommended item is relevant to a user, it is considered correct, otherwise
incorrect[13].

Recommended Not Recommended
Preferred True Positive(TP) False Negative(FN)

Not Prefered False Positive(FP) True Negative(TN)

Table 2.1: Confusion matrix

• Recall: the number of relevant items recommended to the user, divided by all items
actually relevant to the user.

Recall =
#TP

#TP +#FN
(32)

• Precision: the number of relevant items recommended to the user, divided by all
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items recommended to the user.

Precision =
#TP

#TP +#FP
(33)

• F1-score: provides a single numerical value that represents the balance between
precision and recall. It ranges from 0 to 1, with a score of 1 indicating perfect
precision and recall, and a score of 0 indicating poor performance.

F1 =
2 ∗Recall ∗ Precision

Recall + Precision
(34)

Ranking Metrics

Ranking metrics evaluate the performance of RS by assessing its ability to predict the
correct order of items based on the user’s preferences, usually, the calculation is based on
the top-k items instead of all items.

• Average Precision(AP): the mean of the precision scores after each relevant item
is retrieved, and it is sensitive to the ranking of recommended items[56]. Based on
the following concepts: @i is the length of recommendation list up to the location
of the item i, P@i is the precision of the top-i retrieved items, and R is the total
number of correct recommended items, then AP can be defined as:

AP@k =

∑k
i=1 P@i

R
(35)

A high AP score indicates successful top-ranking of the correct recommendations.

• Mean Average Precision(MAP): While AP is used to evaluate a single user,
MAP (Mean Average Precision) is the average of the AP metric calculated for all N
users.

MAP@k =
1

|N |

N∑
i=1

AP@k (36)

• Discounted Cumulative Gain(DCG): an information retrieval metric that log-
arithmically discounts positions. The idea is that highly relevant items are more
useful when appearing earlier in the results list[12]. It measures the "gain" that
each user u receives from being recommended an item i. The DCG for a list of
items is the average cumulative gain(CG), taking into account the position of each
item in the list, and then discounting it logarithmically. CG means to accumulate
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the gain of k items, given rating@i is the predicted rating of each item i in the list,
the gain of this item i can be represented as gain@i = 2rating@i − 1.

CG@k =
k∑

i=1

gain@i (37)

DCG@k =
k∑

i=1

gain@i

log2(k + 1)
(38)

• Normalized Discounted Cumulative Gain(NDCG): one problem with DCG
is that it is not straightforward to compare performances across different queries
because the scores are not standardized to a range of 0 to 1[12]. To solve it, DCG
is divided by ideal DCG(IDCG) to obtain NDCG, where IDCG is the DCG value
obtained by sorting all items in the recommendation list by their true relevance
scores.

IDCG@k =

|RELk|∑
i=1

gain@i

log2(k + 1)
(39)

NDCG@k =
DCG@k

IDCG@k
(40)

where RELk represents the list of relevant items up to position k.

• Single List Normalized Discounted Cumulative Gain(SLNDCG): NDCG
serves not only to evaluate the quality of recommendations from individual algo-
rithms but also finds utility in scenarios where recommendations from two or more
algorithms are combined. In such cases, when measuring NDCG, a single long rec-
ommendation list can be created by concatenating all recommendation lists of equal
length. During this evaluation, two primary considerations need to be taken into
account:

– Highly relevant items should hold greater value for the user.

– A relevant item is considered valuable to the user only upon its initial appear-
ance.

Meanwhile, we defined the length of the recommendation list generated by each
algorithm as H, and the order of each algorithm list in the single long list as j.

Based on these definitions, SLNDCG [14, 18] is introduced, which builds upon tra-
ditional NDCG with two significant enhancements.

– The discounting term is redefined from 1
log2(k+1)

to 1
log2((j−1)H+k+1)
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– In the case of duplicate items appearing on the second and subsequent occur-
rences, the corresponding ratings rating@i are set to 0.

Recommendation-centric metrics

• Diversity: it is the average dissimilarity between all pairs of items in the result
list[6], a higher value indicating a more diverse list. The dissimilarity can be mea-
sured using a metric that reflects the difference between items, often based on their
attributes[28]. Therefore, it is the opposite of similarity. Here, two main metrics
are introduced,

– Herfindahl Index: is calculated by aggregating the square of the frequency
with which each item has been recommended[15].

Herfindahl = 1− 1

rec2t

∑
i∈I

rec(i)2 (41)

where rec(i) is the total count of recommendations received by item i from all
users, and rect represents the total number of recommendations from RS.

– Mean Inter-List(MIL): is defined as the average pairwise similarity of a
list of items and measures the uniqueness of different user recommendation
lists[15].

MIL =
1

|U |2 − |U |

∑
u∈U,v∈U,u ̸=v

1−q(u, v)

c
(42)

where U is the user set, u and v are users, q(u,v) is the number of common
recommendation items in their lists, and c is the cut-off.

• Coverage: refers to the capability of the recommender system to suggest all items
from a given training set to users. In general, it is divided into user-space coverage
and item-space coverage.

The former is the percentage of users to whom an RS can provide item predictions,
in some scenarios, the RS may not have a high level of confidence in the accuracy
of the prediction for some users. Consequently, user space coverage would measure
the proportion of users who receive useful recommendations, while the latter is the
percentage of all items that can ever be recommended.

• Novelty: refers to the ability to suggest new and surprising items that are unlikely
to be familiar to the user. The average popularity(AP) of the recommendation
results is usually used to measure. The popularity of an item i ϕ(i) is defined as
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the number of users who have rated this item after being normalized by setting the
item with the highest popularity as 1. Then AP is defined as follows:

AP =

∑
u∈U

∑
i∈ru

ϕ(i)

|ru|

|U |
(43)

where ru is the list of recommended items for user u. A high AP value means that
the algorithm is more biased to recommend items with high popularity, thus the
novelty of the recommendation results is lower and the user’s satisfaction with the
recommendation results decreases.
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Chapter 3: Simple-HGN

In this chapter, we will provide a comprehensive introduction to the structure of the
Simple-HGN model and delve into the workings of each individual component. It is
worth noting that our work involves the reproduction for this model and deriving ideas
for our new model from it. Additionally, we will conclude by providing a brief overview
of our forthcoming work in the end.

3.1 Overview of Simple-HGN

Simple-HGN[33] is derived from GATs and incorporates improvements by modifying three
established methodologies: the first one is learnable edge-type embedding where edge-type
refers to different types of edges in a graph and they can represent different relationships
between nodes, such as friendships, family relationships in a social network. The second
one is residual connections, and the last one is applying L2 normalization on the out-
put embeddings. To improve the performance, apart from calculating embeddings from
HGNN, see Section 2.3.4, Simple-HGN also adds the pre-trained MF BPR embeddings
e⃗u, e⃗v, where u and v represent two nodes. As a result, the similarity score between these
nodes can be defined as follows:

f(u, v) = HGNN(u)THGNN(v) + e⃗u · e⃗v (44)

using the BPR loss function to train it.

Loss(u, v+, v−) = −logsigmoid(f(u, v+), f(u, v−)) (45)

The pipeline of HGNN in the Simple-HGN model is shown below, the purple parts are
the improvements over GATs.
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Figure 3.1: The architecture of HGNN in the Simple-HGN model

3.1.1 Learnable edge-type embedding

GATs can also model heterogeneous graphs by simply ignoring the types of node and edge,
however, the capacity is not powerful enough. Therefore, by adding edge-type information
to attention calculation, this problem can be solved. In detail, considering RE as the set
of edge types, each edge type is encoded into an embedding rO(e) where O(e) ∈ RE.
Consequently, the weight α̂ij undergoes the following changes:

α̂ij =
exp(LeakyReLU (⃗aT [Wh⃗i||Wh⃗j||WrrO(<ij>)]))∑

k∈Ni
exp(LeakyReLU (⃗aT [Wh⃗i||Wh⃗k||WrrO(<ik>)]))

(46)

where O(< ij >) is the type of edge between node i and j, Wr is a weight matrix to
transform type embeddings.

3.1.2 Residual Connection

In traditional, data in a feedforward neural network follows a sequential flow through each
layer, where the output of one layer becomes the input for the next layer. The residual
connection provides another path for data by connecting the output of one earlier layer to
the input of another later layer by skipping some intermediate layers. It can help us train
deep networks by solving the issues such as exploding gradients, and vanishing gradients.

• Edge Residual: is based on Equation 31, the new attention weight on edge i and
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j at the lth layer is defined as

α
(l)
ij = (1− β)α̂

(l)
ij + βα

(l−1)
ij (47)

where β is a scaling factor ranging from 0 to 1, and the initial attention weight α0
ij

is calculated from the initial node feature vectors of the nodes i and j.

• Node Residual: The aggregation at the lth layer is defined as

h⃗
(l)
i = σ(

∑
j∈Ni

α
(l)
ij W

(l)h⃗
(l−1)
j + h⃗

(l−1)
i ) (48)

where σ is the activation function, and h⃗0 ∈ Rd0 is the initial node feature vector.

• Multi-head Attention: To increase the model’s ability, similar to GATs, K sep-
arate attention mechanisms are applied to nodes, and then the final representation
at layer L can be obtained by averaging.

α
(l)
ijk = (1− β)α̂

(l)
ijk + βα

(l−1)
ijk (49)

ĥ
(l)
ik = σ(

∑
j∈Ni

α
(l)
ijkW

(l)
k h⃗

(l−1)
j ) (50)

h⃗
(L)
i =

1

K

K∑
k=1

ĥ
(L)
ik (51)

where αijk is the attention weight computed by the kth linear transformation matrix W
(l)
k .

3.1.3 L2 normalization

L2 normalization divides each element of a vector by the L2 norm of the vector itself,
and L2 is the square root of the sum of the squares of the vector’s elements. It can
help improve the performance and stability of models by reducing the impact of varying
magnitudes of inputs.

oi =
h⃗
(L)
i∣∣∣∣∣∣⃗h(L)
i

∣∣∣∣∣∣ (52)

where oi is the output embedding of node i after normalization, and h⃗
(L)
i is the output

after residual connection.
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3.2 Our work

Since the previous evaluation work in the field of recommendation systems have
shown that shallow methods can be superior to deep ones for the traditional CF task
[11, 16, 17, 36, 38, 47], our goal is to assess whether this is the case also for Simple-HGN.
In particular we want to see if the pre-trained MF BPR embeddings are primarily re-
sponsible. To achieve this, we introduce Attention-based Matrix Factorization (AMF)
which is a modified version of the Simple-HGN model. The Simple-HGN model utilizes
HGNN to model different entity types and relationships. In contrast, AMF replaces this
deep structure with a novel non-deep structure that combines the concept of graph-based
models and the technique of MF.

Our upcoming work consists of three main parts. Firstly, we need to reproduce the results
of the Simple-HGN model on four different datasets from the original paper to verify the
reliability of those results. This step is crucial because there are often inconsistencies
between the source code and the paper, or important details that are not adequately
described or explained.

Next, we will conduct an ablation study on the Simple-HGN model. The purpose of this
study is to analyze the individual performance of each component in the model structure
and provide a visual representation of whether the pre-trained MF BPR embeddings are
primarily responsible for the performance.

Finally, after implementing the AMF model, we will train it along with state-of-the-
art models. We will compare the best performances achieved by each model and draw
conclusions based on the analysis.
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Chapter 4: Model

Our model Attention-based Matrix Factorization is derived from Simple-HGN by replacing
the most complex deep HGNN component in the Simple-HGN model. We did this based
on two assumptions: one is that the HGNN model is too complex for recommendation sys-
tem scenarios and we have known that shallow methods have been shown to be superior to
deep ones for the CF tasks as described in previous evaluation work[11, 16, 17, 36, 38, 47],
the other is that the main predictive power of Simple-HGN comes from the simpler part
compared to HGNN. Therefore, to simplify the model and further improve its predictive
capabilities, we modified Simple-HGN. Regarding assumption one, as discussed in the
previous chapter, we have learned that HGNN is a deep learning model based on tech-
niques such as GATs combined with learnable edge-type embedding, residual connections,
and others to enhance its predictive capabilities. Deep learning models are generally more
complex compared to other machine learning algorithms and are typically applied to tasks
with complex training data, such as speech recognition, image recognition, natural lan-
guage processing, etc. However, for recommendation systems where the main training
data is URM, the predictive power of deep learning models often exceeds the required
predictive capabilities. As for assumption two, we conducted an ablation study to in-
dividually quantify and compare the performance of each component of Simple-HGNN.
This allowed us to determine the main source of predictive power in the model among its
various parts.

Having acknowledged that the foundation of the AMF model relies heavily on the two
assumptions mentioned earlier, this chapter aims to deliver a thorough introduction to
the AMF model itself. The content is presented in a structured manner, starting with
the definition of AMF and an extensive description of each component in Section 4.1.
Following that, Section 4.2 outlines the incorporation of Bayesian Personalized Ranking
(BPR) for parameter learning within the model. Lastly, a comprehensive explanation of
the model’s implementation and training specifics is provided in Section 4.3.
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4.1 Our model

The Simple-HGN model is composed of two main parts as introduced in Chapter 3:
the HGNN and the pre-trained MF BPR embeddings. Building upon the assumption
presented at the beginning of this chapter, we believe that the main predictive power of
the model stems from the pre-trained MF BPR embeddings. As mentioned before, we
will perform an ablation study to assess its performance.

To create the AMF model, we implemented enhancements to the two main components of
Simple-HGNN. The first improvement focused on recognizing the significance of the MF
BPR embeddings. We decided to retain this component while introducing a modification:
substituting the pre-trained embeddings with learnable embeddings that are trained by
the model during the training process. This adjustment was motivated by our under-
standing of the crucial role played by the MF BPR embeddings in enhancing the model’s
predictive capabilities. What remains unchanged is that these learnable embeddings are
still obtained through MF decomposition. As described in Section 2.3.2, these embeddings
correspond to the user embedding and item embedding, which are multiplied together to
form a weight matrix composed of various weight coefficients. For ease of reference, we
refer to this matrix as the user-item weight matrix.

Next, we will provide a detailed explanation of the user-item weight matrix in terms of
vector dimensions. A vector of user embedding x⃗u represents how much the user u likes
each feature k, and the set of features is denoted as K. The size of K is the latent factor and
also a hyper-parameter needed to be tuned, and a vector of item embedding y⃗i represents
how much importance of each feature k in item i. By multiplying these two vectors, we
can obtain the predicted rating αui of user u for item i, which can be expressed as:

αui = x⃗u · y⃗i (53)

By unpacking vector dot product we can re-write as:

αui =
∑
k∈K

xuk · yki (54)

The second improvement involved removing the HGNN component from the Simple-
HGN model and replacing it with a simpler non-deep learning model. More specifically,
this non-deep learning model comprises two identical structured sub-components: one is
based on the user-user similarity and the other on the item-item similarity. Leveraging
the previously mentioned user-item weight matrix, these two sub-components utilize the
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user embedding and item embedding from the weight matrix, respectively. They combine
these embeddings with the idea of graph-based algorithms to calculate two prediction
scores.

In Section 2.3.3 we have known that P 3 as a graph-based algorithm, it determines the
predicted rating of user u on item i as the likelihood of arriving at item node i from user
node u after three random steps, which is equal to the product of the probability p of
reaching each node, see equation 23.

In AMF, in addition to the two types of nodes mentioned above, namely item nodes
and user nodes, there is an additional type of node called feature nodes. The feature
nodes encompass the features that play a role in shaping both user embedding and item
embedding within the user-item weight matrix. These feature nodes are introduced to
create new paths that can be traversed during the three-step random walk. Based on
this, we consider two scenarios. One is from a user node u to firstly reach a feature node
m then finally reach an item node i, in this scenario, the set of feature nodes is M . The
other is from a user node u to firstly reach an item node j then finally reach another item
node i by walking by the feature node n, and correspondingly, the set of feature nodes is
N .

At the beginning, we consider the former scenario, as shown in the figure 4.1, where we
place the feature nodes between the user and item nodes for a simple and easy-to-read
composition.

Correspondingly, if we denote the probability of traveling from node i to node j as pij, the
predicted rating can be expressed as:

r̃ui =
∑
m∈M

∑
v∈U

pumpmvpvi (55)

After moving the summation of v to the front of pvi, it becomes as:

r̃ui =
∑
m∈M

pumpmv

∑
v∈U

pvi (56)

the former part
∑

m∈M pumpmv calculates the similarity between user u and v, denoted by
suv. In this scenario, the user similarity is calculated based on the user embedding present
in the user-item weight matrix. Since the weights in the user embedding are continuous
values rather than binary (0 or 1), we utilize the Pearson coefficient to calculate the
similarity between users. Meanwhile, in the latter part pvi represents the probability of a
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Figure 4.1: The three-step jumping starting from a user node u to reach an item node i
by firstly walking by a feature node m

user v reaching an item node i. However, unlike P 3 this probability can be computed from
URM, here we try to estimate it by using MF as well and it represents the importance
of user v’s rating for item i, which is denoted by αvi. This MF is also composed of a
set of embeddings. Since it is applied in a graph-based context, we refer to this set of
embeddings as graph-based embeddings.

So far, the predicted score of user u for item i is obtained by multiplying the similarity
and corresponding importance between user u and each other user v, and then summing
them up. The importance is derived from the model training based on the user similarity,
therefore we consider it as an attention mechanism. We refer to these importance values
as attention weights ranging between 0 to 1. A weight of zero indicates that a particular
similarity rating is meaningless and should be disregarded. This approach is akin to the
User-based CF technique.

If we use the vectors x⃗u, x⃗v to describe how much users u, v like each feature respectively,
therefore we can further obtain:

r̃ui = x⃗u · x⃗v

∑
v∈U

αvi =
∑
v∈U

x⃗u · x⃗v · αvi =
∑
v∈U

suv · αvi (57)
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αvi =
∑
m∈M

xvm · ymi (58)

where the size of M is the latent factor and hyper-parameter, and suv is equal to 0 when
user u and user v are the same.

In the second scenario, where we start from a user node u and aim to reach item node j
and then another item node, the random walk path is illustrated in Figure 4.2.

Figure 4.2: The three-step jumping starting from a user code u to reach an item node i
by firstly walking by another item node j

Similarly, the predicted rating is defined as:

r̃ui =
∑
j∈I

∑
n∈N

pujpjnpni (59)

After moving the summation of n to the front of pjn, it becomes as:

r̃ui =
∑
j∈I

puj
∑
n∈N

pjnpni (60)

The subsequent part involves calculating the similarity between item i and j, denoted by
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sij, which is obtained from the item embedding in the user-item weight matrix. Further-
more, similar to the previous case, the Pearson coefficient is employed to compute the
item similarities, owing to the floating-point nature of the item embedding weights.

Additionally, puj represents the probability of reaching item node j from user node u.
Similarly, we replace this probability with a predicted value αuj, which is obtained using
another set of graph-based embeddings. We consider αuj as an indicator of the importance
of user u to the ratings of other item j. Like before, this importance is derived from
the model training based on item similarity and follows the same attention mechanism.
Therefore, we refer to these importance values as attention weights, ranging between 0
and 1. This approach is similar to the one employed in Item-based CF technique. We use
the vectors y⃗i,y⃗j to describe how much importance of each feature in items respectively,
the number of features is N ,then we can obtained:

r̃ui =
∑
j∈I

αuj y⃗j · y⃗i =
∑
j∈I

αuj · sji =
∑
j∈I

sji · αuj (61)

αuj =
∑
n∈N

xun · ynj (62)

where the size of N is the latent factor and hyper-parameter, and sji is equal to 0 when
item i and item j are the same.

Therefore, in total, the whole formula of predicted ratings is depicted as follows:

r̃ui = x⃗u · y⃗i +
∑
v

x⃗u · x⃗vαvi +
∑
j

y⃗j · y⃗iαuj

= αui +
∑
v∈U

suv · αvi +
∑
j∈I

sji · αuj

(63)

where

αui =
∑
k∈K

xuk · yki (64)

αvi =
∑
m∈M

xvm · ymi (65)

αuj =
∑
n∈N

xun · ynj (66)
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4.2 Learning the solution

Based on the description above, AMF further incorporates additional predicted scores by
applying an attention mechanism based on the similarity calculated for the two embed-
dings in the user-item weight matrix, the weights obtained by multiplying the two sets
of graphed-based embeddings separately. Since all the parameters required for learning
the solution in the entire algorithm are both derived from these embeddings. Therefore,
similar to MF BPR mentioned in Section 2.3.2, we decided to also use BPR technique to
learn the optimal solution.

In order to train the model, we first need to perform BPR sampling from URM in a
uniform and random way, and each sample is composed of three elements <u,a,b>:

• u: an user who have at least an interaction in their user profile.

• a: a positive sample which is an item the user u interacted with.

• b: a negative sample which is an item the user u did not interact with.

During the training process, BPR algorithms uses these samples to continuously optimize
the parameters by stochastic gradient descent following the rule below:

θ = θ + α(
1

1 + er̃u,ab
· ∂r̃u,ab

∂θ
+ λθ) (67)

In the scenario of AMF, the predicted rating difference between positive item a and
negative item b from user u can be described as:

r̃u,ab = αua +
∑
v∈U

suv · αva +
∑
j∈I

sja · αuj − (αub +
∑
v∈U

suv · αvb +
∑
j∈I

sjb · αuj)

= (αua − αub) +
∑
v∈U

suv · (αva − αvb) +
∑
j∈I

(sja − sjb) · αuj

(68)

For ease of reading, we use the same nomenclature as r̃u,ab for the each pair of differences
between the same type of parameters in the above equation and also for subsequent
equations, then r̃u,ab in turn can be simplified to express as:

r̃u,ab = αu,ab +
∑
v∈U

suv · αv,ab +
∑
j∈I

sj,ab · αuj (69)

Once we obtain the r̃u,ab, following the updating rule, we need to calculate the derivative
of it with respect to the parameter θ. Since the similarity terms in the latter two parts are
calculated based on the embeddings in the user-item weight matrix, we proceed with a
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comprehensive simplification by decomposing each of the three terms into scalar products:

The first term:

αu,ab =
∑
k∈K

xuk · yka −
∑
k∈K

xuk · ykb =
∑
k∈K

xuk · (yka − yka) =
∑
k∈K

xuk · yk,ab (70)

The second term:∑
v∈U

suv · αv,ab =
∑
v∈U

∑
k∈K

xuk · xvk · (
∑
m∈M

xvm · yma −
∑
m∈M

xvm · ymb)

=
∑
v∈U

∑
k∈K

xuk · xvk ·
∑
m∈M

xvm · (yma − ymb)

=
∑
v∈U

∑
k∈K

xuk · xvk ·
∑
m∈M

xvm · ym,ab

=
∑
v∈U

∑
k∈K

∑
m∈M

xuk · xvk · xvm · ym,ab

(71)

The third term:∑
j∈I

(sja − sjb) · αuj =
∑
j∈I

(
∑
k∈K

ykj · yka −
∑
k∈K

ykj · ykb) ·
∑
n∈N

xun · ynj

=
∑
j∈I

(
∑
k∈K

ykj · (yka − ykb) ·
∑
n∈N

xun · ynj

=
∑
j∈I

∑
k∈K

ykj · yk,ab ·
∑
n∈N

xun · ynj

=
∑
j∈I

∑
k∈K

∑
n∈N

ykj · yk,ab · xun · ynj

(72)

Based on the above equations, we have to differentiate with respect to the parameters
used in embeddings of three different MFs. It should be noted that we have two parameter
sets for each sample, the weights of the positive item and those of the negative one, we
have to update both. Moreover, when finding the partial derivative, all the terms except
θ itself are constant. Therefore, the derivative of r̃u,ab with respect to the each parameter
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θ in AMF can be specified as:

∂r̃u,ij
∂θ

=



yk,ab +
∑

v∈U xvk · αv,ab if θ = xuk,

xuk +
∑

j∈I ykj · αuj if θ = xuk,

−xuk −
∑

j∈I ykj · αuj if θ = ykb,∑
v∈U suv · ym,ab if θ = xvm,∑
v∈U suv · xvm if θ = yma,∑
j∈I sj,ab · ynj if θ = ymb,∑
j∈I sj,ab · ynj if θ = xvn,∑
j∈I sj,ab · xun if θ = ynj,

0 else

4.3 Implementation details

4.3.1 Technologies adopted

Python[31] was chosen as the programming language for developing AMF model due to its
simple syntax and readable code. Additionally, it has a large number of useful third-party
libraries and frameworks. For instance, the two main libraries that were relied upon in
this development, Numpy library is used to store and support large matrices operations,
while Scipy library is used for scientific computations such as statistics and linear algebra.
Additionally, PyTorch is chosen as the development framework because of its effectiveness
in training machine learning models. Its primary advantage is the provision of two core
functions, which are listed below:

• Support for GPU-accelerated tensor calculations: tensors are similar to
NumPy’s ndarrays, except that tensors can run on GPUs. They are used to en-
code the inputs and outputs of a model, as well as the model’s parameter. In fact,
tensors and NumPy arrays can often share the same underlying memory, eliminating
the need to copy data.

• Automatic differentiation mechanism that facilitates optimization of the
model:as mentioned before, parameters of model are adjusted according to the
gradient of the loss function with respect to the given parameter. To compute
those gradients, PyTorch has a built-in differentiation engine called torch.autograd.
It supports automatic computation of gradient for any computational graph, and
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tensors are optimized for automatic differentiation.

During the preparation stage of data training, it becomes challenging to perform compli-
cated operations on URM after reading it into memory due to the large size. In addition,
computing the loss function requires calculating on each data sample, which can drasti-
cally reduce the iteration speed. To tackle this issue, the dataset is divided into several
batches, and the size of each batch is a hyper-parameter, which is usually a multiple of 32
or a factor. Therefore, the update of model parameters is no longer based on individual
samples but on individual batches. After conducting practical experiments, we found that
the PyTorch’s DataLoader object which returns a batch of training data on each iteration
while iterating through the dataset, is not efficient enough for our recommender system
dataset scenario. Consequently, we solve this problem by exploiting a new DataLoader
implemented in Cython[3] and the return value of it is a batch of BPR triple samples.

4.3.2 Model implementation

The model implementation involves three steps: defining the model, defining the loss,
and selecting an optimization technique. Since the last step is mostly built into PyTorch,
we just need to work on the former two steps, let’s start with the most challenging first.
All models in PyTorch inherit from torch.nn.Module, which requires only the class and
a forward method to be defined. Upon initializing the class, We define three sets of
MF embeddings, corresponding to the user-item weight matrix and two pairs of graph-
based embeddings used to compute the attention weights. In order to make the model
easier to converge, we modify the parameter distribution of the PyTorch initialization
embedding from the default normal distribution with a mean of 0 and a variance of 1 to
a normal distribution with a mean of 0 and a variance of 0.1. In the forward function, we
translate it into code logic following the predicted rating formula. Furthermore, as the
prediction formula requires numerous matrix multiplication operations and all matrices
are transformed into the tensors in PyTorch, therefore we use the Einstein summation
method to enhance operation efficiency and simplify the code. This method can reduce
the calculation involved in tensor multiplication and express the tensor operation in a
concise formula according to the repeated index convention, avoiding element expansion.
We take the first part of prediction formula as an example to explain it visually:

αui =
∑
k∈K

xuk · yki (73)

In this case, the index of α is ui, the index of x and y is uk, kj respectively. It is evident
that the value of k determines the values of x and y, which in turn determines the value
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of α. Therefore, it serves as a repeated index. Based on this, this part can be expressed
using the Einstein summation convention as follows:

uk, ki → ui (74)

We begin by expressing the product of the first pair of MF embeddings, which results in
the user-item weight matrix, using the Einstein summation convention. Then, based on
their user embedding and item embedding, we calculate the similarity matrices using the
Pearson coefficient method. These similarity coefficients are individually L1-normalized
and stored in two tensors for ease of computation in the subsequent steps.

Next, we utilize the remaining two pairs of MF embeddings, as defined earlier, to calculate
two attention weight matrices using the Einstein summation convention. To ensure that
each weight falls within the range of 0 to 1, we perform Min-Max scaling on these two
matrices.

Up to this point, we have obtained the user similarity matrix along with its corresponding
attention weight matrix, as well as the item similarity matrix along with its corresponding
attention weight matrix. The final step is to multiply these two pairs of matrices element-
wise. Since the resulting matrices have the same shape as the user-item weight matrix,
which is |U | × |I|, we sum them together to obtain the final predicted rating matrix.

It is worth noting that since we train the model on a batch-wise basis, during the cal-
culation of the predicted rating, we do not compute the complete three MF matrices at
once. Instead, we slice and extract the corresponding sub-matrices based on the user and
item information within the batch. This allows us to obtain the predicted rating matrix
specific to the current batch.

Once the prediction ratings matrix is computed, we proceed to specify the loss function.
Since the PyTorch framework does not have a built-in function for BPR loss, we developed
one that uses the implemented forward function to obtain the predicted ratings for both
negative and positive items of users and calculate the BPR loss for each batch. To
express the loss, we need to assign a minus sign in front of Equation 16 which represents
the probability for the model parameter. Then, the BPR loss function can be expressed
as:

LossBPR = −
∑

(u,i,j)∈Ds

log
1

1 + e−r̃u,ij
+ λ∥θ∥2 (75)

In fact, during the implementation process, we removed the regularization part from the
loss function because it is already included in the optimizer, as described later. Therefore,
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the loss function is simplified to:

LossBPR = −
∑

(u,i,j)∈Ds

log
1

1 + e−r̃u,ij
(76)

In the PyTorch framework, there are multiple optimizers to choose from. When using
them, we simply need to specify the model parameters to be optimized, the learning rate,
and the weight decay (also known as L2 regularization). When weight decay is specified,
a penalty term, which is the sum of the squares of the parameters, is added to the loss
function. This penalty term corresponds to the omitted regularization part mentioned
earlier in the loss function. In our experiment, we select four of optimizers as options,
SGD, Adagrad, RMSprop, and Adam. We set the name of optimizer as a hyper-parameter
to specify the one used for stochastic gradient descent before the model training phase.

After the above three steps are completed, the model training process for each batch is
executed as follows:

• The optimizer is cleared of any previous computed gradients.

• The loss for the current batch is computed.

• Backpropagation is performed to generate the gradients.

• The optimizer updates the parameters using the computed gradients.

Due to the large number of matrix operations involved, in order to shorten the training
time, we put the model and the data used in the calculation process on the GPU.

4.3.3 Hyper-parameter tuning

The predictive performance of recommender algorithms is heavily influenced by the hyper-
parameters used during their training process. Hyper-parameter tuning aims to optimize
the model for achieving the best possible performance on unseen data. There are some es-
sential approaches, here we exploit one of the most efficient approaches, which is Bayesian
Optimization(BO), an automatic approach that models the generalization performance of
a learning algorithm as a sample from a Gaussian process (GP). The GP’s tractable pos-
terior distribution enables efficient use of information from previous experiments, leading
to optimal choices about which parameters to try next[46]. BO has outperformed other
state-of-the-art optimization algorithms in many problems, such as reducing the number
of evaluations required for searching the next set of parameters to test. In our implemen-
tation, the Scikit-Optimize library in Python is utilized as a tool of BO.
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Given that AMF model is trained based on stochastic gradient descent technique, early
stopping is essential for efficiently identifying the optimal model performance and termi-
nating training for each set of hyper-parameters generated by BO. Early stopping entails
monitoring the model’s performance on a validation dataset throughout the training pro-
cess, and stopping the training process early when the performance on the validation
dataset starts to decline, using a stopping criterion such as the condition that the metric
of interest ceases to improve for five consecutive evaluations.
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Chapter 5: Experiments

We divide this chapter into four sections, we first in Section 5.1 describe the datasets
used to do experiments by showing the detailed information, such as the distribution of
interactions, the density,etc.. Then two experiments were carried out on Simple-HGN:
one is to test the reproducibility of the model results of the original article in Section 5.2,
and the other is to conduct an ablation study to figure out how the performance changes
without the pre-trained MF BPR embeddings in Section 5.3. Finally, we describe what
and how experiments were performed to evaluate the performance of AMF in Section 5.4.

5.1 Datasets

As AMF is based on Simple-HGN model, we use the same four datasets which are Movie-
lens, Yelp-2008, LastFM, and Amazon-book to train our new algorithm. This ensures
that the training results can be compared directly. The collaborative information in these
datasets comprises of implicit ratings, and the content-based information is not involved.
All the benchmark algorithms’ results are also obtained on these same datasets. In this
section, we will explain the characteristics of these datasets and the method used to split
the data for training, validation, and testing.

5.1.1 MovieLens

The GroupLens research group at the University of Minnesota developed the MovieLens
1 dataset, which is widely used in the field of RS. This dataset includes ratings on a scale
of 1 to 5 for various movies, and there are four versions available with varying numbers
of ratings: 100K, 1M, 10M, and 20M. The authors of Simple-HGN model used a subset
of the 20M version, where they transformed explicit ratings into implicit ones by only
retaining the interaction records between users and items, while discarding the specific
rating data. As Simple-HGN model is trained using both the URM and the information
of graph nodes and their relationships. Hence, this dataset is composed of two distinct
parts of data. One is for building URM and the other is for describing the graph. Since

1https://grouplens.org/datasets/movielens/

https://grouplens.org/datasets/movielens/
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the ablation study involves re-training Simple-HGN model on all of four datasets, all the
information about this subset is retained, as described in Table 5.1.

#Users #Items #Ratings #Entities #Relations #Triplets
37,385 6,182 539,300 24,536 20 237,155

Table 5.1: The statistics of MovieLens dataset

In this dataset, the number of items rated by users is between 10 and 20, the user frequency
of the number of item ratings is depicted in Figure 5.1. It is easy to note that as the
number of ratings increases, the number of users decreases linearly. The number of users
with a rating count of 20 is approximately half of the number of users with a rating count
of 10.

Figure 5.1: The user frequency of the number of items ratings on dataset MovieLens

Figure 5.2(a) displays the popularity of the item, which from the origin and descends
quickly from the highest point, showing that only a few items get a lot of ratings. Most
of the items in the tail of the curve have only a few ratings, which is called the long tail
phenomenon. We take the items corresponding to the first 20% of the curve as popular
items, and the rest as non-popular items, and then count the proportion of popular items
in each user’s profile, and the results are presented in Figure 5.2(b). It is easy to find that
the vast majority of users have a high degree of love for popular items, more than 80%
of users in their historical rating lists, the number of popular items accounted for about
85% of the total number of rated items, more than 60% of users rated all of the items are
popular ones.
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(a) Item popularity (b) Ratio of popular items for different users

Figure 5.2: Item popularity and user interest in popular items on dataset MovieLens

5.1.2 Yelp-2018

The Yelp-2018 2 dataset is a large-scale dataset of user ratings from the Yelp platform
which is an online platform that allows users to discover and review local businesses which
are viewed as items, such as restaurants, cafes, bars. Yelp-2018 is adopted from the 2018
edition of the Yelp challenge. The detailed information of this dataset is shown below.

#Users #Items #Ratings #Entities #Relations #Triplets
45,919 45,538 1,183,610 136,499 42 1,853,704

Table 5.2: The statistics of Yelp-2018 dataset

It is much bigger than the last dataset MovieLens in both the number of items and
interactions. Since there is less than one percent of users have the number of ratings higher
than 200, and the values are very scattered, therefore in order to make the distribution
more intuitive, this part is not shown in Figure 5.3 which describes the distribution of
user frequency of the number of ratings. As we can see, there is no user without ratings,
and the number of ratings given by most users is concentrated in the range of less than 25.
According to the item popularity shown in Figure 5.4(a), the most popular item receives
around 1600 ratings from users, which is not as significant as the one on MovieLens.
Compared with MovieLens, the decline of the curve from the maximum value of the y-
axis to close to 0 is slightly slower, but more than half of the items are still very close to
the X-axis, which means that they receive very few ratings and form a long tail. From
Figure 5.4(b), the user’s dependence on popular items is not as high as that of MovieLens
users, only about 20% of users, and the number of popular items rated by them accounts

2https://www.yelp.com/dataset

https://www.yelp.com/dataset
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for more than 80% of the total number of rated items, while only a very small number of
users, less than 5%, have this percentage of 100%.

Figure 5.3: The user frequency of the number of items ratings on dataset Yelp-2018

(a) Item popularity (b) Ratio of popular items for different users

Figure 5.4: Item popularity and user interest in popular items on dataset Yelp-2018

5.1.3 LastFM

The LastFM dataset records user listening sequences collected and published by Last.fm
which is a music website, founded in the United Kingdom in 2002. It is also often used
in the field of RS. The LastFM dataset contains information about users, and the songs
they have listened to, therefore in this scenario, a rating is obtained when a user listens
to a song. We extract a subset with the timestamp from January,2015 to June,2015. The
statistics of this subset is summarized in Table 5.3.

Since the ratings represents the action of the song playing, which means that the duplicate
items exist on dataset because one song can be played several times, thus the number of
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#Users #Items #Ratings #Entities #Relations #Triplets
23,566 48,123 3,034,763 106,389 9 464,567

Table 5.3: The statistics of LastFM dataset

ratings is much more than previous two datasets. However, our models are all trained on
the implicit URM, therefore, when this dataset is converted into URM, all the duplicate
items are only counted once.

The histogram in Figure 5.5 shows the frequency of users with respect to the number of
item ratings, and for the same reason as the previous dataset, we omitted the frequency
of users with more than 1200 ratings from the figure. For each user’s historical score list,
the item popularity before and after removing duplicate values is shown in Figure 5.6(a),
and 5.6(b) respectively, it can be seen that the descending slope of the curve slows down
after de-duplication, indicating that there are a few popular songs with a high number of
repetitions, and the gap between the ratings of non-popular items becomes smaller after
de-duplication. From the trend of ratio of popular items for different users in Figure 5.7
is similar to that of Yelp-2018, with the slight difference that the slope of the LastFM
curve is relatively slow in the first 40% of users.

Figure 5.5: The user frequency of the number of items ratings on dataset LastFM

5.1.4 Amazon-book

Amazon-book 3 is another popular dataset that is commonly used to train the models
in RS. It is a collection of book ratings and reviews obtained from Amazon.com. The
original dataset comprises a vast collection of over 22 million ratings for nearly 2.8 million

3https://jmcauley.ucsd.edu/data/amazon/

https://jmcauley.ucsd.edu/data/amazon/
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(a) Original distribution (b) The distribution after de-duplication of users

Figure 5.6: Item popularity on dataset LastFM

Figure 5.7: Ratio of popular items for different users on dataset LastFM

books from more than 900,000 users. Here we use the subset of it, and it is comprised by
the following data:

#Users #Items #Ratings #Entities #Relations #Triplets
70,679 24,915 846,434 113,487 39 2,557,746

Table 5.4: The statistics of Amazon-book dataset

Figure 5.8 displays the user frequency of the number of item ratings. As it can be observed
that about eighty percent of the users have less than twenty ratings, and there are no users
with no ratings. The item popularity and user interest on popular items are displayed
in Figure 5.9(a),(b) respectively. Different from the previous datasets, there are a small
number of Amazon-book users who do not have any rating records of popular items, the
curve is relatively not smooth, and the proportion of users whose rated items are all
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popular one is relatively large, about 20%.

Figure 5.8: The user frequency of the number of items ratings on dataset Amazon-book

(a) Item popularity (b) Ratio of popular items for different users

Figure 5.9: Item popularity and user interest in popular items on dataset Amazon-book

5.1.5 Dataset splitting

As introduced in Section 2.4.1, in order to evaluate model performance and guarantee the
generalization ability of the model, we need to slice the complete dataset into three parts:
the training set, the validation set, and the test set. the authors of Simple-HGN slice
the four datasets introduced above into training set and test set, by randomly splitting
20% of ratings for each user as the test set , and the remaining 80% of ratings as the
training set. On this basis, we split the training set again by exploiting the hold-out
method to randomly extract 80% of the all ratings as the final training set and the rest
20% of the ratings as the validation. These two parts of dataset are used to train the
model and search the best configuration of hyper-parameters, then they are integrated
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and used to train and obtain the final models which will be evaluated the performance
on test set. The table below shows the results of the four datasets after splitting(Since
the graph knowledge-based information is not required by training our new algorithm and
benchmark algorithms, therefore it is not presented here):

Dataset #Users #Items #Ratings for training #Ratings for validation #Ratings for test
MovieLens 37,385 6,182 333,973 83,493 121,834
Yelp-2018 45,919 45,538 744,026 186,006 253,578
LastFM 23,566 42,123 1,031,202 257,801 423,635

Amazon-book 70,679 24,915 522,011 130,503 193,920

Table 5.5: The statistics of four datasets after splitting

5.2 Reproduction work

In order to compare the results of both AMF and Simple-HGN, it is necessary to check
whether they are reliable by reproducing Simple-HGN results shown by the authors in
the original paper. The work consists of two parts.

After reviewing the source codes given by the authors, we first conducted two checks.
The first was to verify that the authors’ implementation of the algorithm aligned with
the paper’s description. The second was to examine if the hyper-parameter configurations
used during training, along with the stopping criteria, were in accordance with the paper’s
description. Both of these checks yielded positive results.

Following that, To ensure a fair comparison of results with other algorithms and to evalu-
ate all algorithms under identical conditions, we proceeded with the second task of porting
the model to our standard RS framework which is used in the paper "A Troubling Analysis
of Reproducibility and Progress in Recommender Systems Research"[11]. This adaptation
was based on the source code provided by the authors, while ensuring that the core algo-
rithm implementations remained unaltered. In more detail, this task is mainly involved
implementing three classes:

• simpleHGN_RecommenderWrapper: mainly involves changing the original
logical framework of Simple-HGN model to a version compatible with our framework
which mainly includes the model fitting function for initializing the model, the
function of model training for each iteration, the function of computing user-item
scores for the validation process, the function of saving current model state, and the
function of loading previously saved model.
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• test_simpleHGNRecommender: is mainly to write test functions for the main
functional modules in the first class to check whether it works correctly and whether
the output is consistent with the expected results.

• run_simpleHGN_RecommenderWrapper: to run the experiment pipeline for
Simple-HGN model, begin by loading the necessary data, including the URM and
pre-trained MF BPR embeddings. Then, proceed to initialize and start the hyper-
parameter tuning process which involves utilizing a train-test-validation data split,
in contrast to the train-test split used in the original paper. Consequently, the
results obtained after the split will be used.

The results of reproduction work on four different datasets are shown in Table 5.6.

Dataset RECALL NDCG
0.4618±0.0007 0.3090±0.0007MovieLens 0.4612 0.3078
0.0732±0.0003 0.0466±0.0003Yelp-2018 0.0729 0.0464
0.0917±0.0006 0.0797±0.0003LastFm 0.0914 0.0795
0.1587±0.0011 0.0854±0.0005Amazon-book 0.1593 0.0855

Table 5.6: The result of Recall and NDCG for reproducing work in four datasets with
cutoff at 20, the reproduction results are shown in bold, the one marked in red color
means that it deviates from the result range provided by the author

From the comparison of results, we can find that except that the result of NDCG on
MovieLens is slightly deviated from the result range provided by the author, other results
are consistent, thus concluding that the results in the original article are reliable.

5.3 Ablation study

As the introduced in Chapter 3, Simple-HGN is composed by two components, one is the
deep graph method and the other is pre-trained embeddings with MF BPR. To compare
the model effectiveness when only one of them is used with the original model, there are
two tasks to conduct.

One task involves training and evaluating the Simple-HGN model after completely re-
moving the pre-trained MF BPR embeddings. In this case, only the HGNN part remains,
and the focus is on learning node embeddings. Since Simple-HGN has already been in-
tegrated into the standard framework, which allows for convenient ablation experiments,
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conducting this task simply requires setting a flag to control the usage of pre-trained
embeddings.

The other task involves assessing the performance of the pre-trained embeddings. In this
regard, the authors have generously made their pre-trained embeddings data available in
their source code repository. As these embeddings are derived from the MF BPR model
which is already included in the standard framework, we can easily obtain the performance
results by replacing the initial embeddings of the MF BPR model with the pre-trained
embeddings, eliminating the necessity of conducting the training process.

Tables 5.7-5.10 show the results of the complete ablation study on the four data sets:

Model Component RECALL NDCG
Complete model 0.4612 0.3078

Only HGNN remaining 0.3681 0.2285
Pre-trained embeddings 0.3992 0.2559

Table 5.7: The results of Recall and
NDCG for ablation study in MovieLens
dataset with cutoff at 20

Model Component RECALL NDCG
Complete model 0.0729 0.0464

Only HGNN remaining 0.0519 0.0323
Pre-trained embeddings 0.0627 0.0393

Table 5.8: The results of Recall and
NDCG for ablation study in Yelp-2018
dataset with cutoff at 20

Model Component RECALL NDCG
Complete model 0.0914 0.0795

Only HGNN remaining 0.0572 0.0491
Pre-trained embeddings 0.0724 0.0617

Table 5.9: The results of Recall and
NDCG for ablation study in LastFM
dataset with cutoff at 20

Model Component RECALL NDCG
Complete model 0.1593 0.0855

Only HGNN remaining 0.1178 0.0603
Pre-trained embeddings 0.1300 0.0679

Table 5.10: The results of Recall and
NDCG for ablation study in Amazon-
book dataset with cutoff at 20

Based on the outcomes above, the performance of the pre-trained MF BPR model is
slightly superior to that of Simple-HGN with only the HGNN component remained. How-
ever, when the two models are combined, the overall performance is significantly enhanced
across various datasets.This combination results in a minimum improvement of 20% in
Recall and at least a 35% improvement in NDCG.

Hence, it can be concluded that the HGNN alone is not particularly effective, the pre-
trained MF BPR model performs relatively well, and the hybrid model successfully lever-
ages the strengths of both approaches.
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5.4 Performance analysis of AMF

In this section, we will first compare and analyze the performance of AMF model on four
datasets with some state-of-the-art models in two aspects: one is the recommendation
situation of the top-N tasks, and the other is the overall control ability of the recommended
item popularity. Then, taking the MovieLens dataset as an example, the analysis of
the sensitivity of AMF model to changes in the size of the three latent factors will be
performed.

5.4.1 Performance analysis of top-N task

In this part, we measure the performance of AMF and other models in terms of accuracy,
coverage, and diversity based on the recommendation results obtained from the final test
set. The specific indicators used are listed below:

• Classification accuracy: Recall

• Ranking accuracy: NDCG

• Coverage: Item-space Coverage(IC)

• Diversity: Mean Inter-List(MIL)

The performance of AMF is then presented and compared with that of Simple-HGN model
and the following state-of-art CF models, and analyzed in depth.

• User KNN CF: a user-based collaborative filtering algorithm introduced in Section
2.2.1.

• Item KNN CF: an item-based collaborative filtering algorithm introduced in Sec-
tion 2.2.2.

• SLIM BPR: a collaborative filtering algorithm with BPR loss, which is described
in Section 2.3.1.

• PureSVD: an algorithm of matrix factorization, using the truncated singular value
decomposition technique, introduced in Section 2.3.2.

• MF BPR: a basic model of matrix factorization trained with BPR loss, introduced
in Section 2.3.2.

• IALS: an algorithm of matrix factorization iterative optimizing one feature matrix,
introduced in Section 2.3.2.
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• MF SVD++: an algorithm of matrix factorization computing one latent factor at
a time while considering global effects, introduced in Section 2.3.2.

• MF ASYSVD: an algorithm of matrix factorization decomposing URM into three
matrices, the product of two of them produces an asymmetric similarity matrix,
introduced in Section 2.3.2.

• P 3
α: an graph-based algorithm introduced in Section 2.3.3.

5.4.2 Carousel analysis

In real-life scenarios, popular video and music platforms such as Netflix and Spotify of-
ten utilize multiple carousels for providing recommendations to users. Each carousel
corresponds to an independent recommendation algorithm, and when evaluating the rec-
ommendation quality of these algorithms, it is important to consider the combined results
of these carousels rather than focusing solely on individual recommendations[14, 18]. In
this scenario the goal is not to find the single model with the best recommendation qual-
ity, but to develop a model that is good at complementing the recommendations already
present and generated by the other ones. In particular, we are interested in the ability
of AMF to provide recommendations that are not trivial or "easy". For this reason we
evaluate it in a scenario where the user is provided first with a list of recommendations
from a TopPopular(TopPop) recommender which recommends popular items based on
global popularity statistic, followed by the recommendations of the algorithm we want to
evaluate [14, 18] (AFM, Simple-HGN or other algorithms). The model that is better able
to complement the TopPop will have the highest accuracy. It’s important to note that
the user interface comprises two separate lists stacked on top of each other. However, in
this scenario, we do not take into account characteristics of user navigation behavior on
the user interface. Consequently, we can utilize SLNDCG as the metric to directly assess
the performance.

We will compare the individual models’ performance with the performance of the carousel
layout, which is formed by combining any one of them with TopPop. It is worth noting
that the evaluation for individual models entails a single recommendation list, while our
evaluation of the carousel involves two recommendation lists. As a result, direct compar-
ison of the absolute values of NDCG is not feasible. Therefore, the analysis will primarily
focus on comparing the rankings of all models.

5.4.3 Popularity analysis
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Average Popularity(AP) comparison

For a recommender system, in addition to optimizing the four important indicators men-
tioned above, the overall popularity of the recommended items is also an important metric
to consider. It is desirable for the overall popularity level of the recommended results to
be as close as possible to the one of true results. To measure this aspect, we use the AP
as a benchmark metric.

Moreover, its comparative analysis on all algorithms is performed by using the notation
APp to denote the AP value in actual user profiles of test set, while APr represents the
AP value for recommendations generated by a particular algorithm. To evaluate the
performance of each recommendation algorithm, we calculate the change in AP, which
reflects the degree of undesired influence that the algorithm imposes on the popularity of
recommended items. A value of ∆AP = 0 indicates that the recommendations align well
with the users’ preferences towards item popularity.

Popularity bias

A common issue with present recommendation algorithms is the popularity bias dilemma
which refers to the situation in recommender systems where the probability of items
being recommended is inconsistent with their actual popularity. It reflects the fact that
non-popular items have no or few chances to be recommended while the system tends to
recommend popular items frequently. This results in the popular items becoming even
more popular, while the less popular ones remain neglected.

The goal of the top-N recommendation task is to enhance the fairness of recommendations
by promoting the exposure of less popular items while ensuring a satisfactory level of
accuracy. To evaluate the performance of each algorithm in achieving this objective,
the comparison of the Gini Index values of item popularity for all algorithms will be
conducted. This Gini Index measures the inequality in the selection of different items by
users when a specific recommender system is utilized[43], and then evaluate the degree
to which the algorithm alleviates the problem of popularity bias. If the fraction of total
ratings received by that item i after training the model is denoted as x(i). Gini Index can
be given by:

GiniIndex =
1

n− 1

n∑
j=1

(2j − n− 1)x(ij) (77)

where n is the number of recommended items, i1,···in is the list of items ordered according
to increasing x(i). The index is 0 when all items are chosen equally often, and 1 when a
single item is always chosen. Therefore, a lower value of this metric is preferred.
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Long tail exploration ability

In general, when the popularity bias of a recommender system decreases, the ability to
explore long-tail items often improves, but the former factor is not a sufficient condition
for the latter factor. Even a recommender system with low popularity bias may not
be able to explore long-tail items well. Therefore, to better discover long-tail items,
recommender systems need to adopt appropriate algorithms and techniques to improve
the ability to explore long-tail items while reducing popularity bias. In Section 5.1.1, we
have defined popular items as those receiving ratings in the top 20% of all items, while
the remaining 80% are categorized as non-popular or long-tail items. Therefore, we focus
on the recommendation of non-popular items by each algorithm, and the evaluation will
be performed from the following two perspectives:

• Compare the proportion of popular items and long-tail items in all items:
by counting the unique values of recommended popular and non-popular items sepa-
rately and adding them together to obtain the total number of recommended items,
we will calculate the proportion of each category, and then compare the distribution
of these two categories among different algorithms.

• Compare the recommendation frequency between popular and long-tail
items: by directly counting the total number of recommended items for each cate-
gory in the recommendation list, we will calculate the proportion of each category’s
total recommendations, and then compare the distribution of these two categories
among different algorithms.

5.4.4 Model sensitivity analysis

As introduced in Section 4.1, AMF stands out because it incorporates three different
MF techniques, with each MF decomposing the URM into a pair of embeddings. The
performance of MF models is often influenced by the size of these embeddings, which
is directly determined by the size of the latent factors in the MF. Therefore, for the
sensitivity analysis of the models in this section, we will take the MovieLens dataset as
an example and primarily focus on the impact of different size of three latent factors in
AMF on model performance. As a comparison, we selected four algorithms from the MF
family that also rely on latent factors decomposition of the URM. These algorithms are
MF ASYSVD, MF BPR, MF SVD++, and IALS.
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Chapter 6: Results

In this chapter, we will first present the training results of AMF, Simple-HGN, and state-
of-the-art algorithms on the test sets of four datasets from Sections 6.1 to 6.4. Then,
for each dataset, we will conduct performance analysis for individual models, carousel
analysis, and popularity analysis. In Section 6.5, we will summarize and provide an
overview of all the aforementioned analyses. Finally, in Section 6.6, we will discuss the
sensitivity of the performance of the AMF model to three different dimensions of latent
factors.

6.1 MovieLens

6.1.1 Performance analysis

Algorithm Recall NDCG IC MIL
Item KNN CF 0.4377 0.3020 0.3661 0.7489
User KNN CF 0.4700 0.3301 0.1839 0.8429

SLIM BPR 0.4320 0.2475 0.1568 0.8077
PureSVD 0.3527 0.2351 0.0113 0.6550
MF BPR 0.4092 0.2564 0.1393 0.8070

IALS 0.4544 0.3023 0.0759 0.8937
MF SVD++ 0.4224 0.2715 0.0829 0.8673
MF ASYSVD 0.4534 0.3017 0.0834 0.7782

P 3
α 0.4252 0.2891 0.2643 0.7164

Simple-HGN 0.4612 0.3078 0.2131 0.8299
AMF 0.4125 0.2657 0.1664 0.8218

Table 6.1: The performance evaluation of algorithms on dataset MovieLens with cutoff
at 20. The red font highlights the result of AMF, and the bold font indicates the better
performance than AMF.

The performance evaluation results with cutoff at 20 are shown in the table above. From
the overall point of view, the optimal results appear in the state of art algorithms. Among
them, the KNN algorithms is particularly noteworthy. User KNN CF has achieved the
highest accuracy in classification and ranking, while Item KNN CF has the most extensive
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item coverage since the recommendations are sorted based on item similarity. However,
it is worth noting that according to the analysis of the dataset in Section 5.1.1, we know
that MovieLens users have a strong willingness to interact with popular items, so in this
case, excessive coverage will reduce the accuracy of model recommendation. Therefore,
even though the IALS algorithm is lower than that of Item KNN CF in coverage, this
is not a negative result and it outperforms other algorithms in terms of diversity of
recommendations for different users, meanwhile it still retains excellent performance in
terms of accuracy, ranking second only to User KNN CF with 3.32% lower in Recall and
8.42% lower in NDCG.

Next, we focus on the performance of AMF. First, compared with Simple-HGN model,
they have obvious differences in both accuracy and item coverage, AMF is with a decrease
of 10.56% in Recall, 13.68% in NDCG, and 21.91% in IC. However, they are similar in
terms of the diversity of recommended item lists for different users.

To objectively evaluate the performance of AMF, which is based on the MF BPR, adding
an attention mechanism based on graph algorithm, the comparison between the MF BPR
algorithm is performed. In terms of accuracy, AMF under the help of graph-based atten-
tion mechanism performs slightly better than the traditional MF BPR, with an increase
of 1.00% in Recall and 3.63% in NDCG. The attention mechanism also plays a role in
improving the diversity, resulting in AMF’s better performance. The MIF of AMF is
higher than MF BPR by 2.39%.

6.1.2 Carousel analysis

From Table 6.2, it is easy to see that TopPop has the lowest recommendation quality
among all models in both individual and carousel evaluations. This is not surprising
because in the carousel evaluation, TopPop serves as the first carousel, while any other
model serves as the second carousel. Their recommendation results are concatenated
into a single list, and even if the recommendations of the second carousel are identical to
TopPop’s, the final NDCG value will still be the same as TopPop’s. Moreover, based on the
individual evaluation performance, all models perform better than TopPop. Therefore, in
the carousel evaluation, the performance of each algorithm remains higher than TopPop.
Additionally, based on the previous explanation, the more overlap exists between the
recommendations of the models in the second carousel and TopPop’s recommendations
in the first carousel, the worse the performance will be in the carousel evaluation.

According to the results of the carousel evaluation, the top three performing algorithms
are SLIM BPR, IALS, and Item KNN CF. On the other hand, in the individual evaluation,
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Individual Carousel-TopPop
NDCG Rank SLNDCG ∆Rank

TopPop 0.1630 12 0.1630 -
Item KNN CF 0.3020 4 0.2133 1
User KNN CF 0.3301 1 0.2096 -5

SLIM BPR 0.2475 10 0.2233 9
PureSVD 0.2351 11 0.1907 0
MF BPR 0.2564 9 0.1978 -1

IALS 0.3023 3 0.2192 1
MF SVD++ 0.2715 7 0.2107 2
MF ASYSVD 0.3017 5 0.2125 1

P 3
α 0.2891 6 0.2052 -1

Simple-HGN 0.3078 2 0.2019 -7
AMF 0.2657 8 0.2033 0

Table 6.2: The comparison and ranking of NDCG with cutoff at 20 for all models on
dataset MoiveLens, excluding the rank of TopPop as it is already included in the carousel.
∆Rank represents the difference between the rank when evaluated individually and the
rank when evaluated in the carousel layout. A negative ∆Rank indicates that the model
is in a lower ranking position.

the top three algorithms are User KNN CF, Simple-HGN, and IALS. When comparing the
rankings of both evaluations, the majority algorithms showed varying degrees of changes.
Among those with minor changes of 1 to 2 ranks are Item KNN CF, IALS, and MF
algorithms other than PureSVD. On the other hand, three algorithms showed significant
changes: SLIM BPR had the largest improvement, rising 9 ranks to claim the first position
in the carousel evaluation; User KNN CF experienced a decline of 5 ranks, whereas Simple-
HGN demonstrated the most significant drop with 7 ranks. This suggests that Simple-
HGN’s superior performance in offline evaluation due to the popularity bias, resulting in
a higher number of "trivial" recommendations that are already present in the TopPop
recommendation list. In addition, PureSVD and AMF maintained their ranks, indicating
that their recommendations are significantly less trivial.

Based on the comparison of the carousel evaluation performance of MF BPR, Simple-
HGN, and AMF, it differs from the conclusion of the individual evaluation. In the
individual evaluation, Simple-HGN performs the best, followed by AMF. However, in
the carousel evaluation, AMF outperforms Simple-HGN and becomes the best performer
among the three.

6.1.3 Popularity analysis
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AP comparison

Figure 6.1: Comparison between the recommended results of each algorithm and the
actual user profiles in AP on dataset MovieLens, the AP value of user profiles is marked
by the red dotted line and the right part of it shows the ∆AP .

From Figure 6.1, We can note that the average item popularity of all algorithms exceeds
that of the actual user profiles. Among them, IALS exhibits the smallest difference, with a
29.49% increase above the actual level. This indicates that all recommendation algorithms
reinforce the popularity bias by recommending more popular items and exposing users
to a greater number of them. PureSVD has the largest difference, greatly exceeding the
actual level by 96.46%. This is because PureSVD has a low number of latent factors, only
5. This means that the model tends to rely on global patterns for recommendations and
overlook individual user preferences. When the number of latent factors is reduced to 1,
the model becomes equivalent to a top popular recommender. In comparison, Simple-
HGN and AMF both have AP values in the middle range among all algorithms. However,
the AP level of Simple-HGN model is closer to the actual level. Compared to MF BPR
with AMF, their AP values are almost identical, which means that they have the same
ability to manage the popularity of items.

Popularity bias

Based on the Gini index of item popularity of all algorithms shown in Figure 6.2, the value
of PureSVD is the lowest, indicating that these items are recommended with the most
uniform frequency distribution. On the contrary, P 3

α has the highest Gini index value,
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closely followed by Item KNN CF, with a difference of less than 0.01, indicating the
most severe uneven distribution of item recommendation. Looking at their AP values,
all three algorithms have similar levels and are inclined to recommend high-popularity
items. However, overall, it can be concluded that P 3

α and Item KNN CF are more likely
to further promote popular items to be even more popular, as their gini index values
are much higher than that of PureSVD, exacerbating the problem of popularity bias. In
comparison between these two algorithms, the popularity bias problem of the former(P 3

α)
is more severe, as both its AP and Gini index are slightly worse than those of the latter.

Figure 6.2: Comparison of the Gini index of the item popularity in the recommendation
results of each algorithm on dataset MovieLens

In comparison, AMF, Simple-HGN, and MF BPR have similar Gini index levels around
0.93, which belongs to the situation where the frequency distribution of recommended
items is relatively uneven. AMF’s performance of mitigating the popularity bias is inter-
mediate between the other two. Simple-HGN appears to be the best at mitigating this
issue, with the best AP and Gini index among the three. While, MF BPR is the worst,
having the worst AP and Gini index, indicating a relatively highest recommendation
frequency for highly popular items.

Long tail exploration ability

Figure 6.3 shows the proportion of popular and non-popular items in all items in all
algorithms recommendation results. Item KNN CF has the highest number of non-popular
items recommended, accounting for more than 75% of the total number, which means it
gives the highest fair chance of exposure to non-popular items. Followed by SLIM BPR
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and P 3
α, accounting for 70%. It is important to highlight that there are four algorithms

that recommend mostly or only popular items, namely PureSVD, IALS, MF SVD++,
and MF ASYSVD.

Figure 6.3: Comparison of the proportion distribution of popular and non-popular items
in each algorithm’s recommendation results on dataset MovieLens

In regards to AMF, when compared to Simple-HGN, the proportion of non-popular items
recommended by both algorithms is similar and falls in the middle range among all algo-
rithms. However, the proportion of non-popular items recommended by AMF is slightly
higher than that of Simple-HGN by 6.94%. On the other hand, when compared to MF
BPR, AMF has a lower proportion of non-popular items, which is 7.19% lower than MF
BPR.

From the recommended frequency distribution of this two types of items, shown in Figure
6.4, there is an obvious phenomenon that the recommended results of all algorithms are
almost all popular items, and the proportion is close to 1. Item KNN CF is in first place
with a narrow margin: 2.56% of exposure for non-popular items. Moreover, the frequency
of recommending non-popular items between Simple-HGN, MF BPR, and AMF is almost
the same.

Therefore, in terms of the ability to explore long-tail items, we can conclude that from
the comparison of all algorithms, Item KNN CF not only recommends the largest number
of non-popular items, but also the highest frequency. Thus, it has the best performance.

Focusing on Simple-HGN and AMF, the latter gives more exposure for non-popular items
when both of them recommend non-popular items at the same frequency, therefore, it
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Figure 6.4: Comparison of the frequency distribution of popular and non-popular items
in each algorithm’s recommendation results on dataset MovieLens

can be concluded that AMF has the better performance. When it turn to the comparison
between MF BPR and AMF, the former has the stronger ability to mining the long tail
items since it has a slightly better performance in terms of the exposure for non-popular
items when the recommendation frequencies of them among the two algorithms are the
same.
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6.2 Yelp-2018

6.2.1 Performance analysis

Algorithm Recall NDCG IC MIL
Item KNN CF 0.0747 0.0489 0.4001 0.9748
User KNN CF 0.0715 0.0477 0.2802 0.9724

SLIM BPR 0.0708 0.0466 0.3642 0.9561
PureSVD 0.0552 0.0365 0.0643 0.9725
MF BPR 0.0497 0.0316 0.3394 0.9736

IALS 0.0772 0.0503 0.2047 0.9905
MF SVD++ 0.0625 0.0397 0.2523 0.9903
MF ASYSVD 0.0636 0.0409 0.1951 0.9871

P 3
α 0.0711 0.0467 0.2969 0.9521

Simple-HGN 0.0729 0.0464 0.3756 0.9884
AMF 0.0559 0.0365 0.1254 0.9520

Table 6.3: The performance evaluation of algorithms on dataset Yelp-2018 with cutoff
at 20. The red font highlights the result of AMF, and the bold font indicates the better
performance than AMF.

Table 6.3 shows the performance of all algorithms for the dataset Yelp-2018. the IALS
algorithm performs the best in terms of accuracy, variety of items recommended. Item
KNN CF leads the other algorithms in terms of the item coverage, with around 40% of
items being recommended. It is worth noting that compared to the fact that MovieLens
users have a high reliance on popular items (about 85% of users have more than 80% of
their overall item rating number for popular items), users in Yelp 2018 are at a lower level
of reliance on popular items, with only about 20% of users having more than 80% of their
overall item rating number for popular items, which means that users are more inclusive
of non-popular items, thus it makes the Item KNN CF algorithm not only ensure high
item coverage but also perform well in terms of accuracy, which is only 3.23% lower than
IALS in Recall and 2.78% lower in NDCG. In contrast, PureSVD and AMF, which have
a low level of item coverage, also perform poorly in terms of accuracy, with Recall around
0.055, 27.60% lower than that of IALS, and with NDCG around 0.0365, 27.44% lower
than that of IALS.

Compared to AMF, Simple-HGN outperforms it on all four metrics. On the other hand,
when compared to MF BPR, AMF sacrifices some item coverage and diversity, but guar-
antees accurate recommendations. As a result, it improves Recall by 12.47% and NDCG
by 15.51%.
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6.2.2 Carousel analysis

Individual Carousel-TopPop
NDCG Rank SLNDCG ∆Rank

TopPop 0.0110 12 0.0109 -
Item KNN CF 0.0489 2 0.0236 -5
User KNN CF 0.0477 3 0.0229 -6

SLIM BPR 0.0466 5 0.0240 0
PureSVD 0.0365 10 0.0259 8
MF BPR 0.0316 11 0.0194 0

IALS 0.0503 1 0.0273 0
MF SVD++ 0.0397 8 0.0242 5
MF ASYSVD 0.0409 7 0.0239 1

P 3
α 0.0467 4 0.0242 0

Simple-HGN 0.0464 6 0.0236 -2
AMF 0.0365 9 0.0227 -1

Table 6.4: The comparison and ranking of NDCG with cutoff at 20 for all models on
dataset Yelp-2018, excluding the rank of TopPop as it is already included in the carousel.
∆Rank represents the difference between the rank when evaluated individually and the
rank when evaluated in the carousel layout. A negative ∆Rank indicates that the model
is in a lower ranking position.

According to the results in Table 6.4, the top three performing algorithms in the carousel
evaluation are IALS, PureSVD, and MF SVD++, with P 3

α also ranked third. In the
individual evaluation, the top three algorithms are IALS, ITEM KNN CF, and USER
KNN CF. When comparing the rankings between the two evaluations, the algorithms
with minor changes of 1 to 2 ranks are MF ASYSVD, Simple-HGN, and AMF. On the
other hand, the two KNN CF algorithms, PureSVD, and MF SVD++, showed signifi-
cant changes: PureSVD had the largest improvement, rising 8 ranks to claim the second
position in the carousel evaluation, while User KNN CF experienced the largest decline,
dropping 6 ranks, and Item KNN CF dropped 5 ranks. Furthermore, in this dataset,
there is a reduced presence of popularity bias, and we can see Simple-HGN has learned
to provide less trivial recommendations because its quality does not drop a lot under a
carousel evaluation.

Comparing the performance of MF BPR, Simple-HGN, and AMF in the carousel evalu-
ation, the conclusion is consistent with the individual evaluation. Simple-HGN exhibited
the best performance among the three algorithms, while AMF performed between the
other two.
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6.2.3 Popularity analysis

AP comparison

Figure 6.5: The comparison between the recommended results of each algorithm and the
actual user profiles in AP on dataset Yelp-2018, the AP value of user profiles is marked
by the red dotted line and the right part of it shows the ∆AP .

In terms of the AP level of the recommended results of each algorithm, which is shown
in Figure 6.5, all algorithms also significantly exceed the actual level. However, the
traditional MF family algorithms have a lower degree of deviation compared to other
algorithms. Among them, MF SVD++ performs the best with an average popularity of
0.1388, which is about 1 times higher than the actual level. Focusing on the deviation
degrees of AMF, Simple-HGN and MF BPR, the AP of the recommended items by AMF
is the worst fit with the actual level, which is about 2.5 times higher. The performance
of Simple-HGN in this regard is the best of the three, second only to the performance of
MF SVD++.

Popularity bias

Based on the results in the figure above, the best and worst Gini Index results are con-
sistent with those of MovieLens. PureSVD has the most uniform item recommendation
frequency among all algorithms. Compared with other algorithms having the similar and
higher AP values, such as KNN CFs, SLIM BPR, and P 3

α, it has the best performance on
mitigating the popularity bias problem. While the frequency distribution of AMF is the
most uneven, since it also has the worst AP level, which means it tends to recommend
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Figure 6.6: Comparison of the Gini index of the item popularity in the recommendation
results of each algorithm on dataset Yelp-2018

high popularity items multiple times, exacerbating the situation where popular items be-
come even more popular. When comparing Simple-HGN with MF BPR, both the Gini
index values and the AP values of the two are very close, differing only around 0.02, thus
their ability to mitigate the popularity bias problem is similar.

Long tail exploration ability

Figure 6.7: The comparison of the proportion distribution of popular and non-popular
items in each algorithm’s recommendation results on dataset Yelp-2018
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In Figure 6.7, it is displayed how the various algorithms allocate their recommendations
between popular and non-popular items when using 20 as the cutoff to retrieve recommen-
dations. There are four algorithms that excel in providing the exposure for non-popular
items, accounting for at least 75% of all recommended items. When arranged in de-
scending order of proportion, they are Item KNN CF, SLIM BPR, MF BPR, and P 3

α. In
contrast, PureSVD performs poorly in this regard, with only 1.7% of its recommended
items being non-popular, followed by IALS, with about a quarter of its recommendations
being non-popular.

Regarding AMF, it only shows a slight 2.5% improvement on the exposure for non-popular
items respect to Simple-HGN. In contrast, compared to the MF BPR, AMF performs
significantly worse, with a 16.12% lower proportion of non-popular items recommended.

Figure 6.8: The comparison of the frequency distribution of popular and non-popular
items in each algorithm’s recommendation results on dataset Yelp-2018

Looking at the frequency distribution of recommended popular and non-popular items
by each algorithm, the conclusions on the best and worst performance are consistent
with Figure 6.7. Among them, Item KNN CF ranks first with an absolute advantage
in the proportion of recommendations frequency for non-popular items, accounting for
18.89%. The worst performer is PureSVD, with very few recommendations frequency for
non-popular items, which can be ignored.

Combining the results of two figures, we can note that as Item KNN CF not only performs
outstandingly in ensuring the fairness of exposure opportunities for non-popular items,
but also maintains a high level of exposure frequency. Therefore, it performs the best
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among all algorithms in excavating long tail items. As for AMF, compared with Simple-
HGN, AMF recommends more non-popular items than Simple-HGN. However, from the
perspective of the recommended frequency of non-popular items, Simple-HGN obtains
the better result. Therefore, they have different advantages. When it comes to MF BPR,
it has a significant advantage over AMF on the number of exposure opportunities and
frequency of non-popular items, thereby MF BPR has the better performance in this
regard.
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6.3 LastFM

6.3.1 Performance analysis

Algorithm Recall NDCG IC MIL
Item KNN CF 0.1164 0.1090 0.9246 0.9926
User KNN CF 0.1047 0.0967 0.8842 0.9990

SLIM BPR 0.1095 0.0992 0.6933 0.9947
PureSVD 0.0781 0.0735 0.2932 0.9926
MF BPR 0.0790 0.0713 0.5758 0.9862

IALS 0.0999 0.0842 0.6083 0.9943
MF SVD++ 0.0960 0.0816 0.5760 0.9930
MF ASYSVD 0.0741 0.0623 0.5388 0.9933

P 3
α 0.1193 0.1080 0.7638 0.9970

Simple-HGN 0.0914 0.0795 0.6046 0.9923
AMF 0.0664 0.0567 0.4046 0.9599

Table 6.5: The performance evaluation of algorithms on dataset LastFM with cutoff at
20. The red font highlights the result of AMF, and the bold font indicates the better
performance than AMF.

The results obtained from the top-N performance analysis are shown in Table 6.5. P 3
α

and Item KNN CF performed impressively and similarly in accuracy, with the best results
achieved in Recall and NDCG respectively by a slight advantage over each other. The
two KNNCF algorithms performed outstandingly in indicators other than accuracy. They
not only covered a vast majority of recommended items, accounting for around 90%, but
also ensured high diversity among the recommended lists for users.

Focusing on AMF, its performance is low in all aspects. Compared with Simple-HGN, it
has a significant gap in accuracy and item coverage. It is 27.35%, 28.68%, and 33.08%
lower than Simple-HGN in Recall, NDCG, and IC, respectively. Compared with MF BPR,
it also lags behind in these three indicators, but the gap is smaller, at 15.95%, 20.48%,
and 29.73%, respectively.

6.3.2 Carousel analysis

According to the analysis of the results in Table 6.6, the top three performing algorithms
in the carousel evaluation are Item KNN CF, P 3

α, and SLIM BPR, ranked from highest to
lowest. In the individual evaluation, these three algorithms are still the top performers,
but their rankings have changed to P 3

α, SLIM BPR, and Item KNN CF. Comparing the
two evaluation results, it can be observed that the rankings of MF SVD++ and AMF
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have not changed. SLIM BPR, P 3
α, and all MF family algorithms except MF SVD++

have all moved up one position in the rankings, while Simple-HGN has been most affected
with a decrease of three positions. The two KNN CF algorithms also experienced slight
decreases in rankings, dropping by 1 or 2 positions.

In terms of the carousel evaluation performance of MF BPR, Simple-HGN, and AMF, it
is inconsistent with the findings from the individual evaluation. In the carousel evalua-
tion, MF BPR outperforms Simple-HGN and is the best-performing algorithm among the
three. However, the performance of AMF aligns with the conclusion from the individual
evaluation, as it is the poorest performer among the three algorithms.

Individual Carousel-TopPop
NDCG Rank SLNDCG ∆Rank

TopPop 0.0106 12 0.0095 -
ItemKNNCF 0.1090 1 0.0449 -2
UserKNNCF 0.0967 4 0.0428 -1
SLIM BPR 0.0992 3 0.0489 1
PureSVD 0.0735 8 0.0382 1
MF BPR 0.0713 9 0.0355 1

IALS 0.0842 5 0.0448 1
MF SVD++ 0.0816 6 0.0427 0
MF ASYSVD 0.0623 10 0.0350 1

P 3
α 0.1080 2 0.0539 1

Simple-HGN 0.0795 7 0.0325 -3
AMF 0.0567 11 0.0319 0

Table 6.6: The comparison and ranking of NDCG with cutoff at 20 for all models on
dataset LastFM, excluding the rank of TopPop as it is already included in the carousel.
∆Rank represents the difference between the rank when evaluated individually and the
rank when evaluated in the carousel layout. A negative ∆Rank indicates that the model
is in a lower ranking position.

6.3.3 Popularity analysis

AP comparison

According to the AP results shown in Figure 6.9, there is an interesting fact that unlike
the results of the first two datasets, the Item KNN CF’s AP of recommendation results
is lower than the actual AP level, indicating an underestimation of the user’s preference
for item popularity, while the recommendation result of P 3

α perfect match the user’s real
preference, with an AP value that is very close to the real AP value, differing only by
0.005. However, it is necessary to notice that the AP value of the recommended results
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Figure 6.9: The comparison between the recommended results of each algorithm and the
actual user profiles in AP on dataset LastFM, the AP value of user profiles is marked by
the red dotted line and the right part of it shows the ∆AP .

of AMF is the highest respect to others, significantly exceeds the real value by 1.34 times
and greatly overestimate the user’s real preference. Simple-HGN and MF BPR have the
similar performance in this regard with two very close values, around 0.099.

Popularity bias

Item KNN CF and AMF achieved the minimum and maximum values of the Gini index,
respectively. It is important to note that the AP value of Item KNN CF is also the lowest
among all algorithms, thus we can conclude that it is most inclined to recommend items
with lower popularity and performs best at mitigating popularity bias issue. For AMF,
its values in both AP and Gini index are the worst, therefore it has the worst performance
in alleviating this problem.

In the comparison between Simple-HGN and MF BPR, their AP levels are almost iden-
tical. However, the latter has a lower Gini index, indicating that the recommended items
are more uniformly distributed in terms of frequency, with a lower likelihood of frequently
recommending highly popular items. This results in a lower likelihood of exacerbating
popularity bias.
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Figure 6.10: Comparison of the Gini index of the item popularity in the recommendation
results of each algorithm on dataset LastFM

Long tail exploration ability

In Figure 6.11, the ratio of recommended quantities of popular and non-popular items in
all algorithms are presented. With the exception of PureSVD, which covers a relatively
low proportion of non-popular items, the other algorithms have a concentration of around
70%, with Item KNN CF performing the best in this regard. However, when AMF and
Simple-HGN are both taken into consideration, the exposure for non-popular items are not
exceptional compared to other algorithms. In comparison, AMF recommends a slightly
lower proportion of non-popular items than Simple-HGN, with a difference of 3.84%. This
gap widens when compared to MF BPR, with AMF recommending a proportion that is
8.40% lower than MF BPR.

Looking at the distribution of recommended frequencies for popular and non-popular
items in Figure 6.12, the strengths and weaknesses of each algorithm are consistent with
Figure 6.11.

Specifically, Item KNN CF has a significant advantage over other algorithms in the distri-
bution of recommended frequencies for non-popular items, already reaching the 40% level,
while others are below 30%. Another noteworthy algorithm is P 3

α, it has the highest rec-
ommended frequency except Item KNN CF when it does not have a clear advantage over
other algorithms in the distribution of recommended quantities for non-popular items.

To be more specific, Item KNN CF outperforms other algorithms in terms of the frequency
distribution of recommended non-popular items, with a proportion reaching as high as
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Figure 6.11: The comparison of the proportion distribution of popular and non-popular
items in each algorithm’s recommendation results on dataset LastFM

Figure 6.12: The comparison of the frequency distribution of popular and non-popular
items in each algorithm’s recommendation results on dataset LastFM

40%, while the others are below 30%. Another noteworthy algorithm is P 3
α, which has

the second highest frequency of recommendations after Item KNN CF, despite lacking a
distinct advantage over other algorithms in terms of recommending non-popular items.

In summary, we draw the conclusion in the aspect of Long tail exploration ability based
on the results of the above two figures: Item KNN CF and P 3

α perform well among
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all algorithms. Both have provided a good balance in terms of the fairness of exposure
opportunities and frequency for non-popular items. However, Item KNN CF has a greater
advantage. Let’s take a look at AMF again. Whether compared with Simple-HGN or MF
BPR, it does not perform well in this regard: it recommends the least number of popular
items with the lowest frequency. In contrast, the MF BPR has the biggest ability.
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6.4 Amazon-book

6.4.1 Performance analysis

Algorithm Recall NDCG IC MIL
Item KNN CF 0.1686 0.0977 0.8239 0.9811
User KNN CF 0.1662 0.0943 0.6696 0.9778

SLIM BPR 0.1688 0.0973 0.7782 0.9660
PureSVD 0.1052 0.0619 0.1948 0.9809
MF BPR 0.1215 0.0668 0.6454 0.9830

IALS 0.1632 0.0869 0.5402 0.9889
MF SVD++ 0.1409 0.0766 0.5781 0.9887
MF ASYSVD 0.1406 0.0744 0.4352 0.9803

P 3
α 0.1712 0.0979 0.8493 0.9847

Simple-HGN 0.1593 0.0855 0.7572 0.9861
AMF 0.1348 0.0691 0.4666 0.9697

Table 6.7: The performance evaluation of algorithms on dataset Amazon-book with cutoff
at 20. The red font highlights the result of AMF, and the bold font indicates the better
performance than AMF.

It can be seen in Table 6.7 that shows that the highest accuracy for both classification
and ranking is achieved by P 3

α, followed by Item KNN CF and SLIM BPR. The perfor-
mance of the latter two is almost the same, close to 0.1690 in Recall, and around 0.0975
in NDCG. In terms of non-accuracy metrics, P 3

α also has the highest item coverage in
its recommendation results, while IALS achieves the best result in recommendation list
diversity.

After comparing AMF with Simple-HGN, it is evident that AMF performs poorly in both
accuracy and non-accuracy metrics. Specifically, it falls short of Simple-HGN by 15.38%
in Recall and 19.18% in NDCG, with an even more significant difference in terms of IC,
where AMF is 38.38% lower. In terms of MIL, AMF is 1.67% lower than Simple-HGN.
When compared to the performance of MF BPR, AMF shows an improvement in accuracy,
with a 10.95% higher Recall and a 3.44% higher NDCG. However, this advantage is not
reflected in non-accuracy, as AMF shows a 27.70% lower IC and a 1.35% lower MIL.

6.4.2 Carousel analysis

Based on the results in Table 6.8, the top three algorithms with the best performance
remained consistent between the carousel evaluation and the individual evaluation. These
algorithms are P 3

α, Item KNN CF, and SLIM BPR. When comparing the rankings be-
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Individual Carousel-TopPop
NDCG Rank SLNDCG ∆Rank

TopPop 0.0123 12 0.0122 -
Item KNN CF 0.0977 2 0.0457 0
User KNN CF 0.0943 4 0.0422 0

SLIM BPR 0.0973 3 0.0456 0
PureSVD 0.0619 11 0.0353 2
MF BPR 0.0668 10 0.0333 -1

IALS 0.0869 5 0.0420 0
MF SVD++ 0.0766 7 0.0379 -1
MF ASYSVD 0.0744 8 0.0393 1

P 3
α 0.0979 1 0.0471 0

Simple-HGN 0.0855 6 0.0400 0
AMF 0.0691 9 0.0349 -1

Table 6.8: The comparison and ranking of NDCG with cutoff at 20 for all models on
dataset Amazon-book, excluding the rank of TopPop as it is already included in the
carousel. ∆Rank represents the difference between the rank when evaluated individually
and the rank when evaluated in the carousel layout. A negative ∆Rank indicates that
the model is in a lower ranking position.

tween the two evaluations, there were no significant changes observed. About half of
the algorithms showed minor changes, with only a shift of 1 to 2 ranks. This includes
the all MF algorithms except for IALS, and AMF. The remaining half of the algorithms
maintained their original rankings, such as the two KNN CF algorithms, SLIM BPR, and
IALS.

Regarding the comparison of MF BPR, Simple-HGN, and AMF in the carousel evaluation,
the findings were consistent with the individual evaluation. Simple-HGN exhibited the
best performance among the three algorithms, while AMF ranked between the other two
in terms of performance.

6.4.3 Popularity analysis

AP comparison

Looking at the AP results of all algorithms depicted in Figure 6.13, there are three al-
gorithms that have relatively lower values, around 0.14, which exceed the true level by
28.57%, ranked in ascending order as IALS, MF SVD++, and PureSVD. On the other
hand, AMF shows the worst performance among all algorithms with an AP value that is
about twice the true level. The results of Simple-HGN and MF BPR are almost identical,
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Figure 6.13: The comparison between the recommended results of each algorithm and
the actual user profiles in AP on dataset Amazon-book, the AP value of user profiles is
marked by the red dotted line and the right part of it shows the ∆AP .

around 0.157 exceeds the true level by 44.30%.

Popularity bias

Figure 6.14: Comparison of the Gini index of the item popularity in the recommendation
results of each algorithm on dataset Amazon-book

According to the results shown in Figure 6.14, PureSVD and AMF have the lowest and
highest value for the Gini index, respectively. Given that the AP level of PureSVD
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is also relatively low compared to other algorithms, with a difference of less than 0.01
from the lowest value, it can be inferred that PureSVD performs almost the best among
all algorithms in mitigating popularity bias issue. Moreover, AMF exhibits the poorest
performance on this issue as it also has the highest AP level among all the algorithms.

When comparing Simple-HGN with MF BPR, it can be observed that the latter has a
lower Gini index, which indicates a more uniform frequency distribution of recommended
items. Additionally, since the AP levels of both algorithms are equal, it can be inferred
that MF BPR has a stronger capability to reduce popularity bias.

Long tail exploration ability

Figure 6.15: The comparison of the proportion distribution of popular and non-popular
items in each algorithm’s recommendation results on dataset Amazon-book

In Figure 6.15, the ratio of recommended quantities of popular and non-popular items for
each algorithm is presented. The majority of algorithms have a percentage of non-popular
items close to 80%, with Item KNN CF slightly surpassing the others. However, PureSVD
has the lowest proportion, which is less than 30%. The recommended proportion of non-
popular items by AMF and Simple-HGN are similar, accounting for approximately 77%
of the total proportion of non-popular items. Compared to MF BPR, the latter has a
higher proportion, which is 2.52% more.

Figure 6.16 presents the frequency of recommendation for non-popular items. P 3
α has

the best performance in recommending non-popular items, surpassing Item KNN CF
by a small margin. In comparison between AMF, Simple-HGN and MF BPR, AMF
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recommends the lowest frequency of non-popular items, while MF BPR has the highest
frequency.

Figure 6.16: The comparison of the frequency distribution of popular and non-popular
items in each algorithm’s recommendation results on dataset Amazon-book

In summary, from the comparison between Item KNN CF and P 3
α, the latter’s recom-

mendation frequency of non-popular items is better than the former’s. Hence, when the
recommended quantities of both types of items are distributed similarly, P 3

α is found to
be effective on excavation of long tail items.

When analyzing AMF, it becomes evident that, under similar circumstances of recom-
mending a nearly equal number of non-popular items, AMF has a lower frequency of
recommending such items compared to Simple-HGN. Consequently, its capability of rec-
ommending long-tail items is weaker. Conversely, when compared to MF BPR, the latter
has clear advantages in both the number and frequency of non-popular items recom-
mended, thus demonstrating a stronger ability in this regard.
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6.5 Summary

In this section, we provide a concise summary of the analysis conducted on the four
aforementioned datasets. We will present the findings from three different analytical
perspectives: model performance analysis, carousel analysis, and popularity analysis.

Starting with the model performance analysis, the recommendation quality of the AMF
model is not competitive compared to KNN algorithms, which are known for their strong
performance and consistent leading position among all algorithms. However, in most
cases, its recommendation quality is comparable to other MF algorithms like MF BPR,
albeit at the expense of sacrificing item coverage and diversity. In Chapter 4, we described
one of the motivations for transforming Simple-HGN into the AMF model, as we believed
that the HGNN component performed less useful compared to the pre-trained MF BPR
embeddings component. However, the results indicate otherwise: even after enhancing
the learning of the remaining MF BPR embeddings component through the application of
attention mechanisms, AMF consistently underperformed Simple-HGN in all cases. This
implies that the deep GNN was valuable, and its removal adversely impacted the model
quality.

Moving on to the analysis of carousel recommendations, considering the performance of
all algorithms, both KNN algorithms and Simple-HGN show a relative decrease in the
quality of recommended results compared to their individual performance when using
the TopPop algorithm’s recommendations as the preset carousel layout. This indicates
that they recommend more popular items compared to other algorithms. On the other
hand, for AMF, in the carousel scenario, its recommendation quality slightly lags behind
other MF algorithms and their individual performance. This is because other MF algo-
rithms generally experience a slight improvement in their rankings, while AMF remains
unchanged.

Finally, let’s discuss the analysis of popularity. This part can be summarized into two
aspects: addressing the popularity bias issue and the ability to explore long-tail items.

Regarding the first aspect, in most cases, the algorithms involved in the experiments tend
to recommend popular items to varying degrees, thereby exacerbating the popularity bias.
The algorithms that exhibit a higher degree of this tendency include Item KNN CF and
P 3
α. In addition, because AMF incorporates the idea of P 3

α in its design to enhance the
predictive ability of the model, it also significantly amplifies the popularity bias issue. As
a result, AMF often falls short in comparison to Simple-HGN and other MF algorithms
in this regard.
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Moving on to the analysis of the ability to explore long-tail items, although Item KNN CF
tends to heavily recommend popular items in some scenarios, as a recommendation algo-
rithm based on item similarity, but it demonstrates excellent capability in recommending
long-tail items, which is evident across all datasets. However, for the AMF model, its per-
formance in this aspect is also generally inferior to other MF algorithms and Simple-HGN
in most cases.
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6.6 Model sensitivity analysis

Figure 6.17: The effect of the latent factor dimension on the performance of MF algorithms
on dataset MovieLens, taking Recall with cutoff at 20 as the measure metric.

In this section, we start by analyzing the performance of four commonly used MF al-
gorithms and their variation characteristics as the latent factors increase from small to
large. This provides us with an initial understanding of the sensitivity of the models to
latent factors. Subsequently, we focus on the analysis of the three latent factors in AMF.

To begin with, Figure 6.17 shows that the Recall performance of all algorithms is in-
fluenced by the latent factor dimension, as the Recall either increases or decreases with
the increase of latent factors. This suggests that latent factor dimension has an impact
on their performance. Additionally, the four algorithms can be classified into two groups
based on the trend of Recall. One group is MF BPR and MF SVD++, The Recall of them
increases continuously as the latent factor dimension increases, while the other group is
MF ASYSVD and IALS, Their trends of Recall first increase and then decrease. By ex-
amining the change value of Recall in different intervals presented in Table 6.5, it can be
concluded that IALS is the most sensitive to changes in latent factor dimension due to
its largest change values of Recall in most ranges among the four algorithms. In contrast,
MF SVD++ is the least sensitive. Furthermore, MF ASYSVD is the most sensitive in
the 100-150 range, while MF BPR is the least sensitive.

When analyzing the result of AMF, which is shown in Figure 6.18, it is obvious that
compared to the above MF algorithms, the changes in Recall vary significantly with the
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Interval MF ASYSVD MF BPR MF SVD++ IALS
1-50 0.1237 0.0904 0.0620 0.1534

50-100 0.0041 0.0068 0.0000 -0.0248
100-150 -0.0612 0.0028 0.0161 -0.0450
150-200 -0.0169 0.0326 0.0071 -0.1938

Table 6.5: Comparison of RECALL values of MF algorithms with cutoff at 20 in different
latent factor intervals, the bold value indicates the maximum value of change in each
interval, and the underlined value indicates the minimum value of change in each interval.

three different latent factor dimensions.

Figure 6.18: The effect of the latent factor dimensions on the performance of AMF on
dataset MovieLens, taking Recall with cutoff at 20 as the measure metric. K is the
latent factor of user-item weight matrix, M is the latent factor of the MF that calculates
attention weights for user similarities, and N is the latent factor of the MF that calculates
attention weights for item similarities.

In AMF, under the influence of M and N , the overall trend of Recall is stable without
major fluctuations. Specifically, the Recall change trend of M has been declining slowly
from the beginning, and the difference in Recall between the smallest and largest dimen-
sion is only about 0.02. Meanwhile, the trend of N initially rises before declining, with
the difference in Recall between the minimum and maximum values also being only about
0.02. Therefore, it can be concluded that the sensitivity of AMF to the dimension of these
two latent factors is quite low. On the other hand, as the latent factor of the first MF



| Chapter 6: Results 91

in the algorithm, K is more sensitive to changes in latent factor dimension, the Recall
continuous improves with the increase of dimension, and the fastest growing range is the
dimension from 1 to 100, where the change value between the beginning and the end is
about 0.14. However, the speed of growing in the range of 100-200 drops significantly,
with a change value of only about 0.01.
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Chapter 7: Conclusion

In this paper, we introduce Attention-based Matrix Factorization (AMF), which is pri-
marily based on the MF technique. It calculates scores based on the user-item weight
matrix formed by MF and combines user embeddings from the first weight matrix to
compute the similarity between users, multiplied by attention weights obtained from a
set of graph-based embeddings assigned to these similarities. Similarly, it combines item
embeddings from the same weight matrix to compute the similarity between items, multi-
plied by attention weights obtained from another set of graph-based embeddings assigned
to these similarities.

From the experimental results, we observed a significant gap in the recommendation per-
formance between the AMF model and Simple-HGN in all cases, indicating the crucial role
of the HGNN model in the performance of Simple-HGN. Additionally, we noticed that the
AMF model, developed primarily using MF as a technique, exhibits similar recommen-
dation quality to other mainstream MF algorithms in most cases. However, it overlooks
the item coverage and diversity of the recommended results. In the context of real-world
application scenarios, we conducted carousel analysis. Under the condition of using the
TopPop algorithm as the existing carousel layout, in terms of relative performance among
all the algorithms, AMF shows no significant difference from its individual performance in
most cases, lagging behind Simple-HGN and other MF models. Then, an interesting point
to note is that Simple-HGN’s performance drops significantly because it generated trivial
recommendations on MovieLens. Additionally, conducting a popularity analysis revealed
that AMF did not bring any surprising results in terms of mitigating popularity bias and
enabling exploration of long-tail items. Regrettably, AMF consistently performed inferior
to Simple-HGN and other MF models in these aspects.

Furthermore, in addition to the three aforementioned analyses, we conducted preliminary
exploration of the characteristics of the AMF model. We primarily analyzed the sensitivity
of the model to the sizes of latent factors in the three MF methods. The results indicated
that the performance of the AMF model is sensitive to the sizes of latent factors in the
user-item weight matrix, while being insensitive to the sizes of the two sets of latent
factors used for decomposing and generating graph-based embeddings.
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Future research on the AMF model can be expanded in two aspects. Firstly, the current
method for calculating similarity is based on the Pearson coefficient. We can explore the
variations in model performance by using a simpler method like direct calculation through
vector multiplication. Secondly, in the carousel analysis, we conducted the study without
considering user navigation behaviors on the layout. To better reflect the real situation,
a more in-depth analysis of the performance of various algorithms should be conducted
by incorporating actual user navigation behaviors.
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