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1. Introduction
Dynamic Pricing refers to a family of techniques
used to learn the optimal price of a product or
service in a real-time fashion. Dynamic pric-
ing is receiving significant attention from both
the industry and scientific community due to
the economic impact that such algorithms have
on business and the many theoretical challenges
they have to face to sound enough to be put into
production. The widespread of e-commerces
and marketplaces resulted in a synergistic speed
up in data collection and availability and data-
driven dynamic pricing algorithms development.
It is not excessive to consider these two cate-
gories of retailers as main users for a dynamic
pricing strategy.

1.1. Goal
Our goal is to design a framework that enables
companies to perform data-driven dynamic pric-
ing on their products while guaranteeing the
scientific soundness of the deployed algorithm.
Moreover, we add a new layer to the typical dy-
namic pricing algorithm’s workflow by propos-
ing a novel data-driven volume discounts policy
that works with the pricing. We propose a novel
Online Learning methodology, aiming at reduce
the gap between industrial needs and the scien-

tific state-of-the-art. While most of the works
on dynamic pricing do not present a real-world
experimental campaign as a validation of their
proposal, we had the possibility to test our algo-
rithm for more than 4 months by pricing prod-
ucts for a total turnover of 160 KEuros. The test
was conducted on an Italian e-commerce selling
consumer products.

1.2. Context
In this work, we focus on a monopolistic pric-
ing problem on e-commerce in the presence of
volume discounts and seasonality, where the ob-
jective function is a convex combination between
margins and turnover and only transaction data
are available.

Industry International reports quantify that
more than 14 trillion USD per year, since 2030,
will be unlocked thanks to automation of in-
dustrial and business processes. Automation of
pricing tasks, in particular, is estimated to un-
lock value for about 0.5 trillion of USD per year
worldwide. The nature of the objective func-
tion is of paramount importance for industrial
applications, because it allows companies to de-
cide what are their goals and market aggression
policy. In industrial context, scarcity of data
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in one of the most common problems to deal
with, the online nature of our proposal natu-
rally deals with this. Moreover, the joint learn-
ing of customers’ demand and seasonality en-
force it against outliers as well as the scarcity of
data mentioned above.

Research Research on this topic is split
among different scientific communities: from
classic economics to online learning. Each one
has its own point of view and, consequently, its
focus. While econometry approaches tend to in-
vestigate the nature of the market assumptions
and how they affect pricing, statisticians will be
interested in the mathematical modelling of the
demand curve. Management science and opera-
tional research come across these two fields and
try to unify them. In contrast, online learning
and reinforcement learning communities will try
to investigate the theoretical performances of an
agent which sets prices following a given policy.

1.3. Original Contributions
We decompose sales time series into two com-
ponents: a base demand and the price elastic-
ity (price-induced volumes). Base demand is
composed mainly of trend and seasonality, while
price elasticity is the realization of the demand
curve, namely the relationship between price
and units sold. Motivated by goods different
from luxury, Veblen, and Giffen, we assume that
the demand curve is monotonically decreasing
in the price. We force such an assumption in
the learning algorithm. To do so, we design a
novel Bayesian regression algorithm that forces
a subset of features to be monotonic. Next, the
exploitation-exploration dilemma is faced by us-
ing a Multi-Armed Bandit approach, choosing
Thompson Sampling as exploration strategy to
exploit the uncertainty provided by the Bayesian
modelling. Our algorithm also computes volume
discounts, adapting such discounts to users need,
given the buyback probability. We name our al-
gorithm PSV-B (Pricing with Seasonality and
Volume discounts Bandit algorithm). Finally, a
real-world A/B test has been performed. His-
torical data were initially fed to the algorithm
to make it learn the base demand, then the al-
gorithm learned during the 4 months the rela-
tionship between pricing and volumes. At the
end, our algorithm PSV-B provided a perfor-

mance that is better than the performance of
B configuration for about 55%.

2. Methodologies
In this chapter, we introduce the main theo-
retical tools used in this work, in particular:
Linear Basis Function Models and their exten-
sion to a Bayesian framework with Bayesian
Linear Regression (BLR) [1] and the Multi-
Armed Bandit (MAB) problem [3] (in order to
remain in a Bayesian setting we propose Thomp-
son Sampling as a framework to deal with the
exploration-exploitation dilemma).

2.1. Bayesian Linear Regression
The goal is to obtain a linear relationship be-
tween the response variable y ∈ R and the fea-
tures x ∈ RD, to better generalize this rela-
tionship we introduce (nonlinear) basis functions
Φ(x) = (Φ0(x), . . . ,ΦM−1(x)), we can now com-
pactly write:

y(x,w) = wTΦ(x) (1)

In a Bayesian framework, BLR is obtained by
putting a prior probability distribution over the
weights of the regression. For our purposes we
consider a self-conjugated distribution D having
m0 ∈ RM as mean and S0 ∈ RM×M and vari-
ance:

p(w) = D(m0,S0) (2)

If N samples are available, posterior distribution
can be obtained as a product of the prior and the
likelihood, with resulting mean and variance of
mN ∈ RM and SN ∈ RM×M respectively:

p(w|t) = D(mN ,SN ) (3)

While choosing a Gaussian prior allow us to get
a closed form solution of the posterior, other
types of prior may require a sampling or vari-
ational inference approach for the posterior es-
timation.

Online Learning and BLR If data points
arrive sequentially, then the posterior distribu-
tion at any stage acts as the prior distribution
for the subsequent data point. Thanks to this
property, we can easily use BLR in an Online
Learning setting, where data arrive from time
to time and we do not need to train the whole
model every time.
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Isotonic BLR We put ourselves in the sce-
nario in which the relationship between target
variable and input features is known to be mono-
tonic due to the physical process involved. This
setting is of particular interest for dynamic pric-
ing, since demand curve can be assumed to be
decreasing in price for non-luxury products. In
a BLR setting, we use a particular basis func-
tion expansion called Bernstein Polynomial ex-
pansion. The k-th Bernstein Polynomial basis
function of order M is defined as

ψk(x,M) =

(
M

k

)
xk(1− x)M−k, x ∈ [0, 1]

(4)

Using a particular linear transformation θ =
Aw [2] on the weights of the regression, the for-
mulation results in:

f(x) = ΨA−1θ (5)

Now, we can obtain a monotonically increas-
ing function by imposing θk ≥ 0 for all k =
1, . . . ,M . In order to obtain a downward mono-
tonic regression model is sufficient to flip the ba-
sis functions using 1 − ΨA−1 instead of ΨA−1.
Finally, if the probability distributions over the
transformed coefficients θ have positive support
we are intrinsically forcing a positive value on
them. These distributions, jointly on decreasing
basis functions allow us to obtain an isotonic,
downward regression.

3. Problem Formulation
We study the scenario in which a monopolis-
tic e-commerce website sells a non-perishable
product with unlimited availability and the de-
mand function is monotonically decreasing in
the price, possibly nonstationary.

3.1. Pricing Formulation
At every time t, with an arbitrary granularity,
we are faced with the choice of a, potentially
different, price pt from a finite set P. The ac-
tual average number of sales (a.k.a. volumes) at
time t when choosing price pt is denoted with
vt(pt). In particular, we assume that the vol-
umes depend on both price and time due to,
e.g., seasonality and market trend, and we de-
note the volumes curve function with V(t, pt),
where V : T × P −→ R+. At every time t, we

have vt := V(t, pt). Finally, every unit sold, the
agent gains a margin mt := pt−c, where c ∈ R+

is the cost of the product. The cost of a prod-
uct is assumed to be constant: in this corner
scenario, customers’ reaction to price and to net
margin are assumed to be equal, allowing us to
study price-elasticity effect directly on margins.
The objective function to maximize is defined
as a convex combination with parameter λ ∈
[0, 1] between turnover and operating cash flow
margin. Formally, the maximization problem is
as follows:

p∗t = argmax
pt∈P

f(pt), (6)

where:

f(pt) = λ
pt vt(pt)

maxpt∈P{pt vt(pt)}
+

+ (1− λ)
mt vt(pt)

maxpt∈P{mt vt(pt)}
(7)

In Eq. (7) we are balancing turnover and oper-
ating cash flow margin at time t when choosing
price pt. maxpt{pt vt(pt)} and maxpt{mt vt(pt)}
are the maximum achievable values for the two
measures respectively.
In real-world scenarios, functions V(t, pt) and,
a fortiori, vt(pt) are not a priori known and
need to be estimated online. Thus, our problem
can naturally formulated as an online learning
problem where the goal is to properly balance
the acquisition of information on the stochastic
functions, while minimizing the cumulative re-
gret. Such a problem is also commonly known as
exploration-exploitation dilemma. In our case,
the arms are the possible values of price pt ∈ P,
while V(·, ·) and vt(·) is a stochastic function
that we need to estimate during the time horizon
T .

3.2. Volume Discounts Formulation
Customers can purchase a single time from the
shop or return many times, generating more or-
ders. Retailers’ interest is to match the volume
needs of loyal customers trying to avoid their
abandon. A common way to deal with these
issues is to provide volume discounts, i.e. pro-
viding different prices depending on the number
of units bought by the customer. Assuming the
customer’s need for units of the same product is
fixed and is equal to N , the goal is to sell him
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as much as possible before he drops out of the
shop. The probability of repurchase γ can be
estimated in multiple ways via analysis of the
transaction data.
Consider a vector of η volume thresholds ω =
[ω1, ω2, . . . , ωη], with ωi > ωh, ∀i > h and
ω1 = 1. The price of the product is a piece-
wise constant function of the volume, which as-
signs the same price to all volumes between two
consecutive volume thresholds. Let p(i)t denote
the price associated with the volumes between
ωi (included) and ωi+1 (excluded).
The goal is to define the discount δi that we can
apply to the price for a unit volume (p̄ = c +
m̄) in order to get the price for the i-th volume
range. To avoid negative margins, we apply the
discount directly to the margin: p(i)t = c+ (1−
δi)m̄. The discount δi should guarantee, for a
customer who needs N product units and has a
buyback probability γ, that the expected margin
with multiple-unit orders is no lower than the
one obtainable with N single-unit orders.

4. Algorithm
The goal of this algorithm is to propose a pricing
schedule for a given product. A pricing schedule
consists of a sequence of prices coupled with vol-
ume thresholds, namely a minimum number of
units to be purchased to access the correspond-
ing price. At each time t, the algorithm receives
transaction data collected in t− 1 and promptly
computes a new pricing schedule modifying the
current one.

4.1. Pricing without Volume Dis-
counts

The pricing algorithm is based on a demand
curve model fitted using a BLR.
The input space is denoted with T × P, repre-
senting the possible combinations of time and
price. Instead, the output space is denoted with
V, representing the volume. Furthermore, we
introduce two features spaces U and D, corre-
sponding to seasonality&trend and price. We
define J and K as the sets containing the in-
dices of time and price features, respectively.
In particular, we introduce the function χ : T −→
U ⊂ R|J | mapping a time t into its seasonal-
ity&trend features and the function ξ : P −→
D ⊂ R|K| mapping a price pt into its basis func-
tion expansion. While J is represented in po-

lar coordinates in order to ensure consistent be-
havior between the periods, K is composed by
transformations that are actually monotonically
decreasing in order to model the inverse relation
binding price and volumes.
We force features’ weights to be positive by
choosing Lognormal priors for features in K,
while we use standard Gaussian priors for the
ones in J .

4.2. Exploration Strategy
We resort to Thompson Sampling (TS). By con-
struction, a Bayesian model provides a probabil-
ity distribution of the posteriors on the weights.
TS randomly generates samples from the pos-
terior distribution of the weights of BLR, re-
trieving in this way a realization of the poste-
rior binding features from time and price to the
volumes’ curve. Now, given time h, fixing re-
lated features vector, we can evaluate volumes
with respect to only to price values. Consider a
MAB approach in which we select the best arm
over a finite set of possible prices (representing
the arms) P: the selected arm is the one maxi-
mizing Eq. 7 where vt is the TS realization.

4.3. Pricing with Volume Discounts
Let η be the desired number of volumes thresh-
olds to propose along with as many different
prices. Let βz, with z ∈ N, be the probability
that a basket containing the product contains
it in z units. We define the average volume
inside a threshold as V̄k and the total average
volume of the product is V̄ . If m∗

t is the opti-
mal margin to apply at time t, obtainable using
the previously introduced method, then we can
compute an optimal pricing schedule involving
volume discounts. First we define the optimal
margin for threshold ω1 as

m̄1 =
m∗

t V̄∑η
k=1(1− δk)V̄k

, (8)

where:

δk = 1− 1− γN

V̄k

(
1− γ

⌈
N
V̄k

⌉) , (9)

then the margins m̄1, m̄2, . . . , m̄η for the differ-
ent volume thresholds are determined by m̄k =
m̄1(1 − δk), for k = 1, . . . , η. In this formula-
tion, the expected revenue using a volume dis-
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counts policy cannot be lower than the one with-
out, but with the advantage to mitigate cus-
tomers’ dropout selling them more units before
they leave.

5. Experimental Evaluation
The algorithm have been evaluated in both sim-
ulated and real-world scenarios.

5.1. Evaluation in Synthetic Environ-
ment

The dynamic pricing algorithm proposed is com-
pared to the non-shape-constrained version of
the algorithm, which consider Normal priors on
the weights.

Robustness to Noise and Outliers One of
the main advantages that we expect to gain us-
ing a shape-constrained algorithm is the better
robustness to stochastic perturbations of the en-
vironment and outlier samples. We test the two
algorithms in the same scenario, using the same
random seed and the same demand curve gener-
ating function: in the simulation we assume the
base demand (seasonality and trend) to be fixed
and known and we focus on the hidden demand
curve learning, defined as f(x) = 2e−(x+1.2)

5
2 .

Setting parameter λ = 0, the reward function
results in (x− c)f(x). We perform a simulation
for each combination of noise value and % of out-
liers among the generated data. The grid is gen-
erated using noise values in {0.001, 0.005, 0.01}
and outlier % in {0, 10, 20}. In Table 1, we re-
port the % improvement in total regret mov-
ing from the free shape model to the shape-
constrained one: shape-constrained model man-
age to always outperform the other one.

Noise Outlier Proportion
0 10% 20%

0.001 -25% -23% -23%
0.005 -52% -15% -14%
0.01 -55% -4% -1.8%

Table 1: Total Regret’s improvements from free
shape to shape-constrained model.

Robustness to Nonstationarity In real-
world scenarios, another great issue to deal with
is the intrinsic nonstationarity of the customers’
demand. Demand curve shape may change over

time, usually in an abrupt way. We assume four
possible demand functions f1(x), f2(x), f3(x)
and f4(x) and we abruptly change the one gener-
ating the data during a simulation. We approach
this task using a sliding window approach and
tuning the window size. We consider the sce-
nario in which the number of abrupt changes
may vary in 1, 2, 3 and the size of the sliding
window in {20, 30, 40}. In Table 2 we report the
% improvement in total regret moving from the
free shape model to the shape-constrained one.

Window
Size

Demand Curve
Changes

1 2 3
20 -17% -33% -36%
30 -3% -24% -47%
40 -8% -26% -49%

Table 2: Total Regret’s improvements from free
shape to shape-constrained model.

The shape-constrained model manage to always
outperform the other one, especially in the very
less stationary environments.

5.2. Evaluation in Real-World Envi-
ronment

We deployed our algorithm on an italian e-
commerce selling consumer goods (non-Giffen).
In this real-world experiment, we optimize the
prices in presence of volume discounts, comput-
ing a full pricing schedule. To evaluate the algo-
rithms performance we perform an online A/B
test campaign.

Experimental Setting The experimental
campaign is conducted in one of the main cate-
gory of the e-commerce, with a test set (A) com-
posed by Nt = 295 products and a control set
(B) composed by Nc = 33 products of the same
category with the same characteristics. The test
is about products with a turnover of 300 KEu-
ros and a net margin of 83 KEuros. E-commerce
specialists asked us to impose η = 3 volume’s
thresholds to each product of the test set, and
optimize the corresponding proposed discounts.
The test lasted for 17 weeks, from 16 June 2021
to 17 October 2021, updating the prices each 7
days. There were no factors that can influence
the performance of the test set (A) w.r.t. con-
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trol set (B) and vice-versa (i.e. variations in
advertising expenditures).

Performance Metric The business goal is to
maximize the net margin (i.e. λ = 0 in Equa-
tion (7)).

Experiment Results The goods priced by
PSV-B performed an improvement in the per-
formance metric of +55% w.r.t the control set
of goods. Looking at the performances on a
product-wise level, we report in Figure 1 the
sorted % of improvement on the performance
metric w.r.t. to the period of 2021 preceding
the test, for each single product.
In the test set, 138 products over 295 (∼ 47%)
improved their average performance with re-
spect to the previous period of 2021, while in
the control set only 8 products over 33 (∼ 25%)
did so.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−100

0

100

200

300

400

500

Proportion of Products

%
in

cr
ea

se

Test set
Control set

Figure 1: Margin Improvement over products.

Effect of Volume Discounts The goal of
the volume discounts algorithm is to modify the
probability distribution of the units count of the
same product in a basket. The goal is to move
mass from β̄1 to β̄2 or β̄3. In Table 3 are re-
ported the variations of the three β̄k of 4 rele-
vant products: during the test we achieved an
improvement of β̄2 and β̄3 at the expense of β̄1.
Volume discounts not only modify
cart distribution, but also increase the
number of units purchased per time.

Product ∆β̄1 ∆β̄2 ∆β̄3

1 -32% +10% +22%
2 -26% +25% +1%
3 -15% +4% +11%
4 -5% +1% +4%

Mean -19.5% +10% +9.5%

Table 3: Variations of β̄k after test.

6. Conclusions
We introduced a novel dynamic pricing algo-
rithm to deal with typical real-world scenar-
ios. This solution is able to produce a pric-
ing schedule accounting for seasonality and in-
tegrating a data-driven volume discounts policy.
We validated design choices in a synthetic en-
vironment, then a real-world experimental cam-
paign has been conducted to assess the added
economic value that our algorithm can provide.
We performed an online A/B test on an italian
e-commerce lasted for more than 4 months. The
algorithm improved by 55% the net cash flow
margin w.r.t. the set B. Volume discounts policy
positively impacted customers’ shopping behav-
iors. We reported the example of 4 significant
products having their average units per shop-
ping cart increased by +33% with respect to the
past.
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