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1. Introduction
Robots (and AI-powered machines in general)
are seeping into the fabric of modern society,
assisting or even replacing humans in a variety
of contexts. Besides being employed as indus-
trial tools, a growing body of research and com-
mercial applications is envisioning robotic social
companions for everyday life.
The goal of a robotic social companion able to
interact with humans in unconstrained settings
is, however, still far from being achieved, due
to both technical and ontological problems. For
this purpose the art of theatre is often employed
as a testing ground, being it a representation and
simulation of reality, and in particular of social
interactions. Several works have been developed
to create robotic actors, for which Lu proposed a
categorization into 9 classes of increasing com-
plexity [1]. Developing a robot occupying the
last two classes, characterized by complete au-
tonomy and expressiveness, is a challenging task.
The work presented here aims to push research
in this direction by proposing a framework for
an autonomous robot improviser. The robot col-
lects data from an actor and detects performed
scenic actions, enabling the selection of a proper
reply to make the scene continue

2. Goal and methodology
Given the difficulty of developing a robot able to
act in unconstrained situations, the problem has
been decomposed into smaller and simpler parts.
The following simplifying assumptions have in
particular been made:
• the stage is empty and of fixed size
• only a single actor is present in the stage
• interaction between the robot and the actor

is modeled as a turn-based communication
Regarding this last point, a simplified scheme of
human communication has been adopted. At
the beginning the attitude of the interlocutor
is assessed in an unconscious and instantaneous
way, based on non-verbal signals and classified
into a defined set of possibilities. This classifi-
cation produces an unconscious and subjective
emotional response depending on the current
emotional state and personality, which triggers
a response that could be moderated by the ra-
tional mind. This reaction is in turn processed
by the interlocutor, giving rise to a chain of in-
teraction loops.

2.1. Reference framework
To navigate the complexity and lack of quanti-
tative rules of improvisation, a reference frame-
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work has been developed, to outline the rele-
vant input features and scenic actions to be de-
tected by the system. Using sources and theories
of different kinds and fields several dimensions
have been identified, whose implementation is
described in the next sections.
For the same reasons of simplicity explained at
the beginning of the section this first version of
the framework is based only on visual and spatial
perceptions, to reach a stable and functional im-
plementation on which other more complex and
expressive semantic layers can be placed.

2.2. Evaluation
Evaluation of the implemented system has been
conducted in two ways, to either assess the
computational performance and correctness of
implemented algorithms and to observe their
behavior in "in-the-wild" interactions with hu-
mans. For this purpose a small square stage of
4 meters each side has been set up inside AIR-
Lab, to provide a controlled testing environment
without external disturbances.

3. Relevant inputs and outputs
The goal of the implemented system is to make
a robot "understand what is happening" on the
stage and for this purpose the concept of scenic
actions has been defined. A scenic action is
a combination of input features that carries a
specific and self-contained meaning that timely
characterizes the context of the scene and the
actor’s feelings and emotions.
Recognition of these actions is what gives the
robot autonomy on stage and their definition
and implementation have been crucial tasks in
the process. It has been in fact necessary not
only to understand which features are relevant
for humans to characterize actions in an improv
scene, but also which can be computationally
retrieved and processed.
In the following all the features used by the sys-
tem as inputs or intermediate results are de-
scribed, showing their origin and motivation as
well as methods for their retrieval and process-
ing. These features are based on the following
considerations:
• the meaning of someone else’s actions, and

the underlying intention, can be inferred
from their expressed emotion

• emotions play a fundamental role in dis-

ambiguating possible interpretations of the
same interaction

• emotions are usually expressed through fa-
cial expressions, bodily movements and spa-
tial relationships between characterizes

• movement features (e.g. speed, extension,
direction) externalize the emotional state of
a character

• the distance and eye contact between two
characters characterize their levels of inti-
macy and trust

• the above expressive media are sufficient to
understand the unfolding of a story, as in
the case of silent movies and mimic sketches

As a result, emotion, eye contact and proxemics
have been identified as the key features to char-
acterize the actor’s performance.

3.1. Emotion
Several theories and computational models of
emotion exist in the literature (with no general
consensus on a single one) [2–6]. In this work
the most popular among them has been imple-
mented, namely the discrete model by Ekman
[2], describing six universal emotions1 linked to
facial expressions. In the implemented system
the actor’s emotion is inferred from their facial
expressions and body gestures using two neural
networks sharing the same output space (i.e. the
six Ekman emotions plus a neutral state).

3.1.1 Emotion from face

Given the abundance of existing solutions and
research projects in the field, this module has
been implemented using open-source libraries.
The PAZ Python library [7] has in particular
been selected against other competitors such
as DeepFace [8], on the basis of declared per-
formance metrics. The library implements a
MiniXception emotion classifier and offers per-
ception and processing modules at different lev-
els of abstraction. In this context, the network
outputs a probability distribution over the seven
emotion classes.

3.1.2 Emotion from body

Recognition of emotion conveyed through body
movements does not instead feature this same

1anger, disgust, fear, happiness, sadness, surprise
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Figure 1: Plots of loss and accuracy of the net-
work for different lengths of sequences

abundance [9], and hence a custom neural net-
work has been designed and trained on a dataset
of motion-capture data sequences of actors ex-
pressing emotions [10].
The implemented network is the result of sev-
eral experiments on both input representations,
model architectures and sequences length, aim-
ing at the best accuracy. Tested solutions have
in particular been a graph network, represent-
ing skeleton coordinates as a graph, and several
variations of a recurrent network having as input
sequences of descriptors computed from body
landmarks using either spatial/kinematic infor-
mation or with formulas inspired by the Laban
Movement Analysis framework [11].
The chosen model is a recurrent network em-
ploying an LSTM and 3 fully-connected layers
to classify sequences of body landmarks’ coor-
dinates (represented on a bidimensional plane
centered in the hips) into a probability distribu-
tion over the seven emotion classes. The length
of these sequences has been set to 3 poses af-
ter testing the training behaviour and "in-the-
wild" performance on several values, as reported
in figure 1. The network eventually reaches an
accuracy of 0.93 on the validation set.

Pose estimation Since the network relies on
body landmarks’ coordinates, a pose estimation
module has been added to the system to re-
trieve the location of body joints in the afore-

mentioned coordinate system. Model selection
has been guided by the parameters of latency
and stability of predictions over time, to avoid
noise due to the jittering of estimated joints.
In the end, the chosen solution is MediaPipe
[12], a set of open-source machine learning so-
lutions developed by Google, targeted to real-
time and live media use cases, and optimized for
deployment on resource-constrained mobile de-
vices. The output of the model has been reduced
to a set of 13 landmarks (those used by the body
emotion network) to which a normalization and
coordinate change is applied, to make poses in-
variant to scale and consistent with the training
dataset.

3.1.3 Emotion fusion

From these two sources, a final single emotion Ê
is computed, to provide a "global" characteriza-
tion taking into account all the ways in which
the actor can express emotion. The fusion point
is placed at the end of the two inference paths,
being it the common approach especially when
dealing with gestures [13]. Choice of the fusion
method is based on researches and empirical ob-
servations that body gestures and facial expres-
sions may sometimes portray different (and even
contrasting) emotions, but with the latter be-
ing a more reliable and informative source. For
this reason the final emotion is computed as a
weighted sum, whose weights are inspired by
the proposal in [14] (ωface = 0.7, ωbody = 0.3):
Ê = argmax{Eface · ωface + Ebody · ωbody}

3.2. Eye contact
Eye contact (gazing) is one of the fundamental
cues of non-verbal communication and helps to
characterize different situations, understanding
for instance whether a certain utterance is di-
rected or not to the robot and whether the actor
wants it to be hidden or shown. Recognition of
eye contact presence is implemented through the
neural network proposed in [15], achieving an
accuracy comparable to human experts, which
yields the probability of eye-contact presence in
a given face image patch.

3.3. Face detection
Both face-based emotion and eye-contact recog-
nition models use a face image patch as in-

3



Executive summary Lorenzo Farinelli

put. For this reason, face detection and crop-
ping is shared and implemented just once. The
OpenCV Haar Cascade detector has been cho-
sen among available techniques, after comparing
their trade-offs in terms of latency and accuracy.
In particular, to avoid issues with tilted head
poses, detection is repeated, in case of failure,
over different rotations of the image.

3.4. Proxemics
Proxemics is a subfield of the studies on non-
verbal languages concerned with the use and in-
fluence of space in human behaviour and com-
munication. Space can in fact used and shaped
by the actor to convey certain narratives and
express their appraisal and attitude towards the
robot. Five proxemics descriptors are computed
in the system, from the knowledge of both the
robot’s and actor’s locations at each time step
(provided by third-party black-box systems).

3.4.1 Proxemic zone

The concept of proxemic zone has been intro-
duced in [16] to describe discrete social zones
surrounding an individual, each linked to a cer-
tain degree of familiarity of people let inside. In-
spired by this, three zones have been defined to
characterize the relationship with the actor ac-
cording to their distance from the robot, namely
intimate, neutral and no-interaction.

3.4.2 Movement direction and speed

Distance between the actor and the robot is also
considered in its temporal evolution, to under-
stand if they are getting closer or apart. In par-
ticular, the system computes the movement’s di-
rection2, which can describe their interest in the
interaction and their trust for the other, and
speed3, which denotes the urgency of underly-
ing intentions. Speed is in particular computed
from polar coordinates both on the distance seg-
ment and on the corresponding circle, to de-
scribe frontal and lateral movements.

3.4.3 Relative and absolute position

In addition to the zone, the system computes
a discrete classification of the actor’s position

2approach, retreat, stillness
3slow, medium, fast

Emotion Direction Speed Zone Scenic Action
Anger appr fast int Attack

appr slow/med int Intimidation
still - neut Scolding
retr any no int Holding grudge

Disgust retr/still any neut/no int Refuse
appr any any Perplexity

Fear appr/still fast / medium int/neut Share fear
appr slow int/neut Caution
still - neut/no int Hesitancy
retr slow any Shock
retr medium/fast any Escape

Happiness - - int Share joy
- - neut Greet
- - no int Happy person
retr any neut/no int Satisfaction

Sadness appr any int Share sadness
- - neut/no int Sad person
retr any neut/no int Disappointment

Surprise appr/still any int/neut Share surprise
still - no int Astonishment
retr any neut/no int Disbelief

neut any any any neut

Table 1: Scenic action recognition. The first four
columns contain input values, while the last in-
dicates the classified action. Feature values are
expressed as high-level labels that are numeri-
cally grounded using fuzzy sets.

around the robot, to interpret different nuances
of the same proximity. One of the four cardinal
directions is given in output, based on the θ an-
gle of the actor’s pose in polar coordinates. Be-
sides this, the robot’s and actor’s locations are
characterized w.r.t. to the audience into nine
stage positions using the Stage Grid model.

3.5. Scenic actions classification
Scenic actions summarize all the features de-
scribed so far into a representation of the actor’s
behaviour. Their classification has been defined
following the methodology below:
• understanding what a scenic action is and

how it can be characterized
• defining in detail the output space, listing

the relevant actions to be detected
• defining a proper action representation
• surveying and choosing available classifica-

tion strategies
In the end the classification in table 1 has been
developed. It’s important to point out that even
though not all the described input features have
been assimilated in this first classification frame-
work, they are still available as outputs to be
used in future or by third-party systems.
The problem of identifying a scenic action can be
reduced to a multi-class classification problem
based on the listed input features. For the sake
of simplicity and functionality, a rule-based sys-
tem has been chosen among the available meth-
ods, with fuzzy rules to smooth the classification
output over time, making it more robust to fluc-
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Figure 2: High-level block diagram of the sys-
tem’s architecture in the ROS environment

tuations in input values.

4. System deployment
4.1. Target robot
The implemented system has been eventually
deployed on a physical robot, to also test its be-
haviour in a real-world setting. The target has
been in particular Robocchio [17]: an omnidi-
rectional 120 cm tall robot developed in AIR-
Lab to perform script-based theatrical represen-
tations through body movements and eye ex-
pressions. For this reason, the robot already fea-
tures several hardware and software components
that have been reused for perception and pro-
prioception. Two laser sensors are in particular
present, which, through a proper merging tech-
nique, provide scans of the whole area surround-
ing the robot (with a radius of 4m). This infor-
mation is exploited by a third-party leg tracker
[18] to estimate the location of the actor. Roboc-
chio’s control system is built using the ROS1
framework and has been extended with ROS2
nodes to implement the designed framework, us-
ing the ROS Bridge package for interoperability.

4.2. System architecture
The system architecture has been designed in a
modular fashion, creating (where possible and
not hindered by hardware and performance is-
sues) a node for the processing of each in-
put/output feature and a topic for its distribu-
tion to consumers inside and outside the system,
as shown in figure 2. Modules exploiting image
frames captured by the on-board camera have
however been aggregated as separate threads in
a single node. This is due to memory man-
agement issues in both ROS and Python, that

add latency when accessing frames exchanged
through conventional messages and noticeably
slow down the inference models. All the other
nodes trivially wrap the models and algorithms
computing the data described in section 3, in-
terfacing with the publish/subscribe paradigm
of ROS for their exchange within the system.

4.2.1 Data collection

Physical deployment of the framework also
brought about several issues to be addressed,
mostly related to data acquisition and collection.

Windowing The robot senses the environ-
ment and actor in a continuous way, running
at an average of 20FPS. Humans, on the other
hand, understand others’ expressions at lower
frequencies and movements often make sense
only when considering their temporal evolution.
For this reason, a windowing mechanism has
been implemented (employing sliding windows
of around 1 second), to both smooth data along
time and compute a more stable and robust
characterization.

Handling of missing observations Given
the context of the work, features listed as in-
puts may not always be available or detected,
for artistic reasons, by the system (e.g. the ac-
tor can be outside the camera’s field of view).
In these cases different approaches are adopted:
proxemics descriptors are computed by placing
the actor at an imaginary point outside the stage
in front of the robot, whereas for emotions and
actions a neutral fallback classification is given.

Handling of robot movements The quality
of collected data can also be spoiled by move-
ments of the robot’s body, introducing noise
(e.g. wobbling of camera) or causing misinter-
pretation (e.g. actor that seems to be approach-
ing when it’s actually the robot that is moving).
For this reason, the system is subscribed to a
feedback signal from actuator systems, to ignore
incoming inputs when the robot is moving and
to collect them again once it has finished.

5. Conclusions and future steps
What has been described in this thesis is the de-
sign and implementation of a framework to ren-
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der a robot able to participate in an improvised
exhibition with a human actor moving on the
stage, identifying their scenic actions through a
set of sensory observations.
This first implementation of the framework is
based on some simplifying assumptions and
takes into account a reduced set of expressive
elements, which are however sufficient to char-
acterize the actor’s intentions and enable a chain
of scenic actions to develop an improv scene.
This work has in fact focused on laying out a
foundational architecture, to both provide a sta-
ble ground for the implementation of the robot’s
sensing capabilities and validate the feasibility of
the designed framework in the face of computa-
tional and real-time constraints. Moreover, the
availability of a physical system can help a faster
improvement of the framework’s expressiveness,
by means of direct interactive tests.
This implementation can therefore be considered
as the first block of a cognitive pipeline for an
autonomous robot improviser and can find its
place even in the more general field of HRi4, to
improve the situational awareness of robots and
create more engaging and effective experiences.

5.1. Future directions
During brainstorming sessions several interest-
ing ideas emerged; even though unrealized, they
are still worth to be mentioned to highlight pos-
sible future developments of this work.
The framework can in fact be extended with ad-
ditional semantic layers and inputs, adding for
instance a verbal and non-verbal characteriza-
tion of the actor’s speech. Besides sheer sen-
sory data, the system can be also made aware
of meta-features describing the quality and dra-
matic evolution of the scene, to guide the selec-
tion of proper replies and make the story develop
or come to an end. Among these meta-features
it could be interesting to implement the concept
of entropy, to represent how each action and
scene configuration contributes to the creation
of possible interpretations and plot lines. This
can be moreover coupled with a formal represen-
tation of narrative archetypes through modal or
descriptive logics, to enable reasoning and plan-
ning. Eventually, a dataset is proposed to be
built, annotating sequences of robot’s observa-
tions with the corresponding scenic actions, to

4Human-Robot-interaction

enable training of more complex classification
models or even a neural synthesis of the robot’s
replies, removing the human element from its
behaviour definition and thus getting closer to
the goal of full autonomy.
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Abstract

Social robotics aims to create autonomous robotic companions assisting humans both in
work and leisure time, whose interaction mechanisms highly resemble those employed in
interpersonal communication. Such goal is however far from being achieved, and no robot
has been yet developed able to interact with humans in unconstrained settings.

In this context the art of theatre can come into help, as an ideal workshop where to
develop, in a controlled environment, the social aspects of the interaction. Several works
in human-robot interaction have in fact adopted theatre as a training field, motivated by
its ability to simulate reality and replicate structures of human communication.

The work presented here follows this tradition as well, giving its contribution to novel
forms of improvisation between human actors and robots. What is going to be proposed
is in particular a framework to render an autonomous robot able to perceive the emotional
state and intentions of the actor, detecting the scenic actions they perform on stage.

Based on theories from neuroscience, psychology, acting and choreography, the framework
acquires, processes and analyses in real-time several features of the actor’s performance,
through a set of sensors mounted on the robot and computational algorithms.

From collected features a classification into a discrete set of basic performative actions
is derived, which timely characterises the actor’s attitude and intentions. This output
can be subsequently attached as an input to third-party systems, to produce for instance
a physical reply. In this way it will be possible to design cognitive pipelines of diverse
complexity, adding modules related to the robot’s psychology, mobility and aesthetics.

To ensure a functional and optimal behaviour, the implemented system has been designed
using a mixture of both third-party open-source state-of-the-art algorithms and manually
trained neural networks, choosing among the available solutions on the basis of several
trade-offs, which are documented and compared in the document.

Keywords: Autonomous Robots, Theatre, Improvisation, Emotion, Human-
machine interaction





Abstract in lingua italiana

La robotica sociale ambisce a creare robot autonomi che interagiscano con le persone repli-
cando i meccanismi propri della comunicazione umana. L’obiettivo è quello di integrarsi
con i loro stati emotivi, reagendo di conseguenza per poterle aiutare (in diverse attività)
nella maniera più naturale possibile. Quest’obiettivo rimane tuttavia ancora lontano, e
nessun robot finora sviluppato è in grado di interagire con le persone in situazioni arbi-
trarie. In questo contesto è di grande aiuto l’arte del teatro, che si configura come un
terreno ideale in cui testare gli aspetti sociali dell’interazione uomo macchina grazie alla
sua capacità di simulare la realtà e le strutture comunicative del linguaggio.

Diversi robot attori sono stati infatti sviluppati negli ultimi anni e il lavoro qui pre-
sentato si inserisce in questa linea di ricerca con l’obiettivo di creare nuove forme di
improvvisazione teatrale tra robot e umani.

Viene infatti proposto un framework per realizzare un robot autonomo capace di cogliere lo
stato emotivo e le intenzioni dell’attore, identificando le azioni sceniche compiute sul palco.
Questo framework acquisisce ed elabora in tempo reale dati quantitativi e qualitativi
sulla performance dell’attore, attraverso opportuni sensori collegati al robot e metodi
computazionali ispirati da teorie e modelli ripresi da neuroscienza, psicologia e coreografia,
Da tali dati vengono classificate delle azioni performative di base, che caratterizzano in
maniera puntuale l’attitudine e le intenzioni dell’attore nei confronti del robot.

Questo output può essere inoltre usato da sistemi terzi, per realizzare una risposta fisica
che faccia proseguire la scena. In questo modo è possibile realizzare pipeline cognitive di
varia complessità ed espressività, andando a definire moduli legati agli aspetti psicologici,
motori ed estetici del robot.

Per garantire un funzionamento ottimale il sistema è stato progettato utilizzando sia
tecnologie open-source sia implementando nuovi modelli come reti neurali, selezionando le
opportune soluzioni attraverso un’analisi costi-benefici descritta nel corso del documento.

Parole chiave: Robot autonomi, Teatro, Improvvisazione, Emozioni, Inter-
azione uomo-macchina





v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

Introduction 1

1 Goal and context 9
1.1 Goal of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.1 Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Analysis of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Reference framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Experimental setup and evaluation . . . . . . . . . . . . . . . . . . . . . . 15

2 Feature space 17
2.1 Emotions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.2 Models of emotion . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Body movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1 Laban movement analysis . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.2 Computable expressive descriptors of human motion . . . . . . . . . 27

2.3 Proxemics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.1 Implemented descriptors . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Eye contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Output space 47
3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 What’s in a scenic action? . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



vi | Contents

3.3 Relevant scenic actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4 Action representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5 Available classification methods . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.1 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5.2 Decision trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5.3 (Fuzzy) rule based classification system . . . . . . . . . . . . . . . . 51

4 System deployment 53
4.1 Reference robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.1 Robot’s platform and body . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Existing hardware components . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 Audio devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.2 Laser scanners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.3 Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.4 Computational units . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.5 Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Added hardware components . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4 ROS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4.2 ROS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Existing software components . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5.1 Odometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5.2 Laser sensing and merging . . . . . . . . . . . . . . . . . . . . . . . 63
4.5.3 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6 Notes on the designed architecture . . . . . . . . . . . . . . . . . . . . . . 64

5 System design and implementation 65
5.1 Preliminary notes on data collection . . . . . . . . . . . . . . . . . . . . . . 65

5.1.1 Data windowing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1.2 Handling of missing values . . . . . . . . . . . . . . . . . . . . . . . 66
5.1.3 Handling of robot movements . . . . . . . . . . . . . . . . . . . . . 66

5.2 Remarks on image performance in ROS2 . . . . . . . . . . . . . . . . . . . 67
5.3 Emotion recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.1 Emotion recognition from face . . . . . . . . . . . . . . . . . . . . . 71
5.3.2 Emotion recognition from body . . . . . . . . . . . . . . . . . . . . 76
5.3.3 Emotion fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3.4 ROS nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4 Human pose estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



5.4.1 2D or not 2D? Preliminary notes on representation . . . . . . . . . 92
5.4.2 Detectron 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.4.3 OpenPifPaf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.4.4 OpenPose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.4.5 Google PoseNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.4.6 MediaPipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.4.7 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.4.8 ROS integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.5 Eye contact detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.5.1 Geometric approach . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.5.2 DNN approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.5.3 ROS integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.6 Proxemics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.6.1 ROS leg detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.6.2 Localization of robot in the stage . . . . . . . . . . . . . . . . . . . 109
5.6.3 Computation of proxemics descriptors . . . . . . . . . . . . . . . . . 110

5.7 Scenic action classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.7.1 Fuzzy logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.7.2 ROS integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.7.3 Fuzzy variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.7.4 Fuzzy rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.8 Final implemented architecture . . . . . . . . . . . . . . . . . . . . . . . . 119

6 Conclusions and future developments 121
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Bibliography 127

A Implemented fuzzy rules 137

List of Figures 139

List of Tables 143





1

Introduction

As you set out for Ithaka
hope your road is a long one,

full of adventure, full of discovery [...]
May there be many summer mornings when,

with what pleasure, what joy,
you enter harbors you’re seeing for the first time

Ithaka - Constantine Cavafy

Robots (and AI-powered machines in general) are nowadays seeping into the fabric of
modern society, assisting or even replacing humans in a variety of contexts. Not only
they are employed as industrial tools, taking over heavy, repetitive, or precision tasks, but
there is also a growing body of research and commercial applications envisioning robotic
social companions for everyday life, for instance replacing caregivers [105] in assisting
elderly people or children affected by autism spectrum disorder.

An all-round robotic social companion, able to interact with humans in unconstrained set-
tings, however, is a goal still far from being achieved. Breazeal claimed in [18] that robots
"treat us either as other objects in the environment, or at best they interact with us in a
manner characteristic of socially impaired people"; this observation is still valid nowadays,
not only for the technical issues related to formalizing and coding human social norms into
a machine but also (and maybe most importantly) for an additional ontological dimen-
sion. As in fact described in [68], robots that socially interact with humans face several
main problems, such as:

• different expressive media w.r.t. humans (and hence different degrees of freedom)
that "hinders the ability to mimic common physical human cues" and makes the
robot being "perceived as unresponsive or unintelligent"

• robot’s intentions are not always clear or understandable, and there is a tension
between simple movements, perceived as ambiguous, and complex motions failing
to fully convey the intended information
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• human motions should not only be observed and recognized in a computational
manner, but should also be framed into a larger context to make sense of the current
situation in which the interaction is taking place. This, to be achieved, "requires
a sophisticated model of human behaviour" that can also take into account cultural
differences.

• evaluation of human-robot interactions is often based on the subjective experience
of testers, and too dependent on the "unpredictability of the human element"

For these reasons a proper conceptual environment is needed, in which to design, ex-
periment, and validate different paradigms and capabilities of sociality and human-robot
interaction. A playground that resembles reality yet at the same time is controlled enough
to introduce simplifications in the acquisition and processing of external inputs with re-
spect to the complexity of the real world outside.

An environment of this kind can be found in the world of theatre, which has been since
its birth a way to represent reality and decompose it into smaller pieces to fathom the
depths of the human condition, the mysteries of life, and the collective consciousness and
rituals of society. The theatre stage is in fact a space and time outside the ordinary
space-time, in which common rules can and cannot apply and new ones can be defined;
thanks to this, theatre has the power to be the ideal workshop and test-bench in which
different possibilities can be brought to life, simulated and assessed (being them new ideas,
technologies, events...) in a collective ritual to isolate the alien element and look at it
through different lenses, hypothesizing the impact of its assimilation or rejection.

If a robot can be programmed to convey its intentions on stage, then we can
be sure that the robot is at least conveying some of the right social cues, which
can then be transferred to more traditional human-robot social situations

D. Lu - Human-robot interactions as theatre [68]

State of the art

All the considerations made so far find evidence and validation in the existence of several
works at the intersection of robotics and theatre, which are briefly described in this section
to provide a general overview about the state of the art.

Different approaches have been followed so far in the development of robot actors, and
a possible categorization has been proposed in [67] based on the two orthogonal axes of
autonomy and control.
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Autonomy describes the complexity of algorithms used to operate the robot and high-
lights which entity is actually selecting the action to perform.

• Human: actions are decided and produced by a human operator, either in the forms
of remote control, hardcoded motions, or generative mapping of human movements
(e.g. motion capture)

• Algorithmic: the robot is fully autonomous and its behaviour is determined by the
results of an algorithm, without human intervention

• Hybrid: the robot’s behaviour is a blend of the two, with a human adjusting the
result of an algorithm or vice-versa

Control provides instead a classification of how awareness of the surrounding environ-
ment (if present) is implemented and how the robot’s behaviour is adjusted over time.

• open-loop: no adjustment is made to the robot’s behaviour, that instead "does the
same exact thing in every performance regardless of external factors"

• closed-loop: a feedback mechanism is present, which "allows the robot to react to the
given performances"

• free: no constraints are put on the robot, that instead "can do nearly anything"

Combination of values on these two axes eventually produce nine possible classes of in-
creasing complexity in which a robot actor can fall, that can be further grouped into four
categories as shown in figure 1.

Many of existing examples of robot actors use the audience as a feedback signal to learn or
adjust their behaviour. This is the case for Data, a stand-up robot comedian able to select
jokes according to the reactions of the public [58], whereas in ComedyLab [57] a humanoid
robot performs a script by analyzing spectators’ faces and addressing specific people. A
similar approach is employed in [19], where a serpentine anemone-like creature (called
Public Anemone) interacts with the crowd, whose inputs can elicit different responses,
such as curiousity or fear. The behaviour of the robot is then based on a joint combination
of both the people’s stimuli and its internal drives, creating a tension between responding
to people (wich are encouraged to compete for the robot’s attention) and fullfiling daily
chores (e.g. watering plants, drinking, bathing). Relationship with the audience is also
the subject of a more recent work [108], where its response to a robot comedian has been
analysed through multiple performances, varying the robot’s timing and adaptivity to
assess variations in engagement and perceived humor.
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Figure 1: Diagram showing the classification in classes and categories of robotic actors
proposed by Lu [67]

The robot developed in [71] uses instead the audience as the actual control signal, pro-
viding a mobile interface in which spectators are prompted to select a reply line and a
gesture that will be uttered by the robot, namely a mechanical arm named Pokey. In
this context the responsibility of carrying on the improvisation is completely placed in the
hands of the human peer performer, which has to reply to Pokey’s props in a meaningful
way linking at the same time all the pieces of the story developed so far.

Another approach followed in the development of robotic actors is to have a predefined set
of behaviours and lines, which are however selected in a non-deterministic and dynamic
way to follow the evolution of a dramatic structure. The architecture proposed in [20] is in
fact based on the activation of behaviours according to the robot’s inner states, goals and
other actors’ utterances. It’s also of interest the approach followed here to represent (and
subsequently handle) the concept of an internal emotional state: instead of explicitly
representing emotions and modeling how they work they are implemented in the form
of inner obstacles, which can "inhibit certain behaviours and encourage others". These
obstacles are also characterised by an equilibrium value to which they decay over time
(inspired by the work on emotional models of Velasquez [107]). By specifying different
equilibria is therefore possible to realize different agents with different personalities all
based on the same architecture.

Other approaches have then used humanoid robots, either in big scale such as RobotThes-
pian or small in the case of Nao. Approaches of this kind, however, have suffered from
mobility capacities, both for logistic and artistic reasons, making them to fully explore
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the motion and spatial possibilities. Expressive motion has been considered in [84], where
a robot is employed in a basic theatre improvisation game, and in [4], where a robot
improvises a piece of dance by means of pre-defined. Both approaches, however, fail to
obtain a fully autonomous performance and could be only tested only in a Wizard-of-Oz
setting (namely being the robots assisted and controlled by a human operator).

Besides the development of acting and expressive capabilities in robots, other works fo-
cused on making their performance fluent and resilient to unexpected failures on stage,
which can have a negative impact on the perception of the quality and of the robot itself.
[35] studied in fact the development and exhibition of two robot performances, observing
that failures occurred (in different forms) nearly in every day of rehearsal and during live
shows. From this analysis the paper suggests four different strategies to face failures at
different stages of the performance’s development, characterised by different severity and
required effort:

• Showstoppers: requiring a significant time investment to add new capabilities to the
robot or to rewrite some sequences of behaviour

• Stop-fix-try again: addressing minor issues that can be fixed and tested on the fly
in a few minutes (e.g. adjusting robot’s position, recharging batteries...)

• Co-performer accomodation: leveraging the human peer to handle variations in the
robot’s performance and give them a coherent meaning

• Human-centric replacement: addressing "catastrophic robot failures" with a pre-
planned and practised backup plan, such as remote-control or replacement of the
robot’s performance with a human

Scope of the thesis

Considering the classification of robot actors reported in figure 1, this work aims to give
its own contribution to the fourth category, which envisions robots able to autonomously
decide what to perform according to external circumstances.

The work presented in this document focuses in particular on a specific form of the-
atre: improvisation, inspired by the claim of Breazeal that "introducing improvisation
[...] makes the situation more unpredictable and less constrained, approaching open-ended
interaction with people", enabling the robot to "act/react in a convincing and compelling
manner to the performance as it unfolds" [19]. The goal is to bring a contribution to the
development of autonomous robotic improvisers by designing and implementing a system
that provides them with the needed perceptual and awareness capabilities, to make them
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act in a fully functional and really autonomous way.

In theatrical improvisation, commonly referred to as Improv [55], actors do not have a
fixed script, but instead dynamically create plot-lines on the stage based on props from
the public or peer improvisers. Besides the ability of performers, improv is based on
simple rules, such as YES, AND... [87], which prompts actors to accept proposals of the
partners and reply back with an offer to make the scene go on. The success of an improv
scene is usually determined by the reciprocal engagement of the actors.

From these basic rules and from the analysis of several kinds of materials, a framework for
autonomous robot improvisations has been first designed and subsequently implemented
on a physical robot. In this first implementation the framework is based on the following
simplifications:

• the improvising robot has just a single human partner

• no props are used in the improvisation

• no speech is present, the only expressive capabilities that can be used (for both
performers) are those offered by body movements, facial expressions and spatial
relationships

and enbles the robot to classify the scenic action the actor is performing on stage, by in-
terpreting data collected by on-board sensors. The resulting classified action is eventually
made available as an output to other third-party systems, to make them select a scenic
action to perform in reply.

Structure of the document

After a short background about robots and theatre, chapter 1 presents in detail the goal
of this thesis, analyzing the context of theatre improvisation and listing the requirements
and boundaries of the work, to eventually introduce the developed reference framework
along with its evaluation procedures. Chapter 2 is concerned about the input features
that have been found to be of relevance in achieving the goal, describing for each the un-
derlying motivations and available theoretical models and algorithms for their extraction,
recognition or processing. Outputs of the system derived from these inputs are instead the
subject of chapter 3, which first explains the methodology followed in the identification of
relevant scenic actions, to later list them and compare possible theoretical models that can
be used for their computation. Before moving to the implementation details, chapter 4
introduces the physical robot actor on which the system has been deployed, analyzing its
existing features and components and explaining those that had been added anew, both
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from the hardware and software points of view. Chapter 5 provides all the details about
how the system has been physically implemented to achieve the goal. The discourse has
been organized into sections, with a one to one mapping to inputs and outputs listed
in chapters 2 and 3, where the ratio followed in choosing a particular implementation
is explained: for each variable are compared multiple solutions for its computation, and
motivations for the choice of the implemented one are given. Chapter 6 eventually closes
the document, summing up the work described until that point and framing it into the
larger context of existing research in human-robot interaction, listing potential points of
improvement and proposing several directions in which the system can grow.
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1| Goal and context

Given this preliminary introduction, setting the background and motivation for the explo-
ration of novel forms of theatre in which human and robotic actors cooperate in building
and narrating a story, the document now focuses on the technical aspects related to the
implementation of such robotic agents.

After an initial high-level description of the general goals and requirements, an analysis of
the underlying conceptual perception and action classification framework is given, to map
in the next chapters all the theoretical concepts into the corresponding physical quantities
observable or computable by the system.

1.1. Goal of the thesis

Building a robotic improv actor can be considered a hard problem [69] and a parallelism
can be traced with the hard problem of consciousness. To create in fact an artificial agent
able to interact in unconstrained situations with humans, such as the case of an improv
scene, there could be two possible ways:

• mimicking the behavioural patterns usually found in human-human interaction
(HHI), creating a human-like companion

• grounding the robot’s behaviour on a newly defined behavioural scheme, possibly
but not necessarily inspired by other lifeforms

In both cases is fundamental to have a preliminary understanding of how this patterns
originate and evolve. This is necessary not only to replicate them in the robots’ archi-
tecture and to guide their decisions and actions, but also to meet the expectations their
increasing complexity and capabilities create.

Social models have in fact been shown to often come into play during all sorts of interac-
tions, as a way to make sense of the world and its complexity and a tool to decode the
behaviour of either living or inanimate entities [18, 31, 81]. Moreover, this understand-
ing of communication mechanisms involved in HHI are thought to be the key to further
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develop artificial intelligence and to "achieve an effective human-robot collaboration" [45].

In light of these remarks, it is necessary to split the problem into smaller parts, that could
be solved independently or in a cascade fashion and eventually be integrated in a modular
architecture of ever-growing complexity and expressiveness. This approach can be thought
as inspired by the concept of modularity of mind [83] and Baar’s Global Workspace Theory
[9], which conceives the mind as composed of several specialized low-level modules that
respond to inputs and pool their outputs in a central "workspace", where they activate
high-level modules using a matching mechanism, and consciousness becomes a spotlight
that at each time brings certain processes to surface, leaving the others as unconscious.

In this way the work can be organized and carried out by listing different semiotic and
semantic layers of increasing complexity and by developing the foundational architecture
on which these layers can be incrementally applied.

A possible distinction into layers could be the following:

• Spatial, related to spatial and proxemics relationships

• Visual, related to visual cues and body language

• Auditory, related to acoustic features of the interaction (e.g. tone, rhythm)

• Activity, related to the understanding of mimed actions and their context

• Linguistic, related to the understanding of spoken sentences and their context

The goal of this thesis is therefore to design and implement the aforementioned architec-
ture, as well as the first levels in the hierarchy, in a way that could enable an easy future
implementation of additional inputs and internal processes to enable the other layers.

1.1.1. Boundaries

Before proceeding to describe how this goal has been achieved it is important to set the
boundaries of the work, to identify the responsibilities of the architecture to be developed.

Interaction between human actors and their robotic peer can be modelled as a turn-based
communication, whose structure and mechanisms can be grouped at a high level in three
distinct cascading interacting systems, as depicted in figure 1.1.

At each turn all the sensory inputs coming from the actor (possibly integrated with obser-
vation from the environment) are collected through the sensing module, and after being
filtered and pre-processed are passed to the understanding block, where they contribute
to update the robot’s world model and to characterise several features of the interac-
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tion, which are eventually used by the decision module to select and physically utter an
appropriate response.

human sensing understanding decision

robot

reply + action

Figure 1.1: Block diagram showing at high level the interaction between a human actor
and the architecture of the robot. Black-filled blocks represent parts of the system that
are outside the scope of the work whereas white-filled blocks are the ones that will be
designed and implemented.

In light of the remarks made at the beginning of this section, about the complexity involved
in building an end-to-end architecture for a robotic improv actor, the work described in
this thesis covers only the sensing and understanding blocks, as described in figure 1.1, in
order to separate concerns and, by reducing the complexity, to focus only on the relevant
problems of perception and awareness of the interaction. In particular, the work is based
on the following assumptions:

• the robot acts in a fixed-size empty stage with no props

• the robot interacts with only a single actor present in the stage

• interaction between the robot and the actor is modelled as a turn-based communi-
cation, inspired by the human interaction model described in 1.1.1

To sum up, the work that is going to be presented in this document can be described as
a multi-modal architecture for paired improv scenes between human and robotic actors,
sensing spatial and visual communication cues for the classification and characterization
of salient scenic actions during the interaction.

Human interaction model

The high-level turn-based description shown in figure 1.1 has then been enriched in the
following simplified scheme of human interaction.

Its beginning is usually aimed at assessing the attitude of the interlocutor, which is mostly
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done in an unconscious [22] and instantaneous way [112], based on non-verbal signals
(movements, posture, face expressions, etc.) [73]. This assessment eventually classifies the
attitude of the interlocutor within a defined set of possibilities (e.g., aggressive, amiable,
cold, joyful) [36].

From this classification an emotional response arises, which is instantaneous, unconscious
(i.e. not driven by any rational reasoning) and subjective (i.e. the very same actions and
expressions can trigger different emotional responses in different subjects), depending in
particular on the current emotional state and personality.

This emotional response causes (possibly) an alteration of the subject’s current emotional
state and triggers a response. In this moment the rational mind may intervene to moderate
the reaction, driving it towards what is more opportune, socially acceptable, effective, etc.,
but still not producing a mediated answer, which instead comes later [106].

This reaction is in turn assessed and processed by the interlocutor, giving rise to a chain
of interaction loops.

1.2. Analysis of the problem

In order to clearly understand what a robot improviser is supposed and required to do,
it’s important to point out the main differences that exist between improvisational and
traditional/scripted theatre, to both set the boundaries of the problem space and suggest
reasoning schemes that can be implemented.

Theatrical improvisation is in fact often considered, both by newbies and experienced
actors, a “hard discipline”. This is because it lacks a precise storyline and requires the
actors to co-create a coherent and meaningful narration. To do so they all have to pay
attention to a variety of semiotic elements: from the words uttered by their peers to
the actions performed on stage, to the subtle changes in tone and facial expressions. In
addition, besides looking inward to what happens on the stage, actors should also be
aware of the “outside”, to understand how their acting is perceived and to what extent
it’s engaging for the audience (even though in some improv performances there could be
judges in the audience with a “boring” sign).

To sum up, what mainly characterises improvisational theatre is the higher number of
degrees of freedom actors have in their acting. A freedom that is, however, a double-
edged sword: if from one side it allows actors to have (almost) complete control over the
unfolding of the story and shape its evolution as they like, on the other the fast decisions
taken at each turn do not have the same quality guarantee of a well and long thought
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script, where every line is carefully engineered to perfectly fit into the general canvas.

The absence of clear directions and guidance of a script can make actors feel left astray
in the ever-growing forest of possible stories, and only few empirical rules exist to serve
as a rudimentary compass, for instance:

• Yes, and. . . , often considered the foundation of improv, stating that improvisers
should always accept offers (endowments) from other actors, and possibily use it to
craft a new proposal in reply to add new elements to the story.

• Not asking open-ended questions: many times the success of improv scenes is based
on ambiguity between the actors, generating many different interpretations that
could lead to a variety of interesting stories. Asking an open-ended question forces
the others to come up with just one, narrowing the possibilities of the interaction.

• Being open to change: (linked to the first rule) even if actors have a very interesting
idea for their character, sometimes it’s necessary for a good result to let go of it and
embrace a more interesting proposal made by another peer.

These rules, however, as already mentioned, serve only as a very rudimentary compass to
orient among the possible choices. Actually choosing which action to perform, and how,
involves other different factors which are hard to track, because of their subjectivity and
connection to one’s personal experience, sensibility and references catalogue.

1.3. Reference framework

To shed some light on the complexity just described, and to help pointing out the main
factors involved in perceiving and classifying an improv scene, a reference conceptual
framework has been developed. This framework has a twofold goal: to identify which fea-
tures generally contribute to scene awareness in human actors and to understand how they
are processed and jointly considered to derive a classification of the ongoing interaction.

1.3.1. Methodology

In order to sketch the framework’s architecture, it is necessary to understand not only
which features are relevant and timely for humans during an improv session, but also
which features can be computationally retrieved and manipulated to extract meaningful
and valuable information, both from software and hardware points of view.

These two sets of features, however, are not one the subset of the other, since the use of
a machine equipped with sensors can enable enhanced sensing capabilities not available
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to humans (e.g. detecting movement of a person behind one’s back), and is therefore
important to understand which of these perceptions can be useful during the interaction.

Moreover, as described in section 1.1, the goal of this thesis is to develop a multi-modal
architecture for sensing theatrical improv scenes and classifying salient scenic actions
during a human-robot interaction.

For these reasons the reference framework has been developed following two different and
parallel approaches:

• bottom-up: from available relevant and measurable features understanding which
actions and prototypical interactions can be detected

• top-down: from prototypical interactions and general scenic actions understanding
which features are needed to be taken into account

This framework has been refined through several iterations, understanding which elements
to add or remove by simulating the robot’s behaviour with human testers.

In particular, this work has been carried out using different sources of inspiration:

• short movies, either acted or animated, to understand how an interaction is usually
narrated and the most common features used to convey certain messages

• hypothetical scripts of an interaction between a human and a robot, to under-
stand its possibilities and what is necessary for achieving them

• improvisational scenes, observed and analysed during improv theatre workshops1,
to understand recurring patterns and techniques that ensure a good result and en-
gagement of the scene

• direct simulation of an improv scene, in which a person pretends to be the robot
and acts accordingly, studying its limitations and needed capabilities

• considerations on human communication, to point out all the features that
usually come into play (at different levels of subtleness) when characterizing the
meaning and attitude of an interpersonal interaction

Results of this analysis are listed in the next chapter, where all the relevant variables
measured or computed by the framework are described.

1thanks to the Teatro delle Biglie association
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1.4. Experimental setup and evaluation

Evaluation of the project has been carried out in two different ways, touching the two
different directions its goal suggests.

The developed system should in fact be able to sense the environment surrounding the
robot, retrieving and processing data that could be useful to give a classification to actions
performed by the human actor on stage. For this reason, the first point of evaluation is the
correctness of the computational acquisition and elaboration of data, that can be carried
out by means of unit testing, simulations and controlled input feeding.

However, given the context and scope of the project, which is strongly based on the inter-
action between the robot and a human actor, its evaluation cannot disregard a physical
and interactive part, where the robot is actually observing a human actor performing
on stage, to check how well models and algorithms developed in a sandbox environment
perform "out in the wild". This kind of testing can in fact make several issues, unnoticed
in the case of computational testing, come to the surface, such as:

• Non-idealities in the acquisition of data

• Physical components of the robot hindering the acquisition of data or introducing
noise in the process (e.g. visual occlusion)

• Computational load of implemented models and algorithms, that introduce latency
and prevent a real-time interactive behaviour of the system

• Different (lower) performance of machine-learning-based approaches on data cap-
tured in real-time with respect to their accuracy on validation datasets

For this reason, a small controlled stage has been set up in the AIRLab spaces, to have a
stable environment in which the robot could localize itself and where interactive sessions
could be carried out without external disturbances. The stage, shown in figure 1.2 is a
4m by 4m square, delimited by walls made of aluminium frames covered by white fabric,
with an opening in the front to allow the presence of an audience like in a real theater
stage.

This structure has been designed to be easily folded and unfolded as needed (reducing to
a single flat wall) for two main reasons:

• minimizing the space occupied by the stage when the robot is not in use

• providing a portable structure that can be set up (virtually) in every space to make
people interact with the robot
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Figure 1.2: Stage set up inside AIRLab, composed of 3 walls made of aluminium frames
covered by white fabric, in which evaluation sessions have been carried out

To help the robot localize itself in this stage, and provide specific landmarks in the map to
disambiguate between the possible orientations, 3 objects have been put, asymmetrically,
on 3 sides of the stage.
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...I want to be suspended in the air above a flat stretch of open ground like
the floor of an enormous arena. I would look down while I’m floating and

there would be no horizon and no border."
"An infinite development! Dysfunctional space!" She replied

Rosa Barba - A Home for a Unique Individual

This chapter describes all the features used by the system (either as inputs or intermediate
results), showing their origin and motivation as well as methods with which they can be
retrieved and processed.

The analysis of the sources listed in 1.3.1 led to the following considerations:

• the meaning of someone else’s actions, and the underlying intention, is often inferred
from their perceived emotions

• emotions play therefore a fundamental role in disambiguating possible interpreta-
tions of the same interaction

• emotions are usually expressed through facial expressions, bodily movements and
spatial relationships between characters

• the above expressive media are by themselves sufficient to understand the unfolding
of a story (as in the case of silent movies and shorts)

• the features of movements (e.g. speed, extension, energy, . . . ) can externalize the
emotional state of a character

• the distance and eye contact between two characters can characterise the level of
intimacy and trust between them

These have been subsequently mapped to established concepts in psychology, social sci-
ences and choreography (described in the next sections) and summarized into a set of
dimensions defining a feature space. By doing so the observations of the system at each
time step can be described by a multi-dimensional feature vector.
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2.1. Emotions

Emotions have been for centuries a topic of discussion among the scientific and philo-
sophical communities, whose traces can be found even in ancient cultures [75], causing
interdisciplinary research with the two-fold goal of enabling new applications and a better
understanding of human emotional and cognitive processes.

This research is however far from convergence and no general consensus has been reached
yet over the origin, structure and operational modes of emotions, due to several reasons:

• uncertainty about internal workings of the mind, related in particular to conscience
and emotion formation

• inter-personal and inter-cultural differences in expressing, recognizing, and giving
meaning to emotions

• influence of different psychological traditions

For this reason, several explanatory theories and computational models have been de-
veloped through history, marking each a mindset shift on how emotions and the inner
psychological world is regarded in general.

These theories of emotions are often divided into three categories [74]:

• Evolutionary theories, focusing on a historical analysis of emotions to explain their
presence and development

• Social theories, regarding emotions as a joint product of culture and society

• Internal theories, describing how emotions are internally generated by the self

Part of the difficulty in converging to a general theory of emotion is also due to the term
itself, which encompasses a wide variety of physiological and psychological phenomena
and therefore leads to ambiguity. Moreover, the term, going under the umbrella concept
of affect, is often confused with its sibling mood. Mood is an affective state that happens
at longer time scales, lasting even for hours, with higher stability (the same mood can in
fact contain a sequence of several emotions) and subjectivity, whose triggers are harder to
identify. In a nutshell, mood can de depicted as the canvas on which emotions originate
or are projected.
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2.1.1. Motivation

As described in [16], emotions enable the creation of connections between living beings,
allowing them to understand what other individuals are experiencing or going through, by
means of a comparison with one’s own world model and past experiences that generates
compassion and empathy, essential for the thriving of social structures.

Sento il tuo disordine
e lo comparo al mio. C’è
somiglianza. C’è lo stesso slabbro
di ferite identiche. C’è tutta la voglia
di un passo largo in una terra
sgombra che non troviamo.

Mariangela Gualtieri

Besides lighting up and colouring the subjective experience of the world, emotions have
also been proven, by neuroscience and psychology, to be one of the main drivers or in-
hibitors of human action. They play a role in perception and attention mechanisms [53],
and there is growing evidence of an inter-dependence of emotional and decision-making
processes in the brain [66], especially by observing how damages to parts dealing with the
processing of emotional signals lead to an impairment in the choice-making ability [12].

Emotions are also at the core of affective computing (AC), introduced by Picard in [78] and
defined as "computing that relates to, arises from, or deliberately influences emotions",
inspired by the "essential role of emotion in both human cognition and perception". Still
in [78], the ability to perceive emotions is also claimed to be a hard requirement for a
machine to successfully pass the Turing Test.

Slightly drifting away from the realms of theatre and human communication, emotional
awareness can bring improvements and enhancements to a large number of existing prod-
ucts and services. One example are for instance recommender systems, which are cur-
rently being implemented in many and diverse contexts, ranging from entertainment to
education to nutrition; about this topic [99] argues that "when using applications with
recommender systems the user is constantly receiving various stimuli that induce emo-
tive states. These emotions influence, at least partially, the user’s decisions on which
content to choose. Thus it is important for the recommender system application to detect
and make good use of emotive information", thus proposing to make the user emotion a
"contextual variable" in the system.

Another example is instead linked to the use of emotion as regulatory feedback that
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makes the agent (being it a software, a robot, a smart device) adapt its behaviour to the
perceived user’s emotional state, in order not to disrupt it or generate frustration. Possible
implementations of this approach can be the affective reinforcement learning proposed in
[77] for the development of an educational social robot companion or the AI piano teacher
described by Picard in the aforementioned paper.

2.1.2. Models of emotion

In the following sections the major computational models of emotion are presented, show-
ing their assumptions and common use cases.

Ekman discrete model

This model belongs to the family of so-called categorical or discrete models, which claim
the existence of a limited number of basic emotions derived from a number of adaptive
responses to prototypical events [90]; it has been introduced by Paul Ekman in [33].

It is based on the assumption that there exist six basic emotions, namely: anger, dis-
gust, fear, happiness, sadness, surprise, that are shared by all humans regardless of their
cultural background. It also suggests a new meaning for the term "discrete" : not only
a sharp differentiation of basic emotions but also a discrete differentiation of universal
emotion patterns and facial expressions.

It’s also worthy to point out that this initial list of basic emotions has been expanded
by Ekman in 1999 [34], with the addition of new emotions not directly linked to fa-
cial expressions, such as amusement, contempt, contentment, embarrassment, excitement,
guilt, pride, relief, satisfaction, pleasure, shame. Subsequent researches also extended the
collection, identifying more than 20 "basic" emotions [25, 63].

Circumplex model of affect

This model was introduced by Russell in [86] and is in contrast with the discrete approach
described above. Emotions, instead of being each backed by specific and independent
neural structures and pathways, are seen as the "cognitive intepretation of core neural
sensations that are the product ot two independent neurophysiological systems" [80].

These two systems are mapped into a Cartesian reference system on two orthogonal axis,
and represented by the concepts of arousal (a sleepiness-alertness continuum) and valence
(a pleasure-displeasure continuum). Each emotion can therefore be characterised as a
linear combination of these dimensions in a continuous way. Figure 2.1 shows an example
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Figure 2.1: Diagram showing how emotions are mapped to valence/arousal pairs in Rus-
sel’s circumplex model of affect

of how different emotions correspond to different points in the model.

Appraisal theories

Appraisal theories of emotion ditch their neural-backed origin and instead depict emotion
as the result of the subjective evaluation (appraisal) an individual has of a situation, an
object or an event, based on the appraisal of a previous event [91]. The same circumstance
can therefore give rise to different emotions in different individuals, according to their
beliefs, past experiences and sensory perceptions.

This theory is implemented in [88], which introduces a framework for representing and
processing emotional contents in a cognitive architecture. In this context an emotional
characterization is added to all cognitive processes and appraisals play a major role.

Plutchik’s psychoevolutionary theory

This theory, developed by Robert Plutchik in [79], claims the existence of eight primary
emotions, which extend the six of Ekmann’s classification with the two new concepts of
anticipation and trust. As in fact the name suggests, this theory considers emotions to
be linked to survival behaviours developed during evolution (an example is the activation
of the fight-or-flight response by fear).

The theory is also based on ten assumptions, which can be summarized in the belief that
emotions played a crucial role in helping organisms survive and adapt to the environment,
modifying to different forms of expressions in different species; from a set of 8 primary
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bipolar emotions all the others can be derived at different levels of intensity or arousal.
Figure 2.2 shows the wheel model proposed by Plutchik to describe how different emotions
are related, drawing a parallelism with a color wheel to suggest the idea that they can be
mixed or exist at different hues and intensities.

Tomkins nine affects theory

This theory has been developed by the psychologist S. Tomkins in [101, 102] as a contri-
bution to the affect theory, and claims the existence of nine primary affects, characterised
by a pair low/high intensity and physiological expression.

In this context an affect is defined as an innate biological response to different intensities
and patterns of neural firings, amplifying the stimulus to direct the attention and motivate
action, whereas an emotion is defined as the awareness of an affect combined with the
memory of similar situations.

These nine affects are then organized into three distinct categories, on the basis of how
they are perceived by the individual, as also shown in figure 2.3:

• Positive affects, associated to a perceived reward

• Negative affects, associated to a perceived punishment

• Neutral affects, not affecting the individual’s behaviour

Using this characterization Tomkins also suggested a Blueprint for the behaviour of indi-
viduals: in order to reach optimal health they are motivated to maximize positive affects
and minimize negative ones, and to achieve this it is necessary to properly express them
and ease their identification by others.

Selected model

In the end, the Ekman model has been selected to represent the actor’s emotions in the
context of the framework, both for conceptual and technical reasons. As explained in
fact in 1.1.1, the goal of the work is to build a system able to extract relevant features
of an ongoing interaction and provide a preliminary characterization of its quality and
semantics, on which third-party additional modules will build to add semantic layers
of increasing complexity, related for instance to the robot’s personality and personal
appraisal of the situation. For this reason it has been decided to use a simpler (yet
expressive enough) model yielding basic emotions, which can be combined and post-
processed as needed by other specialized modules.
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Figure 2.2: Plutchik’s wheel of emotions,
showing the eight primary emotions and
their different intensities, as well as pos-
sible dyadic combinations [79]

Figure 2.3: Diagram showing the nine
primary affects proposed by Tomkins,
divided by positive/negative evaluation
[40]

The second reason, tied with the implementation of the framework on a physical com-
putational system, is instead related to the larger availability of open-source datasets,
algorithms and libraries for emotion recognition based on the Ekman classification rather
than other models, and will be covered in detail in chapter 5.

2.2. Body movement

Given the fact, as described in section 1.1, that the developed system focuses on the layers
of spatial and visual communication, and in light of the theatrical context, it appears
logical to consider the actor’s movement as a fundamental expressive medium.

As claimed in [62], "human movements can be seen as a combination of multiple elements
which intrinsically associate meaning, style, and expressiveness" which reflect not only
the intention of the person, but also their state of mind and emotion.

From the analysis of the sources listed in 1.3.1, movement appears as one of the main
tools employed to express the intentions of a character, for instance by leaning towards
the target of the attention or retreating from something considered harmful or unpleasant;
body language and motion cues have been a central element of both cinema and theatre
tradition, ranging from the mime in ancient Greece to the Butoh in Japan.
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Movement is moreover the foundational block of disciplines such as dance, ballet, contact
improvisation and choreographic arts in general, whose main characteristic is the use of
the body as an expressive medium spanning not only the three geometrical dimensions
of space, but also the arrow of time, to organize its movement into a coherent structure
onto which the audience can project images, mental states and personal memories.

Differently from other forms of arts employing the body as a narrative support, choreogra-
phy is more interested in its use as a raw material and instrument, playing with rhythms,
levels and constraints to evoke different concepts at a pre-linguistic level. Within this
context, several frameworks have been developed to try to organize the large variety of
body movements (and sequences of movements) into a single notation system, with the
aim of creating the counterpart of a music sheet and provide a reliable and standard
mapping of abstract concepts into kinematic utterances.

[. . . ] Di fatto si stremava su un colore
o piuttosto sul nome del colore da distendere
sull’omissione, il
mancamento, il vuoto [. . . ]

Vittorio Sereni - Un posto di vacanza

2.2.1. Laban movement analysis

Among these frameworks is of particular relevance the Laban Movement Analysis (LMA),
developed by R. Laban [60] and extended by Ullman, Bartenieff and Lamb to the form
that is commonly adopted nowadays.

LMA provides a description of the expressivity of body postures and gestures, to also
understand their underlying intention and communicative significance. Moreover, even
though LMA primarily focuses on the geometrical properties and motor patterns of human
actions, it has been proven able to analyse also their emotional content [82].

Different flavors of LMA exist, focusing on different sets of categories to characterise this
expressivity, but the most widely used and taught implementation of Laban theories is
the one developed by Bartenieff, who expanded the original two categories (namely effort
and spatial harmony) into a system of four categories usually referred to as BESS (from
the english initials of the categories, that are explained in the next sections).
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Body

Captures a snapshot of the body structure during a movement, describing how different
body parts are moving in relation to the body center (usually associated with the navel)
and how their motion is mutually influenced

Space

Highlights the connections between body motion and the surrounding space, focusing on
spatial patterns, trajectories and spatial tension, considering the traces left by the body in
motion as utterances of internal "happenings", such as feelings, emotions and motivations.

Drawing a parallelism with musical scales, movements are organized into harmonious and
aesthetically pleasing combinations, inspired also by geometrical considerations on the
human body structure, Platonic solids and lines or planes of spatial pulls.

Shape

Describes which shape the body takes during the movement and how it changes, using
an euclidean reference frame aligned with an initial position in an egocentric reference
system. In this way movements can be characterised along the three cartesian axes and
labeled with three sets of bipolar qualities (i.e. sinking/rising, enclosing/spreading, ap-
proaching/retreating). It is further divided into subcategories:

• Shape form: comparing the body shape to a collection of archetypes, like wall-like,
ball-like, pin

• Modes of shape change: describing the relationship between the body and the envi-
ronment:

– Shape flow: when the focus of the movement is on the body itself, representing
the equivalent of a stream of consciousness leaving the environment in the
background

– Directional: when the body is directed to a certain spot in the environment,
with two possible modalities: spoke-like (i.e. sharp and straight gestures) and
arc-like (i.e. fluid gestures and bent trajectories)

– Carving: when the body is interacting with the whole environment, moving in
all the three dimensions during the actions

• Shape qualities: using the aforementioned bipolar labels to characterise towards
where the body is changing, reflecting at the same time the attitude of the person



26 2| Feature space

towards their surroundings. It is however not concerned about the destination of
the movement, but rather on the process with which it is reached.

• Shape flow support: related to changes in the internal architecture of the body in
the space (kinesphere) and to how breath makes it grow or shrink.

Movement goes out into space and creates shapes. But also there is inner
space, and breath is an inner shaping experience. The body shrinks and
grows with each breath.

Irmgard Bartenieff

Effort

This category qualitatively analyses subtle features of the movements to understand the
inner intentions of the performer; it is based on the observation that different intentions
have a different influence on the strength, control, and timing of the same movement.

In a similar fashion to the other variables, it is organized into subcategories, called effort
factors, each having two opposite polarities (effort elements), as shown in table 2.1 These
factors can be then further grouped at different levels, obtaining different configurations
such as states (2 factors) and drives (3 factors), which are related to different psychological
characterizations of the movement. Some examples of drives and states are, in particular:

Effort factor condensing polarity indulging polarity
Space direct indirect
Weight strong light
Time sudden sustained
Flow bound free

Table 2.1: Table showing LMA effort factors and corresponding polarities

• Action drive, combining weight, space and time into typical actions that can be
performed to express several emotions

• Passion drive, combining flow, weight and time to describe the actor’s relationship
with space, focus and rationality

• Awake and Dream states, namely combining space and time and weight and flow.
They describe the two opposite polarities of pure thinking and pure emotional feeling
qualities of the actor’s movement
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2.2.2. Computable expressive descriptors of human motion

All the features described in 2.2.1, although useful to give a formal description of human
movement and make composers and performers use the same language, are in their original
formulation too abstract to be used in a computational model to enable the robot to
characterise the expressive content of the actor’s movement.

Most of the elements and concepts introduced by LMA are qualitative descriptions of the
performer’s posture and movements, easily understandable (and executable) by humans
but not directly and as straightforwardly computable by a machine.

As in the case of effort, polarities are labeled with terms linked to the common experience
of the world a performer could have: a quick gesture leaves a feeling and sensation that are
perceptually different with respect to a sustained movement. A difference, however, that
cannot always be broken down into a set of measurable variables and proper thresholds,
and therefore not trivial to be detected by machine.

For this reason computational implementations of LMA have been explored, to combine
meaningful descriptors into a set of features useful for an automated characterization of
the actor’s expressions. Apart from the theatre/dance context of the work, an added
motivation for the use of an LMA-inspired feature space is to test whether its inher-
ent semantic content about the actor’s expressiveness can make an automated classifier
outperform a sheer kinetic-only-based movement expression classification.

One of the main works done on computational LMA-implementations is [62], which re-
views the descriptors introduced by several other papers, organizing them in levels of
abstraction and expressiveness, ranging from basic kinematic formulas such as speed,
acceleration and jork to equations that map LMA concepts to the numerical domain.

[17] applied LMA to semantically segment sequences of motion capture data, training
a collection of neural networks to classify each motion sequence into three classes (i.e.
indulging, condensing and neutral) for each effort element. This approach, however, is not
directly useful for the goal of this thesis, since LMA characterization is done as black-box
by the neural network and not used as an input feature.

[3] focuses instead on recognizing human actions from video images, employing LMA in
the feature-extraction step to generate "compact and informative representations" to be
passed to different classifiers such as a Random Decision Forest, a Multi-Layer Perceptron
and a Support Vector Machine. Processing steps are here well explained, and, besides
mathematical equations to compute such features from skeletal joints, a pre-processing
technique is provided, to convert all the skeletons into the same reference system (centered
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in the midpoint of the hips) whose X axis is the segment connecting hips and the Y axis is
the spine. Data are acquired using a Microsoft Kinect sensor, yielding a 3D representation
of the human skeleton. Proposed formulas can however handle without problems a 2D
projection of its points (or skeletons acquired directly in a 2D space).

[104] proposes an LMA-inspired approach to gesture recognition, using LMA-derived lo-
cal descriptors to generate a soft assignment to a dictionary of reference poses which is
eventually used by a Hidden Markov Model for the recognition. As in the previous case, a
transformation is applied to the skeletal representation in input, to map it into a common
reference system, and a set of equations corresponding to Laban qualities are provided
(even though not covering the whole set of descriptors in LMA).

2.3. Proxemics

Lui la lasciò andare, sentì lo spazio freddo che si apriva tra di loro

Peter Cameron - What happens at night

The movement analysis described so far focuses only on the relationship between the
actor’s body and the environment, considering for instance how much space is taken up
by the body or the dynamic qualities of gestures.

However, since the context of this work is a paired improv theatre session, it is important
to consider also the role played by space in shaping the interaction among the actors and
how they in turn use it to convey certain narratives.

Another motivation for these considerations can be found in the analysis of the sources
listed in 1.3.1: as many movies, choreographies and even books suggest, spatial layouts and
dynamics occurring during an interaction with another person, object or event are usually
manifestations of the individual’s appraisal and attitude towards them (e.g. avoiding
something fearful, trying to stay close to an object of interest or desire, . . . ).

Considerations that are also psychologically and scientifically backed by the proxemics,
a subfield of the studies in non-verbal languages concerned with the use and influence of
space in human behaviour and communication. This term was introduced by E. Hall in
[49], where it is defined as the collection of "observations and theories about the human
use of space", which is reflected at different scales in the organization of both micro and
macro spaces, from interpersonal daily interactions to the topology of houses and towns.

Proxemics is also deeply linked to culture (Hall depicts it as one of its specialized elab-
orations), and therefore different people can have different unconsciously coded interpre-
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tations of the same interpersonal spatial dynamics; a difference that is often the cause of
misunderstanding and failure in intercultural communication [27].

Besides coining the term, Hall introduced in [50] a framework for the classification of
interpersonal interactions based on the distance between people, observing how it is in-
fluenced by their degree of familiarity [49]. The main idea of this contribution is the
existence of discrete social spatial zones surrounding an individual, each characterised by
a certain "familiarity threshold" for another person to be let into, as shown in figure 2.4
and summarized in table 2.2.

Figure 2.4: Personal zones used in interpersonal human-human interactions [50]

Personal zone Range Situation
Close intimate 0 to 0.15m Lover or close friend touching
Intimate zone 0.15m to 0.45m Lover or close friend only
Personal zone 0.45 to 1.2m Conversation between friends
Social zone 1.2m to 3.6m Conversation to non-friends
Public zone 3.6m + Public speech making

Table 2.2: Table showing the different personal spaces used by humans in interpersonal
interactions and their corresponding paradigmatic situations, according to [61]

Even though the theories introduced so far have been developed to describe and explain
interpersonal interactions among humans, they have also been implemented in the context
of human-robot interaction.

As described in [31] and [81], many socially-coded behaviours and customs come into play
even when interacting with other living or inanimate entities. It therefore makes sense,
especially considering the HRI dimension, to implement proxemics awareness into a social
robot, to effectively catch the cues that are unconsciously put by the person in the spatial
qualities of the interaction to enhance the engagement and mutual understanding.
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As it is in fact suggested in [98], this kind of awareness can "help the design of better models
of human-robot interaction, optimizing algorithms for how close robots should approach
people", using as an example Range [56], a digital whiteboard that proactively adapts its
behaviour and content on screen according to the proxemics of nearby users. Another
example is given in [72], where a reinforcement learning algorithm is proposed to make a
robot read "subconscious body signals" from the interacting the user (used in particular to
characterise their comfort and discomfort) in order to "adjust interaction distances, gaze
meeting, and motion speed and timing" to "make the interaction run smoothly".

2.3.1. Implemented descriptors

Motivated by all the considerations above, proxemics awareness has been added to the
framework, computing a high-level description of the spatial dynamics which is further
characterised into several specialized sub-qualities.

Preliminary notes on representation

Before explaining in detail which descriptors have been computed, and how, few remarks
are needed on spatial data representation, to establish a common ground for the following
sections.

Coordinate systems Adhering to the IEEE standard for Robot Map Data Represen-
tation and Navigation [46], the robot’s position is described in a reference system with
the origin in the lower-left corner of the map, as shown in figure 2.5.

Origin x

y

Figure 2.5: Map of the stage used by robot, showing the position of the origin of the
reference system used to describe its absolute position

On top of this, the relative position of the actor with respect to the robot is expressed in
a reference system centered in the robot, with the x axis exiting from its frontal side and
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the y axis from the left side, as shown in figure 2.6.

x

x

y

y

actor

robot

Figure 2.6: Orientation of the robo-centric reference system in which relative position of
the actor is expressed

Using this coordinate space, a black-box system is assumed to provide x, y pairs of the
detected actor’s position (details about its implementation will be given in 5.6.1). These
coordinates are then mapped, for ease of computation and to better describe the dynamics
of the robot-actor distance segment, to polar coordinates using the equations 2.1 and 2.2.

ρ =
√
x2 + y2 (2.1)

θ = tan−1
(y
x

)
(2.2)

It’s worthy to point out that it is possible to switch between these two reference systems
them and retrieve the absolute position of the actor in the stage, an information that
could come useful to understand and characterise the interaction with the audience and
how much of the ongoing action is kept hidden or explicitly shown.

Measurements windowing Data, collected and represented as explained in the para-
graph above, are then organized into windows of specific time duration. This approach has
been selected because human movements are continuous and usually happen at longer time
scales than those at which sensors sample the environment, making temporal smooth-
ing a necessary step in the processing pipeline. In particular, collected motion data make
sense only if interpreted as sequences for several reasons:

• outliers produced by noise in data acquisition systems, environmental issues (e.g.
bad reflection of laser beams) or small movements of actor or robot even when still
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• different frequencies of sensor sampling and person’s movement: human movements
are generally happening at larger time scales than those at which sampling devices
operate, generating a high number of data points needed to semantically segment a
single movement, that have to be taken in consideration as a whole to characterise
the interaction

• risk of not detecting variations in the actor’s position at discrete time (i.e. com-
pared to the observation at previous time step) because of their speed being too low
with respect to the sampling frequency, generating points separated by a negligible
distance.

All these can be condensed in two main points: being able to correctly capture and describe
complex movement dynamics and filtering out unwanted noise and discrepancies.

For the sake of completeness, it should be pointed out that several considerations have
been done to understand how to better segment collected motion data, surveying the
available state-of-the-art methods.

Several works exist in fact in time series (TS) segmentation (since motion data sequences
can be considered a signal evolving through time), based on different techniques such as
wavelet transforms [96], convolutional networks applied to image-representation of a TS
[51], LMA-descriptors when applied to body gestures [17], or by looking at changes in the
signal spectrum.

In testing the available techniques the underlying consideration has been that the activity
status of the actor’s body is an indicator of their participation in the scene: when the
actor is not holding the initiative and is instead waiting for a prompt from the peer, their
body is approximately still, without large or expressive movements. For this reason the
agitation of body joints has been analysed, either using spectrum- and kinematic-based
methods.

Spectrum-based methods attempt to segment a signal by looking at changes in its energy
content, an information embedded in the spectrum computed through the Fourier trans-
form. Because of this computational step, however, they are more suitable for signals
that are periodic or evolve with a particular frequency. They do not in fact provide useful
information for motion data, since it is not a periodic signal and is not characterised by a
particular frequency for meaningful periods of time (i.e. the actor does not usually repeat
the same movement back and forth in an oscillating fashion for prolonged periods of time).

Experiments on kinematic turn segmentation Another attempt has therefore been
to understand whether the analysis of body joints kinematics could instead provide useful
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information about the activity of a person. This kind of knowledge would enable the
framework to dynamically understand when the initiative is being left by the actor and
reply with a prompt to make the interaction develop, a key factor in the success of an
improv scene.

For this purpose only the head and the extreme points of limbs (i.e. wrists and ankles)
have been considered, being the most active body parts when the actor is performing.
Using the formulas provided in [62] their velocity and acceleration have been computed
for all the frames of a reference video, acquired with a camera mounted on the robot,
where a person was interacting with the robot in a "question and answer" fashion; single
values for each joint have been averaged to obtain a whole-body descriptor at each time
step. Plots of these computed kinematic metrics, shown in figure 2.7, clearly reveal the
time intervals in which the actor is active and those when is instead waiting for a reply
from the robot. In particular, it can be observed that the acceleration provides a cleaner
description of the actor’s activity.

From a computational perspective this information can be used in an on-line way paired
with a simple finite state machine: at each time step the descriptor is computed and if
near 0 for a certain number of consecutive steps a "waiting" state is triggered, meaning
the robot has to reply to everything the actor has done in between.

To enable this, however, data windowing is still needed, to store all the variables measured
from the actor that have to be processed in the robot’s turn. Moreover, this method
heavily relies on the succesful detection of the person, which cannot be taken for granted,
due to both artistic reasons (the actor may decide to perform their action while not seen
by the robot) and failures in the actor detection module.

Selected windows length For this reason, to avoid reducing the responsiveness of the
system, the final decision has been to process data in overlapping fixed-length windows,
whose length has been decided taking into consideration empirical trials and available
metrics on the understanding in humans of other people’s gestures. In particular, windows
have been defined to be long around 1 second, which is the value offering the best
trade-off in terms of system responsiveness and stability of filtered signals and computed
descriptors.

Proxemic zones

Inspired by the model shown in figure 2.4, a hierarchy of social boundaries has been added
to the model, refining the human-based original formulation to better suit the size and
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Figure 2.7: Plot of the average body velocity and acceleration computed from head and
extreme points of limbs to determine turn segmentations
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shape of both the robot and the stage (as described in 1.4).

Values have been in particular refined through several empirical evaluations with people
working in AIRLab, who have been asked to interact with the robot while pretending to
have different degrees of familiarity, different attitudes and different goals (e.g. pretending
to hold a grudge towards the robot, pretending to be talking to it, pretending not to notice
it or to stop an ongoing conversation . . . ).

In the end, 3 zones have been defined, whose corresponding numerical and semantic values
are listed in table 2.3

Proxemics zone Range Situation
Intimate zone 0m to 0.75m Deep interaction, sharing of emotions, im-

portance of closeness
Neutral zone 0.75m to 2.5m Interaction between acquaintances, not char-

acterised by strong emotions
No-interaction
zone

2.5m + No interaction occurs between the actor and
the robot

Table 2.3: Table showing the different personal spaces defined for the robot in the devel-
oped framework, showing for each the corresponding distance range and example situation

The intimate zone, drawing a parallel with the human counterpart, can be considered to
be the space reserved to people the robot highly trusts, who are thought to be harmless.
At a scenic level, this zone can therefore be used in two different ways: to either depict a
positive connection between the actor’s and robot’s characters, characterised by intimacy,
trust and longing, or to show highly negative intentions held by actor’s character towards
the robot’s one, for instance trying to catch or physically hurt it.

The neutral zone is instead reserved to all the other situations where the two characters
are interacting at moderate levels of energy and intensity. No visible strong emotions
or intentions are hence here expressed throughout the interaction and, if present in the
mind of one of the two parties, they are kept hidden, for instance in the form of scolding
or as a lack of trust and intimacy. For storytelling purposes this zone can therefore be
reserved to all the situations in which the characters’ relationship has yet to be depicted
and explained (not yet heavied by strong events) or for all the "filler" interactions that
anticipate a noticeable shift in the unfolding of events.

Lastly, the no-interaction zone is an umbrella class for whenever the robot and the actor
are not directly interacting. In these cases the two can be seen as independent individuals
whose actions and states have a low correlation (e.g. the emotion expressed by the actor



36 2| Feature space

could have been caused by an external factor and not by the robot.) However, it is important
to point out that this zone can also be used to convey the idea of tension betweeen two
characters, where silence and lack of interaction make clear a certain kind of relationship.

Zone classification Using this three discrete zones, the problem of classification can be
considered as computing a mapping between the actor’s distance and the corresponding
social zone. To avoid a zone being selected as a mistake due to noise, an hysteresis-inspired
mechanism has been implemented, with a zone being "activated" only if the corresponding
function’s result remains constant for a certain number of observations.

This smoothing process can be modelled by a finite-state-machine (FSM), composed of
as many states as the classified zones (i.e. 3) where transitions happen only after a zone
is detected for a certain number of consecutive turns, to avoid unwanted fluctuations due
to noise in the data. Each state is characterised by its corresponding zone and holds
counters for the other zones, which are increased according to incoming observations.

The machine starts in the state corresponding to the no_interaction zone and whenever
an observation is collected by the classifier, the proxemic zone computed on the basis of
distances defined in table 2.3; this information is then passed to the current state, which
yields the new state with three possible outcomes:

• the input zone is the same of the state’s one: counters are reset and the current
state is kept

• the input zone is different from the state’s one: the corresponding counter is in-
creased but is not above the threshold; the current state is kept

• the input zone is different from the state’s one: the corresponding counter is in-
creased and is above the threshold; the machine shifts to the state corresponding to
the input zone (resetting all internal variables)

Transition thresholds have in particular two different values, to distinguish movements
between "near" and "distant" zones: transitions from intimate to neutral zone requires
a lower number of consecutive observations to be activated em (i.e. 3), compared to the
transition from intimate to no_interaction zone (i.e. 5 observations).

Figure 2.8 shows the architecture of the FSM. For the sake of conciseness, the follow-
ing notation is adopted: zones are encoded as 0 for intimate zone, 1 for neutral, 2 for
no_interaction; counter for the zone i is represented as ci; thresholds for near and distant
are, namely, KL and KH . Arcs are then labeled with a combination of the input zone and
conditions on counters.
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2

0 10

(1 ∧ c1 < KL) ∨ (2 ∧ c2 < KH)

1 ∧ c1 ≥ KL

2 ∧ c2 ≥ KH

1

(0 ∧ c0 < KL) ∨ (2 ∧ c2 < KL)0 ∧ c0 ≥ KL

2 ∧ c2 ≥ KL

2

(1 ∧ c1 < KL) ∨ (0 ∧ c0 < KH)

1 ∧ c1 ≥ KL

0 ∧ c0 ≥ KH

Figure 2.8: Diagram showing the finite state machine designed to compute and smooth
the proxemic zone from the measured robot-actor distance

Approach and retreat

In addition to the sheer value of the distance between actor and robot, mapped to a
discrete social space, the framework considers also its temporal evolution, to add another
semantic layer. Drawing a parallelism with the concept of a derivative, this dimension may
enrich the information about the current proxemic zone occupied by the actor, describing
the causes of that distance and enabling speculation about present and future attitudes
and the levels of fear and trust between the two characters.

As can be seen during everyday interactions, either between humans or even involving
animals, the temporal evolution of distance between two individuals is a joint function of
the appraisal by both about the ongoing interaction: if one is interested in the interaction
(either with positive or negative intentions), the distance will likely reduce; on the other
hand if the interaction is evaluated in a negative way or there is still too much uncertainty
to draw a conclusion, a higher interspace will be kept.

For all these reasons, also in light of the goal of the framework described in 1.1, this
appears to be a reasonable feature for the classification of the scenic actions happening
on the stage.

In order to find a proper algorithm to classify whether the person is approaching or re-
treating from the robot (or if is being "still"), the problem can be formalized as, given
a collection of observations of the distance, determining whether their value is generally
increasing or decreasing. However, differently from the previous case, where the classi-
fication of the zone resembles an hysteresis mechanism, the same FSM-based approach
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cannot be used here, since the interest is not in filtering out noise to classify the most
recent observation, but rather in filtering out local fluctuations and describe the general
evolution inside the considered time window.

Proposed algorithm After several considerations on the more appropriate numerical
implementation of this trend classification, the final algorithm has been implemented
using a multi-derivative approach. In abstract terms, given a data window composed
of M observations, the algorithm estimates M − 1 discrete derivatives, computing them
between the initial point W0 and data at an increasing time distance (Wi) with the formula
in equation 2.3, as shown in figure 2.9.

Figure 2.9: Example chart showing the multi-derivative approach employed by the pro-
posed algorithm. A collection of derivatives (red lines) are computed between all the
points of the signal and the starting one and the dominant trend is selected through ma-
jority voting to subsequently compute the average derivative.

δi =
Wi −W0

i
(2.3)

After computing all the derivatives they are labeled among 3 possible trends, according
to the comparison between their value and a reference threshold ϵ. This threshold ϵ is
used to define the interval in which the derivative can be approximated to 0 (and hence
corresponds to a still trend), and has been empirically tuned to 0.001m

s
by collecting

distance observations of a still subject and estimating the noise in the data.

In particular, trend classes, given a derivative δ can be:

• Increasing if δ > ϵ

• Still if −ϵ ≤ δ ≤ ϵ
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• Decreasing if δ < −ϵ

Subsequently among these 3 classes the dominant one is extracted through majority voting
and returned as the general trend of the window.

Additionally, to estimate the average speed with which the distance follows the detected
trend, the algorithm averages the value of all the derivatives belonging to the aforemen-
tioned trend and the result is returned.

The code in listing 2.1 shows the Python implementation of the proposed algorithm.

Listing 2.1: Python implementation of the proposed multi-derivative-based algorithm
used to classify the trend of distance observations in a given window of data

from c o l l e c t i o n s import Counter

def t r e n d_c l a s s i f i e r ( s i g n a l ) :
# Compute d e r i v a t i v e s
d e r i v a t i v e s = [ ]
for i in range (1 , len ( s i g n a l ) ) :

d e r i v = ( s i g n a l [ i ] − s i g n a l [ 0 ] ) / i
d e r i v a t i v e s . append ( de r i v )

# C l a s s i f y t r ends
embeddings = [ c l a s s i f y_d e r i v a t i v e (d) for d in d e r i v a t i v e s ]
c = Counter ( embeddings )
# Extrac t dominant one through major i ty vo t i n g
trend = c .most_common ( 1 ) [ 0 ] [ 0 ]
# Even tua l l y compute speed
avg = 0 .0
n = 0
for i , d in enumerate( d e r i v a t i v e s ) :

i f embeddings [ i ] == trend :
avg += d
n += 1

speed = avg/n
return trend , speed

Figure 2.10 shows the result of the algorithm applied to distance measurements collected
with the robot. Each segment corresponds to a time window and is colored according to
the estimated trend: green if increasing, red if decreasing and black if constant.
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Figure 2.10: Plot showing the classification of distance data (collected with the robot) by
the algorithm. Each segment of the curve corresponds to a time window and is colored
according to the estimated trend of the signal in that window: green if increasing, red if
decreasing and black if constant

Speed

As explained in the previous section, the algorithm designed to characterise the tem-
poral evolution of the actor-robot distance also returns its speed of variation, useful to
characterise the urgency of the intentions underlying a certain action or movement.

Drawing a parallelism with the circumplex model of affect introduced in 2.1.2, speed can
be compared to the arousal dimension, influencing an action’s perceived intensity and in
turn the actor’s mental state. Speed is in fact a fundamental element in theatre to convey
the energy level and motivation of a character; a higher speed, for instance, can be linked
to a restless internal state, where the actor’s actions are seen as fundamental steps in
achieving a certain goal or as something they are highly convinced of.

Employing the algorithm above, speed can be computed along two different directions,
as shown in figure 2.11: the segment connecting the robot and the actor, to describe teh
urgency and intensity of actions addressed directly and frontally to the robot, and the
circumference whose radius is the aforementioned segment, to describe lateral movements
and whether the actor wants to stay or escape from the robot’s frontal axis.

Speed computed on this circumference can be interpreted as the angular velocity of the
actor rotating around the robot, and can hence be obtained by applying the algorithm on
the θ angle of the actor’s position in the polar representation.
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Figure 2.11: Directions considered to compute actor’s speed: the segment connecting the
robot and the actor and the circumference, centered in the robot, on which the actor lies.

Input data, however, are angular values ranging from −π to π (−180 to 180 in degrees),
and discontinuities can therefore be present when moving around the robot, as shown
by the example plots in figure 2.12. As it can be seen from the right side, a sharp
jump is present in the computed angle values when reaching the extreme points of the
range, making the trend classification algorithm fail to interpret the dynamics as a single
movement in the same direction.

In order to handle these cases, an alignment algorithm has been designed, which is based
on the following considerations:

• When considering a movement around the robot, the relevant information is con-
tained in the trend direction, rather than in the sheer values of angles

• This direction can be restored in case of a discontinuity (i.e. a jump in the plot) by
shifting all the subsequent points by a proper offset

• This offset is constant: depends only on the range in which angular values are
represented and on the direction of the jump (i.e. up or down)

• The jump direction can be detected from entity of the jump, which can in turn be
computed as the difference between the angle at time t and the angle at time t+ 1

• Alignment behaviour (i.e. amount of offset added to points) depends on the consid-
ered plot region: every jump in the plot causes a state transition
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Figure 2.12: Plots showing the discontinuity in the computed angular coordinates when
the actor is moving around the robot (a circular movement has been used for the sake
of simplicity, without loss of generality). The left side shows collected x, y coordinates,
whereas right side shows the θ angle computed using equation 2.2

For this reason, the algorithm has been implemented as a finite-state-machine (FSM),
shown in figure 2.13, which in one sweep aligns the data contained in the given time win-
dow, applying for each state a different offset to the input value. The FSM is composed of
the three following states, whose transitions, as explained before, depend on discontinu-
ities in the data, characterised as the discrete difference δ between two subsequent angle
values compared against a fixed threshold to determine the direction:

• Neutral (N): the basic case, where data are correct and don’t need to be aligned

• Jump_up (JU): activated when data suddenly jump from low to high values. In this
case data need to be brought back to lower values and hence an offset is subtracted

• Jump_down (JD): inverse of the previous state; activated when data suddenly jump
from high to low values. In this case, data need to be brought back to higher values
and hence an offset is added.

Relative position

In addition to the discrete personal zones around the robot, which can be described as
circular crowns, proxemics is also characterised at the level of the relative positioning of
the actor around the robot.

By itself, information on the proxemic zone cannot in fact discriminate between points
at different angles in the same crown. This knowledge, however, is useful to interpret
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Figure 2.13: Diagram showing the finite state machine designed to align angle observations
in presence of discontinuities caused by data representation ranges

different nuances of the same proximity: a very close person can in fact be considered
harmful if behind one’s back, whereas harmless if in front.

For this reason, four labels have been defined, as shown in figure 2.14, trivially corre-
sponding to the cardinal directions of space. Assignment to one of these areas is then
based on the angle θ of the actor’s position in polar coordinates.

Robot

45°135°

FRONT

BACK

LEFT RIGHT

225° 315°

Figure 2.14: Diagram showing the 4 discrete position labels around the robot, along with
angles corresponding to their boundaries

Absolute position in the stage

Besides the mutual positioning of the actor and the robot, the theatrical setting adds
another dimension to consider. The two performers are not alone on the stage, interacting
just with each other, but there is an audience being narrated a story through that same
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interaction.

Even if not explicitly addressed, the audience is in fact the vanishing point where, from
the stage, all the actions, intentions and dialogues converge; a point from which a higher
or lower distance can be kept, to make everything louder or deafer.

For this reason is important for the framework to be aware of the position of both the
actor and the robot, to understand at each time if one character wants to hide or reveal
a particular action or narrative element, and to also characterise their general attitude
(e.g. distance from the back of the stage is usually considered to be proportional to the
extrovertedness or confidence of the character).

Stage division As explained at the beginning of the section, positions are represented
by x, y coordinate pairs in the reference system placed at the lower-left corner of the stage.
However, to provide a more immediate description of the relationship of performers with
the stage itself and the audience, these two axes have then been discretized into a grid,
to be placed as an overlay on the stage and provide discrete labels to salient positions (in
a similar fashion to how LMA assign discrete labels to directions of movements).

The used division, in particular, has been inspired by a model of the stage commonly used
in acting or dancing, called Stage Grid, where the space is tiled in a 3× 3 grid, as shown
in figure 2.15. Mapping between these two notations can be then easily implemented by
just comparing the joint values of x and y coordinates, setting the interval boundaries
according to the real dimension of the stage.

Robot position To characterise the robot’s position in the stage using the aforemen-
tioned model, it is sufficient to know its position in the map’s reference system. For
this purpose, it is sufficient for the robot to be equipped with a proprioceptive module
providing its odometry given the map of the environment.

This odometry is assumed to be computed by a black-box third-party system, since its
implementation would go beyond the current scope of this work.

The estimated location on the map can be therefore directly plugged into the discretization
function to retrieve the stage position labels.

Actor position In this case, the actor position has to be computed combining the
information about the robot’s absolute pose and the relative position of the actor in the
robocentric reference system described before and shown in figure 2.14.
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Figure 2.15: Stage Grid model used to divide the stage space into 9 discrete tiles, showing
the label associated to each tile

In particular, knowing these two information, a simple coordinate change, described by
equation 2.4, yields the actor’s position in the map’s reference system, from which to
derive the discrete stage label. In the equation, r⃗S and a⃗S represent the position vectors
of namely the robot and the actor in the stage coordinate system, while a⃗R is the position
vector of the actor in the robo-centric reference system. A minus sign is in particular
added to a⃗R to take into account the opposite orientation of the x axis in the robot
coordinate system with respect to the stage’s one.

r⃗S = rS,xx̂+ rS,yŷ

a⃗R = aR,xx̂+ aR,yŷ

a⃗S = (rS,x − aR,x)x̂+ (rS,y + aR,y)ŷ

(2.4)
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2.4. Eye contact

I saw happiness and pain in your eyes
and reflection of the Paradises lost

and regained and lost again

Jonas Mekas - As I Was Moving Ahead Occasionally I Saw Brief

Glimpses of Beauty

The last feature that has been identified as relevant for the framework is the "eye contact"
between the robot and the actor (intended in this case as the two performers facing each
other, with the actor’s gaze directed at the robot).

Eye contact, or gazing, is in fact, together with proxemics, posture and facial expressions,
one of the fundamental cues of non-verbal communication. Its presence or absence conveys
a variety of feelings, and helps to characterise different situations, understanding for
instance whether an action (or an utterance in general) is directed to the other character
or to another point in the stage.

Analyzing the sources listed in 1.3.1 it has been observed that eye contact is often em-
ployed in storytelling to give information about the following elements:

• where the attention of a character is directed, adding information to the target of
their action or inner drives

• whether a character is trying to hide some actions (i.e. doing something while not
in the view field of another character) or on the contrary wants them to be explicitly
seen (i.e. doing something only when inside the view field)

• presence or absence of an ongoing communication between two characters

• positivity of feelings and level of trust and intimacy between two characters (mutual
connection or resentment/avoidance)

For these reasons possible methods to detect eye contact have been explored, which will
be described in detail in chapter 5, as well as their corresponding computational repre-
sentation of the eye contact presence.
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Having all the input features been described, this chapter considers how they are jointly
processed to produce the framework’s output.

3.1. Methodology

As explained in 1, the framework is expected to produce a classification of the ongoing
scenic actions in the context of a paired human-robot theatre improv scene.

To achieve this, the work has been organized as follows: understanding in the first place
what the concept of scenic actions and how their saliency is characterised; defining in
detail the output space, listing the relevant scenic actions that should be detected by the
framework (or their general archetypes); deciding a proper representation and encoding
of each action; surveying and eventually choosing how features are combined to produce
a resulting action and which classification method to employ among the available ones,
showing advantages and disadvantages for each.

It should be pointed out that implementation details concerning this very last step will be
described in detail in chapter 5, to follow the same structure adopted for the description
of the feature space.

3.2. What’s in a scenic action?

In the context of this work, a scenic action has been defined as a combination of input
features (hence observed from an actor on stage) that carries a specific and self-contained
meaning that timely characterises the context of an ongoing improv interaction and the
actor’s internal feelings and emotions.

This concept of self-containment is related to the goal of the system explained in 1.1 and
the hierarchy of semantic and semiotic layers outlined in 1.1.1. To achieve its goal, the
framework should in fact be able to characterise current interactions solely on the basis
of the perceived dimensions described in 2, using their temporal evolution as the criterion
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to discern different moments and contexts of the scene.

Production of scenic actions is conceptually placed one step before contextual awareness.
Drawing a parallelism with neuroscience, this characterization can be considered similar to
neural activations produced by the amygdala, which has been shown to play a critical role
in linking external stimuli to defense responses [64] and is responsible of the fight-or-flight
mechanism, which comes into play before the activation of rational circuits.

In light of these considerations, scenic actions represent a partial perceptual response,
framing observed cues and stimuli inside a vocabulary of archetypical interactions, which
can be therefore thought of as output classes of a multi-class classifier.

3.3. Relevant scenic actions

Starting from the definition given in the previous section, scenic actions identified by the
framework have been defined through an approach inspired by the circumplex model of
affect (explained in 2.1.2).

At a conceptual level, scenic actions can in fact be seen as labels appointed to hyper
regions in the multi-dimensional input space of the framework. Because of this multi-
dimensionality, it is impossible to have a 2D diagram similar to the one proposed by
Russel (shown in figure 2.1), and the labelling has therefore been organized in a cascade
fashion, that resembles that of decision trees, splitting at each level of all the possible
values of the input features as shown in figure 3.1.

Besides this top-down direction, giving a name to different combinations of input fea-
tures, the search has been also conducted in a bottom-up fashion, surveying relevant and
paradigmatic scenic actions both in everyday life and in a theatrical context, which have
been then decomposed into the corresponding input values.

In the end, the classification reported in table 3.1 has been developed, using as rele-
vant features the perceived emotion, the proxemic zone occupied by the actor and their
movement in relation to the robot (speed and direction). In particular, for the sake of
simplicity, instead of splitting features on the basis of their numerical values, linguistic
labels have been used, which can then be mapped to the proper numerical ranges.

It’s important to point out that not all the features listed in chapter 2 have been used as
discriminant attributes. This has been done to keep a reasonable small size of the output
space, also in light of the considerations made above, and the biological parallelism with
instinctive brain reactions, avoiding a too rich characterization of actions and separating
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Emotion
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Proxemic zone

intimate neutral no interaction

Movement direction

approach still retreat

Movement speed

fast  medium slow

Scenic action

Figure 3.1: Diagram showing the approach used to define scenic actionson the basis of
available features, highlighting the top-down and bottom-up directions

instead the two different levels of description (leaving to other third-party systems more
linked to the character’s personality the task of adding nuance to each action). Features
not directly used in the classification, however, are still made available as outputs of the
framework, to be used by other systems for more complex elaborations.

3.4. Action representation

Scenic actions, besides being the final output of the framework, also represent the com-
munication interface with other systems that can be deployed on the robot, controlling
its personality and choosing the proper replies to each action.

Another point in the work has therefore been to define their computational representation,
namely the data structure used to represent and exchange them.

Because of the limited available options, the final choice has been to represent them using a
shared vocabulary, encoding each action with a numerical index (i.e. an unsigned integer).
In this way, it will be possible to extend the list in the future in a transparent way for
all the consumer systems: employing a factory design pattern each of them can in fact
dynamically instantiate the proper computational representation of an action, supporting
the full vocabulary or a reduced set (for instance merging multiple actions under the same
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Emotion Direction Speed Zone Scenic Action
Anger approach fast intimate Attack

approach slow / med intimate Intimidation
still - neutral Scolding
retreat any no int Holding grudge

Disgust retreat / still any neutral / no int Refuse
approach any any perplexity

Fear approach / still fast / medium intimate / neutral Share fear
approach slow intimate / neutral Caution
still - neutral / no int Hesitancy
retreat slow any Shock
retreat medium / fast any Escape

Happiness - - intimate Share joy
- - neutral Greet
- - no int Happy person
retreat any neutral / no int Satisfaction

Sadness approach any intimate Share sadness
- - neutral / no int Sad person
retreat any neutral / no int Disappointment

Surprise approach / still any intimate / neutral Share surprise
still - no int Astonishment
retreat any neutral / no int Disbelief

None any any any Neutral

Table 3.1: Table listing all the relevant scenic actions identified to be outputs of the
framework. The first four columns represent values of input features, while the last column
indicates the identified action. Features’ values are expressed as high-level discrete labels
which will be later numerically groundeds

representation or using only those relevant to its specific goal).

3.5. Available classification methods

Eventually, possible methods to carry out the described classification have been explored.
In particular, one can observe that in the end the problem of determining a certain scenic
action can be reduced to a multi-class classification problem on the basis of the input
features listed above in 3.3. For this reason, all the available classification methods can
theoretically be employed for the task, but each has its own pros and cons that have to
be taken into account.

The following sections will consider a selection of those methods, analyzing the tradeoffs
of each to eventually explain the final decision.
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3.5.1. Neural networks

The first possibility is the use of a neural network to classify the scenic action from the
set of observations about the actor and the stage.

This solution has, on one hand, the advantage that no manual definition of feature/action
mapping would be required, leaving to the implemented model the burden of understand-
ing which features (and combinations of features) are relevant for the activation of a
specific action. On the other hand, however, a major drawback is that the model requires
a proper dataset to be trained on. This dataset would have to be created from scratch,
acquiring samples of all the classifiable actions from different subjects to ensure a good
variability and representativeness of expressions.

For this reason implementation of such a model would require additional work that would
go beyond the scope and timings of this thesis, and has therefore been discarded.

3.5.2. Decision trees

A second solution is the use of decision trees and random forests, already adopted in
several works in the literature for gesture or emotion recognition [3, 37, 110].

These models present the advantage that they can be built even in the absence of a
training dataset, manually defining the split point and adjusting according to empirical
tests and observations, therefore removing the need of creating a new dataset.

Because of their mechanism, however, they discretize the feature space into sharp regions,
each associated with a class label, and a small variation in the input features may cause an
abrupt change in the final output. For this reason, it would be necessary to add a filtering
and smoothing mechanism at the end of the action classification pipeline, to ensure an
acceptable smoothness and stability of the predictions.

3.5.3. (Fuzzy) rule based classification system

To overcome this limitation and make the system react smoothly to changes in the input
features, the third (and eventually chosen) option is the use of a fuzzy classifier whose
functioning and theoretical background will be explained in detail in section 5.7.

The use of a fuzzy rule system is in particular a common technique in the domain of
mobile interactive robotics and, as stated in [13], "probabilistic fuzzy rules can handle
inconsistent behavioural data pattern", providing a smoother and stabler output of the
system.
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Before proceeding to show how all the feature extraction, processing and classification
steps explained in the previous parts of the document have been implemented, this chapter
presents the reference robot on which the framework has been deployed and how the
system architecture has been designed, to clarify details, terms and concepts that will be
used in the rest of the document.

4.1. Reference robot

Instead of designing and building a new one from scratch, the reference robot on which to
deploy and test the framework has been chosen among those already present in AIRLab.
Choice, in particular, fell on Robocchio, developed in [15] and shown in figure 4.1, already
targeting the theatrical domain and therefore built by taking into account expressive
capabilities and features. As stated in the introduction, the robot "is capable of expressing
emotions through the movement of the eyes and pelvis and moving along the stage. [. . . ]

The robot is programmed to follow a script containing all the lines and the actions that it
must perform to play its role and express its emotions."

4.1.1. Robot’s platform and body

Robocchio’s body is based on a pre-existing platform named TriskarOne, developed in
AIRLab for the RoboTower project [14], an interactive human-robot game in which users
have to take control of plastic towers while the robot tries to anticipate players’ movement
and protect the towers.

The structure of the platform is triangular, with an omniwheel on each vertex and all the
needed components (e.g. power units, motor drivers, laser scanners, electronics) placed
inside and surrounded by plastic bumpers for protection. A vertical shaft then springs
from the base center, representing the robot’s spine and hosting the computational units
and the speakers.

The upper part of the body is inspired by the kinematic of the Blossom robot [97], based
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Figure 4.1: External appearance of the Robocchio robot [15] used as the reference deploy-
ment platform of the developed system

on a structure elastically suspended to a central pole, whose tilting is controlled through
wires and pulleys. This approach enables several expressive possibilities, such as leaning
forward or backward but also brings about possible issues in terms of stability, especially
for the camera, due to the wobbling of the elastic structure after a movement.

A peculiarity of this robot is the eyes, shown in figure 4.3. They are composed of a
polystyrene sphere (the eyeball) connected to a PVC elastic pipe. This kind of structure
allows the eyes to rotate and look in different directions (the field of movement is declared
approximable to a spherical cap), adding nuance to the robot’s expression.

4.2. Existing hardware components

To achieve its goal Robocchio’s platform offers several sensors and actuators, such as a
microphone, used to detect pauses in the actor’s speech and trigger a reply; a speaker, to
output the voice; motor drivers, to move the wheels, and two laser sensors, to map the
environment and localize the robot in it.

In the following paragraphs, a brief description of the relevant features of each component
is given, to highlight in which way they are useful for the implementation, and to list
unnecessary ones.
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Figure 4.2: Snapshot of a session of the RoboTower game [14]

Figure 4.3: Eye structure and moving mechanism mounted on the reference robot

4.2.1. Audio devices

The robot is able to emit sound thanks to two 2.5W amplified speakers with aux input
connected via USB to the power supply, whereas listening capabilities are provided by an
omnidirectional condenser microphone with a range of about 5 meters. Both components
are mounted on the central shaft of the robot’s body and connected to the main computer
through an external USB sound card to reduce both input and output noise.

However, as explained in 1.1.1, the verbal communication layer is outside the scope of
the version of the framework currently being described, hence audio capabilities are not
strictly required by the implemented version of the system.

4.2.2. Laser scanners

In order to perform localization and mapping in the stage, the robot mounts 2 Hokuyo
URG-04LX-UG01 laser scanners, shown in figure 4.4. Each sensor, intended for indoor
use, is able to scan a semicircle of 240°, with a maximum radius of 4 meters, outputting
the measured distance for each point at steps of 0.36°, as shown in figure 4.5.
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Figure 4.4: Hokuyo URG-04LX-UG01 laser sensor mounted on the reference robot

URG

scan direction

available scan area (240°)

Figure 4.5: Diagram showing the scanning area of a single mounted laser sensor

Distance is in particular measured by computing the phase difference between emitted
and received signals (infrared laser beams), and for this reason, as reported in the official
documentation, "it is possible that completely causal and unexpected measurements may
occur due to dust or the passage of small objects".

Lasers commonly suffer from transparent or dark surfaces, that cause the emitted beam
not to come back to the source (and hence making the robot think no obstacle is present
in that direction), or from irregularities in walls that cause a chain reaction of reflections,
leading to the same issue. However, it is worth to underline that the setup of the stage
described in 1.4 reduces the probability of these issues since it does not feature any
irregularity in the boundaries or reflectant elements.

As explained at the beginning, the robot mounts a pair of sensors. This is because a single
sensor would not be sufficient to cover the whole area surrounding the robot, due to the
presence of blind spots. This configuration, however, causes an overlap of the scanning
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areas, and the two incoming observations need to be merged into a single 360° wide set
of measurements.

For this purpose, a specific third-party software component is integrated, which, given
in input the two data streams of the laser sensors produces a single joint stream of laser
scans. More specific implementation details will be given in 4.5, where existing software
components are analysed.

4.2.3. Motors

The robot mounts different types of motors, used to control different body parts.

Eyes and body trunk movements are obtained by servo motors because they are easier
to move at a specific angle and offer a better cost/effectiveness ratio when compared to
traditional DC motors.

The robot’s base, instead, because of its triangular shape described before, requires at
least three DC motors and omniwheels (able to move in any direction), implementing a
holonomic kinematics, with the configuration shown in 4.6.

120°

Figure 4.6: Diagram showing the configuration of motors and omniwheels in the robot’s
base, where each motor is placed every 2π

3
on a circumference and wheels are orthogonal

to motors’ axes

In particular, Robocchio mounts three MAXON 118798 DC motors, each equipped with
an encoder to track the current rotation of the wheel by means of a hall-effect encoder.
Motors are powered at a voltage of 24V and power of 70W, allowing the robot to reach a
maximum speed of 1.4m/sec.
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4.2.4. Computational units

The system implemented on Robocchio makes use of two different computational units
following a master-slave pattern, to detach the control of servo motors and battery from
the main software.

Namely, the implemented software and control system runs on a Shuttle DH310 Mini
PC, shown in figure 4.7, featuring an Intel I7-8700 CPU, 8GB DDR4 RAM and 240GB,
whereas the control of servo-motors and battery status is delegated to an Arduino Uno
board, shown in figure 4.8, based on the ATmega328P microcontroller.

Figure 4.7: Shuttle DH310 Mini PC powering the Robocchio robot

Figure 4.8: Arduino Uno board controlling servo motors and battery status

DC motors are managed through Nova Core modules, shown in figure 4.9, driver boards
based on the STM32 chip on which a PID is implemented, modeling the motors as second-
order systems having as input the applied voltage and as output the angular speed.

4.2.5. Power supply

Given its mobility and the need to move freely on the stage, the robot’s components
are powered by 2 lead batteries, each with a nominal voltage of 12V and a capacity of
9Ah. Their charge level is periodically monitored by the Arduino board through a voltage
divider circuit, emitting a buzzer sound when it falls below a certain threshold.
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Figure 4.9: Nova Core driver controlling DC motors

For development and debugging purposes, where the robot doesn’t need to move but has
instead to stay still and turned on for prolonged periods of time, batteries can be replaced
by a direct connection to the electrical grid.

4.3. Added hardware components

All the hardware components described in the previous section, even if not strictly needed
by the framework to realize all its sensing capabilities, have been retained in the robot,
to be used by the third-party actuator systems to physically express and convey an ap-
propriate response to the detected actor’s scenic actions.

The existing set of sensors, however, was not sufficient to provide all the needed per-
ceptions and observations, especially those based on visual cues, and hence an external
camera has been added as a new hardware component.

The camera is in particular a Logitech C310 HD USB webcam, shown in figure 4.10, with
a resolution of 720p, a frame-rate of 30 FPS and a sensor of 1.2 mega-pixel. It mounts a
fixed-focus plastic lens with a diagonal field of view of 60 degrees, which has been extended
by using an external wide-angle lens.

Figure 4.10: Logitech C310 HD webcam added as a camera to the reference robot



60 4| System deployment

4.4. ROS

Before moving to consider all the existing software components controlling the behaviour
of Robocchio, this section analyses the framework they are implemented with.

One of the main requirements of the original software was in fact to be able to control
all the robot movements in parallel and to implement as many of its features through
pre-existing libraries; for these reasons, the ROS framework was selected.

As it can be read in [15], motivations for this choice range from the popularity of ROS
in the field of robotics to the large availability of third-party libraries, to the simple and
transparent support of multitasking and parallel computing to the support of both Python
and C++ programming languages.

ROS is the acronym for Robot Operating System and, as the name suggests, it aims to
be a full-fledged meta-operating system for a generic robot, providing hardware abstrac-
tion, low-level device control, message-passing logic and pre-implemented commonly-used
functions. Moreover, as can be read in the official documentation, one of its main goals
is not to be the most complete robot framework, offering the widest set of features, but
instead to let developers reach the largest amount of code reuse across the implemented
system, building on the concepts explained below.

It’s important to note here that even though version 2 of the ROS framework has been
released, Robocchio is implemented using ROS1 and hence the following considerations
are referred only to this specific version. Description and analysis of the ROS2 architecture
are given in 4.4.2.

4.4.1. Basic concepts

ROS is built upon three levels of concepts, which describe how the framework’s files and
artefacts are organized on the machine, how the community is handled and how all the
features and implemented systems are modelled and managed. For the scope of the work
it is relevant to briefly introduce only some concepts in the Computation Graph level,
which represents all the processes interacting to produce, transfer and handle data:

• Nodes are the foundational blocks to build every system in ROS, and they explain
the term graph in the computation graph. They are processes performing computa-
tion, designed using a principle of fine-grained modularity. For this reason, a robot
control system is usually composed of a large number of highly specialized nodes
(e.g. one for localization, one for planning . . . )



4| System deployment 61

• Master is a higher-level node providing name registration and lookup to all the
other components in the computation graph, in a centralized fashion

• Messages are the data structures through which nodes communicate and exchange
data and results. They can either be built-in primitives or custom-defined objects,
supporting arbitrary nesting of fields.

• Topics are the communication channels on which messages are exchanged. Each
channel is characterised by a name and the type of transported message (a topic
can only transport messages of a single type) and is based on a publish/subscribe
mechanism, with each node being able to publish and subscribe to an arbitrary
number of topics. This model has been chosen because it allows to develop each
system in a transparent way, decoupling the production of information from its
consumption thus making nodes ideally interact as black-box systems.

• Services are a concept similar to a remote procedure call, and have been designed
to implement a request/reply paradigm to make nodes fulfil operations in the dis-
tributed system without relying on the topics’ paradigm. They are defined by a pair
of message structures: the request and the reply, and each node can use the service
by sending the request message and waiting for the corresponding reply.

Before moving to consider how these concepts have been used in the implementation of
Robocchio’s control system, some remarks have to be made about the current state of the
ROS framework.

4.4.2. ROS2

Since the initial release of ROS in 2007, the community started working in 2014 on a
refactoring, to keep up with changing needs in the robotics community and to improve
the overall quality of the framework. Motivations are in particular multi-faceted: enabling
new use cases such as multi-agent architectures, deployment on embedded platforms, real-
time systems and networking fault tolerance; replacing custom implemented parts of the
architecture (such as the communication layer) with new third-party technologies that
became the de-facto standard in several fields; improving the design of the API interface.

As it can be read in the design documents of ROS2, achieving this goal while extending
the existing ROS codebase would have required too many intrusive and critical changes,
with the risk of rendering the product unreliable for all the existing users. For this reason,
a parallel set of packages has been developed, under the name of ROS2, which can be
installed alongside and interoperate with ROS1.
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Interoperability, in particular, is guaranteed by the ROS1 bridge project [1], a package that
enables the exchange of messages between ROS1 and ROS2 nodes by mapping messages
published on a certain topic into the respective data structures. The bridge can work
out-of-the-box with pre-built primitive interfaces defined by the ROS framework, but can
also support the conversion of custom messages by building it from source after having
built and sourced the needed custom message types in the workspaces.

At a conceptual level, the architecture of a ROS2 system is quite similar to its imple-
mentation with ROS1, having the concepts of nodes, topics and messages being retained.
Major changes are in fact at a lower level, related to the networking architecture, lifecycle
management and build system, which can be considered transparent when developing each
component; moreover, porting of simple packages to ROS2 (as in the case of the Roboc-
chio control system) can be achieved in a relatively short time with few code changes
(mostly related to syntax changes and different API interfaces).

For all these reasons the new system described in this thesis has been implemented using
ROS2, employing the aforementioned bridge to make it communicate with legacy parts
of the architecture, whose porting would have been outside the scope of the work or that
make use of libraries and functionalities not yet ported to the new version of ROS.

4.5. Existing software components

Before designing and implementing the new sensing system on the reference robot the
currently deployed software has been analysed, to understand which parts could be useful
for all the purposes described so far and hence be retained.

The goal of the previous system was to make the robot able to interpret a fixed script,
loaded in properly-encoded file on the machine. Several components are therefore related
to script and turn management, as well as the control of physical moving parts of the
robot’s body, and are not a fundamental part of this work (being the actuation of physical
replies to the estimated action delegated to a third-party system).

What is interesting to retain are instead the perceptive and proprioceptive components,
providing information about the surrounding environment and the robot’s relation to it.
They are in particular the odometry and laser sensing components, which are described
in the following paragraphs.
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4.5.1. Odometry

Odometry is the estimation of the robot’s movement and change in position relative
to a fixed reference position, computed from kinematic formulas governing its motion.
Knowledge of the robot’s position in the stage is relevant in the context of the work for
two main reasons:

• understanding and characterizing the relationship with the stage and the audience
of both the robot and the actor, in the context of the stage grid division explained
in 2.3.1

• informing the actuator system and preventing it from performing unsafe movements
that could make the robot go out or even fall from the stage

Odometry computation is implemented in a standard way using the built-in ROS data
types by the odometry_publisher node, which computes the robot’s pose from its planar
and angular velocities, as represented at a high level in equation 4.1.

⟨X, Y, θ⟩ = Odom (Vx, Vy, Vω) (4.1)

At each time step (represented as the time interval δt), the movement is computed from
current velocities and the estimated pose is updated using the formulas in equation 4.2

δθ = ω · δt

δx = (Vx · cos(θ)− Vy · sin(θ)) · δt

δy = (Vx · sin(θ) + Vy · cos(θ)) · δt

θ = θ + δθ

X = X + δx

Y = Y + δy

(4.2)

4.5.2. Laser sensing and merging

Acquisition of laser scans from sensors is realized through the urg_node ROS1 package,
which reads data from a serial connection and publishes them on two topics, namely for
the left and right sensor. As in fact already explained in 4.2.2, two lasers are present
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on board of the robot, making it necessary to computationally merge the two streams of
scans.

This problem is solved by the ira_laser_tools package [10], developed in the IRALab
laboratory of MilanoBicocca university which, as stated by the official website, allows
to easily and dynamically (rqt_reconfigure) merge multiple, same time, single scanning
plane, laser scans into a single one.

From an implementation perspective the package subscribes to the two incoming laser
scan topics scanLeft, scanRight (namely corresponding to left and right sensors) and
publishes merged observations into a third topic scan, in a way completely transparent
to the remainder of the system, which can just treat this data as the real ones, as if the
robot had only one 360°-wide laser sensor placed halfway between the two.

4.5.3. Localization

Using odometry and laser scans, the robot is able to localize inside a pre-loaded map of
the environment (built using the gmapping ROS library). Localization is in particular
achieved with the AMCL ROS package, a probabilistic localization system for a planar
robot based on an adaptive Monte Carlo localization approach, using a particle filter to
track the pose of the robot on the given map.

The internal parameters of AMCL have already been tuned during the development of
the previous system. Since no modification has been done to the robot’s kinematics and
structure, no fine-tuning was necessary and parameters have been left untouched.

4.6. Notes on the designed architecture

To understand which new components were necessary to be designed and developed,
features identified and described in chapter 2 have been used as requirements and func-
tionalities. Following the principles of modularity and separation of concerns, each feature
has been thought of as captured or processed by a specific ROS node.

Since ROS2 has been chosen for the implementation, new components had to be developed
in a separate architecture, not as an extension of the original Robocchio control system
(though the two systems can still interact thanks to the modular approach of ROS). For
the sake of clarity, specific details about the final architecture’s topology will be given at
the end of the next chapter, after having described how each functionality has been imple-
mented, to clearly show the nodes’ mutual dependencies, data flows and design decisions
that need a prior explanation of context- and implementation-related motivations.
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implementation

This chapter explains in detail which models, algorithms and technologies have been
selected and implemented to extract and process the features described in chapter 2,
showing also how they are deployed as ROS nodes in the final architecture, which is
described at the end of the chapter.

5.1. Preliminary notes on data collection

Before describing how each module of the architecture has been actually implemented,
this section explains some common design choices and concepts that are shared across the
whole system.

5.1.1. Data windowing

The robot’s system senses and observes the environment and the human actor in a con-
tinuous way to build its classification, collecting a large amount of data for each second
of the interaction.

For this reason, updating the classification on the basis of just every single incoming
input may lead to unstable and incoherent behaviour. Moreover, the semantics of human
expressions is often perceived and understood at frequencies lower than those of sensors’
data acquisition, and single data points are hence not able to completely characterise
(and also help disambiguate) a single expression, especially if treated as independent
observations without considering the recent history; expressions can then be decomposed
into simpler movements, that could not carry a very poignant meaning by themselves,
but make sense together only when considering their temporal dynamics.

One example to clarify could be the case where the actor’s aim is to keep the maximum
distance possible from the robot: in this situation there could be a moment in which the
distance reduces, such as when the actor wants to reach another point in the stage and
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has to necessarily pass near the robot; by looking at the whole picture the general goal
appears evident, even if at certain points collected values may hint at a different narrative.

Therefore, to prevent these issues, the computation of all the features described in chapter
2 should pass through a process of temporal smoothing, to make each classification derive
not from puntual observations but from sequences of data collected in a certain time-span,
to filter out noise and infer dynamics in a more robust, stable and accurate way.

In particular, the approach employed in implementing the framework’s components that
perform data collection and processing has been to organize collected data into sliding
windows. Measurements are not handled as soon as they arrive but are instead stored
in a buffer, which is emptied and processed periodically, based either on the number of
collected points or on a fixed frequency. Data contained in each window are then smoothed
using different techniques to assess the feature’s value in the covered time period, which
are explained in detail in each related section.

5.1.2. Handling of missing values

Given the fact the robot is deployed in the context of a theatre performance, it may
happen that some input feature is not always available. This can happen, for every
feature of interest, when the actor is not inside the receptive field of the sensor, with the
pre-processing layers failing to detect the actor’s presence and consequently not being
able to compute any descriptor.

It’s important to remark that this behaviour is not a failure of the data acquisition process,
but there could be instead artistic reasons that make the actor undetectable by the robot.
For instance, the actor may want to stay outside the field of view of the robot (e.g.
behind its back) to convey a certain narrative, making the emotion-detection pipeline fail
in detecting either facial or body expressions.

To handle these situations, fallback data points representing the absence of the actor are
used, namely a point outside the stage for the proxemics analysis and a neutral emotion
for the emotion classifier.

5.1.3. Handling of robot movements

Besides missing observations, another side effect of deploying the system on a physical
robot is the impact of movements on acquired data. This impact can be of two types:
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Misinterpretation of acquired data Considering again the example of proxemics,
the actor-robot distance can reduce when the robot is moving in reply, even if the actor’s
intention is to keep it as large as possible. In this case, the movement of the robot can
create a noticeable shift in the inputs’ values, which is not directly linked to a shift in the
actor’s expressions or intentions.

Noise in the data Movement on the stage surface, and in particular the characteristic
body shape and structure of the reference robot, can create wobbling and instability for
instance in the camera sensor, leading to "non-deterministic" data fluctuations.

For this reason, the system should be aware of when the actuator system (considered as a
third-party black-box system outside the scope of this work) is making the robot move, to
ignore incoming inputs and to consider only those caused by actions of the human actor.

This mechanism is implemented by means of a feedback topic through which the actuator
informs the system about the beginning and end of the robot’s reply and movements.
Upon receiving messages on this topic, the system toggles the state of the nodes connected
to sensors, activating either the normal free state, where inputs are handled, or a blocked
state, where inputs are ignored.

5.2. Remarks on image performance in ROS2

Another important remark that has to be done before describing the implementation of
each component of the system is related to the acquisition and handling of visual inputs.

The basic and most widespread solution is to have a node connected to the camera
acquiring frames and publishing them on a specific topic, which are then read by listener
nodes and handled accordingly. Both ROS1 and ROS2 provide official pre-implemented
packages to interface with USB cameras and publish frames at the desired framerate. A
first implementation has been therefore made following this approach, using the official
usb_cam package to control the webcam and custom nodes to run inference on frames.

To test the inference computational footprint it has been measured the time elapsed
between the availability of the image (i.e. after the messages have been decoded and the
image object created) and the availability of inference results. During these tests, however,
latency has been found to be noticeably higher with respect to that collected by profiling
the algorithms outside the ROS environment, directly reading data from the camera.

This discrepancy led to a further investigation about the cause, which could be two-fold:
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• impact of the ROS environment on the algorithm’s performance, slowing it down
due to thread-management and other low-level issues

• corruption of the image file during the encoding/decoding steps, that could alter its
size and make it heavier to be processed

After several tests, the issue has been identified to be caused by memory management
in ROS Python APIs, which makes every access to the frame (belonging to a different
memory space) slower when compared to accesses to frames acquired in the same process
(and hence directly available in the same memory space of the consumer algorithm).

A possible solution could therefore be to create a shared memory space across the camera
controller and consumer nodes, to reduce the inter-process latency at the root of the issue.
In the ROS1 framework this is made possible by a built-in package, whereas in ROS2 it is
realized through the concept of node composition, which creates a single process composed
of all the specified nodes. Such capability is however available only for nodes developed
using C++, and Python nodes cannot be composed. This sets a strong limit to its
adoption in this work, since the Python environment is necessary for the use of inference
algorithms, and other solutions have therefore been explored, such as the built-in Python
shared memory module or the Redis library, but none of them has shown a significant
improvement over the baseline message-based implementation.

The final solution has eventually been to merge all the nodes requiring vision capabilities
(i.e. needing to access the camera feed) into a single one, where the main thread is
connected to the camera and consumer algorithms run inside internal threads, using
buffers to share acquired frames.

This approach makes also sense from a conceptual point of view since it enables the reuse
and sharing of partial results among nodes using the same input sources for inference,
such as the emotion recognition from facial expressions and eye contact detectors, both
exploiting the image of the actor’s face. In this way, a single face detector is implemented,
whose results are directly provided to the requiring algorithms.

Figure 5.1 shows the internal organization of the vision node, whereas figure 5.2 shows a
sequence diagram describing how threads are activated during a single run of the image
acquisition loop. For the sake of conciseness, thread names have been shortened.
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Vision node

Eye contact
thread

Face Emotion
thread

Face detection
thread

Camera thread

Pose estimation
thread

USB camera

Figure 5.1: Block diagram showing the internal organization of threads in the vision
macro-node, as well as data flows and hierarchy among them

5.3. Emotion recognition

To converge to an emotion-recognition model, several experiments have been conducted,
in terms of both the model’s algorithm and architecture, and input data and related
pre-processing steps.

In light of the remarks made in 2.1 about how emotions are often expressed, the emotion
recognition module is composed of two submodules, to characterize both facial expressions
and whole-body movements.

To ensure coherent results, the two sub-systems share the same output space, using in
particular the six basic emotions proposed by Ekman as possible labels. Outputs are
encoded in a multi-dimensional vector, containing not just the characterization of the
dominant observed emotion, but confidence values for all the possible states, to allow for
future temporal smoothing and filtering steps, as shown in 5.1, where t is the current time
step and i the recognition sub-module.

Ei,t = (ani,t, dii,t, fei,t, hai,t, nei,t, sai,t, sui,t) (5.1)

This formulation also enables vectorial operators such as sum and element-wise product,
to update confidence values in parallel when computing the operations described later.

Figure 5.3 shows at a high level how emotional signals extracted by these sub-modules are
integrated to generate a final prediction of the actor’s emotional state. Vectors of confi-
dence values are locally accumulated and smoothened over a time window of pre-defined
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publish_pose

alt [face detected]

detect_emotion

publish_emotion

estimate_eye_contact

publish_eye_contact

[no face detected]

publish_no_eye_contact

Figure 5.2: Sequence diagram showing the activation of threads in the vision macro-node
inside the image acquisition loop

length (i.e., 1 second), to filter out noisy observations due to the model’s inaccuracies or
quality issues of input data, and eventually combined into a single output emotion.

It’s worth to point out this architecture can be easily extended with new emotion-
recognition modules defining proper inputs, aggregation and selection blocks.

Body emotion
extractor

Face emotion
extractor

Temp. smoothing

Output selection

Temp. smoothing

Figure 5.3: High level block diagram of the aggregation and final prediction of actor’s
emotional state from different specialized recognition modules

Smoothing has been implemented in 2 different ways: by computing a standard moving
average of all the confidence values in a window of size M , given by equation 5.2

Ēi,t =
Ei,t + Ei,t−1 + · · ·+ Ei,M−(t−1)

M
(5.2)

or by computing an exponential moving average, given by equation 5.3, which has a
forgetting effect and weights differently the most recent data points according to the
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parameter α, to be more reactive to changes in the expressed emotion.

Ēi,t =

Ei,0 if t = 0

αEi,t + (1− α)Ēi,t−1 if t > 0
(5.3)

5.3.1. Emotion recognition from face

As described in the Ekman emotions model, facial expressions are considered to be a
universal display of emotions, whose meaning is to a certain extent shared across different
cultures and species. This universality is also used to back the hypothesis on emotions
category, grounding the argument on the fact that the same facial muscles are used to
display similar emotions in different cultures [92].

Due to this, several works and researches exist on the classification of emotional states from
the analysis of facial signals [26], constituting more than 95% of the whole research body
on the topic [30] and in recent years several big tech companies also launched their own
commercial services and APIs offering face detection and face-based emotion recognition
from pictures. This "race for the face", with facial recognition systems seeping into a
wide variety of applications and their related social and legal implications, also caused
political institutions to set regulations on their usage [5], to avoid their misuse in critical
contexts and negative impacts on people’s life, for instance discrimination or deception,
due to algorithmic uncertainties, low-quality data and mindless reliance on the model’s
outputs.

Given this abundance of existing solutions and research projects on the field, and to avoid
wasting energies for the development of a possibly sub-optimal classifier, this module
has been implemented through third-party open-source libraries. Moreover, to address
privacy concerns explained above and minimize latency, only pre-trained and on-device
inference systems have been considered.

Two models have in particular been tested, both available as Python libraries: PAZ and
DeepFace. The section is therefore organized as follows: first a brief introduction to each
solution is given, analyzing the network architecture and example usage; then the im-
plemented model is selected, providing motivations for the choice. Given the fact that
both libraries rely on a face detection step prior to the inference, available face detec-
tion algorithms are then compared (on the basis of their latency/performance tradeoffs)
for selection and eventually the deployment of the chosen one is described, along with
implementation details to overcome its common technical criticalities.
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PAZ

PAZ (acronym of Perception for Autonomous Systems) [7] is a software library developed
by Arriaga et al. that provides perception and processing modules at different levels of
abstraction, which can be combined in different topologies for several tasks, including
emotion classification from face.

In particular, PAZ APIs feature three levels of abstraction which also correspond to three
different levels of data manipulation, namely mapped onto the concepts of pipelines,
processors and backends.

Emotion classification is offered as a pipeline, hence at the highest abstraction level, and
inference can be performed with few lines of code, as shown in the example below:

Listing 5.1: Example of emotion inference on a single image using PAZ emotion classifier

from paz . p i p e l i n e s import DetectMiniXceptionFER
detec t = DetectMiniXceptionFER ( )
i n f e r e n c e s = dete c t ( image ) # Image in numpy−format

The result of the method call is a dictionary, containing an array of detected faces, along
with their dominant emotion and confidence value and an annotated image, showing all
the bounding boxes and the corresponding prediction. However, this output format is not
suitable to achieve the desired structure of the emotion classification vector described in
5.1, since only the dominant emotion is reported, and time spent to generate the summary
image can be avoided since is not necessary for the intended purposes.

For this reason, a custom processing pipeline has been implemented, overriding internal
classes to make the module output a vector of all the possible classes and related confidence
values. In particular, a custom processor has been defined, which performs in sequence
the following steps:

• detection of faces in the image

• cropping of the detected ROI to generate face patches

• classification of each face patch, using a convolutional neural network

eventually outputting a list of detected emotions and related scores.

In both cases, the classifier is internally implemented by means of MiniXceptionFER
[6], a variation of Xception [23] trained on IMDB-gender and FER-2013 datasets, whose
final architecture is a "fully-convolutional neural network that contains 4 residual depth-
wise separable convolutions where each convolution is followed by a batch normalization
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operation and a ReLU activation function", as shown in figure 5.4.

Figure 5.4: MiniXception network implemented in PAZ emotion classifier [6]

Inference latency of this model has been then measured, by acquiring a reference video
with the webcam mounted on the robot and collecting a hundred measurements of the
time spent to produce the result on a single frame, which has been rescaled from the
original resolution of 1280×852 to a height of 480 pixels. In the end an average latency of
0.0254s with a standard deviation of 0.00245 has been measured only for the emotion
classification.

DeepFace

DeepFace is an open-source Python package wrapping several state-of-the-art models for
face recognition and facial attribute analysis.

It features a transparent face recognition pipeline, composed of detection, alignment,
normalization, representation and verification, on top of which several APIs are provided,
including emotion classification.

Emotions can be in fact inferred from an input image with a single line of code, shown in
the code snippet below:

from deepface import DeepFace
obj = DeepFace . ana lyse ( img_path , a c t i on s = [ ’ emotion ’ ] )

which returns a dictionary containing confidence values for all the six basic emotions, as
well as a reference to the dominant one. For this reason, in contrast to PAZ, there is no
need to define custom components for the post-processing of the model’s output.
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The face analysis module also offers the possibility to specify the desired face detection
backend, used to identify the face ROI in the input image. Available backends are OpenCV
(the default one), SSD, MTCNN, RetinaFace and Dlib, differing in terms of performance
and speed. It’s important however to note that cases in which a face is not present in
the input image are handled in a tricky way; in case the enforce_detection parameter is
set to True, a ValueError exception is raised, requiring the caller to properly handle it,
whereas if it is set to False, confidence values are still returned, without any information
whether a face is present or not.

The emotional expression analyser takes the name of HyperExtended LightFace [94, 95]
and its emotional classifier is implemented as a custom-defined neural network of 12 layers
(5 convolutional and 3 fully connected), outputting a probability distribution over the six
Ekmann emotions and the neutral state.

Model selection

Both the PAZ and DeepFace models run on patches with a resolution of 48×48 pixels (the
resolution of the FER-2013 dataset samples), and hence a resizing step is needed prior to
feeding each input.

Selection between these two candidates has been made by considering their precision
metrics, available in the corresponding papers [6, 95]. Even if scores are quite similar
the MiniXception model used in PAZ performs, in general, better than the LightFace
architecture employed in Deepface, and has hence been chosen.

Face detection

As stated in the introduction of the section, both tested models rely on a face detection
step to crop a face patch from the original image, which is then resized to 48× 48 pixels.
Because of this, the choice of the face detector is independent from the choice of the facial
emotion model, and state-of-the-art detectors have therefore been tested, being them
OpenCV with a HAAR Cascade detector, SSD, Dlib, RetinaFace and MTCNN.

Selection has been in particular performed using the same reference video described above,
measuring the inference latency on each frame on the robot’s computer.

Table 5.1 reports the collected results and shows a huge gap in terms of latency among the
available face detection techniques, offering different trade-offs between detection accuracy
and inference time. These techniques in particular can fall into two large categories:

• Geometric approaches, such as OpenCV, SSD and the HOG + SVM version of
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Detector backend Average Latency (seconds) Standard deviation
OpenCV 0.0121 0.0008
SSD 0.0177 0.0015
Dlib 0.0611 0.0013
RetinaFace 1.4755 0.106
MTCNN 0.2730 0.0201

Table 5.1: Summary table showing the collected performance metrics (i.e. average infer-
ence latency in seconds and standard deviation) for all the tested face detection algorithms

DLIB; being based on traditional image analysis and computer vision techniques,
they are characterised by a low latency but may fail at detecting faces in case of
occlusions or certain head orientations

• Deep neural network (DNN) approaches, which instead use a neural network trained
on samples of faces to analyse each image and estimate the presence and location
of a face, offering a more robust detection but at the cost of higher latency.

Because of the real-time requirements of the systems, and in order not to overload the
computational resources of the on-board computer, only the geometric approaches have
been considered (namely OpenCV, SSD and Dlib), since latencies of the DNN based ones
would have created a bottleneck in the systems, capping its performance at less than 5
frames per second.

Several further tests have then been performed to understand in which critical situations
each detector fails to recognize the actor’s face. From these tests emerged that they all
share the same criticalities, such as the person looking sideways and an head tilting of
more than 45 degrees, as shown in figure 5.5, whereas no noticeable difference of accuracy
has been found.

For this reason, having the lowest computational footprint, OpenCV has been selected.

OpenCV deployment

As described in 5.2, the face detection module is shared among the facial emotion- and eye
contact- detectors and is hence necessary to implement a 2-steps pipeline, that first detects
a face (made then available to other nodes) and subsequently computes the emotion,
instead of an integrated end-to-end emotion classifier.

For this reason, after selecting OpenCV as the to-go face detection system, the final
decision has been to implement it by directly using the OpenCv Python package. The
OpenCV-backed DeepFace stand-alone detector is in fact just a wrapper for the vanilla
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Figure 5.5: Orientation of the head (around 45 degrees) that makes OpenCV backend fail
in detecting a face in the input image

implementation and wouldn’t make sense to add additional dependencies and layers for
the same functionalities.

Eventually, to overcome the limitations due to head tilting a common solution has been
implemented and detection is repeated on the same image with multiple angles of rotations
of the same image, namely 0, 45 and -45 degrees. To reduce the number of unsuccessful
detection trials the implementation of this technique employs a caching mechanism, stor-
ing the rotation angle used at the previous step and selecting it as the first choice at the
next one, based on the assumption that nearby frames will have similar values of head’s
orientation. In this way the overall accuracy of the model is increased without worsening
the average latency, which does not differ much from that reported in table 5.1, making
the system still able to fulfil the real-time detection requirements.

5.3.2. Emotion recognition from body

The second cue from which the emotional state of the actor is inferred is their body, in
particular their posture and the quality of their movements.

This source of information has been neglected for a long time in the field of automated
emotion recognition [30], however with no historical or social evidence. Postural informa-
tion has in fact been claimed also by Darwin in [29] to be an emotional expression, based
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on the observation that body language is an important component of human-human com-
munication able to express emotions and to improve their perception, as also confirmed
by other studies [8, 39, 109].

Moreover, keeping in mind the theatrical context of this thesis and the scope defined
inSection 1.1.1, body posture and choreography are often employed to convey meaning
at different levels of nuance, and exaggeration of movements in artificial agents has been
shown to improve the interaction’s engament and perceived value [43].

For this reason several experiments have been performed, to first define which features
could be extracted from the actor’s body and subsequently understand which could be rel-
evant to discern their emotional state, training several classification models and evaluating
their performances on different input spaces.

The goal of the process is in particular to select a classification model that, given infor-
mation about the actor’s body movements and posture, classifies the expressed emotion
(choosing between the six defined by the selected Ekman model plus a neutral class).

The first step in achieving this goal has been the selection of a proper training dataset,
providing samples of body expressions annotated with the corresponding emotion. Using
this dataset several classification models and features encoding have been tested, to select
the best performing architecture on the basis of the validation accuracy metric. Decision
of which models to test has been in particular grounded on common techniques in gesture
recognition or context-related techniques available in the literature.

The section goes through each of these steps: first the reference training dataset is de-
scribed; then for each tested model motivations and comments on its performance are
given, to eventually explain the final selection and related implementation details.

Reference dataset

As already mentioned, a preliminary step to all the trials has been the research of a proper
reference dataset providing annotated examples that could fit in a theatrical context and
take into account the considerations made so far.

The choice eventually fell on the kinematic dataset of actors expressing emotion developed
by Zhang et al. [118], composed of 1402 sequences of movements, performed by 22 semi-
professional actors (50% male and 50% female), portraying different versions of the six
basic emotions introduced by Ekmann (anger, disgust, fear, happiness, sadness, surprise)
together with a neutral state. Sequences are encoded as BVH files (Biovision Hierarchy),
a standard motion-capture format that provides both skeleton hierarchy and motion data.
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Data, in particular, have been acquired using a wireless motion capture system with 17
sensors working at a frequency of 125Hz, whose placement is shown in figure 5.6 (a), and
sequences have been performed in a square stage of 1m× 1m, shown in figure 5.6 (b). In
the end, 72 body landmarks, listed in figure 5.19, are detected, and described by means of
their 3D coordinates (encoded as relative displacement from the hip center) and rotation.

Figure 5.6: Sensor locations and laboratory environment [118]

Figure 5.7: Skeletal structure and captured landmarks in the dataset [118]

To avoid repeating the computational cost of parsing and properly representing each
BVH file present in the dataset, having also as a side-effect the reduction of the file size,
a pre-processing step of converting the dataset into .csv dataframes has been performed
(retaining only the relevant body joints, namely those detected by the pose estimation
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module listed in table 5.6). Resulting files contain sequential information about all the
relevant landmarks, having rows representing each time step and columns storing their
coordinates, as shown in figure 5.8.

Figure 5.8: Excerpt from a converted .CSV file of the dataset, showing row-column orga-
nization of skeletal sequences

At the time of writing, no performance baseline is provided in relation to this dataset and
hence no comparison could be made for all the tested models.

Training has in particular been performed on sequences of motion descriptors (either
spatial/kinematic or LMA-inspired), to take into account the considerations made so far
about how a movement expresses a content at lower frequencies than those at which data
are collected. For this reason all the tested models are based on recurrent architectures,
differing either for the kind of features provided as input or for the architecture itself,
which outputs a probability distribution over the seven available emotion classes, passed
as-is to the emotion fusion step.

The first set of evaluated models are based on an LSTM and a fully-connected part,
whereas the last experiment asseses the feasibility of a recurrent graph neural network
for body emotion classification. Models, moreover, have been trained on multiple lengths
of the data sequences, for which the temporal evolutions of loss and accuracy (both in
training and validation stage) have been collected and reported in comparative charts.

Experiments with sequences of landmark coordinates

This first experiment has been designed to provide a baseline for the evaluation of the
other considered solutions. It is in particular based on the sheer spatial information of
the body landmarks, namely their coordinates on a bidimensional vertical plane.

As already mentioned the network uses sequences of data, for which different lengths are
tested. For this reason, the parsed pose sequences are split into chunks of the desired
length, to which is assigned the emotion label corresponding to the file (all sequences
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deriving from the same pose sequence hence have the same attached emotion).

Model architecture The architecture of the model is the result of an iterative pro-
cess, starting with a simple recurrent architecture for a classification problem to which
complexity has been increasingly added until a change in performance has been detected.

After some tweaks, the best performance has been obtained with the architecture reported
in figure 5.9, which is also used by all the other tested models (except for the graph-
network-based one). It is in particular composed of an LSTM layer that takes as input
a sequence and produces an embedding passed to the fully-connected part, composed of
two dense and an output softmax layers. In order to improve generalization capabilities
and accuracy on unseen samples, dropout layers are placed before the two dense layers.

LSTM
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Figure 5.9: Diagram showing the architecture of the neural network classifying sequences
of landmarks’ coordinates into an emotion class

Performance considerations As already mentioned, the performance of the network
(namely the accuracy on the validation set) has been computed over several lengths of
the input sequences. For each length, the model has been trained for around 300 epochs
using the RMSProp optimizer, with a learning rate of 0.0001 (higher values have been
found to cause overfitting after few epochs) and a batch size of 32. Being the problem a
multi-class classification problem, the Categorical Cross Entropy loss function has been
used. Performance, eventually, has been assessed by splitting the dataset into training
and validation sets, using a stratified splitting with a ratio of 0.25.

Graphs reported in figure 5.10 show, for each sequence length, the collected time evolution
of loss and accuracy in both training and validation stages. From them, it can be observed
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that the network performs really well with sequences up to a length of 3 poses, after which
starts to exhibit an overfitting behaviour and a suboptimal accuracy on the validation set.
In particular, the network reaches a validation accuracy on the validation set of ∼0.96
on 1-frame sequences and of ∼0.93 on 3-frames sequences.

Experiments with LMA features

In light of the considerations made in 2.2.1 about the ability of Laban Movement Analysis
to describe both the movement’s physical and semantic qualities, an experiment has been
conducted to check whether LMA-inspired descriptors could provide the same (or even
better) results as the coordinate-based one.

Input representation For this purpose, motion capture data have been pre-processed
to extract LMA-based descriptors, inspired by formulas used in [62, 104].

Computed descriptors are, in particular:

• Module of jerk (third order derivative) of the left and right wrists, representing the
flow component

• Speed and acceleration on the vertical y axis of the left and right hips, representing
the weight component

• Contraction index of the body, computed using the formula in equation 5.4, repre-
senting the shape flow sub-component of shape

• Amplitude of the body on both the x and y axes (namely distance between max
and min coordinate on each axis), related to the shaping sub-component of shape

• Dissymmetry index of the body, computed using the formula in equation 5.5 where
dleft/right,center(t) is the distance of the left/right hand from the trunk at time t, and
distance betwen the shoulder and the wrist for both the left and right side. Both
descriptors are related to the body component

C(t) =
||Phip center,t − Pleft hand,t||+ ||Phip center,t − Pright hand,t||

2
(5.4)

Dys(t) =
dleft,center(t)

dleft,center(t) + dright,center(t)
(5.5)

It’s important to point out that even if [104] uses tri-dimensional coordinates (hence values
on the z axis) to compute these descriptors, no considerable difference of performance has
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Figure 5.10: Plots of loss and accuracy of the trained networks in both training and
validation stages for different sequences of body landmarks’ coordinates
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been observed between training the network with 2D or 3D poses, and hence for the
reasons that will be explained in 5.4.1 the bi-dimensional version has been selected.

Model architecture As before, the architecture is retained from the original coordinate-
based experiment, with the only difference being the kind of features given as input.

Performance considerations Plots of loss and accuracy over the training epochs,
reported in figure 5.11, show a behaviour similar to previous cases, with only small lengths
of sequences (namely 1 and 3) making the model perform in an acceptable way, while
others lead to overfitting after few epochs. Besides the four lengths of sequences used in
the other experiments, two additional lengths have been tested, to check whether a larger
time scale would make Laban features bring more informative content with respect to
plain coordinates, but without success.

Another remark that can be made about this solution is the fact that several of the
LMA descriptors listed above are computed as derivatives (up to the third order) of the
landmarks’ coordinates. Because of this, input of the network is based on a larger window
than that needed by the coordinate-based network, namely larger of at least four elements,
since jerk is computed with a 2-steps look-ahead in time. For this reason, the network
can sometimes exhibit a delayed behaviour, reacting to a certain sample only after other
poses have been collected and all the descriptors computed, even though it shouldn’t be a
problem, given the low latency of pose extraction methods, that will be described in 5.4.

However, as it can still be seen from the plots, the network is not able to achieve accuracies
higher than those of 0.96 and 0.93 scored by the coordinate-based one.

Experiments with sequences of velocities

The third experiment makes use of kinematic descriptors and is based on the observation
that speed and acceleration of body parts are often linked to the internal emotional state.
Speed and acceleration are, moreover, computed as a transformation of the landmarks’
coordinates used in the previous model, and for this reason the leading hypothesis has
been that they could provide similar (or even better) results.

Input representation Input sequences have in particular been processed to extract the
instantaneous velocity of each joint k at every time step ti, using the formula proposed in
[62] and reported in equation 5.6, where xk(ti) and yk(ti) are the x and y coordinates of
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Figure 5.11: Plots of loss and accuracy of the trained networks in both training and
validation stages for different sequences of LMA-based descriptors of movement
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joint k at time ti.

vkx(ti) =
xk(ti+1)− xk(ti−1)

2δt
, δt = 1

vky(ti) =
yk(ti+1)− yk(ti−1)

2δt
, δt = 1

(5.6)

Model architecture The architecture is the same of the previous model, since there
is no difference in the input shape (being the new data only a time difference of previous
ones). The same diagram shown in figure 5.9 hence applies also to this case, with the due
modifications about data given in input to the model.

Performance considerations As in the previous case, the time evolution of loss and
accuracy for both training and validation stages are reported in figure 5.12. From the
plots, it can be observed that, apart from 1-frame sequences, the network overifts even
after few epochs and, when this does not happen, the validation accuracy reaches anyway
a lower value compared to the result of the previous experiment. This approach has
therefore been discarded.

Experiments with graph neural networks

This last experiment uses geometric information of the displacement of landmarks in the
view plane, and is motivated by the peculiar problem structure.

The human skeleton seen in figure 5.7, composed of a set of landmarks connected to each
other by bones, can in fact be modelled as a graph, whose nodes are the landmarks and
whose edges are the bones. Moreover, from a kinematic point of view, it makes sense to
consider the dynamics of each landmark as influenced by its peer joints.

Theoretical background Graph neural networks (GNNs) are a special kind of neural
networks dealing with graph representations of input data, and can be described as "an
optimizable transformation on all attributes of the graph (nodes, edges, global-context)
that preserves graph symmetries (permutation invariances)" [89]. They can be used for
several types of tasks:

• Graph-level prediction, to assign a label to the entire graph as a whole

• Node-level prediction, to assign a label to a single node, according to its role within
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Figure 5.12: Plots of loss and accuracy of the trained networks in both training and
validation stages for different sequences of body landmarks’ velocities
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the graph (e.g. Karate club problem [116])

• Edge-level prediction, to assign labels to edges connecting two nodes, to predict
for instance the relationship between two entities (e.g. similar to a segmentation
problem in convolutional neural networks)

GNNs are also often associated to the concept of message-passing, first introduced in [44],
a technique used to represent and implement interdependencies and mutual influences
of nodes. Each node is in fact characterised by a hidden state, corresponding to the
computed feature vector, which is updated at each turn with a function of the previous
state and aggregated messages from neighbouring nodes.

Used frameworks and libraries Graph neural networks are supported by both the
PyTorch and the Tensorflow framework, through several libraries. In this context, the
PyTorch framework, paired with the PyTorch Geometric [38] and PyTorch Geometric
Temporal [85] libraries, has been used to implement the tested network.

Input representation As stated at the beginning of the section, the network uses ge-
ometric information about the location of body landmarks in the bi-dimensional view
plane. For this reason, each pose is taken as-is from the pose estimation step and con-
verted to an (undirected) graph representation, using the data structures provided by the
PyTorch Geometric library. The graph structure trivially resembles the skeleton model
used by the pose estimation module and is therefore not shown.

In this implementation graphs are represented by two matrices:

• a feature matrix, containing the features of each node in the graph

• an edge index, describing how nodes are connected by edges

The feature matrix is in particular defined as a 13 × 2 matrix, containing for each joint
(rows) its coordinate pair (columns).

Model architecture The implemented network is composed of two parts:

• a recurrent module, performing temporal graph convolutions on the given data
sequences to update an internal hidden state

• a fully-connected (FC) classifier, using the computed embeddings to output a prob-
ability distribution over the emotion classes

which can be easily replaced with different implementations (regarding in particular the
recurrent subnet) thanks to the modularity of the PyTorch framework.
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The recurrent part has been in particular implemented using the GConvLSTM layer,
based on the Chebyshev Graph Convolutional Long Short Term Memory Cell introduced
in [93], which is the graph counterpart of the LSTM layer used in the other experiments,
The fully-connected subnet is instead the same as in the other experiments, with two
dense layers using ReLU activation functions intertwined by dropout layers and mapped
to the final probability distribution by an output softmax layer.
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Figure 5.13: Diagram showing the architecture of the graph neural network classifying
sequences of undirected graphs (encoding landmarks’ coordinates and body joints rela-
tionships) into an emotion class

Performance considerations The model has been trained with the same approach
adopted for other experiments, mapping the used methods to the PyTorch syntax. Results
reported in figure 5.14 show behaviours that do not differ much from those of other
networks not using a graph representation. In particular, the network shows a reasonable
behaviour only with sequences of a single element, and an overfitting pattern appears for
longer inputs.

Selected body emotion classifier

In light of results and considerations reported in the previous sections, the recurrent
network based on body landmarks’ coordinates has been selected as the implemented
emotion classifier, because of its accuracy score, which outperforms by far the other tested
solutions.

Choice of the input sequences’ length, among 1 and 3 (i.e. the best-performing versions),
is instead based on empirical tests of both models in a real setting, deployed on the
main computational unit of the reference robot and connected to poses directly estimated
from the on-board camera (using the pose estimation that will be described in 5.4). By
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Figure 5.14: Plots of loss and accuracy of the trained networks in both training and
validation stages for different sequences of LMA-based descriptors of movement
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classifying in real-time the emotion expressed by a person moving in front of the robot,
and by later analyzing the variability of those estimations, the model using sequences of 3
poses has been shown to yield more robust and accurate predictions than the one working
with single snapshots, and has therefore been selected for "in-the-wild" inference.

5.3.3. Emotion fusion

After developing independently the two models to recognize the emotions expressed either
through body movements or facial expressions, a fusion mechanism has been implemented,
to yield a single resulting emotion Ê.

This merge point has been conceived to provide a single characterization that could en-
compass all the ways in which the actor can express emotions, and has been therefore
designed to be extensible in the future with an arbitrary number of emotion sources (i.e.
related to the other semantic layers described in 1.1) and different fusion mechanisms,
which can be implemented by specializing the EmotionFusionMethod abstract class.

The placing of this fusion point, namely at the end of the two processing paths handling
facial and body cues (which are therefore kept independent and not correlated), is an
example of late-integration of modalities, and has been chosen since it is the common way
of integrating different modalities into a single representation, especially when dealing
with gestures [113]. This approach is in fact usually preferred over an early merging right
after feature extraction because it provides greater flexibility in modeling each processing
path and avoids issues of high-dimensionality in their training sets [48]. However, as it
can still be read in [48], there is not a general consensus over the optimal strategy for
modality fusion, and several approaches have been proposed.

In the current implementation of the framework, the actor’s emotion is inferred from their
facial expressions and body gestures. Research on emotional expression and empirical tests
have shown how these two sources can sometimes portray different (and even contrasting)
emotions. At the same time, however, facial expressions have been shown by several works
to be a more reliable and informative source with respect to body gestures and, because
of this, emotions guessed from them are weighted more.

For this reason, emotion fusion in the system has been eventually implemented through
this weighted mechanism, exploiting the vectorial representation of confidence values with
the formula in equation 5.7, whose weights are inspired by the ratio proposed in [48].

Ê = argmax {Eface · wface + Ebody · wbody} , wface = 0.7, wbody = 0.3 (5.7)
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For the sake of completeness, two other methods have been implemented in the system,
since they are usually mentioned as possible solutions in the literature too [48].

They are in particular the element-wise sum and product of the two confidence vectors,
whose formulas are shown namely in equation 5.8 and 5.9

Ê = argmax {Eface + Ebody} (5.8)

Ê = argmax {Eface ⊙ Ebody} (5.9)

5.3.4. ROS nodes

Regarding the ROS implementation, emotion recognition and fusion is realized by 3 nodes:

• Vision node, gathering frames from the camera and running the facial-expressions-
based emotion detector as explained in Section 5.2

• Body emotion node, wrapping the neural network described inSection 5.3.2 to clas-
sify the emotion expressed through body movements

• Emotion aggregation node, connected to the other two and wrapping the emotion
fusion mechanism described in Section 5.3.3

Emotion data, used either as partial results in the face and body processing paths or as the
output of the emotion aggregator, are represented by messages containing the confidence
values assigned to each detected emotion as well as a textual identifier of the publisher
node, as shown in listing 5.2.

Listing 5.2: Format of messages describing the emotions detected by implemented emo-
tion sources

f l o a t 6 4 anger
f l o a t 6 4 d i s gu s t
f l o a t 6 4 f e a r
f l o a t 6 4 happiness
f l o a t 6 4 sadness
f l o a t 6 4 s u r p r i s e
f l o a t 6 4 neut ra l
std_msgs/ St r ing i d e n t i f i e r

5.4. Human pose estimation

As explained in 2.2, one of the features considered by the framework is the movement of
actors, both in terms of posture and dynamic spatial qualities, and the emotion classifier
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from body described in 5.3.2 has been trained on the coordinates of body landmarks.

For this reason one of the core parts of the framework is the estimation of the actor’s
pose, a common technique in computer vision aimed at estimating the spatial locations
of body joints and landmarks of a person, given an image or a video feed.

As described in [28], early methods were based on hand-crafted features, defining metrics
for matching based on structural representations of the human body, but encountered
issues under visual occlusion or certain lighting conditions due to their lack of expressive-
ness. To overcome these limitations deep learning techniques have been applied to the
problem, achieving remarkable results and becoming the state-of-the-art approach.

Among the several available solutions, either proposed in research papers or available as
commercial products, different networks have been tested to select the optimal one for the
actor pose extraction stage. In the following sections a brief description of every tested
model is given, explaining the benefits and shortcomings in the particular context, as well
as reasons for the final implementation decision.

Regarding this last point, and in light of the implementation in a theatrical context and
near real-time processing requirements, evaluation was mostly based on the network’s
prediction smoothness across time (i.e. low jittering of predicted landmarks) and its
computation footprint. Smoothness has been in particular evaluated by applying each
model on a reference video of a still subject (standing still in the center of the frame)
and computing the standard deviation of the estimated x and y coordinates of the left
shoulder and hip (being them relevant joints for both the upper and lower body parts).

5.4.1. 2D or not 2D? Preliminary notes on representation

A preliminary step, however, has been to select which family of pose estimation methods
to consider, and in particular which pose representation to use.

Human pose estimation (HPE) can in fact be divided into two macro-categories:

• 2D HPE, aimed at estimating the body configuration typically from a single monoc-
ular image, retreving the landmarks’ coordinate on a bidimensional plane

• 3D HPE, placing estimated body landmarks in a tri-dimensional space, usually
employing multiple monocular or stereo cameras

These two approaches have been evaluated, considering potential benefits and drawbacks
in the considered theatrical context and in light of their future implementation on a
moving mobile robot.
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2D HPE

Bi-dimensional human pose estimation aims at localizing anatomical keypoints from a
processed camera image of a person, providing information about their location in a
planar cartesian coordinate system. Current state-of-the-art models are based on deep
convolutional neural networks. This approach has been used for the first time in [103]
and marked a shift from classical methods, solving several problems with limb-occlusion
and improving accuracy and generalization capabilities.

As previously mentioned, 2D pose estimation computes the landmarks’ location in a space
relative to the given frame, assigning as coordinates the pixels in which the body part is
estimated to be. For this reason, the size of the input image has to be taken into account
and a normalization step is often needed to make predictions invariant to scale, especially
when computing body movements such as in this case.

3D HPE

Tri-dimensional human pose estimation adds a depth dimension to the planar estimation
and can be mainly achieved in two different ways: directly using a sensor providing depth
information or reconstructing the 3D pose from a bidimensional image.

Differently from the previous case, the actual position of the person in the space is here
provided, and estimated landmarks’ locations are represented as world coordinates.

To implement a direct 3D pose estimation several sensors are commercially available,
such as Microsoft’s Kinect or Intel’s RealSense. This approach, however, is not feasible
to be implemented in this work, due to the instability brought along by a moving robot.
Oscillations of the robot’s body, on which the sensor would be mounted, add in fact noise
to the observations, causing issues with calibration and the laser tracking algorithm,
eventually making the sensor provide results not good enough to be used for computing
all the needed features.

The second solution is the estimation of a tri-dimensional pose from a bi-dimensional
image, employing a deep neural network to estimate the depth of detected body landmarks
in a process also called 3D lifting [100, 111, 115]. However, as stated in [70], "the lack of
3d ground truth posture data for images in the wild makes the task of inferring 3d poses
directly from colour images challenging".

This issue is particularly relevant in the context of this work, since actor’s poses are not
always similar to prototypical configurations often found in everyday life and available
datasets, making the models estimate semantically wrong poses.
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Conclusion

In light of all the considerations reported above 3D pose estimation has been discarded,
because both the available solutions were not capable of offering a reliable and mean-
ingful detection. Moreover, as it will be described in 5.3.2, 3D representation does not
improve the implemented emotion recognition model in a considerable way, achieving a
performance score extremely close to the one trained using 2D poses. 2D pose estimation
has therefore been selected as the source for the actor’s body pose, adopting the skeleton
model for its representation. In the following sections available 2D HPE state-of-the-art
models are analysed, to eventually define the implemented pose estimator.

5.4.2. Detectron 2

Detectron2 [114] is a Facebook AI Research’s project that covers several computer vi-
sion applications, based on the PyTorch framework and available as a Python library.
Supported pre-trained networks are available through its model zoo, where solutions for
multi-person pose estimation are provided, offering different trade-offs in terms of infer-
ence speed and accuracy, as shown in table 5.2.

Model name Inference time (s/image) Average precision (%)
R50-FPN 0.066 65.5
R101-FPN 0.076 66.1
X101-FPN 0.121 66.0

Table 5.2: Table showing pre-trained body keypoint detection models (based on keypoint
R-CNN) and corresponding baselines available in the Detectron2 library

All the models output 17 body key points, using the COCO format shown in table 5.3, and
is possible to additionally retrieve segmentation masks. Each key point is characterised
by 3 values: the x and y location in the image and a confidence score.

After some tests, this network has however shown some problems with “uncommon” poses
(that could anyway occur during a theatre/dance performance) or with occluded body
parts, leading to incorrect results, especially if more than one person (or misclassified
person-like objects) are detected and overlap in the view field. Moreover, the range
of confidence score for keypoints is not well-documented and there is no direct way to
determine whether a keypoint is visible or not.

From the stability analysis of the model on the reference video, whose results are reported
in figure 5.15, it can be observed that the model is not able to keep a smooth prediction
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Index Key point
0 Nose
1 Left eye
2 Right eye
3 Left ear
4 Right ear
5 Left shoulder
6 Right shoulder
7 Left elbow
8 Right elbow
9 Left wrist
10 Right wrist
11 Left hip
12 Right hip
13 Left knee
14 Right knee
15 Left ankle
16 Right ankle

Table 5.3: Table showing the COCO encoding of keypoints used by pose estimation models
available in the Detectron2 library

across frames, with some landmarks disappearing and reappearing. This jittering would
also cause problems in the processing of the extracted pose, such as estimating the speed
and acceleration of body joints, where this kind of noise could lead to incorrect results.

5.4.3. OpenPifPaf

OpenPifPaf [59] is a library that performs both pose detection and tracking, employing a
neural network architecture that uses Composite Fields to detect and construct a spatio-
temporal pose: a single, connected graph whose nodes are the semantic keypoints in
multiple frames. The architecture is based on either ResNet50 or ShuffleNetV2 for the
encoder, to which are attached convolution models to compute composite fields, which are
then converted into pose estimates by the decoder module. Each keypoint is characterised
by a confidence score, a real-valued coordinate pair and a size estimate.

Table 5.4 lists pre-trained models available in the OpenPifPaf library, showing for each
the corresponding performance on a NVIDIA GTX1080Ti GPU, as reported in the official
documentation.

From these values, the ShuffleNetV2k16 model has been chosen as the implementation
candidate, since it offers a good tradeoff between precision and latency.
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Figure 5.15: Stability analysis of the x and y coordinates of the left shoulder and left hip
landmarks estimated using Detectron2 on a still subject

Model name Inference time (ms) Average precision (%)
resnet50 53 68.1
shufflenetv2k16 40 68.1
shufflenetv2k30 81 71.8
mobilenetv3small 26 47.1

Table 5.4: Table showing pre-trained pose estimation models and corresponding perfor-
mance metrics available in the OpenPifPaf library

Outputs of the model are formatted using the same COCO encoding used by Detectron2
and reported in table 5.3. From the results of the stability analysis, reported in figure 5.16,
it can be observed that the model still suffers from a a high jittering among consecutive
frames, leading to the same issues described in 5.4.2 for Detectron2.

5.4.4. OpenPose

OpenPose [21] is a library wrapping a network able to perform real-time multi-person
detection and owes its popularity to having been the first model able to jointly detect
human body, facial and foot keypoints. It provides two output formats for the pose:

• COCO, containing 17 landmarks as described in 5.4.2

• COCO 25, containing 25 landmarks, adding hip center and feet keypoints
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Figure 5.16: Stability analysis of the x and y coordinates of the left shoulder and left hip
landmarks estimated using OpenPifPaf on a still subject

The library is written in C++ and based on the Caffe framework [54]. It requires by de-
fault a CUDA-capable machine, which is not the case for the target deployment machine.
It can be nevertheless recompiled to remove CUDA dependencies and support cpu-only
architectures, but doing so significantly reduces the network’s frame-rate. For this reason,
this solution has been discarded and no further analysis has been conducted.

5.4.5. Google PoseNet

Another tested solution was the use of the Coral Edge TPU platform, in particular the
Coral USB accelerator depicted in figure 5.17 running the PoseNet model.

The Coral USB accelerator is part of the Coral Edge TPU (Tensorflow Processing Unit)
family, a set of neural networks hardware accelerators to power on-device AI on embedded
devices, to enable smart capabilities in resource-constrained settings without relying on
cloud AI and ML services that could bring along potential privacy issues and concerns.
This solution has therefore the additional benefit of delegating the inference part to an
external component, thus freeing up computational resources for the rest of the system
and making the system deployable even in embedded contexts with limited resources.

PoseNet [76] is a collection of quantized pose estimation models based either on the
MobileNetV2 or ResNet50 architectures, using the COCO encoding for the estimated
keypoints locations. Output is in particular represented in the space of the resized input



98 5| System design and implementation

Figure 5.17: Front and back view of the Coral USB accelerator, on which the PoseNet
library has been tested

image, and a rescaling operation is hence necessary to retrieve the non-distorted skeleton.
A confidence score ranging between 0.0 and 1.0 is also associated to each keypoint and
can be used to understand to which extent its position is accurate and if it is actually
visible.

As described in the paragraph above, models available in the Coral PoseNet are quantized.
This term refers to the technique of quantization, aimed at shrinking the model’s size and
latency while preserving its accuracy, by reducing the precision of numbers used in the
computation. This process is also necessary to make the model deployable on the chip of
the external Coral accelerator.

Both flavours have been tested, collecting the estimated poses and inference latencies
on the aforementioned reference video. Results of the stability analysis are shown in
figures 5.18. It’s worth mentioning, however, that the model based on ResNet50, even if
providing a more stable output, is characterised by a higher latency, in the order of seconds
to estimate the pose on a single image. It is therefore not feasible to be implemented as
a pose estimator due to the real-time requirements of the system.

Still regarding the inference latency, it is important the underline that the presence of
an external hardware accelerator does not bring considerable improvements to the overall
inference speed when compared to models deployed to the main computational unit. There
is instead the risk that data transfer to and from the USB accelerator may become the
bottleneck of the pose estimation module, requiring more time to copy data between the
two memories than to actually process them.
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(a) MobileNetV2
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(b) ResNet50

Figure 5.18: Stability analysis of the x and y coordinates of the left shoulder and left hip
landmarks estimated using the two models available in Posenet on a still subject

5.4.6. MediaPipe

MediaPipe is a set of open-source and cross platform ML solutions developed by Google,
specifically targeted to real-time and live media use cases and optimized for deployment
on mobile devices with constrained computational resources. As the name suggests, it
is built around the concept of a pipeline and the framework allows the definition of a
graph of modular components such as inference modules and media processing functions,
but in the current context these multi-modal processing capabilities have not been fully
exploited and only the pose estimation model has been used.

The model is based on the BlazePose project, which primarily addresses the common
challenges of pose estimation in dancing or fitness contexts [11], such as the wide variety
of possible poses and the numerous degrees of freedom and possible occlusions. In addition
to the network itself, the project also introduces a new human body topology, ditching
the 17 standard COCO keypoints listed in table 5.3 in favour of 33 landmarks, which
are listed in figure 5.19 and are represented by their x and y coordinates together with a
visibility confidence value (ranging between 0 and 1).

From an architectural point of view, BlazePose is based on a detector-tracker pipeline:
using a detector the model first locates the pose region-of-interest, subsequently predicting
the aforementioned 33 keypoints. When loading the library it is possible to specify whether
the model will be used on static images or videos; in the latter case the detection is
performed only on the first frame or when body presence is lost, whereas subsequent
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Figure 5.19: List of landmarks detected by MediaPipe and corresponding encoding

ones are derived from previously estimated keypoints. During usage it is also possible
to specify the model’s complexity, choosing among 3 flavours of BlazePose which offer
different latency/accuracy tradeoffs.

Evaluation of the performance on the target deployment machine (that will be described
in section 4.1) shows that the Heavy model does not bring any significant accuracy and
smoothness improvement over the Full one, worsening instead the frame-rate. At the
same time, the Lite version is not sufficiently good, since it occasionally loses track of
some keypoints in fast or sudden movements.

Figure 5.20 shows the stability results of the model. Differently from the other tested
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Figure 5.20: Stability analysis of the x and y coordinates of the left shoulder and left hip
landmarks estimated using MediaPipe on a still subject
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models, these results show a low jittering of the estimated landmarks’ locations, producing
a smooth estimation thanks to the built-in tracking mechanism.

5.4.7. Model selection

As already mentioned at the beginning of the section, model selection has been mostly
based on the predictions’ stability over time, to avoid noise in computed data due to
jittering of estimated landmarks locations.

To estimate smoothness, besides a visual analysis of the plots reported in previous sections,
the difference of landmarks’ locations (δx and δy) in consecutive time steps has been
computed. The standard deviation of these measurements has then been considered as a
measure of jittering, showing the change of joints’ positions over time on a still subject.

Model Shoulder δx std Shoulder δy std Hip δx std Hip δy std
Detectron2 1.1545 2.2620 1.1215 3.9311
OpenPifPaf 0.8748 0.9883 2.6859 5.2633
MediaPipe 0.1316 0.1788 0.2266 0.4529
PoseNet-MobileNetV2 0.7536 0.6141 2.0160 2.6253
PoseNet-ResNetV2 0.8810 1.0463 0.7299 2.7536

Table 5.5: Table summarizing the standard deviation of the difference of estimated x and
y coordinates between two consecutive time steps of the left shoulder and hip, computed
from the stability analysis on the video of a still subject for all the candidate models

Results are reported in table 5.5 and clearly show how MediaPipe outperforms other
models in terms of stability and smoothness of estimated landmarks’ locations. From the
point of view of the inference latency, all the models have similar results, especially because
several trade-offs are offered. For these reasons MediaPipe, being the one providing the
smoothest predictions, has been chosen as the implemented pose estimator.

5.4.8. ROS integration

The selected pose estimation model has then been wrapped inside a ROS node, to make
results available to other nodes on the actor_pose topic.

Since the model relies on images acquired through the webcam, it has been integrated
into the vision macro-node as described in 5.2.
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Output format

Output of the model has been reduced from the original 33 estimated keypoints to retain
only those that have been identified as relevant to train the body-emotion recognition
network, using the encoding shown in table 5.6.

Index Landmark
0 Nose
1 Left shoulder
2 Right shoulder
3 Left elbow
4 Right elbow
5 Left wrist
6 Right wrist
7 Left hip
8 Right hip
9 Left knee
10 Right knee
11 Left ankle
12 Right ankle

Table 5.6: Table showing the list and encoding of the reduced set of body landmarks
composing the actor’s pose, estimated by the implemented pose estimation module

The estimated pose is represented as a 13×2 matrix, having the landmark indexes as rows
and their x, y coordinates as columns, using the same input shape of the implemented
neural network for body emotion recognition. However, to publish this data structure as a
ROS message, a workaround is needed, using the ros_numpy library [2] to convert numpy
arrays to ROS-supported data types. In this particular case of a 2D array, the pose is
exchanged as a Sensor\_msgs/Image message, and both encoding/decoding is done in a
single line of code, as shown in listing 5.3

Listing 5.3: Python code showing the usage of the ROS-numpy library to publish Numpy
arrays as built-in ROS-messages

import ros2_numpy as rnp
from sensor_msgs . msg import Image

# Encoding o f pose to pu b l i s h
pose_msg = rnp . msgi fy ( Image , pose , encoding="64FC1" )
# Decoding o f r e c e i v ed pose
decoded_pose = rnp . numpify ( pose_msg )
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Pose normalization and landmarks location

In order to make the estimated pose invariant to the distance of the actor from the
robot (i.e. a closer actor will have a higher distance between landmarks), normalization is
performed and coordinates of landmarks are mapped from the image plane to a reference
system centered in the hips, as shown in figure 5.21. This representation is also motivated
by the representation of samples in the dataset on which the body emotion classifier has
been trained, that uses as well an hip-centered coordinate system.

x

O

y

Figure 5.21: Diagram showing the coordinate reference system placed in the center of the
hips used to represent location of landmarks in the output of the pose estimation module

To make the body emotion classifier behave consistently, the same normalization proce-
dure has been applied both in training and inference. The method is in particular based
on the one provided in the official MediaPipe documentation, aimed at making normalized
poses have the same torso size and orientation, which has been modified to be compatible
with the reduced set of joints listed in table 5.6.

5.5. Eye contact detection

To implement eye contact detection two main approaches have been followed, a geometric
one, based on the position of the actor’s facial landmarks in the field of view of the robot,
and another one based on a deep neural network (DNN) trained on gaze datasets.
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5.5.1. Geometric approach

This approach is based on the consideration that when people are looking directly into
the camera their pupils are usually at the same distance from the vertical axis of the face
(approximable to the distance between eyeballs and nose). In other terms, this implies
that the position of the eyeballs is roughly symmetrical in the presence of eye contact,
shifting instead to one side or the other if the person is looking left or right; figure 5.22
shows this behaviour for different orientations of the head.

Figure 5.22: Sequence of images showing how symmetry of eyeballs with respect to nose
axis changes according to different directions of gaze (namely to the left, to the front and
to the right)

In particular, a dissymmetry index has been defined, ranging between 0 and 1 and com-
puted using the formula in 5.10. The formula uses the 2 distances between the detected
eyeballs and the nose: d(plefteye, pnose) = dleft,nose and d(prighteye, pnose) = dright,nose, and
computes the index by considering how different they are from each other. The result is
in fact 0.5 when the eyes are symmetrical and becomes closer to 0 or 1 when the gaze is
namely to the right or to the left.

Dys =
dleft,nose

dleft,nose + dright,nose
(5.10)

Using this information, different regions of this 0-1 interval can be defined, to map the
index into a discrete classification of the gaze orientation. Facial landmarks used to
compute the index are, moreover, already computed by the chosen pose estimation model
described in 5.4 and hence no additional data source or extraction step is required. The
model, in particular, provides the landmarks of the two eyeballs and the nose, which can
therefore fed into the formula in 5.10 without any further manipulation.
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Issues

This approach, however, suffers several issues due to the planar geometry used by the
2D pose estimation model, which makes impossible to distinguish whether the person is
looking straight, up or down. As it can in fact be seen in figure 5.23, eyeballs in the exact
same position can have different gaze orientations; they all have a dissymmetry index of
around 0.5, but only in one case the person is keeping eye contact with the camera.

Looking down Looking up

Looking straightLooking straight

Figure 5.23: Comparison of different vertical gaze orientations sharing the same symmetry
even when eye contact between the person and the camera is not present

Another problem, related to the chosen pose estimation model, is the fact that the profile
view of a person yields the same dissymmetry as a front-facing face, due to the fact
that the coordinates of the hidden eye are inferred by the model and placed really close
to those of the visible landmark. This behaviour, given the fact that no information is
provided by the model about the visibility of landmarks, makes it difficult to distinguish
between the two cases and raises the need of a face detector to help disambiguate. This
introduction, however, would add latency to the whole process. Since the face detection
step is the most computationally expensive of most gaze estimation architectures and given
the fact it would have anyway to be added, image-based techniques have been explored, to
compensate the additional computational cost with a more robust and reliable estimation.
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5.5.2. DNN approach

To overcome these limitations of the geometry-based approach, a deep neural network
(DNN) has been used, namely the one introduced in [24]. The network is aimed at
"automatically detecting eye contact in egocentric video" and is claimed to be the first to
have reached an accuracy equivalent to that of human experts, scoring an overall precision
of 0.936 and a recall of 0.943.

For this purpose a dataset has been built between 2015 and 2018 in the Georgia Tech Child
Study Lab in Atlanta, GA and the Center for Autism and the Developing Brain in White
Plains, NY, featuring 10 subjects both neurotypycal and affected by Autism Spectrum
Disorder (ASD). Data, in particular, have been collected for each subject during two
play interactions with a trained examiner wearing a pair of camera glasses (with no need
of camera calibration). Frames from all the sessions have then been labelled by human
coders: for the training set, the label has been assigned by a single human rater, whereas
for the validation set it is based on the majority vote of multiple human raters.

The implemented convolutional neural network is instead based on a ResNet-50 [52] back-
bone architecture, accepting in input cropped face regions resized to 224x224 pixels. One
of the peculiarities of the network and its training process is the fact that it has been
carried out in two stages, to support the hypothesis that the model could leverage the
high variability of face detection datasets to learn to model the relationship between head
pose and gaze direction. For this reason, prior to fine-tuning the network on the dataset
described above, the network has been trained on the publicly available MPIIFaceGaze
[119] and EYEDIAP [42] datasets to regress the 3D gaze direction and on the SynHead
[47] dataset to regress the 3D head pose. The project’s code is publicly available on the
Github platform and the network is implemented using the PyTorch framework.

To extract from each frame the face patches used as input by the network, the original im-
plementation relies on the Dlib package, using its CNN-based face detector. This model,
however, as reported by data collected on the development machine, introduces a consid-
erable latency in the handling of every single frame, hindering the real-time capabilities of
the whole eye-contact-detection pipeline. However, as explained in 5.2, face patches are
already provided by the face detector (namely OpenCV) implemented in the vision node,
which noticeably reduces the overall latency, making the pipeline work in real-time.

Eventually, the output of the network, differently from the previous approach, is not
anymore a discrete classification of the gaze orientation, but a continuous value from 0 to
1 which tells the probability of eye contact presence in the given frame.
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5.5.3. ROS integration

Once the eye-contact detection model has been defined, it has been integrated inside the
ROS system, to make its results available to other consumer nodes. Since the chosen
approach is based on the use of images collected through the webcam, the model has
been wrapped inside the vision macro-node described in Section 5.2, running in a separate
thread. Because the model yields a continuous probability of eye contact presence, the
node’s output is published as a decimal number (float64) on the eye_contact topic.

5.6. Proxemics

Even though data and algorithms used to characterise the proxemics of the actor-robot
interaction on the stage have been extensively described in 2.3, this section explains how
they have been implemented in the overall architecture, showing from which hardware
sensors the data are retrieved and which third-party components have been integrated.

The whole proxemics pipeline is based on the knowledge of the actor’s position in the
stage, expressed as relative to the robo-centric reference system. The first step in the
implementation has therefore been to understand how this information could be retrieved
using the laser sensors mounted on the robot.

Laser sensors are in fact often used to perform obstacle detection, namely detecting objects
around the robot that are not part of the pre-loaded map of the environment, that should
hence be avoided. The same approach can thus be reused, treating the presence of the
actor as an "anomaly". Moreover, the context of the work and the fact that the robot
operates on a controlled stage with a single human actor allows the definition of some
preliminary simplifying assumptions:

• the actor’s lower body part is an obstacle in the environment

• no other obstacle is present, due to the lack of other actors or moving elements

• the position and proxemics of the actor’s lower body parts is a good approximation
of their overall proxemics

These assumptions are important also in light of how lasers are mounted on the robot.
They are in fact fixed directly on top of the base platform hosting the motors and the
power supply, at a height corresponding to the shin of an adult person, and they can
therefore detect only the presence of legs in the surrounding space.

Moreover, as previously explained, the robot’s platform and architecture have been reused
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from the RoboTower project [14], where it was crucial to know the exact location of the
user, both for safety and gameplay reasons. To achieve this goal the control software of
RoboTower, developed using ROS1 as well, features a player tracking mechanism based
on the ROS leg_detector package, which uses a machine learning approach to identify
leg-like patterns of laser scanner readings.

A similar approach has therefore been reused in this work, implementing a pre-trained
leg detector to estimate the actor’s position from the incoming stream of laser scans.

5.6.1. ROS leg detector

Since the release of the RoboTower project, the original leg detector package has been
improved by Leigh et al., who proposed a new approach based on tracking both legs [65],
which is claimed to improve reliability (especially in cases of self-occlusion) and does not
require a person to continually move in order to be tracked, which is of great importance
in the context of theatre, where the interaction can often feature the two performers
standing still one in front of the other.

This algorithm has been made publicly available on the Github platform and distributed
as a ROS1 package and, as before, the package connects to the laser scans topic and
publishes the estimated pose of the surrounding people.

Leg detector deployment and integration

The tracker, in particular, is deployed as a stand-alone node which receives data from the
merged laser scans on the scan topic, and outputs detected people on the people_tracked
topic, as an array of objects whose structure is shown in code 5.4.

Listing 5.4: Format of messages describing the estimated pose of a person detected by
the implemented leg tracker package

geometry_msgs/Pose pose
u int32 id

As it can be seen in the code, each person is described by an identifier, to disambiguate
between tracked individuals, and a Pose object, containing information about the spatial
coordinates (Point) and orientation (Quaternion).

A final remark, however, has to be made about the tracker’s deployment. As previously
said, the package targets version 1 of the ROS framework, and is hence not directly
compatible and integrated with the remainder of the system, targeting instead version 2.
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To close this gap is therefore necessary the use of the bridge described in 4.4 and two
architectural choices are possible about its placement:

1. Using the bridge to map laser scans from ROS1 to ROS2, keeping only the laser
data acquisition and merging inside the ROS1 context and moving people tracking
to ROS2

2. Using the bridge to map tracking results, keeping the leg tracker in its original ROS1
implementation

In order to implement the first option, a ROS2 porting of the leg tracker packages has
been tested, but due to issues of dependencies still missing in ROS2 for some low-level
features, the final choice has been to retain the original leg tracker implementation and
to use the bridge to map its results.

However, messages through which detection results are provided are not native ROS data
types, but custom objects defined inside the package. For this reason, it is not possible
to directly install and use the bridge from the official ROS repositories, but it has to be
compiled from source, loading the custom-defined message interfaces to be mapped.

Figure 5.24 summarizes how the two environments have been linked through the bridge.

+

Laser left

Laser right

Leg tracker Bridge Proxemics

ROS1 ROS2

Figure 5.24: Diagram showing how the leg tracker and the bridge between ROS1 and
ROS2 have been deployed in the final system architecture

5.6.2. Localization of robot in the stage

As described in 4.5.3, localization of the robot is provided by a third-party SLAM (Simul-
taneous Localization And Mapping) module, publishing the estimated coordinate frames
on the tf topics. The position of the robot in the stage (namely its pose in the map
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coordinate systems) is in particular computed by combining the base_link (located in the
center of the robot) and map (located in the origin of the map, at the lower-left corner
of the stage) coordinate frames, as shown in figure 5.25. Computation is realized through
the tf2 ROS package, which offers a method (named lookup_transform) to easily compute
the translation between two given coordinate frames.
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Figure 5.25: Diagram showing the coordinate frames published by the third-party SLAM
module on the tf topic and the computed absolute pose in the map

5.6.3. Computation of proxemics descriptors

Once the deployment has been defined, and information about the actor’s location has
been successfully added as an input to the system, a specific node for the computation of
proxemics descriptors has been developed.

The node, in particular, taking as input the x and y coordinates of the actor (if detected
by the robot) in the robo-centric reference system and the pose of the robot in the map
coordinate system, outputs the following information, each published in its own topic and
with its own encoding:

• Proxemic zone occupied by the actor, published on the proxemic_zone topic and
represented as an unsigned integer with 3 coded values:

– 0: for the personal and intimate zone

– 1: for the neutral zone
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– 2: for when no interaction is present

• Speed and direction of the movement along the axis connecting the actor and
the robot, published on the proxemic_movement topic and represented as a signed
floating point number, where negative values correspond to an approach and positive
values to a retreat

• Discrete position of the actor around the robot (as described in 2.3), published
on the actor_position topic and represented also in this case by an unsigned integer
with 4 coded values:

– 0: for the frontal region

– 1: for the left region

– 2: for the back region

– 3: for the right region

• Raw x and y coordinates of the actor’s position in the robo-centric reference
system, to be used by the actuator system in planning a physical reply

• Position on the stage occupied by the robot, following the labeling shown in
figure 2.15 and encoded with an unsigned integer ranging from 0 to 9.

Incoming data are collected using the windowing mechanism described at the beginning of
the chapter, but the node has been designed following a strategy design pattern to allow
the future definition of different computation algorithms, based on other segmentation
techniques rather than sliding windows. In the current implementation, data are processed
as soon as the window is filled, using the algorithms described in 2.3 to compute the
descriptors listed above.

5.7. Scenic action classification

In light of the considerations made in 3.5, the action classification has been implemented as
a fuzzy-logic inference system, receiving in input all the relevant features and outputting
the action vocabulary index and label of the classified scenic action.

5.7.1. Fuzzy logic

Before describing how action classification has been implemented and subsequently inte-
grated in the ROS system, a brief introduction to fuzzy logic has to be made.
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Background

Fuzzy logic (FL) is based on the fuzzy sets theory, introduced by Zadeh in 1965 [117]
to model approximate concepts, that conceived sets to which elements can belong not
in black-white / in-out fashion, but at different degrees of membership. Differently from
crisp sets, having a binary membership function (MF) based on the properties of each
element, fuzzy sets have a MF µ ranging in the [0, 1] interval and computed as a function
of the element’s attributes (e.g. µset(X) = f(Attr(X))). A MF defines a single fuzzy set,
which is identified by a linguistic label.

FL extends this concept to logical propositions, whose variables do not have a binary
truth value, but instead can have different degrees of truth represented by real numbers
in the [0, 1] interval. By doing so, FL is an example of an infinite-valued logic (beloging
to the larger family of many-valued logic), featuring a continuum of truth values instead
of the Boolean truth and false labels of the propositional or first/second-order logics.

Structure

FL is often used to model vagueness, imprecision and uncertainty in automatic models,
mimicking the way people make decisions based on imprecise and non-quantitative infor-
mation. This parallelism with human reasoning schemes is also evident in the structure
of its propositions, which are of the form A is L, where A is a linguistic variable and L

is a label associated to a fuzzy set.

A linguistic variable is in particular a tuple of 5 elements (X,T (X), U,G,M) where:

• X is the name of the variable

• T (X) is the set of terms for X, each corresponding to a fuzzy set

• U is the universe of discourse: all the possible values the base variable u can assume

• G is the syntactic rule to map each value of u to its interpretation

• M is the semantic rule to associate X to its meaning

As already mentioned, variables can then be used in propositions, whose truth value is
not a crisp boolean value but instead a fuzzy set defined on [0 . . . 1]. Prepositions can
then be combined with modifiers, which can increase or reduce the truth value of a given
proposition by applying a continuous function on the mentioned truth value.

All these elements are the basic blocks with which fuzzy rules, and subsequently fuzzy
inference systems, are built. An inference rule is, at high level, a mapping from an input
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to an output, having the shape of IF <antecedent> THEN <consequent>, where each
term is a set of logical clauses (propositions) related by logical operators such as AND,
OR, NOT. In the context of fuzzy logic, clauses are called linguistic clauses and have the
form of V is L, where V is a linguistic variable as described above and L (named label),
is a possible fuzzy set value of V.

A fuzzy inference system is then composed of several rules, to which different weights
can be given. These rules, according to the actual value of variables in the antecedents,
produce different degrees of membership for possible values of the output (usually repre-
sented as singleton sets to make the computation faster) and hence after aggregation of
these degrees an additional step is needed to retrieve a single specific value. This process
takes the name of defuzzyfication and can be implemented with several operators, such as
centroid, average of maxima, center of highest area, etc. . .

5.7.2. ROS integration

The action classifier module represents the system’s interface with third-party actuator
systems, responsible of exploiting the classified scenic action to generate a reply and make
the improv scene proceed. Because of its nature, it gathers partial results and features
computed by the other nodes to publish on a single topic the information about the
classified scenic action.

Since, as already explained, not all the computed features and descriptors come into play
in defining a scenic action, the node is subscribed only to the following topics:

• emotion

• proxemic_zone

• proxemic_movement

from which messages are read and used to update an internal copy of the corresponding
features. Classification results are instead published on the scenic_action topic and are
represented by the message type shown in listing 5.5, which contains the scenic action
represented as both its vocabulary index (an unsigned integer) and a human-readable
label (a string) for debugging purposes and more immediate feedback during evaluation.

Listing 5.5: Format of messages describing the classified scenic action published as the
output of the system

uint8 ac t i on
std_msgs/ St r ing l a b e l
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Lifecycle management

In order to make the node react to incoming features and provide a classification on
a regular basis, the inference system is wrapped inside an internal thread that spins
periodically every second. At each turn, the local copies of features are given as inputs
to the fuzzy inference system and the result is published as an output.

5.7.3. Fuzzy variables

Using the concepts described in the previous section the classification mechanism outlined
in chapter 3 has been implemented, mapping the identified relevant features to linguistic
variables and representing feature-action relationships as fuzzy rules.

The fuzzy logic engine powering the system’s reasoning capabilities has been implemented
through the scikit-fuzzy library, a collection of algorithms and APIs written in the Python
language and belonging to the Scikit stack.

As already mentioned, all the relevant features for action classification have been mapped
to fuzzy variables, translating their discrete characterizations provided in 3.3 into fuzzy
sets. For each variable the universe of discourse has been defined considering the corre-
sponding feature’s range of values (that could make sense in the context of an improv
scene and inside the space of the particular stage used in this work), eventually reaching
the definitions that are explained in the following sections.

Actor emotion

The estimated actor’s emotion is represented as a vector of confidence scores, whose
elements take value in the [0 . . . 1] interval, and two approaches have been considered for
its representation as a fuzzy variable.

Approach 1 - singletons The first approach has been to treat each emotion as a fuzzy
set, defining singleton membership functions (namely very narrow triangular-shaped func-
tions that can be approximated to a spike centred in the given value) each corresponding
to one of the 7 emotions detected by the system. In this context, each emotion is linked to
its index in the confidence vector, and only the dominant one is considered (i.e. the one
with the highest score, selected through an argmax operation), leading to the plot shown
in figure 5.26.

This approach, however, does not take into account the confidence values assigned during
inference to each emotion which, nevertheless, is already a measure of uncertainty that
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Figure 5.26: Plot showing the universe of discourse and singleton membership function
for the emotion fuzzy variable

could be integrated into fuzzy reasoning.

For this reason, a second approach has been conceived, that could retain this information
in the variable’s formulation to make subsequent rules handle the emotion’s uncertainty
in a more accurate, meaningful and robust way.

Approach 2 - linear maps This second approach is in fact aimed at preserving the
confidence value assigned to each emotion, using it as the corresponding truth value. To
achieve this goal the previous formulation, based on a single universe of discourse on which
different sets are defined for each emotion, is not expressive enough, and for this reason,
7 different fuzzy variables have been defined, each representing a single emotion class.

Each emotion variable is defined on a universe ranging from 0 to 1, having its assigned
confidence score as the underlying base variable and a diagonal MF labeled "TRUE", as
shown in figure 5.27.

Using this approach, it is possible to take into account the emotion detectors’ uncertainty
when computing the scenic action, enabling more complexity and expressivity if com-
pared to the case when only the dominant one is used (e.g. when "latent" emotions may
contribute to the activation of more meaningful rules).

Proxemic zone

Proxemic zone is instead a categorical feature, and no uncertainty has been attached to
it. This has been done because it is already the product of a smoothing mechanism (as
described in 2.3) and hence no uncertainty can be derived for each characterization.

For this reason the singleton approach has been adopted for its representation, defining
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Figure 5.27: Plot showing the universe of discourse and membership function for a single-
emotion fuzzy variable implemented as a linear map

three MFs corresponding to the three proxemic zones, as shown in the plot in figure 5.28.

0.0 0.5 1.0 1.5 2.0 2.5
zone

0.0

0.2

0.4

0.6

0.8

1.0

M
em

be
rs

hi
p

int
neu
not

Figure 5.28: Plot showing the universe of discourse and membership functions for the
proxemic zone fuzzy variable

Actor movement

Actor movement is a fuzzy variable that combines information about both the speed and
direction of the actor moving on the segment connecting them with the robot. The base
variable is the speed along this segment, computed using the multi-derivative approach
explained in 2.3.1 and its universe of discourse has been defined through an empirical cali-
bration, by moving around the robot at different speeds and measuring the corresponding
values. The universe has then been divided into 7 sets, corresponding to 3 different
speeds in both the approach and retreat directions and an additional label representing
the absence of movement, as shown in figure 5.29.
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Figure 5.29: Plot showing the universe of discourse and membership functions for the
actor’s movement fuzzy variable

Output

The output of the system is the classified scenic action and, as done in many fuzzy
classifiers, it is represented with the same singleton approach used for the proxemic zone:
each action is encoded by its index in the action vocabulary, with MFs centered in that
specific value, as shown in figure 5.30.
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Figure 5.30: Plot showing the universe of discourse and membership functions for the
scenic action output

5.7.4. Fuzzy rules

After having specified all the input and output variables as antecedents or consequents of
the fuzzy inference system, rules to combine the two have been written by mapping table
3.1 into the fuzzy logic formalism. An example is given in listing 5.6, while the full list
can be found in chapter A of the appendix.
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Listing 5.6: Example fuzzy rules implemented in the inference system

c t r l . Rule (
lin_mov [ " app_fast " ] & zone [ " i n t " ] & anger [ "TRUE" ] ,
a c t i on [ " attack " ]

)
c t r l . Rule (

( ( ( lin_mov [ " app_slow " ] | lin_mov [ "app_med" ] ) & zone [ " i n t " ] ) |
( lin_mov [ " app_fast " ] & zone [ " neu " ] ) ) & anger [ "TRUE" ] ,
a c t i on [ " i n t im ida t i on " ]

)

The example also clearly shows how emotions are handled using the representation de-
scribed above: instead of having a single variable named "emotion" for which is con-
sidered its membership to a certain class, single variables representing each emotion are
used, whose confidence value is integrated into the numerical computation of the rule’s
activation.

Emotion smoothing

Regarding the emotion variables, an additional smoothing step has been implemented,
to make the system more stable to noise in detecting emotional data. This approach,
in particular, makes the system retain the previous emotion vector (hence ignoring a
new detection) if the confidence about the old dominant emotion has not changed in a
considerable way (i.e. above a certain threshold). In mathematical terms, let i be the
index of the previous dominant emotion and Et[i] and Et−1[i] the previous and current
confidence values, the difference ∆E(t) = Et[i]−Et−1[i] is computed and compared against
a threshold KE. If ∆E(t) < KE then the emotion vector (and hence the confidence values)
used as input of the inference system is not changed, making it instead react to changes
in the other variables.

Defuzzyfication

Since the goal of the implemented fuzzy system is to provide a classification of scenic
actions in the ongoing interaction, which already correspond to the fuzzy sets associated
with the output variable, defuzzyfication has been implemented in the form of a linguistic
approximation. Using this approach the classified action is selected as the one corre-
sponding to the fuzzy set closest to the defuzzyfied numerical value using, in particular,
a rounding function to retrieve the indexing of the action in the vocabulary.
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5.8. Final implemented architecture
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Figure 5.31: Diagram showing the final architecture implemented in the system, showing
all the ROS nodes along with messages exchanged between them

Figure 5.31 shows a diagram of how all the ROS nodes described so far have been put
together into the final architecture of the implemented system.

This architecture has been designed following the principles of modularity and separation
concerns (where possible and not hindered by hardware or computational issues, as de-
scribed in 5.2). Each input feature described in chapter 2 has in particular been linked
to a specific ROS topic and computed or processed by a specific node. In this way it will
be possible in the future to extend the system’s capabilities with minimal effort, adding
new input features and processing pipelines.

An example can be the addition of audio capabilities (realizing the auditory layer de-
scribed in 1.1), to characterise for instance the emotional valence of the actor’s speech.
A node, connected to a microphone, can in fact be added to the system and compute
the emotion associated with acoustic (e.g. spectral analysis) and semantic (e.g. natural
language processing) features of the speech. This emotion can then be published on the
emotion_scores topic and merged by the aggregator node (defining a proper fusion strat-
egy) with the other emotions inferred from bodily and facial cues, to eventually classify
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a global emotional state.

From the diagram (in which software already deployed on Robocchio and described in
4.5 has been represented with a single block) we can identify two main parts of the
architecture:

• Emotion classification pipeline, classifying the emotion expressed by the actor from
their pose and facial expressions acquired from a camera

• Proxemics description pipeline, computing quantitative and qualitative descriptors
of the actor’s spatial relationship with the robot and the stage, using data from
laser sensors (pre-processed by a third-party module to extract people’s locations)

These two parts eventually merge their results in the action classifier, which takes as input
all the computed features to classify with a label the action currently happening in the
ongoing interaction.
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And did you get what
you wanted from this life, even so?

I did.
And what did you want?

To call myself beloved, to feel myself
beloved on the earth.

Raymond Carver - Late Fragment

6.1. Conclusion

In this document, we have described the design and implementation of a system that
makes an autonomous robot able to classify the scenic action performed by a human
actor that is performing with it on a theatrical stage in the context of a (simplified)
improv session.

The goal of this work was to build a system that could make an autonomous robotic
actor aware of both its presence on the stage and everything happening around it. To
achieve this goal the first step has been to build a conceptual framework, describing the
relevant elements that come into play in understanding human actions and expressions,
focusing in particular on the domains of acting and story-telling. From this framework, a
physical system has been implemented (both from hardware and software points of view),
able to map all the elements identified in the previous step into computational entities
through proper sensors and data processing methods, to eventually provide a classification
of the scenic actor performed by the human actor. This implementation, in particular,
fully fulfils the initial requirements and goals, being able to classify the actor’s actions
using data retrieved from different sources (e.g. laser sensors, facial expressions, body
movements...), which have been identified from the study of literature in the fields of
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theatre, psychology, choreography, and computer science.

In the end, the implemented system described in this document can be seen as the first
building block in the development of a cognitive pipeline for an autonomous robot impro-
viser. Prior to any discussion on the issues of personality, mood, and character of such a
robot, is in fact necessary to lay a foundational architecture that could serve two distinct
purposes:

• providing a stable ground to realize sensing capabilities, to make a robot recognize
all the relevant elements of human communication and characterise the attitude and
intentions of the actor through a set of archetypal actions

• validating the approach taken in designing the followed reference framework, show-
ing the feasibility of such approach, especially when facing computational and real-
time constraints

For this reason, it has been preferred to focus just on laying out the foundational archi-
tecture, implementing a functioning perception system to be later extended with more
complex processing and classification methods. The classification in output from this
system can be used by other modules in the aforementioned pipeline, treating it in a
black-box fashion to simulate, at a higher level, cognitive functions related to sociability,
morality, and aesthetics.

The implemented architecture can then find its place even in contexts outside the theatri-
cal realm. As described in [68], "both theatre and HRI aim to replicate some elements of
humanity", sharing a structural similarity that can be exploited to move back and forth be-
tween the social and theatrical dimensions. Both the disciplines are involved in the simula-
tion of human communication schemes and mechanisms and this work (and the acquired
knowledge) can therefore be transferred to the more general domain of human-robot-
interaction (and even human-machine-interaction). The proposed conceptual framework
and the corresponding implemented architecture can be used as a reference to enrich the
perceptive capabilities of autonomous interactive robots, improve their situational aware-
ness of both the interaction venue and the user’s state and eventually provide a more
engaging, timely and effective experience.

6.2. Future directions

As already explained in the previous section, due to limited time available for the develop-
ment of a master thesis the effort has been put mainly into the design and implementation
of a foundational awareness system, to provide a stable starting ground for the future ad-
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dition of more complex modules. During brainstorming sessions and study of literature
several interesting ideas have emerged.

Even though they remained in the hypothetical space of possibilities they are still worth
to mention, to serve as a compass showing the possible future directions of this work.
These hints are related either to data acquisition, processing and output classification,
and are briefly described in the following paragraphs.

Addition of new inputs and semantical layers As described in section 1.1, the
system has been designed to support the future addition of new types of inputs, to make
the classification of scenic actions rely on other cues and features rather than those actually
implemented and described in this document.

A possible improvement is therefore to add more sensors and processing nodes to imple-
ment the remaining layers described in 1.1, related for instance to the verbal (i.e. natural
language processing) and non-verbal (i.e. voice acoustic analysis) use of sound, to mimicry
(i.e. activity recognition) and to linguistic communication.

Besides these new sensory capabilities, it would be interesting to explore whether and how
the features already detected by the system, but not explicitly used, can be meaningfully
assimilated in the classification framework. This is the case for eye contact presence and
actor’s position, which can ideally add nuance to the current set of situations, even as a
second-step refinement of the current outputs.

Awareness of meta-features Besides the sheer awareness of what is happening on
the stage and the partner’s attitude, a critical element in improvisation is being able
to evaluate and assess the scene as if seen by an external viewer. This is important for
understanding whether the story being narrated is engaging for the audience and at which
point of its development the two actors found themselves. The latter information can be
represented through the concept of dramatic arc [41] (shown in figure 6.1), which defines
five main parts composing the dynamics of a well-narrated story.

These features would be placed at a higher conceptual level, a sort of meta-description of
the acting describing its quality, which can be used either on-line to guide the selection of
replies by third-party systems or off-line to implement for instance reinforcement-learning
(RL) models and train policies to select which actions fit best in a given frame of tension.

The dramatic arc in particular can be largely exploited in HRi, as it well approximates
the usual dynamics of the interactions [68]. A robot should therefore be aware of the
current point of tension to select actions that make it grow or decrease accordingly, in
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Figure 6.1: Dramatic arc identifying five main moments in the evolution of tension in a
story, proposed by Freytag in [41]

order to create a more natural and friction-less experience.

Linked to this concept, another interesting metric that can be explored and added to this
set of meta-features is the variability of a story over time. A common rule of improvisation
is in fact to leave, in the first stages of the scene, a door open to any possibility of
development, leaving space for the ambiguity of interpretation and avoiding to ascribe
specific meaning to the peers’ actions. The first part of a story is therefore characterised
by a high variability: the audience becomes acquainted with characters and their mutual
relationships start to develop or to become more detailed; in this stage, a robot improviser
should select replies that do not narrow this field of possibilities and instead introduce new
elements to the scene to be used later on. The second part, instead, is concerned about
making all the introduced elements collapse to a single ending point, closing the issues left
open and giving a final meaning to everything that has happened; actions chosen in this
context should therefore aim to restrict the possibilities, making everything collapse to a
smaller set of interpretations. A possible way to implement this awareness and describe
this variability index is through the concept of entropy, which is usually employed in
computer science and probability theory to describe the informational content of some
element. Inspired by the work done in [32] a proposal for a future enhancement is,
therefore, to make the system able to compute the entropy associated with each scene
and the impact each action has on it, enabling other systems to plan actions in the space
of entropy.
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Ontology of archetypical scenes This concept of entropy can be further extended
by making the system able to reason on the specific structure of the scene, representing it
through the use of descriptive or modal logics. A possible approach might be to create an
ontology describing at high-level the elements that can occur in a scene (e.g. characters,
relationships, events...), even in a hierarchical way in a fashion borrowed from object-
oriented-programming, to reason on this world models for assessing the inherent entropy
of the scene and the available affordances for its development (e.g. which actions are
feasible, which other worlds are reachable from the current one...).

Dataset of scenic action to train more complex models Regarding the output
of the system, as already pointed out in section 3.5, the use of classifiers based on deep-
learning methods would require a proper dataset, annotated with the supported scenic
action sequences of observations. A work of this kind would have been too time-consuming
to be carried out at an acceptable level in the context of this thesis but is nevertheless
relevant and necessary for further improvements of the system’s sensing capabilities. The
dataset can in particular be developed following the approach of [118], employing a diverse
group of actors performing scenic actions and collecting all the measurable and relevant
variables described in the developed framework.

With this dataset, it would be possible to train models more complex than a fuzzy infer-
ence system, not only to realize a neural classification of the scenic actions but also to
enable a neural synthesis of the robot’s replies. Training in fact a generative adversarial
network (GAN) it would be possible to make the robot autonomously come up with dif-
ferent ways of performing a given scenic action (i.e. determining how to use proxemics,
which dominant emotion to express, how to use sound, which movement to perform...),
removing the human element from the definition of replies and thus getting closer to the
goal of a fully autonomous robot actor.
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A| Implemented fuzzy rules

This chapter described the fuzzy rules implemented to classify the scenic actions performed
by the actor, using the classical notation in the form IF...THEN....

The following notation has in particular been used in the code:

• lin_mov: represents the movement variable, and possible values are represented by
the terms app_fast, app_med, app_slow, still, ret_slow, ret_med, ret_fast,
trivially mapping to stillness and different approach-retreat speeds

• zone: describes the proxemic zone variable, taking three possible values, namely int

for the personal space, neu for the neutral one, and not in case of no interaction

• Emotions and actions are trivially represented by variables with their same name

IF ( lin_mov [ app_fast ] AND (NOT−zone [ not ] ) ) AND anger [TRUE] THEN act i on [
at tack ]

IF ( ( ( lin_mov [ app_slow ] OR lin_mov [ app_med ] ) OR lin_mov [ s t i l l ] ) AND ( zone [
i n t ] OR zone [ neu ] ) ) AND anger [TRUE] THEN act i on [ i n t im ida t i on ]

IF ( lin_mov [ s t i l l ] AND (NOT−zone [ i n t ] ) ) AND anger [TRUE] THEN act i on [
s c o l d i ng ]

IF ( ( ( ( lin_mov [ ret_slow ] OR lin_mov [ ret_med ] ) OR lin_mov [ r e t_fa s t ] ) AND (
zone [ neu ] OR zone [ not ] ) ) OR zone [ not ] ) AND anger [TRUE] THEN act i on [
grudge ]

IF happiness [TRUE] AND zone [ i n t ] THEN act i on [ share_joy ]
IF happiness [TRUE] AND zone [ not ] THEN act i on [ happiness_person ]
IF happiness [TRUE] AND zone [ neu ] THEN act i on [ g r e e t ]
IF ( ( lin_mov [ ret_slow ] OR lin_mov [ ret_med ] ) OR lin_mov [ r e t_fa s t ] ) AND

happiness [TRUE] THEN act i on [ s a t i s f a c t i o n ]
IF ( ( lin_mov [ ret_slow ] OR lin_mov [ ret_med ] ) OR lin_mov [ r e t_fa s t ] ) AND

sadness [TRUE] THEN act i on [ disappointment ]
IF zone [ i n t ] AND sadness [TRUE] THEN act i on [ share_sadness ]
IF ( (NOT−zone [ i n t ] ) AND (NOT−(( lin_mov [ ret_slow ] OR lin_mov [ ret_med ] ) OR

lin_mov [ r e t_fa s t ] ) ) ) AND sadness [TRUE] THEN act i on [ sad_person ]
IF (NOT−zone [ not ] ) AND su r p r i s e [TRUE] THEN act i on [ share_surpr i s e ]
IF ( ( ( lin_mov [ s t i l l ] OR lin_mov [ app_med ] ) OR lin_mov [ app_slow ] ) AND (NOT−

zone [ i n t ] ) ) AND su r p r i s e [TRUE] THEN act i on [ astonishment ]
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IF ( ( lin_mov [ r e t_fa s t ] OR lin_mov [ ret_slow ] ) OR lin_mov [ ret_med ] ) AND
su r p r i s e [TRUE] THEN act i on [ d i s b e l i e f ]

IF ( lin_mov [ app_fast ] AND zone [ not ] ) AND su rp r i s e [TRUE] THEN act i on [ shock ]
IF zone [ i n t ] AND f e a r [TRUE] THEN act i on [ share_fear ]
IF ( ( ( lin_mov [ app_fast ] OR lin_mov [ app_med ] ) OR lin_mov [ s t i l l ] ) AND (NOT−

zone [ not ] ) ) AND f e a r [TRUE] THEN act i on [ share_fear ]
IF ( lin_mov [ app_slow ] AND (NOT−zone [ not ] ) ) AND f e a r [TRUE] THEN act i on [

caut ion ]
IF ( ( ( lin_mov [ s t i l l ] OR lin_mov [ app_slow ] ) OR lin_mov [ ret_slow ] ) AND (NOT−

zone [ i n t ] ) ) AND f e a r [TRUE] THEN act i on [ he s i t ancy ]
IF ( ( ( lin_mov [ app_fast ] OR lin_mov [ app_med ] ) OR lin_mov [ app_slow ] ) AND zone

[ not ] ) AND f e a r [TRUE] THEN act i on [ he s i t ancy ]
IF ( lin_mov [ r e t_fa s t ] OR lin_mov [ ret_med ] ) AND f e a r [TRUE] THEN act i on [

escape ]
IF lin_mov [ ret_slow ] AND f e a r [TRUE] THEN act i on [ shock ]
IF ( ( lin_mov [ ret_slow ] OR lin_mov [ ret_med ] ) OR lin_mov [ r e t_fa s t ] ) AND

d i s gu s t [TRUE] THEN act i on [ r e f u s e ]
IF lin_mov [ s t i l l ] AND d i s gu s t [TRUE] THEN act i on [ he s i t ancy ]
IF ( ( lin_mov [ app_slow ] OR lin_mov [ app_med ] ) OR lin_mov [ app_fast ] ) AND

d i s gu s t [TRUE] THEN act i on [ p e r p l e x i t y ]
IF neut ra l [TRUE] THEN act i on [ none ]
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