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Abstract

Environmental monitoring is essential to understand the conditions of the environment
and the changes caused by human activities. The advances in Remote Sensing technologies
for earth observation open the possibility of scanning vast territories with the help of
satellite imagery. State-of-the-art Deep Learning architectures can be used for this task,
but they need fine-grained ground truth annotations built with expert knowledge. To
solve this limitation, Self and weakly supervised methods can be used to supplement the
lack of manual object-level annotations and pre-trained models, thanks to the abundance
of non-annotated images in the remote sensing domain. This work presents a survey of
self- and weakly supervised aerial image analysis methods. Then, suitable methods are
explored and evaluated on a novel data set (AerialWaste) to identify and localize illegal
waste in remote sensing images. The results can help the photo interpretation process
currently performed manually by experts in the field.

Keywords: Illegal Landfills detection, Weak Supervision, Self Supervision, Remote Sens-
ing Images





Sommario

Il monitoraggio ambientale è essenziale per comprendere le condizioni dell’ambiente e
i cambiamenti causati dalle attività umane. I progressi nelle tecnologie di telerileva-
mento per l’osservazione della terra aprono la possibilità di scansionare vasti territori con
l’aiuto di immagini satellitari. Al fine di raggiungere questo obiettivo, è possibile uti-
lizzare architetture di apprendimento profondo all’avanguardia, che tuttavia, necessitano
di annotazioni dettagliate fornite da esperti. Per risolvere questa limitazione, è possibile
utilizzare metodi di apprendimento autogestito e debolmente supervisionati per integrare
la mancanza di annotazioni manuali a livello di oggetto e di modelli pre-allenati, grazie
all’abbondanza di immagini satellitari non annotate. Questo lavoro presenta un’indagine
sui metodi di apprendimento autogestito e debolmente supervisionati per immagini satel-
litari. Metodi adeguati vengono esaminati su un nuovo set di dati (AerialWaste) per
identificare e localizzare discariche abusive nelle immagini di telerilevamento. I risultati
possono essere di notevole aiuto per il processo di interpretazione fotografica che attual-
mente viene svolto manualmente da esperti del settore.

Parole chiave: Rilevamento di discariche abusive, Supervisione debole, Apprendimento
autogestito, Immagini di telerilevamento
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1

1| Introduction

Environmental protection is the practice related to the protection of the natural environ-
ment to conserve natural resources and if needed try to repair damages to preserve all the
forms of life. Environmental protection is pursued by agencies collaborating all around
the globe, with the mission to protect, improve and restore the environment through
programs that aim at reducing risks of environmental contamination, which may happen
because of the presence of hazardous materials, wastes, fuels, and oils. These programs
provide guidelines to avoid pollution, procedures for safely working and managing these
materials, as well as actions that should be performed in case pollution cannot be pre-
vented. As a consequence, environmental protection is one of the most challenging and
priority missions to be pursued in the world so that a healthy and sustainable future can
be guaranteed for all forms of life. This leads to a continuously increasing concern on
environment-related topics both by the population and by governments. During the last
few years, the importance of these aspects guided nations to define Sustainable Develop-
ment Goals (SDG) [1].

Aiming to reach the goals of environmental protection, environmental monitoring is fun-
damental to assess the environment’s conditions and its changes due to natural or human
interventions. As defined by the United Nations in the 2030 Agenda for Sustainable
Development [1], a wide range of topics, such as biodiversity and ecosystems, chemicals
and waste, desertification, disaster risk reduction, climate change and water availability,
among others, should be considered to reach SDG. Many of these topics are controlled
through environmental monitoring activities. All these topics share relevant properties
and are sometimes strictly connected with each other, leading to the possibility of de-
veloping similar solutions for different problems. However, other factors such as country
regulations, geographic characteristics, and availability of the data, force each problem to
be faced and studied more in-depth before being sure that the adopted approaches are
able to generalize well to different areas.

Among the topics considered to reach SDG, effective control of the generation, storage,
treatment, recycling and reuse, transport, recovery and disposal of hazardous wastes are
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of great importance to ensure proper health, environmental protection, natural resource
management, and sustainable development. For this reason, preventing the generation
of hazardous wastes is crucial and requires experienced people, financial resources, and
technical and scientific knowledge.

When considering this topic, particular attention needs to be paid to illegal landfills.
The demographic increase has a considerable impact on the waste generation [2] and this
phenomenon could lead to the birth of new unauthorized sites which are a serious source of
hazards for the environment and the society [3–5]. Moreover, waste crimes, i.e., activities
that violate the waste management laws cover an even more important role in Italy where,
according to the 2021 report of Legambiente on Ecomafia [6], 34,867 crimes against the
environment and more than 8,000 (assessed) crimes related to waste and landfills were
registered in 2020. This phenomenon is even more evident in regions with a more relevant
Mafia influence (e.g., Campania, Sicily, Puglia and Lazio). These numbers show a slight
increment (+0.6%) in waste-related crimes with respect to the previous year. However, a
significant decrease in the monitoring activities (-17%) is also testified.

The main issue is that emissions and toxicological hazards from illegal dump sites can
be extremely high compared to regulated landfills [3]. This endangers even more public
health given that if waste treatment is not performed carefully, the release of leachate in
the environment can pollute water sources and increase cancer incidence in the long term
[7].

For this reason, detecting illegal disposal sites on time is crucial to reduce the impacts
on both the environment and society. While an on-site inspection of potentially illegal
waste disposal sites is still fundamental to assess the danger and potential impacts of illicit
activities, it is necessary to reduce the number of locations to be examined. Otherwise,
it is not possible to efficiently keep a wide territory under control. To make this process
more efficient, it is possible to exploit the availability of Remote Sensing (RS) technologies
that allow to capture aerial images and examine them to check the presence or absence
of illegal landfills [8]. Being able to distinguish among the different types of objects
or storage containers that are present in landfills is even more challenging. This task
does not only require correctly identifying the location of a waste disposal site but also
capturing relevant aspects that allow distinguishing among the different considered items.
Even though experts’ interpretation of aerial images is still a predominant technique, the
advent of Computer Vision (CV) methods, boosted by the recent advancements in the
Deep Learning (DL) field [9, 10], leads the way to the development of new automatic
tools that can capture experts knowledge and provide a suitable model for automating,
at least partially, the process. This way, a significant amount of data can be processed



1| Introduction 3

more rapidly, allowing experts to concentrate their effort on the analysis of only the most
relevant areas, reducing the number of on-site inspections, and allowing the coverage of a
much wider range of the territory.

An important aspect related to DL methods is the need for huge amounts of data to
effectively train a deep architecture. However, these data often require careful annotations
depending on the specific task being solved which is a very time-consuming activity [11].
At the same time, the availability of the data itself may be limited by specific regulations,
especially in sensitive domains such as waste disposal. For this reason, it is necessary to
define new technologies that are able to solve the same tasks by reducing the need for
huge quantities of annotated data. In this direction, recent advancements in the research
of Weak Supervision (WS) [12, 13] and Self Supervision [14, 15] technologies opens up the
possibility of exploiting these approaches for environmental monitoring processes such as
illegal landfills detection, reducing the need of carefully annotated data.

In this thesis, the illegal landfills detection problem is considered as a multi-label classifi-
cation problem, meaning that the focus is on designing a model that is able to differentiate
among the different types of landfills exploiting Aerial Images. The main idea behind this
approach is that if the classification allows reaching promising performance, then weakly
supervised approaches can be applied in the illegal landfills scenario to detect them when
only coarse-grained labels are given. The approach illustrated in this thesis exploits a
Convolutional Neural Network (CNN) classifier and Remote Sensing Images (RSIs) in the
optical range (RGB). Even though DL models were proven effective in many applications,
there is still a limited number of approaches that exploit CNN architectures to detect
waste, especially in the RS domain. The works [16, 17] exploit CNN fed with Aerial Im-
ages to perform waste identification by formulating the problem as an Object Detection
(OD) task. In this case, manually crafted Bounding Boxes (BBs) are required to perform
OD. Unfortunately, this is very costly and error-prone especially because waste disposal
sites are not easily identifiable even in the case in which high-resolution RSIs are used.

To address this issue, the work by Torres et al. [8, 18] proposes to address the task as
a scene classification problem, which requires only whole image labels as ground truth,
indicating the presence or absence of a landfill. The proposed model reaches 81.9% pre-
cision and 79.5% recall on a test set. Unlike previous works, in this thesis, the problem
is addressed as a multi-label classification problem, thus, labels indicating the categories
of landfills present in each image are needed. These labels can be more costly than those
required in [8, 18], but they are still easier to obtain than BBs. To cope with the complex-
ity of illegal landfill imagery, in which objects possess varying scales and appearances, the
same multi-scale CNN architecture proposed by Torres et al. [8, 18] is used. The adopted
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method is tested on a large-scale territory, and both a qualitative and a quantitative eval-
uation are reported exploiting the ODIN evaluation tool [19, 20]. The proposed method
is able to obtain 56.43% average F1-score on the AerialWaste data set for the multi-label
classification task while also showing good localization capabilities. In this case, the pos-
sibility of generating pseudo-labels to perform Weakly Supervised Instance Segmentation
(WSIS) is evaluated. At the moment, the generated segmentations are not good enough to
train an instance segmentation network due to the difficulty of the domain under analysis
and the need for specific network adaptations.

The contributions of this thesis can be summarized as follows:

• An analysis of the differences between natural images and Remote Sensing Images
is conducted given that the identified characteristics have a huge impact on the
generalization capabilities of models.

• A summary of State-Of-The-Art (SOTA) Self Supervised and Weakly Supervised
(WS) approaches for the detection and segmentation of objects in natural images and
RSIs is proposed, with a particular focus on Weakly Supervised Object Detection
(WSOD) in RSIs, for which classification and analysis of the main approaches are
collected in a published survey [13].

• A summary of the SOTA for landfills detection is provided to define the starting
point of the approach proposed in this thesis.

• An analysis of the used AerialWaste data set [18] is provided, highlighting the char-
acteristics and related issues that can potentially hurt the discriminative capabilities
of a classifier.

• Different techniques that can mitigate the previously identified issues are proposed
to enhance the discriminative power of the classifiers. Several multi-scale multi-label
CNN classifiers for the classification task are compared quantitatively, verifying the
impact of the proposed techniques.

• The output of the classifiers is evaluated qualitatively by exploiting Class Attention
Maps (CAMs) as a visual understanding and interpretability technique. This pro-
cedure allows to identify the image regions where a classifier focuses its attention
and allows to understand how much the classifier is able to distinguish the different
classes.

• The final architecture exploits a ResNet50 backbone [21] augmented with a Feature
Pyramid Network (FPN) [22] trained on a data set enlarged with synthetic data
and allows to obtain 58.08% average precision, 61.16% average recall and 56.43%
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average F1-score on the AerialWaste test set.

• The possibility of generating pseudo-labels to train an instance segmentation net-
work is analyzed. At the moment, the segmentations obtained from the best classi-
fication model are not sufficiently good to be used as pseudo-labels.

The rest of the thesis is organized as follows:

Chapter 2 surveys the background about the different Weakly Supervised learning
techniques and Self Supervised techniques as well as the background concerning the
illegal landfills detection task.

Chapter 3 presents the data set, the architecture and the various methods employed
in this thesis to address the problem of illegal landfills detection as a multi-label
classification task.

Chapter 4 describes the performed experiments, and the analyses that are con-
ducted on each of them from both a quantitative and a qualitative viewpoint, and
the considerations that lead to the selection of the best model.

Chapter 5 draws the conclusions and identifies possible future directions.
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2| Background

This thesis pursues the application of Artificial intelligence (AI) to Remote Sensing Im-
ages (RSIs) for Environmental Monitoring purposes, particularly in the context of illegal
landfills detection. This chapter introduces the relevant concepts related to this problem
and provides an overview of the relevant scientific literature.

The chapter is structured as follows: Section 2.1 introduces RSIs and explains pecu-
liarities and differences with respect to natural images. Section 2.2 introduces the concept
of Full Supervision (FS) in the area of Machine Learning (ML) and the needs that lead
to the use of Weak Supervision (WS) and Self Supervision. Section 2.3 introduces the
usage of Self Supervised Learning (SSL) in natural images and provides an overview of
the relevant scientific literature related to SSL in RSIs, together with a review of the
SOTA approaches in this domain. The following sections consider different Computer Vi-
sion (CV) tasks to approach the Weakly Supervised learning (WSL) problem using RSIs.
Section 2.4 introduces the usage of WS for OD and provides an overview of the relevant
scientific literature related to Weakly Supervised Object Detection (WSOD) in RSIs and
the current SOTA approaches in this domain. Section 2.5 surveys Instance Segmentation
(IS) and Weakly Supervised Instance Segmentation (WSIS). Finally, Section 2.6 surveys
previous works on illegal landfills detection.

2.1. From Natural Images to Remote Sensing Images

According to Internet trend analysis, over the years the usage of Social Media and other
Internet Services continuously increased, and the number of images available on the In-
ternet increased accordingly. The massive number of images present on the Internet
nowadays allows extracting some really valuable information that can be used in order to
address several tasks [9, 23–26]. In particular, DL approaches rely on the availability of
large amounts of images. At the same time, given the heterogeneous types of available
images, it is fundamental to keep into consideration the characteristics of the used data
when solving a specific problem.
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2.1.1. Natural Images

The most common type of image is natural images. The availability of a large number of
natural images has led to the possibility of extracting some precious information that can
be used to address several tasks, such as image classification [9], object detection [23, 27],
and instance segmentation [24]. Because of the impressive results obtained in these tasks,
a lot of effort has been devoted to constructing huge natural images data sets with the aim
of helping the development and comparison of novel solutions. These data sets are usually
annotated at different granularities, to be used for several tasks, exploiting off-the-shelf
softwares [28]. The most common annotation types for images are:

• Image-level: the label tells if an object of a certain class is present or not in the
image. A slight variation of this annotation is the scene-level label, which records
only the category of the most dominant object in the image.

• Instance-level: Polygons are drawn to delineate the boundaries of objects. Fur-
thermore, every polygon is associated with a specific class. The most used shape is
a simple rectangle (bounding box), but other shapes are used when it is necessary
to take into consideration very specific object shapes or tasks [29].

• Pixel-level: in this case, the class is specified for every pixel, resulting in a fine-
grained annotation of the image. Usually, a background class is introduced to ac-
count for pixels that do not belong to any of the other classes.

Similar to the image-level label, it is possible to use a finer-grained annotation named
region-level, suggesting the presence or absence of at least one instance of an object in a
portion (region) of the image. Other forms of labels exist, e.g., point-based annotations
and scribble-based annotations. Another possible annotation type, that can be useful in
case of the presence of multiple object instances in the image, is the count of the instances
of each category inside the image.

Natural Images Data Sets

A lot of natural images data sets are presented in the literature. The most common ones,
used as benchmarks for previously cited CV tasks, are reported in this section with an
analysis of their peculiarities. It is important to notice that most of the reported data
sets have multiple versions updated through the years, and for this reason, the reported
statistics could depend on the version.

CIFAR-10 [30] is one of the most famous data sets used to evaluate classification
methods. It consists of 60,000 32x32 color natural images divided into 10 classes, with
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6,000 images per class. The following mutually exclusive classes are present: airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, truck. Every image is annotated at
image-level.

ImageNet [31] provides an accessible image database that is organized according
to the WordNet hierarchy. Each meaningful concept in WordNet, possibly described by
multiple words or word phrases, is called a "synonym set" or "synset". There are more
than 100,000 synsets in WordNet where ImageNet provides an average of 1,000 images to
illustrate each synset in the WordNet. It offers tens of millions of cleanly sorted natural
images for most of the concepts in the WordNet hierarchy. Every image is annotated at
image-level and there are also bounding boxes for over 3,000 synsets. This makes this data
set one of the most used ones for network pre-training, evaluation of classification, object
localization, and object detection methods.

PASCAL VOC 2012 [32] is a data set containing natural images of vehicles, house-
holds, and animals in 20 object categories: airplane, bicycle, boat, bus, car, motorbike,
train, bottle, chair, dining table, potted plant, sofa, TV/monitor, bird, cat, cow, dog, horse,
sheep, person. Each image in the data set has pixel-level, bounding box-level, and image-
level annotations. The PASCAL VOC 2012 data set extends the PASCAL VOC 2007
data set, resulting in a larger scale data set that consists of 11,540 images for training and
10,991 images for testing. It is one of the most used data sets to evaluate the performances
of classification, object localization/detection, and semantic/instance segmentation meth-
ods.

MS-COCO [33] or simply COCO, is a large data set with more than 300,000 natural
images (more than 200,000 of them are completely labeled). There are annotations at
image-level, bounding box-level and pixel-level. In the 2014 version of the data set, there
are more than 200,000 images covered by 80 object categories. It is one of the most used
data sets to evaluate the performances of classification, object localization/detection, and
semantic/instance segmentation methods.

2.1.2. Remote Sensing Images

Some research fields such as the medical field, require specific types of images that are
more difficult to be retrieved, annotated and may introduce new challenges (e.g., class
imbalance, label noise, heterogeneous organs, and lesions appearance [10, 25]) that can
affect the performance of generic DL models. In this case, novel solutions need to be
developed to account for the characteristics of this data.

This problem also arises when applications are developed in the RS domain, with
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images acquired by satellites or aerial devices.

Figure 2.1: Example of natural images from PASCAL VOC data set [32] and RSIs from
DIOR data set [34] and DOTA data set [35]. It is possible to observe that natural images
usually contain few large objects while RSIs contain multi-scale, arbitrarily oriented, dense
objects. Image taken from [13].

RSIs differ significantly from natural images, as shown in Figure 2.1 and Figure 2.2,
for some aspects:

• Object instances only occupy a small portion of large images, while in natural
images, few big objects are usually present.

• The background is complex and cluttered with the coexistence of multiple ground
objects.

• Objects (e.g., ships and vehicles) can be extremely small and dense, while at the
same time, large objects (e.g., ground track fields) can cover a vast area.

• Objects can have arbitrary orientations while they often appear with horizontal
orientation in natural images.

• There is high intra-class diversity and inter-class similarity.

• RSIs generally capture the roof information of the geospatial objects, whereas nat-
ural images usually capture the profile information of the objects.

Therefore, as explained by Li et al. in [34] it is not surprising that the models
learned from natural images are not easily transferable to RSIs. In the last few years,
the increasing availability of RSIs allowed the application of DL methods to solve specific
tasks such as airplane detection [37] and ship detection [38–40].
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Figure 2.2: RSIs challenges on images from the NWPU-RESISC45 data set [36]. Image
taken from [13].

Remote Sensing Images Data Sets

As for natural images, annotated data sets were also constructed for RSIs. Unfortunately,
common RSIs data sets are not very widespread, and custom application-specific data
sets are often built, thus limiting the possibility to compare techniques on common data.
However, it is possible to recognize some data sets used in a decent amount of OD, SS,
and IS approaches. Table 2.1 reports the most relevant statistics about the reported RSIs
data sets. From a literature survey, DIOR and NWPU-VHR-10.v2 are the most used to
evaluate novel techniques on RSIs.

The data set named Google Earth is a collection of 120 high-resolution images of
airports collected using the homonym service. It was proposed by Zhang et al. [37] to
demonstrate that their algorithm can deal with multi-size targets in large-scale RSIs with
cluttered backgrounds. Zhang et al. [42] extended the airplane detection task to include
also vehicles and airports and incorporated images from ISPRS and Landsat-7 ETM+.
The ISPRS data set provides vehicles with 100 very high-resolution images provided by
the German Association of Photogrammetry and Remote Sensing [41]. The Landsat-7
ETM+ data set is acquired by the homonym sensor and includes 180 infrared RSIs of a
variety of airports in China [42].

NWPU VHR-10 [43] is a ten-class geospatial object detection data set, containing
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Table 2.1: Summary of the main data sets for RSIs.

Name Year Annotation
Type

Number of
Images

Number of
annotations

Number of
classes

Dimension
(pixels)

Spatial
Resolution

Target Area
(pixels)

ISPRS [41] 2010 BB 100 - 1 (Vehicle) ≈ 900x700 8-15 cm 1150 ∼
11976

Google Earth [37] 2013 BB 120 - 1 (Airplane) ≈ 1000x800 ≈ 0.5 m 700 ∼
25488

Landsat-7 ETM+ [42] 2014 BB 180 - 1 (Airport) 400x400 30 m 1760 ∼
15570

NWPU-VHR-10 [43] 2014 Image,
BB 800 3775 10 533×597 ∼

1728×1028 0.08-2 m 1122 ∼
174724

NWPU-VHR-10.v2 [44] 2017
Image,
BB,
Pixel

1172 - 10 400x400 - -

DOTA [35] 2018 Image,
Oriented BB 2806 188282 15 ≈ 4000x4000 - -

LEVIR [45] 2018 Image,
BB 21952 11028 3 600x800 0.2-1 m 10 ∼600

TGRS-HRRSD [46] 2019 BB 26772 55740 13 - 0.6-1.2 m -

WSADD [47] 2020 Image,
BB 700 - 1 (Airplane) 768x768 0.3-2 m -

DIOR [34] 2020 Image,
BB 23463 192472 20 800x800 0.5-30 m -

images from Google Earth and the German Association of Photogrammetry and Remote
Sensing [41]. The classes are Airplane, Ship, Storage Tank, Baseball Diamond, Tennis
Court, Basketball Court, Ground Track Field, Harbor, Bridge and Vehicle.

NWPU-VHR-10.v2 [44] is a ten-class geospatial object detection data set obtained
by cropping images from the data set NWPU-VHR-10. In particular, 1,172 images of
400×400 pixels were obtained by cropping the positive images of the NWPU VHR-10
data set in which image sizes are different. The number of classes is left unmodified. The
images are manually annotated at image-level, bounding box-level, and pixel-level.

DOTA [35] is a data set containing oriented BBs as annotations, presented as a
large-scale benchmark data set and an OD challenge. Fifteen categories were annotated:
plane, ship, storage tank, baseball diamond, tennis court, swimming pool, ground track
field, harbor, bridge, large vehicle, small vehicle, helicopter, roundabout, soccer ball field
and basketball court.

LEVIR [45] is a data set with a large number of high-resolution Google Earth images
with over 22,000 images of 800×600 pixels and space resolution ranging from 0.2 m/pixel
to 1.0 m/pixel. It can be used to evaluate OD approaches. LEVIR covers most types
of ground features of the human living environment, e.g., city, country, mountain area,
and ocean. There are 3 classes: airplane, oil plot, ship. The images are annotated at
image-level and BB-level. It is important to understand that LEVIR is different from
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LEVIR-CD [48], which is a remote sensing building Change Detection data set. They
have a similar name because the authors share the same laboratory (Learning, Vision and
Remote Sensing Laboratory).

TGRS-HRRSD [46] is a data set proposed analyzing the NWPU VHR-10 data set
and recognizing that it is imbalanced and not large enough to train a CNN framework
without strong augmentations. At the same time, it was identified that most of the
existing algorithms are designed based on the assumption that the training data set is
balanced, while the NWPU VHR-10 cannot quite fit this hypothesis. TGRS-HRRSD data
set was proposed to try to address these problems.

WSADD is an airplane detection data set proposed by Wu et al. [47]. The images in
this data set include airports and nearby areas of different countries (mainly from China,
the United States, the United Kingdom, France, Japan, and Singapore) taken from the
Google Earth satellite. It can be used to evaluate OD approaches, particularly aircraft
detection approaches. Images are taken at different daytimes, seasons, and light intensities
to ensure that the data set has a high diversity. The images are annotated at image-level
with a label indicating if at least an airplane is present or not and at BB-level (in case of
the presence of airplanes).

DIOR [34] is one of the largest, most diverse, and publicly available object detection
data sets in the earth observation community that is often used as a benchmark to evaluate
OD methods. It is a particularly challenging RSIs data set due to the variety of object
sizes and different imaging conditions like weather conditions and seasons. The classes
are: airplane, airport, baseball field, basketball court, bridge, chimney, dam, expressway
service area, expressway toll station, golf course, ground track field, harbor, overpass, ship,
stadium, storage tank, tennis court, train station, vehicle, wind mill. It is important to
notice that DIOR has high inter-class similarity and intra-class diversity, and the number
of object instances per class is not balanced. Every image in the data set is annotated at
image-level and BB-level.

2.2. From Full Supervision to Weak and Self Super-

vision

ML is a sub-field of AI that develops solutions that do not rely on explicitly programmed
instructions to perform a particular task but are able to improve by exploiting the in-
formation that can be extracted from training data. In particular, in the field of ML,
DL methods that rely on deep neural networks to learn data representations, have gained
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much success in the last few years. The huge amount of available data (Section 2.1) and
computational resources have led to a continuously increasing interest in extracting rele-
vant and useful information from the data itself. According to the class of methods that
is used, different types of information needs to be provided to solve ML tasks. There are
several different classes of ML tasks:

• (Fully) Supervised Learning: it is a class of ML tasks that require annotated
data to train ML architectures. This means that to address supervised tasks, it is
necessary to provide not only the data itself but also the information concerning the
target to be predicted. For instance, in the case of many CV tasks such as image
classification, it is necessary to specify the label associated to each sample, together
with the image itself. This class of approaches is further analyzed in Section 2.2.1.

• Unsupervised Learning: it is a class of ML tasks that allow learning underlying
patterns or better representations of the data exploiting only the data itself without
the need for any additional information.

• Reinforcement Learning: it is a class of ML tasks in which an agent tries to
learn the optimal behavior that allows achieving a certain goal using feedbacks from
its own actions and interactions with the environment in which the agent is placed.

Besides these three basic ML paradigms, it is also possible to identify some other categories
of tasks that are much useful in special scenarios:

• Weakly Supervised Learning (WSL): it is a class of ML tasks where limited
supervision is used for labeling large amounts of training data in a supervised learn-
ing setting. It is used when noisy, limited, or imprecise labels are provided as
supervision. This definition will be clarified in Section 2.2.2.

• Semi-Supervised Learning: it is a class of ML tasks that falls between Supervised
Learning and Unsupervised Learning. In particular, it is concerned with the usage
of a small amount of labeled data and a large amount of unlabeled data. For this
reason, it is also a special instance of WSL. Semi-Supervised Learning aims to label
unlabeled data by exploiting the knowledge learned from the few labeled data points.

• Self-Supervised Learning (SSL): it is a class of ML tasks where no label is
provided. However, differently from Unsupervised Learning, which tries to find
high-level patterns, Self-Supervised Learning attempts to solve tasks that are tradi-
tionally targeted by Supervised Learning, without any labeling available. This class
of approaches will be further analyzed in Section 2.2.3.
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2.2.1. Fully Supervised Learning

Fully Supervised Learning methods [49–52] are based on the Supervised Learning frame-
work. The main peculiarity of these approaches is that the whole data set needs to be
finely annotated.

The level of detail of the labels depends on the specific task to be solved. For instance,
to train a classifier [53–55], it is necessary to specify the class to which each training
sample belongs (image-level label), whereas to train an object detector [49–51, 56, 57],
it is necessary to specify also the location of each object, for instance, using BB-level
annotations. However, annotating data is a time-consuming activity, especially in the
case fine-grained annotations are required [11]. As an example, annotating images is
quite fast if only image-level labels are required. On the other hand, if BB annotations are
requested, the labeling process takes more time. If pixel-wise annotations are required,
the process is even more expensive: labeling a BB on an object takes 10.2 seconds on
average while labeling at pixel-level an object takes 79 seconds, which is about eight
times slower [58]. For this reason, finely annotating whole data sets requires a huge
effort. As a consequence, in some cases, only a small portion of the data set is annotated
finely, whereas the remaining part is annotated using coarse-grained annotations. This is
a major problem, especially for DL models that require lots of data to be trained. Given
this fact, it is necessary to move to a new class of approaches that aim to perform the same
supervised tasks, relying on approaches that do not require extensive supervision. This
has led to advances in sub-fields such as transfer learning [59], semi-supervised learning
[26], WSL [12, 13], unsupervised learning [60] and SSL [14, 15]. In this work, only WSL
and SSL are analyzed in detail.

2.2.2. Weakly Supervised Learning

Weak Supervision (WS) is the branch of ML where limited supervision is used for labeling
large amounts of training data in a supervised learning setting. Different types of weak
supervision can be distinguished [61]:

• Inexact supervision: in this case, only coarse-grained labels are exploited as
supervision. Using this type of weak supervision, it is possible to address the same
supervised tasks using a weaker type of annotations. In particular, in the case in
which input data are images, thanks to WS and the availability of huge data sets,
classical CV tasks such as OD, SS, and IS can be accomplished using coarse-grained
labels such as image-level ones [12, 13].
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• Inaccurate supervision: in this case, labels used as supervision are noisy, partially
unreliable, and sometimes not correct.

• Incomplete supervision: in this case, only a subset of training data is labeled.
Approaches based on semi-supervised learning are usually considered part of this
category.

In this work, only inexact supervision is taken into consideration. It is important to
highlight the fact that the application of these methods is not restricted to images only
and, as a consequence, not only to natural images. WS methods can also be applied
to RSIs [47, 62–65]. For the RSIs domain, the usage of WS is even more important
than it is for the natural images one: RSIs usually have a wide range of views, which
means they contain much more objects of interest than natural images and this leads to
higher labeling cost [66]. Nonetheless, this scenario is even more challenging due to the
characteristics of RSIs (Section 2.1.2). As shown in Figure 2.3 it is harder to localize object
instances because they often occur close to each other and only occupy a small proportion
of large images with complex backgrounds. Moreover, under a low spatial resolution, it
becomes difficult to identify smaller objects while under high spatial resolutions, objects
can be misinterpreted as background. Thus, it is important to take into consideration
these aspects when applying these methods since they have a huge impact on overall
performance.

In the next sections, an analysis of the SOTA methods for the application of WSL
to different CV tasks is performed. In particular, Section 2.4 introduces WS for the OD
task while Section 2.5 does the same for IS.

Figure 2.3: Examples of localization issues introduced by RSIs. Image taken from [67].
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2.2.3. Self-Supervised Learning

Self-Supervision is the branch of ML where a representation of the data is learned with-
out the need for any type of human annotations. The idea behind this approach is that
unlabeled data are exploited during training to extract as much information as possible
to characterize the data itself. In particular, Self-Supervised Learning (SSL) can be con-
sidered a special type of unsupervised learning, given that no label is provided for the
training set. However, as reported in [15] it is very ambiguous in various communities
the difference between self-supervised and unsupervised learning. In this work, the same
separation of the two terms adopted by Wang et al. [15] is used. More in-depth, tradi-
tional unsupervised approaches tend to utilize input data statistics and generate groups
exploiting techniques such as dimensionality reduction [68, 69] and clustering [70]. On
the other hand, SSL is a recent terminology that refers to a class of approaches in which
a model is trained to learn good data representations either using supervision signals that
are automatically generated from the data itself or maximizing the similarity between
semantically identical inputs.

At the same time, SSL can also be considered a special type of semi-supervised learning
in the sense that it is possible to fine-tune the model on a certain task using only a small
amount of labeled data thus resulting in the usage of both labeled and unlabeled data
as in semi-supervised learning. The SSL pipeline is similar to that used in the case of
Transfer Learning (TL) (Figure 2.4) as reported in [14]. In particular, TL [59] is a solution
for constructing data representations when the number of samples in the training set is
limited. The basic idea is to transfer knowledge from a source task to a target one named
downstream task. In particular, weights from a model trained on the source task are
extracted and used as weights initialization for the target task model before eventually
fine-tuning it. In traditional TL, the model is initially trained on a large labeled data set
(e.g., ImageNet [31]), and then it is considered as a starting point to perform the target
task training, without learning from scratch.

However, one of the major limitations of TL is that it usually works only if the source
and target tasks are similar enough given that otherwise, the learned weights may not
generalize well to the target task [14]. For instance, TL is less effective if the source and
target tasks domains are much different. This can be the case for instance of a source
task trained using natural images and a target task that is based on the usage of RSIs.
At the same time, given that traditionally TL is performed using as a source task a
supervised learning task (e.g., Image Classification) trained using a huge labeled data set
(e.g., ImageNet [31]), it is difficult to exploit this solution when there is a significant lack
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of labeled data or when the labeling cost is high, such as in the case of RSIs. To solve
these limitations, SSL can become a viable option to perform TL. In particular, while
traditional TL still requires labeled data to extract the knowledge to be transferred, SSL
only exploits unlabeled data to learn the representation. Furthermore, the data set that
is used to learn the representation of the data is the same as that used to fine-tune the
target task, solving the need of having source and target tasks that do not differ too much.
Thus, it is possible to exploit both labeled and unlabeled data from the same data set,
using the latter to solve a source SSL task, named pretext task, while the former is used
to fine-tune the downstream task exploiting the knowledge gained from unlabeled data.
SSL is a wide field of research both for natural and RS domains, and an in-depth analysis

Figure 2.4: Visual comparison of SSL and TL. In the TL pipeline, a large amount of
labeled data is used to train in a supervised manner a source task, while in the SSL
pipeline a large amount of unlabeled data is used to train the pretext task using self
supervision. In both cases, the extracted knowledge is combined with a small amount of
labeled data to train a final model for the supervised downstream task. The more similar
the data used in input for the source/pretext task is to the one used for the downstream
task, the more effective the knowledge transfer will result.

of the main techniques and the SOTA approaches will be performed in Section 2.3.

2.3. Self-Supervised Learning

Self-Supervised Learning raised considerable attention in CV in the last few years and
achieved significant milestones towards the reduction of human supervision [14, 15]. In-
deed, it allows to extract representative features from unlabeled data, and outperform
supervised pre-training on many tasks [71]. A good number of methods have been de-
veloped over the years to perform SSL. However, these methods can be categorized into
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three main classes of approaches:

• Generative approaches: in this case, representations are learned by reconstruct-
ing or generating input data.

• Predictive approaches: in this case, the representation is learned by predicting
a self-produced label. This means that there is no need of annotating the data set
since the label can be easily produced starting from the original input (e.g., when
predicting the rotation angle of a rotated image, the rotation angle can be easily
retrieved without the need for human annotations, starting from the unrotated
image).

• Contrastive approaches: in this case, the representations of semantically similar
inputs are compared and forced to be as much close to each other as possible.

Independently of the class of approaches that is used, once the representations are learned,
the pre-trained model can be transferred to a downstream task. Eventually, fine-tuning
can be performed as introduced in Section 2.2.3. As opposed to supervised pre-training,
models pre-trained using SSL allow to leverage more general representations and ensure
the possibility of collecting unlabeled data from the target task domain leading to a
reduction of the domain gap between the pre-training phase and the downstream task
training.

2.3.1. Generative Approaches

Generative approaches represent the first class of methods that have been used to learn
better representations of the data. In particular, the basic idea is to learn the representa-
tion by performing input reconstruction as shown at the top of Figure 2.5 or generation.
Two main approaches can be used to design generative solutions: Autoencoders (AEs)
[72, 73] and Generative Adversarial Networks (GANs) [74]. AEs exploit an encoder-
decoder architecture to reconstruct an input. The encoder network is used to generate
feature representations (embeddings) that contain meaningful information about the in-
put. Then, the decoder one aims at reconstructing the original input starting from the
embedding. To avoid the trivial case in which the network learns the identity function,
the embedding representation is much smaller than the input. The idea behind this kind
of approach is that to be able to reconstruct the input, the network should have under-
stood relevant aspects of the input and thus, the encoded features should be meaningful.
Examples of these approaches include Variational AEs (VAEs) [75] and denoising AEs
[72]. On the other hand, GANs use a generator network and a discriminator one trained
in an adversarial way, to learn feature representations starting from input noises, which
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are essentially the feature representations of the output [14]. In particular, the input noise
contains the information needed to generate the corresponding output. The vanilla GAN
[74] was not designed for feature extraction. However, by inverting the generation process,
it is possible to obtain a feature representation. Once the representation is learned, it is
possible to keep only the network that produces the feature representation and use it as
a feature extractor for the downstream task architecture as depicted in Figure 2.5.

Figure 2.5: Example of SSL generative task based on image reconstruction. At the top,
the pretext task is shown, while at the bottom, the encoder is kept to perform knowledge
transfer to solve the downstream task of image classification. The used image is taken
from Pascal VOC data set [32].

2.3.2. Predictive Approaches

Predictive approaches for SSL are based on auto-generated labels, that are used as a
form of supervision to train the supervised pretext task. The idea is that a network
could learn useful representations of the data while learning to predict specific properties
of the data itself. Predictive SSL tries to solve the drawbacks of generative approaches
[15]. More specifically, generative methods are based on pixel-level reconstruction. For
this reason, pixel-level loss functions may overly focus on low-level details whereas in
practice such details are not used by humans to recognize the contents of an image, since
high-level details are usually more important. Moreover, pixel-based reconstruction does
not typically consider long-range correlations that can instead be important for image
understanding. Thus, providing the network with suitable high-level pretext tasks may
allow high-level semantic information to be learned.

A predictive approach follows these steps:

1. Design a suitable pretext task for the data set.
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2. Prepare self-generated labels.

3. Train the model to predict such labels and learn the data representation.

4. Use the feature extractor part of the network to transfer the knowledge to the
downstream task.

One of the most intuitive examples of a pretext task designed for predictive SSL is pre-
dicting the rotation angle of an image [76] (see the top part of Figure 2.6). The idea is
to rotate an input image by random multiples of 90° and assign a label representing the
applied rotation. This label does not need to be annotated by humans given that it can be
self-generated when the data set is loaded for training. The intuition is that to recognize

Figure 2.6: Rotation prediction task for an image of a helicopter. At the top, given the
original image, a rotation is performed (180° in this case) and a label is assigned according
to the applied rotation angle. The network is fed with the rotated image and with the
corresponding label as supervision. In this example, since the image is rotated by 180°,
the network should predict 2. At the bottom, the encoder is kept to perform knowledge
transfer to solve the downstream task of image classification.

the rotation, the network must be aware of the concepts of the objects depicted in the
images. The same intuition holds also for other predictive pretext tasks. The main issue is
that pretext tasks must be carefully designed taking into consideration both the domain
and the downstream task, otherwise, pretext-specific representations could be learned,
decreasing the network’s generalizability. For instance, concerning the example reported
at the top of Figure 2.6, it is easy to understand and predict the correct rotation angle
by looking at the propeller which is an important part of the depicted object (see Figure
2.7). For this reason, predicting image rotations can be an adequate pretext task, that can
potentially lead to the learning of significant data features like the propeller itself, that
could be meaningful in a downstream task such as image classification. At the same time,
predicting image rotations in the case of images such as the one reported in the bottom
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part of Figure 2.7 is much more difficult. Thus, predicting rotations is not a good choice
in this second case. This could potentially lead to the failure of the SSL task. Given

Figure 2.7: Image rotations for two different images. In the first case, it is quite easy
to understand the degree of rotation of the helicopter, for instance by looking at the
propeller. Instead, for the second image, understanding the rotation degree is much more
difficult given that there are only minor changes in the rotated versions.

the sensitivity and importance of the pretext task design, various context information
of the input data can be taken into consideration to design a pretext task suitable for
the specific application. In this sense, pretext tasks can be categorized depending on the
context information they exploit [15]:

• Spatial context: the spatial information contained in the images is used to generate
labels. An example, is the prediction of the image rotation [76].

• Spectral context: the spectral information contained in the image channels is
used to generate labels. For example, the prediction of one spectral channel taking
the others as input could be used as a pretext task [77].

• Temporal context: this is mainly related to the video domain, where relationships
between different frames could be used to design specific pretext tasks [78].

Apart from these three families, other types of contextual information could be exploited.
When designing the pretext task, additional care must be taken to ensure that the pre-
text task is solved by learning important features and not by finding a trivial solution.
Otherwise, the gained knowledge is not useful for the downstream task. For example, in
the case of [79], where an image is split into 9 tiles and the network has to predict the
relative position of two tiles, the authors show that the network can find different trivial
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solutions. For instance, it is shown that the network could exploit low-level cues like
boundary patterns or textures continuing between patches, to solve the task. However,
this leads to learning something that is not useful to solve the downstream task, because
this type of knowledge is not related to the data representation. Thus, ad hoc solutions
should be explored to avoid this kind of situation.

Once the training of the pretext task is completed, the gained knowledge (represen-
tation) can be transferred to the downstream task using the same encoder of the pretext
task as a feature extractor for the target task. If needed, fine-tuning can also be performed
on the feature extractor.

2.3.3. Contrastive Approaches

Despite the good performances reached by predictive SSL approaches, the difficulty of
designing suitable pretext tasks, taking into account the need to avoid possible trivial
solutions and the effectiveness of the learned data representation, still represents an open
issue. For this reason, the idea behind contrastive learning is to give the network more
freedom to learn high-level representations, without relying on a single pretext task. More
specifically, contrastive approaches train a model by contrasting two semantically iden-
tical inputs and pushing them to be close to each other in the representation space. In
the case of images, semantically identical inputs can be computed by applying different
combinations of augmentations to the input image (e.g., random crop, flip, color jitter,
gaussian blur).

As shown at the top of Figure 2.8, the contrastive learning methods are usually built as
a Siamese-like architecture [80]. However, one of the major problems of these approaches
is model collapse, which is concerned with the fact that only enforcing similarity between
pairs of input could lead to a trivial solution in which the model maps all of its input
data to the same representation [81]. Depending on how the model collapse problem is
handled, contrastive learning approaches can be categorized according to the following
taxonomy: negative samples, clustering, knowledge distillation and redundancy reduction.
The first solution proposed to the collapsing problem is the one based on the usage of
negative samples [82–84], which consists in introducing dissimilar samples to have both
positive and negative pairs. While the positive samples are different augmentations of
the same image, the negative samples come from other data points in the data set and
their selection is a critical process [85]. The presence of negative samples allows repulsing
negatives while continuing to attract positive samples in the embedding space. Given an
anchor data point x, a positive example x+, a negative one x− and an encoder E, the
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objective could be formalized as:

sim
(
E(x), E

(
x+

))
≫ sim

(
E(x), E

(
x−)) (2.1)

To achieve this for every data point x, a lot of approaches have been developed (see
Section 2.3.4 and Section 2.3.5), and the focus of them is based on designing accurate loss
functions, named contrastive losses, able to capture the desired objective. In this scenario,
the contrastive learning framework could be summarized by the following pipeline:

1. Data augmentation: images are augmented in different ways changing the visual
appearance but not the semantic content.

2. Encoder: feature representations are extracted from the augmented images ex-
ploiting a network named encoder.

3. Projection Head: the representations obtained through the encoder are mapped
to the representation that is then used by the contrastive loss function.

4. Contrastive Loss: the loss function minimizes the latent embedding distance be-
tween positive pairs while simultaneously maximizing the distance between negative
pairs.

Another sub-class of approaches [86, 87] is concerned with learning data representa-
tions by using a clustering algorithm to group similar features together in the embedding
space. Given the absence of label supervision, the clustering process is used as a self-
labeling mechanism to determine which samples should have a similar representation and
which others shouldn’t.

Knowledge distillation methods [88], instead, commonly make use of a teacher-student
network [89] (that is still Siamese-like) and optimize a similarity metric of two augmented
views of the same input image. Negative samples are not needed in this case because
the knowledge transfer between the student network and the teacher one is based on
asymmetric learning rules or asymmetric architectures.

Finally, the idea of redundancy reduction methods [90] comes from neuroscience and
the intuition of Barlow et al. [91], which states that the goal of sensory processing is
to record highly redundant sensory inputs into a factorial code. Thus, the principle of
redundancy reduction was extended and used to avoid trivial solutions in contrastive
learning, without the usage of negative samples.

In the contrastive framework, once the training procedure is completed, the knowledge
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is transferred to the downstream task using the same encoder of the contrastive learning
framework as a feature extractor for the target task, as shown in Figure 2.8. It is also
possible to perform fine-tuning on the feature extractor if needed.

Figure 2.8: Contrastive learning approach for an image of a sheep. At the top of the
image, two different data augmentations are initially performed on the same image ob-
taining semantically identical views. Following the Siamese-like architecture [80], images
are projected into the embedding space, and, after the projection head, the contrastive
loss is used to minimize the latent embedding distance between the representations of
the two augmented views. The contrastive loss generally refers to the approaches that
use negative samples. However, the pipeline is almost identical also for the other types
of approaches, considering more suitable objective functions (e.g., similarity metrics for
knowledge distillation). At the bottom, the encoder is kept to perform knowledge transfer
to solve the downstream task of image classification. The used image is taken from Pascal
VOC data set [32].

As stated by Wang et al. [15], in some literature, the term contrastive is only used
to denote methods that include negative samples. However, in this work also methods
without negative samples are considered part of this class of approaches. Figure 2.8 could
be easily extended to the other presented types of contrastive learning since the overall
pipeline is not much different than the depicted one and what changes is usually the
objective function.

2.3.4. SSL in Natural Images

As already outlined in the previous sections, several different approaches for SSL have
been developed over the years. In particular, generative methods learn to reconstruct
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or generate input data, predictive approaches learn to predict self-generated labels, and
contrastive methods aim to maximize the similarity between semantically identical inputs.
Generative approaches are the least recent approaches in the field of SSL. Many different
architectures have been proposed during the years for both AEs [92] and GANs [74, 93].

In 2008, Vincent et al. [72] propose the use of Denoising AEs to learn useful feature
representations. In this case, the input that is fed to the encoder is disrupted with some
noise and the AE is expected to reconstruct a clean version of the input.

In 2011, Ng et al. [94] introduce the concept of Sparse AEs in which the embedding
representation’s size is bigger than that of the input instead of being smaller as it is
most of the time. However, if the representation size is equal to or bigger than that
of the input, the architecture could learn the trivial identity mapping. To avoid this
situation, the authors propose to enforce the encoded representation to be sparse. During
the same year, Contractive AEs are proposed by Salah et al. [95]. The emphasis is on
making the feature extraction less sensitive to small perturbations of the input. This is
done by forcing the encoder to disregard changes in the input that are not important for
the reconstruction, by adding a penalty term to the loss function of the AE. The main
difference between Contractive AE and Denoising AE [72] is that the latter encourages the
robustness of the reconstruction, which can only partially increase the robustness of the
representation, while the former encourages directly the robustness of the representation.

In 2013, Kingma et al. [75] introduce the concept of Variational AE which is a genera-
tive model that attempts to describe data generation through a probabilistic distribution.
The idea is that instead of a single latent representation associated with each sample as
was the case of previous methods, the encoder maps the input to a Gaussian distribution
described by mean and standard deviation. Then, the decoder randomly samples a latent
vector from the distribution to reconstruct the input.

In 2014, Goodfellow et al. [74] introduce GAN. The basic architecture of a GAN is
composed of a generator network and a discriminator one. The former aims at generating
new samples (fake samples) similar to those of a specified data set (real samples), starting
from noise, while the latter tries to distinguish between real samples and fake ones. The
idea is that once the generator can fool the discriminator, it is possible to discard the
discriminator and use the generator to produce new samples. By inverting the generator,
it is instead possible to obtain a representation vector of a sample. For this reason, in
2016, Donahue et al. [93] proposed Bidirectional GAN (BiGAN). In this case, besides
the classic generator, another generator network is designed to move from the data to a
latent vector. The discriminator in BiGAN discriminates between the couple input data
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and generated latent representation versus the generated data and input representation.
During the same year, Pathak et al. [96] presented context encoders to generate missing
regions within an image. To accomplish this task, the image with missing regions is fed
to the context encoder, which outputs the missing pixels. The architecture is the typical
encoder-decoder one. The idea is that the context encoder can predict the missing pixels
if the content of the image is understood and thus a good representation is learned.

In 2017, Zhang et al. [97] propose Split-brain AEs designed for the task of representa-
tion learning. The idea is to split the typical AE network into two disjoint sub-networks,
where each sub-network is trained to perform a difficult task named cross-channel predic-
tion. This complex task is the prediction of one subset of the data channels from another
subset. Together, the two sub-networks are able to extract features from the entire input.
The authors show that by forcing the network to solve the cross-channel prediction task,
the learned representation transfers well to other unseen tasks.

More recently, He et al. [73] propose Masked AEs (MAEs) to perform self-supervised
representation learning. Inspired by Denoising AE [72], MAE masks out random patches
of the input image, feeds visible patches to the encoder, and reconstructs the missing
patches starting from the latent representation and masked tokens. This work is based
on transformers [98], thus proving their potential for self-supervised visual representation
learning.

While being effective, generative approaches perform pixel-level reconstruction or gen-
eration. However, being able to generate very high dimensional data points (e.g., whole
images) is not necessary to learn a good representation for many downstream tasks. In
fact, instead of focusing on the whole sample, it is possible to learn useful representa-
tions by focusing only on the prediction of specific properties of the data. For this reason,
around 2015, several researchers started to design suitable pretext tasks for representation
learning.

Doersch et al. [79] propose to decompose the input image in 9 tiles and predict the
relative position of the middle tile with respect to another one. In the paper, the authors
focus also on tackling the problem that the network can find trivial solutions (e.g., using
chromatic aberration) by adding a gap between patches and dropping color channels.
Noroozi et al. [99] propose another pretext task following a similar idea. In particular,
instead of predicting the relative position of two tiles, this method focuses on solving
jigsaw puzzles with 3 × 3 patches. Thus, a permutation of the original image patches is
given as input to the network, whose aim is to predict which permutation was performed.
Variations of this pretext task exist [100–102]. The same authors also propose another
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pretext task based on counting the objects in the image [103].

Zhang et al. [77] propose to let a network learn to colorize an image starting from
an uncolored one. This has been proven to be effective, especially in the case of semantic
segmentation downstream tasks [104].

In 2018, Gidaris et al. [76] propose to predict the rotation angle of an image to learn
good representations of the data. The authors found that the training was significantly
improved by feeding four rotated images into the network simultaneously, instead of a
single, randomly rotated image. Other pretext tasks have been proposed over the years.
For instance, in 2019, Kim et al. [105] proposed to predict the order of the frames of a
video. This type of pretext task thus considers temporal context.

The performance of predictive SSL depends largely on a good pretext task. However,
as already pointed out in the previous subsection, given that designing suitable pretext
tasks is complex and may even lead to pretext-specific representations, contrastive meth-
ods have been proposed. Concerning contrastive methods, most of the approaches are
based on instance discrimination, an approach that classifies each image separately and
aims at finding suitable features representation by looking at the single instances. These
methods initially make use of negative sampling to avoid the problem of model collapse.
Instance discrimination was explored by Wu et al. [106]. The idea behind this work
is to use a network to encode each image as a feature vector, which is projected to a
128-dimensional space. Then, the optimal feature embedding is learned via instance-
level discrimination, trying to maximally scatter the features of training samples in the
128-dimensional space. The features are memorized inside a memory bank.

Misra et al. [82] propose a Pretext-Invariant Representation Learning (PIRL) method
based on the observation that most previous predictive methods [76, 79, 99] learn rep-
resentations that are somehow dependent on the specific transformation that is applied,
and not invariant. Thus, PIRL feeds a Siamese network with an image and one aug-
mented view of the same image and forces their representations to be similar. At the
same time, a memory bank is kept following the idea of [106] to memorize the feature
representations of negative samples to be used for contrastive learning. The memory
bank contains a moving average of representations for all (non-augmented) images in the
data set. Usually, if memory banks are not used, the negative samples that are used are
those contained in the same mini-batch. However, given that contrastive methods tend
to work better with a large number of negative samples, the batch size should be quite
large. Thus, from this point of view, memory banks can be more efficient. However, at
the same time, maintaining a memory bank during training can be a complicated task,
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as updating the representations in the memory bank can be computationally expensive
since representations get outdated quickly, and the representations in the memory bank
are always one step behind the current encoding generated by the network, leading to
unwanted mismatches.

To address these issues, in 2020, He et al. [83] replaced the memory bank by a sepa-
rate module called momentum encoder, proposing a method called Momentum Contrast
(MoCo). The idea is to view contrastive learning as a dictionary look-up, building a dy-
namic dictionary with a queue containing the encoded features of previous mini-batches
that are updated using a moving-averaged encoder. Then, the current mini-batch is en-
queued to the dictionary while the oldest one in the queue is removed. In this way, the
issues concerned with memory banks can be solved, resulting in a performance improve-
ment.

Based on previous works, Chen et al. [84] proposed a milestone of contrastive learning
called SimCLR (SIMple framework for Contrastive Learning of visual Representations).
SimCLR makes use of a classical end-to-end architecture that is fed with two augmented
views of the same image. Moreover, large batch sizes are used to handle the performance
bottleneck related to the number of negative samples. However, the main contribution of
SimCLR is that it illustrates the importance of the used data augmentations. Further-
more, SimCLR also includes an additional learnable non-linear transformation (projection
head) between the representation that is then used in the downstream task and the one
used in the contrastive loss. The authors highlight the fact that using the representation
before the projection head is more effective for the downstream task since the second
representation loses information because of the contrastive loss. More specifically, the
representation after the projection head is trained to be invariant to data transformation.
However, this may remove information that can be useful for the downstream task, such
as the color or the orientation of objects.

Another set of contrastive learning methods aims to learn data representation by
using a clustering algorithm to group similar features together in the embedding space.
Following this idea, Caron et al. [86] propose a method called DeepCluster based on
leveraging K-means clustering [107] to generate pseudo labels. Then, these assignments
are used as supervision to update the weights of a network. Finally, this process (clustering
and network training) is iterated. However, one of the major limitations of this approach
is that the two-stage training is time-consuming and less effective compared to instance
discrimination-based methods such as SimCLR [84] and MoCo [83], which do not use any
clustering stage and make use of data augmentations to boost the performance. At the
same time, these methods require explicitly computing a large number of pairwise feature
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comparisons.

For these reasons, in 2020, the same authors decide to make use of online cluster-
ing and multi-view data augmentation, proposing a new method called SwAV (SWap-
ping Assignments between multiple Views). SwAV exploits the advantages of instance
discrimination-based methods without requiring to compute pairwise comparisons. The
method simultaneously clusters the data while enforcing consistency between cluster as-
signments produced for different augmentations of the same image, instead of comparing
features directly. The intuition is that, given some clustering centroids, different views of
the same images should be assigned to the same centroids. This method is more efficient
than the previous ones given that it requires neither a large memory bank nor a special
momentum network. Based on SwAV, Goyal et al. [71] demonstrated the effectiveness of
SSL in real-world scenarios by surpassing for the first time the best supervised pre-trained
model.

Another set of methods for contrastive SSL is based on knowledge distillation [108].
In 2020, Grill et al. [88] proposed BYOL (Bootstrap Your Own Latent). The general
architecture is similar to that of MoCo [83] in which however no negative samples are
used. BYOL relies on two neural networks, called online (teacher) and target (student)
networks respectively, that can interact and learn from each other. The idea is that
starting from an augmented view of an image, the online network is trained to predict
the representation of the same image under a different augmented view produced by the
target network. The target network is updated in a similar way to MoCo, using a slow-
moving average of the online network. To prevent the problem of model collapse, BYOL
makes the two networks asymmetric by introducing an additional predictor on top of
the online network. This method represents a milestone for further approaches [109].
Furthermore, recent works [110, 111] have improved the performances by exploiting also
image transformers [98].

Finally, the last sub-class of contrastive methods is based on the idea of redundancy
reduction [91]. In particular, Zbontar et al. [90] proposed Barlow Twins. In this case,
redundancy reduction is used as a way to avoid model collapse without the need of using
negative samples. The overall architecture is similar to the typical contrastive learning
network (see the top of Figure 2.8). However, the objective function measures the cross-
correlation matrix between the embeddings of two identical networks fed with augmented
views of a batch of samples and tries to make this matrix close to the identity. In this
way, the representations of semantically identical inputs are forced to be similar, while,
at the same time, minimizing the redundancy between the components of these vectors.
This method as well as others such as BYOL [88] are also more robust to the choice of the
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batch size than other methods such as SimCLR [84], in which a big batch size is needed to
obtain better results. At the same time, these methods do not even need to make use of
additional memory banks such as in [82, 106] given the fact that negative samples are not
used. This allows further boosting of the performances of contrastive SSL approaches.

2.3.5. SSL in Remote Sensing Images

The approaches described in Section 2.3.4 have been trained on natural images. However,
the application of SSL methods is not limited to this type of image, and it possesses a
high potential in other more specific domains such as RS, especially because of the poor
performances obtained with TL using natural images data sets (e.g., ImageNet [31]). The
peculiarities of RSIs, described in Section 2.1.2, must be taken into account also in the case
of SSL. For this reason, the design of a predictive pretext task can be even more difficult in
the case of RSIs. For instance, as depicted in Figure 2.7, learning feature representations
by predicting image rotations [76], may not always be a good choice. Another important
consideration is that RSIs usually come with a larger number of spectral channels. Thus,
barely using the raw natural images methods described in the previous subsection, which
make use of RGB images, would lead to discarding all the information that can be derived
from other channels [15]. As in the case of natural images, however, these methods can be
grouped into the same three main categories as before: generative approaches, predictive
approaches, and contrastive approaches.

Regarding generative approaches, AEs have been widely used to learn representations
from RSIs [112–114]. More specifically, studying the change detection problem for images
with various spatial resolutions, in 2016, Zhang et al. [112] propose a stacked denoising
AE to learn image features. One year later, Lu et al. [113] exploit a shallow weighted
deconvolution network to learn a set of feature maps and filters for each image by minimiz-
ing the reconstruction error between the input image and the convolution result. Then, a
Spatial Pyramid Model (SPM) [115] is used to aggregate the obtained features at different
scales and finally feed them to an SVM [54] for classification. An important application
of AEs in RSIs is Hyperspectral Image (HSI ) analysis, in which AEs are either used for
pre-training [114], or exploited in downstream tasks.

Few GAN-based methods have been developed for SSL. However, several works try
to integrate GANs to target applications [116–122]. For instance, Zhu et al. [116] exploit
GANs to perform HSI classification, while Hughes et al. [118] propose a GAN-based
framework to generate similar samples to a given image.

Regarding predictive SSL, several methods tend to exploit the spatial context of the
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RSIs [123–127], given that this information is quite relevant. Among the approaches
presented for natural images, jigsaw puzzles [99] are not widespread in SSL for RSIs given
that the spatial correlation in aerial images is less dominant. In fact, in RSIs, translation
invariance is prominent given that close patches tend to be similar to each other in several
scenarios (e.g., water surfaces, deserts, forests, mountains, etc.), as reported in [15].

For this reason, specific predictive pretext tasks can be designed for RSIs. In 2018,
Singh et al. [123] propose a pretext task for SS of aerial images based on image semantic
inpainting, given the similarity between inpainting and the SS task. The SSL learning
follows an adversarial training scheme, with a gradually increasing difficulty of the pretext
task, leading to a better data representation.

During the next year, Zhang et al. [124] develop a Rotation Awareness-based learning
framework termed RotANet for the task of automatic target recognition with Synthetic
Aperture Radar (SAR) images. RotANet uses SSL to learn to predict a set of rotation
angles given a sequence of rotated SAR-probed targets and autonomously generalize this
ability to other sequences without external supervision.

In 2020, Tao et al. [125] design a pretext task for RSIs scene classification, based
on both relative position [79] and image inpainting [96], with the addition of instance
discrimination [106]. During the same, year Zhao et al. [126] adopt a mixup strategy for
RSIs scene classification. More specifically, the authors design a multi-task framework
able to combine the SSL pretext task, based on rotation [76], and the downstream task of
RSIs scene classification, using dynamic weights. More recently, Ji et al. [127] approach
the few-shot scene classification problem by exploiting both the rotation prediction pretext
task and contrastive prediction pretext task during training.

Besides spatial context, in the case of RSIs, spectral context can also represent a
valuable asset for the design of pretext tasks, because multiple spectral bands beyond the
RGB color space are usually present. At the same time, exploiting these spectral bands
for SSL can be challenging, and requires attention.

In 2020, Vincenzi et al. [128] propose a method that tries to learn meaningful rep-
resentations from satellite imagery, leveraging the high-dimensionality spectral bands to
reconstruct the visible colors. Moreover, the authors observe that predictions based on
natural images and colorization usually rely on different parts of the input, thus using an
ensemble model can improve the overall performance. One year later Wu et al. [129] pro-
pose the usage of SSL to train a deep network for hyperspectral dimensionality reduction.

Given that in RSIs video recording is not yet common as outlined in [15], the temporal
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context is still not much explored to design pretext tasks. However, RSIs taken at different
times are very important for applications such as change detection [112]. Hence, in 2020,
Dong et al. [130] propose an SSL technique for RSIs change detection using a GAN
discriminator. During the same year, Yuan et al. [131] propose a transformer-based SSL
method for the task of satellite time series classification. This work was recently further
improved [132].

In natural images, contrastive learning is currently the class of approaches that pro-
vides the best overall performance for SSL. Thus, it is not surprising that the usage of
contrastive learning for SSL in RSIs is one of the most promising branches of research
and, as in the case of RSWSOD (see Section 2.4.6), methods developed for natural images
such as MoCo [83] and SimCLR [84] could be a good starting point for further refine-
ment and adaptation to the RS domain. The first SSL approach for RSIs that exploits a
contrastive learning framework is Tile2Vec, proposed by Jean et al. [133] in 2019. This
method extends the distributional hypothesis from natural language that words appear-
ing in similar contexts tend to have similar meanings (that inspired Word2Vec [134]),
to spatially distributed data. The basic idea is to exploit a triplet loss to move closer
neighboring tiles (positive tiles) and move further the distant tiles (negative tiles) in the
feature space. Moreover, the authors show that vector operations can be performed on
the obtained representations as in the case of the representations produced by Word2Vec.

Many approaches have been developed based on the contrastive learning framework
making use of negative sampling. Jung et al. [135] reformulate the triplet loss to binary
classification loss, adding also no-updated fully connected layers to improve robustness,
while Leenstra et al. [136] propose a combination of triplet loss and binary cross-entropy
loss for SSL in RS change detection.

Other approaches follow a design similar to SimCLR [84] and apply it to perform HSI
classification [137–139]. In particular, Zhu et al. [138] develop SC-EADNet, a network
using a multi-scale feature extraction approach, while Zhao et al. [139] show promising
results with very limited labels.

As analyzed by Wang et al. [15] all these HS data-related works rely on simple spatial
and spectral augmentations (e.g., random cropping, Gaussian noise, etc.) to generate
views of the same image. However, given the impact that data augmentation techniques
can have on the final performance [84], there is still much room for improvement.

In 2020, Kang et al. [140] propose SauMoCo, exploiting the basic idea of Tile2Vec
[133] and slightly modifying it to allow considering not only semantic similarities among
nearby RS scenes but also the inherent semantic diversity of land cover concepts. In this
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case, MoCo [83] is used as a contrastive learning method.

In 2021, Jung et al. [141] combine the sampling idea of Tile2vec [133] with SimCLR
[84], proposing SimCLR with smoothed view. The algorithm is based on spatial augmenta-
tion, and it simultaneously utilizes several neighboring images as a positive pair of the an-
chor image. Furthermore, the proposed approach uses multiple-input images and averages
their representations (smoothed representation). More specifically, K-neighboring image
representations, corresponding to positive images, are averaged to create a smoothed rep-
resentation, which is useful for reducing the impact of noise.

During the same year, Li et al. [142] added a contrastive loss term between patches
of an image in spite of using only a contrastive term between views of the same image as
done by most of the approaches.

In 2022, Montanaro et al. [143] tackle the land cover classification task using SimCLR
[84] for the representation learning of the encoder and a perturbation invariant AE for
the segmentation training of the decoder. Scheibenreif et al. [144] address the same task
using Swin Transformers [145] with a contrastive data fusion SSL strategy [146], showing
that latent representations derived through SSL pre-training and subsequent supervised
fine-tuning are task agnostic and can be utilized for both land cover classification and
segmentation. Stevenson et al. [147] propose to use SimCLR [84] for representation
learning of LiDAR elevation data, facing the complexity of this type of multi-dimensional
data.

Apart from all of these methods [140–142, 144, 147], that consider the spatial contexts
of RSIs to generate positive and negative pairs, Contrastive Multi-view Coding can be
used for multispectral and HS representation learning [148–150].

In 2020, Ayush et al. [151] propose to exploit the spatiotemporal structure of RS
data by combining contrastive learning and predictive learning. The authors leverage
spatially aligned images over time to construct temporal positive pairs in contrastive
learning and geo-location to design predictive pretext tasks. One year later, Heidler et
al. [152] proposed an extension of the triplet loss to exploit the correspondence between
geo-tagged audio recordings and RSIs. This loss is called batch triplet loss and it could
be used for audio-visual multi-modal SSL.

Referring back to the contrastive SSL methods that approach the model collapse
problem through clustering, several approaches have been designed also for the RS domain.
In 2020, Walter et al. [120] presents a content-based image retrieval framework for RSIs,
investigating the usage of SSL techniques such as DeepCluster [86], VAE [75], colorization



2| Background 35

as pretext task and BiGAN [93]l.

In 2021, Saha et al. [153] face the multi-sensor RSIs change detection task with
a combination of images acquired by optical and SAR sensors using SSL. The authors
propose to combine DeepCluster [86] and triplet contrastive learning. The authors further
integrate DeepCluster [86], BYOL [88] and MoCov2 [154] in a derivative work [155]. More
recently, Liu et al. [156] contribute to the design of a novel clustering-based contrastive
loss to capture the structures of views and scenes, proposing a Dual Dynamic Graph
Convolutional Network named DDGCN.

Considering knowledge distillation SSL methods, most of the designed approaches for
RSIs [157–160] are based on BYOL [88] and its extensions such as SimSiam [109]. In 2021,
Guo et al. [157] propose to combine GAN [74] and BYOL [88] for better discriminative
representation learning. The authors add a similarity loss to the discriminator loss by
seeing the discriminator as a self-supervised encoder, which encodes both fake and real
images as two input views to a BYOL-like Siamese network. Following a similar intuition,
Hu et al. [158] utilize a transformer as an encoder backbone combined with a BYOL [88]
baseline structure to address the HSI classification task. More recently, Zhang et al. [161]
also exploits an attention-based vision transformer, where global and local augmented
views are contrasted based on self-distillation [162].

Muhtar et al. [159] propose IndexNet, an SSL method for SS with RSIs. IndexNet is
built on BYOL [88] and performs contrastive learning at image and pixel levels to preserve
spatial information. By combining image-level contrast and pixel-level contrast, IndexNet
can learn spatiotemporal invariant features. Similarly, Chen et al. [160] propose a pixel-
level SSL approach for change detection. This method is based on SimSiam [109] with
the objective of enforcing point-level consistency across views. The authors also propose
to use background-swap augmentation to focus more on the foreground.

Finally, regarding redundancy reduction approaches, methods for natural images such
as Barlow Twins [90] are relatively new, and thus, up to now, these methods are directly
applied also to RSIs [163, 164].

Thus, in general, RSIs SSL approaches are usually based on those developed for
natural images, with the introduction of modifications to address RSIs challenges.

2.4. Weakly Supervised Object Detection

In the field of CV, one of the most studied tasks is that of Object Detection [23, 27]. OD is
a CV technique that allows to identify (classify) and precisely locate objects in an image.



36 2| Background

Usually, the location is delineated using BBs. Several methods have been developed in the
last few years to address problems such as vehicle detection [165–167], airplane detection
[37, 47] and ship detection [38–40].

In Fully Supervised Object Detection (FSOD), it would be necessary to annotate the
data set specifying both the bounding box enclosing an object and the category to which
the object belongs. Recently, successful FS approaches have been developed [49–51, 56, 57]
to solve the task of OD. In particular, they can be categorized into two macro-groups:

• Region proposal-based: these methods use a two-step approach. First, they iden-
tify regions, where objects are expected to be found using off-the-shelf techniques,
[168, 169] as done in [49, 50] or using a built-in Region Proposal Network (RPN)
as in [51], to extract a set of candidate BBs that are highly likely to contain an
object instance. Then, they detect objects only in the identified regions using a
Convolutional Neural Network (CNN). Examples of these approaches are R-CNN
[49], Fast R-CNN [50] and Faster R-CNN [51]. These methods are usually slightly
better in terms of accuracy but slower due to the presence of the region proposal
step.

• Region free: these methods recast the OD problem as a single regression problem,
straight from image pixels to bounding box coordinates and class probabilities. They
propose a fully convolutional approach in which the network is capable of identifying
all the objects in a single forward pass over the image. These methods are thus
usually faster than those based on region proposals. Examples of these approaches
are YOLO [57] and SSD [56]. However, with the advent of Retina-Net [170] the one-
stage detectors started to achieve comparable accuracy to that of two-stage detectors
while maintaining very high detection speed. More specifically, the authors claimed
that the extreme foreground-background class imbalance (which is even higher for
images such as RSIs) encountered during the training of dense detectors is the
central cause of lower performances. This is solved with the introduction of a new
loss function named focal loss that forces detectors to put more focus on hard,
misclassified examples during training.

Region proposal methods such as [168, 169, 171] are a fundamental preprocessing step
that has been used in many CV tasks such as object recognition [49–51], IS [172, 173] and
text detection [174] both in Fully Supervised and Weakly Supervised scenarios. Region
proposal methods aim at extracting a certain number of regions of interest, i.e., those
that may contain object instances, from the image. It can be accomplished in different
ways, with the basic approach being a sliding window. More advanced and efficient
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proposals generation methods have been proposed, such as Selective Search [168], Edge
Boxes [169] and Multi-scale Combinatorial Grouping (MCG) [171], that exploit low-level
features like color and edges or low-level contour information (e.g., Structured Edge,
Ultrametric Contour Map) as cues to produce object candidate windows. In general,
these methods are built to have a high recall so that the generated candidates are highly
likely to contain an object instance. However, these methods are highly time-consuming.
To solve this issue, it is possible to either exploit approaches in which there is no region
proposal generation step [40, 175] or directly integrate the region proposal generation and
features extraction steps in the network using an RPN [51]. The latter exploits CNNs
and can extract more relevant features for the areas of interest and speed up the process.

Weakly Supervised Object Detection (WSOD) [12] consists in performing OD exploiting
coarse-grained annotations without the knowledge of ground truth BBs. The problem has
been addressed by exploiting different types of annotations such as points [176, 177] and
image-level annotations [178–182]. In both cases, the problem is ill-posed. In particular,
knowing the image-level label of a training sample does not provide any type of information
regarding the location of the objects in the image, while point annotations just provide
coarse information on the objects’ position. Given the nature of the problem, at the
current time, image-level annotation-based methods struggle to reach the performances of
FSOD methods. The gap between FS and WS approaches is reduced if point annotations
are used, but still, some work needs to be done. In the context of WSOD, three main
classes of approaches can be distinguished as reported in [12]:

• Multiple Instance Learning (MIL) - based

• Class Activation Maps (CAM) - based

• Hybrid

2.4.1. MIL-based Approaches

Most of the existing methods [178–183] for WSOD are based on MIL. In such cases, the
image is viewed as a collection of potential instances of the object to be found. Typically,
MIL-based weakly supervised object detectors follow a three steps pipeline:

1. Proposal generation: extract a certain number of regions of interest from the
image that are highly likely to contain an object instance, exploiting a Region
Proposal Method.

2. Feature extraction: compute a feature vector for each candidate region that
contains the relevant information of that crop. Features can be handcrafted or
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extracted by a CNN as in DL methods.

3. Classification: perform OD by recasting the problem as a MIL classification one.

The last step can be performed by exploiting the fact that it is natural to treat WSOD as
a MIL problem. The MIL problem was first introduced in [184]. It is a classical weakly
supervised learning problem. In the general MIL framework, the training set is composed
of bags and each bag is associated to a set of instances. Each bag is labeled (bag-level
label) as positive for a specific class if it contains at least one positive instance (instance-
level label) of that class. On the other hand, a bag is labeled as negative for a class if it
is associated only with negative instances of that class. Then the task to be solved can
be one of the following:

• Instance-level classification: it consists in inferring the unknown instance labels
from the known bag labels.

• Bag-level classification: it consists in inferring the unknown bag labels.

The WSOD task based on image-level labels only can be reformulated as an instance-
level classification MIL problem. In this particular application, the bags are the images,
whereas the set of instances to which an image (bag) is associated is the set of feature
vectors of region proposals. Then, the bag-labels are image-level labels and the inferred
instances-labels are the BB-level labels. For the training step, each image (or bag) is
assigned a positive or negative label based only on the image-level label, i.e., the presence
or absence of a specific category. Thus, an image can be represented as a positive bag for
one category while a negative bag for another category not present inside such an image
as shown in Figure 2.9. The aim is to infer instance-level labels for the proposals inside
each image. Figure 2.9 illustrates the recasting of the WSOD problem as a MIL problem,
while the following schema summarizes the relationship between MIL and WSOD:

MIL Problem ⇐⇒ WSOD Task

Bags ⇐⇒ Images

Instances ⇐⇒ Region Proposal feature vectors

Bag-level labels ⇐⇒ Image-level labels

Unknown instance-level labels ⇐⇒ Unknown BB labels
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Figure 2.9: Illustration of a WSOD problem recast as an Instance-level classification MIL
problem. The instances (BB proposals) are taken as input and Image-level labels are used
as Bag-Labels. The considered categories are Tennis court and Vehicle. For Image (Bag)
1, both categories are present, this means that the bag is positive for both of the classes
(as reported in the corner of the bag), while in Image (Bag) 2 only vehicles are present,
so the bag is positive for the vehicle class and negative for the tennis court one. Initially,
every proposal is associated with an unknown instance-level label, which is then learned
during the MIL Classification, leading to the knowledge of the final BB-level labels of the
images. The two images are taken from DIOR data set [34].

2.4.2. CAM-based Approaches

Another class of approaches for tackling WSOD is to formulate the problem as a localizable
feature map learning problem. The idea comes from the fact that as observed in [185]
every convolutional unit in the CNN is essentially an object detector that can locate the
target object in the image. For instance, if the object appears in the upper left corner
of the image, the upper left corner of the feature map after the convolutional layer will
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produce a greater response. These localization capabilities of CNNs have been further
studied in other works such as [186, 187]. CAMs were introduced in [187] as a weighted
activation map generated for an image (see Figure 2.10). A CAM helps to identify the
region a CNN is looking at while classifying the image. Since no additional label related
to the location is required to build CAMs, the objects do not have to be labeled manually
and the localization is kind of learned for "free". Once the CAM has been obtained, BBs
can be easily computed by post-processing it. Thus, several CAM-based methods have
been developed in the last few years especially for the task of Weakly Supervised Object
Localization (WSOL) [188–192], but also for WSOD [47, 175].

Figure 2.10: In the middle, example of CAM for the dog class obtained from the image
on the left. On the right, the green BB is the ground truth, whereas the red BB is the
one obtained by thresholding the CAM values.

2.4.3. MIL-based VS CAM-based Approaches

MIL-based and CAM-based approaches have advantages and disadvantages as analyzed
by Shao et al. [12]. Firstly, MIL-based networks leverage region proposals methods such
as Selective Search [168], Edge Boxes [169] or sliding windows to generate thousands
of initial proposals, while CAM-based networks segment the activation map to obtain
a proposal for each class (in the case of Object Localization). Therefore, a MIL-based
method is usually better than a CAM-based method when detecting multiple instances
with the same category in an image as is often the case for RSIs. Instead, a CAM-based
method performs well when few big instances are present in the image (e.g., natural
images). However, training and making inference using MIL-based networks are slower
due to the presence of the region proposal generation step that is time-consuming and yield
plenty of initial proposals most of which are not valid. Moreover, MIL-based approaches
usually provide better overall performances but at the same time, the performance on each
category is highly variant. On the other hand, CAM-based approaches are less widespread
and effective than MIL-based approaches. They tend to be more stable in terms of
performance over the classes. For this reason, it could be interesting to build hybrid
approaches that exploit the advantages of both methods (see Section 2.4.4). Finally, as
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highlighted in [12] both MIL-based networks and CAM-based networks tend to suffer two
main problems:

• Partial coverage problem: it may arise from the fact that the proposals sur-
rounding the most discriminative part of an instance are likely to have the highest
score. If proposals are selected solely based on the highest score, the detector will
learn to focus only on the most discriminative parts and not the entire extent of
an object (discriminative region problem). Another cause may derive from the use
of proposal generation methods such as Selective Search [168], and Edge Boxes
[169] whose proposals may not well cover the entire objects, severely hindering the
performance of the detector (low-quality proposals).

• Multiple-instance Problem: accurately detecting all instances of the same cate-
gory in an image is challenging given that object detectors [178, 179] tend to select
the highest score proposal of each category as the positive proposal and ignore all
the others.

2.4.4. Hybrid Approaches

Given the different characteristics of the two approaches and their corresponding ad-
vantages and disadvantages, an interesting option would be to study the possibility of
exploiting the advantages of both approaches leading to a sort of hybrid approach. In
particular, Cheng et al. [182] propose a MIL-based approach in which high-quality can-
didate proposals are generated by combining Selective Search [168] and Grad-CAM [193]
since MIL-based methods usually require good quality candidates. Wang et al. [67]
propose to use a WSOL method such as [187, 193] to generate pseudo-labels for each pro-
posal. Then, during the training stage, low-quality proposals are effectively suppressed
while high-quality proposals are highlighted.

2.4.5. WSOD in Natural Images

The problem of WSOD has been widely studied in the last few years since it allows the
detection of objects without the need for ground truth BBs. The research focused on
solving the most typical problems of WSOD such as the discriminative region problem
and multiple-instance problem, accounting also for other critical factors such as speed
[12].

In 2016, Bilen and Vedaldi [178] propose a milestone for WSOD starting from image-
level labels named Weakly Supervised Deep Detection Network (WSDDN ), based on
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MIL. The core of WSDDN is a two streams network that aims to perform classification
and localization respectively. Initially, the image and region proposals extracted using a
region proposal algorithm, are fed into some convolutional layers with a Spatial Pyramid
Pooling layer [194] to produce a fixed-size convolutional feature map for each proposal.
Then, proposal feature maps are fed into two fully connected layers to produce proposal
features. These features are then given as input to the two streams. The classification
branch computes the class score of each proposal and the detection branch computes the
contribution of each proposal to the image being classified as a certain class. These scores
are then multiplied for each region and summed to obtain the final prediction score.
Since only image-level labels are used for the training, the network tends to suffer the
discriminative region problem.

To alleviate this weakness, Tang et al. (2017) [179] extends WSDDN [178], proposing
a new architecture denominated OICR. OICR adds refinement branches to the basic
instance classifier of WSDDN, that are designed to further predict the class scores for
each proposal. Since the output of each branch is used as supervision for the next one,
OICR can continue to learn so that a bigger part of the object can be covered. However,
OICR only tackles the discriminative region problem, but still suffers as WSDDN, the
multiple-instance problem since both methods select the highest score proposal of each
category as the positive proposal and ignore all the others, hurting the discriminative
power of the detector. However, since then, most MIL-based WSOD methods [65, 180–
182, 195–200] are based on the structure of OICR [179] and aim to further alleviate the
discriminative region problem and solve the multiple-instance one.

In 2018, Tang et al. [180] proposes an OICR-based method named Proposal Cluster
Learning (PCL). As in OICR, the proposal features are branched into different streams
(the basic instance classifier and the refinement ones). For each stream, proposal classifi-
cation scores are obtained and proposal clusters are generated. Based on these proposal
clusters, supervisions for the next stream are generated. Thus, PCL aims to treat each
proposal cluster as a small bag to train refined instance classifiers. This is proved to force
the network to cover the whole object or at worst larger parts of the object. One year
later, Li et al. [195] shows the effectiveness of combining OD and SS tasks, introducing a
segmentation-detection collaborative mechanism named SDCN. The proposed approach
consists of a detection branch and a segmentation branch, which are responsible for de-
tecting BBs and generating segmentation masks respectively. In this way, the detection
and segmentation branches are optimized alternatively and promoted each other, resulting
in a performance improvement.

In 2020, Chen et al. [181] proposes a Spatial Likelihood Voting (SLV ) module that
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is fed with average classification scores of the refinement branches. The basic idea is to
solve a multi-task problem in which the classification and localization tasks promote each
other to improve the performances and alleviate the discriminative region problem.

Given that previous approaches do not take into consideration the consistency among
different views of the same image, this could lead to labeling these views differently,
hurting the performances. Thus, Huang et al. (2020) [200] proposes a Comprehensive
Attention Self-Distillation (CASD) training approach for WSOD. CASD conducts con-
sistent representation learning over input images under multiple transformations, which
guarantees the feature consistency of related proposals of the same image under different
transformations, solving the outlined issue. During the same year, Cheng et al. [182]
proposes a MIL-based approach in which however proposal generation is improved using
Grad-CAM [193] to produce better candidates. This is a very important point since the
performances of the detectors are highly affected by the quality of the initial proposals.
Usually, WSOD MIL-based methods train object detectors with the instances obtained
by region proposal methods [168, 169]. However, given that the proposals generated by
these algorithms, can not well fit the ground truth BBs, the learned object detectors may
not well localize or even be unable to localize objects. This motivates the generation of
higher-quality proposals.

Over the years researchers proposed other methods to cope with the discriminative
region problem. Some of these methods make use of context information [201, 202], gener-
ative adversarial learning [203], gradient maps [204]. Furthermore, researchers focused on
addressing the issue that MIL-based approaches tend to get stuck in local minima due to
the introduced false positive examples. To solve this issue, some of the proposed methods
are based on modeling the uncertainty in the location of the objects [205], continuation
optimization [206] and zigzag learning strategy [207].

Besides the MIL-based framework which is the most widely used approach, other
methods based on CAMs [188–192] have been developed. However, these approaches are
widely used to solve the task of WSOL which aims to detect only one instance in an image.
The main reason is that CAMs usually provide better results when images contain a few
large objects. Shao et al. [12] provide a well-structured report of the recent advances in
this area of research.

2.4.6. WSOD in Remote Sensing Images

The works analyzed in the previous subsection have been trained and tested on natural
images. However, the application of WSOD methods is not limited to this type of image.



44 2| Background

WSOD methods that exploit image-level labels are also widely used with RSIs to address
problems such as vehicle detection [167] and aircraft detection [208, 209]. Performing
Remote Sensing Weakly Supervised Object Detection (RSWSOD) is a harder task with
respect to WSOD in the natural images domain since both the partial coverage and
multiple-instance are still present, but at the same time, also additional challenges arise
from the RSIs characteristics (see Section 2.1.2):

• Density problem: in RSIs, there are often dense groups of instances belonging
to the same category. Models usually have difficulties in accurately detecting and
distinguishing all the instances (see Figure 2.3).

• Generalization problem: the high intra-class diversity in RSIs induces general-
ization problems mainly due to three factors:

– Multi-scale: objects may have varying sizes, and their representation strongly
depends on the image resolution and Ground Sample Distance (GSD).

– Orientation variation: instances present arbitrary orientations and may re-
quire the use of methods generating Oriented BBs instead of the classical Hor-
izontal BBs.

– Difficulty: in general, RSIs show varying detection difficulty based on the
background and instances complexities. Multiple instances of the same cate-
gory may be more or less difficult to detect in the same image.

Before the advent of Deep Learning (DL), most object detectors were based on Support
Vector Machines (SVMs). The workflow behind these methods is to start by producing
candidate proposals exploiting either a Sliding Window (SW) [165, 210, 211] or Saliency-
based self-adaptive Segmentation (Sb-SaS) [37, 42, 212, 213] approach. SW generates
proposals by sliding, on the entire image, multiple BBs with different scales while Sb-SaS
produce saliency maps that measure the uniqueness of each pixel in the image and exploit
a multi-threshold segmentation mechanism to produce BBs, dealing with the variation of
the target size and the resolution of the RSIs. Each proposal is characterized using a set of
low- and middle-level features derived using methods such as SIFT [214] and HOG [215].
The extracted features can be further manipulated to produce high-level ones. Then,
sets of positive and negative candidates are chosen to perform Training Set Initialization
(TSI) and finally Target Detector Learning (TDL) is performed. The detector training
procedure is composed of two steps: 1) training of the detector and 2) update of the
training set (modifying the positive and negative candidates). These steps are repeated
until a stopping condition is met. In this work, this type of approach is referred to as
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TSI+TDL.

Later on, thanks to the advancements in the DL field and the development of more
powerful high-level feature extractors and CV architectures, researchers moved towards
MIL-based [65, 196, 198, 199] and CAM-based [47, 175, 209] methods that could be
more efficient while providing better performance, with the same distinction present in
the natural images domain. However, the SOTA methods for natural images must be
adapted to face the challenges induced by the usage of RSIs. In this direction, several
approaches have been proposed to reduce the inference of the background and allow the
distinction of adjacent instances.

The first attempts to apply WS techniques to aerial images to perform single-object
detection are TSI+TDL-based approaches, performed by Zhang et al. [37, 42] in 2014.
These first works aimed to reduce the effort needed for FS methods by proposing working
solutions for WSL on RSIs. The idea is to mine positive and negative samples to initialize
the training set and then exploit an iterative training scheme to refine the detector and
update the training set using a WS SVM. Inspired by this work, Han et al. [210] proposes a
probabilistic approach using the Bayesian rule [216] to jointly integrate saliency, intra-class
compactness, and inter-class separability to better initialize the training set, information
that was not considered by the previous works. This work also highlights the limitations
of low-level and mid-level feature extractors that are not powerful enough to effectively
describe objects in RSIs due to the influence of the cluttered background and proposes
to use a Deep Boltzmann Machine [217] to extract high-level features. All these methods
focus on the problem of single-object detection. Cheng et al. [211] attempted to employ
a Collection of Part Detectors (COPD) [43] composed of a set of WS SVM detectors to
adapt previous works to multi-object detection.

With the advent of CNNs [53], both WSOD and RSWSOD methods started to benefit
from the powerful feature extraction capabilities of deep architectures. In 2015, Zhou et
al. [212, 213] propose to use transferred deep features and negative bootstrapping to
make the detector converge more stably and faster by exploiting the most discriminative
training samples. To avoid the use of time-consuming methods for proposals generation,
in 2016, Zhang et al. [208] proposed the use of a coupled CNN that integrates an RPN
[51].

The introduction of WSDDN [178] and OICR [179] was a milestone for WSOD in
natural images. Of course, it also had a huge influence on the Remote Sensing community.
However, the direct application of these methods to solve tasks in the RS domain results
in a severe performance drop. For this reason, many researchers focused on solving the
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RSWSOD problem by improving these techniques by adding new modules that could
overcome RSIs challenges.

In 2017, Cao et al. [165] exploit MIL and density estimation to predict vehicles’
locations starting from region-level labels. One year later, Sheng et al. [166] propose
MIRN, a MIL-based approach that tries to leverage the count information and an online
labeling and refinement strategy, inspired by OICR, to perform vehicle detection, solving
the multiple-instance problem. During the same year, Li et al. [218] proposes a Siamese
network to overcome the fact that existing methods tend to take scenes as isolated ones
and ignore the mutual cues between scene pairs when optimizing deep networks. Moreover,
a multi-scale scene-sliding-voting strategy is implemented to produce the CAM allowing
to solve the multi-scale problem. The authors further propose different methods for
thresholding the CAM and observe that the detection results for each class have a strong
dependence on the chosen thresholding method. In 2019, Ji et al. [209] propose a method
to reduce the false detection rate that affects many aircraft detectors producing a more
accurate attention map, while Aygunes et al. [219] modify WSDDN architecture to adapt
it for the task of WS Fine-Grained Object Recognition for tree species classification,
which is even more challenging than traditional RSWSOD given the very low inter-class
variance. The same authors further improve the work, addressing the same task under
the presence of multiple sources [220]. In this case, WSDDN is used to perform RSWSOD
using the multispectral image and LiDAR data, while the RGB image (assumed to have
no location uncertainty) is exploited as a reference to aid data fusion, which is a critical
step in multi-source scenarios.

In 2020, Chen et al. [221] proposes a novel MIL-based object detector based on a
neural network called Full-Coverage Collaborative Network (FCC-Net). Hybrid dilated
convolutions and multi-level pooling techniques are combined to fuse multi-scale feature
maps allowing the detection of various-sized objects which represent a major problem in
RSIs. Moreover, the authors show that iteratively training a WS detector and an FS
one exploiting the output of the WS detector as pseudo-ground truth can improve the
performances.

Feng et al. [196] propose a new MIL-based approach based on OICR [179] called
PCIR. PCIR tries to solve the discriminative region problem by exploiting a context-
based strategy to divert the focus of the detection network from a local distinct part to
the whole object and further to other potential instances, also addressing the multiple-
instance problem. A progressive proposal self-pruning algorithm is further designed to
mitigate the influence of complex background typical of RSIs by dynamically rejecting the
negative training proposals. During the same year, Feng et al. [198] propose TCANet, a



2| Background 47

MIL-based architecture that aims to exploit context information as in the case of PCIR to
alleviate the problem of the discriminative region. At the same time, appearance similarity
is considered to learn instance-level discriminative cues that allow easily distinguishing
instances appearing in adjacent locations, thus solving the density problem. In their
following work [199], the authors propose a method based on the TCANet architecture
[198] named SAENet. Adversarial Dropout–Activation (ADA) blocks are used to capture
the whole object and a self-supervised transformation equivariance mechanism is used to
enforce consistency within an instance and its augmentations. This is a major contribution
since previous methods didn’t consider this issue. Thanks to the proposed method, an
object instance in an image and the same instance in the augmented one are equivalently
classified. If this is not constrained, they may be classified differently and this could
damage the detector’s performance. This fact was already highlighted in WSOD by
Huang et al. [200].

Another important aspect of training a good detector is the quality of the proposals,
as already previously outlined [182]. Yao et al. [197] highlight that besides the importance
of proposals’ quality, most approaches often fail to provide high-quality initial samples to
the detectors, making it difficult to obtain optimal object detectors. To address this issue,
a dynamic curriculum learning strategy [222] is proposed to progressively learn the object
detectors by feeding training images with increasing difficulty. The difficulty of localizing
objects in images is assessed by employing an entropy-based criterion. Then, training
images are fed to the detector in ascending order of difficulty, leading to an improvement
in its capabilities. This intuition was dictated by the recent advances in natural images
WSOD [223, 224].

The importance of the quality of image proposals is further studied by Wang et al.
[67] that propose an interesting MIL-based approach inspired by PCL [180] to perform
object detection. The key innovation of the paper is the proposal generation step: a novel
pseudo-label generation (PLG) algorithm is developed combining Selective Search [168]
with the information provided by a CAM-based weakly supervised localization model
[225]. This way, by intersecting the results of selective search with those of the WSOL
method, low-quality proposals can be effectively suppressed. Moreover, recently, Cheng
et al. [226] propose an RPN based on the objectness confidence to generate high-quality
proposals. The authors show that using the proposed RPN in place of standard techniques
(e.g., Selective Search [168]) can improve the performance of previous MIL-based methods
such as OICR [179] and MELM [227].

In the meantime, Wu et al. [47] proposes an effective way of using a CAM-based
approach for aircraft detection. In their subsequent work [175], the authors propose a



48 2| Background

CAM-based approach that fuses the information extracted from shallow CAMs (SCAMs)
and deep CAMs (DCAMs), reducing the performance gap between MIL-based and CAM-
based approaches. In particular, the work highlights the fact that SCAMs are useful
to localize objects while DCAMs are useful to be able to classify instances correctly.
Moreover, Divergent Activation [189] and similarity modules are used to identify more
objects and find densely-distributed objects. Furthermore, the authors show that the
proposed method performs similarly to PCIR [196] with the difference that PCIR like
many MIL-based methods, tends to perform very well for some categories and poorly for
others while the proposed CAM-based approach is more balanced.

In 2022, Qian et al. [65], propose a MIL-based approach based on OICR [179] with
modified losses to account for completeness and difficulty. The authors are the first to
highlight that an imbalance between easy and hard samples causes the network not to
learn how to correctly detect objects in the few available hard samples. This method
makes use of segmentation masks produced by the WSSS algorithm proposed in [228] to
determine the completeness and difficulty of each sample. Completeness is used to state
whether a proposal covers the entire object, while difficulty evaluates how difficult it is
that a proposal can be identified correctly. The authors also state that using a more
robust WSSS method can increase the accuracy.

Over the years, other works have been developed to address more specific tasks. For
instance, Du et al. [229] propose an RSWSOD method based on the TSI+TDL framework
and image-level labels to detect objects in Synthetic Aperture Radar (SAR) images. Li
et al. (2021) [230] proposes an RPN for geospatial applications that consider Tobler’s
First Law of geography, stating that Everything is related to everything else, but near
things are more related than distant things. The idea is to convert the 2D object detection
problem into a 1D temporal classification problem. The method is applied for terrain
feature detection. Berg et al. [231] exploited an anomaly-detection mechanism to detect
marine animals from aerial images. By training this model using images not containing
marine animals, the model will then be able to detect animals as anomalies. Finally, Yang
et al. [40] addressed the task of ship detection by exploiting an image transformer [232]
called PistonNet which showed impressive generalization capabilities for generic object
detection, leading the way to transformer-based solutions.

The works reported in this section show that MIL is the most widely used framework
to solve RSWSOD. Several of the reported methods are applied to generic scenarios, even
though some specific applications have been studied (e.g., vehicle detection, tree species
classification), and it is possible to compare their performances on the most popular data
sets such as NWPU VHR-10.v2 [44], DIOR [34] and Google Earth [37].
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Table 2.2: Overall results of some WSOD methods on the main data sets. Only the
methods with available results on DIOR, NWPU VHR-10.v2 or Google Earth are reported.

Name Approach Year NWPU VHR-10.v2 DIOR Google Earth
mAP CorLoc mAP CorLoc AP

Zhang et al. [37] TSI + TDL 2014 - - - - 54.18%
Han et al. [210] TSI + TDL 2014 - - - - 60.16%
Zhang et al. [42] TSI + TDL 2014 - - - - 66.42%
Zhou et al. [212] TSI + TDL 2015 - - - - 75.58%
Zhou et al. [213] TSI + TDL 2016 - - - - 76.26%
FCC-Net [221] MIL 2020 - - 18.30% 41.70% -
DCL [197] MIL 2020 52.11% 69.65% 20.19% 42.23% -
PCIR [196] MIL 2020 54.97% 71.87% 24.92% 46.12% -
AlexNet-WSL [47] CAM 2020 - - 18.78% - -
TCANet [198] MIL 2020 58.82% 72.76% 25.82% 48.41% -
Wang et al. [67] MIL + CAM 2021 53.60% 61.50% -
SDA-RSOD [175] CAM 2022 - - 24.11% - -
MIGL [233] MIL 2021 55.95% 70.16% 25.11% 46.80% -
SAENet [199] MIL 2021 60.72% 73.46% 27.10% 49.42% -
SPG+MELM [226] MIL 2022 62.80% 73.41% 25.77% 48.30% -
Qian et al. [65] MIL 2022 61.49% 73.68% 27.52% 49.92% -

This comparison, reported in Table 2.2, shows that CAM-based methods have been
less evaluated on these three challenging data sets. This may happen because, most of the
time, CAM-based approaches are used for specific tasks such as aircraft detection, while
MIL methods are more frequently applied to generic scenarios. Another factor influencing
this trend is that CAMs work well when there are few large instances in the image [12].
For this reason, MIL-based approaches seem more effective than CAM-based ones in RSIs,
where multiple instances are present. However, recently, this performance gap has been
reduced by the work of Wu et al. [175].

It is important to note that the overall performance of the methods increases over the
years independently of the data set, demonstrating the effectiveness of the novel proposed
methods.

Even though there has been a great improvement in the performances of WSOD
methods based on image-level labels, there is still a consistent gap w.r.t. FSOD approaches
such as YOLOv5 [234], as shown in Table 2.2. Because of that, the problem of WSOD
in RSIs has also been addressed by exploiting finer-grained annotations such as point
labels [176]. The idea behind the usage of this type of annotations is that they are far
cheaper than the BB annotations [176] and they allow to greatly reduce the performance
gap between WS and FS approaches.

An in-depth analysis of State-of-the-art RSWSOD approaches was performed and
published in a systematic review [13].
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2.5. Weakly Supervised Instance Segmentation

Instance Segmentation [24] is another very important and studied task in the field of CV.
IS allows assigning a label to every pixel in the image, discriminating different instances
of the same class. This is the difference between SS and IS. Several solutions for IS tasks
have been developed in the last few years to address problems such as ship detection [38]
and pedestrian detection [235].

In an FS scenario, it would be necessary to annotate the data set with a mask for
each specific instance (set of pixels corresponding to each instance) and the class label for
each mask. According to Hafiz and Bhat [24], there are four main families of approaches
that can be considered in an FS scenario:

• Classification of mask proposals: mask proposals are generated using methods
such as Selective Search [168], and this is followed by a classification of the generated
proposals.

• Detection followed by segmentation: the generation of the segmentation masks
starts from bounding boxes and is followed by object-box segmentation.

• Labelling pixels followed by clustering: the usage of techniques for SS is fol-
lowed by the application of clustering algorithms to generate instance masks.

• Dense sliding-window methods: dense sliding-window techniques are used in
CNNs for mask proposal generation.

Mask R-CNN [52] is probably the most widely used architecture for IS and it belongs to
the Detection followed by Segmentation approaches. Other main approaches are reported
and well categorized in the survey by Hazif and Bhat [24].

Weakly Supervised Instance Segmentation (WSIS) consists in performing IS exploiting
only coarse-grained labels such as image-level labels [172, 173, 228, 236, 237]. It is an
ill-posed problem since knowing the image-level label does not provide any type of in-
formation regarding the location and the label of the instances of the objects. It is
also possible to use BBs as coarse-grained labels [238–240]. In this way, the information
regarding the location of the object is known but no insight is given about the pixels
representing the specific instance. WSIS with only image-level annotations is the most
difficult problem to be addressed among those analyzed so far, but, at the same time,
annotating a data set for Fully Supervised IS would be very time-consuming.
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2.5.1. WSIS in Natural Images

WSIS methods based on image-level labels only [172, 173, 228, 236, 237] are still a rel-
atively new area of research, and most of them are focused on the usage of CAMs [187]
and their variations. There exist other methods for WSIS based on BB-labels [238, 240].

In 2018, Zhou et al. [172] propose the first approach to address the WSIS task
starting from image-level labels. The basic idea is to exploit the fact that CAMs show
peaks in regions corresponding to instances’ locations. For this reason, a peak stimulation
layer is used to better localize instances and produce Peak Response Maps (PRMs).
Finally, by combining instance-aware cues from PRMs, class-aware cues from CAMs, and
spatial continuity priors from object proposals generated by off-the-shelf methods (e.g.,
Multiscale Combinatorial Grouping [171]), instance masks can be produced. Since then,
most approaches are based on this model and aim to solve its tendency to focus on the
most discriminative part of the object, dictated by the use of CAMs. In particular,
Laradji et al. [241] builds on PRM by using its output pseudo masks to train an FS
method, namely, Mask R-CNN showing the effectiveness of this pipeline.

One year later, Ahn et al. [228] propose IRNet to generate pseudo instance segmen-
tation labels of training images and use them for training an FS model. The method
is proposal-free and focuses on class-equivalence relations between a pair of pixels and
represents instance-level information using their displacement field. Thus, this method
has the advantage of not requiring the use of off-the-shelf methods for the generation of
mask proposals as instead is required by almost all the other methods. During the same
year, Ge et al. [236] propose a method named Label-PEnet that progressively transforms
image-level labels to pixel-wise labels in a coarse-to-fine manner. The method performs
four tasks sequentially: multi-label classification, object detection, instance refinement,
and instance segmentation. The cascaded pipeline is trained alternatively with a cur-
riculum learning strategy [222] that generalizes labels from high-level images to low-level
pixels gradually with increasing accuracy. The curriculum learning strategy, already used
also in OD [197, 224] allows the network to start learning an easy task and when the
model has started to learn, introduce a more complex task, improving the performances.

In 2020, Liu et al. [242] integrate the useful information of all training images into
a large knowledge graph and explore the information in this graph to bridge the image-
level keywords and corresponding semantic instances. In this way, the method takes
into consideration not only the intrinsic properties of each image but also the overall data
distribution of the training database, so that it breaks the limitations of CAMs on Weakly
Supervised Semantic Segmentation (WSSS). During the same year, Arun et al. [173]
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proposed a method that, unlike previous approaches, explicitly models the uncertainty in
the pseudo-label generation process using a conditional distribution, given the fact that
the proposals generated by off-the-shelf methods [168, 169, 171] are not accurate enough.
Furthermore, it represents the instance segmentation model as an annotation-agnostic
prediction distribution. This representation allows to define a joint probabilistic learning
objective that minimizes the dissimilarity between the two distributions.

More recently, Kim et al. [237] propose a method named BESTIE that performs
WSIS by transferring the knowledge from WSSS and without the need for mask proposals
generated by off-the-shelf-methods. Moreover, the authors highlight an important issue in
WSIS called semantic drift that has never been considered before. The problem is due to
the missed instances in pseudo-instance masks categorized as background. This semantic
drift causes confusion between background and instance in training and consequently
degrades the segmentation performances.

2.5.2. WSIS in Remote Sensing Images

To the best of our knowledge, there is no research on WSIS that makes use of image-
level labels only in the specific scenario of RSIs. Even though box-supervised instance
segmentation has recently attracted attention, still little relevance is received in the aerial
image domain. In this direction, Li et al. [239] propose an instance segmentation method
for aerial images based on BBs, while Chen et al. [66] present a pipeline of hybrid
supervision for instance segmentation also in the case of aerial images. In particular, a
segmentation model to generate accurate pseudo-pixels-wise labels from real-world aerial
images is implemented which only needs a small portion of pixel-wise labels for training.
All the remaining work is done exploiting BB-labeled samples.

2.6. Illegal Landfills Detection

The possibility of capturing high-quality RSIs employing aerial devices has led to the pos-
sibility of extracting the highly valuable information that is hidden in this data to perform
several important tasks in different fields, ranging from building extraction [64, 243] to
change detection [112, 119, 153], vehicle detection [166, 167], marine animals detection
[231] and asbestos coverings detection [244]. Among the wide range of different fields
that can benefit from this, environmental monitoring is of great importance especially
nowadays. In this field, Illegal landfills detection [8] and solid waste management [245]
are quite relevant.
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Illegal landfills are waste disposals on non-authorized sites or even authorized ones
containing waste types or waste amounts that exceed the limits of the authorization
obtained. The demographic increase has a considerable impact on the waste generation
[2] and this phenomenon could lead to the birth of new illegal landfills. Of course, each
country has its own legislation for what concerns the treatment of garbage to prevent
impacts on the environment and society. In fact, illegal landfills can be a source of
hazards for both the environment and people [3–5, 246, 247]. More precisely, waste is
often set on fire, for instance, to eliminate evidence of dangerous materials. However,
burying waste can result in the release of toxic fumes that can put public health at risk
[248]. At the same time, if waste treatment is not performed carefully, as is often the case
for unauthorized landfills, the release of leachate in the environment can pollute water
sources. In the long-term, this could lead to relevant damages such as the increase in
cancer incidence [7]. In fact, emissions and toxicological hazards from illegal dump sites
can be extremely high compared to regulated landfills [3]. For this reason, detecting illegal
disposal sites on time is crucial to reduce the impacts on the environment and society. In
some cases, services are provided to citizens so that they can report illegal waste disposals
[249]. However, merely relying on citizens is neither efficient nor completely reliable and
thus, it is possible to exploit solutions that can automatically detect illicit sites exploiting
the information that can be, for instance, provided by aerial images, without the need of
performing a full on-site inspection of the territory. For this reason, the problem of illegal
landfills detection has been addressed by several researchers over the years.

In the following, a review of the most important characteristics of illegal waste dis-
posals and approaches for their detection is provided.

2.6.1. Illegal Landfills Characteristics

Landfills are arrangements of different types of materials. When observed from over-
head, waste dumps appear as complex stacks of objects with varying shapes, sizes, and
orientations. As reported in [8] in many cases, a waste dump area contains sparse debris,
pallets, containers, and car carcasses. However, these areas are typically isolated places
that can be reached by secluded roads. Moreover, according to [250], another important
index of the presence of illegal landfills is the fact that the area is characterized by stressed
vegetation.

As already outlined, the objects and materials that are typically deposited in dumping
sites widely vary in their appearance. Examples of such materials include organic waste,
plastics, glass, metal, paper, wood, textiles, tires, bulky waste, electronics, and hazardous
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waste [251]. Figure 2.11 shows a few examples of illegal landfill sites.

Figure 2.11: Examples of the presence of waste in potentially illegal sites. Red circles
indicate suspicious objects. In all images accumulations of various materials and scattered
waste are present. In the first image on the left, some car carcasses are abandoned at the
sides of the shed. The image is taken from [8].

Even though during recent years a few techniques have been developed to automati-
cally detect suspicious sites starting from RSIs [8, 16, 17], most of the time manual photo
interpretation remains the predominant technique. This means that experts are needed
to analyze the images to assess whether a suspicious site is present or not and, if possible,
distinguish among the different types of objects that are present in the scene. This hinders
the possibility of rapidly detecting sites and of analyzing a vast territory. However, recent
DL techniques have been successfully developed to solve specific tasks such as asbestos
coverings detection [252, 253] exploiting RSIs. For this reason, these technologies seem
promising also for illegal landfills detection. However, it is crucial to take into consider-
ation the challenges introduced by RSIs described in Section 2.2. As a matter of fact,
illegal landfills aerial images are characterized by the following peculiarities:

• Intra-class diversity: the type of waste present in illegal landfills is varying (e.g.,
plastics, glass, tires, building material, car carcasses). The same holds for the dis-
tribution of the waste which can be for instance scattered or collected in dumpsters,
as well as the different geographical areas in which the landfill is placed (e.g., rural
or urban).

• Inter-class similarity: in some cases, areas in which there is no illegal landfill are
quite similar to illegal landfills. This is for instance the case of industrial districts,
legal landfills, and cemeteries.

• Variable scale: illegal landfills usually possess a varying scale that can depend on
the distribution of the objects in the area (clustered or scattered). The same holds
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also for the different types of objects that can be present in waste disposal sites
(e.g., car carcasses, tires).

• Multiple types of objects: a single waste disposal site captured by an image
usually contains multiple types of objects that are not easily distinguishable from
overhead.

Besides these characteristics which are typical of RSIs, other important factors should
be taken into account for the specific scenario of illegal landfills. In particular, collecting
ground truth samples is complex due to the sensitivity of the domain, which may be
subjected to restrictions concerning the public release of the data sets. For this reason,
the number of available data may be limited, and WS approaches such as those reported
in the previous sections may be considered.

At the same time, another relevant challenge is concerned with the limitation of
using training and testing data from the same geographical domain which may affect the
performances if the data set is not split properly. This aspect needs to be carefully taken
into account when building a new model.

2.6.2. State-of-the-art in Illegal Landfills Detection

The problem of illegal landfills detection covers a crucial role in environmental moni-
toring processes. Over the years, the problem has been addressed by exploiting different
types of data such as on-site images and RSIs. Approaches for identifying and map-
ping illegal landfills, can, for instance, be developed exploiting the spectral signature of
materials and of the contaminated surrounding vegetation [254].

The first studies concerning the detection of illicit waste disposals were based on the
human interpretation of aerial images. More specifically, in 1974, Garofalo et al.[255]
propose the use of aerial images to determine the spatial distribution of waste producers
and waste quantities. A few years later, Erb et al. [256] show the importance of employing
historical aerial photos to document landfills’ existence, location, extent, and possible
nature.

In 2008, Silvestri et al. [257] introduce a method that exploits remotely sensed in-
formation and a Geographic Information System (GIS) to identify unknown landfills over
large areas in the north of Italy. The method is based on the spectral signatures of the
above-landfill-growing vegetation. Information such as contamination effects on the ra-
diometric properties of vegetation, the position of the road network, population density,
and historical aerial photographs have been used to define and then filter numerous can-
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didate sites that are most likely to host waste materials. Moreover, the authors highlight
the importance of integrating GIS and RS information. Finally, they find that stressed
vegetation is present in all the illegal landfills and conclude that it represents an impor-
tant index of the presence of illicit waste sites. A similar approach is presented around
a decade later by Gill et al. [258], where it is shown that waste decomposition is always
associated with the production of warmer landfill gas that can be detected via the Landsat
thermal sensor.

In 2017, Selani et al. [259] compare modeled, satellite, and collected data using
GIS methods to determine the most accurate estimate of detecting illegal dumping. In
particular, they classify WorldView2 high-resolution 8-band multispectral images into six
categories, two of which refer to waste (building rubble, domestic dump). The authors
obtained 85.16% accuracy using an SVM on the validation set (30% of total images)
starting from a total of 610 observations. Moreover, the authors highlight the fact that
not all the bands have the same importance for classifying different categories.

One year later, Angelino et al. [260] exploit satellite images to identify illegal landfills
in the south of Italy relying on photo-interpretation performed by experts. However, to
reduce this time-consuming task, a multi-feature detection algorithm is implemented. The
detected sites have been then classified according to the type, state, location, and activity
of the dumps. Moreover, a multi-temporal analysis has been performed employing multi-
temporal satellite images, allowing to control the evolution of the phenomenon. This
allows both finding new illegal spills and following the evolution (in terms of extension
and persistence) of landfills already found in the past.

With the advent of DL, new possibilities to make illegal landfills detection more
efficient became available. However, to the best of our knowledge, only a few approaches
have been developed for the specific domain of illegal landfills. In 2019, Abdukhamet et
al. [16], propose a modified version of RetinaNet [261] using DenseNet [262] as a backbone
to formulate the detection of illegal landfills as an OD task. The authors obtained 84.7%
average precision using an Intersection Over Union (IoU) of 0.3. The employed data
set contains more than 2,000 images of the Shangai district annotated with bounding
boxes framing the garbage. Moreover, the authors highlight the importance of data
augmentations to enlarge the data set and show that the obtained performance depends
on the size of the images, given that different amount of context is then provided during
training according to this size.

In 2021, Youme et al. [17] present a DL-based automatic solution for the detection
of clandestine waste dumps using Unmanned Aerial Vehicle (UAV) images in the Saint
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Louis area of Senegal, West Africa. The problem is formulated as an FS multi-scale OD
task, solved with the use of a Single Shot Detector. The employed data set comprises
5,000 annotated images, 10% of which were reserved for testing. The results show that the
model recognizes well the areas concerned, but presents difficulties in some areas lacking
clear ground truths. The model generated many false positives given to confusion with
non-waste objects (e.g., trees). Devesa and Brust [263] implemented a CNN model based
on U-Net architecture [264] to detect illegal landfills through an FS segmentation task.
The model’s performance in predicting obtained an IoU of 0.6304.

During the same year, Torres et al. [8] present a new DL solution to perform illegal
landfills detection exploiting RSIs. In this case, the authors formulate the problem as
a multi-scale scene classification task. More importantly, given the fact that annotating
images is highly time-consuming and requires expert knowledge, the authors only make
use of image-level labels indicating the presence or absence of an illicit waste disposal
site. A data set of around 3,000 images (20 cm resolution per pixel) is thus created with
the help of expert photo interpreters. To solve the task, the authors employ a Resnet50
architecture [21] modified to also integrate a Feature Pyramid Network (FPN ) [22] to
account for the presence of multi-scale objects. In this way, the classifier is trained to
predict the presence or absence of an illegal landfill, reaching 88.6% precision with an
87.7% of recall on a test set and an Expected Calibration Error (ECE ) of 7.01. This last
metric allows indicating how well the probability estimates provided by the model can be
interpreted as correctness likelihood. In a well-calibrated classifier of all the samples that
are predicted with a probability estimate of, say, 0.8, around 80% should belong to the
positive class [265]. The authors state that in the case of illegal landfills detection, it is
particularly important that the model output reflects the actual underlying probability of
the positive class to support the decision to inspect a suspicious site (which is fundamental
to reduce the number of sites that require on-site inspection). Furthermore, the authors
provide a qualitative evaluation of the results. A visual inspection of the results helps to
understand the behavior of the model and to understand which are the objects on which
the model tends to focus more. This is achieved by exploiting multi-scale CAMs [225]
which proved that the model tends to focus on the same aspects considered by the human
experts.

The same authors in another work [266] present a comparative study about the effec-
tiveness of CAMs as a tool for explaining how a CNN-based classifier recognizes suspicious
objects potentially denoting the presence of a waste dump in aerial images. The authors
apply four classification CNNs: ResNet50 [21] is used as a baseline, while the other three
architectures are equipped with alternative attention mechanisms (Squeeze and Excitation
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(SE) [267], ECA-Net [268] and CBAM [269]). The quantitative evaluation is performed
based on IoU, on a test data set that comprises 596 images annotated with 3,411 segmen-
tation masks surrounding specific waste objects. The comparison shows that the inclusion
of attention methods in different variants improves the performances with respect to the
baseline and that, among these variants, ECA-Net shows the greatest capacity of high-
lighting the distinct components of the image that represent the waste dump location.

The authors further collected more data into a data set (AerialWaste) [18] and re-
peated the experiments presented in the work [8], obtaining 81.9% precision and 79.5%
recall on the test set.

In 2022, Karimi et al. [270] showed an interesting approach for detecting illegal dump
sites using night satellite imagery and various remote sensing indices. During the same
year, Djidelija et al. [271] try to discover the value of the scale parameter that gives the
best results in detecting illegal landfills in a segmentation approach. Moreover, despite
using the optimal scale parameter, the authors recommend considering detected sites as
potential until verification is done. Finally, they also state that to obtain accurate results,
high-resolution satellite images are necessary.

Rajkumar et al. [272] present a very high-resolution landfill data set created from
satellite images for illegal landfills and demonstrate that by applying suitable DL FS
segmentation methods, landfills can be detected even with constrained and limited data
set.

Given the lack of annotated data, Padubidri et al. [273] develop a method for detection
and reporting of illegal dumping sites from high-resolution airborne images based on
DL, training the architecture on synthetic data. The authors evaluate the use of two
different architectures, i.e., a basic CNN classification model with three hidden layers and
a deeper model with residual blocks [21]. The image patches were given as input to the
DL classification models and a class for each patch was predicted indicating the presence
or absence of dumps. At test time, a real-world data set is used and coordinates are
output to indicate the location of the potential waste disposal sites. The residual model
obtained 97% precision and 92% recall.

RSIs are not the only source of information that could be exploited to perform illegal
landfills detection and recognition. GIS is used in many methods [257, 259, 274, 275],
combined with RSIs or with Multi-criteria evaluation methods (MCE). One of the ideas
of GIS-MCE methods is to assess the probability of occurrence of illegal landfills and,
based on the probability values calculated for each candidate site, to construct a priority
list.
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A complementary problem to illegal landfills detection is Street-level garbage detec-
tion, addressed in several works [276–281]. In most of these works, SOTA DL architectures
[21, 51, 282] were successfully applied to classify waste types at street level, showing the
capability of the methods to learn features that characterize waste objects viewed up
close. However, to the best of our knowledge, no study has been performed on waste type
classification starting from RSIs.
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3| Data Set, Architecture, and

Methods

In this chapter, information concerning the data set, architecture, and methods designed
for the various experiments, are provided. Specifically, Section 3.1 provides an in-depth
analysis of the employed data set, its main characteristics, and challenges that may arise
during the experiments; Section 3.2 analyses the exploited architecture, as well as the loss
function and mechanism to generate CAMs; finally, Section 3.3 describes the approaches
designed to face the previously identified challenges as well as the techniques proposed to
try to enhance the discriminative power of the architecture.

3.1. Data Set

This work assesses the performance of multi-label fine-grained classification in the
specific case of illegal landfills. More specifically, the aim is to build and evaluate a model
that is able to distinguish among different entities that are present in illegal landfills. Most
of the time, many items are present in the same waste disposal site. In particular, the
capability to distinguish between the different illegal landfills is a fundamental requirement
for the development of WSL approaches for the detection of illegal landfills, such as WSOD
or WSIS.

To tackle the considered multi-label classification task, the AerialWaste 1 data set [18]
is used. This data set has been built for the specific task of discovering illegal landfills.
It consists of 10,434 RGB images from three different sources (AGEA, WorldView3, and
Google Earth). The size and resolution of each image depend on the source the image
was collected from. More specifically, the images provided by the Italian Agriculture
Development Agency (AGEA) possess a spatial resolution of around 20 cm Ground Sample
Distance (GSD) and a size of 1,000×1,000 pixels; images provided by WorldView3 are
high-resolution images collected by a commercial satellite that possess a spatial resolution
of around 30 cm GSD and a size of 700x700 pixels; finally, the images provided by Google

1https://aerialwaste.org/
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Earth are images downloaded using the Google API 2 that possess a spatial resolution of
around 50 cm GSD and a size of 1000x1000 pixels. The original data set is already split
into training (75%) and testing (25%).

The images are provided with different annotation types:

• Binary labels: each image is annotated with a label that indicates whether the
image contains an illegal landfill or not. An image that contains no landfills is
regarded as a negative sample, while an image that contains at least an illegal landfill
is a positive sample. Positive samples are 3,478, while the number of negatives is
6,956. The training set contains 2,612 positive and 5,217 negative samples, while
the test set contains 866 positives and 1,739 negatives. Most of the time, in positive
samples, the illegal landfills are located in the middle area of the image.

• Multi-class multi-label: a subset of images (715) is fine-grained annotated based
on the presence of specific waste objects. In particular, the number of labeled
training images is 547 while the number of labeled test images is 168.

• Weakly-supervised localization: a subset of 169 test images is annotated with
segmentation masks surrounding relevant waste objects.

In this thesis, multi-class multi-label annotations are used to design a model that can
distinguish among the different types of waste that are present in an illegal landfill. The
data set takes into consideration 22 different categories, even though images may also
contain other types of non-annotated items. The available categories can be grouped into
two different macro-categories:

• Waste types (15): the classes that are part of this macro-category represent the
type of objects that can be present in a landfill. The annotated classes are Rub-
ble/excavated earth and rocks, Bulky items, Fire Wood, Scrap, Plastic, Vehicles,
Tires, Domestic appliances, Paper, Sludge-Zootechnical waste-Manure, Stone/marble
processing waste, Asphalt milling, Corrugated sheets (presumed asbestos-cement),
Glass, Foundry waste.

• Storage modes (7): the classes that are part of this macro-category are related
to the type of container or the modality used to store the waste. The annotated
classes are Heaps not delimited, Container, Big bags, Pallets, Delimited heaps (by
barriers/walls/etc), Cisterns, Drums bins.

Figure 3.1 and Figure 3.2 present examples of images’ crops of different waste types
2https://developers.google.com/maps/documentation/maps-static/overview
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and storage modes labels. Looking at these figures, it is possible to see that while some
objects such as Bulky items, Tires, Vehicles and Fire Wood are easy to recognize, others
such as Scrap and Plastic are quite difficult to find. In general, storage modes are easier
to distinguish for the human eye. These figures do not display examples for Domestic
appliances, Corrugated sheets, Glass, and Drums bins that are very difficult to identify in
the data set.

Taking into consideration the available classes, Table 3.1 reports the number of fine-
grained annotated images that contain each specific class out of the total 715 annotated
ones. For instance, out of 715 annotated images, 294 images contain Rubble/excavated
earth and rocks while only 8 of them contain Glass. Looking at this table, it is easy
to see that the data set is highly imbalanced. Some classes like Rubble/excavated earth
and rocks, Bulky items and Heaps not delimited contain a lot more samples than Glass,
Corrugated sheets and Asphalt milling. This imbalance can make the problem of dis-
tinguishing between multiple types of landfills more difficult given that DL architectures
require lots of data to properly learn.

Table 3.1: The table reports the total number of annotated images for each class, along
with the number and percentage of annotated images per class in the training and test
set. The last row reports the total number of annotations. This number counts the same
image multiple times, according to the number of annotated classes it contains.

Label #Images #Training images %Training images #Test images %Testing images
Rubble/excavated earth and rocks 294 228 77.55 66 22.45
Bulky items 286 242 84.62 44 15.38
Fire Wood 173 135 78.03 38 21.97
Scrap 167 140 83.83 27 16.17
Plastic 126 102 80.95 24 19.05
Vehicles 53 27 50.94 26 49.06
Tires 45 32 71.11 13 28.89
Domestic appliances 24 19 79.17 5 20.83
Paper 26 21 80.77 5 19.23
Sludge-Zootechnical waste-Manure 19 15 78.95 4 21.05
Foundry waste 9 8 88.89 1 11.11
Stone/marble processing waste 13 12 92.31 1 7.69
Asphalt milling 12 9 75.00 3 25.00
Corrugated sheets 11 10 90.91 1 9.09
Glass 8 6 75.00 2 25.00
Heaps not delimited 448 355 79.24 93 20.76
Full container 167 113 67.66 54 32.34
Big bags 50 31 62.00 19 38.00
Full pallets 50 43 86.00 7 14.00
Delimited heaps 69 38 55.07 31 44.93
Cisterns 35 26 74.29 9 25.71
Drums bins 18 16 88.89 2 11.11
TOTAL 2,103 1,628 77.33 475 22.67

Table 3.2 reports the number of instances for each specific class for which a segmen-
tation mask is provided. For instance, considering the 169 segmented test images, 131
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Figure 3.1: Examples of images annotated with different waste types labels. The used
images are cropped from the AerialWaste data set [18].
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Figure 3.2: Examples of images annotated with different storage mode labels. The used
images are cropped from the AerialWaste data set [18].

instances of Rubble/excavated earth and rocks are delineated by polygonal BBs. Looking
at the table, it is evident that for many classes no BB is provided.
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Table 3.2: The table reports the total number of segmented instances for each class. This
number can be higher then the number of segmented images (169) given that each image
may contain several instances of the same class.

Label #Segmented instances
Rubble/excavated earth and rocks 131
Bulky items 69
Fire Wood 63
Scrap 32
Plastic 0
Vehicles 71
Tires 36
Domestic appliances 0
Paper 0
Sludge-Zootechnical waste-Manure 0
Foundry waste 0
Stone/marble processing waste 0
Asphalt milling 0
Corrugated sheets 0
Glass 0
Heaps not delimited 172
Full container 188
Big bags 60
Full pallets 0
Delimited heaps 55
Cisterns 0
Drums bins 0
TOTAL 877

As already outlined, the available classes are not always easily recognizable. This is
caused by the fact that the images in the data set possess all the characteristics defined
in Section 2.6.1 such as high intra-class diversity and high inter-class similarity due to the
following factors:

• The area that is captured by the photograph can be an isolated site, an industrial
area, or an urban area.

• The waste objects that are present in the images are extremely heterogeneous both
in terms of scale and appearance.

• The spatial arrangement of the waste objects in the scene is diverse.

• Many different types of waste can be present at the same time in the same image,
often close to each other or even partially overlapping.

• Some types of landfills are already intrinsically similar from a visual perspective
(e.g., Rubble and Manure).

Figure 3.3 exemplifies these characteristics. Figure 3.4 shows a few examples of images
from the training set confirming the previous considerations and highlighting that it is
hard to distinguish among the different waste types. The complexity is further increased
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Figure 3.3: Landfills data set peculiarities. The used images are cropped from the Aeri-
alWaste data set [18].
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by the large context. Figure 3.5 shows examples of test images with the corresponding
segmentation masks, proving that the same considerations hold for the images present in
the test set.

To gain more knowledge on the feasibility of differentiating among the different classes,
it is possible to examine the co-occurrence matrix. The co-occurrence matrix gives an idea
of how many times each class appears together with another. For instance, considering
the waste types, Figure 3.6 reports the relative co-occurrence matrix: each row shows
the number of times that a class appears with another class (absolute co-occurrence)
divided by the total number of images in which the considered class appears. While the
absolute co-occurrence matrix should be symmetric, the relative co-occurrence matrix is
not symmetric. As it is possible to notice, especially for the classes Rubble, Bulky items,
Fire Wood, Scrap and Plastic, the values in the co-occurrence matrix are quite high. For
instance, considering the first row, it is possible to see that around 60% of the times in
which Rubble appears, there are also Bulky items and around 30% of the times Fire Wood.
Values on the right part of the matrix are much smaller, but this is due to the limited
number of samples of these classes. Of course, high values in the co-occurrence matrix
tend to jeopardize the discriminative power of the classifier. In fact, if two classes appear
most of the time together and very few times alone, the risk is that the network tends to
predict the presence or absence of both classes without understanding their differences,
meaning without learning discriminative features that allow distinguishing among the
two. Unfortunately, this is often the case for the considered data set.

The above considerations clearly show that understanding whether there is a disposal
waste site or not, starting from RGB RSIs can be challenging and that being able to
differentiate among the different items that are part of the image can be more complicated.
The imbalance of the data set, the limited number of samples, and the high co-occurrence
make this task even more complex. In this study, different options were considered and
analyzed in Section 3.3 to address these complications.
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Figure 3.4: Examples of training images from the AerialWaste data set [18]. The red BBs
give an approximate indication of where the landfill could be.
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Figure 3.5: Examples of testing images from the AerialWaste data set [18]. On the right,
segmentation masks are shown. As it is possible to see, annotating the data set can be
very complicated given that many objects are present in the same image, and sometimes,
the objects of interest cover a minor portion of the image.
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Figure 3.6: Co-occurrence matrix of the waste types classes of the data set. Each cell
represents the percentage of images in which the category on the row appears together
with the category on the column. This co-occurrence matrix is generated using ODIN
[19, 20].
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3.2. Architecture

The authors of the AerialWaste data set [8, 18] propose a novel architecture to address
the task of binary illegal landfills classification. More specifically, the classifier exploits
a residual network [21] (ResNet50) as a backbone network augmented with a Feature
Pyramid Network (FPN) [22]. This architecture is used to perform classification and
then to generate CAMs for a better understanding of the localization and discriminative
capabilities acquired by the network. Since the problem addressed in this thesis is strictly
related to the work by Torres et al. [8, 18], their architecture is considered as a baseline
for the experiments presented in Chapter 4.

3.2.1. Residual Network

The concept of residual network was first introduced by He et al. in 2015 [21]. The
way in which CNNs are built allows to stack many many layers to solve more complex
tasks. The deeper the network, the richer the learned features, thus increasing the number
of layers of a network should improve the performance on complex tasks. However, as
observed in [21], at a certain point, the performance tends to saturate and then slowly
degrade. The study shows that this behavior is not due to overfitting since it is also
observed during training and not only at test time. A more probable cause is the problem
of vanishing or exploding gradient [283]. To gain more knowledge on this phenomenon and
to solve it, the authors propose the introduction of skip connections. Skip connections
alleviate the issue of vanishing gradient by introducing an alternate shortcut for the
gradient to pass through, building a so-called residual block, shown in Figure 3.7. Residual
blocks can be built with an arbitrary number of convolutional layers whose feature maps
are eventually merged with the skip connection (identity branch). The insertion of skip
connections enables the model to learn an identity function, ensuring that the higher
layers of the model do not perform any worse than the lower layers. As a result, residual
networks make it possible to train much deeper networks.

In this study, the adopted backbone is ResNet50 which consists of 5 stages, 4 of which
are composed of residual blocks and whose details are reported in Table 3.3.

3.2.2. Feature Pyramid Network

Even though a residual network is already able to provide impressive performance in
many cases, Torres et al. [8, 18] propose to augment it with an FPN to deal with the
presence of multi-scale objects in the considered data set. An FPN [22] is a top-down
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Figure 3.7: Residual block. The gradient is allowed to backpropagate through two al-
ternative paths, thanks to a skip connection, mitigating the problem of the vanishing
gradient. Image taken from [21].

architecture with lateral connections developed for building high-level semantic feature
maps at all scales. The traditional architecture of an FPN is shown in Figure 3.8.

Two different paths are present: a bottom-up and a top-down pathway. The bottom-
up pathway is the feed-forward computation of the backbone network. Each stage (set of
layers) of the backbone network corresponds to a layer of the pyramid. Then, the output
of each stage is kept apart to maintain additional sets of feature maps for enriching the
top-down pathway. Once the feed-forward computation has been performed, to merge
the information gained by the different layers of the pyramid, it is necessary to upsample
feature maps. More precisely, deeper feature maps usually capture semantically stronger
elements and possess lower resolution than shallower layers. Thus, it is necessary to
perform an upsampling of deeper feature maps to match the resolution of shallower ones
before merging the information. The top-down pathway is in charge of upsampling deeper
feature maps and then merging them with the shallower ones. The merging operation
is performed by exploiting the lateral connection which can be a simple element-wise
addition or a more complex set of operations. Each lateral connection merges feature
maps of the same spatial size from the bottom-up pathway and the top-down pathway.
The feature maps from the bottom-up pathway are passed through a bottleneck layer
which consists of a 1×1 convolution to reduce the channel dimension. By exploiting an
FPN, it is possible to learn features at different scales which can boost the performance
in case multi-scale objects are present [284, 285].

The overall architecture proposed by Torres et al. [8, 18] is shown in Figure 3.9.
In the Figure, C2, C3, C4, C5 denote the feature maps (outputs) produced by the corre-
sponding stages of the ResNet50: conv2, conv3, conv4, conv5 (Table 3.3). A batch of B
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Table 3.3: ResNet50 architecture details. The output size is calculated considering as
input an image of size H ×W . The network has around 23 million trainable parameters.

Stage name Output size ResNet50

1 (conv1) H
2 × W

2

[
7× 7, 64, stride 2

3× 3max pool, stride 2

]
× 1

2 (conv2) H
4 × W

4

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

3 (conv3) H
8 × W

8

 1× 1, 128
3× 3, 128
1× 1, 512

× 4

4 (conv4) H
16 × W

16

 1× 1, 256
3× 3, 256
1× 1, 1024

× 6

5 (conv5) H
32 × W

32

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

1× 1 average pool, 1000-d fc, softmax

RGB images, each with height H and width W , is passed through the bottom-up path.
The output of the backbone bottom-up path is a volume of size [B,H/32,W/32, 2048].
Then, the top-down path follows the previously explained idea of an FPN. More specifi-
cally, each feature map Ci of size [B,H/2i+1,W/2i+1, 27+i] is passed through a bottleneck
layer to reduce the number of channels to 256, producing a new feature map Bi of size
[B,H/2i+1,W/2i+1, 256]. Then, a merging operation is performed to obtain the feature
map Mi. More specifically, the merging operation is performed through a lateral con-
nection that consists of a concatenation in the channel dimension, while the upsampling
procedure needed to increase the resolution of deeper feature maps is done through bilin-
ear interpolation. The resulting upsampled merged feature map Mi can be computed by
the following expression:

Mi =

B5, i = 5

Concat(Bi , Bilinear2x(Mi−1 ) ), otherwise

Due to the concatenation, the upsampled merged feature map’s channel dimension in-
creases while moving from top to bottom. Specifically, the size is given by [B,H/2i,W/2i, 256×
(6 − i)]. The merged features are de-aliased to obtain the pyramid layers P2, P3, P4, P5.
Then, each Pi is subjected to Global Average Pooling (GAP) followed by a flattening op-
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Figure 3.8: Typical architecture of an FPN. Image modified from [22].

eration to produce the vectors P ′
2, P

′
3, P

′
4, P

′
5. Each P ′

i is passed through a Fully Connected
(FC) layer to perform classification at the respective scale level. Finally, the predictions
of each level are concatenated and fed to the final FC layer to produce the final prediction.
The final FC layer can have two or more outputs depending on whether binary or multi-
label classification is performed. In both cases, a sigmoid activation function is applied
to the final prediction vector to output a probability value indicating whether each class
is present or not.

3.2.3. Class Activation Map

Given that DL models are difficult to interpret, it is possible to exploit explainability
methods to better understand how the network is producing its predictions. More specif-
ically, CAMs [225] are a simple but very useful mechanism to highlight the portions of
the image which have a higher influence on the output of the model.

Specifically, a CAM is a weighted activation map that can be generated for each sample
at inference time. CAMs can be obtained without the need for any specific supervision,
making them a milestone for many weakly supervised detection approaches, as described
in Chapter 2. To generate CAMs, the architecture needs a Global Average Pooling (GAP)
layer between the last convolutional layer and the classifier. The addition of the GAP
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Figure 3.9: Employed architecture. Image modified from [8].

layer allows to compute the average of each feature map and to sum up the spatial
information, acting also as a structural regularizer and generating outputs more robust
to spatial translations of the input.

Given an image, the CAMs (one for each class) can be obtained by a weighted sum
of the feature maps of the last convolutional layer. The weights are obtained from the
classifier. The final CAMs usually have a smaller size with respect to the original input,
thus they are upsampled (e.g., with bilinear interpolation) to match the input dimension.

Since part of the aim of this work is to localize the landfills inside of the image, the
generation and analysis of the CAMs are particularly useful to assess the comprehension of
the different types of landfills and their position during the classification task. A qualita-
tive evaluation is even more relevant for the considered task given the characteristics and
issues related to the employed data set (Section 3.1), which can affect the classification
results. An in-depth analysis of the CAMs can complement the quantitative evaluation
of the classification results and shed light on the actual level of comprehension reached
by the network. With this aim, two different types of CAMs are taken into consideration
in this study:

• Intermediate CAMs: it is possible to produce a CAM taking into consideration
only the output of a single layer of the pyramid. This results in the generation of a
CAM for each layer and each class, indicating the portions of the image on which
each layer focuses more. Given that the considered architecture has four different
pyramid layers, four intermediate sets of CAMs are produced. More specifically, the
feature maps produced by each pyramid layer (P2, P3, P4, P5) are multiplied by the
learned weights of the FC layer (the one before the concatenation). Then, the output
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of the product of Pi by the weights of the FC layer is multiplied by the weights of
the final FC layer (FC class) related to the ith pyramid layer of the network. In this
way, an intermediate CAM is obtained for each category and each pyramid layer.

• Global CAM: once the intermediate CAMs have been obtained, it is possible to
merge them into a final set of CAMs to obtain a global CAM for each class, that
captures the important aspects of the intermediate ones.

Given the presence of multi-scale objects, it is possible to generate a CAM for different
image scales and eventually fuse them in a single CAM which can be more precise and
more robust to the different object scales. To obtain the multi-scale global CAM of an
image I of size [H,W ], it is necessary to rescale the image according to different scale
ratios. In this study, each image is rescaled according to the ratios R = [0.5, 1.0, 1.5]. In
this way, three images are obtained: one for each scale ratio r, whose size is [r×H, r×W ].
Each rescaled image Ir is passed through the network, and a CAM is computed. These
CAMs are then upsampled to the same dimension. Finally, the multi-scale global CAM
can be obtained by performing an element-wise sum of the CAMs obtained for every Ir.
A CAM is always obtained for each category.

3.2.4. Loss Function

The illegal landfills classification problem considered in this study belongs to the
family of multi-label classification problems. In this scenario, the Ground Truth (GT)
label of a sample n is represented as a binary vector, say Yn, of size C, where C is the
number of classes. Each element yin ∈ {0, 1} of vector Yn, indicates the presence (yin = 1)
or absence (yin = 0) of class i for the considered sample. For instance, considering the
set of classes C = {Bulky items, Scrap, Vehicles}, an image with GT label Y0 = [1, 0, 1]

contains at least one instance of Bulky Items and at least one instance of Vehicles, while
no instance of Scrap is present in the image.

The output of the network is a prediction represented by a binary vector, Xn of the
same size as Yn. Each element xi

n ∈ [0, 1] of vector Xn represents the estimated likelihood
of the presence of class i in the considered sample, computed by the network. For example,
considering the same set of classes C as before, a prediction X0 = [0.30, 0.67, 0.95] means
that the model estimates that the likelihood of the presence of at least an instance of
Bulky Items is 0.3, that of at least an instance of Scrap is 0.67 and the likelihood of the
presence of at least an instance of Vehicles is 0.95.
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Multi-label Soft-Margin Loss

This scenario allows to recast the multi-label classification problem into multiple bi-
nary classification problems, where every element xi

n represents the binary classification
score for the class i and sample n and yin is the corresponding binary GT label for the
same class. Because of that, the loss function for multi-label classification can be consid-
ered an extension of the loss function that is used for binary classification, named Binary
Cross-Entropy (BCE), given that the only difference between the two tasks is the number
of classes to which a sample belongs. In the case of a single class, the vectors Xn and
Yn collapse to scalars xn and yn for every element n, and the multi-label loss function
becomes equivalent to the BCE loss function. For each sample n in the data set, with
prediction-label pair given by (xn, yn), the BCE loss can be computed as reported in
Equation 3.1.

BCE(xn, yn) = −yn · log σ (xn) + (1− yn) · log (1− σ (xn)) (3.1)

In the above equations, σ represents the sigmoid activation function given by:

σ(xn) =
1

1 + e−xn

If a sample belongs to more than one class, an extension of BCE loss called Multi-
label Soft-Margin Loss can be used. Considering a single sample n, the prediction of the
network Xn and the corresponding GT vector Yn, the loss can be computed by averaging
the BCE losses of the single classes (BCE(xi

n, y
i
n)). Thus, for each sample n in the data

set, with prediction-label pair given by (Xn, Yn), the Multi-label Soft-Margin loss, is given
by Equation 3.2.

ℓ(Xn, Yn) =
1

C
∗

C∑
i=1

BCE(xi
n, y

i
n) =

= − 1

C
∗

C∑
i=1

[
yin ∗ log σ

(
xi
n

)
+ (1− yin) ∗ log

(
1− σ

(
xi
n

))] (3.2)

Finally, given that samples are passed through the network in batches, the batch loss
can be computed by averaging the losses of all the samples in the batch. Considering a
batch of N samples, where the output of the network is XN =

[
X1, X2, . . . , Xn, . . . , X|N |

]
and the GT labels are YN =

[
Y1, Y2, . . . , Yn, . . . Y|N |

]
, the batch loss is described by Equa-

tion 3.3.
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L(XN , YY ) =
1

N
∗

N∑
n=1

ℓ(Xn, Yn) =

= − 1

NC
∗

N∑
n=1

C∑
i=1

[
yin ∗ log σ

(
xi
n

)
+ (1− yin) ∗ log

(
1− σ

(
xi
n

))] (3.3)

3.3. Proposed Approaches and Methods

Given the characteristics of the considered data set, especially concerning the imbal-
ance nature and the high class co-occurrence, it is necessary to develop strategies that
allow dealing, at least partially, with these issues. The different possible solutions that are
analyzed and tested are described in this section. As previously stated, all these methods
are built to improve the task of multi-class multi-label classification using the architecture
described in Section 3.2, paying particular attention to improving the discriminative power
and the localization capabilities of the network. For this reason, a couple of methods to
generate segmentation masks starting from the results obtained from the classification
model are analyzed. These segmentation masks can then be used as pseudo-labels for a
weakly supervised localization task.

Offline Data Augmentation

Data sets with a limited number of samples are very frequent in modern applications.
However, the data-hungry nature of DL architectures requires a high number of samples
to properly learn from scratch. Of course, the trivial solution to the limited availability of
data is to collect more of them. Unfortunately, this is not always feasible and inexpensive.

By analyzing the AerialWaste data set, it is evident that most images have a resolution
of around 1,000x1,000 pixels, and the suspicious sites are often located in the center of
the image. These characteristics allow to develop an efficient way of enlarging the data
set by simply cropping each image in different patches of lower resolution. This operation
can be performed offline (before training) and can be considered a data augmentation
technique since it allows to augment the number and variability of the images fed to the
DL architecture. In this study, each image is cropped in 5 different patches: a center
patch, and a patch for each of the corners (top-left, top-right, bottom-left, bottom-right).
The idea behind this choice is that if the illegal landfill is located in the middle of the image
and the crop size is sufficiently big, in the majority of cases all the crops, or at least most
of them, will contain a portion of the landfill. The major issue of this approach, especially
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in the case of multi-label classification is that mislabeled images may be generated. If
multiple types of landfills are present in the same image, each patch is annotated with the
same label as the original image. However, there is no guarantee that all crops contain
all the classes of the original image. These mislabeled images can potentially result in
noise being introduced during the training phase. The bigger the crop size, the higher
the overlap between the patches but the lower the risk of wrongly annotating images.
Nonetheless, a bigger crop size results also in a major influence of the image context. For
this reason, it is necessary to achieve a trade-off between the context influence and the
number of mislabeled samples by tuning the crop size.

Figure 3.10 shows, on the left, the idea of offline data augmentation.

Oversampling

Another frequent problem of data sets is related to class imbalance. This problem
arises from the fact that the number of available samples for each class can be very
different. To deal with this issue, several different techniques have been proposed over the
years (e.g., undersampling, cost-sensitive learning [286]). Among them, a very intuitive
approach is oversampling.

Oversampling consists in increasing the number of samples for the classes that are
less represented. Once again, a trivial solution is to collect new data for some classes.
Given that this is not always possible, a viable idea is to create multiple copies of the
available images to augment the data set. A major risk of this approach is that if the
network is fed with the exact same copy of an image multiple times, it can overfit. In this
study, online data augmentation is performed to avoid this problem. More specifically,
before being fed to the network (during training), each image can be randomly flipped
(horizontally and vertically) and rotated by multiples of 90°. Thus, the network will rarely
see the exact same image often, given the high number of possible online augmentations
that are applied. Using oversampling, the number of available samples of specific classes
can be increased, mitigating the problem of limited availability of samples. Moreover,
by oversampling images containing more than one class, it is possible to alter the co-
occurrence of the classes.

An example of how oversampling works is displayed in the center part of Figure 3.10.

Synthetic Data Augmentation

Oversampling can allow to partially deal with the high class co-occurrence and class
imbalance issues. However, the benefits that it can potentially bring are strictly related
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to the number of samples that are already available. If a class has very few samples,
the number of possible combinations of flip and rotate augmentations are still limited
and may not be sufficient to guarantee that the network does not overfit. To solve this
problem, it is possible to generate synthetic data.

Given the huge amount of negative samples in the AerialWaste data set, it is possi-
ble to generate synthetic data by inserting patches of illegal landfills on images without
landfills. These synthetic images can then be used together with the real ones during
training, increasing the number of samples and reducing the class co-occurrence and im-
balance, depending on the strategy adopted to generate new samples, as in the case of
oversampling. To implement this approach, images from the training set were analyzed
and around 70 to 100 landfill patches were extracted for each considered class. Then,
before inserting the patch on negative images, random flipping (vertical and horizontal)
and rotation (between 0° and 360°) were applied to reduce the possibility of overfitting.

The main limitation of this approach is related to the realism of the generated images.
A trivial way of generating a synthetic sample is to randomly select a background image
and a landfill patch of a known type and then insert the patch in a random location on
the background. In this way, a new image is obtained and labeled according to the type of
landfill that is used. In this case, the generated images can be far from realistic, especially
in case more than one patch is placed on the background or multiple types of landfills
are added to the original image. To mitigate this issue, a first rough idea is to blur the
contours of the patch before placing it on the background, reducing the contrast between
the two images.

In many cases, however, blurring the contours is not sufficient to ensure the generation
of realistic images since, often, negative samples are images of huge open fields where it
is highly unrealistic to find an illegal landfill. Furthermore, even if an urban or industrial
area is selected in place of a field as a negative sample, a random placement of the patch
causes the generation of images in which landfills can appear in highly unrealistic spots
such as roofs. To mitigate this issue, it is possible to use a CAM-guided approach. The
idea is to exploit a model such as that of Torres et al. [8, 18] to make inference on the
negative instances (those to be used as background). Even though most of the time, the
network will hopefully correctly classify the samples as negative, the CAM can still provide
an indication of where the network is focusing its attention. This can be considered a
coarse suggestion of where a landfill could be placed. Thus, positioning a patch where
the CAM has the highest value can sometimes be more realistic. Countermeasures are
taken to avoid placing more than one patch in the same position, thus selecting different
candidate locations. Using this approach, it is possible to obtain more realistic images and
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sometimes the result is impressive (right portion of Figure 3.10). However, the realism of
CAM-guided generated images is still limited and dependent both on the dimension and
appearance of the patch and especially on the capability of the model chosen to generate
the CAMs.

Figure 3.10: Examples of offline data augmentation, oversampling and CAM-guided syn-
thetic data augmentation (SDA). At the top row, the image before the application of the
indicated method is displayed. The bottom part displays the image(s) generated after the
application of the different techniques.

3.3.1. Data Generation Strategies

As already explained, to mitigate the issues related to the characteristics of the data
set, it is possible to augment the training set with new images. On the one hand, cropping
the original images can allow to increase the size of the data set, but at the same time, it
does not solve other problems such as class co-occurrence and imbalance. On the other
hand, oversampling and SDA can help solve the other problems. In these cases, it is
necessary to design a specific image generation strategy that is able to act on specific
aspects of the data set. For instance, to reduce the co-occurrence of two classes, it is
possible to generate a certain number of images in which the two classes do not appear
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together.

Uniform Strategy

Given the characteristics of the data set and specifically the reduced number of sam-
ples in which a class appears alone, a possibility is to generate a high number of synthetic
samples in which only patches of a single class are used or, alternatively, perform over-
sampling only of those samples that already contain a single class. This simple strategy
can already help to reduce class co-occurrence. In this study, a uniform strategy was con-
sidered, meaning that the number of samples generated is the same for each class. Still,
it is possible to consider other strategies that can reduce not only the class co-occurrence
but also the imbalance.

Simplex-guided Strategy

Even though the uniform strategy can be easily extended to a non-uniform one, the
addition of synthetic data risks in principle to reduce the capabilities of the classifier since
the employed network may overfit the generated data. At the same time, the realism of
these images is limited. Thus, the addition of unnatural samples should be done carefully,
and the number of newly added samples should be as limited as possible. This issue is
not only related to synthetic data but also to data generated via oversampling since the
addition of too many samples can potentially lead to overfitting. To limit the number
of new samples, it is possible to compute the minimum number and type of samples
that should be added to reduce the class co-occurrence and the imbalance of the data
set. In this study, the sample selection problem is formulated as a Linear Programming
problem and approached using the Simplex Algorithm [287]. The output of the algorithm
is the number of samples to add to the original data set along with the classes that
should be present in each sample so that the obtained data set possesses some pre-defined
characteristics such as a low class co-occurrence.

Before introducing the constraints that allow the Simplex Algorithm to compute the
needed samples, it is necessary to introduce a set of notions and functions that simplify
the problem formulation.

Given a data set containing C different classes, the set C = {c0, c1, . . . , ci, . . . , cC−1}
represents the available classes. Considering C unique classes, the power set of C is the
set P = {p0, p1, . . . , pi, . . . , pP−1} containing all the P = 2C possible subsets of classes.
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For instance, considering the set C = {Fire Wood, Scrap, Vehicles}, P is given by:

P ={∅, {Fire Wood}, {Scrap}, {V ehicles}, {Fire Wood, Scrap}, {Fire Wood, V ehicles},

{Scrap, V ehicles}, {Fire Wood, Scrap, V ehicles}}

Furthermore, let’s consider a function bin(x, n) that returns the binary representation
of number x using n digits, as reported in the example below.

bin(0, 3) = [0, 0, 0] bin(1, 3) = [0, 0, 1]

bin(5, 3) = [1, 0, 1] bin(5, 5) = [0, 0, 1, 0, 1]

To simplify the notation, let’s suppose, without loss of generality, that a class cj is
part of the subset pi if and only if bin(i, C)j = 1. For instance, considering the set C =

{Fire Wood, Scrap, Vehicles} and the subset p3, bin(i, C) = bin(3, 3) = [0, 1, 1]. Thus, p3
will only contain the second (c1) and the third (c2) classes of set C: p3 = {Scrap, Vehicles}.
In the same way, p4 will only contain class Fire Wood given that bin(4, 3) = [1, 0, 0].

At this point, let’s call class(i) the function that, given an index i of a subset pi,
returns the set of indexes j of all the classes cj contained by pi. For example, considering
again the set C = {Fire Wood, Scrap, Vehicles}:

class(0) = ∅ class(4) = {0}

class(3) = {1, 2} class(7) = {0, 1, 2}

In fact, the classes contained in p3 are Scrap (c1) and Vehicles (c2), whose indexes
are 1 and 2, while the ones of p7 are Fire Wood (c0), Scrap (c1) and Vehicles (c2), whose
indexes are respectively 0, 1 and 2.

Vice-versa, comb(j) is the function that, given an index j of a class cj, returns the
set of indexes i such that cj belongs to pi. For instance, taking for example the set
C = {Fire Wood, Scrap, Vehicles}:

comb(0) = {3, 5, 6, 7} comb(2) = {1, 3, 5, 7}

In fact, class Fire Wood whose index is 0, is part of p3, p5, p6 and p7, whose indexes
are 3, 5, 6 and 7. The same reasoning holds for the class Vehicles with index 2, which is
part of p1, p3, p5 and p7, with indexes 1, 3, 5 and 7.

Besides the above sets and functions, the following variables are considered:
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• The number of samples ni in the desired data set containing at least class cj, for each
cj ∈ C. These variable are grouped in the vector N1×C = [n0, n1, . . . , ni, . . . , nC−1].

• The number of samples mi in the desired data set for every possible subset of classes
pi. These variables are grouped in the vector M1×P = [m0,m1, . . . ,mi, . . . ,mP−1].
Notice that, for the augmentation purposes of this task, the element m0 is not
particularly relevant since adding an arbitrary number of samples without any class
does not have any effect on the balancing ratio of the classes or the co-occurrence
matrix.

• The absolute co-occurrence zi,j between each pair of classes ci and cj in C, as defined
in Section 3.1. The co-occurrence is stored in the following matrix:

ZC×C =


z0,0 z0,1 . . . z0,C−1

z1,0 z1,1 . . . z1,C−1

...
... . . . ...

zC−1,0 zC−1,1 . . . zC−1,C−1


Notice that the elements on the main diagonal are not particularly meaningful, since
there is no definition of co-occurrence between a class and itself.

As defined at the beginning of this section, the objective is to obtain the desired
level of class co-occurrence and imbalance with the addition of the minimum number of
possible samples. Thus, the objective function is the minimization of the total amount of
samples, as reported in Equation 3.4.

min
P−1∑
i=0

mi (3.4)

To accomplish this task, it is possible to define a set of parameters used to regulate
the tightness of the various constraints. The role of the parameters will become clearer
after the definition of the constraints. The considered parameters are:

• The maximum allowed relative co-occurrence ki,j ∈ [0, 1] between each pair of classes
ci and cj in C, as defined in Section 3.1. These parameters are grouped in the matrix:

KC×C =


k0,0 k0,1 . . . k0,C−1

k1,0 k1,1 . . . k1,C−1

...
... . . . ...

kC−1,0 kC−1,1 . . . kC−1,C−1


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ki,j = 0 means that no sample with class ci will be allowed to contain also class cj,
while ki,j = 1 means that every sample with class ci is potentially allowed to always
appear together with class cj. Notice that the elements on the main diagonal must
be set to 1 to allow the algorithm to converge, as will be clarified in the constraints’
definition.

• The number of samples ri for each subset of classes pi in P present in the original
data set. These parameters are grouped in the vector R1×P = [r0, r1, . . . , ri, . . . , rP−1].

• The percentage ui ∈ [0, 1] of original samples containing the subset of classes pi in
P (represented by ri) to keep in the final data set. These parameters are grouped
in the vector U1×P = [u0, u1, . . . , ui, . . . , uP−1]. ui = 0 means that all the original
samples with a subset of classes pi can be discarded if this allows to satisfy all the
constraints and minimize the objective function. ui = 1 means that all the original
samples with a subset of classes pi must be part of the final data set. This constrains
the number of samples mi containing the subset of classes pi to be at least equal
to the number of original samples ri: mi ≥ ri ∀i ∈ [0, P − 1]. In general, it is
advisable to set ui = 1 ∀i ∈ [0, P − 1], since this forces not to discard any of the
original samples. However, these values could be slightly reduced to allow to satisfy
the constraints without the need to add too many samples. Moving these values far
from 1 will lead to a data set with many discarded samples since this may be more
convenient than adding new ones to minimize the objective function.

• The maximum allowed relative difference bi,j ∈ [0, 1] between the number of samples
with class ci, given by variable ni, and the number of samples with class cj, given
by the variable nj. These parameters are grouped in a matrix

BC×C =


b0,0 b0,1 . . . b0,C−1

b1,0 b1,1 . . . b1,C−1

...
... . . . ...

bC−1,0 bC−1,1 . . . bC−1,C−1


bi,j = 1 means that ni cannot be lower than nj, while bi,j = 0 means that ni is not
influenced by nj. Notice that the elements on the main diagonal of B are trivially
set to 1.

At this point, it is possible to define the constraints that need to be satisfied while
minimizing the objective function. The first constraints to be defined are bounding con-
straints, needed to bound (relate) the values of the variables to each other. The variable
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N can be bounded to M as defined in Equation 3.5. This stands from the fact that the
number of samples of each class is equal to the sum of the number of samples for each
subset of classes containing the considered one.

ni =
∑

j ∈ comb(i)

mj ∀i ∈ [0, C − 1] (3.5)

The bounding constraint between M and Z can be defined following the definition
of co-occurrence given in Section 3.1, as reported in Equation 3.6. This stands from the
fact that the co-occurrence of two classes is equal to the sum of the number of samples
belonging to all the subsets of classes in which both the considered categories are present.

zi,j =
∑

w ∈ comb(i)∩comb(j)

mw ∀i ∈ [0, C − 1] , ∀j ∈ [0, C − 1] , (3.6)

At this point, it is possible to define the constraints of the problem that, given the
parameters, determine the final output given by the Simplex algorithm.

The maximum co-occurrence constraint forces the relative co-occurrence between
classes ci and cj to be lower or equal to the maximum allowed relative co-occurrence
of the two classes, as described in Equation 3.7. In this case, the constraint is formulated
in terms of absolute co-occurrence given that this gives rise to a linear constraint and can
be achieved by multiplying the maximum allowed relative co-occurrence of class ci with
other classes by the number of samples of class ci.

zi,j ≤ ki,j × ni ∀i ∈ [0, C − 1] , ∀j ∈ [0, C − 1] (3.7)

This clarifies why the elements on the main diagonal of K must be equal to 1: given
the bounding constraints described in Equations 3.5 and 3.6, it results that zi,i = ni ∀i ∈
[0, C − 1], and, considering that the ki,j ∈ [0, 1] ∀i ∈ [0, C − 1] , ∀j ∈ [0, C − 1],
the constraint described in Equation 3.7 is satisfied only for the values ki,i = 1 ∀i ∈
[0, C − 1].

Then, the original sample usage constraint forces to keep at least a certain amount of
the original samples, imposing a lower bound for the values of M , as reported in Equation
3.8.

mi ≥ ri × ui ∀i ∈ [0, P − 1] (3.8)
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The balancing constraint forces the number of samples per class, represented by N ,
to be as balanced as defined by matrix B, and it is described in Equation 3.9.

ni ≥ bi,j × nj ∀i ∈ [0, C − 1] , ∀j ∈ [0, C − 1] (3.9)

Now it is clear why the elements on the main diagonal of B are trivially set to 1: the
constraint described in Equation 3.9, considering the case i = j, becomes ni ≥ bi,i × ni

that is for sure satisfied if bi,i = 1 ∀i ∈ [0, C − 1].

At this point, the problem formulation can be extended to force other specific behav-
iors. In the case the augmentation strategy is oversampling, it is necessary to force the
addition of elements that are already present in the original data set since there is no possi-
bility to create copies of samples with the subset of classes pi if ri = 0. To do so, it is neces-
sary to define the function zeros(X) that, given an array X1×P = [x0, x1, . . . , xi, . . . , xP−1],
returns a set containing all the indexes i such that xi = 0. For example, given the array
X = [0, 25, 0, 0, 43]:

zeros(X) = {0, 2, 3}

A constraint can be defined to force this behavior, as reported in Equation 3.10.

mi = 0 ∀i ∈ zeros(R) (3.10)

Another behavior that could be imposed is related to the fact that a higher number
of classes in a sample could introduce more confusion since it is more difficult to learn
the features of a specific class while there are more classes present in the samples. The
behavior that can be imposed is that, for every class ci, the number of samples with only
the class ci is forced to be greater or equal to the number of samples with class ci and
only another class, which in turn must be greater or equal than the number of samples
with class ci and other 2 classes, and so on. To obtain this behavior, let’s introduce the
function super(i), that, given an index i of pi in P , returns the set of indexes j of pj,
such that class(i) ⊂ class(j) and |class(j)|= |class(i)|+1. For instance, considering the
set C = {Fire Wood, Scrap, Vehicles}, already cited in the previous examples:

super(1) = {3, 5} super(3) = {7}

In fact, p1 = {Vehicles}, and the elements of P containing only Vehicles and just one
other class are p3 = {Scrap, Vehicles} and p5 = {Fire Wood, Vehicles}, whose indexes
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are 4 and 5. The same holds for p3 = {Scrap, Vehicles}, for which the only element of P
containing Scrap, Vehicles and just one more class is p7 = {Fire Wood, Scrap, Vehicles},
whose index is 7.

A parameter d1×1 is introduced to indicate the minimum allowed difference, in per-
centage, between the elements with classes subset pi, represented by mi and the elements
with classes subset pj ∀j ∈ super(i), ∀i ∈ [0, P − 1], represented by mj.

The final constraint is reported in Equation 3.11.

(1− d)mi ≥
∑

j∈super(i)

mj ∀i ∈ [0, P − 1] (3.11)

Once the Simplex algorithm converges to a solution, the variable M contains the
number of samples for every class subset in P that needs to be present in the final data
set. For every element mi ∈ M , if ui = 1, mi ≥ ri, and mi − ri represents the number
of samples (synthetic or oversampled), with classes subset pi, that need to be added to
the original data set to obtain the final one. If ui < 1, it is possible that mi − ri < 0,
and, in this case, ri −mi gives the number of samples with classes subset pi that must be
removed from the original data set.

3.3.2. Transfer Learning

To improve the possibility of obtaining more promising results given the complexity
of the task, transfer learning is used to initialize the weights of the network. As already
explained in Section 2.2.3, TL [59] is a solution for constructing data representations when
the number of samples in the training set is limited as in the illegal landfills scenario. The
basic idea is to transfer knowledge from a source task to a target one. The weights from
a model trained on the source task are extracted and used as initialization for the target
task model before eventually fine-tuning it.

Thus, instead of learning from scratch which is something particularly difficult, espe-
cially in the case of limited data and a complex task, the network’s weights are initialized
by exploiting the knowledge gained by solving a different task. More specifically, the
following configurations are taken into account:

• ImageNet pre-training: the backbone network (ResNet50) is initialized using the
weights obtained after performing classification on the wide-scale ImageNet [31] data
set. This is a consolidated baseline for transfer learning which can boost performance
in many cases. However, in this case, the source task (ImageNet classification) and
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the downstream one (Illegal Landfills multi-label fine-grained classification) are not
very similar, especially from the domain viewpoint. This can potentially negatively
impact the effectiveness of knowledge transfer.

• Transfer learning from Torres et al. [18] model: the backbone network is
initialized using the weights obtained from the model provided by Torres et al. [18].
In this case, the source and target tasks are very similar, especially from the domain
standpoint. Moreover, the knowledge obtained performing illegal landfills binary
classification can be important to perform multi-label fine-grained classification of
illicit waste disposal sites. If the network is not able to find illegal landfills, it is
impossible to differentiate between them. Thus, this knowledge transfer may provide
more benefits than ImageNet pre-training.

• Self-Supervised Learning: the backbone network is firstly trained on a pretext
task based on self supervision. Once the task is completed, the weights of the
backbone trained on the SSL task are transferred to the downstream task of Illegal
Landfills classification. In this case, thanks to the nature of SSL, the wide amount
of weakly labeled (labeled only at binary level) training samples can be exploited.

In all the configurations, the first two stages of the ResNet50 network are frozen before
fine-tuning the downstream task. Moreover, the weights are loaded only for the backbone
network. Section 3.3.3 describes the Self-Supervised approaches considered in this thesis.

3.3.3. Self-Supervised Approaches

Self supervision allows learning better feature representations. Over the years, several
different successful approaches have been developed for both natural and RS images, as
described in Section 2.3. Given the difficulty in discriminating between the different types
of landfills and the availability of many weakly labeled samples, it is possible to exploit self-
supervised approaches to verify whether the network is able to capture more meaningful
and discriminative features for the different types of illegal landfills. In this study, three
different approaches are considered and described: predicting image rotations, solving
jigsaw puzzles, and Tile2Vec.

Predicting Image Rotations

Gidaris et al. [76] propose to learn better feature representations by predicting image
rotations. More specifically, the idea is to rotate an image before feeding it to the network
and try to predict its degree of rotation. Four possible rotations are considered (0°, 90°,
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180°, 270°) meaning that the network outputs a distribution probability over four classes
representing each specific rotation. Moreover, the four rotated images are fed to the
network all at once since the authors report that this can improve performance. The
underlying idea is that if the network can understand how an image is rotated, it has
learned something about the content of the image itself. Of course, in the case of natural
images, this task can be effective, while in the case of RSIs, it can be more complex to
understand the image rotation given that images are usually taken from overhead. This
task has already been used successfully by Zhao et al. [126] for RSIs scene classification.

Solving Jigsaw Puzzles

Noroozi et al. [99] propose to learn better feature representations by solving jigsaw
puzzles. The idea is to extend the work presented in [79]. More specifically, a patch is first
extracted from the image and divided into tiles. Each tile is represented by a number. In
this way, the original patch can be represented by the sequence S = 1, 2, 3, . . . , N where N
represents the number of tiles. The tiles are then mixed-up to obtain a puzzle represented
by a vector S ′ of dimension N in which the numbers identifying the tiles are mixed-up in
the same way as the tiles. The idea is to feed the mixed-up tiles to the network whose
output should be S ′. Thus, the network should learn how the tiles are mixed-up with
respect to their original position. If the network can understand this task, it means that
it can potentially understand the spatial relations of the image content. In the paper, the
authors propose to apply a set of transformations (e.g., jittering) since they observed that
if these transformations are not applied the network is able to learn shortcuts to solve
the task without learning relevant features. As reported in [15] this approach is not often
used for RSIs given that spatial correlation in overhead imagery is less dominant than
in natural images. However, it is still considered in this study to evaluate its potential
benefits for the illegal landfills’ multi-label fine-grained classification task.

Tile2Vec

Recently, many researchers started to develop SSL techniques that can be directly
applied to RSIs. The reason is that, as is often the case, approaches developed for natural
images do not directly generalize to other more particular domains such as the RS one.
A few years ago, Jean et al. [133] observe that geospatial analysis lacks pre-trained
networks that significantly boost performance across a wide range of CV tasks. For this
reason, the authors propose Tile2Vec, an unsupervised representation learning algorithm.
In Natural Language Processing (NLP), Mikolov et al. [134] developed Word2Vec, a
successful method to compute relevant word representations. The basic idea is that the
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distribution of words in a text is such that words appearing in similar contexts tend to
have similar meanings. Tile2Vec tries to extend this idea to the spatial domain. However,
it is necessary to define the right atomic unit (the equivalent of a word in NLP) and the
right notion of context. The authors propose to consider a patch (a portion of an image)
as an atomic unit and define the context based on the neighborhood of the patches. The
assumption is that tiles (patches) that are close to each other have similar semantics and
therefore they should on average have more similar representations than tiles that are far
apart.

To implement this idea, the authors propose to follow three steps:

1. Select an anchor tile randomly from the original image.

2. Select a neighboring tile (positive) randomly in the neighborhood of the anchor tile.

3. Select a distant tile (negative) randomly far from the anchor tile.

The neighborhood of a tile is defined based on a parameter that represents the maximum
distance at which a neighboring tile can be selected. The selected tiles represent a triplet.
Each tile is passed through a CNN to extract features. Then, a triplet loss is applied to
minimize the Euclidean distance between the anchor and neighboring tiles features while
maximizing that between the anchor and distance tiles ones. The triplet loss is defined by
Equation 3.12 in which (ta, tn, td) represent the features of the anchor, neighboring, and
distant tiles respectively, while m is a term named margin whose purpose is to prevent
the network from pushing the distant tile farther without restriction. Usually, the loss is
regularized by introducing another term that penalizes the L2− norm of the representa-
tions to constrain the network to generate embeddings within a hypersphere, leading to
a representation space in which relative distances have meaning.

L (ta, tn, td) = [∥fθ (ta)− fθ (tn)∥2 − ∥fθ (ta)− fθ (td)∥2 +m]+ (3.12)

The most critical aspect of Tile2Vec is the choice of the tile size and the neighborhood,
which can vary depending on the used data set. In this study, the possibility of improving
the results of fine-grained multi-label classification is explored. In particular, the idea is to
learn more useful features concerning the different types of illegal landfills. However, there
is a major problem that needs to be faced before applying Tile2Vec to the AerialWaste
data set: the tiles selection cannot be performed randomly. In fact, given that the landfills
usually cover a small portion of the image, most of the time the selected tiles would not
contain any waste disposal site. This would result in learning nothing about the different
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types of landfills which is instead fundamental for successful classification.

To solve this problem, a CAM-guided approach is proposed. The basic idea is based
on the following two considerations:

• Models such as that of Torres et al. [18] are quite good at discovering whether there
is an illegal landfill in an image.

• The CAMs obtained for the images can indicate where the illegal landfill (if present)
is located.

Given the above considerations, the idea is to exploit the CAMs produced by an illegal
landfill binary classification model to discover where an illicit waste disposal site may be
located and then use this information to select tiles that are highly likely to contain a
landfill.

To accomplish this task, the unlabeled images are first passed through the selected
model to generate the CAMs and the classification scores indicating the likelihood of
the presence of an illicit landfill. Once all the CAMs are produced, it is possible to
start generating the tiles’ triplets. The first step is to select an unlabeled image between
those available. The choice takes into consideration only those images for which the
classification score is greater than a predefined threshold. In this way, it is possible to
avoid the selection of images that the model considers as negatives or for which it is not
highly confident.

Once an image has been selected, the anchor, neighboring, and distant tiles are ex-
tracted in the following way (see Figure 3.11):

• Anchor tile selection: the anchor tile needs to be a small portion of the image
that contains an illegal landfill. For this reason, the center point of the tile is selected
among the points for which the CAM is over a certain threshold. The higher the
threshold, the more likely the selected point is to indicate the position of an illegal
landfill.

• Neighboring tile selection: the neighboring tile needs to be very close to the
anchor tile. The reason is that if the neighborhood is big, either the neighboring
tile does not contain a relevant part of the landfill, or it may contain another type
of landfill given that most of the time different waste types are placed close to each
other. If this is the case, the risk is that features of different landfills are brought
close to each other in the embedding space, thus hurting the discriminative power
of the downstream classifier which needs those representations to be far enough
to differentiate among the two types of landfill. This can be accomplished by an
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accurate choice of neighborhood size.

• Distant tile selection: the distant tile needs to be far enough from the anchor
tile to be considered different. Thus, the distant tile center point is selected among
the points for which the CAM is smaller than a given threshold. The lower the
threshold, the more likely is to place the distant tile where there is no landfill. A
higher threshold could allow considering another landfill as a distant tile. However,
there is no guarantee that the two landfills would be of different types, thus hurting
the learning of proper features. The distant tile can also be selected from an image
that is not the one used for extracting the anchor and neighboring tiles.

Figure 3.11: Example of how CAM-guided Tile2Vec should work. The anchor and neigh-
boring (positive) tiles should be placed near each other where the CAM is high, whereas
the distant (negative) tile should be placed where the CAM is lower.

The obtained results are very likely to be dependent on the goodness of the models
that are used to produce CAMs. Following this approach, a data set of triplets can be
created, and Tile2Vec can be used to learn a feature representation before performing TL.

Pseudo-label Generation

The CAMs generated by a classification model can be used not only to evaluate the
localization capabilities of the network but also as a starting point for the design of WSL
methods such as those explained in Chapter 2. However, while Chapter 2 describes a
large number of sophisticated methods that can be exploited also in the RS domain,
simpler approaches are considered given that the focus of this thesis.The basic idea is to
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generate segmentation masks as pseudo-labels that can then be used to train an instance
segmentation network such as Mask R-CNN [52]. The simplest mechanism is based on
a direct segmentation of the CAMs. In fact, the first step consists in generating CAMs
for each image of the training set and for each class that is present in the multi-label
GT. Then, the CAMs can be processed converting them into a segmentation mask by
applying binarization based on a fixed threshold value. Finally, pseudo-labels in the form
of polygons can be extracted from the contours of the binary CAMs. Alternatively, it is
possible to exploit a more sophisticated approach, with the aim to refine CAMs and obtain
pseudo-labels of higher quality. The considered approach is IRNet [228] which refines
CAMs exploiting CRF [288] and taking into consideration the borders of the instances.
In this case, the idea is to train IRNet using the CAMs generated by the classification
model for the GT classes, and then use the trained model to generate the segmentation
masks from which polygons can be extracted as in the previous case.
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4| Experiments and Evaluation

In this chapter, a description of the experiments and an evaluation of the obtained results
are reported. Initially, an introduction to the evaluation procedure is provided. Then, the
experiments are shown and evaluated according to the previously defined mechanisms. If
needed, a description of the hyper-parameter tuning process for the different experiments
is further provided. Once all the results have been highlighted, the best model is compared
with the baseline and an analysis of the weaknesses and strengths of the model is carried
out. To assess the possibility to proceed with a WSL task, segmentation masks are finally
generated from the CAMs of the best-resulting model and analyzed to evaluate if they
are good enough to use as pseudo-labels.

4.1. Evaluation Mechanism

To evaluate the results of the various experiments in the considered scenario, it is
crucial to consider both a quantitative and a qualitative evaluation. A quantitative eval-
uation allows to obtain a quick idea of how well the classifier is performing from different
perspectives. However, this information is not sufficient to understand why the model
outputs certain predictions. For this reason, a qualitative evaluation is also carried out
so that more understanding is gained of the actual capabilities of the classifier. All the
following diagrams, plots, and analyses are generated using the evaluation tool named
ODIN [19, 20], which was extended to match the analysis requirements of this thesis.

4.1.1. Quantitative Evaluation

To evaluate the results of the various experiments quantitatively, different metrics
were considered. In general, Accuracy is one of the most intuitive metrics to evaluate a
model. However, given that the data set is imbalanced, this metric is not suitable since
high accuracy could be obtained without learning anything about the less-represented
classes. For this reason, other metrics are employed. More specifically, each experiment
is evaluated according to Precision, Recall, F1-score, and the Precision-Recall curve.
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Given the presence of multiple classes, Precision, Recall, and F1-score are computed
for each category in a one-vs-all fashion, meaning that a sample (or a prediction) is
considered positive if the considered class is present (or predicted), whereas it is considered
negative if the considered class is not present (thus, without taking into consideration the
other classes). In this way, the metrics for each specific class are the same used in a binary
scenario. Given this fact, it is possible to define the following terms:

• True Positive (TP): a sample is considered a TP if the considered class is present
and predicted by the model.

• False Positive (FP): a sample is considered an FP if the considered class is not
present but the model predicts it.

• True Negative (TN): a sample is considered a TN if the considered class is absent
and the model does not predict it.

• False Negative (FN): a sample is considered an FN if the considered class is present
but not predicted by the model.

Considering the above terms, the Precision, Recall, and F1-score for each class (c)
can be computed by the following equations:

Precisionc =
TPc

TPc + FPc

Recallc =
TPc

TPc + FNc

F1− scorec =
2× Precisionc ×Recallc
Precisionc +Recallc

The Precision metric indicates how many samples are correctly classified as containing
a specific class (TP ) among all the samples that are predicted as containing the class
(TP + FP ). Thus, high precision means that the network rarely predicts a class when it
is not present. The Recall metric indicates how many samples are correctly classified as
containing a specific class (TP ) among all the samples that contain the considered class
(TP + FN). Thus, a high recall means that the network is able most of the time to
predict the presence of a class when it is present. The F1-score metric is a measure of the
accuracy of the model that balances precision and recall.

Once the metrics for each class have been computed, it is possible to fuse them to
obtain a high-level view of how the model is performing. In this study, the metrics are
aggregated using a macro average which is simply the average of the considered metric for
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each class. Thus, macro-Precision, macro-Recall, and macro-F1, considering C different
classes, can all be computed using the following formula:

macro−Metric =

∑
c ∈ C Metricc

|C|

Besides these metrics, the Precision-Recall curve (PR curve) is taken into consid-
eration. The PR curve shows the trade-off between Precision and Recall for different
thresholds. The above metrics are computed considering a fixed threshold, meaning that
all the samples whose classification score is above the threshold are considered positive,
whereas the others are negative. In the PR curve, the threshold is not fixed instead. A
high area under the curve represents both high recall and high precision. On the one
hand, a model with high recall but low precision returns many results, but most of its
predicted labels are incorrect compared to the GT labels. On the other hand, a model
with high precision but low recall returns very few results, but most of its predicted labels
are correct when compared to the GT labels.

4.1.2. Qualitative Evaluation

Even though the quantitative evaluation mechanisms described in the previous sub-
section allow to obtain an overall idea of how the model is performing, no indication is
given on the aspects that are learned by the model. However, this is crucial, especially in
the case in which the obtained results could be used for more complex tasks such as OD
and IS. If more complex tasks need to be carried out on illegal landfills, it is not sufficient
that the model can correctly predict the presence of, say, two classes in a sample. What
is more important is that the model is actually able to distinguish among them and thus
focuses on different relevant features. If this is not the case, detection tasks cannot be
addressed successfully.

For this reason, all the experiments are analyzed qualitatively by looking at CAMs.
More specifically, using the approach described in Section 3.2.3, a CAM is generated for
each sample for each class. In this way, it is possible to observe where the model is
focusing when predicting each specific class. In an ideal scenario, the model can focus on
different aspects for every single class, meaning that it is able to successfully discriminate
among the different categories.
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4.2. Experiments

In this section, a description of the experiments that were performed in this study is
reported. For each experiment, the obtained results are discussed and analyzed to check
how to improve the results of the next experiments or to delineate possible future direc-
tions of improvement. When needed, the hyper-parameters tuning procedure is described.
In the following, the experiments are reported in chronological order, from the first ones
used to gain more insights on the data set, to those in which the techniques described in
the previous sections are implemented and tested.

4.2.1. Training Environment and Configuration

All the experiments and models are implemented using the PyTorch framework1. The
models are trained using 2 NVIDIA GeForce RTX 2080 Ti GPUs. If unless specified, the
experiments were performed using almost the same parameters’ values as Torres et al.
[18]. More specifically, the batch size is set to 12 so that the full capacity of the GPUs is
exploited if the non-cropped images are used. The learning rate is set to 0.005. The model
is trained for 80 epochs using early stopping on the validation set to avoid overfitting.
The metric for early stopping is the loss in case of binary classification or the macro-F1-
score if multi-label classification is performed. This choice is dictated by the fact that
F1-score allows giving importance also to less represented classes and can cope with data
set imbalance. The early stopping patience is set to 8 with a min delta of 0.005. Finally,
a threshold of 0.5 is used to distinguish between positive and negative classes.

4.2.2. Single-class Experiments

The initial experiments are performed considering only one class at a time solving the
task of binary classification in which the aim is to predict the presence or absence of the
considered class. The purpose of these experiments is to understand how much difficult
it is for the network to recognize each class in the data set.

In this case, the data set is modified to make it compliant with the task that is be-
ing solved. More specifically, the multi-class multi-label annotations of the images are
modified and transformed into binary labels. Considering a category c, if the original
annotation contains class c (possibly together with other categories) the corresponding
sample is labeled as positive; otherwise, it is labeled as negative. This operation is per-
formed for each class, leading to the generation of a new binary data set for each class.

1https://pytorch.org/
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Because of the way in which the binary data set is constructed, two types of negative
samples are present:

• Soft negative samples: these are samples that also in the original data set were
considered as negatives, meaning that they did not contain any type of landfill.

• Hard negative samples: these are samples that in the original data set contained
one or more landfills’ classes but not the classes considered in these experiments.
In this study, these samples are called "hard" in the sense that, given that they
contain other classes, they may be harder to classify.

While the number of soft negative samples is the same for all the classes, the number of
hard ones depends on each specific class. However, the sum of the positive binary samples
and the hard negative ones is always equal to the original number of positive samples.

Negative Sampling Strategy Selection

Considering the statistics of the AerialWaste data set reported in Section 3.1, it is
rather intuitive that the obtained binary data sets are imbalanced since the number of
negative samples is much higher than the positives. Thus, using these data sets can result
in the classifier predicting the absence of the considered class. To avoid this problem,
the binary data sets are modified by considering only a subset of the negative samples.
The choice of negative samples can be a critical factor. For this reason, experiments
considering the following negative sampling selection strategies are performed:

• Random sampling: this strategy selects negative samples randomly, without tak-
ing into consideration the type (soft or hard) of the sample.

• Balanced strategy: this strategy selects the same number of soft and hard neg-
ative samples. Moreover, the number of negatives is equal to twice the number of
positives.

• Imbalanced strategy: this strategy selects the number of hard and soft negatives
according to a given ratio with respect to the number of positives. The ratios that
are taken into consideration are [2 : 1, 2 : 0.5, 3 : 0.5]. For instance, a ratio of 2 : 1

means that the number of hard negatives is twice the number of positives and the
number of soft negatives is equal to the number of positives.

To verify which of the previously defined strategies allows to obtain a more discrim-
inative classifier, a binary experiment is conducted for each class and for each of the
considered strategies (if enough samples are available). Concerning the data set, the orig-
inal training set is split into training and validation sets, keeping 80% of the samples for
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training and the remaining ones for validation. Then, once the split is performed, the
original data set is transformed into a binary data set for each class following the described
procedure. The number of negative samples in each binary data set is reduced to match
the chosen strategy. This is accomplished by taking a random subset of the needed soft
and hard negative samples.

At this point, all the experiments are run employing the training configuration de-
scribed in the previous subsection, and, for each class, the models are compared quantita-
tively and qualitatively, thanks to the use of CAMs, on the validation set. Each network is
pre-trained using ImageNet pre-training. From a quantitative point of view, the balanced
strategy allowed to obtain better results than using a random strategy. This can be due to
the fact that random sampling produced data sets in which the number of hard negatives
is much more reduced than the number of soft negatives. It is rather intuitive that hard
negatives are more relevant than soft ones since they allow to understand whether the
network is able to comprehend if the class is present even when other potentially similar
instances are given. Considering imbalanced strategies instead, no major improvement
is obtained. This can also be due to the limited number of samples available and the
complexity of the task. Moreover, for many of the classes (e.g., Glass, Asphalt milling),
the network tends to always predict the absence of the class. This can be led back to the
very limited number of samples of the considered classes.

From a qualitative point of view, it is possible to verify that, independently of the
class, the network does not focus only on illegal landfills. Once again, this can be brought
back to the limited number of samples, at most around 400 (Heaps not delimited).

Transfer Learning Strategy Selection

Given that the previous models are not able to focus on illegal landfills and that this is
a core point for the success of the task, the possibility of performing TL using the weights
of the model provided by Torres et al. [18] was tested. From now on, this is referred to
as Torres-AerialWaste pre-training.

For each class, an experiment was conducted using Torres-AerialWaste pre-training
and fixing the negatives samples selection to the balanced strategy. This time, from a
qualitative point of view a major improvement was obtained since the models are able
to focus on illegal landfills. In this case, the source and target tasks are much more
similar. However, every model focuses only on generic illegal landfills, without being able
to distinguish which portion of the landfill contains the considered class. Moreover, from
a quantitative point of view, it is possible to assess that either the model always predicts
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the class as absent (if limited samples are available) or the number of FPs is very high.
This can be brought back to the fact that the models are only able to find the presence of a
landfill but cannot understand its type. The same experiments were performed using the
random strategy for the selection of negative samples, once again testifying the superiority
of the balanced strategy from a quantitative point of view.

Data Set Augmentation

Given that the above results can also be related to the limited number of available
samples, the possibility of increasing the size of the data set is considered. In particular,
to generate more samples, offline data augmentation as described in the previous chapter
is performed. More specifically, given a crop size, the original images are cropped into
five partially overlapping patches, each labeled in the same way as the original image. In
this way, the training set of each binary experiment is five times larger.

Fixing the negative sampling strategy to the balanced strategy and performing the
Torres-AerialWaste pre-training, different experiments were conducted for each class using
various crop sizes. More specifically, the analyzed crop sizes are [500, 600, 700, 800]. This
choice is dictated by the fact that most original images are 1000× 1000 pixels. Thus, the
crops obtained using crop size 500 do not overlap (except for the center patch), while in
the other cases, the overlap is partial. Considering smaller sizes would not be convenient
since the risk of not including a landfill in the patch is higher. Moreover, if the image size
is smaller than 800× 800 pixels, only the center crop is performed to avoid using samples
that are too similar to each other.

The results show that, especially from a qualitative point of view, offline data aug-
mentation leads to an improvement. This proves the fact that increasing the number of
samples, improves the capabilities of the classifiers. Concerning the crop size, for most
of the classes, the best results were obtained using a crop size of 600 pixels. A crop size
of 700 pixels often provides similar results and improves especially in the case of Rubble-
excavated earth and rocks. Instead, considering smaller (less than 600) or bigger (more
than 700) crop sizes results in a degradation of the performance. The reason can be due
to the fact that, on one side, a small crop size increases the risk of introducing too many
mislabeled samples which hurts the discriminative power of the classifier. On the other
side, a big crop size introduces much more context that may cause more confusion for the
classifier.
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Final Binary Assessment

Given the above results, a final set of binary experiments is performed:

• The crop size is fixed to 650 pixels since the results provided using a crop size of
600 and 700 were similar.

• The negative sampling strategy is fixed to balanced.

• Both ImageNet pre-training and Torres-AerialWaste pre-training are tested.

The results confirmed the previous considerations, meaning that ImageNet pre-training
tends to perform worse than Torres-AerialWaste pre-training. Moreover, most of the time
the focus of the models is only on illegal landfills, without any differentiation on the actual
type. Classes poorly represented, such as Glass, Asphalt milling, Corrugated sheets are
never detected given that the number of samples, even after augmentation, is still too
limited.

In the case of more represented classes such as Rubble, Bulky items and Heaps not
delimited it is possible to observe the CAMs and notice that when two or more types of
landfills are present, the network focuses on different aspects to predict the presence of
each class (in the corresponding binary experiment). Figure 4.1 shows an example of this
behavior.

4.2.3. Multi-label Experiments

Thanks to the results of the single-class binary experiments, it is possible to set
up a framework for the multi-label experiments. The experiments follow a pre-defined
procedure: 1) a baseline experiment is chosen, 2) a set of experiments is defined to improve
the results with respect to the baseline using the methods described in Section 3.3, 3) all
the results are evaluated quantitatively and qualitatively.

Multi-label Data Set

Starting from the AerialWaste data set and taking into consideration the results of the
single-class experiments, it is possible to select a subset of classes following the principle
that if it is not possible to find and recognize a class in a single-class experiment, it is
more difficult to do it in a multi-label experiment. Moreover, given that for some classes
the number of available images is much reduced, it is very unlikely that a good model can
be derived using such a limited amount of data. Thus, some classes are discarded.

Since a potential source of confusion is that Waste types and Storage modes are not
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Figure 4.1: Example of an image from the AerialWaste data set [18] classified as TP by
three different binary classifiers. As it is possible to see the CAMs focus on different
aspects in the 3 cases, which are correct.

mutually exclusive, given that the storage mode indicates a container of waste, whereas
the waste type is related to the content, most of the time a waste instance can be classified
according to two different views: container and content. For this reason, only the classes
indicating Waste types are kept, leading to a final set of 5 categories: Rubble, Bulky
items, Fire Wood, Scrap, Vehicles. Given the selected classes, it is possible to construct
the data set used for all the subsequent experiments: each sample is considered positive
if it contains at least one of the five selected classes and negative otherwise.

The previously introduced concept of hard and soft negatives can be generalized to the
case of multi-label classification. Given that only Waste types are taken into consideration,
hard negatives are selected among negative samples that originally contained at least one
waste type. This results in having a very limited number of hard negatives with respect to
the number of soft negatives. However, in the following experiments, all these samples are
kept because of their importance as already highlighted during the binary experiments.
Concerning the soft negatives, preliminary experiments revealed that using a number of
negative samples equal to 25% of the positive samples seems to be the most promising
direction. The resulting data set is defined as follows:

• A trainval set derived from the AerialWaste training set, containing 418 positive
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samples, 36 hard negatives, and 104 soft negatives, for a total of 558 samples.

• A test set derived from the AerialWaste test set, with 135 positive samples, 33 hard
negatives, and 33 soft negatives, for a total of 201 samples.

Since this data set is derived from the original AerialWaste data set, pixel-level an-
notations are available only for the test set. The test set is used only for the evaluation
of the final selected model.

To perform the various experiments, the trainval set is further split into training and
validation sets, keeping 80% of the samples for training and 20% for the validation set that
is used for early stopping and to compare the different models. The splitting operation is
uniform, meaning that the samples are not randomly selected, but instead, the selection
is performed in such a way that the distribution of the classes is left unmodified. Thus,
the training set contains 80% of the soft negatives, 80% of the hard negatives, and 80%
of the samples of each considered class.

After the split, the resulting training and validation set are as follows:

• The training set contains 334 positive samples, 30 hard negatives, and 83 soft neg-
atives, for a total of 447 samples.

• The validation set contains 84 positive samples, 6 hard negatives, and 21 soft neg-
atives, for a total of 111 samples.

Because of the limited dimension of the training set and the considerations derived
from the single-class experiments, the training set is enlarged using offline data augmen-
tation as described in Section 3.3: the crop size is set to 650 as for the final single-class
experiments. Following the same strategy adopted during the single-class experiments, if
the image size is smaller than 800× 800 pixels, only the center crop is performed.

This results in the final adopted multi-label data set composed by:

• A training set with 1,482 positive samples, 146 hard negatives, and 391 soft nega-
tives, for a total of 2,019 samples.

• A validation set with 84 positive samples, 6 hard negatives, and 21 soft negatives,
for a total of 111 samples.

• A test set with 135 positive samples, 33 hard negatives, and 33 soft negatives, for a
total of 201 samples.

After these operations are performed on the data set, it is crucial to check if the
characteristics of the data set described in Section 3.1 are left unmodified. By looking at
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Table 4.1: Number of images for each selected class in the final data set. Both the number
of samples into training, validation and test set, and the total are reported.

Label #Training samples #Validation samples #Test samples #Samples

Rubble/excavated earth and rocks 786 46 67 899
Bulky items 846 48 44 938
Fire Wood 480 27 38 545
Scrap 468 28 27 523
Vehicles 106 5 27 138

the second column of Table 4.1, it is evident that the data set is still imbalanced. The
most represented class (Bulky items) is present in 8 times more samples than the least
represented one (Vehicles).

Moreover, as shown in Figure 4.2, the high class co-occurrence in the training set is
still an issue that needs to be tackled in the various experiments, using approaches similar
to those described in Section 3.3.

Furthermore, analyzing the distribution of the positive samples in the training set,
based on the number of classes that are present in each sample, it is possible to attest that
the average number of samples gradually decreases as the number of classes present in the
samples increases (top-left image of Figure 4.3), e.g. 33.3% of the samples contain 1 class
while only 4.5% of the samples contain 4 classes. Unfortunately, from Figure 4.3) we can
also observe that, for almost all classes, the number of samples with only a specific class
is very low while two or more classes are present most of the time. In this case, it can
become harder for the classifier to learn to discriminate classes due to the high confusion
that can be introduced. The most critical class is Scrap: the number of times it appears
alone is lower than the number of times it is present with other 1, 2, and 3 classes.

It is important to clarify that, even if a sample is labeled as containing only one class,
it is still possible that other classes aside from those selected for classification, e.g., Tires,
Asphalt milling, Plastic are present. This leads to a sort of hidden co-occurrence that is
hard to detect but that can potentially further complicate the classification task. Hard
negatives should help in solving this issue.

In addition to the three sets (training, validation, and test) defined for the supervised
experiments, a large number of data with coarse-grained annotations is available. In
particular, the original AerialWaste data set contains 2,065 binary annotated images in
which at least an illegal landfill is present but lacks fine-grained annotations indicating
the specific type of landfill. This set of images can be split into a training set and a
validation set , with respectively 1,652 and 413 samples, to be used in a self-supervised
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Figure 4.2: Relative co-occurrence matrix of the waste types classes of the training data
set used in multi-label experiments.

scenario.

Baseline

During the analysis of single-class experiments, a set of considerations concerning the
backbone pre-training and the characteristics of the training set were analyzed. Based
on what was observed during these experiments, the Torres-AerialWaste pre-training was
considered as the way to initialize the weights of the ResNet50 backbone given that it
provided better results with respect to ImageNet pre-training. Moreover, the training
data set is cropped to a square of size 650 pixels.

This configuration is used to execute a first multi-label classification experiment on
the multi-label data set. Analyzing the obtained results, it is possible to verify that
considerations similar to the single-class experiments can be drawn. In fact, from a
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Figure 4.3: Distribution of the number of samples according to the number of classes
contained in each sample.

quantitative point of view, this experiment allows reaching around 57.15% of F1-score
(4.2). However, if the results are analyzed more in-depth, it is possible to see that Rubble
and Bulky items reach 57.97% and 76.52% of F1-score respectively, while Fire Wood and
Vehicles are below 50%.

However, from a qualitative point of view, it is possible to realize that the model often
confuses one class for another without discriminating enough between them. This results
in predicting the presence of multiple classes even when only a few are present given that
there is no real understanding of the differences between the classes. This problem is likely
to be due to the characteristics of the data set and specifically to the high co-occurrence
of the classes that makes it difficult for the model to learn what a certain class looks like
given that it appears too many times with other classes. In addition, inter-class similarity
and intra-class diversity of the samples can contribute to the further increase of confusion.

Oversampling

Given the issues present in the baseline experiment, the idea is to apply oversampling
as described in Section 3.3 to reduce the problems of high class co-occurrence and data set
imbalance. Given that oversampling is applied by creating copies of the images already
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Table 4.2: Quantitative evaluation of the models obtained in the various experiments on
the validation set.

Experiment Metric Rubble Bulky items Fire Wood Scrap Vehicles Macro avg.

Baseline
Precision 86.96% 65.67% 88.89% 41.67% 66.67% 69.97%
Recall 43.48% 91.67% 29.63% 89.29% 40.00% 58.81%

F1-score 57.97% 76.52% 44.44% 56.82% 50.00% 57.15%

Oversampling (Simplex-guided)
Precision 65.12% 67.92% 52.17% 50.00% 100.00% 67.04%
Recall 60.87% 75.00% 44.44% 32.14% 40.00% 50.49%

F1-score 62.92% 71.29% 48.00% 39.13% 57.14% 55.70%

SDA (Uniform strategy)
Precision 71.05% 62.32% 52.38% 40.00% 100.00% 65.15%
Recall 58.70% 89.58% 40.74% 35.71% 40.00% 52.95%

F1-score 64.29% 73.50% 45.83% 37.74% 57.14% 55.70%

SDA (Uniform strategy + Blur)
Precision 60.00% 68.33% 50.00% 48.57% 100.00% 65.38%
Recall 58.70% 85.42% 29.63% 60.71% 40.00% 54.89%

F1-score 59.34% 75.93% 37.21% 53.97% 57.14% 56.72%

SDA (Simplex-guided + Blur)
Precision 56.92% 60.00% 53.13% 41.27% 100.00% 62.26%
Recall 80.43% 87.50% 62.96% 92.86% 40.00% 72.75%

F1-score 66.67% 71.19% 57.63% 57.14% 57.14% 61.95%

part of the data set, the Simplex-guided strategy is employed. More specifically, the
parameters of the strategy are set in such a way that the relative co-occurrence between
every two classes must be smaller than 30% (ki,j = 0.3 ∀i ̸= j) and that the maximum
imbalance between the number of samples of two classes is 20% (bi,j = 0.2 ∀i ̸= j).
Finally, all the samples from the original data set are also kept (ui = 0 ∀i). In this
case, the distribution of the samples based on the number of classes, present in an image,
is not forced with any specific constraint. After executing the Simplex Algorithm, 2,771
new samples are added to the original training set. More specifically, Simplex outputs
the number of samples that should be added to the data set for each possible subset of
classes. Thus, images are randomly sampled to meet the required Simplex output.

Observing the results reported in Table 4.2, it is possible to verify that Bulky items
is still the class with the highest value for the F1-score. Concerning the other classes, the
F1-score is more balanced between classes than in the baseline experiment. This can be
caused by the added samples. This results in a model that is less prone to predict the
presence of many classes. Overall, from a quantitative point of view, the average F1-score
is 55.70%. From a qualitative point of view, the results are similar to the baseline, but in
some cases, it is more evident that the model is trying to differentiate among the different
classes. Most of the time, the number of predicted classes is reduced, whereas, in the case
of the baseline, many classes were most of the time predicted together incorrectly. This
shows the importance of acting on the class co-occurrence and imbalance to increase the
discriminative power of the classifier. However, using only oversampling of the available
samples does not bring a major improvement.
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Uniform Augmentation with Synthetic Data

The oversampling experiment confirms the importance of enlarging the size of the
training set while tackling the problem of co-occurrence and imbalance. The Simplex
guided strategy is quite trivial for oversampling since the selected samples for the aug-
mentations are taken from the original ones, and there is no risk of including unrealistic
samples. The scenario is different when synthetic data augmentation (SDA) is used. Gen-
erating synthetic data, as described in 3.3, with the possibility of adding multiple classes
to the same sample, could lead to very unrealistic samples. For this reason, in the exper-
iments, only samples containing instances of a single class are generated. The problem
with this strategy is the need for a larger amount of samples to reduce the co-occurrence.

Several experiments were conducted considering the addition of a different number of
synthetic samples for each class and a different number of instances for each generated
sample. More specifically, the number of newly created samples per class was chosen
between [187, 375, 750] while the number of instances per sample was randomly picked
from one of the ranges [1, 2], [2, 4]. Most of the time, there is no big difference on average
from a quantitative point of view, but using a smaller number of instances (in the range
[1, 2]) produced models that are less able to differentiate among the classes. Reducing
also the number of generated samples per class resulted in a reduction of the qualitative
outcome of the model as shown in Figure 4.4. More specifically, using 187 samples per
class resulted in obtaining over 60% F1-score but the network did not learn anything
about the different classes and is thus unable to differentiate among them. This can be
due to the fact that introducing 187 samples per class does not reduce enough the co-
occurrence and imbalance of the classes. Overall, the best experiment is the one that
adds 750 synthetic samples for each class, each with a number of instances in the range
[2, 4], for a total of 3, 750 samples added to the original training set of 2, 019 samples.
This results in effectively reducing the relative co-occurrence given that a lot of samples
with only a single class are present in the final data set. Moreover, the relative imbalance
is also reduced given that x+750

y+750
≪ x

y
where x and y are the numbers of original samples

of two different classes.

One of the strengths of synthetic samples is that they cannot be mislabeled. However,
synthetic samples are often unrealistic and, because of the limited amount of patches used
to generate them, the network could overfit. This can be partially mitigated using flip
and rotation augmentations. The best generation strategy was tested with the addition of
techniques to improve the realism of the generated images. More specifically, experiments
blurring the contours and using a CAM-guided approach, are carried out. Despite the
CAM guidance allowing the creation of impressively realistic images, the best overall
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Figure 4.4: Qualitative comparison of SDA with 750 samples per class and SDA with 187
samples per class on an image from the validation set. As can be seen on the right, using
fewer samples per class causes the network to make more confusion between classes.

results are obtained using random positioning of the patches. From a quantitative point
of view, using SDA allows to reach an average F1-score of 55.70% without blur and 56.70%
using blur, showing comparable results with the oversampling and slightly worse than the
baseline. An in-depth analysis of the experiments with and without blur reveals that the
behavior is very similar from a qualitative point of view. However, blurring the contours
allows obtaining better results in the case of Scrap, whereas it worsens the performance
for Fire Wood. This can be due to the fact that this class is often already similar to
the background. Thus, blurring the contours may make it even more difficult to detect
for the network, explaining why the network learned more about it without blur. This
does not hold for Scrap whose added patches are already much more distinguishable from
the background. More details about the quantitative results are reported in Table 4.2
showing performance over the classes. The same considerations made for oversampling
hold. However, from a qualitative point of view, even though the baseline obtains an F1-
score greater than the uniform SDA, a qualitative analysis shows that the model generates
more confusion and is less able to differentiate between classes, as reported in Figure 4.5.

Figure 4.5: Qualitative comparison of SDA with uniform strategy and the baseline on
an image from the validation set. The baseline is less able to differentiate among the
different classes, resulting in more confusion.
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Table 4.3: Number of images for each selected class in the training data set and in the
training set augmented with the Simplex-guided augmentation strategy. In the original
data set the relative difference between the most represented class (Bulky items) and
the less represented one (Vehicles) is around 80%, while in the augmented data set, the
relative difference between the same classes is around 50%.

Label #Original training samples #Augmented training samples

Rubble/excavated earth and rocks 786 1685
Bulky items 848 1726
Fire Wood 480 1630
Scrap 468 1699
Vehicles 106 863

Simplex-guided Augmentation with Synthetic Data

Given the improvement obtained using SDA, a more sophisticated strategy for gen-
erating samples is experimented. In particular, a Simplex-guided strategy is taken into
consideration forcing the relative co-occurrence of the augmented data set to be smaller
than 30% for each pair of classes (ki,j ≤ 0.3 ∀i ̸= j). Furthermore, the maximum relative
imbalance between every two classes is at most 50% (bi,j = 0.5 ∀i ̸= j). Finally, another
constraint is set considering the number of classes present in each sample: the maximum
percentage difference between the number of samples with k classes and the number of
samples with k + 1 classes is set to +5% for each class (d = 0.05). The parameters have
been chosen to introduce around the same number of samples but allowing the generation
of synthetic data with multiple classes being sure that the co-occurrence and imbalance
are still constraints to be reduced. Using this strategy, 3,768 samples are generated using
random patch positioning and a number of instances per sample in the range [2, 4] (in case
only one class is added) or in the range [1, 2] (if two or more classes are added). This is
done to reduce the number of instances inserted in each sample, which could cause much
more confusion given the addition of multiple classes.

Table 4.3 shows the effect of the augmentations on the number of samples per class
and on their imbalance. Figure 4.6 shows the effect on the relative co-occurrence matrix,
and Figure 4.7 shows the effect on the distribution of the number of samples according to
the number of classes.



114 4| Experiments and Evaluation

Figure 4.6: Relative co-occurrence matrix of the augmented training set obtained using the
Simplex-guided augmentation strategy with a maximum allowed co-occurrence of = 0.3.
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Figure 4.7: Distribution of the number of samples according to the number of classes
contained in each sample for the augmented training set obtained using the Simplex-
guided augmentation strategy.

The obtained quantitative results are better than the previously described experiments
and are reported in Table 4.2. Contours blurring is used. Even though from a quantitative
perspective the Simplex-guided model is the best, from a qualitative perspective the model
is less able to differentiate between classes, similar to the baseline, as shown in Figure 4.8.
From a qualitative point of view, the uniform augmentation-based model is better. It is
important to notice that, in this case, a quantitative improvement of the performance does
not imply that the network is able to discriminate better between the five selected classes.
In fact, from the previous experiments, if a model almost always predicts that three or
more classes are present in an image, it can obtain a better F1-score with respect to a
model that is less confident but has learned more accurate features. Once again, this issue
is related to the high class co-occurrence. Thus, given the importance of differentiating
between the different categories, from a localization point of view, uniform SDA is chosen
as the model for the final evaluation of the test set. Moreover, given that blurring the
contours provides a slight improvement to the F1-score, this model is preferred.
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Figure 4.8: Qualitative evaluation of the Simplex-guided SDA and comparison with SDA
on a few images from the validation set.

Self-Supervised Learning

The large number of samples not annotated with multi-label annotations (2,065) can-
not be exploited to train the network in an FS fashion. However, the unlabeled training
and validation sets can be used to perform SSL, as described in 3.3.

The potential advantage of using SSL is related to the possibility of enhancing the
feature representations in such a way that they can carry a greater discriminative power.
In this scenario, the large amount of images with only binary labels is helpful to keep only
the samples with an annotated landfill and discard the negatives that do not contain any
useful feature to learn. It is important to notice that SSL does not require binary labels
for the training of the pretext task. As already highlighted in Section 2.3, in absence of
an adequate pretext task, the learned features are likely to be useless and may result in
performance deterioration.

Considering the best model obtained so far (SDA with uniform strategy, random
positioning of the patches, and contours blurring), different weights initialization are taken
into consideration for the backbone, using the weights obtained by training a pretext task
in a self-supervised manner. More specifically, the considered self-supervised approaches
are those highlighted in Section 3.3, i.e., predicting image rotations, solving jigsaw puzzles,
and Tile2Vec. The results of the different experiments are reported in Table 4.4. Since the
first two tasks are predictive pretext tasks, it is possible to exploit regularization strategies
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such as early stopping to avoid overfitting. Thus, these pretext tasks are trained using
only the training set, while the validation set is used for validation. Regarding Tile2Vec,
instead, given that a contrastive learning framework is used, no validation is considered
and thus, the full set of trainval data is used for training.

To obtain the final weights, the first two pretext tasks (proposed in [76] and [99] are
trained for 80 epochs using early stopping to prevent overfitting based on the loss value,
with 8 epochs of patience and a min delta of 0.005. The learning rate is set to 0.005.
Moreover, the images are cropped in the center randomly using a crop size of 600, 800,
or 1000 pixels and then rescaled to 800 × 800 pixels to ensure that the size is the same
for all the images in a batch. This is used to include different amounts of context during
training. Moreover, concerning the pretext task of solving jigsaw puzzles, a patch of size
255 × 255 is extracted from the rescaled image and divided into 4 tiles of size 64 × 64

pixels. After training the pretext tasks, the downstream task training is performed.
Different experiments are performed with and without freezing the first two stages of
the backbone during the pretext task training. For both the pre-training techniques, not
freezing the first two stages provided better results. However, the overall performance is
comparable to the ImageNet pre-training and worse, especially from a quantitative point
of view, than the case in which the weights are initialized using the Torres-AerialWaste
pre-training. This can be due to the fact that as reported in Chapter 2, the pretext task
based on image rotations may not be suitable in the case of RSIs where it is difficult to
define an orientation, whereas the one based on solving jigsaw puzzles may fail due to the
fact that in RSIs, the spatial correlation is not so strong as in natural images.

Concerning Tile2Vec, the CAM-guided approach defined in the previous chapter is
employed given that randomly selecting tiles does not guarantee to select portions of the
images containing landfills, leading to no relevant knowledge gain for the downstream
task. For all of the experiments, the CAM-guidance was conducted using the binary
model published by Torres et al. [18]. While the training configuration is the same as in
the previous cases, a set of parameters specifically related to Tile2Vec needs to be set:

• Classification threshold: this parameter indicates the minimum confidence for
the selection of the images from which tiles are extracted. If the binary model
classifies the image as positive with a value higher than this threshold, the image is
considered for patch extraction otherwise it is discarded.

• CAM positive threshold: this parameter indicates the minimum value that a
pixel in the CAM should possess to be selected as the center point for the extraction
of the anchor tile.
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• CAM negative threshold: this parameter indicates the maximum value that a
point in the CAM should possess to be selected as the center point for the extraction
of the distant tile.

In particular, different combinations of these parameters are tested and the quality of
the produced patches is analyzed before training. The best tiles are obtained using a
classification threshold of 0.50, a CAM positive threshold of 0.8, and a CAM negative
threshold of 0.40.

Training Tile2Vec and then transferring the weights for the downstream task resulted
in poor performance. The average F1-score is, in fact, around 7% smaller than that
obtained using ImageNet pre-training and around 10% smaller than that obtained using
Torres-AerialWaste pre-training. This can be due to the fact that selecting a neighbor
so close to the anchor does not allow to account for intra-class diversity. At the same
time, selecting the distant tile where the CAM value is low does not allow to account
for inter-class similarity. However, these aspects are fundamental to learn discriminative
features. Starting from this consideration, an interesting future direction could be to
sample hard neighboring and hard distant tiles. For instance, this can be done if there
already exist models that are able to recognize a specific class. In this way, it is possible
to improve the learned features by selecting the neighboring tile also from an image that
is different from that used for the anchor. If only an image is used, the neighboring and
anchor tiles look quite similar. Instead, if two images are used, it is possible that the tiles
are more different (e.g., due to high intra-class diversity) but the learned features may be
more relevant thanks to the diversity of the samples. Furthermore, if models for different
classes are available, it is possible to select distant tiles choosing also among the anchors
of other classes. This way, the anchor and neighboring tiles would contain a specific class,
while the distant one would contain a different one. In this way, the training of the pretext
task can potentially allow to:

• Pull instances of the same class close to each other in the feature space.

• Push instances of different classes far from each other in the feature space.

• Push instances of landfills far from tiles representing the background in the feature
space.

This approach has not been tested because the discriminative performances reached
by the described binary classifiers are lower than those required to proceed with this
CAM-guided Tile2Vec variant. However, if more focus is given to developing single-class
classifiers, then using the described approach may improve the results for multi-label
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classification thanks to the exploitation of unlabeled data which often provides better
feature representations.

Table 4.4: Quantitative evaluation of the models obtained in the various experiments
on the validation set. All these models are trained using the best SDA strategy from
the previous experiments. The difference between them is in the backbone’s weights
initialization, that follows different strategies such as TL or SSL.

Experiment Metric Rubble Bulky items Fire Wood Scrap Vehicles Macro avg.

SDA (Uniform strategy + Blur)
Precision 60.00% 68.33% 50.00% 48.57% 100.00% 65.38%
Recall 58.70% 85.42% 29.63% 60.71% 40.00% 54.89%

F1-score 59.34% 75.93% 37.21% 53.97% 57.14% 56.72%

SDA + ImageNet Pre-training
Precision 58.14% 61.29% 47.37% 45.16% 100.00% 62.39%
Recall 54.35% 79.17% 33.33% 50.00% 40.00% 51.37%

F1-score 56.17% 69.09% 39.13% 47.46% 57.14% 53.80%

SDA + Image Rotations Pre-training
Precision 56.06% 61.54% 41.94% 42.31% 50.00% 50.37%
Recall 80.43% 83.33% 48.15% 78.57% 20.00% 62.10%

F1-score 66.07% 70.80% 44.83% 55.00% 28.57% 53.05%

SDA + Jigsaw puzzles Pre-training
Precision 65.71% 63.49% 41.67% 53.57% 100.00% 64.89%
Recall 50.00% 83.33% 18.52% 53.57% 40.00% 49.08%

F1-score 56.79% 72.07% 25.64% 53.57% 57.14% 53.04%

SDA + CAM-guided Tile2Vec Pre-training
Precision 56.82% 60.78% 66.67% 44.44% 100.00% 65.74%
Recall 54.35% 64.58% 22.22% 14.29% 40.00% 39.09%

F1-score 55.56% 62.63% 33.33% 21.62% 57.14% 46.06%

Multi-spectral Images Analysis

During the various experiments, a set of Near-Infrared (NIR) images for territories
included in the AerialWaste data set was provided by ARPA Lombardy, the agency for
environment protection. For this reason, a visual inspection of these images is conducted
to verify whether the usage of other optical bands than RGB allows to better distinguish
among the different types of landfills. Materials such as glass, plexiglass, wood, brick,
stone, asphalt and paper all absorb Infrared radiation. Furthermore, different colors
absorb radiation in different ways. Thus, it seems difficult that NIR can help in distin-
guishing better between the various classes. This is confirmed by the visual inspection,
shown in Figure 4.9. The first row shows images containing a set of Bulky items and
other small elements, which become indistinguishable in the NIR image. The bottom-left
image shows an example in which Rubble, Bulky items, Plastic, Domestic appliances and
Paper are present. However, once again, in the NIR image, these classes are not better
distinguishable. Finally, the bottom-right image shows an example in which Manure is
present, but in the NIR image it becomes similar to bales of hay.
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Figure 4.9: Examples of NIR images, compared to the original RGB images from the
AerialWaste data set [18].

Evaluation on the Test Set

Given the previous analysis, the model based on Uniform Augmentation with Syn-
thetic Data, using random positioning of the patches and contours blurring, pre-trained
using Torres-AerialWaste weights is chosen for the evaluation on the test set and compared
with the baseline to show the improvement. In this way, the generalization capabilities of
the model can be assessed.

From a quantitative viewpoint, while the performance of the baseline degrades on the
test set, the selected model shows similar results to the ones obtained on the validation
set, as reported in 4.5. More specifically, while the average F1-score of the selected model
is still around 56%, the performance of the baseline drops of 13%, demonstrating the
importance of not choosing the model relying only on quantitative results. This shows
that when a model seems able to effectively discriminate between classes, it is more prone
to generalize better.

To complement the analysis, the CAMs generated by the best model are analyzed
and visually compared to the segmentation masks available on some samples of the test
set. In this way, a more clear idea of the discriminative capabilities of the model can
be obtained. In general, the selected model is able to generate CAMs that are better
than those generated by the baseline and at the same time, it is able to detect the
correct classes in many cases, while the baseline often misleads a class for another. This
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Table 4.5: Quantitative evaluation of the baseline and the best model on the test set.

Experiment Metric Rubble Bulky items Fire Wood Scrap Vehicles Macro avg.

Baseline
Precision 70.00% 33.67% 53.13% 30.26% 70.00% 51.41%
Recall 31.82% 75.00% 44.74% 85.19% 26.92% 52.73%

F1-score 43.75% 46.48% 48.57% 44.66% 38.89% 44.47%

SDA (Uniform strategy + Blur)
Precision 69.49% 38.16% 48.72% 41.18% 92.86% 58.08%
Recall 62.12% 65.91% 50.00% 77.78% 50.00% 61.16%

F1-score 65.60% 48.33% 49.35% 53.85% 65.00% 56.43%

is displayed in Figure 4.10 which shows some examples of CAMs for a few test images,
generated using the baseline and the selected model. The original image with the available
segmentation masks is added for further comparison. The top image shows an example in
which multiple instances of a single class (Rubble) are present. In this case, the baseline
is not able to predict the presence of Rubble given that no attention is given to any of
the present instances. Furthermore, it predicts the presence of both Bulky items and
Scrap, which are not present even in the highlighted part. On the contrary, the selected
model is not only able to correctly predict the presence of Rubble but also to focus on
the whole more evident instance that is present. The other instances, instead, are much
more difficult to detect, and, thus, no or little attention is given by the model to these
instances. The second image shows another simple example in which multiple instances
of Scrap are present. In this case, these instances are easier to find than those of the
previous example. In fact, both the baseline and the selected model are able to correctly
predict the presence of Scrap, focusing on the correct part of the image. Still, the CAM
generated by the selected model is better than that of the baseline. Moreover, in this
example, the baseline predicts also the presence of Bulky items, focusing on the exact
same aspects as for the prediction of Scrap. This shows that the baseline is still not able
to correctly distinguish among these classes. The bottom image shows an example of a
sample in which only a couple of instances of class (Rubble) are present. In this case, the
selected model correctly predicts the presence of Rubble and the CAM focuses mostly on
the correct portion of the image. The second instance, however, is not detected by the
selected model, probably due to the fact that only a portion of the instance is visible.
Nonetheless, also in this case, the model is better than the baseline that, despite being
able to correctly focus on the most visible instance, is unable to predict the presence of
Rubble.

Figure 4.11 shows other examples in which the selected model performs well. More
specifically, the top image shows an example in which there is only a single instance of
Fire Wood in the image, which is difficult to detect even by visual inspection. Despite
this, the model is able to correctly focus on the whole instance and predict the correct
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Figure 4.10: Examples of CAMs generated on test images. For each image, the top row
shows CAMs generated by the baseline, whereas the bottom row shows CAMs generated
by the selected model. It is clear that, in these cases, the selected model performs better
than the baseline, making less confusion between classes.
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class. The second image shows an example in which multiple instances of class Vehicles
are present. In this case, however, there is another set of parked vehicles that are not
abandoned, as indicated by the red bounding box. Surprisingly, the model is able to
correctly distinguish between abandoned vehicles and parked ones. In fact, it correctly
predicts the presence of Vehicles focusing only on those that are abandoned as shown in
the CAM. The third image shows an example in which multiple instances of class Fire
Wood are present. However, these instances are much different than that of the first image.
In fact, while in the first case, a non-delimited heap of wood was present, in this image,
wood is ordered in piles. Despite this, the model correctly detects a couple of instances,
showing also the capability of the model to deal with the intra-class similarity. Finally,
the last image shows an example in which both Bulky items and Scrap are present. In this
case, the model correctly predicts the presence of both classes and focuses on different
aspects. While the localization of Scrap is quite accurate, that of Bulky items is far from
the GT segmentation masks. However, by inspecting the area highlighted by the model,
it is possible to see that the objects on which the model is focusing can be considered
similar to Bulky items. This is probably a missed instance, which is however correctly
detected by the model.

Despite the previous results, the selected model still presents some limitations as
displayed in Figure 4.12. The first image shows an example in which multiple instances
of Rubble are present. In this case, both the baseline and the selected model correctly
predict the presence of Rubble. However, while the instances cover most of the image, the
CAMs are focused only on a small portion of the landfill. This can be due to the fact that
in many cases, the illegal landfills cover a small portion of the image and only very few
samples are present in which instances are big. Thus, the network is not able to detect
very large instances when they are present. The second image shows an example in which
a small instance of Vehicles is present. In this case, the selected model correctly focuses
on the instance but is not able to predict the presence of the class. The same happens for
the baseline which however predicts the presence of Fire Wood focusing on the vehicles,
showing once again the fact that it is unable to differentiate between classes. The third
image shows an example in which multiple instances of Rubble are present together with
an instance of Fire Wood. In this case, the baseline correctly predicts the presence of
Rubble, focusing on one of the instances. However, it is not able to predict Fire Wood,
focusing on an instance of Rubble. The selected model instead is unable to detect both
classes. Despite this, the CAM for class Rubble reveals that the network focused on an
instance of Rubble, while the CAM for class Fire Wood is focused on the instance of Fire
Wood. This shows that despite not being confident enough to predict the presence of the



124 4| Experiments and Evaluation

Figure 4.11: Examples of CAMs generated on test images by the selected model. In these
cases, the selected model is able to correctly predict the classes that are present, focusing
most of the time on the correct instances.
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classes, the network looked at different aspects since it is more capable than the baseline
to discriminate between the different classes. Finally, the last image shows an example
containing an instance of Bulky items. In this case, both the models are not able to detect
the instance probably due to the fact that shadows are present on the instance, making it
less visible. Both models predict Fire Wood which is not present in the GT annotations.
However, while the baseline focuses on something wrong, the selected model focuses on
something that is clearly Fire Wood. Thus, once again, the chosen model is sometimes
able to correctly detect types of landfills that are not annotated.

Given that the model presents some limitations since it is not able to detect large
instances and sometimes even small ones, despite focusing on the right things, and still
makes confusion when multiple classes are present, still, some work needs to be done.
However, the above results show the superiority of the selected model with respect to
the baseline from both a qualitative and quantitative standpoint, demonstrating the ef-
fectiveness of adding synthetic data, and in general, the importance of tackling the class
co-occurrence problem.

Pseudo-label Generation

Considering the best classification model obtained so far, it is possible to evaluate the
feasibility of a WSIS task. To this end, the model can be exploited to produce CAMs on
the training images and then use these to generate pseudo-labels, as described in Section
3.3.

The direct segmentation of CAMs is performed using a binarization threshold of 0.5.
The generated segmentations reflect all the limitations described during the qualitative
evaluation of the CAMs. The detection and discrimination capabilities of the network are
still limited due to the complexity of the task and the confusion between classes. For this
reason, the segmentation masks are often overlapped, as shown in Figure 4.13, making it
unfeasible to use them to train an instance segmentation network such as Mask R-CNN
[52]. For instance, the second image shows an example in which the network correctly
detects Fire Wood in the top-left corner. However, it also confuses the center part of
the image which contains Bulky items (correctly identified) for Fire Wood. Thus, the
generated segmentation masks are overlapped. The third image shows another example
in which the obtained segmentation masks are of poor quality due to a bad output of
the model. Using these pseudo-labels for Mask R-CNN would lead the network to a high
level of confusion since the same instance would be fed to the network with multiple
annotations.
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Figure 4.12: Examples of CAMs generated on test images. For each image, the top row
shows CAMs generated by the baseline, whereas the bottom row shows CAMs generated
by the selected model. In these cases, both models present some limitations.
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Another experiment has been performed with IRNet [228] to obtain segmentation
masks of higher quality. This approach exploits DenseCRF [288] to refine CAMs based
on the borders of the instances. However, as shown in Figure 4.13, the results are even
worse. This can be justified by the fact that the contours of the instances are not easily
distinguishable from the background in RSIs and especially in the AerialWaste data set. In
the first image, the segmentation obtained from the CAM is correct and quite good given
that a simple example is considered. However, in this case, the segmentation obtained
using IRNet has been extended too much. The results are even worse in the cases in
which also the CAM-based approach is not good. Thus, regardless of the method used to
generate segmentation masks, at the moment, the detection and discriminative capabilities
reached by the multi-label classification model are not good enough to proceed with a
WSIS task given that the quality of the generated pseudo-labels is very limited.

Figure 4.13: Examples of segmentation masks obtained from a direct segmentation of
CAMs and using IRNet [228] for some training images. Those obtained directly from
CAMs are generally better, but they still present major limitations.
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In this thesis, the problem of Illegal Landfills detection was addressed as a multi-label
classification problem. Particular emphasis was put on the discriminative and localization
capabilities of the network to then design a weakly supervised localization task. A multi-
label data set containing RSIs with illegal landfills was analyzed in depth, highlighting
relevant characteristics that have a huge impact on classification performance, such as
class co-occurrence and imbalance.

A ResNet50 backbone augmented with an FPN is used to improve the feature ex-
traction at different scales as proposed by Torres et al. [8, 18]. The architecture was
modified to allow the generation of the CAMs which are fundamental to perform a qual-
itative evaluation of the obtained models. Initially, preliminary single-class experiments
are performed revealing the necessity of enlarging the training set and discarding classes
that cannot be identified due to the very limited amount of samples.

Thus, an augmentation framework was designed to allow the extension of the train-
ing set with several strategies that try to mitigate the effects of class co-occurrence and
imbalance. Among them, Synthetic Data Augmentation is the one that provides better
results. An approach based on CAMs was further proposed to increase the realism of
the synthetic samples, and a Linear Programming algorithm is designed with the aim of
obtaining pre-defined desired characteristics in the final data set. However, the improve-
ments provided by these two more sophisticated approaches are very limited, probably
due to the complexity of the task.

Different initialization strategies were considered to initialize the backbone, revealing
that using the weights provided by Torres et al. [18] was the most effective. To exploit
the part of the data set not suitable for multi-label classification due to the availability
of binary labels only, SSL approaches were analyzed and tested. A CAM-guided version
of Tile2Vec was developed to learn better features of landfills. These approaches turned
out to reach performances that are at most comparable with other experiments meaning
that no more relevant features were learned.

A quantitative and qualitative evaluation of the models was performed using the
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ODIN evaluation framework [19, 20].

The selected model was tested, achieving 56.43% average F1-score and satisfactory
qualitative performances. The resulting model was considered to proceed with the WSL,
and segmentation masks were generated starting from the CAMs generated by the model
to be used as pseudo-label for the localization task, but their quality is not considered
good enough to continue with an instance segmentation task. In order to further improve
the results, future work will concentrate on:

• Data set extension: the analysis highlighted the fact that it is hard to further
improve the result without increasing the size of the data set. In particular, new
samples with multi-label annotations must be collected, paying attention to the co-
occurrence of the classes inside them and the number of represented classes. Also,
samples with coarse-grained annotation or no annotation could be useful to increase
the performances, considering the possibility of pre-training the network with SSL.

• Hyper-spectral Data: the analysis performed on the images present in the data
set showed a widespread inter-class similarity and intra-class diversity. However,
these challenges are still present even if multi-spectral images are used. Consid-
ering other spectral bands that are usually present in hyper-spectral images may
potentially alleviate this problem.

• CAM-guided Tile2Vec: the last part of the experiments shows an idea to extend
the proposed SSL approach using the single-class classifiers to guide the extraction
of the CAMS. This idea might be considered once the performances of the single-
class classifiers are improved enough, for example, thanks to the data set extension.
This approach could potentially lead to a valuable SSL strategy to exploit a large
amount of unlabeled data.

• RSI-specific WSL task: given that the obtained model is considered not adequate
to perform a WSIS task, sophisticated approaches for WSIS are not taken into
account. However, once the desired detection capabilities are reached, more complex
approaches such as those described in Chapter 2 can be used. If WSOD is considered
instead of WSIS, Fasana et al. [13] provides a survey of RSWSOD methods that
can be used as a starting point to build a proper RSWSOD model for illegal landfills
detection.
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