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1. Introduction
Given the recent major improvements that have
occurred in technologies that enable surface
scanning, point clouds are starting to become
an increasingly powerful tool. Thanks to the
great precision of the scanners, they are able to
catch all the smallest details and geometrical
features and so they can offer a very simple
and easily understandable representation of the
scanned objects. Point clouds allow you to have
detailed scans of objects and surfaces of every
kind, from the smallest and common ones to
big and complex infrastructures like buildings,
bridges and roads. The detection of defects
is fundamental in any field, especially in the
civil one where routine checks on buildings and
monitoring on their conditions are critical tasks,
but necessary in order to prevent catastrophic
failures. Thanks to the accuracy of such scans
it is possible to precisely capture the underlying
geometry of objects and to use point clouds to
search for defects and to identify malformations
on the analyzed surfaces. Presenting a new
method such as the one we propose is therefore
very important in this area that is still too little
explored, but which is very delicate and often
critical.

The importance of working in this field relies on
the fact that techniques like the one described
in this thesis are quite innovative: there are
a lot of works dealing with the search of de-
fects and malformations in 2D representations
(images) of objects, but very few on their 3D
representation as point cloud. This is probably
due to the lack of comprehensive 3D datasets
that are explicitly designed for the unsupervised
detection and localization of anomalies directly
on point clouds. Working directly on point
clouds to search for defects also allows to speed
up and make safer operations involved in the
searching of defects on structures that usually
requires people to work in dangerous situations,
potentially exposed to hazardous conditions.
For this reason, a typical approach is to recon-
struct the 3D model of the surface that is being
analyzed starting from the point cloud and
compare it with the 3D model without defects
in order to identify the defective areas. Another
popular approach is to analyze the differences
between the normals and curvatures of different
areas of the point cloud in order to differentiate
those that constitute defects, from those that
are defect-free.
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This work addresses the problem of finding de-
fects and deformations in surfaces represented as
3D point clouds. The aim of the developed al-
gorithm is to find the defective areas on a point
cloud, specifying for each point if it belongs to
an area that constitutes a defect or not. This
is done by exploiting a completely unsupervised
approach that is based on an innovative way to
exploit the geometry of the point cloud itself.
This approach makes use of a technique adopted
mainly in the denoising of images, that we have
adapted to work in an area still little studied,
namely the search for defects in point clouds.

2. Problem formulation
Let’s call P = {pi, i = 1, . . . , I} the input point
cloud given to the algorithm. Each point pi ∈ P
can be defined as:

pi = qi + ηi pi, qi, ηi ∈ R3

where qi is a point that belongs to the noise-free
point cloud Q and ηi ∼ N (µ,Σ) is the i.i.d.
zero-mean (µ = [0, 0, 0]T ) Gaussian white noise
with Σ = σ21 where 1 is the 3x3 identity matrix.

An anomalous point is a point pi ∈ P that be-
longs to a defective region of the point cloud P .
Our goal is to define an anomaly score ai for each
point pi. Each anomaly score can be defined as

ai = AP (pi)

where pi ∈ P and AP : R3 → [0, 1] is a function
that associates a score ai ∈ [0, 1] to each point pi
of the point cloud P . The anomaly score of each
point depends on the point cloud P and, specif-
ically, on the number of points that constitute it.

One of the biggest challenges that we face in
this context is the lack of point cloud datasets
for damage detection. Most of the available
datasets are point clouds that represent struc-
tures with defects and malformations, but with-
out labels on the points to identify whether they
belong to faultless areas or not. Another element
that represents a challenge within this context is
the fact that it is not known a priori whether the
point cloud given as input to be analyzed actu-
ally has damages and defects or not, leading in
this way to the necessity of using a completely
unsupervised approach.

Figure 1: An example of the orientations of the
directional neighborhoods of a point pi. The
ones on the left are oriented as the Local Co-
ordinate System and it can be clearly seen that
this provides a rough estimate of the surface un-
der the point cloud. On the right side the ideal
orientation of the directional neighborhoods.

3. Proposed solution
The proposed model has been developed based
on an intuition related to the geometry that
characterizes the defects on the surfaces.
Defects tend to have a non-uniform and ho-
mogeneous geometry and are characterized by
sharp and irregular features. The points of the
point cloud that constitute the damaged areas
are characterized by a high bias, caused by the
irregular geometry, and the proposed solution
exploits such bias. In particular, the method
uses an approach based on the Local Polyno-
mial Approximation and the Intersection of
Confidence Intervals (LPA-ICI) rule that allows
to generate parallelepipeds called Directional
Neighborhoods (DN) that expand on the point
cloud depending on the geometry of the surface
below the point cloud itself. The DNs that are
generated tend to expand as much as possible
in areas characterized by points that have a low
bias which usually belong to defect-free areas.
However, in the proximity of defective areas the
DNs assume a rather small size, due to the high
bias that characterizes points in such areas.
The basic idea of the presented approach is to
assign an anomaly score to each point of the
point cloud relatively to the number of DNs
each point falls into.

Taking as input the noisy point cloud P the first
step is to create the Local Coordinate System
(LCS) denoted as Li for each pi ∈ P . The axes
of this reference system (xLi , yLi and zLi) are
the three principal components ci, di and ei ob-
tained via PCA considering the K nearest neigh-
bors of pi. In particular xLi ≡ ci, yLi ≡ di
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and zLi ≡ ei. This allows to create a new refer-
ence system that places the currently considered
point pi at the origin and express the relative
position of all other points of the point cloud
P with respect to this one. The local coordi-
nates in Li of each point pm ∈ P are denoted
as pLi

m =
[
xLi
m , yLi

m , zLi
m

]T , where xm,ym and zm
are the coordinates of the point pm ∈ P with
respect to the original reference system. The
relative position pLi

m is obtained from the three
principal components as

pLi
m =

cidi
ei

 (pm − pi)

The next step is the creation of the DNs. The
base size of each DN is hj × hj where hj ∈ R+.
Let’s call H the set that contains such values
sorted in increasing order such that
h1 < h2 < · · · < hJ .
For each of the four quadrants identified by
xLi and yLi and for each value hj ∈ H, a DN
has to be generated. Its height is equal to the
maximum between 6σ, the estimation of the
noise of the point cloud, and 2hj . In this way
it is possible to include in the considered DN
those noisy points ±3σ slightly far from the
plane identified by the two main axes of the
LCS. Considering that PCA allows to obtain a
rough estimate of the surface below the point
cloud, the DNs will assume an orientation that
is not the ideal one, as shown in Figure 1. This
however does not affect the performance of
the algorithm. Each DN is identified as u

hj

i,θ,
where i represents the index of the point in the
origin of the LCS, θ the quadrant for which the
DN is being computed, and hj the size of its
square base. Each DN u

hj

i,θ has to be intersected
with the point cloud expressed in the LCS Li

in order to obtain the indexes of the points
that fall within u

hj

i,θ. The set comprising these
indices is denoted as Mh

i,θ.

The next step is to use the LPA-ICI technique to
identify the best DN among the various uhj

i,θ com-
puted for the pi point for the θ quadrant. The
LPA-ICI technique allows to exploit the com-
puted DNs to obtain from each of them an esti-
mate of the surface underneath the point cloud.
This is done by fitting a low-order polynomial
model that exploits the points contained in the

Figure 2: An example of a surface with two
dents generated with MeshLab (left), the ver-
sion where the defects are highlighted with a
blue color (center) and the point cloud obtained
performing a sampling operation over the col-
ored surface (right)

considered DN. The LPA-ICI allows to expand
each DN as much as possible until the points
that fall within have a bias too high compared
to the assumed polynomial smoothness. Usually
this happens in correspondence of sharp features
that characterize the defective areas. In this
way the DNs that are in correspondence or even
within these areas will assume reduced sizes. We
are interested in finding the best DNs for each
point pi. To do so the ICI rule requires to com-
pare some estimates obtained through different
DNs in order to find the best ones. We have
decided to use as estimates for the ICI rule the
estimates of the elevation of the surface S un-
derlying the point cloud P at pi with respect
to Li. For each k = 1, . . . , |Mh

i,θ| the value of
the LPA-kernel ghi,θ that allows the fitting of the
polynomial model respectively to the DN that is
being considered [5] is computed:

g
hj

i,θ(k) = ϕ(k, :)
(
ϕTϕ

)†
ϕ(1, :)T

The polynomial approximation of the normal el-
evation of the underlying surface S at pi with
respect to Li is defined as:

(
z̃Li
i

)hj

θ
=

|Mh
i,θ|∑

k=1

zLi
mk

g
hj

i,θ(k)

In this way, for a particular θ and for each
hj ∈ H, an estimation (z̃Li

i )
hj

θ is identified.
The following step is to identify the best size
among those in H for each DNs related to the
point pi, one for each quadrant θ. This is done
through the ICI rule that makes use of the set of
estimates {(z̃Li

i )h1
θ , . . . , (z̃Li

i )hJ
θ } that have been

computed. In particular the pointwise variance
of each estimate has to be computed first:(

σh
i,θ

)2
= σ2||ghi,θ||22
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This is necessary to calculate the confidence in-
terval for the ICI rule to identify the best size
among those present in H for the currently con-
sidered DN. Such confidence interval Dj is de-
fined as:

Dj =

[(
z̃Li
i

)hj

θ
− Γσ

hj

i,θ,
(
z̃Li
i

)hj

θ
+ Γσ

hj

i,θ

]
where Γ ∈ R+ is a threshold parameter that
influences the choice of the best size defined by
the ICI technique: the higher it is the easier will
be to find non empty intersections, allowing the
algorithm to choose higher values for the best
size. The ICI rule selects as best size h+ the one
among the different sizes hj ∈ H that is related
to the last interval Dj such that its intersection
with the previous intervals is not empty. In this
way it is possible to define the DN uh

+

i,θ which
has as size h+, i.e. the best size for the DN of
the point pi in the quadrant θ. This procedure is
performed for each point pi ∈ P . The final step
is to compute the anomaly score ai of each point
in the point cloud. To do this we refer to the
number of DNs each point falls into. Since the
DNs, by construction, can’t expand too much
in the defective areas, the points in such areas
will fall within a few DNs. For this reason the
anomaly score of each point pi ∈ P is computed
as the reciprocal of the number of DNs the point
falls into.

4. Experiments
Since the field of point cloud defect detection
is quite new and not very deep, it is difficult
to find datasets of point clouds representing
surfaces with damages and defects. One of
the possible options to obtain a point cloud
useful for this purpose is to purchase specific
instruments, such as laser scanners, and scan
surfaces that contain defects and deformations.
Given the high cost of this instrumentation we
have decided to adopt an approach that allows
to obtain point clouds suitable to verify the
proper functioning of the developed algorithm,
although their quality is not as high as what
would be obtained using high precision scan-
ners. The point clouds that have been used in
some of the tests are obtained from 3D models
to which we have performed a sampling of the
surface. In this way it is possible to obtain
some point clouds to perform the tests through

Figure 3: The input point cloud with the real
defects colored in red (left) and the output
point cloud with the found defects colored in red
(right)

a procedure very similar to what lasers actually
do when they scan real surfaces.

In order to analyze the performance of the al-
gorithm on such point clouds it is necessary to
refer to some metrics to understand if actually
the algorithm is able to recognize adequately the
defective areas. The metrics we use are F1-score,
AUC, Accuracy, Precision, Recall and False Neg-
ative Rate (FNR). In order to compute these
metrics it is necessary to define a ground truth:
to perform the first tests it has been decided to
create 3 very simple 3D models that have de-
fects such as bulges and scratches. Such dam-
ages have been colored as shown in Figure 2 in
order to be distinguished from the defect-free ar-
eas. For these experiments we decided to iden-
tify a point as anomalous if its anomaly score
was above a certain threshold T . We chose to
set this value equal to the value that balances the
False Positive Rate and True Positive Rate when
defining the ROC curve, i.e. the one closet to the
left upper corner of the ROC. Figure 3 shows one
of the point clouds obtained from these models
with 2 buldges and consisting of 20000 points.
The performance results of the algorithm on this
point cloud are presented in the Table 1.

F1 AUC Acc Prec Rec FNR

0.8134 0.9880 0.9517 0.7458 0.8943 0.1057

Table 1: The values of the different metrics for
the point cloud represented in Figure 3

From this experiment we can see that the
algorithm is able to adequately identify the two
defective areas. When searching for defects,
it is much riskier to identify as non-defective
an area that actually is. For this reason it is
fundamental to try to reduce false negatives
as much as possible. Therefore particular
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attention must be paid to the metrics that
are most affected by false negatives, namely
Recall, FNR and F1. As can be seen from the
results regarding these metrics the algorithm
performed very well in correctly identifying
points belonging to damaged areas.

In addition to this custom point cloud dataset
we decided to use 3D models representing civil
structures such as walls and columns. This is
done in order to verify the performance of the al-
gorithm on models with complex geometry and
that are part of the civil sector, in which the
search for defects is a very important and deli-
cate operation. Also in this case we obtained the
point clouds by sampling the surface of the mod-
els. Given their complexity, it is not possible to
color them manually to identify the anomalous
and damaged areas, as this would led to inac-
curate evaluations of the performance of the al-
gorithm. For this reason, not having a ground
truth, it is not possible to calculate the metrics
used previously, but we relied on a visual com-
parison between the 3D model and the defects
found on its representation as a point cloud by
the algorithm.

Figure 4: On the top the 3D model of a dam-
aged column (left) and its point cloud represen-
tation where the damages detected by the algo-
rithm are colored in red (right). On the bot-
tom, the 3D model of a damaged wall (left) and
its point cloud representation where the dam-
ages detected by the algorithm are colored in
red (right).

The point cloud in on the top right section of

Figure 5: On the left the ground truth of a point
cloud of the MVTec 3D-AD dataset and on the
right the defects found by the algorithm

Figure 4, consisting of 20000 points, shows how
the algorithm is able to adequately identify
the main defects of the original 3D model. It
can be seen that the algorithm performs well
even on a surface such as a column that has
some curvature. On the bottom right of Figure
4 we can see the damaged areas identified by
the algorithm on a point cloud of 20000 points
representing a damaged wall. It can be observed
that also in this case the algorithm behaves
adequately well in the identification of the de-
fective areas. However, it can also be seen that
points belonging to the edges of the model are
identified as belonging to damaged areas. This
represents a limitation of the algorithm since
such areas are characterized by sharp edges in
proximity of which the DNs tend to assume
reduced dimensions. Therefore, as it happens in
the defective areas, the points in these regions
fall within a few DNs, making their anomaly
score high and therefore identifying them as
defects by the algorithm.

Recently the MVTec 3D-AD dataset [2] which
contains over 4000 high-resolution scans of 10
different object categories such as potatoes,
ropes and tires has been made available. Cur-
rently this is the only publicly available dataset
created specifically for the task of unsupervised
anomaly detection and localization. In their
work Bergmann et al. [2] exploits this dataset to
test the performance of three methods, namely
Voxel f-AnoGAN [4], convolutional Voxel AE
[1] and Variation Models [3]. These methods
are presented in two variants, with respect to
whether they work on voxels or depth images.
These performances are used as benchmarks for
our algorithm. We analyze 5 point clouds of the
category potato and, having the ground truth
available for each of them, we are able to com-
pute the F1, AUC, Accuracy, Precision, Recall
and FNR metrics.
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potato
V

ox
el GAN 0.427

AE 0.484
VM 0.652

D
ep

th GAN 0.489
AE 0.549
VM 0.419

Table 2: The AUC for the baseline methods
working with 3D data information.

F1 AUC Acc Prec Rec FNR

0.8212 0.8688 0.9985 0.9260 0.7378 0.2622

Table 3: The values of the different metrics for
the point cloud represented in Figure 5

Figure 5 shows one of the 5 point clouds that
have been analyzed and Table 3 the results of
the algorithm on it. The benchmarks on this
category of point clouds are represented in Table
2. Looking at the AUC, we can see that the
algorithm outperforms all the baseline methods.
This also shows how the algorithm is able to
work well even on real point clouds, i.e. obtained
through real scanners.

5. Conclusions
In this thesis work we propose an innovative
method for finding defects on surfaces rep-
resented as point clouds. This completely
unsupervised method exploits the LPA-ICI
technique that allows to identify damaged areas
exploiting the sharp features that characterize
defects and deformations. Working in a to-
tally unsupervised way makes the algorithm
extremely versatile, enabling its application
in any field of application. To operate in
a particular domain the algorithm does not
require any adaptation on datasets belonging to
the considered domain, which are also difficult
to find given that this field is still little studied.
The tests carried out allow to observe how the
algorithm behaves well regardless of the type of
point cloud given as input.

Thanks to the MVTec 3D-AD dataset it has
been possible to demonstrate how the algorithm
works well also on point clouds obtained from

real scanners. However the tests carried out on
this dataset concern only a small part of the en-
tire set of available point clouds. Consequently
a possible future action is to apply the algorithm
to the point clouds of all other categories. More-
over it would be useful to apply the algorithm on
point clouds of civil structures obtained through
specific scanners to verify the effectiveness of the
algorithm on real data also coming from this do-
main.
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