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Abstract

Today, space debris constitutes a palpable threat to satellites and astronauts
alike. Owing to their large numbers and high orbital velocities, collisions
between space objects, having devastating consequences, have become prob-
able. Collisions produce clouds of fragments, with many of the particles too
small to be observed or tracked regularly. Even a small fragment, sized in
the order of centimetres, carries the kinetic energy equivalent to a medium
sized car travelling at 100 km/h. The addition of new particles increases the
collision risk further, potentially triggering follow-up collisions and eventu-
ally rendering the space environment around Earth unsafe for exploration
and exploitation. Guidelines to mitigate the space debris problem were pub-
lished at the beginning of this millennium, however, with meagre results. If
the ramifications of a fragmentation can be accurately understood and quan-
tified, the orbits of new missions could be designed to minimise the footprint
on the space environment. To estimate the ramifications of a breakup, mod-
elling of the evolution of the fragment cloud, and its interactions with other
space objects, are required.

Here, such a model is proposed. Instead of considering each fragment
in the cloud individually, the cloud is modelled fully probabilistically. Its
evolution is predicted through application of the continuity equation, solved
numerically along the characteristics of the system. At each epoch of inter-
est, a Gaussian mixture surrogate model is fitted to the characteristics to
obtain a quick to be evaluated approximation of the true fragment density
across the whole domain, removing the need of performing many trajectory
integrations. This novel approach is computationally efficient and allows
the removal of many restrictive assumptions, on orbital geometries and force
models, that plague existing evolutionary models. The proposed method is
proven to be useful in various dimensions, making it applicable to estimate
the short-, mid- and long-term evolution of fragmentation continua.

From the surrogate model, the spatial density and the number of impacts
– and ultimately the collision probability – can be derived for target objects
on any orbit. The proposed approach is sensitive enough to assess even tiny
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collision probabilities. As such, the method, implemented in a new software
suite, Starling, is uniquely equipped to estimate the global hazard emanating
from evolving fragmentation clouds on all the current and future objects in
orbit. The suite enables the study of the cloud evolution in a variety of
target spaces, further bolstering the understanding of its evolution.

To showcase the potential of the method it is applied to model the evo-
lution of clouds stemming from both, explosions and collisions, considering
various orbital regimes and force models. The proposed method is bench-
marked against traditional Monte Carlo sampling, which it outperforms both
in terms of computational efficiency and accuracy. The application of the
method is not limited to the evolution of fragmentation clouds. Its generic
structure makes Starling a general partial differential solver, applicable to
any problem that can be solved with the continuity equation.
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I = {x̂xx, ŷyy, ẑzz}. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3 Orbital configurations in two orbital planes cross the point of
interest in ascending and descending direction. . . . . . . . . 45

2.4 Transformed and sampled distribution in ∆vh according to
the NASA SBM for a payload collision and fragments sized
1 mm < L < 1 m, and its comparison with the Gaussian
approximation with zero mean and variance, σ2

∆vh
. . . . . . . 54

2.5 Integration of the NASA SBM over L ∈ [1 mm, 1 m] and
A/m, and its Gaussian approximation, given as a function of
the logarithm to base 10 of ∆v. . . . . . . . . . . . . . . . . . 56

2.6 The marginalised distribution in (a, e) estimated through bin-
ning of N = 105 samples (colourmap) and analytical transfor-
mation using the Dirac generalised function (contours). The
dotted line marks rp = RE , i.e. fragments with e > e(rp =
RE) re-enter within a single orbit from the fragmentation. . . 58

2.7 Comparison between the samples-based density, p̂a,e,Ω, and
analytically transformed density, pa,e,Ω. . . . . . . . . . . . . 59

2.8 Distribution and convergence rates of the samples-based method
(solid) against the analytical solution (dotted) in xxx = (a e Ω). 61

2.9 Comparison between the samples-based density, p̂ξp,ξa,Ω, and
analytically transformed density, pξp,ξa,Ω. . . . . . . . . . . . . 63

x



2.10 Distribution and convergence rates of the samples-based method
(solid) against the analytical solution (dotted) in xxx = (ξp ξa Ω). 64

2.11 Comparison between the samples-based and analytically trans-
formed spatial density. . . . . . . . . . . . . . . . . . . . . . . 66

2.12 Comparison between the samples-based and analytically trans-
formed directional density. . . . . . . . . . . . . . . . . . . . . 67

3.1 Example evolution of a cloud of fragments in circular orbit
subject to atmospheric drag. . . . . . . . . . . . . . . . . . . 72

3.2 The KH approximation, fixing the parameters for the atmo-
sphere density at hp, underestimates the density at h > hp
resulting in inaccurate lifetime estimates for eccentric orbits. 77

3.3 Cost function depending on number of partial atmospheres, Np. 80

3.4 Fit of ρS to ρJ for T∞ = 1000 K. Additionally, the different
contributions of each partial atmosphere are shown. . . . . . 82

3.5 Zoom into the lower altitude range, comparing ρJ (solid) with
its fit, ρS (dotted) for the different T∞. . . . . . . . . . . . . . 83

3.6 Quality of temperature dependent fit. . . . . . . . . . . . . . 86

4.1 Density estimation for re-entry configuration for samples-based
and function-based methods. . . . . . . . . . . . . . . . . . . 92

4.2 Example for normalisation of data. The original, highly cor-
related data on the left is hard to fit. Instead, the normalised
data is not. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3 Initial and propagated characteristics, hypersurface samples,
and relative phase space fits. . . . . . . . . . . . . . . . . . . 100

4.4 Evolution of a fragmentation cloud in the phase space suitable
for fitting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.5 Evolution of the relative fitting error percentiles. . . . . . . . 104

4.6 Snapshot of the validation characteristics at ∆t = 15 years),
and its comparison to the surrogate model. . . . . . . . . . . 105

4.7 Comparison between exact density, the surrogate density es-
timate and the density estimate obtained through binning of
the Ns samples, for selected characteristics. . . . . . . . . . . 107

5.1 Murmurations of starlings recalling an ever-changing contin-
uum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 Schematic overview of the process chain implemented in Star-
ling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3 Code snippet of interpreter configuration for a two-dimensional,
relative features space. . . . . . . . . . . . . . . . . . . . . . . 112

5.4 Interfaces of the distribution and integrator classes. For the
distribution some methods are optional depending on the use
case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

xi



5.5 Examples of Starling configuration files. . . . . . . . . . . . . 114

5.6 Examples of a snapshot data file for a two-dimensional case. . 114

6.1 Characteristics in Keplerian elements for the Delta explosion
scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2 Remaining characteristics in the fit space after ∆t = 25 years
for the Delta explosion scenario. . . . . . . . . . . . . . . . . 122

6.3 Fit quality for the Delta explosion scenario over the ∆t =
25 years: 80% of the validation samples are accurately esti-
mated within ±25% for most of the snapshots. . . . . . . . . 123

6.4 Characteristics in Keplerian elements for the long-term Cosmos-
2251 collision scenario. . . . . . . . . . . . . . . . . . . . . . . 124

6.5 Remaining characteristics in the fit space after ∆t = 25 years
for the long-term Cosmos-2251 collision scenario. . . . . . . . 125

6.6 Fit quality for the long-term Cosmos-2251 collision scenario
over the ∆t = 25 years: again, 90% of the validation samples
are accurately estimated within −24% and +16% for all the
snapshots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.7 Characteristics in Keplerian elements for the mid-term Cosmos-
2251 scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.8 Remaining characteristics in the fit space after ∆t = 1 year
for the mid-term Cosmos-2251 collision scenario. . . . . . . . 129

6.9 Fit quality for the mid-term Cosmos-2251 collision scenario
over the ∆t = 1 year: the fast spreading of Ω poses difficulties
to the hypersurface interpolation. . . . . . . . . . . . . . . . . 130

6.10 Spatial distribution, not drawn to scale, of the probability
of a single fragment of the Cosmos-2251 collision cloud after
∆t = 1 year. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.11 Characteristics in Keplerian elements for the simplified Ariane
explosion scenario. . . . . . . . . . . . . . . . . . . . . . . . . 133

6.12 Remaining characteristics in the fit space after ∆t = 100 years
for the simplified Ariane explosion scenario. . . . . . . . . . . 134

6.13 Fit quality for the simplified Ariane explosion scenario over
the ∆t = 100 years: the spread in Ω and ω pose difficulties to
the hypersurface interpolation. . . . . . . . . . . . . . . . . . 135

6.14 Characteristics in Keplerian elements for the full Ariane ex-
plosion scenario. . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.15 Remaining characteristics in the fit space after ∆t = 1 year
for the full Ariane explosion scenario. . . . . . . . . . . . . . . 138

6.16 Fit quality for the full Ariane explosion scenario over ∆t =
1 year: localised perturbations lead to inaccurate hypersur-
face definitions and error growth. . . . . . . . . . . . . . . . . 139

xii



6.17 Modelled spatial density of Cosmos-2251 fragments as of the
beginning of the year 2020, i.e. ∆t = 11 years after the fatal
event, for fragments down to 1 mm. . . . . . . . . . . . . . . 142

6.18 Velocity distribution of Cosmos-2251 fragments, sitting in the
orbital plane at h = 750 km and θ = 0 deg. . . . . . . . . . . 143

6.19 Impact rates of Cosmos-2251 fragments on selected target orbits.143
6.20 Impact rates and number of impacts from launch in 2014, i.e.

after ∆t = 5 years of the event, up to the year 2034. . . . . . 144

B.1 Relative error between numerically estimated derivation and
the analytical, exact derivation. . . . . . . . . . . . . . . . . . 188

D.1 Lifetimes and comparison of accuracy for lifetime estimation
for objects being subject to ρJ and ρS . . . . . . . . . . . . . . 196

D.2 Comparison for accuracy in ∆a and ∆e for different approxi-
mation methods. . . . . . . . . . . . . . . . . . . . . . . . . . 198

D.3 The required ballistic coefficients for force re-entry within 30
or 360 days. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

D.4 Relative error εtL when comparing averaged propagation us-
ing SI-KH with γrel= 10−6 against non-averaged integration
with γrel = 10−12. . . . . . . . . . . . . . . . . . . . . . . . . . 201

E.1 Comparison of the algorithms in terms of speed for D = 3
and D = 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

xiii



Abbreviations

3BP Third Body Perturbation.

API Application Programming Interface.

BFGS Broyden–Fletcher–Goldfarb–Shanno.

CG Conjugate Gradient.

CIRA COSPAR International Reference Atmosphere.

COSPAR Committee on Space Research.

CPU Central Processing Unit.

CSV Comma-Separated Values.

DTM Drag Temperature Model.

EM Expectation Maximisation.

ESA European Space Agency.

GEO Geostationary Orbit.

GL Gauss-Legendre.

GMM Gaussian Mixture Model.

GP Gaussian Process.

GTO Geostationary Transfer Orbit.

IADC Inter-Agency Space Debris Coordination Committee.

JSON JavaScript Object Notation.

KDE Kernel Density Estimation.

KH King-Hele.

LEO Low Earth Orbit.

MCMC Markov Chain Monte Carlo.

NASA National Aeronautics and Space Administration.

NN Nearest Neighbour.

xiv



NRLMSISE Naval Research Laboratory Mass Spectrometer, Incoherent
Scatter Radar Extended.

PlanODyn Planetary Orbital Dynamics.

RBF Radial Basis Function.

SBM Standard Breakup Model.

SI International System of Units.

SI-KH Superimposed King-Hele.

SRP Solar Radiation Pressure.

xv



Nomenclature

A Cross-sectional area [m2].

A/m Area to mass ratio [m2/kg].

B Ballistic coefficient, B = cDA/m [m2/kg].

C Cost function.

C Number of characteristics [−].

D Phase space dimension [−].

E Eccentric anomaly [rad].

E Specific mechanical energy [m2/s2].

FFF Dynamics.

F Solar flux [sfu].

HHH Hessian.

H Scale height [m].

III Identity matrix.

I Inertial frame.

In Modified Bessel function of the first kind.

JJJ Jacobian.

J2 Second-order zonal harmonic [−].

K Number of kernels [−].

L Fragment characteristic length [m].

LLL Lower triangular matrix.

M Mean anomaly [rad].

N Normal distribution.

N Number of fragments [−].

Nb Number of bins [−].

Np Number of parameters [−].

xvi



Ns Number of samples [−].

P Period [s].

R Regulariser [−].

RE Earth mean radius [m].

T Satellite frame.

T Temperature [K].

T∞ Exospheric temperature [K].

V Phase space bin volume.

YYY Training data.

∆v Delta-v magnitude [m/s].

Ω Right ascension of ascending node [rad].

ΣΣΣ Covariance of normal distribution.

ΘΘΘ Surrogate model parameters.

ααα Keplerian element set.

χ Logarithm to base 10 of A/m [log10(m2/kg)].

δ Dirac generalized function.

η Number of impacts [−].

η̇ Impact rate [1/s].

κκκ Logarithmic kernel weights.

λ Longitude [rad].

λ Logarithm to base 10 of L [log10(m)].

µ Gravitational parameter [m3/s2].

µµµ Mean of normal distribution.

ω Argument of perigee [rad].

πππ Kernel weights.

ρ Atmospheric density [kg/m3].

θ Latitude [rad].

θθθ Parameters of normal distribution.

υ Logarithm to base 10 of ∆v [log10(m/s)].

a Semi-major axis [m].

cD Drag coefficient [−].

e Eccentricity [−].

f True anomaly [rad].

g Source and sink terms.

h Altitude [m].

ha Apogee height [m].

xvii



hp Perigee height [m].

} Specific angular momentum [m2/s].

i Inclination [rad].

l Log-normal distribution.

m Object mass [kg].

n Phase space density.

n̄ Mean motion [rad/s].

n̂ Surrogate model.

p Semi-parameter [m].

r Magnitude of the orbital radius [m].

rrr Orbital radius [m].

ra Apogee radius [m].

rp Perigee radius [m].

sss Cartesian coordinates.

t Time [s].

u Argument of latitude [rad].

v Magnitude of the orbital velocity [m/s].

vvv Orbital velocity [m/s].

xxx Phase space.

xviii



1 Introduction

Space debris has become a major concern for satellite operators and space
agencies alike. The number of such fragments has grown to an extent where
they pose a serious collision risk to active missions. In case of a collision,
complete loss of the mission could be the consequence. Understanding the
ramifications of orbital fragmentations requires modelling of the evolution
of space debris clouds. Such models allow to estimate the current and fu-
ture risk emanating from fragmentations in terms of collision probability on
orbiting payloads and rocket bodies.

Section 1.1 introduces the term space debris, discusses its proliferation
and efforts to mitigate its risks. The scope of this thesis is outlined in
Section 1.2 in the form of research questions. Section 1.3 reviews previous
work that was undertaken to answer the questions. The contributions of
this work in the form of novel techniques and publications are listed in
Section 1.4. Finally, the structure of the thesis is explained in Section 1.5.

1.1 Background

The space environment is hostile to humans and their assets. Engineers de-
signing and building satellites must tackle extreme temperature variations,
space radiation and impacts from micro-meteoroids. They have done so
largely successfully. From the first launch of Sputnik 1 in 1957 to the begin-
ning of 2020, more than 9300 payloads1 were inserted into orbit from over
5500 launches (ESA, 2020). The payloads enable a multitude of services
such as telecommunications, broadcasting, navigation, weather forecasting
and many more. The launch activities, however, have led to the rise of yet
another danger encountered in Earth orbit: space debris.

Space debris comprises all man-made objects including fragments and
elements thereof, in Earth orbit or re-entering the atmosphere, that are non-

1Payloads are space objects designed to perform a specific function in space excluding
launch functionality.
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functional (IADC, 2007). About half of the 9300 launched payloads have
re-entered. Most of them have decayed naturally due to the drag effects
induced by the atmosphere, with only a few performing controlled re-entry
manoeuvres (ESA, 2019). Of the other half, 2200 are operational with the
remaining 2700 payloads lingering in orbit as space debris (UCS, 2020).
Other space debris are 1900 spent rocket bodies2 used to launch the payloads
and 1200 mission related objects, such as launch adapters and camera lids.

Large space debris like these used to serve a purpose earlier in their lives.
They are tracked regularly through radar or optical observations, and their
orbital states are maintained in catalogues. As a rule of thumb, objects in
Low Earth Orbit (LEO), defined up to 2000 km altitude, are catalogued if
they are larger than a tennis ball. Objects in Geostationary Orbit (GEO),
at an altitude of 35786 km, are catalogued if they have the size of a dish
washer or larger.

Most of the objects in Earth orbit today, however, came into existence
without ever serving any function. Such fragments, spanning from sub-
millimetre to decimetre sized objects, were generated in hundreds of disrup-
tive explosion and collision events, due to degradation of materials, due to
the ejection of propellant and from other sources (Smirnov, 2002; NASA,
2018). The 14200 fragments large enough to be catalogued are dwarfed by
the population of non-catalogued space debris (ESA, 2019). It is estimated
that several hundred thousand fragments sized larger than 1 cm are orbiting
Earth, the number of fragments larger than 1 mm is estimated to exceed
100 million (IADC, 2013a).

The largest source of fragments are disruptive satellite disintegrations.
Half of all catalogued objects, or 96% of catalogued objects other than pay-
loads, rocket bodies or mission related objects are associated to acciden-
tal or intentional disassociations (NASA, 2018). Accidental breakups are
collisions between space objects or explosions due to residual propellants,
malfunctions during manoeuvres or battery discharges. Two breakups, the
intentional destruction of Fengyun 1C in 2007 and the first collision be-
tween two intact objects, Cosmos-2251 and Iridium 33, in 2009 added more
than 5700 fragments to the catalogue (NASA, 2007, 2009; ESA, 2020). Ten
years later, almost three quarters of those fragments remain in orbit. Ac-
cording to the Standard Breakup Model (SBM) of the National Aeronautics
and Space Administration (NASA), collisions or explosions of payloads and
rocket bodies potentially add tens of thousands and hundreds of thousands
new fragments larger than 1 cm and 1 mm, respectively (Johnson et al.,
2001).

Millimetre sized fragments potentially penetrate exposed tanks or dam-
age other equipment. Appropriate shielding can prevent such small frag-
ments from harming the satellites (Drolshagen, 2001). The risk emanating

2Rocket bodies are space object designed to perform launch related functionality.
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from larger, catalogued fragments can be assessed and even managed if or-
bital manoeuvring capabilities are available. The trajectories of these objects
can be propagated into the future, allowing to screen active missions against
potential close approaches. In the years 2014 and 2015, the European Space
Agency (ESA) performed, on average, one collision avoidance manoeuvre per
year and satellite it operates (Krag et al., 2016). Instead, non-catalogued
fragments larger than 1 cm are dangerous as their whereabouts are not
known well enough to predict close approaches and the effects of a collision
could be dramatic. In LEO the average relative orbital velocity between
two objects is 10 km/s, equivalent to 36000 km/h. At such speeds even
an aluminium sphere with a radius of 1 cm – corresponding to a mass of
11.3 g only – carries the same kinetic energy as a 1.5 tons car travelling at
100 km/h (adapted from Smirnov, 2002).

The space debris situation is expected to deteriorate further. Space traf-
fic has recently risen sharply as a result of miniaturisation and availability
of commercial-of-the-shelf products (ESA, 2019). Space traffic might see
another sharp increase due to the advent of large constellations. All new
objects, if not disposed of by direct re-entry, will become space debris upon
reaching the end of their mission. Additionally, the space debris genera-
tion is self-feeding. If the fragment density increases, so does the likelihood
of collisions. More collisions lead to more fragments being added to the
environment, increasing the density further. Such a cascade of collisions
was already described in 1978 by Kessler and Cour-Palais (1978). Evolu-
tionary studies performed more recently by major national space agencies
and the ESA estimate catastrophic collisions3 to happen in LEO every 5 to
9 years over the next 200 years (IADC, 2013b).

To mitigate the space debris problem, guidelines and standards were put
in place (IADC, 2007; UN, 2010; ISO, 2019). The potential of accidental
breakups should be minimised, both during operations and after reaching
the end of the mission. Passivation measures, such as depleting residual
fuel or discharging batteries, diminish the likelihood of explosions. Perform-
ing active avoidance manoeuvres during operations limits the probability of
accidental collision in orbit. At the end of mission, payloads and rocket
bodies in LEO should be placed in orbits where they decay naturally within
25 years.

However, adoption of the guideline addressing the removal of the object
after reaching the end of its mission was slow in the past two decades (ESA,
2019). Even if better compliance was achieved, a risk of accidental breakups
remains, e.g. due to collisions with uncatalogued objects. To protect the
space environment, the insertion of new payloads and upperstages might
require regulation to respect an upper limit, i.e. a capacity, certain orbital

3A catastrophic collision is characterized by an impactor kinetic energy-to-target mass-
ratio of 40 J/g or higher (Krisko, 2007).
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regions can sustain (Krag et al., 2017a). To define such a capacity, the evo-
lution of the fragment cloud and its interactions with other objects in space
need to be modelled and assessed. Finding a broad consensus among the
international community on how to estimate the ramifications of a breakup
is important to identify and define regions that need special protection. The
authors of this work aspire to foster such a consensus.

1.2 Research questions

This work is motivated by two overarching and interrelated research ques-
tions. The first research question is how to accurately and efficiently model
the mid- to long-term evolution of an orbital fragmentation cloud, originat-
ing from the catastrophic breakup of a parent object residing on an arbi-
trary Earth-bound orbit. The application to arbitrary orbits, and various
timescales, requires the model to work for a wide range of forces acting on
the fragment cloud. The computational resources required to employ the
method should remain manageable enabling its application to a large set of
scenarios.

The second research question is how to assess the ramifications of the
breakup on current or future space missions residing, again, on arbitrary
Earth-bound orbits, in terms of collision probability with the evolving frag-
ment cloud. The sensitivity of the modelled evolution of the cloud should
be high, as the collision probabilities are generally small.

1.3 Literature review

Many methods and engineering solutions were developed for the purpose of
space debris propagation and estimation of their collision probability with
existing missions. Here, an overview is given, stating advantages and dis-
advantages of each method. The methods modelling the evolution of the
full space debris population or single fragment clouds can be broadly cate-
gorised into probabilistic and deterministic methods. Probabilistic methods
were developed prior to deterministic models, hence, they are discussed first
in Section 1.3.1. With ever increasing computational power, running deter-
ministic simulations following many individual fragments became feasible.
They are introduced in Section 1.3.2. For both categories, the force models
are only briefly discussed. Various techniques, discussed in Section 1.3.3,
exist to estimate the impact hazard, some of them designed specifically for
the evolutionary method used to propagate the fragments.

Next to the methods directly addressing the research questions stated
above, more literature needed reviewing to achieve an efficient implementa-
tion of the method proposed in this thesis. A considerable part is dedicated
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to the semi-analytical integration of trajectories in an atmosphere. Semi-
analytical propagation, reviewed in Section 1.3.4, enables the integration of
many trajectories in a timely efficient way. Surrogate modelling, introduced
in Section 1.3.5, alongside various interpolation techniques, can be applied
to further reduce the number of required propagations. The review is sum-
marised in Section 1.3.6.

1.3.1 Probabilistic evolutionary models

Probabilistic methods do not follow fragments individually. Rather, they
employ statistical mechanics to estimate the evolution of the fragment den-
sity – or continuum – directly.

Origin

Historically, the idea of using statistical mechanics to model space debris
as a density distribution was adopted from the community studying stellar
dynamics. More than a century ago, the evolution of stars in galaxies were
described with Liouville’s equation and theorem (Chandrasekhar, 2005). Li-
ouville’s equation is a partial differential equation that governs the evolution
of a phase space density in Hamiltonian systems. Liouville’s theorem says
that the density is constant along its trajectories. This is the microscopic
equivalent of saying that the macroscopic number of stars – or fragments –
is conserved.

Consider aD-dimensional conservative dynamical system with the Hamil-
tonian, H, described in canonical coordinates, qqq ∈ RD and conjugate mo-
menta, ppp ∈ RD. The evolution in time, t, of the phase space density, n(qqq,ppp, t),
is then described through Liouville’s equation

∂n

∂t
+

D∑
j=1

(
∂n

∂qj

∂H
∂pj
− ∂n

∂pj

∂H
∂qj

)
= 0 (1.1)

Equivalently, given the equation of motion

q̇j =
∂H
∂pj

ṗj = −∂H
∂qj

(1.2)

the Liouville equation can be written as

∂n

∂t
+

D∑
j=1

(
∂n

∂qj
q̇j +

∂n

∂pj
ṗj

)
= 0 (1.3)

To model dissipative forces, such as dynamic friction, the stellar commu-
nity uses the Fokker-Planck equation (Chandrasekhar, 1949). The Fokker-
Planck equation, also called Kolmogorov forward equation, is used to model
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Figure 1.1: Overview of techniques employed to solve the continuity equation
in space debris evolution modelling.

the evolution of densities subjected to Brownian motion. It reduces to the
Liouville equation if the diffusion term is ignored. Both the Liouville equa-
tion and the Fokker-Planck equation are particular types of the continuity
equation (González et al., 2016).

With the phase space density, n = n(xxx, t), as a function of the phase
space, xxx, and time, t, the continuity equation for a conserved n, i.e. in the
absence of sources and sink terms, is given as

∂n

∂t
+∇ · (nFFF ) = 0 (1.4)

with the divergence operator, ∇·, and the flow defined by the dynamics, FFF

dxxx

dt
= FFF (1.5)

Just like the Liouville equation, the continuity equation states that, in the
absence of sources or sink terms, the number of particles is conserved, i.e. the
accumulation inside a control volume equals the difference between entering
and exiting particles.

A more recent example for application of the statistical mechanics to
model the evolution of interplanetary dust is given by Gor’kavyi et al.
(1997). Using directly the continuum equation allows to incorporate the
non-conservative Poynting-Robertson drag. Gor’kavyi et al. (1997) also show
that orbital elements are well suited to model the evolution of long-term phe-
nomena.

There are different ways of solving the continuity equation, the ones
focusing on space debris are discussed in the following. Figure 1.1 gives an
overview of the different techniques. They can be further sub-categorised
into methods that solve the system along the trajectories, i.e. method of
characteristics and density mapping, and others that solve it at fixed points
in the phase space, i.e. finite differences.
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Method of characteristics

For the convenience of the reader, a brief recap of the method of characteris-
tics is given here, following the outline of John et al. (1981, Chapter 1.4), and
applied to the continuity equation. Consider a general quasi-linear partial
differential equation

a(x, t, n)
∂n

∂t
+ b(x, t, n)

∂n

∂x
= c(x, t, n) (1.6)

The characteristics are curves, which at each point are tangent to the char-
acteristic direction, defined by (a, b, c). Along the characteristic curves the
following relation holds

dt

a(x, t, n)
=

dx

b(x, t, n)
=

dn

c(x, t, n)
=

dτ

1
(1.7)

introducing τ as a suitable parameter to refer to the curve. Equation (1.7)
thus defines the following ordinary differential equation

dt

dτ
= a(x, t, n) (1.8a)

dx

dτ
= b(x, t, n) (1.8b)

dn

dτ
= c(x, t, n) (1.8c)

If the derivatives of a, b and c exist and are continuous in a given domain,
only one characteristic curve passes through each point in this domain.
Hence, the method of characteristics solves first order partial differential
equations by converting them into a set of ordinary differential equations.

The system of ordinary differential equations solving the continuity equa-
tion looks even simpler. First, note that the continuity equation, expressed
in Equation (1.4) can be, by evaluating the divergence term and applying
the chain rule, written as

∂n

∂t
+

D∑
j=1

(
∂n

∂xj
Fj

)
= −n

D∑
j=1

∂Fj
∂xj

(1.9)

Second, as a = 1, it follows from Equation (1.8a) that t = τ . Thus, the
following set of ordinary differential equations solve the continuity equation

dn

dt
= −n

D∑
j=1

∂Fj
∂xj

(1.10a)

dxxx

dt
= FFF (1.10b)
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From Equation (1.10b) it is evident that the characteristics follow the tra-
jectories governed by the dynamics. Equation (1.10a) can be solved for any
dynamics independent of n via separation of variables

dn

n
= −

D∑
j=1

∂Fj
∂xj

dt (1.11)

Integration on the left-hand side, from n(xxx0, t0) to n(xxx, t), and the right-hand
side from t0 to t gives

ln

(
n(xxx, t)

n(xxx0, t0)

)
= −

∫ t

t0

D∑
j=1

∂Fj
∂xj

dt (1.12)

which can be solved for n(xxx, t) as

n(xxx, t) = n(x0x0x0, t0) exp

−∫ t

t0

D∑
j=1

∂Fj
∂xj

dt

 (1.13)

A simple example of an application of the method of characteristics is given
in Appendix A.1.

The first to publish such a continuum approach in the context of space
debris was Heard (1976). Contrary to stellar physics, he notes, the prob-
lem of modelling debris is less complicated because attractive forces between
the fragments can be neglected. He uses the Liouville equation to model a
continuum of non-interacting particles, such as fragments from an exploding
satellite. The particles are assumed to originate from the same point but
dispersed in initial velocities. Only the short-term evolution, subject to lin-
earised two-body dynamics around a circular orbit, is considered, permitting
an analytical solution. Although Heard (1976) does not specifically mention
it, he solves the problem along the characteristics.

Jehn (1990) extends the approach by using satellite fragmentation models
for the initial distribution and omitting the assumption of circular orbits.
He uses an extended phased approach initially proposed by McKnight and
Lorenzen (1989), which separates the evolution of the cloud into different
phases. For the initial phase, where the distribution remains close to the
parent object, and the second phase, where the fragments spread out into a
torus along the orbit, Jehn (1990) uses the Liouville equation to model the
evolution. For the mid- to long-term evolution, he utilises a deterministic
approach based on samples to build a probabilistic density model for lack of
an analytical solution.

An analytical model for the long-term evolution of space debris, subject
to non-conservative forces, is described by McInnes (1993). He applies the
continuity equation, considering various models for source terms and atmo-
spheric drag, however, only in two dimensions, time and radius. Analytical
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solutions are found through the method of characteristics for simplifying as-
sumptions, such as a single exponentially decaying atmosphere model and
circular orbits.

Letizia et al. (2015) combine the technique developed by McInnes (1993)
with initial conditions derived through samples from the NASA SBM. This
allows to model the evolution of fragmentation clouds stemming from colli-
sions and explosions. Varying fragment sizes are considered by splitting the
drawn fragments into different size bins and solving the continuity equation
in each bin separately. The method is extended into multiple dimensions
to simultaneously account for Earth’s oblateness and drag (Letizia et al.,
2016a). However, the assumption on quasi-circular orbits is maintained and
a constant eccentricity is required to find analytical solutions. Additionally,
the initial distribution in the required phase space is obtained from samples
that are individually and numerically propagated, considerably reducing the
speed improvements over deterministic models.

The techniques presented so far all obtain closed form solutions of the
continuity equation, i.e. the integral in Equation (1.13) can be found ana-
lytically. The main advantage of closed form solutions is that the density
at any point in time can be evaluated instantaneously without integration
along the trajectory. However, these methods rely on simplified orbital ge-
ometries, e.g. assuming circular orbits, or simplified force models. More
elaborate configurations and dynamics can be considered if the characteris-
tics are numerically propagated.

Such a method was developed by Halder and Bhattacharya (2011) for
uncertainty propagation in planetary entry, descent and landing. The space
density function for numerically integrated characteristics is available only
along the propagated trajectory. This constitutes also the biggest draw-
back of the method, as the density values in between the propagated tra-
jectories require either further propagation, binning or interpolation. Simi-
larly, Trisolini and Colombo (2019) numerically propagate the characteristics
to model uncertainties of objects re-entering in the atmosphere. The meth-
ods these authors apply to obtain a density estimate over the full domain
are discussed in Section 1.3.5.

Density mapping

Similarly, the solution of the continuity equation can be found through trans-
formation of the density. Density mapping relies on the assumption that the
density, or volume, is conserved locally, i.e. no source or sink terms are
present. Given the solution of the dynamics in Equation (1.5), as

xxx = ϕϕϕ(xxx0) (1.14)
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the mapping of the density can be found as (Soong, 2004, Chapter 5.3)

n(xxx, t) =
n
(
ϕϕϕ−1(xxx), t0

)
|detJJJ | (1.15)

with the Jacobian, JJJ∈ RD×D, defined as

Jij =
∂ϕi
∂x0,j

i, j = 1, 2, . . . , D (1.16)

and the determinant, det. For comparison of the density mapping technique
with the method of characteristics, the former is applied in Appendix A.1
to solve the same initial value problem as in the previous example. For
conservative systems, i.e. in the absence of sources and sinks, they provide
equal solutions.

Ashenberg (1992) modelled the evolution of an isotropic explosion through
density mapping of the debris cloud volume, considering the oblateness of
Earth and atmospheric drag through linearised relative motion. Later, he
applies the Liouville equation to the same problem, finding that only drag
contributes to a change of the volume (Ashenberg, 1994). Gravitational
forces only shift the volume in the phase space but do not change its mag-
nitude.

Jenkin (1996) relies on volume mapping to calculate the short-term col-
lision probability satellites are exposed to evolving fragment clouds. The
solutions are found by application of an extended Lambert solver that finds
the mappings for two-point boundary value problems considering perturba-
tions from an oblate Earth. The spatial density is found through application
of Equation (1.15) using the linearised state transition matrix. A similar ap-
proach is applied by Healy et al. (2016) using the NASA SBM for the initial
fragment distribution. The method is applicable for short time frames in
the order of multiple revolutions.

Long-term propagation of high area-to-mass ratio fragments is the sub-
ject of a method proposed by Wittig et al. (2017). They combine the density
mapping method with differential algebra and semi-analytical integration of
the trajectories. The advantage of using differential algebra is that the ele-
ments of the Jacobian in Equation (1.15), which are generally not available
in a closed form solution, do not need to be integrated separately. Instead,
the derivatives required to build the Jacobian are directly derived from the
polynomial expansion of the solution of the dynamics. Additionally, the
density can be evaluated not only along the trajectories, but also in the
vicinity of it. However, the differential algebra framework is cumbersome, as
each variable and operation needs to be replaced with its differential algebra
representation, and its accuracy depends on a potentially high degree of the
Taylor approximation.
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Density mapping requires the integration of D state variables and, in the
absence of differential algebra, D2 Jacobian elements. Hence it is compu-
tationally more expensive than application of the method of characteristics
which adds only one more state to be integrated to the state variables.
Additionally, density mapping does not permit consideration of sources or
sink terms, which make it less interesting for space debris modelling, where
sources such as launch traffic and collisions exist.

Particles in a box and finite differences

Instead of finding the solution of the continuity equation along the trajecto-
ries, the solution can be approximated via discretisation of the phase space.
Within each bin the continuity equation is – using finite-differencing – re-
placed by its discretised version and solved numerically. All the bins are
simultaneously integrated for a carefully chosen step size. After the inte-
gration step, all the finite differences in each bin are updated according to
its value of the density and that of its adjacent neighbours. This process is
repeated until the result is found for the desired epoch.

For a mathematical description of the finite difference method solving
the continuity equation, take Equation (1.4) and discretise the terms using
forward and central differences

∂n

∂t
≈ n(xxx, t+ ∆t)− n(xxx, t)

∆t
(1.17a)

∂n

∂xj
≈ n(xxx+AAAj∆xxx, t)− n(xxx−AAAj∆xxx, t)

2∆xj
(1.17b)

∂Fj
∂xj
≈ Fj(xxx+AAAj∆xxx, t)− Fj(xxx−AAAj∆xxx, t)

2∆xj
(1.17c)

where AAAj ∈ RD×D matrix with all zeros except at element jj, e.g.

AAAj = diag(δ1j , δ2j , . . . , δjj , , . . . , δDj) (1.18)

and δ is the Kronecker delta

δij =

{
1, if i = j,

0, if i 6= j.
(1.19)

Replacing the terms in Equation (1.4) with the approximations found in
Equation (1.17), noting the terms n(xxx + AAAj∆xxx, t) and n(xxx − AAAj∆xxx, t) are
the values of the density adjacent to each box in j-direction, and solving for
n(xxx, t+ ∆t) integrates the density for each bin for one step.

Often, instead of propagating directly the density, the number of objects
in each bin – the number of particles in a box – are propagated. If the
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bins are chosen to remain constant, a simple relation between the number of
fragments, N , and the phase density, n, is found via the bin volume, V , as

N(V ) = n(V )V (1.20)

The first to apply such a finite differencing scheme in the context of
space debris were, independently, Farinella and Cordelli (1991) and Talent
(1992). They consider different species of objects, i.e. satellites and frag-
ments thereof. The satellite and fragment populations are coupled through
collision and explosion terms and even launches are modelled. Note that
in the continuity equation such effects would be considered by introducing
source and sink terms, i.e. with a non-vanishing right-hand side. However,
they do not contain any dependence on the location of the orbit, hence,
decay due to atmospheric decay is modelled rudimentarily.

A more elaborate approach, considering different height bands, was de-
veloped by Smirnov et al. (1993). It models perturbing forces such as drag,
solar radiation pressure, and sources such as explosions and collisions. Later,
the same model was extended to incorporate bins in fragment size, perigee
altitude, eccentricity, inclination and ballistic coefficient (Smirnov et al.,
2001). Similarly, Rossi et al. (1994) extended the approach of Farinella and
Cordelli (1991) to space debris considering altitude and fragment size bins,
and later semi-major axis, eccentricity and mass (Rossi et al., 1998). The
model considers launches, explosions and collisions and accommodates elab-
orate force models.

More recently Letizia (2018) applied the finite difference method specif-
ically to evolving fragmentation clouds considering semi-major axis and ec-
centricity. Different mass bins are considered, but as collision within the
cloud is not modelled, the mass evolution is decoupled from each other.
Somma et al. (2019) introduced a multi-species evolution model with dis-
crete height bands, allowing to study the sensitivity of launch activities and
post-mission disposal in LEO.

The issue with finite differences is that number of bins grows exponen-
tially with the number of dimensions of the phase space. Generally, such
methods are thus not applicable to phase spaces of four dimensions or more.
Consider the propagation of a density in all six orbital elements. If each
dimension is split into 100 bins, the number of bins would be 1012. Next to
memory issues, the 1012 equations to be solved for each time step would also
challenge any processing unit. Such limitations led to the raise of determin-
istic models.

1.3.2 Deterministic evolutionary models

Deterministic evolutionary models do not aim to propagate the density. In-
stead, they propagate individual fragments that are sampled from a given
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initial distribution. If the model is run with the same set of fragments, the
same result is obtained, hence the term deterministic. Monte Carlo simula-
tion, i.e. repeated sampling and execution of the model, enables to estimate
expectation values of the variables of interest. E.g. the mean, µµµ ∈ RD, of a
joint probability distribution function, pxxx, is estimated from Ns simulation
runs as

µµµx = E(xxx) =

∫
RD

xxx pxxx dDxxx ≈ 1

Ns

Ns∑
j=1

xxxj (1.21)

Over the last two decades, ESA and almost all the major national space
agencies, or universities and research groups associated with them, have de-
veloped deterministic evolutionary models: DELTA (ESA, Walker et al.,
2001), LEGEND (NASA, Liou et al., 2004), DAMAGE (United Kingdom
Space Agency, Lewis et al., 2004), SDM (Agenzia Spaziale Italiana, Rossi
et al., 2009), GEODEEM and LEODEEM (Japan Aerospace Exploration
Agency, Hanada et al., 2009), MEDEE (Centre National d’Études Spatiales,
Dolado-Perez et al., 2013), LUCA (Deutsches Zentrum für Luft- und Raum-
fahrt, Radtke et al., 2017) and SOLEM (China National Space Administra-
tion, Wang and Liu, 2019).

Some of them were initially designed to study either the LEO or GEO
regime, but then eventually extended to either both regimes or the full space
environment around Earth. All of them apply elaborate force models, in-
corporate launch traffic and mitigation measures and factor in collisions and
explosions. They are usually applied to estimate the evolution of the total
number of objects decades or centuries into the future (IADC, 2013b). In-
stead of sampling from an initial distribution, each Monte Carlo run starts
with the known population of fragments. Collisions are introduced in a sta-
tistical manner. First, the collision probability is estimated using the Cube
algorithm, which is discussed in Section 1.3.3. Then a collision is simulated
or not by comparing the probability to a uniformly drawn number (Liou,
2006). The breakups are modelled according to the NASA SBM (Johnson
et al., 2001), although some of the tools offer alternative breakup models.
Note that despite having the same initial conditions, each Monte Carlo run
will result in different outcomes. The predicted number of space debris is
then estimated using Equation (1.21).

Being able to model any level of complexity is the main advantage of
resorting to Monte Carlo simulation. Today, deterministic models are nor-
mative for the works of the Inter-Agency Space Debris Coordination Com-
mittee (IADC) when it comes to the prediction of future evolution of space
debris or assessing the effects of large constellations on the space debris
population (IADC, 2013b, 2017). However, there are drawbacks. Crude
Monte Carlo sampling is lacking the sensitivity to capture rare events with
low probabilities (Au and Beck, 2001). Even with large numbers of drawn
samples, convergence towards an accurate value of the low density is slow.
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The integration of the trajectories of large numbers of fragments is time con-
suming even if semi-analytical theory is used. Extensions to Monte Carlo
sampling, such as importance sampling (Bishop, 2006, Chapter 11.1) or sub-
set simulation (Au and Beck, 2001), could be used, however, at the expense
of global applicability of the method. Using such a method, each target
object would require a dedicated Monte Carlo simulation when calculating
its collision probability.

To reduce the computational time, the models are usually run with a
focus on objects larger than 10 cm only, e.g. simulating only 20000− 30000
fragments per run (IADC, 2013b). Such an approach ignores the danger
emanating from the objects of size 1 cm or larger, of which there are an
order of magnitude more fragments in orbit. Another way of reducing the
number of fragments to be propagated is to use representative objects (Rossi
et al., 1998). Instead of propagating all individual objects, the fragments
are grouped together and represented by fewer objects carrying the appro-
priate weight. However, for statistical evaluation of the collision probability,
this makes only partially sense. Grouped fragments are less likely to lead to
close encounters. If a close encounter occurs anyway, the object carries the
weight of multiple fragments therefore overestimating the collision probabil-
ity. Hence, using representative fragments decreases the number of samples
per run, but increases the variability of the outcome and thus the number
of Monte Carlo simulations required for convergence.

Another drawback of deterministic integration, related to the sensitivity
issue, is that accurate estimates of the underlying distributions in dimensions
D ≥ 3 are difficult to obtain. The distribution can be of any shape and is
generally not be well described by a mean and variance. Instead, an estimate
of the phase space density, n̂, can be obtained by discretisation of the phase
space as

n̂(V ) =
N(V )

V
(1.22)

with a bin volume, V , and the number of fragments present in said vol-
ume, N(V ). However, suppose that the spatial density – a three-dimensional
quantity – was to be inferred from samples through discretisation. The
spherical LEO volume, from r0 = RE + h0 to r1 = RE + h1, with the radius
of Earth, RE = 6371 km, and the lower and upper altitudes of the LEO
regime, h0 = 0 km and h1 = 2000 km (IADC, 2007), is

VLEO =
4π

3
(r3

1 − r3
0) = 1.37× 1012 km3 (1.23)

Discretising VLEO into bins with edge lengths 10 km×10 km×10 km requires
1.37× 109 bins. The number of propagated samples required to yield accu-
rate estimates of the density in all those bins incurs a high computational
cost. The extension to higher dimensions, elaborated quantitatively in Sec-
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tion 2.1, becomes infeasible as the number of bins grows exponentially with
dimension.

1.3.3 Collision probability estimation

Once an estimate of the density, or number of fragments, is available, the
collision probability of a mission of interest can be calculated. In accordance
with the many evolutionary models, a multitude of collision probability es-
timation techniques exist. The collision probability is always a probabilistic
measure, but it can be obtained from both probabilistic and deterministic
evolutionary models.

As for the evolutionary models, the methods developed to calculate the
collision probability with space debris fragments were adapted from the
study of collisions on a grander scale. Öpik (1951) studies the collision prob-
ability of planets with interplanetary dust particles – modelled as densities
– over time frames of hundreds of millions of years. He finds that the secular
perturbations lead to progressive changes in node and argument of perigee
that are much shorter than the lifetime of the particles. This justifies the
assumption of modelling these variables as uniformly distributed, i.e. ran-
domised. Using geometrical considerations, he finds the collision probability
of dust particles in eccentric and inclined orbits with Earth in circular orbit.

In their seminal work about the formation of a debris ring around Earth
Kessler and Cour-Palais (1978) employ a similar statistical approach (ex-
plained in more detail in Kessler, 1981). The flux, F , within a given control
volume, ∆V , is, analogous to the kinetic gas theory, estimated as

F = nrrr∆v̄ (1.24)

with the fragment spatial density, nrrr, and the average relative velocity, ∆v̄,
between the particles in the control volume and a target object of interest.
The number of impacts, η, for an object traversing the volume within a
duration of ∆t is

η = FAc∆t (1.25)

where Ac is the average collisional cross-sectional area between the fragments
and the target. To calculate the collision probability between two objects,
Kessler and Cour-Palais (1978) first estimate the spatial density of a single

object, n
(i)
rrr , as

n
(i)
rrr =

∆t(i)

P (i)

1

∆V
(1.26)

with the orbital period, P . The collision rate between the two objects in a
single volume is then calculated as

η̇ij(∆V ) = n
(i)
rrr n

(j)
rrr ∆v̄Ac∆V (1.27)
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To estimate the total collision rate between the two, Equation (1.27) is
summed over all the volumes accessible to both objects.

Later, Su and Kessler (1985) apply the Poisson function to obtain an
estimate of the collision probability. The Poisson distribution is used to
describe probabilistically how often an event occurs in an interval of time
over which η is accumulated. Hence, the distribution

pk(η) =
ηk exp(−η)

k!
(1.28)

gives a measure of the probability of observing k collisions. The probability
of witnessing one or more collision is thus

p1+ = 1− p0 = 1− exp(−η) (1.29)

Note that if η � 1 is small, Equation (1.29) can be approximated as

p1+ ≈ η (1.30)

A similar statistical and geometrical approach is taken by Chobotov (1983),
McKnight (1990) and Letizia et al. (2016b) to estimate the number of colli-
sions of a payload or rocket body with a background of tracked objects or a
cloud of fragments.

Liou (2006) introduces the Cube algorithm to find a computationally
efficient extension of the method introduced by Kessler (1981) for processing
of the collisions between a large set of objects. The name comes from the
discretisation of the physical space into spatial cubes. Instead of randomising
the node and argument of perigee, the method randomly samples in time,
i.e. in mean anomaly. Whenever two objects end up in the same Cube,
the collision rate is estimated according to Equation (1.27). Doing so, the
complexity of the problem only rises linearly in number of objects, rather
than quadratically. However, the collision probability scales with the cube
size (Lewis et al., 2019). To be accurate, the cubes need to be small and the
sampling intervals short.

Instead of resorting to geometrical considerations or sampling, the spa-
tial density can also be found directly through application of the mapping of
the density from a velocity distribution at breakup to a spatial distribution
at the epoch of interest. Jenkin (1996) finds the probability of impact of a
single fragment from a distribution of fragments originating from an explo-
sion through such a mapping. If the fragment spread velocities at breakup
are independent and noting that only one fragment can be involved in a
collision, he models the probability of impact considering all fragments with
a binomial distribution. If the number of fragments is large, the binomial
distribution can be approximated with the Poisson distribution. For hyper-
velocity collisions or energetic explosions, the assumptions are satisfied, he
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notes. Thus, he shows that the Poisson distribution is also applicable to the
estimation of the short-term hazard, despite the correlated motion of the
cloud fragments not resembling the motion of gas particles.

The kinetic gas theory is applied when the exact location of a fragment
is not known. It is then assumed that the likelihood to find the fragment is
equally spread across a sufficiently small volume. This does not mandate its
velocity distribution to be random. Correlation of the fragment directions
can be considered through proper weighting with the relative velocities. It
is indeed important that not only the spatial distribution of the fragments
is known, but also its dependence on the velocity. If the control volume is
chosen to be much smaller than the uncertainties – ideally as small as the
target object itself, assuming its orbit is known precisely – the assumption
of the position of the fragment being uniformly distributed over the volume
is satisfied.

Izzo and Valente (2004) use the Dirac delta function to transform space
object distributions given in orbital elements into spatial densities, required
for computation of the collision probability. This enables the evaluation of
the collision probability without any hypothesis on the orbit geometry or
discretisation of the phase space. However, they do not extend the method
to uncertainties over multiple chaser fragments. Contrary to the change of
variables method in Equation (1.15), which is only applicable to transforma-
tions of phase spaces with the same dimensionality, the Dirac delta function
offers a direct way of transforming higher dimensional phase spaces to lower
dimensional ones. The method is explained in greater detail in Section 2.2.1.

1.3.4 Semi-analytical propagation in an atmosphere

Objects in Earth orbit do not move in perfect Keplerian motion, i.e. along
repeating ellipses. Instead, they are subject to perturbing forces. Earth is
not a perfect sphere and its mass is unequally distributed within its body.
Hence, the attractive gravitational field is not spherical either. Other solar
system bodies – such as the Moon and the Sun – further disturb the gravita-
tional field. Non-conservative perturbations are induced due to atmospheric
drag and solar radiation pressure.

Any perturbing force can be accounted for in continuum modelling if the
trajectories in Equation (1.5) are numerically integrated. An overview of
numerical integration schemes can be found in Vallado (2013, Chapter 8.5).
Numerical integration of the full force model is used for precise orbit prop-
agation over the course of a few orbits or days only. As tens or hundreds of
steps need to be evaluated for each orbital revolution, such an integration
scheme quickly becomes inefficient for mid- to long-term propagation.

This subsection briefly introduces semi-analytical integration techniques
and discusses its advantages and disadvantages. The focus is put on tra-
jectory integration subject to atmospheric drag, which was identified as not
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adequately modelled in the propagator used throughout this work. The prop-
agator suite itself, and its extension to increase the accuracy of integration,
are introduced in Sections 3.3 and 3.4.

Semi-analytical integration

To improve the efficiency of orbit integration while maintaining a high level
of accuracy, semi-analytical propagation techniques were developed (e.g. Liu,
1974). Such techniques remove the short-periodic effects by averaging the
dynamics. This allows to increase the step size of the integration routine,
decreasing the computational time required for the full propagation. Short-
periodic effects can be identified through the dependence on fast variables in
the force model. Fast variables show large variations over a single orbital rev-
olution, while slow variables change only marginally (Vallado, 2013). Radius
and velocity written in Cartesian coordinates are all fast variables. Orbital
elements, instead, usually have a single fast variable and are thus predes-
tined for averaging techniques. For Keplerian elements, ααα, the fast moving
variable is the anomaly term, e.g. the mean anomaly, M .

The averaged dynamics are obtained by integrating the dynamics over
one orbit and dividing by the time it takes to complete the revolution as

dααα

dt
=

1

P

∫ P

0

(
dααα

dt

)
dt (1.31a)

=
1

2π

∫ 2π

0

(
dααα

dt

)
dM (1.31b)

where the orbital period, P , and M are found as

P =
2π

n̄
M = M0 + n̄t (1.32)

given the mean motion, n̄. The singly averaged state is propagated nu-
merically using the averaged dynamics from Equation (1.31) which are in-
dependent of the fast variables. Doubly averaged dynamics are obtained
by performing the same averaging over the long-periodic effects. There are
different ways of solving Equation (1.31), as is discussed below, right after
introducing the most common atmosphere models.

Atmosphere models

The atmosphere models discussed here can be divided into reference models
and the derivatives thereof. The reference models commonly give the tem-
perature, T , and – more importantly for calculating the drag force – the den-
sity, ρ, of Earth’s atmosphere as a function of the altitude, h, and other input
parameters. Examples are, in increasing degree of complexity, the COSPAR
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International Reference Atmosphere (CIRA) model (e.g. CIRA-86, Rees,
1988), the Jacchia atmosphere (Jacchia, 1977), the Drag Temperature Model
(DTM) (Bruinsma, 2015) and the Naval Research Laboratory Mass Spec-
trometer, Incoherent Scatter Radar Extended (NRLMSISE) model (Picone
et al., 2002), all of which are (semi-)empirical models.

Of these reference models, reduced derivatives can be obtained through
fitting for two purposes: appropriate simplification of the mathematical
formulation can lead to significant speed increases for a density evalua-
tion; and adequate reformulation of the model enables averaging for semi-
analytical propagation. The Jacchia-77 atmosphere model and a commonly
used derivation of the CIRA model are discussed in more detail.

Jacchia-77 The Jacchia-77 reference atmosphere (Jacchia, 1977) estimates
the temperature and density profiles of the relevant atmospheric constituents
as a function of the exospheric temperature, T∞. The density profile, ρJ ,
is based on the barometric equation and an empirically derived tempera-
ture profile calibrated with observations of satellite decay. The model is
valid for altitudes 90 km < h < 2500 km and exospheric temperatures
500 K < T∞ < 2500 K. The computation of ρJ cannot be performed ana-
lytically and requires numerical integration for each of the 4 constituents,
nitrogen, oxygen, argon and helium, plus integration of atomic nitrogen and
oxygen. The scale height, H, is defined as

H = −ρ
(

dρ

dh

)−1

(1.33)

and is numerically approximated here as

HJ(h) = − ρJ(h)∆h

ρJ(h+ ∆h)− ρJ(h)
∆h = 1 m (1.34)

Several thermospheric variations can be considered, such as solar cycle,
solar activity, seasonal or daily variations. Generally, the objects of interest
for semi-analytical propagation dwell on-orbit for several months to hundreds
of years. Thus, only the variation with the 11-year solar cycle is of interest
here. The Jacchia reference uses the solar radio flux at 10.7 cm, F , as an
index for the solar activity (see Figure 1.2, source for data: Goddard Space
Flight Center, 2020). From F , T∞ can be inferred as (Jacchia, 1977)

T∞ = 5.48F
4
5 + 101.8F

2
5 (1.35)

where F is a smoothed F , commonly centred over an interval of several
solar rotations. Jacchia recommends using a smooth Gaussian mean based
on weights, w, which decay exponentially with time, i.e.

F =

∑
twtFt∑
twt

where wt = exp

(
−
(
t− t0
σ

)2
)

(1.36)
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Figure 1.2: Daily 10.7 cm solar flux, and a Gaussian mean with σ = 81 days
and a window of w = 486 days, since beginning of 1970. The dashed lines
correspond to T∞ = 750, 1000 and 1250 K, respectively, assuming F = F .

with the time of interest, t0, and the standard deviation, σ. Note that F
requires the knowledge of the future F . Figure 1.2 shows F and its Gaussian
mean, F , with a standard deviation of σ = 81 days, considering a cut-off
window for the calculation of F of t ∈ t0 ± 3σ. More recent models such as
NRLMSISE or DTM require F to be a moving mean, centred in a 81 days
window (ISO, 2013).

Non-Smooth Exponential One very simple representation of the atmo-
sphere density is using a piecewise exponentially decaying model, by dividing
the altitude range into bins. Each bin is defined by a lower altitude (base)
and an upper altitude (base of the next bin), hi and hi+1, respectively, the
base density, ρ̂i, at hi and a scale height, Hi, chosen such that the density is
continuous over the limits of each bin. Then, within each altitude bin, the
density, ρNS , can be evaluated at each altitude h as follows

ρNS(h) = ρ̂i exp

(
h− hi
Hi

)
hi < h < hi+1 (1.37)

Such a model can be derived from any atmospheric model. For this work,
the values given in Vallado (2013, Chapter 8.6) – fitting the CIRA-72 model
at T∞= 1000 K – are used for a comparison of models.

A problem with the non-smooth atmosphere model is that it is non-
physical, with discontinuities in H. At each change of altitude bin, H jumps
from Hi to Hi+1. This non-smooth behaviour potentially poses a problem
to the (variable-step size) integrator, as the step size needs to be reduced
to accurately describe the sudden change in contraction rate of the orbit.
Thus, the number of function evaluations and the total time to propagate
the orbit increases, if the discontinuities are not handled properly.
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Averaging techniques for atmospheric drag effects

During semi-analytical propagation of an object trajectory subject to air-
drag forces, the integrated rate of change in the orbital element space, i.e.
the average rate of change over a full revolution is of interest. The evaluation
of the average rate can either be achieved numerically using quadrature, or
analytically. Many quadrature rules exist (e.g. see Abramowitz and Ste-
gun, 1972, p. 885–895) and they are independent of the underlying function,
making them versatile. However, they require the evaluation of the density
at multiple nodes along the orbit, increasing the computational load of the
function evaluations during integration. Note that in this context numerical
integration describes the evaluation of an integral and not the propagation
of a trajectory.

Analytical formulations, such as the one derived by King-Hele more than
half a century ago (King-Hele, 1964) require the density to be evaluated only
once per iteration in correspondence of the perigee altitude. Other exam-
ples of analytical formulations are the ones derived by Vinh et al. (1979),
Sharma (1999) and Xavier James Raj and Sharma (2006). While offering
improvements to the classical formulation of King-Hele (KH), such as being
mathematically more rigorous and non-singular, they are either only avail-
able as closed-form solution or suffer from the same assumption of a fixed
scale height. Here, only the numerical Gauss-Legendre (GL) quadrature
and the analytical KH method are briefly discussed. The dynamical model
is presented in Section 3.4.

Gauss-Legendre quadrature The integrals in Equation (1.31) can be
approximated numerically using quadrature, e.g. GL quadrature (Abramowitz
and Stegun, 1972, p. 887)∫ 2π

0
f(y)dy ≈ π

∑
i

wif(yi), yi = (xi + 1)π (1.38)

where the node xi is the ith root of the Legendre Polynomial Pn(x). The
weights wi are given as

wi =
2

(1− x2
i )[P

′
n(xi)]2

(1.39)

and P ′n is the derivative of Pn(x) with respect to x. The nodes and weights
remain constant during the propagation, so they are calculated (or read from
a table) only once upon initialisation of a program. Routines to calculate
(xi, wi) are available for various scientific programming tools.

Advantages of a numerical approximation of the integrals is that it can be
found for any atmospheric model and that no series expansions are required.
Disadvantages are the need of multiple density evaluations and the loss of
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an analytic formulation. The Jacobian of the dynamics, which is important
for the integration of the phase space density, cannot be inferred analytically
but requires yet another quadrature.

King-Hele method Here, only an overview of the formulation is given.
The treatment of the full theory can be found in King-Hele (1964). The
mathematical formulas are re-derived and extended in Appendix B.3. The
idea is to perform a series expansion of the integrand in Equation (1.31) in a
suitable variable, truncate at a given degree and find analytical solutions for
each integral of the expanded terms. With the assumption that ρ decreases
strictly exponentially with altitude, i.e. with a fixed H, each expanded
integrand can be represented by the modified Bessel function of the first
kind, In, which for n ∈ N0 is given as (Abramowitz and Stegun, 1972,
p. 376)

In(x) =
1

π

∫ π

0
exp(x cos θ) cos (nθ)dθ (1.40)

The KH formulation enables fast propagation as it can be evaluated an-
alytically and requires only a single density evaluation for each computation
of the rate of change. The main problem with the fixed H assumption is the
underestimation of ρ at altitudes above the perigee altitude, hp, which for
eccentric orbits can induce large errors exceeding the uncertainties inherent
in atmospheric modelling (see Section 3.4). This is true for any object in
a non-circular orbit subject to a non-strictly exponentially decaying atmo-
sphere. KH was aware of this problem and suggested a way to calculate
the contraction of an orbit with a varying scale height (see King-Hele, 1964,
Chapter 6). To keep the equations analytically integrable, he approximates
the varying H linearly, with a constant slope parameter. Linear approxima-
tion of the true H is valid only locally. For low eccentric orbit configurations
this might be sufficient, but high eccentricities will re-introduce the errors.
Using a constant slope parameter will thus lead to a new over- or underes-
timation of the drag depending on the eccentricity, e.

1.3.5 Interpolation and surrogate modelling

Probabilistic propagation of an initial density, using the method of the char-
acteristic, enables the exact evaluation of the density along the characteristic
curve. However, no density estimate is available outside of the character-
istic curve. Backpropagation could be employed for each point of interest.
Equation (1.13) shows that the trajectory of a characteristic is independent
of its density, n. Hence, a single backpropagation would suffice to obtain the
density value at the epoch of interest. However, if the density is required
over the full phase space, many backpropagations are necessary.

Instead, the density can efficiently be estimated from the scattered set of
forward propagated characteristics. Wittig et al. (2017) employ differential
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algebra to find an approximation of the density around the characteristics.
Nevertheless, the solution is only valid in the vicinity of each characteristic.
Halder and Bhattacharya (2011) estimate the density outside of the char-
acteristic curves by discretising the phase space. Instead of simply count-
ing the samples, as in Equation (1.22), the average over the characteristics
present in the bin is taken to represent the density over the bin. Still, dis-
cretisation leads to non-smooth, inaccurate density estimates requiring a
large set of characteristics. Trisolini and Colombo (2019) employ Delaunay
triangulation to interpolate in between the characteristic points. In Delau-
nay triangulation, the function is interpolated from D-simplexes, defined by
the characteristics (Lee and Schachter, 1980). The advantage is that the
estimated function, evaluated at the interpolation points, remains exact.
However, the resulting interpolation is non-smooth over the simplexes, ex-
trapolation of the density is not feasible and careful treatment of non-convex
distributions is required.

Approximation of the output of a function, given its evaluations on a scat-
tered set of points, can also be obtained through surrogate modelling (e.g.
Forrester et al., 2008). A surrogate model approximates a function of in-
terest, allowing significantly faster evaluation of the approximated function,
while maintaining sufficient accuracy. Any interpolation scheme, such as De-
launay triangulation, can be thought of as a surrogate model. A short list of
surrogate modelling techniques is given here, allowing to estimate densities
from scatter samples, with or without information about n. Selection of a
method applicable to the problem of interpolating the characteristics of a
fragmenting cloud is elaborated and justified in Section 4.1.

The density estimation methods can be categorised into samples-based
and function-based methods, and each of the two categories can further
be divided into parametric and non-parametric methods. Samples-based
methods work with Ns samples

XXX = {xxxi}i=1,...,Ns (1.41)

that do not carry information about the function itself, i.e. can be obtained
through Monte Carlo sampling. They can only be used to approximate prob-
ability distribution functions. Instead, function-based methods approximate
any function through interpolation of samples carrying information about
the response, y, i.e. the training data is

YYY = {(xxxi, yi)}i=1,...,Ns
(1.42)

Parametric methods prescribe the functional form of the response func-
tion, i.e. the fitting is reduced to the selection of optimal parameters ob-
tained through regression. The advantage of parametric methods is the near
instantaneous evaluation of the fitted surface, making it suitable for post-
processing steps such as the evaluation of the spatial density or collision

23



1.3 Literature review

probability. Disadvantages are the loss of accuracy as residual errors are
introduced even at the points of fitting, and potentially large discrepancies
between estimate and underlying function if an unsuitable model is chosen.

Non-parametric methods estimate the function using directly the sam-
ples and are thus more flexible in approximating any underlying distribution.
However, they generally require many samples. A promising method to ob-
tain large sample sets without the added propagation effort is polynomial
chaos expansion (Wiener, 1938; Xiu and Karniadakis, 2002). Sampling of
such a surrogate model enables efficient sample generation – given any initial
distribution – at the desired target space. Hence, it can be used to improve
any samples-based method for the estimation of the resulting distribution,
at a drastically reduced propagation cost (e.g. Jones et al., 2015; Vittaldev
et al., 2016). Still, it is hard to interpret a multivariate distribution from
samples only, where visual inspection becomes intractable. An option is to
fall back on the mean and sample covariance, which, however, do not tell the
full picture. E.g. for a banana-shaped distribution or a density with multiple
peaks, the mean does not give an accurate picture of the distribution. In-
deed, the initial as well as the propagated fragmentation cloud distribution
does not resemble normally distributed fragments (see Chapter 6). Another
drawback of samples-based methods is that all observations are required for
each function evaluation.

An example of parametric, samples-based estimation methods is the Ex-
pectation Maximisation (EM) algorithm (Bishop, 2006, Chapter 9.2). This is
an iterative method to maximise the likelihood function of a statistical model
with respect to its parameters. Examples of non-parametric, samples-based
estimators are the binning of samples (see Equation (1.22)), or Kernel Den-
sity Estimation (KDE) (Bishop, 2006, Chapter 2.5). KDE approximates the
probability distribution function of random variable, x ∈ R, as

p̂x(x) =
1

Ns

Ns∑
i=1

k(x, xi) (1.43)

given a kernel, k, which itself can again be parametric or non-parametric. A
common selection of k is the Gaussian kernel

k(x, xi) =
1√

2πβ2
exp

(
−(x− xi)2

2β2

)
(1.44)

with the bandwidth, β. The larger β, the smoother is the estimated distri-
bution.

Examples for function-based, parametric methods are polynomial regres-
sion or fitting of a Gaussian Mixture Model (GMM). The latter is elaborated
in more detail in Chapter 4. Non-parametric, function-based estimation
methods are more flexible in fitting to any underlying distribution. Exam-
ples are Nearest Neighbour (NN) methods, Radial Basis Function (RBF)
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interpolation and Gaussian Process (GP) regression. NN takes the average
value of its k nearest neighbours (Bishop, 2006, Chapter 2.5). RBF inter-
polation is performed by evaluating (Forrester et al., 2008, Chapter 2.3)

ŷ(x) =

Ns∑
i=1

wik(||x− xi||) (1.45)

where, as for KDE, k is the kernel, and the weights, www = {wi}i=1,...,Ns , are
found through

www = KKK−1yyy (1.46)

given the observations, yyy = {yi}i=1,...,Ns , and the kernel evaluated for each
pair of training samples

Ki,j = k(||xi − xj ||) i, j = 1, . . . , Ns (1.47)

Among the possible variations of k are the non-parametric, linear kernel

k(r) = r (1.48)

the parametric, multiquadric kernel

k(r) =
√

(r/ε)2 + 1 (1.49)

or the parametric, Gaussian kernel

k(r) = exp

(
− r2

2β2

)
(1.50)

where ε and β are hyperparameters.
A GP is an infinite-dimensional object, defined by a set of random vari-

ables. A short recap is given here, following (Rasmussen and Williams, 2005,
Chapter 2). The notation of a GP is

g(x) ∼ GP(m(x), k(x, x∗)) (1.51)

with the mean function, m(x), and covariance function, k(x, x′), of the func-
tion to be interpolated, g(x), as

m(x) = E [g(x)] (1.52a)

k(x, x′) = E
[
(g(x)−m(x))(g(x′)−m(x′))

]
(1.52b)

As the characteristics carry the true value of the density to be interpolated,
the discussion here is restricted to prediction with noise-free observations.
GP regression makes assumptions on the outputs of the function, yyy, via the
prior distribution

yyy ∼ N (000,KKK(XXX,XXX)) (1.53)
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where KKK is again the matrix of the covariance function evaluated at each
pair of XXX. A zero mean is chosen, together with a non-periodic kernel (see
below), as the approximation of the function at data points far from the
observations should vanish. Then, if the function values evaluated at the
observations, yyy = ggg(XXX), and at the test points, yyy∗ = ggg(XXX∗), are jointly
Gaussian, the joint distribution is(

yyy

yyy∗

)
= N

(
000,

[
KKK(XXX,XXX) KKK(XXX,XXX∗)

KKK(XXX∗,XXX) KKK(XXX∗,XXX∗)

])
(1.54)

Finally, a statistical description of yyy∗, the posterior distribution, can be
found as the conditional probability

yyy∗(XXX∗|XXX,yyy) ∼ N
(
µµµK ,σσσ

2
K

)
(1.55)

with

µµµK = KKK(XXX∗,XXX)KKK−1(XXX,XXX)yyy (1.56a)

σσσ2
K = KKK(XXX∗,XXX∗)−KKK(XXX∗,XXX)KKK−1(XXX,XXX)KKK(XXX,XXX∗) (1.56b)

For interpolation, the mean is taken, i.e. yyy∗ = µµµK . A common kernel
is the squared-exponential covariance function (also known as radial basis
function)

k(x, x′) = σs exp

(
−(x− x′)2

2β2

)
(1.57)

with the length scale, β, and the signal variance, σ2
s , two hyperparameters

that need to be optimised. For the evaluation of the mean, only the length
scale is important, having a similar effect on the smoothness of the resulting
interpolation as the bandwidth in KDE.

1.3.6 Summary

A large pool of literature and techniques is available for the propagation of
space debris and the evaluation of the collision probability. Probabilistic
evolutionary models allow to directly map the density of a continuum, mak-
ing their evaluation time independent of the actual number of fragments the
continuum represents. Analytical solutions permit fast evaluations of the
density at any point in time. However, they are based on simplified orbital
geometries and require simple force models. Numerical solutions, instead,
can overcome these constraints but find the density only along the charac-
teristics of the dynamics. This drawback can be addressed by interpolating
the scattered set of characteristics. By training a surrogate modelling, an
estimate of the density is available over the full domain. Methods based on
finite differences inherently give a solution across the full domain and for
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any force model. Yet, they require computational power that restricts them
from venturing into phases spaces with dimensionality higher than three.

Deterministic evolutionary models can consider any force model and any
dimensionality making them useful for many applications. Today, they are
the standard when it comes to defining new mitigation guidelines. Nonethe-
less, the large number of objects that need to be propagated to obtain statis-
tically relevant results makes them computationally expensive. Additionally,
low probability events cannot accurately be studied using deterministic mod-
els. Hence, such models are generally used globally to study the evolution
of single-dimensional quantities, such as the number of objects or collisions,
and are usually not used for the estimation of the ramifications of a single
satellite breakup.

The collision probability estimation tools employed in evolutionary mod-
els suffer from the shortcomings of the density propagation tools. Simplifica-
tions made during propagation, e.g. enforcing circular orbits or discretising
the phase space, are applied also for the evaluation of the collision prob-
ability. If, however, the phase space density as a function of position and
velocity can accurately be estimated, easy derivation of an accurate collision
probability follows.

Lastly, semi-analytical propagation increases the speed of the integration
of the trajectories. Present techniques considering drag are either dependent
on numerical quadrature or – to find analytical solutions of the integral –
on simplified atmosphere models that are not valid for eccentric orbits. No
analytical solution of the averaging integrals is available for atmospheric
density profiles that do not decay strictly exponentially in altitude.

1.4 Contribution

The contribution of this doctoral thesis is presented in two sections. First,
novel techniques and software developed during the doctoral studies are dis-
cussed in Section 1.4.1. The publications and presentations related to these
studies are summarised in Section 1.4.2.

1.4.1 Novel techniques and software

The proposed method to model the evolution of a fragmentation cloud is
fully probabilistic, based on the semi-analytical propagation of the char-
acteristics and the training of surrogate models. Due to its probabilistic
nature, the evolution of the fragment cloud is accurately predicted even for
low probability events, leading to an order of magnitude speed increase if
compared to deterministic models set for a comparable sensitivity. The semi-
analytical application of the method of characteristics allows to propagate
the continuity equation given any orbit geometry, force model or dimension.
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This constitutes a considerable improvement over methods based on finite
differences, which cannot account for higher dimensions, or analytical solu-
tions with their restricted applicability. The surrogate model is used to find
an estimate of the fragment phase space density over the full domain, thus
removing the need for additional propagations. The model is subsequently
used for post-processing tasks such as the estimation of the fragment spatial
density or the collision probability.

At the beginning of every virtual fragmentation cloud is a model of the
fragment distribution. Being the de facto standard among space agencies,
the NASA SBM (Johnson et al., 2001) is utilised for obtaining the initial
conditions for the examples shown herein. The SBM was designed to be
sampled for representative objects, i.e. the samples come without a density
value. For application in the probabilistic cloud propagation, sampling of
the characteristics is required. Hence, an extended form of the SBM, refor-
mulated as a probability distribution function, is developed and presented
in this work. The probabilistic approach to the breakup model also allows
to calculate estimation values, e.g. of the fragment mass, which can be
used to enforce conservation of mass during a fragmentation. The transfor-
mation into various subsets of Keplerian elements enables the application
of the method in various combinations of phase space variables. Repre-
senting the fragmentation distribution in Keplerian elements facilitates the
incorporation of assumptions on the distribution of the fragments, such as
randomisation of the mean anomaly. Hence, the approach is well suited to
model fragmentations over various timespans.

The fitting of the surrogate model, a Gaussian Mixture Model (GMM),
is performed in any user-defined phase space, instead of fitting directly in
orbital elements. The phase space variables can be defined through sym-
bolic mathematical expressions as a function of the propagated states. This
permits a normalisation of the phase space, aiding the fitting of the surro-
gate model and allowing to explore a large combination of states and de-
rived phase spaces without requiring manual derivations needed for density
mappings. Still, the non-linearities that are inherent in orbital dynamics
potentially lead to phase space distributions that are hard to represent with
GMMs. A new framework, called reference hypersurfaces is introduced to
further normalise such distributions, thereby absorbing some of the non-
linearities. Through transformation of the fitted phase space density, the
density in the phase space of origin can be recovered easily.

The estimation of the collision probability is performed considering not
only the spatial density, but also the relative impact velocity and a vari-
able cross-sectional area. The integration over all the incident velocities is
performed directly in Keplerian elements, simplifying the selection of the
integration limits. The collision probability is estimated along the orbit of
a target object, without the need to define finite volumes, increasing its
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fidelity.

Furthermore, this thesis introduces a new analytical method to calculate
the effect of atmospheric drag on the trajectory of the objects. It is based on
the introduction of a new smooth exponential model that accurately catches
the density profile of Earth’s atmosphere. The analytical solution permits
application of semi-analytical propagation, speeding up the integration of
trajectories.

Next to presenting the techniques, the Starling software suite is intro-
duced. It represents an implementation of the developed methods presented
in this thesis. Making use of parallel programming techniques, it propagates
density distributions in a few minutes only. Its open structure facilitates the
integration of any initial condition and dynamics and as such is a generic par-
tial differential equation solver. The software suite is used to propagate the
evolution of the fragmentation cloud for various scenarios, covering different
eccentricities and force models. The found distribution is then subsequently
used to estimate the collision probability of its fragments with Sentinel-1A
and two other target objects.

1.4.2 Publications and outreach

The following journal publications and conference proceedings are directly
related to the research presented in this thesis. As were the following semi-
nars and other presentations (excluding conferences) given during the time
of the doctoral studies.

Journal publications

• S. Frey, C. Colombo, and S. Lemmens. Extension of the King-Hele
orbit contraction method for accurate, semi-analytical propagation
of non-circular orbits. Advances in Space Research, 64:1–17, 2019.
doi:10.1016/j.asr.2019.03.016.

As outlined in Section 1.3.4, the analytical King-Hele method does
not accurately model the drag forces for highly eccentric orbits. This
paper presents an extension to the method, maintaining a closed-form
solution of the averaged dynamics while removing the inaccuracies due
to eccentric orbits.

• S. Frey and C. Colombo. Transformation of satellite breakup distri-
bution for probabilistic orbital collision hazard analysis. Journal of
Guidance, Control, and Dynamics, accepted for publication in July,
2020. doi:10.2514/1.G004939

This paper provides a framework for the fully probabilistic treatment
of orbital fragmentation clouds and their effects on other space ob-
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jects in terms of collision probability, while leaving the selection of the
uncertainty propagation method up to the reader.

• S. Frey, C. Colombo, and S. Lemmens. Evolution of orbital fragmenta-
tion cloud via continuum and surrogate modelling. To be submitted to
the Journal of Guidance, Control, and Dynamics in September, 2020.

Finally, this paper discusses the application of the framework, com-
bined with the propagation of the characteristics and the surrogate
modelling, to estimate the evolution of orbital fragmentation clouds.

Conference proceedings

• S. Frey, C. Colombo, S. Lemmens, and H. Krag. Evolution of frag-
mentation cloud in highly eccentric orbit using representative objects.
In Proceedings of the 68th International Astronautical Congress, 2017

• S. Frey, C. Colombo, and S. Lemmens. Evolution of fragmentation
cloud in highly eccentric Earth orbits through continuum modelling,
In Proceedings of the 69th International Astronautical Congress, 2018.

• S. Frey, C. Colombo, and S. Lemmens. Interpolation and integration of
phase space density for estimation of fragmentation cloud distribution,
In Proceedings of the 29th AAS/AIAA Space Flight Mechanics Meeting,
2019

• S. Frey, C. Colombo, and S. Lemmens. Application of density-based
propagation to fragment clouds using the Starling suite, In Proceedings
of the 1st International Orbital Debris Conference, 2019.

Seminars

• S. Frey and C. Colombo. Orbit evolution of space debris: modelling
and applications. At the Tsinghua University, Beijing, China, July
2018.

• S. Frey and C. Colombo. Space debris continuum modelling. At the
University of Texas, Austin, USA, December 2019.

Other presentations

• S. Frey, C. Colombo, and S. Lemmens. Superimposition of the at-
mosphere density for fast and accurate semi-analytical propagation.
At the Key Topics in Orbit Propagation Applied to Space Situational
Awareness (KePASSA) workshop, Noordwijk, The Netherlands, July
2017.
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• S. Frey and C. Colombo. Evolution of a fragment cloud in highly
eccentric orbit using representative objects. At the Research Summer
School for Satellite Dynamics and Space Missions (SDSM): Theory
and Applications of Celestial Mechanics, San Martino al Cimino, Italy,
September 2017.

• S. Frey, I. Gkolias, and C. Colombo. Design of end-of-life of disposal
manoeuvres and re-entry modelling with PlanODyn. At the 7th Euro-
pean Workshop on Satellites End-of-Life, Paris, France, January 2018.

• S. Frey, C. Colombo, D. Gondelbach, and R. Armellin. Extension
of the King-Hele orbital contraction method and application to the
geostationary transfer orbit re-entry prediction. At the 4th Inter-
national Workshop on Space Debris Re-entry, Darmstadt, Germany,
March 2018.

• S. Frey, C. Colombo, and S. Lemmens. Density based modelling and
indication of break-up location and epoch from fragments using back-
wards propagation. At the 5th European Workshop on Space Debris
Modelling and Remediation, Paris, France, June 2018.

• S. Frey, C. Colombo, and S. Lemmens. Density based method for space
debris applications. At the ReDSHIFT Space Debris Day, Milan, Italy,
October 2018.

1.5 Structure of thesis

This dissertation is, next to the introduction chapter, divided into six chap-
ters. The next three chapters are dedicated to the developed theory, and
the remaining three chapters are dedicated to the software implementation,
applications, and conclusions, respectively.

Chapter 2 introduces the continuum formulation. It explains how phase
space densities given in Cartesian coordinates can be converted into orbital
elements and vice versa. This is important as the initial distributions and
the propagation are not given in the same phase space. The concept of
randomisation for mid- to long-term propagation is revisited and extended
to obtain spatial densities and the number of impacts from distributions
defined in a subset of orbital elements only. Then, the extension of the
NASA SBM to obtain a probabilistic initial breakup distribution is discussed.
Additionally, two examples of fragmentation distributions are given.

Chapter 3 discusses the propagation of the continuum via the continuity
equation and the method of characteristics. It shows how initial character-
istics are selected and integrated. The orbit propagator suite and the force
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model used in this work are introduced. Additionally, it contains the descrip-
tion of the smooth exponential atmosphere and the superimposed King-Hele
method developed in this research work.

Chapter 4 explains the interpolation technique used to obtain an estimate
of the density across the full phase space. The surrogate model is introduced,
and its fitting is discussed. Furthermore, normalisation of the phase space
and the concept of reference hypersurfaces are introduced helping in finding
an optimal density approximation.

The implementation of the theory in a software suite is presented in
Chapter 5. The structure and interfaces are discussed and its applicability
to other partial differential equations is elaborated. The chapter further
contains a validation part where the method is compared to Monte Carlo
sampling and another validation method that is applicable to phase spaces
with any dimensions.

Chapter 6 shows applications of the proposed method and the software
suite. Fragmentation clouds from collision and explosion scenarios are prop-
agated in various orbital regimes considering 3−6 dimensional phase spaces.
The collision probability of one of the clouds is calculated for different tar-
get objects. Examples of how to apply the theory hopefully make it more
appealing to the reader.

Finally, Chapter 7 concludes this dissertation with a summary of the
work, the limitations of the method and potential future work.
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2 Continuum formulation

The space debris cloud is modelled in this work as a continuum of fragments.
In this chapter, the mathematical description of such a continuum formula-
tion is discussed in Section 2.1. Section 2.2 introduces means of transforming
densities into phase spaces of same dimensionality and of lower dimension-
ality. In Section 2.3 randomisation of some of the orbital elements is applied
to obtain the full phase space density from densities defined in lower di-
mensions. Section 2.4 explains how to derive the spatial density and the
number of impacts from a given phase space density. The derivation of the
initial cloud distribution is shown in Section 2.5 and depicted in the form
of an example in Section 2.6. Additionally, Section 2.6 shows an example of
evaluating the spatial density directly from a distribution given in Keplerian
elements.

This chapter does not yet introduce the propagation of the continuum,
which is discussed, instead, in Chapter 3. Note that parts of this chapter
are adapted from (Frey and Colombo, 2020)1.

2.1 Formulation

The position of a particle in the phase space, xxx ∈ RD, in dimension, D, is
probabilistically described using a probability density function, pxxx = p(xxx, t).
The dependence on time, t, is dropped from the notation, as pxxx is studied
at fixed epochs of interest. The integral of pxxx over the full phase space is
unity, i.e. ∫

RD
pxxx dDxxx = 1 (2.1)

Similarly, the phase space density distribution, nxxx = n(xxx, t), describes the
distribution of the total number of fragments, N . If the particles within the

1S. Frey and C. Colombo. Transformation of satellite breakup distribution for prob-
abilistic orbital collision hazard analysis. Journal of Guidance, Control, and Dynamics,
accepted for publication in July, 2020. doi:10.2514/1.G004939
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2.1 Formulation

cloud are independently described by pxxx, the two distributions are connected
through

nxxx = Npxxx (2.2)

Hence, the integral of nxxx over the full phase space results in∫
RD

nxxx dDxxx = N (2.3)

The applicability of the theory in this thesis is valid for both, probability
density functions and phase space density distributions. Any result simply
needs to be weighted with N to convert either into the other. Hence, uncer-
tainties described as probability distribution functions can be propagated as
well as fragment clouds.

Why is a probabilistic formulation so much more powerful than simply
deriving the density estimate from random samples? Assume a multivariate
normal distribution, N , given in D dimensions as (Bishop, 2006)

pN =
1

(2π)
D
2 det(ΣΣΣ)

1
2

exp

(
−1

2
(xxx−µµµ)TΣΣΣ−1(xxx−µµµ)

)
(2.4)

with the mean, µµµ ∈ RD, and the covariance, ΣΣΣ ∈ RD×D. The density value
can be directly obtained through evaluation of Equation (2.4), corresponding
to the probabilistic approach. Alternatively, it can be estimated as

p̂ =
Ns(V )

NsV
(2.5)

by sampling Ns instances from the distribution and counting the number of
samples, Ns(V ), present in the volume of interest, V , corresponding to the
deterministic approach. Suppose the following statistics are selected

µµµ = 000 ΣΣΣ = III (2.6)

with the identity matrix, III, and the density is evaluated around the bin
centre, x̂xx, set at

x̂j = D−
1
2 ∀j ∈ [1, . . . , D] (2.7)

chosen such that the Mahalanobis distance, defined as (Bishop, 2006, Chap-
ter 2.3)

dM (xxx) =
√

(xxx−µµµ)TΣΣΣ−1(xxx−µµµ) (2.8)

is unity. As the covariance matrix is the identity matrix, dM simply describes
the distance from µµµ. The bin, centred around x̂xx, is selected to have a fixed
width, w, in each direction of w = 0.05 and thus a volume of V = wD.
For the one-dimensional case, this corresponds to a grid of 120 bins over
x± 3, covering 99.7% of the total probability. For the five-dimensional case,
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Figure 2.1: Convergence for phase space density estimate with increasing
number of samples, Ns, for different dimension of the domain, D. The
solid and dotted lines represent the density estimates, p̂, and exact function
evaluations of pN , respectively.

this corresponds to a regular grid of 40 bins over xj ± 1 in each dimension
j = 1, . . . , 5, covering, again, 99.7% of the total probability.

As can be seen in Figure 2.1, relatively few samples are required to
accurately estimate the density for one-dimensional distributions. However,
with increasing dimension, corresponding to an increase of number of bins,
the density estimate becomes inefficient as many samples are required. For
an accurate estimate, the number of samples needs to be 2 − 3 orders of
magnitude larger than the number of bins required to cover most of the
distribution. E.g. in two dimensions, corresponding to 762 = 5776 bins to
cover 99.7% within x1/2± 1.9, it requires 106 samples for convergence of the
estimate with the real probability. For four dimensions and 484 = 5308416
bins to cover 99.7% within xj ± 1.2 for j = 1, . . . , 4, it requires 109 − 1010

samples.

Note that, from D ≥ 2, the bulk of the distribution is found outside of
the D-sphere with radius ||x̂xx||, SD = {xxx ∈ RD : ||xxx|| = ||x̂xx||}. E.g. for the
three-dimensional case, more than 80% of the probability is found outside of
the 3-sphere. For the five-dimensional case, this share increases to more than
96%. If the bin is positioned farther away from the peak of the distribution,
where the probability is lower, even more samples would be required to find
a decent estimate of the underlying distribution.

Propagation of many deterministic fragments is computationally expen-
sive and inaccurate. Software suits based on Monte Carlo simulations gener-
ally propagate about 20000−30000 individual objects per run only, without
considering uncertainties despite propagation over hundreds of years (IADC,
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2013a). That is not sufficient to accurately estimate the spatial density of the
fragments on a fine three-dimensional grid as the volume of each bin vanishes,
let alone directional quantities in six dimensions. Instead, direct evaluation
of Equation (2.4) is exact and nearly instantaneous even for high D.

2.2 Transformation

Generally, initial distribution for orbital fragmentations are given in Carte-
sian coordinates. To profit from the fast propagation enabled through av-
eraged dynamics, these distributions need to be transformed into orbital
elements. Herein, different methods to perform density transformations are
discussed in general and applied to transformations between Cartesian co-
ordinates and Keplerian elements. Transformations into Keplerian elements
are discussed here due to their widespread use and physical interpretability
of the elements. However, the theory is equally applicable to any orbital
element set. Note that for all the transformations described in this section,
dependencies on variables not describing the position and velocity, i.e. the
area-to-mass ratio, are dropped as they are not affected by the change of
frame.

2.2.1 Methods

Two transformation methods are discussed here; one based on the change of
variables and the other based on the Dirac generalised function. The former
is suited for transformations involving phase spaces with equal dimensions.
The latter is useful for marginalisation, i.e. the reduction of distributions
from higher to lower-dimensional spaces.

Change of variables

The transformation through the change of variables method is already intro-
duced in Section 1.3.1 to describe the mapping of densities over time. Here,
it is introduced again for the application of transformation between phase
spaces at the same instance of time.

Given a transformation yyy = ϕϕϕ(xxx), xxx,yyy ∈ RD, ϕϕϕ being invertible, surjec-
tive and differentiable, the density pyyy can be derived from pxxx by integrating
over an infinitesimal volume

pyyy dVyyy = pxxx dVxxx (2.9)

considering that the integral is invariant under transformation and using
integration by substitution, such that (Soong, 2004, Chapter 5)

pyyy(yyy) =
pxxx(ϕϕϕ−1(yyy))

|detJJJ | (2.10)
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with the Jacobian, JJJ ∈ RD×D, defined as

Jij =
∂ϕi
∂xj

(2.11)

The assumption on ϕϕϕ being invertible can be relaxed. If an output yyy permits
multiple different inputs xxxk, the transformed probability is the sum of all
the possible inputs

pyyy(yyy) =
∑
k

pxxx(xxxk)

|detJJJk|
(2.12)

Transformations of densities for ϕϕϕ : RDx → RDy with Dx > Dy using the
change of variables approach involves integration over joint probabilities to
find the marginal probability. Such joint probabilities cannot always be
found.

Dirac generalised function

Alternatively, the variables can be transformed using the Dirac generalised
function (Au and Tam, 1999). Given a continuous transformation yyy = ϕϕϕ(xxx),
with ϕϕϕ : RDx → RDy and Dx > Dy, the distribution function in yyy can be
found by integrating over RDx as

pyyy =

∫
RDx

pxxx δ[ϕϕϕ(xxx)− yyy] dDxxxx (2.13a)

=

∫
RDx

pxxx δ[ϕ1(xxx)− y1] . . . δ[ϕDy(xxx)− yDy ] dx1 . . . dxDx (2.13b)

with the Dirac delta function, δ, which has the following properties

δ(x) =

{
1, if x = 0

0, otherwise
(2.14a)

f(a) =

∫ ∞
−∞

f(x)δ(x− a) dx (2.14b)

δ (g(x)) =
∑
i

∣∣∣∣∂g∂x(xi)

∣∣∣∣−1

δ(x− xi) g(xi) = 0,
∂g

∂x
(xi) 6= 0 (2.14c)

Thus, the evaluation requires the roots of ϕϕϕ(xxx)−yyy = 0. This method intrinsi-
cally deals with non-invertible functions. Each root in the Dirac generalised
function corresponds to a possible instance in xxxk that is transformed into yyy.
An example of application of the Dirac generalised function is given in Ap-
pendix A.2.

Both the transformation methods, through change of variables and the
Dirac generalised function, give the same result. For the case where no
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Figure 2.2: Satellite frame, T = {t̂tt, n̂nn, ĥhh}, relative to the inertial frame,
I = {x̂xx, ŷyy, ẑzz}.

marginalisation is required, i.e. Dx = Dy, they collapse to the same formu-
lation. Still, the transformation in Equation (2.13) is useful when integration
over the space of origin is more convenient than integration over the target
space.

2.2.2 Frames

For the derivation of the transformation between Cartesian coordinates and
Keplerian elements, two different frames are required, which are described
herein and depicted in Figure 2.2.

Inertial frame

The inertial frame, I ∈ {x̂xx, ŷyy, ẑzz}, is centred at the central body, and is
independent of the orbit configuration. The Keplerian elements, ααα

ααα = (a, e, i, Ω, ω, f)T (2.15)

consisting of semi-major axis, a, eccentricity, e, inclination, i, right ascension
of ascending node, Ω, argument of perigee, ω, and true anomaly, f , are
defined with respect to I.

The elements in ααα, at a given point in time, can be found from a state in
Cartesian coordinates described in any frame, sss = (rrrT vvvT )T , with the orbital
radial vector, rrr ∈ R3, and the orbital velocity vector, vvv ∈ R3. The function
relating the two sets, ααα = ϕϕϕαsαsαs(sss), can be found in literature (e.g. Vallado,
2013, Chapter 2.5).

Satellite frame

The satellite frame, T ∈ {t̂tt, n̂nn, ĥhh}, is centred at the orbiting body, with its
primary t̂tt-axis aligned with the orbital velocity vector, vvv. The tertiary ĥhh-
axis is aligned with the orbit angular momentum, and the secondary n̂nn-axis,
lying in the orbital plane pointing inwards, completes the coordinate system.
Thus, the rotation matrix from T to I is defined as

AAAIT =
[
t̂ttI n̂nnI ĥhhI

]
(2.16)
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with

t̂ttI =
vvvI
||vvv|| ĥhhI =

rrrI × vvvI
||rrr × vvv|| n̂nnI = ĥhhI × t̂ttI (2.17)

2.2.3 Cartesian coordinates from/to Keplerian elements

If the partial derivatives of a transformation between two spaces of the same
dimension are known, the transformation of the density function can be
obtained through application of Equation (2.10). It is convenient to work in
the T -frame if impulses are to be added, as most manoeuvres are executed
relative to vvv. The Jacobian of the Keplerian elements with respect to sss,
evaluated at sssT = (rt, rn, 0, v, 0, 0)T , is (Gonzalo et al., 2020)

JJJαsαsαsT =



2a2

r3
rt

2a2

r3
rn 0 2a2v

µ 0 0

G21rt +
rsf
a} v G21rn 0

2(e+cf )
v − rsf

av 0

0 0 su+esω
p 0 0 rcu

}
0 0 − cu+ecω

psi
0 0 rsu

}si
G51rt +G52v G51rn

(cu+ecω)ci
psi

2sf
ev

2
v +

rcf
eav − rsu

} tan i

G61rt +G62v G61rn 0 −2sf
ev − 2

v −
rcf
eav 0


(2.18)

with the argument of latitude, u = ω+ f , the shortened notation, sγ = sin γ
and cγ = cos γ, for γ ∈ [ω, f, u], the gravitational parameter, µ, the specific
angular momentum, }, that can be calculated via the semi-parameter, p, as

p = a(1− e2) (2.19a)

} =
√
µp (2.19b)

and with the parameters

G21 =
1

µae

(
}2a

r3
− v2

)
(2.20a)

G51 = −r sin f

}2e

(
}2(p+ e2r)

pr3
− (p+ r)v2

r2

)
(2.20b)

G52 = −r(cf + e)

}ep
(2.20c)

G61 =
r sin f

}2e

µ

ar3
((r − a)(p+ r)− ra) (2.20d)

G62 =
r

}2e

(
}(cf + e)

p
+

}e
r

)
(2.20e)

Note that JJJαsαsαsT is singular for e = 0 and/or i = 0/180 deg, for which some
of the Keplerian elements are ill-defined. Some submatrices, e.g. for the
transformation of only the velocity components into (a, e, i), instead are
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2.2 Transformation

singular at the perigee and apogee, i.e. at f = 0/180 deg, and 90 deg away
from the crossing of the equatorial plane, i.e. at u = ±90 deg. Even for
non-singular elements, such as equinoctial elements (Danielson et al., 1995),
the singularities in the submatrices remain. Hence, non-singular elements
do not solve the problem of singularity in the transformation.

Practically, the transformation of a distribution of fragments stemming
from a parent object residing on or close to one of those singularities can be
performed in Keplerian elements, as the fragments themselves are ejected
out of the singularity. An example for a fragmentation close to the perigee
is given in Section 6.1.2. However, a more rigorous treatment of the trans-
formation would be necessary if it used for applications such as stability es-
timation, where some of the required assumptions on the distribution might
not apply given the singularities. For some of these applications, it might
be sufficient to work in non-singular elements. A compilation of partial
derivatives of transformations between Cartesian coordinates, spherical co-
ordinates, Keplerian elements and equinoctial elements is given in Vallado
and Alfano (2015) for the spaces defined relative to the I-frame.

The density in Keplerian elements, nααα, can now be found from the density
given in Cartesian coordinates, nsss, by plugging JJJαsαsαsT into Equation (2.10)

nααα =
nsss(ϕϕϕ

−1
αααsssT (ααα))

|detJJJαsαsαsT |
(2.21)

Equation (2.21) is valid for any Cartesian frame that is obtained by rotation
from T , as the volume is invariant under rotation. Thus, no specific frame
is mandated for the transformation if it matches the frame in which nsss
is defined. To increase the readability, the subscript T is dropped from the
equations for the remainder of this work. The inverse density transformation
is derived by inverting Equation (2.21) as

nsss = nααα
(
ϕϕϕ−1
sαsαsα (sss)

)
|detJJJαsαsαs| (2.22)

where

ϕϕϕ−1
sαsαsα = ϕϕϕαsαsαs (2.23)

relates a Cartesian state to its Keplerian elements (e.g. Vallado, 2013, Chap-
ter 2.6).

It is important to mention that evaluating JJJαsαsαs in units compliant with
the International System of Units (SI) leads to an ill-conditioned matrix.
Calculating the determinant of such a matrix might induce numerical errors.
Therefore, it is advised to evaluate a normalised JJJαsαsαs using adimensional
variables (depicted with a hat), e.g.

â = µ̂ = 1 → r̂rr =
rrr

a
, v̂vv =

vvv√
µ/a

etc. (2.24)
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2 Continuum formulation

The resulting determinant then needs to be renormalised again as

detJJJαsαsαs(a, µ,rrr,vvv) =
1

a1/2µ3/2
detJJJαsαsαs(â, µ̂, r̂rr, v̂vv) (2.25)

to be used in Equation (2.22).

Equations (2.21) and (2.22) transform a distribution from Cartesian co-
ordinates into oscillating Keplerian elements, ααα, and vice-versa. The propa-
gation, discussed in Chapter 3, is performed in mean Keplerian elements, ααα.
Oscillating elements can be obtained from mean orbital elements through

ααα = ααα+ ∆ααα(ααα) (2.26)

where ∆ααα contains the short-period variations, which depend on the consid-
ered force model. E.g. in his artificial satellite theory, Brouwer (1959) finds
∆ααα analytically considering the perturbations from the second-order zonal
harmonic, J2. Usually no explicit transformations from oscillating to mean
elements are available making iterations necessary. Given Equation (2.26),
a distribution given in ααα, nααα, can be transformed into a distribution given
in ααα, nααα, using Equation (2.10) as

nααα = nααα(ααα+ ∆ααα) |detJJJαααααα| (2.27)

with

JJJαααααα =

(
∂αi
∂αj

)
i,j=1,...,6

(2.28)

Plugging in Equation (2.26), shows that

∂αi
∂αj

= δij +
∂∆αi
∂αj

∀i, j = 1, . . . , 6 (2.29)

where δij is the Kronecker delta. Noticing that ∂∆αi
∂αj

<< 1, e.g. of the order

of J2 in Brouwer’s theory, the Jacobian relating the mean and oscillating
state approximates the 6×6 identity matrix, III (Schaub et al., 2000). Hence,
Equation (2.27) can be approximated as

nααα ≈ nααα(ααα+ ∆ααα) (2.30)

The fragments obtained from the breakup model discussed in Section 2.5
span large domains in ααα, resulting in radial distributions covering 103 km
(see Chapter 6). Herein, the relatively small displacements of ∆ααα between
oscillating and mean elements, e.g. in the order of 10 km in radial direction,
are thus ignored. However, to study the collision probability between two
known objects with comparably small uncertainties, this simplification does
not hold.
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2.3 Randomisation

2.3 Randomisation

As observed by McKnight and Lorenzen (1989), the evolution of a cloud
of fragments can be considered in phases. In the first phase, shortly after
a breakup, the fragments remain close to each other in an elliptical cloud.
Differences in a, induced by the disintegration itself, means the time for
each fragment to complete one revolution varies with respect to the others.
The second phase is reached once the fragments are randomly distributed
along the orbit, e.g. the same density of fragments is found for any mean
anomaly, M . In this phase, the fragments form a torus around Earth.

Simultaneously the fragments start dispersing in Ω and ω due to an oblate
gravitational field and differences in the orbital elements. As this occurs over
a longer time span, the separation of the phases is justified. Over the course
of a few years, fragments in a LEO cloud are found in a band around Earth,
loosely limited in latitude by the parent object inclination.

Similarly, Sykes (1990) assumes randomisation to model the formation of
dust bands associated to asteroid families. He derives the volume density, as
a function of radius and latitude, of dust tori and bands through geometrical
considerations, analogous to Kessler (1981), who finds the volume density of
a single object. These derivations are tedious and not flexible to incorporate
less strict assumptions, e.g. they cannot model distributions that are not
yet fully randomised in Ω, limiting the derivations of the spatial density to
long-term scenarios only.

In this work, a less strict variant is presented that allows to model any
distribution in ααα and derive its phase space density describing the position
and velocity distribution or the spatial density through transformation of
densities. The application of the assumptions directly in Keplerian elements
is straight-forward. Each of the randomisations can be applied indepen-
dently of the other, thus the extensions are valid for distributions given in
any combination of ααα, making derivations of the spatial density possible for
scenarios considering any time frame.

Start with a distribution, na,e, given as a function of a and e. Often, the
inclination, i, of the fragments can be approximated as the parent inclina-
tion, i0. This assumption is reasonable because changes in i require large
out-of-plane ∆v components. Even over time, the effects of perturbations
on the inclination of LEO objects is small (McKnight and Lorenzen, 1989).
Thus, the distribution can be extended to

na,e,i = δ(i− i0)na,e (2.31)

where δ is, again, the Dirac generalised function, defined in Equation (2.14).
Randomisation of Ω due to nodal precession results in a uniform distribution
over [0, 2π)

na,e,i,Ω =
1

2π
na,e,i ∀Ω ∈ [0, 2π) (2.32)
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2 Continuum formulation

Similarly, apsidal precession leads to the randomisation of ω

na,e,i,Ω,ω =
1

2π
na,e,i,Ω ∀ω ∈ [0, 2π) (2.33)

Analogously, if the fragment is assumed equally likely to be found between
M ∈ [0, 2π)

na,e,i,Ω,ω,M =
1

2π
na,e,i,Ω,ω ∀M ∈ [0, 2π) (2.34)

Using the following transformations between the mean anomaly,M , eccentric
anomaly, E, and true anomaly, f (Vallado, 2013, Chapter 2.2)

M = E − e sinE (2.35a)

cosE =
e+ cos f

1 + e cos f
(2.35b)

sinE =

√
1− e2 sin f

1 + e cos f
(2.35c)

the derivative of f with respect to M is found as

df

dM
=

(1 + e cos f)2

(1− e2)3/2
(2.36)

Thus, the distribution in the full Keplerian element set ααα, using Equa-
tion (2.10), is

nααα = na,e,i,Ω,ω,f =

∣∣∣∣ df

dM

∣∣∣∣−1

na,e,i,Ω,ω,M (2.37a)

=
(1− e2)3/2

(1 + e cos f)2
na,e,i,Ω,ω,M ∀f ∈ [0, 2π) (2.37b)

Equation (2.22) transforms a distribution in the full Keplerian element set
into Cartesian coordinates. Hence, the phase space density in Cartesian
coordinates, nsss, can be found from any subset of ααα, given the dependence
on a and e and assumptions on randomisation.

2.4 Products

Given the phase space density fully describing position and velocity in ei-
ther Cartesian or Keplerian, or in fact any other phase space, enables the
derivation of products. Here, it is shown how to derive the spatial density
and the impact rate from a cloud of fragments.

43



2.4 Products

2.4.1 Spatial density

Given the phase space density in Cartesian coordinates, nsss = nrrr,vvv, the spatial
density is obtained by integration over the velocities

nrrr =

∫
R3

nrrr,vvv d3vvv (2.38)

The spatial density describes the number of objects within an infinitesimal
spatial volume. Instead, the phase space density describes the number of
objects within an infinitesimal phase space volume. For a phase space de-
scribing a position in space, the two are equivalent if they are defined in the
same physical space. It is worth noting that a fixed inclination constraint
reduces the possible incident velocities into a plane. Hence, the volume in-
tegral in Equation (2.38) can be reduced to an area integral by rotating
into the satellite frame, T , where the probability for non-zero out-of-plane
velocities, vh, is zero. Thus,

nrrrT =

∫
R2

nrrrT ,vvvT dvt dvn (2.39)

Instead, the spatial density can be directly obtained from Keplerian ele-
ments using the Dirac generalised function (see Section 2.2.1)

nrrr(rrr
∗) =

∫
R6

nααα δ (rrr(ααα)− rrr∗) d6ααα (2.40)

where rrr∗ is the position of interest. To find the roots of rrr(ααα) − rrr∗, it is
important to find a three-dimensional subset of ααα – the integrands – that
together with rrr∗ permit to find all elements of ααα. Not all combinations of
the elements are possible. It needs to contain one of the elements defining
the orientation of the orbital plane, i.e. i and Ω. And it requires any two
of the other four elements, excluding the combination of ω and f , because
this combination does not permit to calculate the angular momentum or
mechanical energy of the orbit.

Here, the subset of a, e and i is chosen because the limits are defined with
respect to the point of interest and the integral over i is trivial if assumed
fixed. Given this subset, four possible element sets are found, corresponding
to two orbital planes and two pairs of (ω, f) each arising from the symmetry

ααα∗j (rrr
∗, a, e, i) = (a, e, i,Ω∗j , ω

∗
j , f
∗
j ) j = 1, . . . , 4 (2.41)

E.g. with a given a point, rrr∗, and fixed (a, e, i)

rrr∗ =

r
∗

λ∗

θ∗

 =

8000 km

45 deg

45 deg


ae
i

 =

10000 km

0.3

70 deg

 (2.42)
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2 Continuum formulation

Table 2.1: Required subset of elements to cross rrr∗ given (a, e, i).

j Ωj [deg] ωj [deg] fj [deg]

1 23.7 346.1 62.7

2 246.3 68.5 62.7

3 23.7 111.5 297.3

4 246.3 193.9 297.3

Crossings

Figure 2.3: Orbital configurations in two orbital planes cross the point of
interest (black dot) in ascending (solid) and descending (dashed) direction.
The crosses and triangles show the perigee and ascending node, respectively.

with the radius, r, the longitude, λ, and the latitude, θ, defined relative to I,
the missing elements given in Table 2.1 can be found (see Appendix B.1 for
more information). The corresponding orbits are depicted in Figure 2.3.
Solutions are not always available, e.g. if the apogee radius is lower than
r∗, the perigee radius is larger than r∗, or the inclination is too close to the
equator, rrr∗ cannot be reached.

Given the full element sets, Equation (2.40) simplifies to

nrrr(rrr
∗) =

∫ ∞
r∗+RE

2

∫ ∣∣∣1−REa ∣∣∣
|1− r∗a |

∫ π−|θ|

|θ|

4∑
j=1

nααα

(
ααα∗j

)
∣∣∣detJJJ∗j

∣∣∣ di de da (2.43)

where the Jacobian, JJJ∗, relates rrr∗ to (Ω∗, ω∗, f∗) as

JJJ∗ =


∂rx
∂Ω

∂rx
∂ω

∂rx
∂f

∂ry
∂Ω

∂ry
∂ω

∂ry
∂f

∂rz
∂Ω

∂rz
∂ω

∂rz
∂f


∣∣∣∣∣∣∣
ααα = ααα∗

(2.44)
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After some derivations, the determinant is found as

detJJJ∗ =
a3
(
1− e2

)3
cos (ω∗ + f∗) sin f∗ sin i

(1 + e cos f∗)4 (2.45)

Equation (2.43) converts a phase space density given in Keplerian elements
directly into a spatial density. As before, the volume integral simplifies to
an area integral if the inclination of the fragments in the cloud are fixed.

2.4.2 Impact rate

Given the phase space density in Cartesian coordinates, the impact rate, η̇,
i.e. the number of fragments impacting on a surface of a target located at
(rrr∗, vvv∗) at a given epoch, can accurately be estimated as

η̇(rrr∗, vvv∗) =

∫
R3

Ac

(
vvv − vvv∗
||vvv − vvv∗||

)
nrrr,vvv(rrr

∗, vvv) ||vvv − vvv∗||d3vvv (2.46)

with the cross-sectional area, Ac, exposed to the incoming flux. As before, η̇
can be estimated through integration directly in the Keplerian space. Equa-
tion (2.46) is generally valid, without any assumptions on the geometries of
chaser or target orbit and includes the possibility to consider the spacecraft
orientation. The only assumptions are that the area of the fragments is
small compared to the area of the target and can thus be ignored, and that
the flux is constant over Ac. The first assumption is valid, as ≥ 97.5% of
all fragments are smaller than L = 1 cm (see Section 2.5). Given the large
variance of fragment velocities, the second assumption is not only reason-
able, but constitutes a great improvement compared to a default cube size
of 10 km × 10 km × 10 km used in the Cube algorithm (Liou, 2006).

The number of impacts, η, can be calculated by integrating Equation (2.46)
over time, t

η(t) =

∫ t

t0

η̇ (rrr∗(t), vvv∗(t)) dt (2.47)

Alternatively, the average number of impact rate, ˙̄η, over the course of one
target orbit might be of interest and can be found as

˙̄η =
1

P

∫ P

0
η̇ (rrr∗(t), vvv∗(t)) dt (2.48a)

=
1

2π

∫ 2π

0
η̇ (rrr∗(M), vvv∗(M)) dM (2.48b)

with the orbital period, P .
Note that assuming Ac to be constant in any direction, i.e. having a

spherical target, and given

nrrr,vvv = pvvv|rrrnrrr (2.49)
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2 Continuum formulation

where pvvv|rrr is the conditional distribution of vvv given rrr and nrrr is the spatial
density that can be inferred from Equation (2.38), Equation (2.46) can be
reduced to

η̇ = Acnrrr∆v (2.50)

where

∆v =

∫
R3

||vvv − vvv∗||pvvv|rrr d3vvv (2.51)

is the average collision velocity. Equation (2.50) is equivalent to the time
derivative of Equation (1.25). Still, Equation (2.46) is preferred to calculate η̇
because it requires only one integration and Ac is not required to be constant
in any direction.

2.5 Initial cloud continuum

The NASA Standard Breakup Model (SBM) (Johnson et al., 2001) can be
used to sample deterministic fragments following an explosion or collision
event in orbit. It is an empirical model based on evidence compiled from
historical orbital data and ground-based impact tests. The samples are de-
scribed in characteristic length, L, area-to-mass ratio, A/m, and the ejection
velocity, ∆v, imparted in random direction relative to the parent orbital ve-
locity. Here, the NASA SBM is reformulated as a probability distribution
function. As such, it allows not only to draw samples, but also to assign
their probabilities, a requirement for the definition of the characteristics.
Another advantage of a probabilistic description of the breakup model is
that expectation values can be derived, which is done herein, and used to
check the conservation of mass or energy.

Note that the techniques developed throughout this work are indepen-
dent of the exact formulation of the initial distribution and are applica-
ble using any other distribution. Semi-empirical breakup models, still fast
enough for application over many collision scenarios, are the Fragmentation
Algorithms for Strategic and Theater Targets (FASTT) model (McKnight
et al., 1995), the IMPACT model (Sorge and Mains, 2016), and the more re-
cent and higher fidelity Collision Simulation Tool (CST) (Francesconi et al.,
2019). From the CST, however, it is not possible to directly obtain an an-
alytical description of the fragment distribution, as it is based on discrete
macroscopic elements.

2.5.1 Reformulation of the NASA SBM

The number of objects with L larger than a lower bound, L0, produced in
the fragmentation event is

NL (L0) = k

(
L0 [m]

1 [m]

)−β
k, β > 0 (2.52)
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2.5 Initial cloud continuum

where k and β are unitless parameters dependent on the type of fragmenta-
tion and the physical characteristics of the involved objects. All the param-
eters introduced in this Section are given in Appendix C.1. In the following,
the normalisation in the units, e.g.

L0 [m]

1 [m]
(2.53)

is omitted. Each variable is, if not stated otherwise, defined in SI units.
Equation (2.52) can be converted into a probability density function as

pL =
kβ

N
L−(β+1) ∀L0 ≤ L ≤ L1 (2.54)

where L1 is the upper boundary on the characteristic length, and

N = NL(L0)−NL(L1) (2.55)

is the total number of fragments within this range. Combining Equation (2.54)
and Equation (2.55) as

pL = β
L−(β+1)

L−β0 − L−β1

∀L0 ≤ L ≤ L1 (2.56)

reveals that pL is independent of the number of fragments involved and thus
solely dependent on the power factor, β. Still, all the probability distribution
functions derived herein can be multiplied by N to obtain the fragment phase
space densities.

The conditional probabilities introducing the dependence on L, A/m,
and ∆v, are given as a function of the logarithm to base 10 of the charac-
teristic length, λ = log10(L), the logarithm to base 10 of the area-to-mass
ratio, χ = log10(A/m), and the logarithm to base 10 of the absolute im-
pulse, υ = log10(∆v). Transforming Equation (2.54) into a function depen-
dent on λ using Equation (2.10) yields

pλ = log(10)10λpL(10λ) ∀λ0 ≤ λ ≤ λ1 (2.57a)

= log(10)β
10−βλ

10−βλ0 − 10−βλ1
(2.57b)

where λ0 = log10 (L0) and λ1 = log10 (L1). To sample λ from Equa-
tion (2.57b), the cumulative distribution function

Pλ =

∫ λ

λ0

pλ(λ′) dλ′ =
10−βλ0 − 10−βλ

10−βλ0 − 10−βλ1
(2.58)

is solved for λ

λ = − 1

β
log10

[
10−βλ0 − Pλ

(
10−βλ0 − 10−βλ1

)]
(2.59)
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2 Continuum formulation

Equation (2.59) enables the sampling of λ by sampling Pλ uniformly ∈ [0, 1].
The conditional probabilities of χ dependent on λ and υ dependent on χ are
as sum of normal distributions, N

pχ|λ =
∑
i

αi(λ)N
(
µ(i)
χ (λ), σ(i)

χ (λ)
) ∑

i

αi(λ) = 1 (2.60a)

pυ|χ = N (µυ(χ), συ(χ)) (2.60b)

where py|x denotes a conditional probability in y given x, and αi, µ
(i)
χ , σ

(i)
χ , µυ

and συ are dependent on the type of fragmentation, i.e. explosion or frag-
mentation, and the type of the involved objects, i.e. payload or rocket body.
Most relevant mathematical libraries provide functions to sample normal
distributions. The joint probability in λ, χ and υ is

pλ,χ,υ = pυ|χpχ|λpλ (2.61)

Marginal distributions can be obtained by numerical integration, e.g.

pχ,υ = pυ|χ

∫ λ1

λ0

pχ|λpλ dλ (2.62a)

pυ =

∫
R
pχ,υ dχ (2.62b)

The distribution in L, A/m and ∆v can be recovered through application of
Equation (2.10) as

pL, A
m
,∆v =

pλ,χ,υ
(
log10(L), log10

(
A
m

)
, log10(∆v)

)
log3(10)LA

m∆v
(2.63)

Assuming an isotropic impulse direction, the distribution is extended to
model three-dimensional velocity changes (see Appendix B.2)

pL, A
m
,∆vvv =

pL, A
m
,∆v(L,

A
m , ||∆vvv||)

4π||∆vvv||2 (2.64)

Finally, a simple translation results in the desired density function

pL, A
m
,vvv(L,

A

m
,vvv+) = pL, A

m
,∆vvv(L,

A

m
,vvv+ − vvv−) (2.65)

where vvv− and vvv+ are the orbital velocities immediately before and after the
impulse. As the fragments are ejected equally likely in any direction, the
frame can be freely chosen.

The fragment cross-sectional area, A, and the fragment mass, m, follow
directly from the previously introduced random variables as

A = bLγ (2.66a)

m =
A

A/m
(2.66b)
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2.5 Initial cloud continuum

where b and γ are parameters dependent on L, given in Appendix C.1.

The distribution n∆vvv describes a three-dimensional distribution. It can
be converted into a three-dimensional distribution given in a subset of ααα
using Equation (2.21). However, JJJαsαsαs needs to be chosen accordingly. If,
for example, a distribution in vvv is to be transformed into a distribution in
(a, e, i), only the upper right 3× 3 sub matrix of the full Jacobian, relating
velocities to the chosen Keplerian elements, is required. Not all permutations
are feasible, as some of them lead to a decreased rank of the sub matrix.

Marginalisation, i.e. obtaining lower dimensional distributions in the
target space, can also be achieved through integration or direct application
of the Dirac generalised function. However, it is not feasible to go from the
three-dimensional distribution to a higher dimensional one because it would
lead to a distribution that has lower rank than its phase space.

To tackle this problem, consider that also the position of the fragmenta-
tion, rrr, is afflicted with an uncertainty, p∆rrr|∆vvv. The additional uncertainty
can be modelled to be dependent on ∆vvv. To obtain the uncertainty in the
full Cartesian phase space, sss, multiplication is required as

p∆sss = p∆rrr|∆vvvp∆vvv (2.67)

Note that such an extension is only required if Keplerian phase spaces
with D > 3 are considered. Herein, the uncertainty in the position is as-
sumed to be independent of the velocity, i.e. p∆rrr|∆vvv = p∆rrr.

2.5.2 Expectation values

The NASA SBM does not inherently conserve physical quantities such as
mass and kinetic energy (Finkleman et al., 2008). Given a fully probabilistic
description of the breakup model permits to statistically check the conser-
vation, or enforce it, via the calculation of expectation values. In general,
the expectation value, E, of a continuous random variable, x ∈ R with the
probability density function, px, is

E(x) =

∫
R
xpx dx (2.68)

For the D-dimensional case for a set of continuous random variables, xxx ∈ RD
with a joint probability density function, pxxx, the expectation value of a
function, g(xxx) is

E (g(xxx)) =

∫
RD

g(xxx)pxxx dDxxx (2.69)

The integration can be performed in any frame. As the distributions are
mostly defined with regards to (λ, χ, υ), the expectation values are most
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2 Continuum formulation

easily integrated in this frame too. The mass, m, and kinetic energy of the
impulse, ∆ε, are calculated as

m =
A

A/m
= b10λγ−χ (2.70a)

∆ε =
1

2
m∆v2 =

b

2
10λγ−χ+2υ (2.70b)

Hence, their expectation values are

E(m) =

∫
R

∫ λ1

λ0

b10λγ−χpχ|λpλ dλ dχ (2.71a)

E(∆ε) =
1

2

∫
R

∫
R

∫ λ1

λ0

b10λγ−χ+2υpυ|χpχ|λpλ dλ dχdυ (2.71b)

The expectation values for the different fragmentation scenarios are given in
Table 2.2 for different bins in L, alongside the respective shares, PL, which
is the integral over the given bins assuming L0 = 1 mm and L1 = 1 m.
Note that these values are independent of the total number of fragments, N ,
given from Equation (2.55). Instead, they can be used to set N to enforce
conservation in either mass or kinetic energy. Conservation of mass means
the sum of the mass of all the fragments equals, on average, the fragmenting
mass, Mi, i.e.

Mi = Nm E(m) (2.72)

where Nm is the total number of fragments respecting mass conservation.
The fragmenting mass is not simply the mass of the parent object, as 2 −
8 fragments with L > 1 m, not following the power law in Equation (2.52),
comprise the bulk of the mass (NASA, 2011). E.g. for a payload collision,
the mean mass for 1 mm < L < 1 m is E(m) = 4.13×10−4 kg. If the mass is
set at Mi = 100 kg it follows from Equation (2.72) that Nm = 2.4×105, given
that the combined mass in fragments smaller than L < 1 mm is negligible.
The number of fragments required to assure conservation of kinetic energy
is harder to estimate as losses due to heat and rotational velocities are not
known in this simple model (Finkleman et al., 2008). Luckily, the cloud
evolution, from the initial distribution, through propagation to estimation
of the number of impacts can be performed based on the distribution of a
single object only. Once an accurate estimate of N is available, the results
can be updated through multiplication with N .

2.5.3 Covariance in velocity

For uncertainty propagation methods based on covariance propagation (e.g.
see Luo and Yang, 2017), knowledge about the mean and covariance of the
distribution is required. Here, the mean and variance in ∆vh are derived
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2.5 Initial cloud continuum

Table 2.2: Expectation values for the mass and kinetic energy, and variance
for the velocity impulse of the fragments according to the NASA SBM.

Case L [m] PL [−] E(m) [kg] E(∆ε) [J] σ2
∆vh

[
m2

s2

]

C
ol

li
si

on P
ay

lo
a
d

10−3 − 10−2 9.81× 10−1 8.46× 10−6 3.75× 100 7.23× 105

10−2 − 10−1 1.91× 10−2 3.67× 10−3 2.40× 102 1.21× 106

10−1 − 10−0 3.73× 10−4 8.97× 10−1 1.05× 104 7.62× 104

10−3 − 10−0 1 4.13× 10−4 1.22× 101 7.31× 105

R
o
ck

et
b

o
d

y 10−3 − 10−2 9.81× 10−1 8.46× 10−6 3.75× 100 7.23× 105

10−2 − 10−1 1.91× 10−2 3.47× 10−3 2.51× 102 1.22× 106

10−1 − 10−0 3.73× 10−4 2.78× 10−1 2.55× 104 1.72× 106

10−3 − 10−0 1 1.78× 10−4 1.80× 101 7.32× 105

E
x
p

lo
si

on P
ay

lo
ad

10−3 − 10−2 9.75× 10−1 9.24× 10−6 7.81× 10−2 7.18× 103

10−2 − 10−1 2.45× 10−2 4.16× 10−3 1.70× 101 6.83× 103

10−1 − 10−0 6.15× 10−4 9.92× 10−1 2.86× 103 3.95× 103

10−3 − 10−0 1 7.21× 10−4 2.25× 100 7.15× 103

R
o
ck

et
b

o
d

y 10−3 − 10−2 9.75× 10−1 9.24× 10−6 7.81× 10−2 7.18× 103

10−2 − 10−1 2.45× 10−2 3.91× 10−3 1.64× 101 6.84× 103

10−1 − 10−0 6.15× 10−4 3.07× 10−1 1.52× 103 6.07× 103

10−3 − 10−0 1 2.93× 10−4 1.41× 100 7.15× 103
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2 Continuum formulation

from the NASA SBM. As isotropic directionality is assumed, the presented
values are also applicable in any other direction. To derive any moment in
∆vh, its probability distribution function is required. As becomes apparent
later, it is beneficial to transform the distribution in Equation (2.64) into
cylindrical coordinates

∆v⊥ =
√

(∆v)2 − (∆vh)2 (2.73a)

φ = sin−1

(
∆vh
∆v

)
(2.73b)

∆vh = ∆vh (2.73c)

yielding, under application of Equation (2.10), the distribution

p∆v⊥,φ,∆vh = ∆v⊥p∆vvv =
∆v⊥

4π(∆v)2
p∆v (2.74)

Noticing that p∆v⊥,φ,∆vh is not dependent on φ, it can be readily reduced as

p∆v⊥,∆vh =

∫ 2π

0
p∆v⊥,φ,∆vh dφ =

∆v⊥
2(∆v)2

p∆v (2.75)

Thanks to the reduction, the distribution in ∆vh requires integration in only
one, rather than two, variables

p∆vh =

∫ ∞
0

p∆v⊥,∆vh d∆v⊥ (2.76)

From Equation (2.73a) it follows that ∆v⊥ d∆v⊥ = ∆v d∆v. Putting to-
gether the pieces allows to find

p∆vh =

∫ ∞
|∆vh|

p∆v

2∆v
d∆v (2.77)

The expectation value of ∆vh is always zero as p∆h
(∆h) = p∆h

(−∆h) is
symmetrical, i.e.

E(∆vh) =

∫ ∞
−∞

∆vhp∆vh d∆vh = 0 (2.78a)

The variance, σ2
∆vh

, can be found as

σ2
∆vh

= Var(∆vh) =

∫ ∞
−∞

(∆vh − E(∆vh))2 p∆vh d∆vh (2.79a)

= 2

∫ ∞
0

(∆vh)2 p∆vh d∆vh (2.79b)
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Figure 2.4: Transformed and sampled distribution in ∆vh according to the
NASA SBM for a payload collision and fragments sized 1 mm < L < 1 m,
and its comparison with the Gaussian approximation with zero mean and
variance, σ2

∆vh
.

where the symmetry is exploited again. Finally, the mean, µµµ, and covariance
matrix, ΣΣΣ, of the NASA SBM velocity distribution are given as

µµµ∆vvv = 000 ΣΣΣ∆vvv = diag
(
σ2

∆vt σ
2
∆vn σ

2
∆vh

)
(2.80)

where σ2
∆vt

= σ2
∆vn

= σ2
∆vh

. The corresponding values for the different cases
and various characteristic length regimes – again valid for any N – are listed
in Table 2.2. Note that a normal distribution with the given covariance
matrix does not accurately describe p∆vvv, as can be seen in Figure 2.4 for
the case of a payload collision. It underestimates both the peak and the tail
end of the distribution, while overestimating the domain in between. Hence,
application of the covariance needs to be treated with caution.

2.6 Examples

Two examples are discussed here to illustrate the derived transformations.
The first transforms an initial distribution given in Cartesian coordinates
into a subset of Keplerian elements. It illustrates the difficulties of using a
phase space that is not suited for discretisation and introduces another phase
space that is. The second example shows how to apply randomisation to
obtain the spatial density, and how the analytical transformation is superior
to inferring a multi-dimensional distribution function through discretisation
and samples.

For comparison in terms of sensitivity and scalability, the analytical
transformations are compared to densities estimated from sampling. To cal-
culate the phase space density from samples, the individual instances, not
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2 Continuum formulation

the density, are transformed into the target space, where they are binned
according to Equation (2.5). The sampling method stands for two seemingly
very different methods, Monte Carlo sampling (e.g. Liou et al., 2004) and
methods based on finite differences (e.g. Letizia, 2018). They have both in
common that discretisation of the phase space is required to estimate den-
sities, such as the phase space or spatial density. As such, they both suffer
from poor sensitivity. First, if the number of samples is too small compared
to the number of bins, Nb, the bin might end up with a small number of sam-
ples not well representing the actual distribution. Second, binning spreads
out highly concentrated distributions over the full bin volume, leading to
inaccurate and averaged results, as will become evident herein. Thus, the
ideal bin size is a trade-off between the sensitivity (many small bins) and
the accuracy (enough samples in each bin), while keeping in mind that finite
differencing methods suffer from poor scalability in dimensions (Sun and
Kumar, 2012). Hence, binning requires a careful selection of the bin limits,
which is dependent on the underlying distribution. In the simplest case, the
bins are equally spaced in each separate dimension. Here, the outer bin lim-
its, the range limits, are chosen such as to contain a considerable fraction,
ε > 90%, of the overall distribution. Mathematically speaking, ε is defined
as

ε =

∫
B pxxx dDxxx∫
RD pxxx dDxxx

=

∫
B
pxxx dDxxx (2.81)

where B ∈ RD is the domain defined by the limits. The domain is regularly
discretised with equal number of bins in each dimension.

2.6.1 LEO initial continuum

In February 2009, the two satellites Cosmos-2251 and Iridium 33 collided,
resulting in two fragment clouds with hundreds to thousands of fragments
large enough to be detected (NASA, 2009). Here, the initial Cosmos-2251
fragment cloud is modelled and discussed. The orbit for the Cosmos-2251
parent object at the epoch of collision, is (Space-Track, 2020)

ααα = (a, e, i, Ω, ω, f)

= (7166 km, 0.0016, 74 deg, 19.5 deg, 98.7 deg, 358.6 deg)

The initial distribution is obtained using the NASA SBM distribution,
which is given as a function of L, A/m and ∆v. Here, only the distribution
in ∆v = 10υ is utilised, as the phase space transformation in A/m is a one-
to-one relationship and thus trivial. To facilitate reproduction of the results,
the initial distribution in υ is assumed to be normally distributed as

υ ∼ N (µυ, σ
2
υ) (2.83)
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Figure 2.5: Integration of the NASA SBM over L ∈ [1 mm, 1 m] and A/m,
and its Gaussian approximation, given as a function of the logarithm to base
10 of ∆v.

with the mean, µυ = 2.63 log10 (m/s), and variance, σ2
υ = 0.482 (log10 m/s)2.

The normal distribution is almost identical to the actual NASA SBM dis-
tribution for a payload collision, considering fragments with a characteristic
length between 1 mm and 1 m (see Figure 2.5). The reason is that small
fragments, at around 1 mm, dominate the overall distribution. Note that the
resulting distribution gives the likelihood of a fragment to be ejected with
a certain impulse, not the fragment density. The latter can be calculated
by multiplying the likelihood with the number of fragments, N . Given the
distribution in Equation (2.83), 50% of the fragments are modelled to be
ejected with an impulse larger than 423 m/s, and 5% with an impulse larger
than 2652 m/s. No cut-off velocity is required.

Marginalised target space

First, the transformed distribution is studied in a and e, useful when only the
long-term evolution of the cloud is to be studied. As it requires a marginal-
isation from R3 → R2 it is found through integration using the Dirac gener-
alised function described in Section 2.2.1. The range limits can be found in
Table 2.3. The resulting fragment cloud distribution, pa,e, is depicted in Fig-
ure 2.6 for both the sampled and analytically derived transformation. Bins
with zero-probability, i.e. not affected by the collision or with a lack of sam-
ples, are transparent. Large parts of the probability are confined to a small
region in the a− e domain (note that the scale is logarithmic). Within just
a few bin lengths, the density grows and shrinks by orders of magnitudes.

This is a result of both, the parent orbit geometry and the log-based
breakup model. From the Jacobian in Equation (2.18), it becomes evident
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Table 2.3: Range limits for bin geometries. The fraction, ε, describes the
share of the distribution located within the limits.

Space xxx x1 x2 x3 ε

(a, e) 4800− 17000 km 0− 0.65 − 97%

(a, e, Ω) 4800− 17000 km 0− 0.65 0− 40 deg 96%

(ξp, ξa, Ω) 1.5− 6.7 log10(m) 1.8− 7.3 log10(m) 0− 40 deg 94%

that in a first-order approximation, (∆a,∆e) are independent of the out-of-
plane impulse, ∆vh, and a is independent of the cross-track impulse, ∆vn.
Furthermore, the dependence of ∆e on ∆vn nearly vanishes at the point of
fragmentation, i.e.(

∆a

∆e

)
≈
[

2a2v
µ 0

2(e+cf )
v − rsf

av

](
∆vt

∆vn

)
(2.84a)

=

[
1.92× 103 0

2.68× 10−4 3.35× 10−6

](
∆vt

∆vn

)
(2.84b)

Hence, impulses in the along-track direction, vt, have a large effect, domi-
nating the effect of impulses in other directions and producing nearly lin-
early dependent (∆a, ∆e). Thus, many samples are found near the physical
boundary defined by the radius of the parent orbit, e.g. either the perigee or
apogee radius of the sample is close the parent orbit radius. As the impulse
follows a log-normal distribution, much of the distribution remains close to
the origin, while the tail end of the distribution produces few fragments
that are far away from it. It is noteworthy that large parts of the distribu-
tion re-enters directly, i.e. the fragments have a perigee below the radius of
Earth, RE = 6371 km.

The underlying function poses problems to methods based on discretisa-
tion of the phase space (a, e). The physical boundary is not well captured
by the bins. Some of the bins extend outwards of the boundary spreading
probability into a forbidden domain, e.g. fragment probability is added for a
perigee above the parent orbit perigee, and vice-versa for the apogee, which
is physically not feasible. The steep increase and decrease of the underly-
ing distribution leads to order of magnitude jumps in the estimated density.
Further from the boundary, where the underlying density becomes small,
more and more empty bins can be discerned. A few bins still contain a sam-
ple or two, but as a result overestimate their densities. Additionally, only
a small strip in the a − e domain is useful for subsequent processing of the
fragment cloud, once re-entered fragments are removed. The analytically
derived distribution, instead, exactly represents the underlying distribution
in any region and captures the boundary smoothly.
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Figure 2.6: The marginalised distribution in (a, e) estimated through binning
of N = 105 samples (colourmap) and analytical transformation using the
Dirac generalised function (contours). The dotted line marks rp = RE ,
i.e. fragments with e > e(rp = RE) re-enter within a single orbit from the
fragmentation.

Keplerian target space

To study the spreading of the node and thus the mid-term evolution of the
cloud, the distribution is required in a, e and Ω. The distribution, pa,e,Ω,
is found through the transformation described in Section 2.2.3, by using a
sub-matrix of JJJαsαsαs defined by the first, second and fourth row and the last
three columns, relating ∆v∆v∆v to (a, e, Ω). The distribution pa,e,Ω is shown in
Figures 2.7a and 2.7b for both, the estimated and analytical solution, for
N = 107 samples and n = 100× 100× 100 = 106 bins. Only three slices are
shown in the Ω-direction at Ω = 10 deg, 20 deg and 30 deg. The colour bar is
again logarithmic, and zero probability is depicted through transparent bins.
The distribution is largely identical to the marginalised distribution, with
the major part of the distribution again located near the radial boundary.
As small impulses are more likely, the majority remains close to the parent
node.

To answer the question about the proper bin size, it is worth investi-
gating the convergence rates at various locations in the domain as the bin
volume decreases, i.e. Nb → ∞, and the number of samples increases, i.e.
Ns → ∞. The bins for the comparison are defined around a shortlist of
Ns = 1000 random samples representing a wide range of density values,
equally spaced in the logarithmic weight up to the sample carrying the max-
imum weight, pmaxa,e,Ω. Figure 2.8a shows a projection of the samples and

the selected bins, with a bin volume that would accommodate Nb = 103,
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(a) Many of the Ns = 107 samples end
up along the boundary, thus leaving large
parts of the domain with empty (transpar-
ent) bins.
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(b) The analytically derived transformation
finds a probability even in the domains with
near zero probability, resulting in a high
sensitivity.

Figure 2.7: Comparison between the samples-based density, p̂a,e,Ω, and an-
alytically transformed density, pa,e,Ω. Only three slices are shown in Ω-
direction.
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i.e. 10 bins in each dimension. The diagonal subplots show the samples pro-
jected into a single dimension. Off-diagonal subplots show the projection
into 2 dimensions. All the subplots use a logarithmic (colour-) scale in order
to distinguish features. The v-shape in the a − e plane can be readily ob-
served. As before, the rectangular bins extend over the physical boundary.
Hence, the estimated value is expected to underestimate the true density, as
the bin incorporates a domain of zero probability.

The convergence of the binned distribution as a function of Nb and Ns

are shown in Figure 2.8b and Figure 2.8c for Ns = 109 samples and Nb =
1003 = 106, respectively. The estimates for bins around small densities
converge already with a relatively large bin volume, corresponding to Nb ≥
105, well capturing the underlying density. This is because these samples
are produced at the tail end of the log-normal distribution where change in
the density is slow, i.e. the density is nearly constant over the bin. Bins
closer to the peak of the distribution do not converge even for small bins
corresponding to Nb ≥ 10003 = 109 because the underlying distribution
is too variable. For Nb = 1003 = 106, the density around the bin with
the maximum density is averaged out to a degree that evaluation of the
estimated density underestimates the real density by 3 orders of magnitude.

Any product that is derived from such an averaged density in (a, e),
with or without Ω, such as collision probability estimations, will suffer from
this inaccuracy. The averaging of the peak over the bin volume will lead to
the under- or overestimation of the collision probability, again by orders of
magnitude. Hence, for algorithms based on finite differences, the choice of
target space is critical.

Bin-optimised target pace

For near-circular orbits, or also for eccentric orbits fragmenting close to the
apsides, a large part of the transformed distribution is concentrated into a
small subspace of the a − e domain. A more suitable subspace, capturing
the logarithmic nature of the distribution is required. Thus, the distribution
in a, e, and Ω, is further transformed into, pξp,ξa,Ω, in ξa, ξp and Ω, with the
auxiliary variables defined as

ξp = log10(r0 − rp) = log10(r0 − a(1− e)) (2.85a)

ξa = log10(ra − r0) = log10(a(1 + e)− r0) (2.85b)

where r0 is the radius of fragmentation, and rp and ra are the perigee and
apogee radius of the parent orbit, respectively. The determinate of the
Jacobian of the transformation, omitting the one-to-one relationship of Ω, is
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(c) Hence, it is not possible to find a single
bin volume that fits all the domain.

Figure 2.8: Distribution and convergence rates of the samples-based method
(solid) against the analytical solution (dotted) in xxx = (a e Ω).
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detJJJ = det

([
∂ξp
∂a

∂ξp
∂e

∂ξa
∂a

∂ξa
∂e

])
(2.86a)

=
1

log2(10)
det

([
−1+e
r0−rp

a
r0−rp

1+e
ra−r0

a
ra−r0

])
(2.86b)

= − 2a

(r0 − rp)(ra − r0) log2(10)
(2.86c)

The following relationships can be found by taking the exponential of base 10
and summing and subtracting both sides of Equation (2.85)

r0 − rp = 10ξp (2.87a)

ra − r0 = 10ξa (2.87b)

2r0 − 2a = 10ξp − 10ξa (2.87c)

2ae = 10ξp + 10ξa (2.87d)

Hence, the distribution function in the new space is obtained according to
Equation (2.10) as

pξp,ξa,Ω =
10ξp+ξa log2(10)

2r0 − 10ξp + 10ξa
pa,e,Ω (a, e,Ω) ∀ 10ξp < r0 (2.88)

where

a =
2r0 − 10ξp + 10ξa

2
(2.89a)

e =
10ξp + 10ξa

2r0 − 10ξp + 10ξa
(2.89b)

with the domain restricted to positive values of the perigee radius, i.e. rp =
a(1− e) > 0.

Figure 2.9 shows the distribution in the (ξp, ξa,Ω) space. The changes in
density to neighbouring bins are small compared to the previous space. Ad-
ditionally, only a small part of the domain describes re-entering fragments,
as depicted with the dotted line corresponding to ξp(rp = RE). Still, large
parts of the domain contain empty bins, dotted by non-empty bins with
very few samples. The slow convergence for low-probability events is evi-
dent when comparing the densities derived from sampling and analytically
in selected bins. Figure 2.10a shows again Ns = 1000 transformed samples of
the distribution and the projections of the 4 bins, with a volume correspond-
ing to Nb = 103 or 10 bins in each dimension, selected to represent regions of
different probabilities. As before, the selected samples are spread equally in
the logarithmic density up to the maximum sample density pmaxξp,ξa,Ω

. The rate
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Figure 2.9: Comparison between the samples-based density, p̂ξp,ξa,Ω, and
analytically transformed density, pξp,ξa,Ω. Only three slices are shown in Ω-
direction. Fragments with ξp > ξp(rp = RE) re-enter within a single orbit
from the fragmentation.
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Figure 2.10: Distribution and convergence rates of the samples-based method
(solid) against the analytical solution (dotted) in xxx = (ξp ξa Ω).
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of convergence as Nb → ∞ can be seen in Figure 2.10c for Ns = 109 sam-
ples. As the underlying distribution is not concentrated in small parts of
the domain, convergence is achieved for a relatively large bin volume accom-
modating Nb ≥ 105 over all regions with large or small probability. Hence,
this space is well suited for estimating the underlying distribution function
through sampling, as concentrated peaks are non-existent. Looking at the
convergence rate in terms of Ns for Nb = 106 (see Figure 2.10c), shows that
the estimated densities require more than Ns ≥ 108 for convergence, showing
the lack of sensitivity to capture low probabilities – or rare events – from de-
terministic samples (Au and Beck, 2001). Still, such optimised phase spaces
are also important for the definition and fitting of the surrogate model, as
will become apparent in Chapter 4.

2.6.2 Spatial density and directional distribution

For this example, the inverse transformation from a subset of Keplerian
space to Cartesian coordinates is studied. To facilitate reproduction of the
results, the example is detached from the results of the previous example.
Instead, take a simple multivariate normal distribution in (a, e, Ω) ∈ R3

pa,e,Ω = N (µµµk,ΣΣΣk) (2.90)

with

µµµk = (7200 km, 0.05, 180 deg)T (2.91a)

ΣΣΣk = diag(102 km2, 0.012, 92 deg2) (2.91b)

The numbers are chosen as to resemble a breakup of an object in a slightly
eccentric orbit. If the breakup occurs far from the apsides, it leads to a
smooth distribution in a and e (e.g. see Section 6.1.1). The inclination is
assumed to be fixed at i0 = 45 deg, and randomisation is considered in ω
and f according to Section 2.3. The spatial density, prrr, may be evaluated
through integration using Equation (2.43).

For comparison with the sampling method of estimating the density, p̂rrr,
the physical space is discretised into spherical bins. The radial direction, r, is
split into 76 bins, with 25 km bin width, from RE+100 km to RE+2000 km.
The longitude, λ, and latitude, θ, dimensions are split into 60 bins each,
resulting in bin widths of 6 deg and 3 deg, respectively. At r = RE+1000 km,
this corresponds to a very large bin size of 25 km × 775 km × 386 km.

The comparison of the analytical and estimated spatial density is de-
picted in Figure 2.11. Note that the figure is not drawn to scale to increase
the visibility of the density distribution. Only half of the distribution is
shown to allow insight into the cloud. Further hidden are empty bins for
the estimated density and bins with density below prrr < 10−15 km−3 for the
analytical density.
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Sampled (Ns = 107)

10−15 10−13 10−11

nr [1/km3]

(a) Even using Ns = 107 samples, the sam-
pling method can only estimate the densi-
ties over two orders of magnitude. Densities
below are estimated to be zero.

Analytical

10−15 10−13 10−11

nr [1/km3]

(b) The analytically derived spatial density
gives an estimate across the full domain.
Densities below 10−15 km−3 are not shown.

Figure 2.11: Comparison between the samples-based spatial density, p̂rrr, and
analytically transformed spatial density, prrr.

Not surprisingly, the density is highest at the latitudes close to the incli-
nation because large parts of the distribution cross these bins. The estimated
density, using Ns = 107, manages to predict the values only over two orders
of magnitudes. Hence, effects of fragmentations are not felt if the density is
below 1% of the maximum density. The analytical transformation, instead,
gives a value of the density across the full domain, i.e. even for the smallest
density regions.

Instead, if the impact rate, η̇, is to be estimated from Equation (2.46),
the directional distribution is required. Suppose a spectator sitting at

r = RE + 530 km λ = 0 deg θ = 0 deg (2.92)

At this point, there are two planes with non-zero incident fragments, in the
planes rotated ±i0 around the x-axis. The first plane, at +i0 corresponds
to fragments at Ω ≈ 0 deg. The distribution, pa,e,Ω, vanishes for such an Ω.
Instead, the second plane rotated for −i0 corresponds to an Ω ≈ 180 deg.
The plane orientation can be thought as the satellite frame, T , for a circular
orbit at r, i0, Ω = 180 deg and u = 180 deg.

In such a frame, the six-dimensional distribution collapses to a five-
dimensional distribution. The analytical transformation, prrr,vvv‖ , in positional
and in-plane velocity components, is obtained through Equation (2.22). In-
stead of using the full Jacobian, JJJαsαsαs, the third row, corresponding to i, and
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rately estimate the underlying density.
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(b) The analytical density evaluation is ac-
curate and instantaneous.

Figure 2.12: Comparison between the samples-based, p̂rrr,vvv‖ , and analytically
transformed directional density, prrr,vvv‖ .

the last column, corresponding to the out-of-plane velocity, vh, are dropped.
For the estimated density, p̂rrr,vvv‖ , a box with the dimensions

∆r ± 10 km ∆λ± 1 deg ∆θ ± 1 deg (2.93)

is defined around the point of interest. Only the samples that fall into the
box are considered for further processing. Figure 2.12 compares the two
densities. It takes hours to sample Ns = 1010 and bin them accordingly.
Still, the estimated distribution is not smooth. The analytical evaluation of
the directional density, instead, is nearly instantaneous. Hence, the analyt-
ically derived phase space density is superior to an estimated one through
sampling. Given an accurate value of the directional phase space density
allows to accurately evaluate the impact rate.

In this chapter, the formulation of the fragmentation cloud as a con-
tinuum was discussed, including its advantages towards methods based on
discretisation of the phase space. If the transformation of the phase space
is known, so too can the phase space density be transformed. Assuming
randomisation, the dimensionality of the phase space density can be chosen
such as to match the desired time horizon. Without effort, the full orbital
or Cartesian phase space density can be obtained from a density defined in
a subset of it. Given the phase space density at an instance in time, the
spatial density or the impact rate can readily be estimated without the need
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of any limiting assumptions on the orbits of the target or chaser fragments.
Now the question is, how does the phase space density evolve over time?
This question will be answered in the following chapter.
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3 Continuum propagation

In this chapter, the means to predict the evolution of the continuum de-
scribing the fragmentation cloud are presented. It is based on the continuity
equation and solved using the method of the characteristics discussed in
more detail in Section 3.1. The selection of the initial characteristics is pre-
sented in Section 3.2. Section 3.3 presents the semi-analytical propagator
used for the numerical integration of the characteristics and discusses the
perturbations from conservative forces and solar radiation pressure. Finally,
Section 3.4 introduces a new atmosphere model and extended averaging tech-
nique for the fast and accurate propagation of objects subject to atmospheric
drag. The recovery of an approximation of the continuum over the full do-
main is presented in Chapter 4. Note that parts of this chapter are adapted
from (Frey et al., 2019b)1.

3.1 Continuity equation

The cloud is modelled as a phase space density function, n. Hence, it is
propagated using statistical mechanics. The continuity equation, accounting
for sources and sink terms, g, is given as

∂n

∂t
+∇ · (nFFF ) = g (3.1)

where n(xxx, t) is a function of the phase space variables, xxx, and time, t,
and g(xxx, t, n) is a function of xxx, t and n. The dynamics, FFF (xxx, t), define the
trajectory of a phase state as

dxxx

dt
= FFF (3.2)

1S. Frey, C. Colombo, and S. Lemmens. Extension of the King-Hele orbit contrac-
tion method for accurate, semi-analytical propagation of non-circular orbits. Advances in
Space Research, 64:1–17, 2019. doi:10.1016/j.asr.2019.03.016. The datasets presented in
Section 3.4 are available under https://doi.org/10.5281/zenodo.3048773.
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3.1 Continuity equation

Extending the divergence, ∇·, in Equation (3.1) results in

∂n

∂t
+

D∑
j=1

(
∂n

∂xj
Fj

)
= g − n

D∑
j=1

∂Fj
∂xj

(3.3)

where D is the dimension of the phase space. In Section 1.3, it is argued that
the only viable way of solving the continuity equation for more than three
dimensions and including sources and sink terms, is through the method of
characteristics. The method of characteristics converts the partial differen-
tial equation in Equation (3.3) into a set of ordinary differential equations
along the characteristic curves (see Equation (1.8))

dn

dt
= g − n

D∑
j=1

∂Fj
∂xj

(3.4a)

dx1

dt
= F1 (3.4b)

...

dxD
dt

= FD (3.4c)

Which be be written in condensed form as

dn

dt
= g − n

D∑
j=1

∂Fj
∂xj

(3.5a)

dxxx

dt
= FFF (3.5b)

The sources and sink term, g, can be used to model launch traffic, ac-
tive debris removal or explosions and collisions (McInnes, 1993). Collisions,
however, need to be treated with care. The source and sink term g can
be modelled only as a function of n(xxx, t), i.e. the evolution is solved along
the characteristic curve without awareness of n outside its current state, xxx.
McInnes (1993), for example, models the collision term, gc, as

gc ∼ n2 (3.6)

This is acceptable for his model which considers only the radial distance, r,
and assumes random relative collision velocities. However, if higher dimen-
sional phase spaces are considered, the approximation is not valid. Consider
a Keplerian phase space, i.e. xxx = ααα. The approximation in Equation (3.6)
then states that fragments which fly in the same orbit collide. This is phys-
ically infeasible as their relative velocity is zero. Fragments that have the
potential to collide are to be found at different locations within the phase
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3 Continuum propagation

space. E.g. considering circular, polar orbits: the most dangerous encoun-
ters for a fragment at Ω0 would come head on from fragments at Ω0 + ∆Ω,
with ∆Ω = 180 deg.

The collision rate could be incorporated through estimation of the impact
rate (see Section 2.4.2). However, the update requires the knowledge of the
density across the full domain. This knowledge is not available during the
integration of a single characteristic which is only aware of its immediate
surroundings. Instead, at fixed time steps, a full domain density estimate,
introduced in Chapter 4, could be used to find a collision rate approximation.
This approximation could be assumed to be constant over the next time span.

For the application of cloud propagation, inter-particle collisions are ne-
glected. Nor are, analogously to Letizia et al. (2015), any other source or
sink terms considered, i.e.

g = 0 ∀xxx, t (3.7)

Note that re-entering fragments are not considered a sink, rather they are a
boundary condition. Hence, the solution along the characteristics in Equa-
tion (3.5) simplifies to

dn

dt
= −n trJJJ (3.8a)

dxxx

dt
= FFF (3.8b)

with the trace, tr, defined as

trAAA =
D∑
j=1

Ajj (3.9)

and the Jacobian of the dynamics, JJJ , obtained through

Jij =
∂Fi
∂xj

(3.10)

Thus, the integration of the characteristics requires not only the dynamics,
but also its derivatives with respect to the phase space variables.

A simple example on how to find the evolution of an orbital continuum by
solving the continuity equation through the method of characteristics is given
in Appendix A.3. The example, considering only circular orbits and a simple
atmospheric density model, even permits to find an analytical approximation
of the solution. The evolution of the cloud is depicted in Figure 3.1. It
shows both, the analytical solution as a surface plot and the numerically
integrated characteristic curves as solid lines. An analytical solution can
only be found if an analytical mapping of the trajectory is available. This
is only possible for simplified dynamics and orbital geometry. Here, instead,
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Figure 3.1: Example evolution of a cloud of fragments in circular orbit sub-
ject to atmospheric drag. The black lines are numerically integrated char-
acteristic curves and the surface is obtained from the analytical solution.

selected initial states are integrated numerically, thus permitting any force
model and geometries. The following sections discuss the selection of the
characteristics and their propagation.

3.2 Selection of initial characteristics

The continuum is not propagated as a whole, but along the characteristics.
Thus, a proper set of initial states that well represents the underlying dis-
tribution needs to be chosen. The trivial solution is to apply a regular grid
to the phase space and assign a sample and evaluate its density at each
grid corner. However, this method quickly runs into the same scaling issues
inherent to discretisation methods: the number of samples grows exponen-
tially in dimensions. Other methods covering the full domain are uniform
random sampling or more elaborate techniques such as Latin hypercube sam-
pling (McKay et al., 1979). E.g. in two dimensions, the plane is split into a
square grid. If only one sample is present for each row and column, then it is
a Latin square. The Latin hypercube is the extension to higher dimensions.
The problem with such methods is that they do not consider the distribution
they are supposed to represent. Many samples might end up in spaces that
contain zero density.

It would be useful to have the most samples where the dynamics are
the most divergent. However, this is not usually known a priori. Instead,
sampling directly the distribution, rather than the domain, assures that
samples are present where the bulk of the density is found. As such, the
majority of the fragments is represented accurately, at least initially. If the
inverse of the cumulative distribution function is known, uniform samples
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3 Continuum propagation

can be converted into samples of the density function. The NASA SBM (see
Section 2.5) is based on normal distributions and can easily be sampled using
existing scientific computational routines. Other distributions might not
permit finding the cumulative distribution function required for sampling.

A Metropolis-Hastings algorithm can be used to sample such initial con-
ditions (e.g. see Chib and Greenberg, 1995). This algorithm describes
a Markov Chain Monte Carlo (MCMC) method to sample multivariate dis-
tributions. The method is initialised at an arbitrary point, xxx0. A next step
is randomly selected from a candidate-generating density, q(xxxs+1|xxxs), proba-
bilistically defining the likelihood of reaching a subsequent point, xxxs+1, given
the current point, xxxs. Often, q is selected to be a multivariate normal dis-
tribution centred at xxxs. Then, q is symmetric, i.e. q(xxxs|xxxs+1) = q(xxxs+1|xxxs),
and the method reduced to the Metropolis algorithm. The step is accepted
if the acceptance ratio

α =
n(xxxs+1)

n(xxxs)
(3.11)

is higher than a uniform random sample u ∈ [0, 1], else the step xxxs+1 is
rejected. If the chain moves into a more probable point, i.e. α > 1, the step
is always accepted. If it moves into a less probable point, i.e. 0 < α < 1, it
is accepted or rejected.

The Metropolis-Hastings requires some tuning, e.g. for the step size.
The samples in a chain are correlated, hence only every k-th sample should
be considered. Initial samples in the burn-in phase, i.e. the steps required
to arrive from a low probable domain to a peak, should be dropped too as
they do not accurately represent the distribution. For a sufficient number of
iterations, the chain well represents the underlying distribution.

The problem with any density sampling method, such as direct sampling
of a uniform or normal distribution or the Metropolis-Hastings algorithm, is
that it lacks samples representing low probability regions. Especially samples
obtained from non-convex distributions might give a misleading picture, as it
is not always clear if gaps in the domain are due to the distribution or simply
lack of samples. Similarly, initially convex distributions could be stretched
and twisted into non-convex shapes by the dynamics. Still, as covering the
full domain is not feasible in higher dimensions, density sampling is used
herein. In particular, direct sampling of the normal distributions that make
up the NASA SBM is performed to obtain initial characteristics. The issue
related to the lack of samples in low probable domains is tackled in Chapter 4
concerned with the interpolation of the density from a cloud of points.

The selection of the initial points through sampling of a distribution re-
sembles the selection of representative objects (Rossi et al., 1998). However,
instead of assigning the same weight to all the samples, the initial density
function is evaluated at the initial points, nc = n(xxxc) This results in the full
description of the initial characteristics (nc, xxxc).
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No easy measure for the required number of initial characteristics, C0, is
available. Figure 3.1 shows that the characteristics, following the trajecto-
ries, eventually decay and re-enter into the atmosphere, removing themselves
from the cloud of fragments. Yet, being sampled from the initial distribu-
tion, the number of remaining characteristics, C, gives an estimate of the
total remaining number of fragments, N , through

Ñ =
C

C0
N0 (3.12)

E.g. if only C = 10 characteristics remain from an initial C0 = 1000, that
means that only 1% of the fragments remain, constituting a possible end
point of the analysis. The number of required characteristics to train the sur-
rogate model is discussed in Chapter 4. Once the initial points are selected,
the characteristics can be numerically integrated using Equation (3.5). The
propagator and the dynamics, i.e. the force model, used for the integration
are discussed in the following two sections.

3.3 PlanODyn

So far, no phase space was mandated for the integration of the continuity
equation along the characteristics. Many problems in varying phase spaces
and dimensions can be modelled with the continuity equation. Examples
are the evolution of interplanetary dust in semi-major axis and eccentric-
ity (Gor’kavyi et al., 1997), of space debris in the orbital radius (McInnes,
1993; Letizia et al., 2015), spacecraft uncertainty during re-entry in nondi-
mensionalised three- and six-state vectors (Halder and Bhattacharya, 2011)
based on the equations derived by Vinh et al. (1979) and constellation satel-
lites in the true anomaly (McInnes and Colombo, 2013), just to name a
few.

Here, the interest is on the mid- to long-term propagation of fragmenta-
tion clouds. Orbital elements are well suited for this purpose as they permit
integration in averaged dynamics and facilitate physical interpretation of the
states. Thus, they enable quick propagation of states over tens to hundreds
of years. Additionally, the Jacobian of the dynamics, JJJ , is needed for the
integration of the characteristics. A well-suited propagator is the Planetary
Orbital Dynamics (PlanODyn) suite (Colombo, 2016), briefly introduced
here.

The PlanODyn suite is based on single averaged dynamics written in
Keplerian elements, ααα. Conservative forces, i.e. gravitational forces of the
non-spherical central body and Third Body Perturbations (3BPs) are con-
sidered using the Lagrange planetary equations (Battin, 1999, Section 10.2).
Under some assumptions, also the perturbations from Solar Radiation Pres-
sure (SRP) can be considered quasi-conservative. The non-conservative per-
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turbations induced by atmospheric drag is considered through application
of the Gauss planetary equation (Battin, 1999, Section 10.3).

The averaging is performed over the orbital revolution of the object of in-
terest around the central body. Averaged perturbing effects from the geopo-
tential are modelled up to a first-degree expansion for zonal (J2, J3, J4) and
tesseral (J22) harmonics according to Kaula (1966, Chapter 3), and up to
second-degree expansion for the second-order zonal harmonic (J2

2 ) follow-
ing Brouwer (1959).

3BPs are considered using the averaged approximation of Kaufman and
Dasenbrock (1972). The ephemerides of the perturbing bodies, i.e. the
Sun and Moon, are computed analytically according to Meeus (1998). The
averaged effect of SRP is considered using the cannonball model, i.e. as-
suming the object of interest to be a sphere, and ignoring eclipses (Kaula,
1962; Krikov and Getino, 1997). The modelling of the perturbing effect of
atmospheric drag is explained in more detail in Section 3.4.

The force model in PlanODyn is flexible and allows to turn on and off
any perturbation. The dimension, D, of the phase space, xxx, depends on
the initial orbit, the force model and time-frame of interest. If only the
long-term evolution of a cloud in LEO, subject to drag in a non-rotating
atmosphere, is considered, only the semi-major axis, a, eccentricity, e, and
area-to-mass ratio, A/m, are the required variables, as the other elements
remain constant or can be assumed randomised under the effect of J2 (see
Section 2.3). The derivative of the variation of a constant element with itself
is zero. Hence, it has no effect on the variation of n, which is dependent on
the trace of JJJ of the dynamics.

If, instead, the mid-term evolution of LEO objects, and the mid- to
long-term evolution of non-LEO objects are of interest, the right ascension
of the ascending node, Ω, and the argument of perigee, ω, become depen-
dent variables. Furthermore, if 3BP and/or SRP are considered, the inclina-
tion, i, ceases to be constant. Lastly, if short-term evolution is of interest, an
anomaly term, such as the true anomaly, f , needs to be considered. Hence,
the propagation is performed in a subset of ααα plus physical properties of the
fragments, in the dimension that suits the scenario considered.

The flexible approach in dimensionality makes the method presented
herein very powerful. Long-term propagation in a full orbital element set
introduce large non-linearities. Hence, reducing the dimension and thus re-
moving some of the non-linearities aids the recovery of the phase space den-
sity (see Chapters 4 and 6). However, there are limitations to the reduction
of dimensionality. Depending on the type of orbit, certain perturbations
cannot be ignored. E.g. for objects in geosynchronous and high area-to-
mass ratios, SRP can have a considerable effect on the long-term evolution
of the eccentricity and inclination (Valk et al., 2008). Thus, a careful trade-
off between the accuracy and the benefit achieved through dimensionality
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3.4 Atmospheric drag

reduction is required for each scenario.

3.4 Atmospheric drag

The King-Hele (KH) method, derived anew in Appendix B.3, can be used to
find an analytical expression of the effect of drag on the semi-major axis, a,
and eccentricity, e, by averaging over the eccentric anomaly, E. I.e. the
method describes a closed form solution of the integrals in Equation (B.32),
repeated here in a simplified format as

Fa =
da

dt
=

1

2π

∫ 2π

0
ρ(h(a, e, E))ga(a, e, E,B) dE (3.13a)

Fe =
de

dt
=

1

2π

∫ 2π

0
ρ(h(a, e, E))ge(a, e, E,B) dE (3.13b)

with the density, ρ, at altitude, h, and the ballistic coefficient, B. The latter
is defined as

B = cD
A

m
(3.14)

with the drag coefficient, cD, the cross-sectional area, A, and the mass, m.
Note that depending on the source, B is sometimes defined as the inverse
of the definition given in Equation (3.14). The functions ga and ge, given
in Equation (B.32), are independent of ρ. Using the KH approximation,
the averaged variational equations require only a single evaluation of ρ at
the perigee height, hp. The method also permits to analytically find the
contribution to the Jacobian of the dynamics, derived in Appendix B.4,
which is important for the propagation of the phase space density, n.

The caveat of the method is that, in order to obtain the closed form
solution, it requires ρ to decay strictly exponentially in h, i.e.

ρ ∝ exp

(
−h− h0

H

)
(3.15)

with a base height, h > h0, and a fixed scale height, H. The parameters
can be obtained from any atmospheric density model, e.g. the Jacchia-77
model, ρJ , as

h0 = hp H = − ρJ(hp)∆h

ρJ(hp + ∆h)− ρJ(hp)
(3.16)

with ∆h = 1 m and the perigee height, hp. However, strictly exponential de-
cay – a consequence of a fixed H – underestimates the true density at higher
altitudes, such as the apogee height, ha. Figure 3.2a shows the density profile
according to ρJ (solid), and the exponential approximation for parameters
fixed at hp = 125 km, 250 km, 500 km and 750 km (dashed). E.g. for an
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Figure 3.2: The KH approximation, fixing the parameters for the atmosphere
density at hp, underestimates the density at h > hp resulting in inaccurate
lifetime estimates for eccentric orbits.

orbit at hp × ha = 500 km ×1000 km, the density value, ρJ,500 km, fixed at
hp = 500 km, underestimates ρJ at ha = 1000 km by a factor of 10. Hence,
the drag effect at altitudes above hp are underestimated if strict exponential
decay is assumed.

This, in turn, results in an overestimation of the lifetime of the object, if
compared to numerical averaging techniques such as Gauss-Legendre (GL),
that estimate the contraction rate by evaluating the true ρJ at multiple
heights. Figure 3.2b shows the effect of using the KH method by fixing the
parameters in Equation (3.15) at different perigee altitudes on the lifetime
estimate. The initial orbit configuration is set at hp×ha = 750 km× 2000 km
and the ballistic coefficient is set at, B = 1 m2/kg. The difference in lifetime
for the propagation using the numerical and analytical averaging techniques
is +45%. Note that the same relative error is induced for any value of B. The
biased errors introduced by the KH averaging method for highly eccentric
orbits are of the same order of magnitude as uncertainties present in the
estimation of the atmospheric density itself (Sagnieres and Sharf, 2017).
Still, one of them is a modelling error of a highly complex environment, which
is difficult to accurately predict. The other is a mathematical approximation
error, which should and can be corrected.

Here, an extension of the KH method is presented. The new method
is applicable – and accurate – to all eccentricity regimes, from circular to
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Table 3.1: Non-exhaustive list of existing and newly proposed (in bold) at-
mospheric models and averaging methods. All analytical averaging methods
make assumption on the shape of the atmosphere model.

Atmosphere models

References

CIRA

Jacchia (1977)

NRLMSISE

DTM

Derivatives

Non-smooth
exponential

Smooth
exponential

Averaging methods

Analytical

King-Hele (1964)

Vinh et al. (1979)

Sharma (1999)

Superimposed
KH (SI-KH)

Numerical

Simpson’s rule

Gauss-
Legendre (GL)

highly eccentric orbits. The idea is to find a mathematical formulation of
the density model that suits the assumption of exponential decay without
underestimating the density at higher altitudes. The proposed method thus
consists of two parts: an atmosphere model based on constant scale heights,
introduced in Section 3.4.1; and the extension of the KH formulation to
reduce the errors induced by an atmosphere which in its sum does not de-
cay exponentially, described in Section 3.4.2. The method is validated in
Appendix D.

Table 3.1 shows an overview of how the proposed extension fits into the
existing scheme of atmosphere reference models and derivatives thereof, and
averaging methods. The technique presented here is not limited to the KH
method but can be applied to any analytical averaging method based on a
fixed scale height assumption.

3.4.1 Smooth exponential atmosphere model

The smooth atmosphere model proposed here does not in any way attempt
to replace existing atmosphere density models. Instead, it is a derivation of
those models. Nor is the idea of modelling the atmosphere as a sum of expo-
nentials new: the Jacchia-77 reference model reduces – for each atmospheric
constituent – to such a mathematical formulation if the vertical flux terms
are neglected (Bass, 1980). The novelty of the method proposed here is the
combination of the atmosphere model with the extended, superimposed KH
formulation. A static and variable atmosphere model are presented in the
following.
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3 Continuum propagation

Static Model

The smooth exponential atmosphere model, ρS , is modelled by superimpos-
ing exponential functions as

ρS(h) =

Np∑
j=1

ρj(h) =

Np∑
j=1

ρ̂j exp

(
− h

Hj

)
(3.17)

where the number of partial atmospheres, Np, the partial base densities,
ρ̂j > 0, and the partial scale heights, Hj > 0, are fitting parameters. Note
that here, the subscript j does not stand for altitude bins, but for one of the
partial atmospheres, each of which is valid for the whole altitude range used
for the fitting. It could potentially stand for a single atmosphere constituent,
but it is not restricted as such. The parameters are strictly positive, as
negative (base) densities are non-physical and negative scale heights lead to
a density increase at higher h. However, the selection of positive parameters
restricts the application of the model to certain altitude regimes. The rate
of change and acceleration of ρS with respect to h are

dρS
dh

= −
Np∑
j=1

ρj(h)

Hj
< 0 ∀h (3.18a)

d2ρS
dh2

=

Np∑
j=1

ρj(h)

H2
j

> 0 ∀h (3.18b)

Hence, the model can only be applied to density profiles that monotonically
decrease in h at ever slower rates.

Instead of finding the range of applicability through the acceleration in ρ,
a qualitative study of the rate of change of the scale height is performed.
The superimposed scale height, HS , is

HS(h) = − ρS(h)

dρS/ dh
=

∑Np
j=1 ρj(h)∑Np

j=1 ρj(h)/Hj

(3.19)

Its derivative, i.e. its rate of change, with respect to h can be approximated
through finite differences as

dHS(h)

dh
≈ HS(h+ ∆h)−HS(h)

∆h
(3.20a)

≈ − ρS(h+ ∆h)

ρS(h+ 2∆h)− ρS(h+ ∆h)
+

ρS(h)

ρS(h+ ∆h)− ρS(h)
(3.20b)

where ∆h > 0 is a small step and dρS
dh is approximated using finite differences,
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Figure 3.3: Cost function depending on number of partial atmospheres, Np.
The cost functions stop improving for Np > 8.

too. From Equation (3.18), it follows, using again finite differences, that

dρS
dh
≈ ρS(h+ ∆h)− ρS(h)

∆h
< 0 → ρS(h+ ∆h) < ρS(h) (3.21a)

d2ρS
dh2

≈ ρS(h+ 2∆h)− 2ρS(h+ ∆h) + ρS(h)

∆h2
> 0 (3.21b)

→ ρS(h+ 2∆h)− ρS(h+ ∆h) > ρS(h+ ∆h)− ρS(h) (3.21c)

Given the inequalities in Equation (3.21) and Equation (3.20b), it becomes
evident that also HS is monotonically increasing, i.e.

dHS(h)

dh
> 0 (3.22)

Above h = 110 km, the Jacchia-77 density model, ρJ , satisfies both
requirements, a monotonically increasing ρ and H, for a wide range of ex-
ospheric temperatures, T∞. Even if the underlying model shows slightly
negative H at the lower boundary h0 = 100 km (see Figure 3.5b), a partial
atmosphere with a small positive Hj can still be fitted as is shown in the
following. However, at lower altitudes, h < 100 km, the proposed model is
not applicable.

To find the parameters, Hj and ρ̂j , the model in Equation (3.17) is
fitted to ρJ for three different T∞: in accordance to a low solar activity,
T∞ = 750 K; mean solar activity, T∞ = 1000 K; and high solar activity,
T∞ = 1250 K (see Figure 1.2). The fit is performed in the logarithmic space
as not to neglect lower densities at higher altitudes, using least squares
minimisation at heights between h0 = 100 km and the upper boundary,
h1 = 2500 km. To put more weights on the edges of the fit interval, the
densities are evaluated at Nf = 100 heights, hi, distributed as Chebyshev
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3 Continuum propagation

Table 3.2: Relative density fitting errors ∀h ∈ [100 km, 2500 km].

ερ T∞ = 750 K T∞ = 1000 K T∞ = 1250 K

< 0.1% ∀h > 239 km ∀h > 308 km ∀h > 306 km

< 0.5% ∀h > 134 km ∀h > 153 km ∀h > 154 km

< 1.0% ∀h > 119 km ∀h > 119 km ∀h > 130 km

ερ,max 1.6% (h = 115 km) 1.8% (h = 115 km) 1.9% (h = 115 km)

nodes (Abramowitz and Stegun, 1972, p. 889)

hi =
h0 + h1

2
+
h1 − h0

2
cos

(
2i− 1

2Nf
π

)
i = 1, . . . , N (3.23)

The number of partial atmospheres, Np, is chosen to be 8, as the cost function

C =

√√√√ 1

Nf

Nf∑
i=1

ln

(
ρS(hi)

ρJ(hi)

)2

(3.24)

which is the root mean square of the logarithmic density fit residuals, con-
verges (see Figure 3.3). For T∞ ∈ [750 K, 1000 K, 1250 K], the relative
error, ερ, calculated as

ερ(h) =
|ρS(h)− ρJ(h)|

ρJ(h)
(3.25)

always remains below 0.1% and 1% for all h > 308 km and h > 130 km,
respectively, and the maximum relative error, ερ,max, does not exceed 2%,
as can be seen in Table 3.2. Hence, the density fit accurately represents
the underlying model. The model parameters can be found in Table 3.3.
Figure 3.4 shows a comparison between the underlying and fitted model, for
T∞= 1000 K. Next to the superimposed model, ρS , the individual contri-
butions of the partial atmospheres, ρj , are shown. Note that despite fixed
partial scale heights, Hj , the overall scale height, HS , is variable and accu-
rately follows the Jacchia-77 model. Figure 3.5 shows the fits at low altitudes,
h ∈ [100 km, 130 km] to show that despite increased inaccuracies in H, the
fit, ρS , still accurately represents the Jacchia-77 density profile, ρJ .

A speed test for hundreds of density and scale height evaluations over the
range 100 km≤ h≤ 2500 km shows a near 60-fold decrease in evaluation time
for ρS compared to ρJ . The implementation of the Jacchia-77 model used
herein is written in the coding language C (taken from Instituto Nacional
De Pesquisas Espaciais, 2020), and called from within Matlab, while the
routine to calculate ρS is implemented and called directly in Matlab. Thus,
a further decrease of computational time could be expected if also the latter
was implemented in C. The speed tests were performed using the same
processor architecture.
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3 Continuum propagation

Table 3.3: Smooth atmosphere model parameters resulting from a fit to the
Jacchia-77 model, valid for altitudes h ∈ [100 km, 2500 km].

T∞ = 750 K T∞ = 1000 K T∞ = 1250 K

j Hj ρ̂j Hj ρ̂j Hj ρ̂j

[km] [kg/m3] [km] [kg/m3] [km] [kg/m3]

1 4.995 2.496× 102 4.936 3.163× 102 4.903 3.640× 102

2 10.47 8.465× 10−4 11.05 5.270× 10−4 11.44 3.818× 10−4

3 21.61 9.188× 10−7 24.85 3.735× 10−7 25.57 2.893× 10−7

4 37.81 1.253× 10−8 46.46 1.084× 10−8 44.92 1.246× 10−8

5 49.97 1.375× 10−9 64.44 1.088× 10−9 76.08 9.253× 10−10

6 174.2 1.593× 10−13 147.5 3.812× 10−13 111.1 1.667× 10−11

7 315.2 1.129× 10−14 314.5 4.843× 10−14 354.2 5.923× 10−14

8 1318. 3.807× 10−16 1215. 4.233× 10−16 892.2 1.738× 10−15
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3.4 Atmospheric drag

Variable Model

Possible extensions to the smooth exponential atmosphere model are the
inclusion of a temporal dependence, such as the solar cycle, annual or daily
variations. Here, the model is extended to incorporate the variability in the
atmosphere density due to a variable T∞. To conserve the mathematical
formulation of the static model, the temperature dependence is introduced
in the fitting parameters, ρ̂j = ρ̂j(T∞) and Hj = Hj(T∞).

T∞ is a function of the solar proxy F (see Equation (1.35)), so the range
of interest in T∞ for the fitting is defined by F . Generally, the long-term
predictions for F , based on various numbers of previous solar cycles, remain
between 60 sfu and 230 sfu (Vallado and Finkleman, 2014; Dolado-Perez
et al., 2015; Radtke and Stoll, 2016). As the smoothed solar proxy, F , per
definition remains in the same range as F , the given range translates into
T∞ ∈ [669 K, 1321 K]. The parameters for the variable smooth exponential
atmosphere model derived below, and listed in Appendix C.2, are valid for
any T∞ ∈ [T0 = 650 K, T1 = 1350 K]. They should not be used for a T∞
outside this range, as polynomial fits tend to oscillate strongly outside the
fitting interval.

The dependence on T∞ is incorporated using a polynomial least squares
fit. Each partial atmosphere, ρj , is fitted separately on the values obtained
through fitting static models at different T∞. The static parameters, ρ̂j
and Hj in Equation (3.17), fitted to i = 1, 2, . . . , Nm static atmospheres, are
converted

aij = −1/H i
j (3.26a)

bij = ln
(
ρ̂ij
)

(3.26b)

where the fit space, aj and bj , is chosen such as to cope with high vari-
ability in densities. Each time-variable partial atmosphere is fitted to two
independent polynomials of order l and m respectively

aj(T̃∞) =
l∑

k=0

ajkT̃
k
∞ (3.27a)

bj(T̃∞) =

m∑
k=0

bjkT̃
k
∞ (3.27b)

using a normalised and unit-less T̃∞, defined as

T̃∞ =
T∞ − T0

T1 − T0
(3.28)
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3 Continuum propagation

In vector notation, Equation (3.27) can be written as

aaa =


a1

...

aNp

 =


a10 . . . a1l

...
. . .

aNp0 . . . aNpl



T̃ 0
∞
...

T̃ l∞

 (3.29a)

bbb =


b1
...

bNp

 =


b10 . . . b1m
...

. . .

bNp0 . . . bNpm



T̃ 0
∞
...

T̃m∞

 (3.29b)

To prevent over-fitting, the order of the polynomials should remain well
below the number of fitted static atmospheres. Here, the model in Equa-
tion (3.27) is fitted to Nm = 50 statically fitted models, distributed again as
Chebyshev nodes between T0 and T1

Ti =
T0 + T1

2
+
T1 − T0

2
cos

(
2i− 1

2Nf
π

)
i = 1, . . . , Nf (3.30)

The orders are chosen to be l = m = 8 such that the error remains be-
low 0.5% for all h > 155 km and T∞ ∈ [650 K, 1350 K]. If more accuracy
is needed, the polynomial order can be increased and/or spline polynomial
interpolation applied. Finally, the time-dependent atmosphere is recovered
by inverting Equation (3.26)

Hj(T∞) = −1/aj(T̃∞) (3.31a)

ρ̂j(T∞) = exp
(
bj(T̃∞)

)
(3.31b)

Figure 3.6 compares the accuracy of the T∞-variable smooth exponential at-
mosphere model, ρS(T∞), against the original temperature dependent Jacchia-
77 model, ρJ(T∞). It shows the ratio between ρS(T∞)/ρJ(T∞) for T∞ in
the range from 650 K to 1350 K (left), and the corresponding parameters,
ρ̂j and Hj as a function of T∞, including the underlying parameters of the
static fits (right). Towards the lower edge of the temperature range (i.e.
T∞ → 650 K), the polynomial fits for components j = 5 − 7 do not well
represent the underlying data. This leads to increased but still tolerable er-
rors in the altitude range between 500 km and 1500 km. It is interesting to
note that the parameters corresponding to the j = 1−3 partial atmospheres
dominating the low altitude region h < 200 km (see Figure 3.4a) do not vary
much in T∞.

The advantage of this approach is that the original structure of the model
is maintained, so it can be used with the contraction model introduced in
the next section.
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3.4.2 Superimposed King-Hele approximation

The extension of the KH contraction formulation into the Superimposed
King-Hele (SI-KH) formulation with a superimposed atmosphere is straight-
forward. Substituting ρ from Equation (3.13) with the one defined in Equa-
tion (3.17) results in

Fa =

Np∑
j=1

Fa,j =
1

2π

Np∑
j=1

∫ 2π

0
ρj(h)ga(a, e, E,B) dE (3.32a)

Fe =

Np∑
j=1

Fe,j =
1

2π

Np∑
j=1

∫ 2π

0
ρj(h)ge(a, e, E,B) dE (3.32b)

i.e. each partial contraction reduces to the classical KH formulation with
the partial exponential atmosphere ρj(h). The important difference is that
now Hj is constant over the whole altitude range. Hence, the resulting rates
of change in a and e, averaged over a full orbit, can be obtained analytically
through the KH method with only the approximation errors, introduced
by the series expansion, remaining. The classical KH approximations for
circular, low and highly eccentric orbits – and extended up to 5th order –
can be found in Appendix B.3. An extensive validation of the newly proposed
averaging technique is given in Appendix D.

King-Hele (1964) introduced a simple fixed boundary condition eb =
0.2 to select between the approximation method for low eccentric and high
eccentric orbits, given in Appendix B.3.2 and Appendix B.3.3, respectively.
However, as Hj can be large, this switch condition is not always sufficient.
The low and highly eccentric series expansions are cut at 5th order meaning
the truncation errors are of order

O
(
e6
)

and O
(

1

z6

)
(3.33)

where O is the order notation and

z =
ae

H
(3.34)

For low a and high H, z can approach unity at e = 0.2, making the series
expansion in 1/z inaccurate. Instead, it is proposed here to define eb based on
the truncation errors found in the formulations for the low and high eccentric
orbits. The series truncation errors for the low eccentric orbit approximation
in Equation (B.43) are of the order of

Olowa
(
e6
)

= ka exp(−z)I0e
6 +O

(
e7
)

(3.35a)

Olowe
(
e6
)

= ke exp(−z)I1e
6 +O

(
e7
)

(3.35b)
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If z is large, I0/1(z) → exp(z)/
√

2πz (see justification below) and Equa-
tion (3.35) becomes

Olowa (e6) ≈ ka
e6

√
z

(3.36a)

Olowe (e6) ≈ ke
e6

√
z

(3.36b)

For the high eccentric orbit approximation in Equation (B.55), the trunca-
tion errors are in the order of

Ohigha

(
1

z6

)
= ka

1√
z

(1 + e)
3
2

(1− e) 1
2

1

z6(1− e2)6
+O

(
1

z7

)
(3.37a)

Ohighe

(
1

z6

)
= ke

1√
z

(
1 + e

1− e

) 1
2 1

z6(1− e2)5
+O

(
1

z7

)
(3.37b)

If the terms

(1 + e)
3
2

(1− e) 1
2

1

(1− e2)6
and

(
1 + e

1− e

) 1
2 1

(1− e2)5
(3.38)

are dominated by 1/z6 (see again below for a justification), Equation (3.37)
simplifies to

Ohigha

(
1

z6

)
≈ ka

1√
z

1

z6
(3.39a)

Ohighe

(
1

z6

)
≈ ke

1√
z

1

z6
(3.39b)

Equating the truncation errors from Equations (3.36) and (3.39), using Equa-
tion (3.34) and solving for e results in the following, newly introduced, con-
dition

eb =

√
H

a
(3.40)

This switch condition allows to find the eccentricity value where the dif-
ference in the averaged rate of change calculated from the low and high
eccentric approximation is smallest. Consequently, integrators using a vari-
able step size experience a reduced effort in passing through the condition,
if compared to a fixed boundary condition. Note that this boundary is most
exact if the series expansions in both the low and high eccentric regimes are
of the same order.

The derivation of the boundary condition required the assumptions of z
to be large, such that I0/1(z)→ exp(z)/

√
2πz and such that 1/z6 dominates

the other e terms in Equation (3.37). To validate the assumptions, replace a
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in Equation (3.40) with a = (hp +RE)/(1− eb) and solve for eb, neglecting
the negative solution of the quadratic equation

eb =
1

2

[
−y +

√
y2 + 4y

]
where y =

H

hp +RE
(3.41)

Given Hmin/max = 4.9/1320 km (see Table 3.3) and the valid range for
hp ∈ h ∈ [100 km, 2500 km], the extrema in eb and zb = 1/eb, are found to
be

eb,min/max = 0.023/0.361

zb,min/max = 2.77/43

For any z > zb,min, I0/1 remains close to exp(z)/
√

2πz, being off only +6%
and −16%, respectively, at zb,min. At the same time, 1/z6 dominates the
terms dependent on e in Equation (3.37) by two to three orders of magnitude
∀e < eb,max. Thus, the assumptions made to derive eb are valid.

An advantage of an analytical expression of the dynamics is that the
Jacobian of the dynamics can be derived analytically too, which can be
used for continuum and uncertainty propagation. The partial derivatives
of the dynamics with respect to a and e, are given in Appendix B.4 (again
dropping the subscript j). As the SI-KH method is simply a summation of
the individual contributions of the partial atmosphere, the derivatives can
equally be summed up as

∂Fx
∂y

=

Np∑
j=1

(
∂Fx
∂y

)
j

(x, y) ∈ [a, e] (3.43)

In this chapter, the initial selection and the propagation of the character-
istic curves, containing the information about the fragment continuum, was
discussed. The density can be propagated for any initial condition and force
model. The force model and a new methodology of analytically incorporat-
ing the drag through averaged dynamics was presented. It removes the bias
of underestimating the drag forces in the classical KH orbital contraction
method, and achieves accuracies similar to averaging techniques based on
numerical quadrature. Yet, the analytical formulation allows to analytically
evaluate the Jacobian of the dynamics, which is required for the propagation
of the dynamics. Hence, no numerical quadrature is required on the right-
hand side of the ordinary differential equation, speeding up the integration
process. However, the method of characteristics solves the continuity equa-
tion along the characteristic curves only. The next chapter shows how an
approximation of the density, valid over the full domain, can be obtained.
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4 Continuum interpolation

The previous two chapters describe how to formulate a cloud of fragments
as a continuum and propagate them along the characteristics. The density,
however, is only available along the characteristics. If propagated to the
same epoch, the characteristics thus form a scattered point cloud in the
phase space domain. If the spatial density or the number of impacts is to
be estimated using Equations (2.39) and (2.46), an integration over all the
incident velocity directions is required. The scattered point cloud, offering
only limited knowledge about the full phase space density, is not sufficient
to estimate the desired products.

Backpropagation of the density, i.e. starting from a point at the epoch
of interest, propagating the characteristics backwards, and updating the
density value using the initial distribution, could be an option. However,
at each point in the three-dimensional physical space, there are an infinite
number of directions and physical parameters, e.g. the area-to-mass ratio,
to be considered. Most of these directions would be backpropagated to a
domain far away from the initial density peak. Additionally, if the density
is to be evaluated many times along an orbit and/or for many objects, the
computational effort would quickly exceed the available resources.

Another solution is to interpolate between the scattered point cloud of
characteristics to obtain the density across the full domain and thus avoid-
ing performing costly propagations. An interpolation method suitable to the
problem at hand is selected in Section 4.1. The fitting of the model and the
selected optimisation scheme are discussed in Section 4.2. The initial condi-
tion, the dynamics and the selection of the phase space induce discontinuities
and non-linearities. Section 4.3 shows how to deal with such distortions. Fi-
nally, the approach is validated against brute force sampling in Section 4.4.
Additionally, a validation method is presented that is applicable in any di-
mension, D, as estimation from samples becomes inaccurate and inefficient
for D ≥ 3. Note that parts of this chapter are adapted from (Frey et al.,
2020)1.

1S. Frey, C. Colombo, and S. Lemmens. Evolution of orbital fragmentation cloud via
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4 Continuum interpolation

4.1 Selection of density estimation method

To select an appropriate surrogate model, the density estimation methods
introduced in Section 1.3.5 are applied to a hypothetical breakup and dis-
cussed in terms of advantages and disadvantages. The hypothetical case is
a breakup close to the re-entry altitude, hre = 100 km, resulting in a cut-off
distribution as shown in Figure 4.1. Albeit being a hypothetical case, such
cut-off distributions are possible. The Cosmos-2251 collision fragmentation
cloud, discussed in Section 6.1.2, shows exactly such a profile, as the energy
of the collision is so high, that large parts of the fragments re-enter directly.

Samples-based, parametric estimation models cannot cope well with such
distributions, as can be seen in Figure 4.1a for a Gaussian approximation
found by taking the sample mean and variance, using a simple histogram
obtained through discretisation of the phase space, and Kernel Density Esti-
mation (KDE). The KDE solutions are obtained using Gaussian kernels with
the bandwidths, β = 3 and β = 10, respectively. The density estimates, be-
ing probability density functions, are multiplied by a factor of 1/2 in order to
overlap with the original density that integrated ∀h > hre sums to 1/2. As
part of the samples are removed, the mean found using parametric estima-
tion does not accurately describe the underlying distribution. Discretisation
of the phase space, instead, produces a non-smooth density profile. KDE can
cope better with the cut-off distribution than the Gaussian approximation.
However, a general drawback of samples-based methods is that they cannot
model distributions other than probability density functions. Additionally,
estimates from non-parametric methods are hard to be interpreted in higher
dimensions.

Figure 4.1b shows again the same underlying distribution together with
function-based approximations based on C = 8 characteristics only. For
each of the studied methods using hyperparameters, a manual selection of
the optimal parameters was performed. The Gaussian fit is obtained through
regression, the NN estimation uses k = 2 neighbours, the RBF interpolation
uses a Gaussian kernel with β = 40, and the GP regressions uses the squared-
exponential covariance kernel with a fixed σ2

s = 1 and β = 40. On top of the
mean value obtained from the GP regression, the uncertainty is plotted as
a shaded area, showing µµµK ±σσσK . Decent approximations are achieved with
all the methods, despite the low number of observations.

However, NN produces non-smooth estimates. The non-continuous dis-
tribution present problems to subsequent integrations required for collision
probability calculations. Another drawback is that the approximation is only
accurate in the vicinity of samples. An advantage of RBF interpolation and
GP regression is that, at the training points, the true function is approxi-

continuum and surrogate modelling. To be submitted to the Journal of Guidance, Control,
and Dynamics in September, 2020.
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(a) Sample-based methods, estimating the density from samples
only, cannot accurately model re-entry distributions, even for a
large set of samples, Ns (vertical lines).
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characteristics (crosses), to converge.

Figure 4.1: Density estimation for re-entry configuration for samples-based
(upper) and function-based (lower) methods.
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4 Continuum interpolation

mated exactly. However, being non-parametric, the full set of training data
and the inverse of a potentially large matrix is required every time a new
data point is evaluated. Hence, these methods slow down with increasing
number of training data. Additionally, functions approximated using RBF
interpolation and GP regression are not inherently probability distribution
functions, and thus might result in negative values. Negative fragment phase
space densities or spatial densities are not feasible and should be avoided. GP
regression is particularly useful, where an estimate of the output function,
the prior, is available. This is not the case for the distribution describing
fragments.

Here a GMM regression is chosen, i.e. a parametric, function-based
method, for multiple reasons. First, it is a universal density function approx-
imator (Goodfellow et al., 2016). Hence, it not only enables the estimation
of probability distribution functions, but any density function, i.e. there are
not restrictions on the value of the total integral. Additionally, the density
estimate is easily restricted to positive values only. Second, it can handle
multiple peaks, a necessity if multiple clouds or even the full debris popula-
tion is to be modelled. Third, the Jacobian and even the Hessian of the cost
function with respect to its parameters can easily be calculated. This helps
the optimiser to converge to a minimum more quickly (see Section 4.2).
Fourth, the total number of fragments can easily be inferred without the
need of integration of the density. Finally, the GMM parameters can be
interpreted even in higher dimensions.

The GMM is defined as (Bishop, 2006, Chapter 9)

n̂xxx =
K∑
k=1

πkNxxx|θθθk (4.1)

with the number of kernels, K, the kernel weights, πππ = (π1, π2, · · · , πK), the
multivariate normal distribution, N , as

Nxxx|θθθk =
exp

(
−1

2(xxx−µµµ)TΣΣΣ−1(xxx−µµµ)
)√

(2π)D det(ΣΣΣ)
(4.2)

and the parameters, θθθ, where θθθk = (µµµk,ΣΣΣk) are the mean, µµµ ∈ RD, and the
covariance, ΣΣΣ ∈ RD×D, of the kth kernel. The parameters of the surrogate
model, ΘΘΘ, are thus

ΘΘΘ = {(πk, θθθk)}k=1,...,K (4.3)

The number of parameters, Np, is

Np = K

(
1 +

3D +D2

2

)
(4.4)

which is a modest growth in D, considering that D remains below 10 for most
of the envisioned applications of the method. The number of kernels, K, is
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4.1 Selection of density estimation method

a hyperparameter to be chosen through cross-validation (e.g. Bishop, 2006,
Chapter 1.3). A typical value for a well defined phase space is K = 8,
resulting in Np = 80 and Np = 120 for D = 3 and D = 4, respectively.

Naturally, estimating the density by fitting a GMM comes with draw-
backs too. If the underlying distribution is highly non-Gaussian, many ker-
nels are required for an adequate fit. This problem can sometimes be allevi-
ated by a proper selection of the fit space, as will be discussed in Section 4.3.
Additionally, as the number of parameters grows in dimension and number
of kernels, optimisation of the parameters can become slow. Hence, a proper
selection of the optimiser is crucial, a topic which is addressed in Section 4.2

There is a distinct difference between the proposed method and pre-
viously developed GMM-based techniques for uncertainty quantification in
non-linear systems (Terejanu et al., 2008; Horwood et al., 2011; Vishwajeet
et al., 2014). There, extended or unscented Kalman filters are used to prop-
agate the means and covariances of the kernels. Then, the weights of the
kernels are updated by minimising the error of the fit versus the true value
from the Fokker-Planck equation. Instead, the method proposed here leaves
all the parameters, i.e. weights, means and covariances up for optimisation.
This gives more freedom to the optimiser and ultimately results in a more
accurate fit, especially for mid- to long-term propagation where non-linear
effects become strong. The Kalman filters, however, could be used to provide
an educated initial guess for the optimisation routine.

Still, the propagation of the continuum is closely related to non-invasive
uncertainty propagation. Tardioli et al. (2015) compared multiple such ap-
proaches to study the evolution of space debris orbit uncertainties over the
timespan of 10s of orbital revolutions. A more general review of uncertainty
propagation techniques for problems using orbital mechanics was compiled
by Luo and Yang (2017). Instead of considering all the fragments at once,
only a single fragment could be considered probabilistically assuming large
uncertainties around its physical state. However, such techniques usually do
not consider boundary conditions, i.e. the total integral remains constant.
Nor are they generally designed for long-term propagations where strong
non-linear effects come into play. The method outlined in this thesis, in-
stead, promises flexibility towards modelling of uncertainties and continua
for any time frame. The application of the method of the characteristic,
however, cannot be used to solve stochastic differential equations. Hence,
it is not applicable to the propagation of a state in uncertain dynamics.
Here, the initial fragment distributions are very large, justifying the neglect
of uncertainties in the dynamics.
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4 Continuum interpolation

4.2 Model fitting

Initially, C0 characteristics are sampled from a given fragmentation model.
The characteristics are propagated to predefined epochs where the GMM
is to be trained. At each epoch, the remaining C characteristics – i.e. the
ones that did not re-enter in the meantime – are transformed into a feature
space suitable for fitting. The transformed characteristics form the training
data, YYY ∈ RC×D+1. The training data consists of the extended phase space,
i.e.

YYY = {(xxxi, nxxxi)}i=1,...,C (4.5)

with the phase space, xxx, and the phase space density, n. Hence, a new GMM
is trained at each epoch. Temporal interpolation between the models can be
considered point-wise, e.g. using linear or piece-wise quadratic polynomials.
If the time interval from epoch to epoch is short relative to the rate of evo-
lution of the cloud, i.e. the changes in the shape of the cloud is marginal,
the fit can even be assumed constant until the next epoch. The size of the
time-step itself depends on whether the mid-term cloud evolution – consid-
ering Ω or ω in the phase space – or the long-term cloud evolution – not
considering the two angles – is studied. Generally, quarter-yearly snapshots
are sufficient for the long-term evolution scenarios, as the relative change in
density is of the order of the modelling approximation errors.

The following three sections discuss the normalisation of the phase space,
the cost function and its derivatives with respect to the parameters and the
selection of the optimisation scheme.

4.2.1 Normalisation

Before running the optimisation algorithm, the characteristics are normalised.
This step is required because the data is composed of features with various
ranges, e.g. compare a and e for a near-circular fragmentation case, with
their ranges in the order of 106 m and 0.1, respectively. The covariance of
features with such large range differences can become nearly singular, creat-
ing difficulties for the computer routines handling them. The normalisation
is performed as

xxx =
√

ΛΛΛ
−1
VVV T (xxx−µµµX) (4.6a)

nxxx = nxxx

D∏
d=1

√
λd (4.6b)

with the diagonal eigenvalue matrix, ΛΛΛ, and the eigenvector matrix, VVV , as

ΛΛΛ = diag (λ1, . . . , λD) VVV = [vvv1, . . . , vvvD] (4.7)
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Figure 4.2: Example for normalisation of data. The original, highly corre-
lated data on the left is hard to fit. Instead, the normalised data is not.

and the ith eigenvalue, λi, corresponding to the ith eigenvector, vvvi. The
matrices ΛΛΛ and VVV are obtained through eigenvalue decomposition of the
centred and biased sample covariance ΣΣΣXXX−µµµX , defined as

µµµX =
1

C

C∑
c=1

xxxc ΣΣΣXXX−µµµX =
1

C

C∑
c=1

(xxxc −µµµX) (xxxc −µµµX)T (4.8)

Hence, the normalised characteristics have zero mean and a sample covari-
ance corresponding to the identity matrix. An example of random charac-
teristics distributed as

XXX ∼ N (µµµ,ΣΣΣ) µµµ =

(
3

7

)
ΣΣΣ =

(
5.01 4.99

4.99 5.01

)
(4.9)

and its normalised equivalent are shown in Figure 4.2. Note that the normal-
isation procedure in Equation (4.6) can be used for a principal component
analysis (Bishop, 2006, Chapter 12). The study of the eigenvalues is use-
ful for the feature selection and dimensionality reduction. If some of the
eigenvalues nearly vanish, the samples can potentially be projected on the
lower-dimensional space defined by the eigenvalues of the remaining eigen-
values. A reduction in dimensionality reduces the complexity of the fitting
algorithm. However, the reduction could also lead to erroneous projections,
as small variations at one instance in time could have large effects later on.
Throughout this work, no principal component analysis is performed, as the
dimensionality of the phase spaces is chosen to match the assumptions on
the force model and duration of propagation.

The initial means for the fitting routine are found through a weighted
k-means (Bishop, 2006, Chapter 9.1). The initial covariances are identity
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4 Continuum interpolation

matrices and the initial kernel weights are weighted with the number of
samples assigned to each kernel. Optionally, few characteristics with very
small relative density values can be discarded in a data pruning step before
the fit. This step is executed by omitting the characteristics with the smallest
densities, whose combined sum is less than a user-defined threshold, e.g.
10−5, relative to the sum of the densities over all the characteristics. After
the fit, each kernel is renormalised according to

µµµk = VVV
√
AAAµµµk +µµµX (4.10a)

ΣΣΣk = VVV
√
AAAΣΣΣk

√
AAAVVV T (4.10b)

giving the distribution in the original data set.

4.2.2 Cost function

The surrogate model is fitted to the normalised characteristics through min-
imisation of a cost function. The cost function, C, using the parameters,
ΘΘΘ, given the observations, YYY , is defined as a regularised, logarithmic least
squares function

CΘΘΘ|YYY = CC + CR =
1

C

C∑
i=1

(ln n̂xxxi − lnnxxxi)
2 +R

K∑
k=1

π2
k (4.11)

with the regulariser, R, a second hyperparameter. Optimising in the loga-
rithmic space allows to equally consider all characteristics. This is important
because considerable parts of the distribution are to be found at the tails of
the GMM. The regularisation term is required to inhibit the creation of ker-
nels with large covariance values and large weights. Such kernels potentially
lead to accurate fits with the centre of the kernel being outside of the actual
cloud of characteristics.

To simplify the selection of R, i.e. to find a value that is valid for any
distribution, the density values of the characteristics are divided by the es-
timate of the total integral, i.e. the estimated total number of fragments Ñ
from Equation (3.12), converting nxxx into an approximation of a probability
density function, i.e.∫

RD

nxxx

Ñ
dDxxx =

1

Ñ

∫
RD

nxxx dDxxx =
N

Ñ
≈ 1 (4.12)

As such, both, CC and CR defined in Equation (4.11), remain nearly constant
independent of the value of N . Thus, a R that works for N = 106 fragments
works also for N = 103 fragments. Note that the optimised kernel weights
must be multiplied by Ñ to obtain the correct density distribution. If the
number of fragments estimated from the model

N̂ =

∫
RD

n̂xxx dDxxx =

K∑
k=1

πk (4.13)
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is very different from Ñ , that either means that the fit is not accurate, or
that the peak of the distribution lies close to the re-entry altitude, as shown
for the example depicted in Figure 4.1.

The optimal parameters, ΘΘΘ∗, are the ones minimising the cost function

ΘΘΘ∗ = arg min
ΘΘΘ

cΘΘΘ|YYY (4.14)

The optimisation problem is bounded in kernel weights, πk > 0, and in the
diagonal of the covariances, diag(ΣΣΣk) > 0, increasing the complexity of the
optimisation. Instead, the cost function can be optimised in logarithmic
weights, κκκ, and lower triangular matrices, LLL, defined as

κk = lnπk ΣΣΣk = LLLkLLL
T
k (4.15)

As such, the parameters are unbounded. Given that the derivatives of the
cost function with respect to its parameters can be easily calculated (see
Appendix B.5), a wealth of optimisation schemes becomes applicable.

A suitable optimisation method to fit the GMM surrogate model to the
scattered cloud of is the memory limited version of the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) algorithm (Nocedal and Wright, 2006, Chapter 6.1).
It is an implementation of the Quasi-Newton method, that instead of calcu-
lating the expensive Hessian analytically at every optimisation step main-
tains its approximation using gradient information only. More information
about BFGS and various other optimisation methods and their benchmark-
ing are given in Appendix E.

4.3 Reference hypersurface

The GMM is a universal density function approximator, i.e. as K →∞, any
distribution can be represented with it. However, the number of parameters
to be fitted grows linearly with K, hence, keeping K low ensures a fast
convergence of the optimisation routine.

For the modelling of evolving fragmentation clouds, three different causes
lead to distributions that do not resemble normal distributions or sums
thereof. First, the initial fragmentation cloud, following an explosion or
collision, can be of any shape. According to the NASA SBM, the initial
distribution both in ∆v and A/m are given as log-normal distributions.
Second, the transformation from Cartesian coordinates to a subset of Kep-
lerian elements can introduce bounded distributions. E.g. an explosion of
an object in a circular orbit produces the typical V-shape distribution in a
and e present in Figure 2.7. An elegant way to address this is to convert the
distribution into other phase space variables, such as one defined relative to
the apogee radius, rp, and the perigee radius, ra, in Figure 2.9. However,
such a phase space cannot always be found, especially for evolving fragment
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4 Continuum interpolation

clouds. Third, the dynamics are non-linear and linear approximations are
not applicable for long-term propagation. Thus, even an initially normally
distributed fragmentation cloud will eventually get distorted.

Here it is proposed to use hypersurfaces with which a suitable relative
phase space for the fitting is defined. The reference hypersurface is defined
through samples. These samples are mapped from the initial characteristics
upon the initially analytically defined hypersurface. The reference hypersur-
face samples are propagated alongside the characteristics and subsequently
interpolated to obtain the reference hypersurface.

An example of an evolving distribution using a reference hypersurface
is given in Figure 4.3 for a two-dimensional distribution. The initial dis-
tribution in Figure 4.3a is obtained by sampling the breakup model for an
explosion of an object in circular orbit. The distribution, shown in rp and ra,
shows clear boundedness in both directions. This follows from the fact that
no fragment can have a perigee above or an apogee below the initial ra-
dius, r0. The characteristics are propagated subject to atmospheric drag,
leading to a decrease in rp and ra and distorting the distribution as is de-
picted in Figure 4.3b. It would be hard to fit a GMM to any of those
distributions because of their non-smooth boundedness and their logarith-
mic distribution. Instead, a reference hypersurface is introduced to obtain
the same samples in a new phase space, more suited for fitting the GMM.
The reference samples defining the hypersurface are introduced by mapping
the initial characteristics to ra = r0 and, separately, rp = r0 (Figure 4.3c),
and propagated to the same epochs as the characteristics (Figure 4.3d). The
relative phase space

ξp = log10 (r0 − rp) (4.16a)

ξa = log10 (ra − r̂a(rp)) (4.16b)

where r̂a is the reference hypersurface interpolated from the reference sam-
ples reveals a well-behaved fragmentation cloud distribution which can be
fitted effortlessly at any epoch (Figures 4.3e and 4.3f).

Forward and backward transformation of the phase space density still en-
ables the evaluation of the density in the original phase space. However, the
introduction of the reference hypersurface comes with a drawback. The final
distribution is not available in a purely analytical fashion but requires the
interpolation of reference samples. Theoretically, also the reference hyper-
surface could be obtained through a parametric fit of the samples, enabling a
fully analytical surrogate model. However, this would add more complexity
to an already complicated procedure.

The introduction of reference hypersurfaces is useful for bounded initial
conditions. Fragmentations close to the perigee and close to the apogee
can be fit more easily with reference samples near the perigee and apogee,
respectively. For long-term propagation of highly eccentric orbits, the non-
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Figure 4.3: Initial (left) and propagated (right) characteristics (top), hyper-
surface samples (centre), and relative phase space fits (bottom).
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linearities become very strong but can be mitigated by introducing a hyper-
surface within the initial scattered cloud of characteristics. An example of
such a case is given in Section 6.1.4.

4.4 Validation methods

Two methods are presented here to validate the interpolation of the phase
space density from a scattered cloud of characteristics. The first validation
method compares the density estimate to observations not used during the
fitting. For this, a validation set of Ns = 104 characteristics is sampled
from the initial condition. It is propagated forward in time to the same
snapshots as for the fits. Hence, a true value of the density is available
for comparison with the approximations obtained from the surrogate model.
For each characteristic at each snapshot, the relative error is calculated as

εn =
n̂xxx − nxxx
nxxx

(4.17)

where (xxx, nxxx) is the validation set and n̂xxx is the fitted surrogate model eval-
uated at the validation sample point, xxx. Inspection of the quantiles of

ε
(j)
n , j = 1, · · · , 104 over the full validation set allows to draw conclusions

about the quality of the fit.
A second validation is performed following the Monte Carlo approach,

using Ns = 106 initial samples. The sample density for comparison is ob-
tained through binning, as discussed in Section 2.6, performed in the fit
space. This allows the estimate obtained to converge with a comparatively
small number of samples. The bins are centred around a few validation char-
acteristics representing a wide range of density values, from the minimum
to maximum, logarithmically spaced in the density value.

The application of validation methods is performed here for a single
fragmentation evolution example in three dimensions. More scenarios, each
validated according to the first validation technique outline here, are pre-
sented in Chapter 6. Validation through binning is not performed for these
D ≥ 3 cases, as the number of required samples to obtain convergence in
the estimate exceeds the computational resources at hand. The characteris-
tics and hypersurface samples were propagated, and the fits performed, on a
parallelised computer architecture. The setup consisted of 4 Intel R© Xeon R©
E5-4620 v4 Central Processing Units (CPUs), with a total of 40 cores. The
propagation of Ns = 106 samples requires nearly 4 hours even on the paral-
lelised setup.

The simulated fragmentation is a rocket body explosion, modelled with
the NASA SBM, on a circular orbit at r0 = 7200 km. A normalised phase
space density is used, i.e. the distribution initially defines a probability
density function. Integration of the characteristics is performed considering
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atmospheric drag only in the phase space, xxx = (a, e, A/m). The target
phase space for the fitting

ξp = log10 (r0 − a(1− e)) (4.18a)

ξe = log10 (e− ê(ξp, χ)) (4.18b)

χ = log10 (A/m) (4.18c)

is defined relative to a two-dimensional hypersurface, ê, which is obtained
from hypersurface samples through a cubic spline interpolation.

The selection of the number of characteristics, C, and hypersurface sam-
ples requires careful consideration. As a rule of thumb, twice as many
characteristics as number of parameters, Np, to be fitted, are required, i.e.
C > 2Np. As parts of the characteristics, following the trajectories of regu-
lar fragments, re-enter during the propagation, the number of characteristics
available at later stages cannot be known initially. Here, C0 = 1000 initial
characteristics are sampled and propagated for ∆t = 15 years and collected
in 181 monthly snapshots. After 15 years, C = 186 characteristics remain,
the rest have re-entered. The fits at each snapshot are performed using a reg-
ulariser of R = 10−2 and K = 8 kernels, corresponding to Np = 80 fit param-
eters. The hyperparameters, R and K, are found through cross-validation
and valid for any of the snapshots. The characteristics are propagated along-
side 2C0 = 2000 hypersurface samples, obtained through mapping of the
characteristics to the initial radius, r0, on the perigee and apogee radius.
The propagation of the characteristics and reference samples is performed
within 2 minutes on the parallelised setup. The optimisation routine termi-
nates if the new cost function improves less than a relative tolerance of 10−5

compared to the previous iteration. On average, the Np = 80 parameters
are fit to each of the 181 snapshots in 3.1 s. Hence, the fitting requires 14 s
on the parallel setup. The total process of propagating and interpolating
the density takes 2.25 minutes, outperforming the Monte Carlo approach in
terms of computational time by two orders of magnitude.

The initial and final distribution of the characteristics, given in the fit
space and including the approximation from the surrogate model, are pre-
sented in Figure 4.4. Each figure shows a one-dimensional representation
of n as a function of each variable in the diagonal. The value of n̂ in orange
is superimposed on the true value of n in blue. The off-diagonal sub-figures
show a two-dimensional representation of the scattered characteristics and
the fit as a contour plot. The centres of the kernels are marked with a cross.
Through visual inspection, the fits seem accurate for both snapshots and for
any density regime.

Figure 4.5 shows the percentiles of the errors as a function of time since
the fragmentation, ∆t. It shows that 50% of the errors (between q25% and
q75%) remain within an error range of −13% and +7%. The 80% from q10%

and q90% remain between −33% and +22%. The upper percentile, q95%,
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(a) Initial characteristics right after the fragmentation.
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(b) Characteristics ∆t = 15 years after the fragmentation event.

Figure 4.4: Evolution of a fragmentation cloud in the phase space suitable
for fitting. Of the initially C = 1000 characteristics, only C = 180 remain
after ∆t = 15 years of propagation.
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Figure 4.5: Evolution of the relative fitting error percentiles. Due to the
underestimation of small density regions, the relative error profile is biased.

grows steadily from an initial 12% but remains below 40% for all snapshots.
The lower percentile, q5%, grows slowly at first from initially −20% to −30%
after ∆t = 7.5 years, but then starts to grow faster. Still, |q5%| remains
below 60% for all snapshots. Hence, despite a bias towards underestimating
the true density, the surrogate model represents the underlying density well.

To understand where the bias comes from, a new set of Ns = 103 val-
idation characteristics is propagated to the final snapshot. Additionally,
its mapped values are propagated as hypersurface samples. Figures 4.6a
and 4.6b compare the new validation characteristics against the original fit,
using the hypersurface samples mapped from the fit characteristics, and the
ones mapped from the validation characteristics, respectively. In Figure 4.6a
a few validation characteristics hover above the distribution seemingly as
outliers. They are not present in Figure 4.6b. This indicates that the ref-
erence hypersurface is not accurate across the full domain, a consequence
of re-entering hypersurface samples. Another observation is that charac-
teristics far from the peak of the distribution, i.e. with low densities, are
underestimated given either hypersurface, leading to the bias discerned in
Figure 4.5. What about the outliers?

Figure 4.7 shows the comparison of the estimate from the surrogate model
against the true density value from the validation set and the estimate from
the Monte Carlo sampling. Four snapshots at ∆t = 0 years, 5 years, 10 years
and 15 years are shown. The bin sizes are varied with the number of bins, Nb,
i.e. a large Nb corresponds to a small bin size and vice-versa. The fitted
density from the surrogate model is integrated over the bin size, hence it
changes with increasing volume. Note that from the initially drawn 106

samples, more than 6 × 105 re-enter or escape directly, leaving just under
Ns = 940000 samples remaining for the initial snapshot. For the first three
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Figure 4.6: Snapshot of the validation characteristics at ∆t = 15 years
(blue), and its comparison to the surrogate model (orange).
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snapshots, the true and fitted density values overlap nearly perfectly. For
large enough bins even the Monte Carlo approach converges to the same
values, thanks to the selection of the fit space being optimal for discretisation.
However, estimates in low density regions remain inaccurate.

More interesting is Figure 4.7d where a single validation characteristic
with the maximum density value corresponds to one of the outliers in Fig-
ure 4.6a. However, the density estimated through the Monte Carlo approach
converges on the value given by the surrogate model. This observation in-
dicates that the inaccuracies due to the hypersurface are highly localised
and averaging over even a small region around such inaccuracies results in
the correct value. In summary, except for very small density regions, the
surrogate model performs well both against true values and against Monte
Carlo. In addition, it outperforms the Monte Carlo approach in terms of
computational time by two orders of magnitude. This shows the potential
of the proposed fitting method to be an accurate technique for the evolution
modelling of fragmentation clouds. However, it cannot be concluded that
the errors will always remain bounded within similar bands for any frag-
mentation geometry or dynamical model. Thankfully, an easy and efficient
way of assessing the accuracy of the surrogate model is available through
the sampling of validation characteristics.

In this chapter, a way of interpolating the density from a cloud of scat-
tered characteristics was presented. Several different density estimation tech-
niques and methods were discussed. A GMM surrogate model was selected
to be fitted through regression. It was shown to be a promising method
for fragmentation cloud interpolation and facilitating interpretation of the
distribution. Different optimisation schemas, from steepest descent to quasi
Newton methods, were benchmarked, allowing to find a method to quickly fit
the surrogate model. The concept of reference hypersurfaces was introduced
to tackle the problem of non-smooth, bounded, and non-linear distributions.
Finally, an efficient method of validating the resulting surrogate model was
presented. The fragmentation propagation and interpolation method is im-
plemented in a software suite, presented in the next chapter.
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Figure 4.7: Comparison between exact density (dotted, crosses), the sur-
rogate density estimate (solid, pluses) and the density estimate obtained
through binning of the Ns samples (solid), for selected characteristics
(coloured).
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Chapters 2 to 4 contain the theory behind the continuum approach used
to simulate the evolution of a fragmentation cloud in orbit. Here, the im-
plementation of the theory in the form of the Starling suite is presented.
The suite, estimating evolving continua subject to non-linear dynamics, is
being developed at the Politecnico di Milano and funded by the COMPASS
European Research Council project and ESA.

The name Starling is inspired by the murmurations of starlings, a spec-
tacle of nature where millions of birds fly together in perfect synchrony,
seemingly as one ever-changing continuum (see Figure 5.1). Starlings have
the capability to react and change their direction based on their immediate
surroundings. Similarly, solving the continuity equation using the method
of characteristics – the core of the Starling continuum propagation – can
consider actuation based on the current density value of each characteristic
curve.

The suite itself is designed as a generic partial differential equation solver.
I.e. the propagation and fitting routines are not restricted to orbital dynam-
ics nor space debris. Instead, the force model is incorporated through a fixed
but generic interface allowing to plug in any dynamics. Any initial condition
can be considered through yet another interface describing a density distri-
bution that can be sampled for characteristics. As such, it is applicable to
a wide range of problems involving the solution of the continuity equation.
The implementation of the fragmentation model and the calculation of the
spatial density and the collision probability are separate modules.

The structure of Starling is presented in Section 5.1. Section 5.2 intro-
duces the interpreter class which enables the software suite to make sense
of its data. Finally, Section 5.3 discusses the definition of the interfaces, the
configuration and the data files. Note that parts of this chapter are adapted
from (Frey et al., 2019a)1.

1S. Frey, C. Colombo, and S. Lemmens. Application of density-based propagation to
fragment clouds using the Starling suite, In Proceedings of the 1st International Orbital
Debris Conference, 2019.
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Figure 5.1: Murmurations of starling birds recalling an ever-changing con-
tinuum. Image credit: Fayez Nureldine/AFP/Getty Images.

5.1 Structure

Starling is written in the high-level and general-purpose Python program-
ming language (Python 3.7, Python Software Foundation, 2020). It makes
use of object-oriented programming and is highly modular. The execution
of the programme is performed through a command-line interface and input
files. The computationally expensive tasks are performed using the NumPy
and SciPy scientific computing libraries, which utilise compiled C and For-
tran libraries (Oliphant, 2006; Virtanen et al., 2020). High computational
efficiency is achieved through vectorisation, using NumPy structures and
functions, and parallelisation, using the multiprocessing package.

An overview of the process chain of Starling is shown in Figure 5.2. It
can be split into three independent parts: sampling of the characteristics, the
propagation of the continuum and the model fitting routine. The separation
of the processes decreases the complexity of the program. However, the loop
could also be closed through backpropagation. If only a few characteristics
remain, the operator might choose to sample the fitted model. The values
of the sampled characteristics are updated through integration backwards in
time. Such a procedure allows to create samples where most of the contin-
uum remains, which is not known a-priori. The closed-loop process chain,
albeit already implemented, is not yet at an operational maturity.

The initial distribution, e.g. the NASA SBM, the integrator, e.g. PlanO-
Dyn, and the surrogate model, e.g. a GMM, are incorporated in a modular
fashion through interfaces (see Section 5.3). Hence, different initial condi-
tions, dynamics or models can be explored. Each of the sub processes is
controlled through JavaScript Object Notation (JSON) configuration files.
Such files are easy and safe to read for humans and computers alike. The
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Sampling
characteristics

Continuum
propagation Model fitting

Distribution Integrator Distribution{} {} {}

csv csvcsvcsv

Figure 5.2: Schematic overview of the process chain implemented in Starling.
The initial condition, integrator and model distribution can be interfaced
with any program or definition.

processes communicate among each other using Comma-Separated Values
(CSV) files, each of them representing snapshots of the characteristics – or
the hypersurface samples – in time. Giving meaning to the snapshot files is
enabled through the interpreter class, explained in more detail in the next
section. The output of the fitting process is, again, a JSON file. Note that
the initial condition is given in a single CSV, while multiple propagated
snapshot files, at epochs defined by the user, are passed to the model fitting
module that makes use of parallel computing.

The resulting fits can be used for post-processing. Graphical representa-
tions of the results, e.g. Figure 4.4, are enabled through the Matplotlib
library (Hunter, 2007). Spatial density and number of impacts are com-
puted and estimated through an additional package, which is an extension
to Starling. The code documentation is generated automatically from the
source code using Doxygen (van Heesch, 2018). Each method is commented
detailing purpose, input arguments, return values and types and optional
information.

5.2 Interpreter

Whenever the snapshot files are loaded, or saved, they pass through the in-
terpreter class. Each of the three sub processes shown in Figure 5.2 have
access to the interpreter. Next to simple loading and storing tasks, the in-
terpreter oversees the transformation of the characteristics, i.e. the phase
space and its density, into different phase spaces, e.g. for fitting or plotting.
This includes calculating relative spaces through consideration of hypersur-
face samples. It also provides the possibility of adding constants that are
required for the integrator but are not part of the phase space. Lastly, it en-
ables to put a label on each dimension of the phase space, which is important
for plotting purposes.

To make the interpreter impartial towards any problem definition, it
is defined through a JSON configuration file, containing information that
describe the data. Symbolic mathematics, enabled through SymPy (Meurer
et al., 2017), eases the exploration of new phase spaces without the need of
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5 The Starling suite

analytically deriving the transformation of the density. An example for a
two-dimensional interpreter configuration file is given in Figure 5.3.

Each interpreter configuration file consists of the following keywords:
data, states, weight, features and variables. If one or multiple hypersurfaces
are present, they are defined through an additional surfaces keyword. The
data describes the full data set, which is required for the integrator routine,
i.e. it is a mix of states relevant for the phase space derivation and default
values. E.g. the inclination, required by the integrator, might not be needed
to define the phase space, as it is assumed constant. The value describing the
density is fixed via the weight keyword. The phase space is defined with the
features, whose relationship with the states is given in the variables section.

Each variable is described through a value or a default. E.g. in Figure 5.3,
the perigee radius, rper, and apogee radius, rapo, are defined through the
semi-major axis, sma, and eccentricity, ecc, and vice-versa. Upon reading
the data, the interpreter calculates the perigee and apogee radii and auto-
matically transform the density according to Equation (2.10). Upon storing
the snapshots, the inverse transformation is performed. Default values, such
as the area-to-mass ratio, amr, are defined directly in the configuration file
too. Note that the other Keplerian elements required by the propagator
are not listed to increase readability of the figure. Each variable is further
named through the variable and unit keywords, used for plotting purposes
only. Note that the snapshot CSV files contain the states. Any feature space
can be defined, the only restriction is that the feature space is of the same
dimensionality as the states.

The surfaces are defined through a dependent feature and one or mul-
tiple independent features. Further keywords can be passed describing the
interpolation method and its parameters. Subsequent processing of the data
is performed as a recursive application of another layer of interpreter. The
new states are the independent features and the new dependent features de-
fined relative to the hypersurface. They and the new weight are transformed
again into the new features, according to the rules set in the variables. In the
given example, only one relative feature, drapo, is present dependent on the
single feature rper only. The relative feature is subsequently transformed
into the logarithmic xiapo. The recursive loop is currently restricted to one
level of depth only. However, this restriction could be lifted easily.

5.3 Interfaces

The sampling of the characteristics from a distribution is trivial if the cumu-
lative distribution function is available. If not, MCMC sampling methods,
such as Metropolis-Hastings introduced in Section 3.2, can be employed.
Hence, the minimum requirement for the sampling of the characteristics
is that the distribution provides the probability of each sample. A direct
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1 {

2 "data": ["sma", "ecc", "amr", "dens"],

3 "states": ["sma", "ecc"],

4 "weight": "dens",

5 "features": ["rper", "rapo"],

6 "surfaces": {

7 "interpolation": [{

8 "dependent": "rapo",

9 "independent": ["rper"],

10 "method": "cubic"

11 }],

12 "states": ["rper", "drapo"],

13 "weight": "dens",

14 "features": ["rper", "xiapo"]

15 },

16 "variables": {

17 "sma": {

18 "value": "(rper+rapo)/2",

19 "variable": "$a$",

20 "unit": "m" },

21 "ecc": {

22 "value": "(rapo -rper)/(rper+rapo)",

23 "variable": "$e$",

24 "unit": "$-$" },

25 "amr": {

26 "default": 1.0,

27 "variable": "$AMR$",

28 "unit": "m$^2$/kg"},

29 "dens": {

30 "variable": "$n$",

31 "unit": "m$^{-1} \\log_ {10}$(m)"},

32 "rper": {

33 "value": "sma*(1-ecc)",

34 "variable": "$r_p$",

35 "unit": "m" },

36 "rapo": {

37 "value": "sma *(1+ ecc)",

38 "variable": "$r_a$",

39 "unit": "m" },

40 "drapo": {

41 "value": "10** xiapo",

42 "variable": "$\\ Delta r_a$",

43 "unit": "m"},

44 "xiapo": {

45 "value": "log(drapo , 10)",

46 "variable": "$\\ xi_a$",

47 "unit": "$\\log_ {10}$(m)"}

48 }

49 }

Figure 5.3: Code snippet of interpreter configuration for a two-dimensional,
relative features space.
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Figure 5.4: Interfaces of the distribution and integrator classes. For the
distribution some methods are optional depending on the use case.

method to sample the distribution is preferred, however, as it is faster and
more accurate than Metropolis-Hastings. Figure 5.4 shows the methods that
are required for the interfacing of distributions and integrators. Any of the
distributions is a potential initial continuum.

For the fitting routine, the distribution needs to provide handles to get
and set the optimisation parameters. During each evaluation of the cost
function, the derivative of the distribution is required to calculate the gradi-
ent and thus the search direction. The second derivative of the distribution
with respect to its parameters is not listed here as only an estimate of the
Hessian is maintained rather than evaluated exactly. Currently, only the
normal distribution and the GMM provide the methods required for optimi-
sation. Still, even the NASA SBM could be extended such as to re-fit it to
newly available data.

The parameters for the optimisation routine are set via a configuration
file. It contains information about the sample pruning, the hyperparameters
and the optimisation method. Additionally, the covariances of the kernels of
the GMM can be restricted to be diagonal. An example fitting configuration
file is given in Figure 5.5a. The optimisation can be run in parallel for
different snapshots given multiple CPUs.

The integrator class simply contains one function: integrate. Note that
the integration does not only entail the evolution of the phase space, but
the extended phase space, i.e. including the density. Additional parameters
such as the force model settings are passed with keyword arguments during
initialisation of the class. The settings are integrator specific and specified
via JSON configuration files.

As of now, only one propagator – PlanODyn – is interfaced with Star-
ling. PlanODyn is written in the Matlab programming language and envi-
ronment (MathWorks, Inc., 2020). The class instance utilises the Matlab
engine Application Programming Interface (API) for Python. How to prop-
erly set up the API is explained in the code documentation. A snippet of a
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1 {

2 "worker": 40,

3 "samples": {

4 "prune":1e-5

5 },

6 "fit": {

7 "nkernels": 8,

8 "regulariser": 1e-2,

9 "method": "L-BFGS -B",

10 "jac": true ,

11 "hess": false ,

12 "diag": false

13 }

14 }

(a) Optimisation configuration.

1 {

2 "worker": 40,

3 "intpar": {

4 "jacobian": true ,

5 "t0": 0.0,

6 "tf": 3.15576e9 ,

7 "dt": 7889400.0 ,

8 "solver": 113,

9 "reltol": 1e-9,

10 "abstol": 1e-12,

11 ...

12 },

13 "physpar": { ... }

14 }

(b) PlanODyn configuration.

Figure 5.5: Examples of Starling configuration files.

1 # First line: time [s], total integral

2 # Following lines: a [m], e [-], n

3 0.00000000e+00 ,9.84577618e -01 ,0.00000000e+00

4 7.19657436e+06 ,5.35524603e -04 ,4.28024342e-03

5 7.18935665e+06 ,1.48892948e -03 ,1.74265701e-02

6 7.18851325e+06 ,1.66857467e -03 ,6.10812587e-03

7 7.19725275e+06 ,1.12085522e -03 ,1.77279593e-03

8 7.21592628e+06 ,2.21165399e -03 ,2.54483805e-02

9 ...

Figure 5.6: Examples of a snapshot data file for a two-dimensional case.

PlanODyn configuration file is shown in Figure 5.5b, containing the integra-
tion and physical parameters. The number of workers tells PlanODyn how
many CPUs can be used.

The snapshot files contain all the remaining characteristics at a given
epoch. It consists of a short comment section, with information about the
data extracted from the interpreter. The first line contains the epoch and
an estimate of the total integral estimated with Equation (3.12). From
the second line onward, it describes the phase space and density of the
characteristics. An example of a snapshot file is given in Figure 5.6. The
hypersurface sample file follows the same format with the last density row
set to zeros. Following the same format allows to use the interpreting and
plotting routines developed for the characteristics also on the hypersurface
samples.

In this chapter, a software suite combining the techniques developed in
this doctoral thesis was presented. Thanks to its generic implementation, it
can be applied to many different problems requiring solving the continuity
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equation in any dimension. The treatment of phase space densities through
symbolic mathematics facilitates the exploration of many target spaces by
simply rewriting a configuration file. Finally, given the theory and the soft-
ware suite, it is time to make use of it. The next chapter shows applications
of Starling to scenarios in various dimensions.
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Together with the theory and the software suite, the cloud continuum evolu-
tion model can finally be applied to ever more complex orbit geometries and
force models. Section 6.1 shows examples of fragment cloud evolutions in
three-, four-, five- and six-dimensional phase spaces covering a wide range of
eccentricities from LEO to the Geostationary Transfer Orbit (GTO). Once
the evolution of the fragment cloud is known, products can be derived. Sec-
tion 6.2 shows how the evolution model can be used to calculate the spatial
density and the collision probability of the fragmentation cloud with other
resident space objects in any orbital regime.

These examples are just a small subset of all the possible applications
of the method. Other uses of the fragmentation cloud evolution method
are parent identification, i.e. employing backpropagation of a cloud to
pinpoint its origin (Heard, 1976), estimating the distribution and risk of
re-entering objects (Trisolini and Colombo, 2019), rate current and future
missions according to their hazard potential for space debris mitigation pur-
poses (Letizia et al., 2019), or find optimal spacecraft attitudes to avoid
incoming space debris. The method is not only applicable to fragmentation
clouds, but can be applied to any distribution and uncertainty propagation
problem, such as observation uncertainties in initial orbit determination,
manoeuvring uncertainties, asteroid deflection, etc. Note that parts of this
chapter are adapted from (Frey et al., 2020)1.

6.1 Fragmentation cloud evolution

Five different scenarios are modelled based on three fragmentation cases,
selected from NASA (2018). The first case, a Delta 2nd stage explosion,
occurred in 1977 due to stored energy from residual propellant. It resided on
an orbit spanning nearly the full LEO, from hp = 535 km to ha = 2025 km.

1S. Frey, C. Colombo, and S. Lemmens. Evolution of orbital fragmentation cloud via
continuum and surrogate modelling. To be submitted to the Journal of Guidance, Control,
and Dynamics in September, 2020.
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Table 6.1: Orbit and location of fragmentation cases, extracted from (NASA,
2018). The international identifiers of the Delta stage, the Cosmos satellite
and the Ariane stage are 1977-065B, 1993-036A and 1988-040B, respectively.

Object a [km] e [−] i [deg] Ω [deg] ω [deg] f [deg]

Delta 2nd stage 7659 0.0973 29.05 95.7 42.2 107.9

Cosmos-2251 7166 0.0016 74.04 19.5 98.7 358.6

Ariane 3rd stage 24369 0.7163 7.03 328.1 254.5 143.3

Off the 177 fragments catalogued, 59 remained in orbit in 2018. The second
case is the Cosmos-2251 satellite collision with the Iridium 33 satellite taking
place in February 2009 (NASA, 2009). Originating from a nearly circular
orbit just below h = 800 km, 1076 of the 1668 catalogued fragments were
still in orbit 9 years later. The third case is the explosion of an Ariane 3rd

stage in GTO in 2002, orbiting from hp = 535 km to ha = 35445 km, coming
within less than 150 km of the GEO domain. The breakup, caused again
by on-board propellants, produced only 8 catalogued fragments, all of which
were still on-orbit in 2018. The three corresponding parent orbits, chosen
to span a wide range of eccentricities, are listed in Table 6.1. The breakups
are modelled according to the NASA SBM as a payload collision in the case
of the Cosmos-2251, and rocket body explosions for the other two cases.

The selection of the integration phase space, xxx, and hence its dimen-
sion, D, depend on the initial orbit configuration, timeframe of interest and
the considered force model as is discussed in Section 3.3. The first two scenar-
ios, based on the Delta explosion and the Cosmos collision, model long-term
evolutions subject to drag only. For all the scenarios, a non-rotating atmo-
sphere is considered. Hence, the phase space is reduced to (a, e, A/m). The
spreading of Ω and ω due to J2 is implicitly considered via randomisation.
It has no effect on the evolution of the density, n, as it induces a trans-
lation rather than resizing of an infinitesimal phase space volume. Thus,
propagation can be performed without considering J2.

The third scenario is an extension of the second scenario from long- to
mid-term evolution, i.e. the dependence on Ω is considered by propagation
of the characteristics subject to drag and, explicitly, J2. The dependence
on ω is not considered, as it is not well defined given the nearly circular
parent orbit. Randomisation of ω is achieved at the point of fragmentation,
or shortly thereafter.

The fourth and fifth scenarios are based on the Ariane explosion. As the
cloud originates from a parent object in GTO, randomisation of Ω and ω
cannot be assumed to occur in a few months or years only. The force model
of the fourth scenario is considering drag and J2. Hence, the inclination
remains constant and the phase space is (a, e, Ω, ω, A/m). Given the orbit,
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Table 6.2: Considered scenarios. The phase space is dependent on the initial
orbit, and the time-frame and force model considered.

Case Timeframe Force model Phase space

Delta long-term drag (a, e, A/m)

Cosmos long-term drag (a, e, A/m)

Cosmos mid-term drag, J2 (a, e, Ω, A/m)

Ariane mid- to long-term drag, J2 (a, e, Ω, ω, A/m)

Ariane mid- to long-term drag, J2, 3BP, SRP (a, e, i, Ω, ω, A/m)

forces induced by 3BP of the Moon and Sun, and SRP cannot be ignored.
The fifth scenario is thus an extension of the fourth scenario, considering the
full force model and the variability of i. An overview of the five scenarios is
given in Table 6.2.

The scenarios are discussed and benchmarked in terms of accuracy and
computational efficiency. One of the great advantages of using the method of
characteristics is that it allows to validate the quality of the surrogate model.
By sampling and propagating an additional set of verification characteristics,
the density estimate obtained from the surrogate model can be compared
against the true density using Equation (4.17).

The results of each of the scenarios are presented following the same
structure. First, the scenario is repeated briefly. Second, the characteristics,
sampled from the NASA SBM, are shown as a function of integration phase
space, replacing A/m with χ = log10(A/m). Both, the initial and final
distribution, i.e. propagated to a certain epoch in the future, are presented to
highlight the non-linearities of the evolution. Third, the fit space, including
the definition of the reference hypersurface, as well as the hyperparameters
are introduced. Fourth, the characteristics used for the fitting and C0 =
1000 validation characteristics are compared to the approximated density
and presented in the fit space. Fifth, the evolution of the accuracy over
time is shown by comparing the approximated density values with C0 =
104 validation characteristics. Lastly, information about the computational
efficiency are given. The simulations are performed on a parallelised setup,
using 4 Intel R© Xeon R© E5-4620 v4 CPUs, with a total of 40 cores.

Note that for all the examples in this section, the density of a single frag-
ment, i.e. its probability, is depicted in the figures, rather than the density of
the continuum. To compute the fragment continuum, simply multiplication
with the total number of initial fragments needs to be performed.
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6.1.1 Delta stage explosion: LEO considering drag

This scenario describes the evolution of a fragmentation cloud stemming
from the Delta stage, i.e. on an initially eccentric orbit in LEO, and subject
to atmospheric drag only. The long-term evolution is modelled, hence a
three dimensional fit space, derived from a, e and A/m is considered. The
fragmentation takes place far away from the line of apsides. Hence, the initial
distribution in the subset of the Keplerian elements, shown in Figure 6.1a,
does not have the boundedness typical for clouds originating from circular
parent orbits. As for the example in Section 4.4, the diagonal sub-figures
show a one-dimensional representation of n as a function of each phase space
variable. The off-diagonal sub-figures show a two-dimensional representation
of the scattered characteristics. Their colour variations correspond to n, from
low (dark purple) to high (light green). Of the initially C0 = 1000 sampled
characteristics, 33 either re-enter directly, i.e. their perigee altitude is lower
than the radius of the Earth, or the ∆v raises their orbital velocities to above
the escape velocity, v∞, defined as (Vallado, 2013, Chapter 1.3)

v∞ =

√
2µ

r
(6.1)

and the fragments described by the characteristics directly escape from the
gravitational pull of the Earth.

Figure 6.1b shows the same characteristics propagated for ∆t = 25 years.
Only C = 141 characteristics remain, the rest – mostly the high A/m frag-
ments – have re-entered in the meantime due to atmospheric drag. In the
a − χ or e − χ sub figures, a tilting away from high χ fragments towards
smaller a and e can be observed. The a−e sub figure reveals that the dynam-
ics force the characteristics from an initially distributed cloud into a narrow
band. Even though fitting of the GMM in the Keplerian space would result
in a good fit for the initial distribution, it would fail to accurately capture
the propagated distribution.

Instead, the fit is performed in a more suitable target space

ζp = log10 (a(1− e)− (RE + ∆hre)) (6.2a)

∆e = e− ê (ζp, χ) (6.2b)

χ = log10(A/m) (6.2c)

where ∆hre = 100 km coincides with the stop condition of the propaga-
tions, i.e. the fragments are considered re-entered. Note that this is not
the only possible target space definition, but it was found to work well for
the problem at hand, as the definition of ζp helps in keeping the distribu-
tion compact. The reference hypersurface, ê, is found with a cubic spline
in the variables ζp and χ. The initial hypersurface samples are obtained by
mapping the initial characteristics into the parent eccentricity, i.e. ê0 = e0.
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(a) Initial distribution, with C = 967 characteristics, at ∆t =
0 years.

10−4

10−2

100

n

0.00

0.05

0.10

e
[−

]

7 8

a [km]×103

−1

0

χ
[l
o
g

1
0
(m

2
/
k
g
)]

0.0 0.1

e [−]

−1 0

χ [log10(m2/kg)]

(b) Final distribution, with C = 141 remaining, at ∆t = 25 years.

Figure 6.1: Characteristics in Keplerian elements for the Delta explosion
scenario.
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Instead of using the hypersurface to remove a boundary outside of the cloud
of initial characteristics, as discussed in Section 4.4, the hypersurface de-
fined here is defined within the cloud. As such, it reduces the non-linearities
accumulating over time, facilitating the fitting of the surrogate model. For
the fitting of the model, K = 8 kernels, corresponding to 80 fit parameters,
are used with a regulariser of R = 10−2. The fit is performed at quarterly
epochs, corresponding to 101 snapshots spanning the 25 years.

The characteristics used for the fit (in blue) and the corresponding den-
sity estimates from the surrogate model (in orange) at ∆t = 25 years are
shown in the target space in Figure 6.2a. In the off-diagonal sub-figures, the
density fit is projected into the two-dimensional spaces in terms of the Gaus-
sian kernel means (orange crosses) and estimated density (contour lines).
Two observations can be made. First, the non-linearities in the target space
are not present, as the hypersurface, itself propagated, absorbs the non-
linearities of the dynamics. Secondly, a good agreement between the esti-
mate and the characteristics is found.

That the surrogate model well approximates the true density distribution
is also evident in the good agreement between the validation characteristics
and the surrogate model presented in Figure 6.2b. Only towards the low ζp
domain, i.e. for characteristics close to re-entry, small inaccuracies are creep-
ing in, a consequence from only a few characteristics being present in that
high atmospheric density region.

Finally, the fit quality over all the snapshots is presented in the form of
quantiles of the relative errors in Figure 6.3. The errors remain bounded
between ±55% for the 5% and 95% quantiles, respectively. Half of the vali-
dation characteristics, from q25% to q75% remain within −14% to +7% for all
the snapshots. Hence, the surrogate model provides an accurate estimate of
the underlying true distribution, even if only few characteristics are present.
Increasing the number of fitting characteristics and especially hypersurface
samples would further increase the accuracy of the fit. The propagation of
the C0 = 1000 characteristics and equal number of hypersurface samples is
performed in less than 1 min. The average fit time for the 101 snapshots is
10.8 s, requiring about 30 s on the parallelised setup.

6.1.2 Cosmos-2251 collision: LEO considering drag

The second scenario models the long-term evolution of the Cosmos-2251
fragmentation cloud. As for the previous scenario, only perturbations due
to drag are considered. Hence, the integration phase space is identical to the
previous one with (a, e, A/m). The cloud is ejected from a parent object
on a nearly circular orbit. Thus, the initial distribution in the Keplerian
elements, given in Figure 6.4a, exhibits the typical v-shape in the a − e
domain. Of the initially drawn C0 = 1000, more than 300 characteristics
either re-enter within one orbit or escape, resulting in a cut-off of the v-shape.
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(a) A very accurate fit is achieved with the training characteris-
tics.
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(b) Also, the validation characteristics are in good agreement
with the fit.

Figure 6.2: Remaining characteristics in the fit space after ∆t = 25 years
for the Delta explosion scenario.
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Figure 6.3: Fit quality for the Delta explosion scenario over the ∆t =
25 years: 80% of the validation samples are accurately estimated within
±25% for most of the snapshots.

This is a consequence of the high energy involved in the catastrophic collision,
spreading the fragments into high eccentricity orbits. After ∆t = 25 years,
only C = 188 characteristics remain, the rest have re-entered. Especially
fragments with a < a0 have re-entered as is visible in Figure 6.4b.

The fit is performed in the target space

ξp = log10 (r0 − a(1− e)) (6.3a)

ξe = log10 (e− ê (ξp, χ)) (6.3b)

χ = log10(A/m) (6.3c)

where r0 = a0(1− e0) is the fragmentation radius. The reference hypersur-
face, ê, is acting as a boundary and obtained from the samples using a cubic
spline in ξp and χ. The initial hypersurface samples are found by mapping
the characteristics into rp = r0 and ra = r0, resulting in twice as many sam-
ples as characteristics. The given fit space is well suited to fit fragmentations
from circular or near-circular orbits, as it removes the boundedness of the
space. As before, K = 8 kernels and a regulariser of R = 10−2 are used to
fit 101 quarterly snapshots.

The fit characteristics used for the optimisation of the surrogate model
are presented in the fit space at ∆t = 25 years in Figure 6.5a. Visually,
the surrogate model seems to capture the underlying distribution well. The
model performs well too when compared to the verification characteristics
in Figure 6.5b. Using twice as many characteristics as optimisation param-
eters seems to be sufficient to prevent overfitting in the given phase space.
Quantitatively, the fit is accurate too, as is evident in Figure 6.6 showing
the fit quality. Half of all the density estimates between q25% and q75% al-
ways remain within −6% and +2%. Even the 90% between q5% and q95%
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(a) Initial distribution, with C = 689 characteristics, at ∆t =
0 years.
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(b) Final distribution, with C = 188 remaining, at ∆t = 25 years.

Figure 6.4: Characteristics in Keplerian elements for the long-term Cosmos-
2251 collision scenario.
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(a) Again, a very accurate fit is achieved with the training char-
acteristics.
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(b) As before, the validation characteristics are in good agreement
with the fit.

Figure 6.5: Remaining characteristics in the fit space after ∆t = 25 years
for the long-term Cosmos-2251 collision scenario.
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Figure 6.6: Fit quality for the long-term Cosmos-2251 collision scenario over
the ∆t = 25 years: again, 90% of the validation samples are accurately
estimated within −24% and +16% for all the snapshots.

remain within error bounds of −24% and +16%. Hence, the surrogate model
performs excellently.

The propagation of the characteristics and the hypersurface samples is
performed within 70 s. On average, each model is fitted within 2.3 s. On the
parallelised setup, the 101 surrogate models are fitted within less than 10 s.
The fast convergence rate and the high accuracy show that the fit space is
ideal to model such a distribution.

Generally, the continuum approach performs well for scenarios with drag
only and thus in fit spaces derived from a, e and A/m. This is true for any
parent orbit. As a rule of thumb, if fragmentation occurs close to the ap-
sides, a logarithmic relative space is required for the GMM to be accurately
fitted. In the case of a fragmentation from a (near-)circular parent orbit, two
logarithmic target spaces are required, as shown here. In case the fragmen-
tation occurs far away from the apsides, as shown in the previous example, a
target space defined relative to a hypersurface absorbing the non-linearities
is sufficient. Further simplifying the application of the method is the fact
that the hyperparameters, K and R, are robust and can be kept constant
for different scenarios, number of fit characteristics and geometries.

6.1.3 Cosmos-2251 collision: LEO considering drag and J2

The third scenario extends the previous example by one dimension to study
the mid-term evolution of the collision cloud. Next to atmospheric drag,
the spreading of Ω due to J2 is modelled in (a, e, Ω, A/m). Note that the
distribution is not modelled in ω because the parent orbit is nearly circu-
lar. Hence, ω is not well defined and randomised almost instantly after the
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fragmentation event. The initial characteristics are shown in Figure 6.7a.
Of the drawn C0 = 1500 fragments, more than 25% re-enter or escape di-
rectly, leaving only 1103 characteristics. The spreading in Ω is initially about
Ω0 ± 5 deg.

The characteristics are propagated for only ∆t = 1 year and shown in
Figure 6.7b. Only C = 841 characteristics remain. The most evident change
comes from the precession of Ω due to the oblate Earth. The Ω of the
fastest fragments revolve 2 times around Earth, the one of the slowest less
than 0.5 times. Simultaneously, the evolution of Ω is highly correlated in a
and e. Care needs to be taken to not prematurely declare randomisation in Ω.
Despite having fragments overtaking other fragments in Ω, randomisation is
not yet achieved as the overtaking takes place in different altitude regimes.

The fit is performed in the same target space as before but extended by
one dimension

ξp = log10 (r0 − a(1− e)) (6.4a)

ξe = log10 (e− ê (ξp, χ)) (6.4b)

∆Ω = Ω− Ω̂ (ξp, e, χ) (6.4c)

χ = log10(A/m) (6.4d)

where r0 is again the fragmentation radius. For this scenario, two hyper-
surfaces are required. The first is equivalently defined as in the previous
example. Note that the evolution of e is independent of Ω, hence ê does
not depend on it either. The second hypersurface, Ω̂, is obtained through a
quadratic RBF interpolation in ξp, e and χ. The initial hypersurface sam-
ples are found by mapping the characteristics into the initial Ω = Ω0. Again,
K = 8 kernels, or 120 parameters, are fitted at each epoch, using a regu-
lariser of R = 10−2. The fit is performed at 101 snapshots, equally spaced
over the year.

The characteristics used for the fit, and its surrogate model are shown
in the target space at ∆t = 1 year in Figure 6.8a. As in the previous ex-
ample, the hypersurfaces manage to absorb the non-linearities introduced
by the dynamics. A decent fit is achieved using the surrogate model with
K = 8 kernels only. Despite the spreading of Ω in Figure 6.7b, if consid-
ered as a function of a, e and A/m, the ∆Ω remains constant. However,
the hypersurface elongates over time, i.e. even small changes in the initial
condition eventually result in large changes in Ω.

A comparison using the validation characteristics in Figure 6.8b reveals
an issue with the definition of the hypersurface in Ω̂. The hypersurface,
spread over 1.5 revolutions, or 540 deg is required to map three dependent
variables into a narrow band of ∆Ω ± 25 deg. It does so insufficiently for
parts of the validation characteristics. This is also evident in Figure 6.9
comparing the estimates from the surrogate model against the validation
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(a) Initial distribution, with C = 1103 characteristics, at ∆t = 0 years.
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(b) Final distribution, with C = 841 remaining, at ∆t = 1 year.

Figure 6.7: Characteristics in Keplerian elements for the mid-term Cosmos-
2251 scenario. Note the different limits in Ω. Units: a [km], e [−], Ω [deg],
χ [log10(m2/kg)].
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Figure 6.8: Remaining characteristics in the fit space after ∆t = 1 year for
the mid-term Cosmos-2251 collision scenario. Units: ξp [log10(m)], ξe [−],
∆Ω [deg], χ [log10(m2/kg)].
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Figure 6.9: Fit quality for the mid-term Cosmos-2251 collision scenario over
the ∆t = 1 year: the fast spreading of Ω poses difficulties to the hypersurface
interpolation.
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Figure 6.10: Spatial distribution, not drawn to scale, of the probability of a
single fragment of the Cosmos-2251 collision cloud after ∆t = 1 year.
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characteristics. The 50% of the samples within q25% and q75% remain within
−22% and +12% relative errors. Instead, the lower and upper 5% come close
to ±100% relative error. This seems worse than it is. Given the exponential
decay of the underlying distribution, misplacing a fragment in ∆Ω by just
1 deg results in a median absolute error of 70% over all the fit characteristic.
So rather than giving wrong density values, it slightly misplaces them in Ω.

The shift is so small, it can hardly be discerned visibly. Figure 6.10 shows
the spatial density of the probability of a single object of the fragment cloud
at ∆t = 1 year for the continuum method and one obtained from sampling
with Ns = 106 instances. The density, covering the altitude domain from
RE + 100 km to RE + 2000 km, is not drawn to scale and split in half
to allow peeking into the domain. Note that the density derived from the
individual samples is subject to the same assumptions as the continuum
approach, i.e. randomisation in ω and M as well as a fixed i = i0. Distinct
layers can be discerned from the continuum approach corresponding to the
cloud crossing the revealed bins at ∆t = 1 year. The density obtained
through samples shows some of the same features, but they are harder to
discern. For statistical evaluations of the collision probability, the errors
in the displacement are not expected to result in erroneous probabilities.
However, this depends on the target orbit. E.g. analysis of target orbits
synchronised in the motion of Ω with the bulk of the cloud might result in
under- or overestimation of the collision probability.

The propagation of the characteristics and the hypersurface samples is
performed within less than 2 mins. On average, each snapshot is fitted within
5.3 s. The total fitting time thus requires less than 15 s on the parallelised
setup.

6.1.4 Ariane explosion: GTO considering drag and J2

This scenario shows the evolution of a fragmentation cloud from the Ariane
stage explosion in GTO. Contrary to objects in LEO, randomisation of Ω
and ω is slow and cannot be assumed to be completed after a few years
only. Here, only the simplified force model with atmospheric drag and J2

is employed, thus, variations in the inclination can still be ignored and the
integration phase space is (a, e, Ω, ω, A/m).

If integrated over the characteristic length, the NASA SBM is given as
a function of ∆vvv ∈ R3 and A/m ∈ R. The studied phase space, however,
is five-dimensional. The transformed initial condition is thus defined on
a four-dimensional hypersurface in the five-dimensional phase space. This
corresponds to a Dirac delta function, i.e. the distribution is zero anywhere
in the domain except on the hypersurface. It is not feasible to fit a GMM to
the Dirac delta function. Ideally, a fit space defined on the hypersurface was
used. A potential phase space suitable for this task is proposed as future
work in Section 7.2.
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6.1 Fragmentation cloud evolution

Instead, the initial distribution from the breakup model is extended into
a proper five-dimensional distribution. An additional uncertainty is intro-
duced in the position of fragmentation according to Equation (2.67). The
normally distributed uncertainty, of zero mean and standard deviation of
σr = 50 km, is introduced in the orbital plane in the direction perpendicu-
lar to the velocity vector, i.e. along the t̂-axis in the satellite frame, T . A
smaller displacement could be used, however, at the expense of an increased
number of required kernels during the fitting.

The initial distribution and the distribution after ∆t = 100 years are
shown in Keplerian elements in Figure 6.11. Of the initially sampled C0 =
2000 characteristics, 167 re-enter directly or escape. After ∆t = 100 years,
only 1176 characteristics remain. Initially, the distribution could be fitted
directly in the Keplerian space. However, after a few years, non-linearities
start to dominate the distribution, thus making a fit difficult. Additionally,
a linear dependence in Ω − ω can be observed. The fastest and slowest
fragments travel 140 and 23 times around Earth, respectively, in Ω, and 53
and 270 times, respectively, in ω.

The fit is performed in the target space

ζp = log10 (a(1− e)− (RE + ∆h)) (6.5a)

∆e = e− ê (ζp, χ) (6.5b)

∆Ω = Ω− Ω̂ (ζp, e, χ) (6.5c)

∆ω = ω − ω̂ (ζp, e, χ) (6.5d)

χ = log10(A/m) (6.5e)

The variable ζp is, as for the Delta scenario, logarithmic towards the re-
entry altitude to allow the many scattered fragments to be bundled together.
Three reference hypersurfaces, ê, Ω̂ and ω̂, are defined. The hypersurface
samples in ê are found by mapping the characteristics into the apogee radius
of the parent orbit, i.e. the sample perigee remains the same as the char-
acteristic perigee, and the sample apogee corresponds to the parent orbit
apogee. The samples for Ω̂ are defined analogously to the third scenario. No
additional samples are required for ω̂ as its hypersurface is built from the
same samples as for Ω̂. The initial hypersurface samples are set to ω = ω0.
The fits are performed using K = 16 kernels, corresponding to 336 parame-
ters, and a regulariser of R = 10−2. Yearly snapshots are fitted, resulting in
101 surrogate models.

The density estimates from the surrogate models and the characteristics
used for the fitting at ∆t = 100 years are shown in the target space in Fig-
ure 6.12a. As for the previous two examples, the non-linearities are largely
absorbed by the hypersurfaces. Hence, even a relatively small number of
kernels manages to achieve a decent fit. However, the hypersurface defined
in the angles suffers from the same inaccuracy as for the previous example,
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(a) Initial distribution, with C = 1833 characteristics, at ∆t = 0 years.
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(b) Final distribution, with C = 1176 remaining, at ∆t = 100 years.

Figure 6.11: Characteristics in Keplerian elements for the simplified Ariane
explosion scenario. Note the different limits in Ω and ω. Units: a [km],
e [−], Ω [deg], ω [deg], χ [log10(m2/kg)].

133



6.1 Fragmentation cloud evolution

101

n

−0.02

0.00

∆
e

−20

0

20

∆
Ω

0

20

∆
ω

5.5 6.0

ζp

−1

0

χ

−0.02 0.00

∆e

−20 0 20

∆Ω

0 20

∆ω

−1 0

χ

(a) A decent fit is achieved with the training characteristics.

101

n

−0.02

0.00

∆
e

−20

0

20

∆
Ω

0

20

∆
ω

5.5 6.0

ζp

−1

0

χ

−0.02 0.00

∆e

−20 0 20

∆Ω

0 20

∆ω

−1 0

χ
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Figure 6.12: Remaining characteristics in the fit space after ∆t = 100 years
for the simplified Ariane explosion scenario. Units: ζp [log10(m)], ∆e [−],
∆Ω [deg], ∆ω [deg], χ [log10(m2/kg)].
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Figure 6.13: Fit quality for the simplified Ariane explosion scenario over the
∆t = 100 years: the spread in Ω and ω pose difficulties to the hypersurface
interpolation.

evident in Figure 6.12b. Away from the zero ∆Ω or ∆ω, erroneous density
values are depicted. Again, the hypersurface requires to map a Ω spread
over 42000 deg and a ω spread over more than 78000 deg into the target
space which is defined over only a few degrees.

As in the previous example, the error is not so much in the density
estimation, but in the exact location of it along the nodes. The quantiles
depicting the fit accuracy is given in Figure 6.12a. The inaccuracies in the
hypersurfaces introduce large errors. For the first three decades, the fit is
accurate enough for a qualitative analysis of the evolution. Until there, 50%
of the estimates, from q25% to q75% remain between −43% and +5%. After
that, randomisation in the angles could possibly be considered.

The propagation of the C0 = 2000 characteristics and the 4000 hypersur-
face samples is performed within less than 3 mins. The average processing
time of the 101 snapshots is 41 s each, or about 2 mins in total on the
parallelised setup.

6.1.5 Ariane explosion: GTO considering full force model

For highly eccentric orbits, 3BPs and SRP should be considered. Here,
the previous Ariane explosion scenario is extended to consider the full force
model, i.e. atmospheric drag, J2, 3BPs from the Sun and Moon and SRP.
Note that the full force model now depends on the location of the Sun and
Moon, the evolution of the cloud is highly dependent on the fragmentation
epoch, set to be the 9 July, 2002 (NASA, 2018). The integration phase space
is (a, e, i, Ω, ω, A/m). Only a short propagation interval is considered as
the errors of the approximation grow quickly. To avoid the collapse of the
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6.1 Fragmentation cloud evolution

dimensionality, additional uncertainties in the position are introduced per-
pendicular to the velocity vector along in-plane and out-of-plane directions.
The uncertainties are modelled as normal distributions with zero mean and
standard deviations of σr = 50 km in each direction.

The initial distribution in Keplerian elements for C0 = 2500 sampled
characteristics (minus the 234 that re-enter or escape directly) is shown in
Figure 6.14a. The final distribution, at ∆t = 1 years, with its C = 1381
remaining characteristics is shown in Figure 6.14b. After just one year, and
given the lowly inclined orbit, the effects of 3BP and SRP are difficult to
discern (e.g. in the i−χ sub figure), as it only slightly affects the inclinations
for the fragments.

For the fitting, the same target space as for the previous scenario is
utilised, extended with the i-dimension. The hypersurfaces are also extended
to be functions of i

ê = ê (ζp, i, χ) Ω̂ = Ω̂ (ζp, e, i, χ) ω̂ = ω̂ (ζp, e, i, χ) (6.6)

However, in this scenario, the hypersurfaces are obtained through linear sim-
plex interpolation. Because of the additional perturbations, the quadratic
interpolation scheme induces larger errors than the linear one. The hypersur-
faces are not valid for long-term propagations because they miss some of the
dependencies. For the fitting, K = 20 kernels, corresponding to 560 param-
eters, are optimised using R = 10−2. Fitting is performed for 101 snapshots
equally distributed in time over the year.

The resulting density estimates at ∆t = 1 year for both, the fit charac-
teristics and verification characteristics, are shown in Figure 6.15. Contrary
to the previous cases, characteristics breaking out of the cloud can now be
discerned also with the fit characteristics. This is because the hypersurfaces
are not defined as a function of all its dependent variables, i.e. the charac-
teristics are defined relative to an insufficiently accurate hypersurface. The
optimisation procedure, however, is robust enough to converge to a decent
solution, as most of the fitting points, and thus the underlying distribution,
remain within a compact cloud.

The evolution of the quality fit can be seen in Figure 6.16, comparing
the estimates to the true density given by the verification characteristics.
The 50% of verification characteristics errors between q25% and q75% re-
main between −35% and +12% for the first quarter of the year but then
grow quickly towards the end of the propagation span. Especially the lower
quartile greatly underestimates the true density value at the verification
characteristics. Some of the characteristics are pushed out of the cloud due
to locally acting forces. If this local space is undersampled in terms of fit-
ting characteristics, the resulting surrogate model is not able to catch such
behaviour.

Another problem is the increase of the total integral over density ap-
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(a) Initial distribution, with C = 2266 characteristics, at ∆t = 0 years.
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Figure 6.14: Characteristics in Keplerian elements for the full Ariane explo-
sion scenario. Note the different limits in Ω and ω. Units: a [km], e [−],
i [deg], Ω [deg], ω [deg], χ [log10(m2/kg)].
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Figure 6.15: Remaining characteristics in the fit space after ∆t = 1 year
for the full Ariane explosion scenario. Units: ζp [log10(m)], ∆e [−], i [deg],
∆Ω [deg], ∆ω [deg], χ [log10(m2/kg)].
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Figure 6.16: Fit quality for the full Ariane explosion scenario over ∆t =
1 year: localised perturbations lead to inaccurate hypersurface definitions
and error growth.

proximation from the surrogate model. Over the course of the simulated
year, the integral remains nearly constant despite the apparent reduction
with re-entering fragments. The origin of the error in the total integral is
not entirely clear at this point. One possible explanation could come from
the forces acting locally, lead to branching out of some of the characteris-
tics. The model simply fits over parallel branches, ignoring lower density
regions in between. This theory is supported by the considerable part of the
verification characteristics where the model overestimates the true density.

The propagation of the C0 = 2500 characteristics and the 5000 hyper-
surface samples is performed within 3 mins. On average, the 101 snapshots
are fitted within 118 s each. However, some of the optimisation runs do not
converge properly as the fitting leads to near-singular covariances. A better
fit can generally be found through re-initialisation of the fitting routine.

Three final remarks conclude the part on the fragment cloud evolution.
Trying to understand the dynamics in six dimensions is challenging as the
phase spaces can only be studied in one dimensional and two-dimensional
projected subspaces. Correlations between multiple variables cannot always
be spotted. Therefore, it is important to start in low dimensions as presented
in this section. Once the dynamics is understood in three dimensions, and
appropriate hypersurfaces are defined, the next dimension can be considered.
Starling natively handles any dimensionality and is thus suitably equipped
for such a process chain.

The second remark is regarding automation. In three dimensions, in
spaces derived from a, e and A/m, it is easy to come up with a set of
rules for the target space and hypersurface depending on the fragmentation
scenario. For the higher dimensional cases, however, studying of different
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target spaces is required. Again, the proposed framework in Starling based
on symbolical mathematics simplifies the exploration of a large set of target
spaces. Nevertheless, automatically assigning target spaces depending on
the scenario is not yet possible.

Finally, the extension of the dimensionality into 5 or 6 dimensions is
tricky, because addition of an uncertainty in radial direction merely covers
the fact that the dimension of the distribution is close to collapsing. Fitting
of such a distribution is expensive and erroneous. Instead, a better approach
would be to model the distribution only in 4 dimensions, i.e. transforming
the three velocity and the area-to-mass ratio dependencies only. To recover
the dependency on the full orbital element set, the remaining elements can
be treated as dependent variables. As was shown above, Ω and ω can be
interpolated from the other elements, constituting the hypersurface on which
the 4 dimensional distribution itself is defined. This extension will be part
of a future work, as outlined in Section 7.2.

6.2 Collision probability estimation

Once the evolution of the fragmentation cloud is known, the spatial density
and the number of impacts can be estimated according to the method out-
lined in Section 2.4. No definition of a control volume, as is needed for the
Cube algorithm (see Section 1.3.2), is required because the density is known
at each point in space rather than estimated from deterministic instances.
Here, the collision probability is estimated for different target orbits with
the long-term Cosmos-2251 fragmentation cloud presented in Section 6.1.2.

The following figures are all weighted with the number of fragments, N ,
predicted by the NASA SBM for payload collisions. For catastrophic col-
lisions, the model suggests that the involved mass is the combined mass
of target and chaser. Here, the interest is on one of the fragment clouds
only, hence, the mass is set to be m = 900 kg corresponding to the mass of
Cosmos-2251 only (Kelso, 2009). Thus, the number of fragments released in
the collision from Cosmos-2251 and sized between 1 mm and 1 m is estimated
to be N = 2.2× 106.

The spatial density is calculated according to Equation (2.43), with an
additional integration over the area-to-mass ratio, A/m, or to speed up the
convergence of the integration, its logarithm to base 10, χ. The modelled
spatial density of the Cosmos-2251 fragments down to 1 mm is presented
in Figure 6.17 as of beginning of the year 2020, or ∆t = 11 years after the
event. The distribution is independent of the longitude, λ, as randomisation
in Ω is assumed. The peak of the density is found around h = 750 km at
high latitudes. The cloud is bounded by the parent inclination, i0 = 74 deg.
Of the initial fragments, 33%, or 0.73 × 106 fragments remain after ∆t =
11 years. Of the remaining fragments, about 75%, or 0.55 × 106 fragments

140



6 Applications

Table 6.3: Selected targets and their orbits at beginning of the year 2020.
The area, A, constitutes an average cross section. Sources: Space-Track
(2020); ESA (2020).

Name Int. Des. hp [km] ha [km] i [deg] ω [deg] A [m2]

Sentinal-1A 2014-016A 695 697 98.18 − 23.45

Proba-1 2001-049B 531 631 97.70 298.35 0.80

Ariane 5 2015-039C 254 34684 5.06 131.10 42.12

are found in LEO, the rest above. I.e. a collision in LEO also affects orbital
regimes above it.

Before studying the impact rates for different target orbits, an example
of the velocity distribution within the orbital plane (i.e. rotated around x̂
for i0 = 74 deg) at h = 750 km and θ = 0 deg is shown in Figure 6.18 at
the ascending node (u = 0 deg). The distribution for the descending node
is the same, as randomisation is assumed. The highest density corresponds
to near-circular objects at a = RE + h, corresponding to a circular velocity
of v = 7.48 km/s. Lower velocities are possible, however, the population
goes to zero for perigee heights below 400 km. The transparent part of the
figure includes such orbits and others that cross the Earth, i.e. are not feasi-
ble. Objects with high apogee altitudes, instead, are present and contribute
significantly to the collision probability with their increased velocities.

The studied target orbits, selected to cover a broad range in eccentricities,
are given in Table 6.3. Note that as the fragmentation cloud is assumed to
be randomised over Ω, ω and M , the corresponding values of the target
orbits are not required for the calculation of the impact rate. The impact
rate is calculated according to Equation (2.46) but in Keplerian elements,
and again, integrated over χ. A constant target cross-sectional area, A, is
assumed and given in Table 6.3. The impact rate for the three target objects
at ∆t = 11 years and as a function of the argument of latitude, u, is given
in Figure 6.19a.

Both, Sentinel-1A and Proba-1 are on orbits inclined higher than the
fragmentation cloud. Hence, close to the poles the satellites are outside of
the cloud and receive zero impacts. Just before crossing in or out of the
band, the fragment density and thus the impact rate is highest. The Ariane
5 stage, instead, always remains within the inclination band of the cloud.
Close to the perigee, the Ariane 5 goes so low that it enters a fragment free
region. Close to the apogee, the impact rate becomes tiny, but remains non-
zero, as few fragments are in such highly eccentric orbits. This nicely shows
the potential of the proposed method: the effect of an explosion in LEO can
be felt even at GEO altitudes.

Sentinel-1A collects the most impacts as it operates close to the peak
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Figure 6.17: Modelled spatial density of Cosmos-2251 fragments as of the
beginning of the year 2020, i.e. ∆t = 11 years after the fatal event, for
fragments down to 1 mm.
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Figure 6.20: Impact rates (solid) and number of impacts (dashed) from
launch in 2014, i.e. after ∆t = 5 years of the event, up to the year 2034.

density altitude. Averaged over one orbit, and extrapolated to one year, the
fragment rate incident on Sentinel-1A is 0.0105 per year. Proba-1 resides
in lower altitudes. Given the slightly eccentric orbit, the impact rate profile
is less symmetric than for Sentinel-1A. Averaged over one orbit, Proba-
1 receives η̇ = 7.37 × 10−5 impacts per year from Cosmos-2251 fragments
larger than 1 mm. For the Ariane 5, most of the impacts are collected during
crossing of the peak density altitude. Averaged over one orbit, the number
of impacts is η̇ = 1.62× 10−4 per year.

The time evolution of the impact rate for the case of the Sentinel-1A
satellite – assuming a constant mission orbit – is shown in Figure 6.19b.
The snapshots start at ∆t = 5 years, i.e. at the launch of the satellite in
2014, and go up to ∆t = 25 years, i.e. to the year 2034, in steps of 5 years.
The yearly impact rate and the cumulative number of impacts – calculated
by summing the average value between two snapshots, taken to be constant
for the time interval –, and weighted with the area, is given in Figure 6.20.
Note that the impact rate shows some jitter, which is likely a consequence
of the model fitting. Still, a high level of consistency is achieved over the
full range.

The cumulative number of impacts of Cosmos-2251 fragments on Sentinel-
1A is η = 0.067 and η = 0.18 after ∆t = 11 years and ∆t = 25 years, re-
spectively, corresponding to exposure of the satellite to the cloud for 6 years
and 20 years. The cumulative probability of having one or more collision
during this time, i.e. evaluating Equation (1.29), is therefore p1+ = 6.5%
and p1+ = 16.5%, at the two epochs. Coincidentally, Sentinel-1A suffered
an impact in 2016, probably caused by space debris (Krag et al., 2017b).
However, the impactor is thought to be approximately 1 cm in characteris-
tic length, making a Cosmos-2251 fragment less likely than the probabilities
reported above. Repeating the process of propagating the cloud and estimat-
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ing the impact rate against Cosmos-2251 fragments of 1 cm and larger shows
that the total number of impacts after ∆t = 25 years is 30 times smaller
than the one reported for fragments sized larger than 1 mm. For fragments
sized 10 cm and larger, the number of impacts is estimated to 3 orders of
magnitude lower. Even if there is no way of knowing exactly the origin of the
fragment, the proposed continuum method can be used to probabilistically
assign chasers to potential parent objects and fragmentation events.
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Fragmentation clouds in Earth orbit pose a threat to current and future space
missions. Owing to the high orbital velocities, even small fragments can
have devastating effects if they collide with other space objects. Collisions
potentially introduce new clouds of space debris leading to self-perpetuating
growth in number of objects. To protect this delicate environment, guidelines
and standards are conceptualised and introduced. They are refined regularly
to adapt to new developments. The tools that currently underpin such efforts
estimate the number of collisions or objects for a variety of input variables
over long timespans. However, they fail to foster the understanding about
the spatial density evolution, let alone the evolution of the full phase space
density, in an efficient and accurate manner. Nor can they accurately assess
the effects of single fragmentation events.

This thesis introduced new techniques and methodologies sensitive enough
to estimate the negative ramifications of fragmentation clouds on single mis-
sions. At the same time, restricting assumptions on orbit geometries and
force models are dropped making the method applicable to a large set of
fragmentation scenarios. A more extensive summary of the work contained
in this thesis is given in Section 7.1. Current limitations, and how to address
them in the future, are discussed in Section 7.2, together with suggestions
on how extend the applicability of the method to problems beyond space
debris.

7.1 Summary of work

The main objectives of this research are to find a way of propagating a frag-
mentation cloud into the future, irrespective of the orbit geometry, the force
model, or the time horizon, and to quantify its ramifications on other space
missions. Simultaneously, high sensitivity is required to estimate the impli-
cations of a single fragmentation on other space objects. In addition, the
algorithm estimating the evolution of the cloud should be computationally
inexpensive to allow for large scale deployment of the method. Here, it is
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summarised how these objectives were reached.

7.1.1 Methodology

In a first step, existing methods are studied herein, and advantages and dis-
advantages are discussed. The continuum method, based on the continuity
equation, is identified as a suitable candidate because of its statistical rep-
resentation of the distribution, scalability in dimensions and sensitivity and
accuracy along the characteristics. Combined with numerical integration, it
can predict the density evolution from any orbital region and subject to any
type and number of perturbations.

The propagation of the object trajectories is performed numerically in
averaged elements. Hence, an analytical method is presented to transform
the initial fragment distribution from Cartesian coordinates to Keplerian
elements and vice-versa. The analytical formulation allows to remain in
a fully probabilistic framework, making the transformation process nearly
instantaneous while retaining exact density values. To this end, the NASA
Standard Breakup Model is extended to provide the full density distribution
function rather than simply representative samples.

Given the density as a function of orbital elements allows to employ ran-
domisation in some of the elements of the distribution in a straightforward
manner. Randomisation in tandem with transformation into Cartesian coor-
dinates enables the calculations of the spatial density or number of impacts
– and thus collisions risk – from a distribution given in a subset of, or full
orbital element set, without resorting to any geometrical assumptions. This
makes the method not only highly versatile in its application to short-, mid-
and long-term scenarios, but also highly efficient, as reduced phase spaces
can be considered.

Next to advancements in the cloud evolution methodology, an extension
of the King-Hele orbital contraction method is presented. The extension,
based on a simplified but accurate density profile, provides an analytical for-
mulation of the averaged decay rate in semi-major axis and eccentricity for
any orbital regime, removing inaccuracies of the original formulation. The
superimposed approach is also applicable to other analytical averaging tech-
niques. Furthermore, the formulation enables to analytically evaluate the
Jacobian of the dynamics, facilitating the propagation of the density along
the characteristics. Additionally, a new boundary condition is introduced
to switch between the different averaging formulations for low and highly
eccentric orbits. The new boundary condition is derived by comparing the
approximation errors of the series expansion in both formulations, consti-
tuting an optimal boundary. More terms are added in the series expansion
to further increase the accuracy of the method.

For quick evaluation of the phase space density over the full domain, it
is proposed to fit a surrogate model to the cloud of characteristics. The
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characteristics are sampled from the initial distribution to well represent the
bulk of the fragments. A Gaussian Mixture Model is selected as the surrogate
model for multiple reasons; it is an universal density function approximator,
positive function values are easily enforced across the full domain, multiple
peaks can be represented, its derivatives with respect to the parameters
are readily obtained, the total integral can be calculated analytically, and
it can be interpreted even in higher dimensions. The propagation of the
characteristics and the model fitting are separated, allowing to test various
target spaces and number of kernels without having to integrate repeatedly.

Multiple optimisation methods, with various degrees of complexity, are
compared and benchmarked to find an optimisation algorithm well suited to
fit the surrogate model to the characteristics. The limited-memory Broyden–
Fletcher–Goldfarb–Shanno algorithm based on the Quasi-Newton method is
shown to rapidly converge to a local minimum. Instead of evaluating the sec-
ond partial derivatives of the cost function with respect to the optimisation
parameters, which is computationally expensive, it keeps an approximation
of the inverse of the Hessian, built from gradient information only. As such,
it can fit hundreds of optimisation parameters within a couple of seconds
only. However, the comparison of the methods is not conclusive, as none of
the methods was fine-tuned in terms of its parameters.

The dynamics lead to non-linear displacements of the fragmentation
cloud, even if expressed in orbital elements. For long-term propagation, this
can lead to phase space densities that are condensed into curved tubes, im-
peding the surrogate model from appropriately representing the underlying
density. Further complicating the fitting are initial cloud distributions that
exhibit boundedness in the phase space used for propagation. To tackle these
problems, normalisation of the phase space through reference hypersurfaces
is performed. These hypersurfaces are defined through and interpolated from
hypersurface samples that are propagated alongside the cloud characteris-
tics. They are proven to be an effective means of simultaneously absorbing
non-linearities and boundedness. In the resulting, normalised target spaces,
efficient and accurate fitting of the surrogate model can be performed. Trans-
formation of the density from a phase space defined relative to the space of
interest is straightforward as it is described by a simple translation.

The methodology of propagating the characteristics and fitting the sur-
rogate model in a target space relative to a hypersurface is successfully val-
idated against two methods. The first method is based on the propagation
of a set of verification characteristics, identically sampled as the characteris-
tics used for the fitting. The verification characteristics represent the exact
value of the density and thus allow to compare the approximation from the
surrogate model against a truth value. This verification method is power-
ful as it can be easily applied to problems of any dimension. Application
of the continuum propagation method should always be accompanied with
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such a verification to estimate inaccuracies. The second verification method
is brute force sampling and binning of the samples to estimate the density.
Although it is inherently flawed as it does not provide an exact estimate of
the true density it can still be used in low dimensions to validate not only
the surrogate model but the continuity propagation itself.

7.1.2 Starling and Applications

The newly developed techniques are implemented in Starling, the software
suite for the propagation of continua, such as orbital fragment distributions,
uncertainties or other phenomena that can be described probabilistically.
The suite is highly modular, and as such is not restricted to orbital dynamics
only. Clearly defined interfaces and input files allow to study the evolution
of a continuum given any initial distribution and any dynamics.

Symbolic representations of phase spaces enables the study of many tar-
get spaces. Removing the need of manually deriving and implementing the
transformation of the density not only increases the efficiency in the manip-
ulation of the data, but also cuts out a source of errors that potentially lead
to the premature exclusion of suitable spaces.

The proposed methodologies and its implementation in Starling achieve
high accuracies in a computationally efficient way. Parallelisation of all the
demanding tasks reduces the time required to simulate the evolution of a
fragmentation cloud. Given 40 cores, problems in three dimensions can be
studied in less than two minutes. Compared to a Monte Carlo simulation
that propagates one million samples on the same parallelised setup, requiring
4 hours, that equates to two orders of magnitude speed up using the same
computational setup. Even in six dimensions, the propagation and fitting to
100 snapshots can be performed and in less than 10 minutes. The continuum
approach thus gives a measure of the directional components, for which even
millions of samples are not sufficient in the Monte Carlo simulation.

Starling is applied to a large set of evolution scenarios for various initial
conditions, force models and orbital geometries. It is proven to be adept in
switching to any dimension suitable for the problem. Accurate results are
achieved over long time spans for low dimensional problems. The solution
of higher dimensional problems still permits to draw qualitative conclusions
on the evolution of the cloud. For the three-dimensional case derived from
the semi-major axis, eccentricity, and area-to-mass ratio, suitable for the
long-term propagation of clouds in Low Earth Orbit, rules are devised that
permit automation of the method. Hence, the method can be established
for indexing purposes or analysis of the capacity, where the ramifications of
orbital breakups from many parent objects need to be evaluated.

Examples are given showing how the resulting evolution can be converted
into spatial densities and collision probability estimates for targets in any
orbit, highlighting the sensitivity of the presented method. Next to esti-

149



7.2 Limitations & future work

mating the ramifications of fragmentations, it can be used for visualisation
and educational purposes, identification of parent objects, optimisation of
flight trajectories and attitudes of spacecraft to avoid fragments and the
enforcement of space debris mitigation measures.

7.2 Limitations & future work

Despite the achievements of the research presented in this thesis, some lim-
itations remain. They are presented here including possible future work to
address them. Currently, the main limitation of the method is that fitting of
the surrogate model is not applicable to long-term scenarios of fragmenta-
tions in orbits where solar radiation pressure and third body perturbations
cannot be neglected. Even though the density can be accurately estimated
along the characteristics for any force model and geometry, the surrogate
model cannot accurately be fitted once the perturbations distorted the ini-
tially compact scattered cloud of characteristics to a large extent. Conse-
quently, the surrogate model adds density to regions where it should not.
This leads to a faulty increase in the total number of fragments.

A possible solution to this problem is decreasing the complexity of the
fitting routine by exploiting the fact that the initial distribution is limited to
four dimensions: the three velocity components and the area-to-mass ratio.
Instead of artificially inflating the dimensionality of the problem by adding
uncertainties in radial direction, the missing elements could be inferred from
the dependent variables and modelled as Dirac delta distribution functions.
E.g. the cloud density is evaluated and fitted in the four-dimensional phase
space variables semi-major axis, eccentricity, inclination and area-to-mass
ratio only, but the trajectories of the characteristics are propagated consid-
ering the full element set. To obtain an approximation of the distribution in
the full element set, the node and argument of perigee, i.e. the dependent
variables, are subsequently, and independently of the phase space density,
interpolated from the independent phase space variables. First tests of this
simplification have shown promising results and will be explored further in
a dedicated journal publication.

Another possible remedy to the distortion of the cloud distribution sub-
ject to solar radiation pressure and third body perturbations is automated
domain splitting. Wittig et al. (2015) applied this technique for the long-
term propagation of orbit uncertainties using differential algebra. In the
differential algebra environment, errors build up during the propagation, re-
quiring the domain splitting to occur on-line. Here, the density values along
the characteristics are exact even for highly non-linear dynamics. Hence, the
domain splitting, trying to isolate branching from parts of the distribution,
can be applied off-line in a post-processing step. I.e. if the errors of the
surrogate model are found to be too large with respect to the fitting charac-
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teristics, the domain can be split into sub domains, and fitted individually.

A third possible solution is to avoid using a surrogate model in the first
place. A solution is outlined here that simultaneously addresses a second
shortcoming present in the estimation of the products. The integrals to cal-
culate the spatial density and the number of impacts – involving marginali-
sation in two or higher dimensions depending on the number of parameters –
cannot be analytically evaluated. Instead, they are solved through numerical
integration on a regular grid. Inaccuracies arise from the problem that the
target object might only be affected by the tail-end of the fragment cloud
distribution, and a grid over the fragment cloud results in many function
evaluations with negligible contributions to the integral. To avoid evaluating
the density on a regular grid, the integral could be evaluated using impor-
tance sampling (Bishop, 2006, Chapter 11). Hence, instead of sampling the
initial distribution, the integrand is sampled using a Markov Chain Monte
Carlo method. As such, function evaluations would be performed where it is
useful for the estimation of the integral, i.e. where the density is high, reduc-
ing the computational effort and simultaneously increasing the accuracy of
the integration. If it can be shown that the number of required evaluations
of the integrand can be reduced to a sufficiently low number, the surrogate
modelling step can be skipped, and the densities directly evaluated through
backpropagation of the characteristics. Instead, a combined method could
be developed, using an imperfect surrogate model to draw initial samples of
the integrand, which are subsequently updated through backpropagation.

In the current implementation of Starling , the optimisation is performed
using a local minimisation schema. This could be problematic if multimodal
distributions are to be modelled, where a local optimal minimum would
approximate the full distribution only partially. The fitting of the surro-
gate model could greatly be improved by investigating global optimisation
methods, such as genetic algorithms or particle swarms (e.g. Hendrix and
G.-Tóth, 2010, Chapter 7.5).

Another shortcoming is that the current usage of reference hypersurfaces
renders the originally parametric definition of the model non-parametric.
Thus, it is not sufficient to describe the distribution with parameters only,
but it needs to be accompanied with hypersurface samples. Finding a para-
metric description of the reference hypersurfaces would allow to remove the
hypersurface samples after fitting, and possibly to obtain an analytical solu-
tion of the integrals giving spatial density and number of impacts. Instead
of interpolating the samples, a hypersurface could be fitted instead, by min-
imising a distance measure.

Finding suitable target spaces for the model fit in higher dimension is a
non-trivial task. Understanding of the initial distribution and the evolution
governed by the dynamics is required. In the absence of this understanding,
the user is required to resort to trial and error, which can be time consuming
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without guarantee of success. An additional interesting feature could be
for the software to automatically find and propose suitable target spaces.
Various features spaces could be combined, tested, and discarded based on
error measures from cross validation. This might even lead to the discovery
of new element sets that are suitable to describe the evolution of orbital
uncertainties.

Furthermore, Starling could profit from becoming more user-friendly.
To make it useful for educational purposes, for example, a graphical user-
interface needs to be developed. Currently, the software is designed to study
the evolution of single fragmentation clouds on single target objects. To
study the effect of potential fragmentations on the full satellite population,
a multiple-target feature needs to be added to reduce the workload on the
analyst.

Finally, the methods developed herein can be applied to various other
problems. Short-term propagation of uncertainties, i.e. considering the fast
variable, is a possible field of interest, as is the application of the method
to the full space debris population. In the latter case, collisions among the
continuum could be considered through addition of a collision source term
during the propagation of the characteristics. This requires a regular update
of the collision probability enabled through the methods presented in this
thesis.
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D. González, D. Dı́az, and S. Davis. Continuity equation for probability as
a requirement of inference over paths. European Physical Journal B, 89
(214):1–5, 2016. doi:10.1140/epjb/e2016-70307-0.

J. L. Gonzalo, C. Colombo, and P. Di Lizia. Analysis and design of collision
avoidance manoeuvres. To be submitted to the Journal of Guidance,
Control, and Dynamics in 2020, 2020.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. The MIT Press,
2016. ISBN 978-0262035613.

N. N. Gor’kavyi, L. M. Ozernoy, and J. C. Mather. A new approach to
dynamical evolution of interplanetary dust. The Astrophysical Journal,
474(1):496–502, 1997. doi:10.1086/303440.

155

https://doi.org/10.1016/j.actaastro.2019.04.035
https://doi.org/10.2514/1.G004939
https://doi.org/10.1016/j.asr.2019.03.016
https://omniweb.gsfc.nasa.gov/
https://doi.org/10.1140/epjb/e2016-70307-0
https://doi.org/10.1086/303440


Bibliography

A. Halder and R. Bhattacharya. Dispersion analysis in hypersonic flight dur-
ing planetary entry using stochastic Liouville equation. Journal of Guid-
ance, Control, and Dynamics, 34(2):459–474, 2011. doi:10.2514/1.51196.

T. Hanada, Y. Ariyoshi, K. Miyazaki, K. Maniwa, J. Murakami,
and S. Kawamoto. Orbital debris modeling at Kyushu university.
The Journal of Space Technology and Science, 24(2):23–35, 2009.
doi:10.11230/jsts.24.2 23.

L. Healy, S. Kindl, and C. Binz. Spatial density maps from a debris cloud.
In Proceedings of the Advanced Maui Optical and Space Surveillance Tech-
nologies Conference, 2016.

W. B. Heard. Dispersion of ensembles of non-interacting particles. Astro-
physics and Space Science, 43:63–82, 1976. doi:10.1007/BF00640556.
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A Examples

A short collection of examples is given here to improve the understanding of
the mathematical concepts applied throughout the thesis by way of illustra-
tion.

A.1 Solving the continuity equation

The example for the comparison of the method of characteristics and density
mapping was inspired by Halder and Bhattacharya (2011) and Weisman et al.
(2014). The initial value problem

ẋ = F (x) = −x2 (A.1a)

x0 = x(t0 = 0) (A.1b)

has the following solution

x = ϕ(x0, t) =
x0

x0t+ 1
(A.2)

dropping the dependence on t0 without loss of generality. Solving for x0

results in

x0 = ϕ−1(x, t) =
x

1− xt (A.3)

In the absence of sources or sink terms, there are different ways of solving
the continuity equation.
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A.2 Application of the Dirac generalised function

A.1.1 Method of characteristics

Evaluating the integral of Equation (1.13) using Equation (A.1a) and (A.2)
gives ∫ t

0

∂F

∂x
dt′ = −2

∫ t

0
x dt′ (A.4a)

= −2

∫ t

0

x0

x0t+ 1
dt′ (A.4b)

= −2 ln(x0t+ 1) (A.4c)

Plugging this into Equation (1.13) using Equation (A.3) results in

n(x, t) = n(x0)(1 + x0t)
2 (A.5a)

= n

(
x

1− xt

)
1

(1− xt)2
(A.5b)

A.1.2 Density mapping

The same result can also be found through mapping of the density. Evalu-
ating the determinate of the Jacobian in Equation (1.15) gives

det J =
1

(1 + x0t)2
= (1− xt)2 (A.6)

Hence, Equation (1.15) for the given sample dynamics results in

n(x, t) = n

(
x

1− xt

)
1

(1− xt)2
(A.7)

which is equivalent to the solution obtained through the method of charac-
teristics.

A.2 Application of the Dirac generalised function

Here, an example is given transforming the probability function in vvv =
(vx vy vz)

T ∈ R3 at rrr = (rx ry rz)
T to (a, e). From Equation (2.13) it fol-

lows that

pa,e =

∫
R3

pvvv δ[ϕa(vx, vy, vz)− a] δ[ϕe(vx, vy, vz)− e] dvx dvy dvz (A.8)

The roots in, say, vx and vy, given rrr, a, e and vz are found using the following
relationships (Battin, 1999; Vallado, 2013, p. 501 and p. 27, respectively)

rrr · vvv =
µ

}
re sin f = c (A.9a)

v2 = v2
x + v2

y + v3
z =

2µ

r
− µ

a
(A.9b)
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A Examples

with the gravitational parameter, µ, and arbitrarily introduced constant,
c, and the specific angular momentum, }, that can be calculated via the
semi-parameter, p, as

p = a(1− e2) (A.10a)

} =
√
µp (A.10b)

Inserting Equation (A.9b) in the squared form of Equation (A.9a) allows to
find a quadratic expression in, say, vy, e.g.(

r2
x + r2

y

)
v2
y + (2ry(rzvz − c)) vy + (c− rzvz)2 + r2

x(v2
z − v2) = 0 (A.11)

Solving for v
(1)
y and v

(2)
y and inserting it into either of the Equation (A.9b) or

Equation (A.9a) to solve for v
(k,1)
x and v

(k,2)
x gives the 4 roots of the system.

Special care needs to be taken for cases where rx vanishes, which in the T -
frame occurs for circular orbits or around the apsides. Then, Equation (A.9a)
becomes decoupled from vx, and vy can be directly inferred.

The derivatives of a and e with respect to vx and vy are straightforward
to find. Rearranging Equation (A.9b), the following derivatives of a can be
found

∂a

∂vj
=

2a2vj
µ

j = 1, 2, 3 (A.12)

Instead, for the derivative of e, the following formula is introduced (Vallado,
2013, p. 98)

eee =

(
v2

µ
− 1

r

)
rrr − 1

µ
(rrr · vvv)vvv (A.13)

to find
∂e

∂vj
=

1

2e

∂eeeTeee

∂vj
=
eeeT

e

∂eee

∂vj
(A.14)

where

∂el
∂vj

=
1

µ

{
vjrj − rrr · vvv, for j = l

2vjrl − rjvl, otherwise
j, l = 1, 2, 3 (A.15)

Finally, putting everything together, the distribution pa,e is found as

pa,e =

∫
R

2∑
k=1

2∑
m=1

1∣∣∣detJJJ
(
v

(k,m)
x , v

(k)
y

)∣∣∣pvvv
(
v(k,m)
x , v(k)

y , vz

)
dvz (A.16)

where

JJJ
(
v(k,m)
x , v(k)

y

)
=

(
∂a
∂vx

∂a
∂vy

∂e
∂vx

∂e
∂vy

)∣∣∣∣∣vx = v
(k,m)
x

vy = v
(k)
y

(A.17)
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A.3 Simplified orbital cloud evolution

The same result could be achieved by integration of pa,e,i over i. How-
ever, the presented method is more generally applicable, even if the joint
distribution in pa,e,i was not available. Furthermore, it can be easily con-
verted into the υ-space, which improves the convergence speed of numerical
integration.

A.3 Simplified orbital cloud evolution

The example given here is adapted from McInnes (1993) and shows the
evolution of a cloud of fragments in circular orbit, subject to drag only. The
drag force, ad, acting in the direction of the orbital velocity, v, is (Vallado,
2013)

ad = −1

2
Bρv2 (A.18)

with the ballistic coefficient, B and the atmospheric density, ρ. This formula
is only valid for a non-rotating atmosphere.

Following Wiesel (2010, Section 3.6), the calculation of drag effect on the
trajectory evolution is performed via the specific energy, E , given as

E = − µ

2a
(A.19)

where a is the semi-major axis and µ is the gravitational parameter. Taking
the derivative of E with respect to time, t, gives

dE
dt

=
µ

2a2

da

dt
(A.20)

Air drag induces a dissipative force decreasing E over time such that

dE
dt

= adv (A.21)

Substitution of Equations (A.19) to (A.21) gives the dynamics in a as

da

dt
= Fa = −Bρv3a

2

µ
(A.22)

Assuming circular orbits, e.g. a = r, with the orbit radius, r, and the circular
orbital velocity, vr, as

v =

√
µ

r
(A.23)

the dynamics in r, are found to be

dr

dt
= Fr = −Bρ√µr (A.24)
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A Examples

Considering a simplified atmospheric density model

ρ = ρ0 exp

(
−r −RE

H

)
(A.25)

with the base density, ρ0 at the radius of Earth, RE , and the scale height, H,
the dynamics can be written as

Fr = −Bρ0
√
µr exp

(
−r −RE

H

)
(A.26)

The partial derivative of Fr with respect to r is

Jr =
∂Fr
∂r

=

(
1

2r
− 1

H

)
Fr (A.27)

Hence, the characteristics can be found through application of Equation (3.8)
as

dn

dt
= −nJr (A.28a)

dr

dt
= Fr (A.28b)

Using a further approximation of
√
RE ≈

√
r, which is accurate to

1% for h < 1000 km, a closed form solution of Equation (A.28) can be
found (McInnes, 1993). Lumping the constant factors together in k

k = Bρ0

√
µRE exp

(
RE
H

)
(A.29)

the dynamics can be approximated as

dr

dt
≈ −k exp

(
− r

H

)
(A.30)

permitting – using separation of variables – the solution

r = H ln

[
exp

(r0

H

)
− k

H
t

]
(A.31)

with initial position, r0 = r0(t0 = 0). Or, solved for r0

r0 = H ln

[
exp

( r
H

)
+
k

H
t

]
(A.32)

The density can also be found with a closed form solution. Integration of
Equation (A.28a) with separation of variables results in

n = n0 exp

(
−
∫ t

0
Jr dt

)
(A.33)
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A.3 Simplified orbital cloud evolution

with the integral, using substitutions from Equations (A.27), (A.30) and (A.31),
resulting in

−
∫ t

0
Jr dt =

r − r0

H
+

1

2
ln
(r0

r

)
(A.34)

Both, the closed form and the integrated solutions are depicted in Figure 3.1,
for an initial distribution of

nr,0 = N0pr0(r0) r0 ∼ N (µr = RE + 400 km, σ = 502 km2) (A.35)

and the parameters N0 = 103, µ = 398600.4km3/s2, RE = 6371 km, B =
0.021 m2/kg, ρ0 = 2.765× 10−5 kg/m3 and H = 25.284 km.
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B Derivations

In the following, the derivations to obtain the orbits intersecting with a
given point in space (Appendix B.1), adding directionality to an isotropic
delta velocity distribution (Appendix B.2), the King-Hele (KH) contraction
rates and Jacobian of the dynamics (Appendices B.3 and B.4), and the
Jacobian and the Hessian of the cost function with respect to its parameters
(Appendix B.5) are described in detail.

B.1 Intersecting orbits

Given a point in space, rrr, that needs to be intersected, puts a limit on
the Keplerian elements. If the point itself is described through Keplerian
elements, the radius, r= ||rrr||, can be found via

r =
p

1 + e cos f
(B.1)

the latitude, θ ∈ [−π/2, π/2], via

sin θ = sin i sinu (B.2)

with the argument of latitude, u, defined as

u = ω + f (B.3)

and the longitude, λ ∈ [0, 2π), is found via

sin(λ− Ω) =
tan θ

tan i
cos(λ− Ω) =

cosu

cos θ
(B.4)

using any two-argument arctangent routine. The point is then defined as

rrr =

r cos θ cosλ

r cos θ sinλ

r sin θ

 (B.5)

All the orbits that cross rrr can be found with simple geometrical considera-
tions.
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B.1 Intersecting orbits

B.1.1 Orbital planes

First, note that the inclination, i, needs to be larger than the latitude of the
point to be evaluated, resulting in the following permissible range

i ∈ [i0 = |θ|, i1 = π − |θ|] (B.6)

The node, Ω, is a function of λ, θ and i. From spherical trigonometry, the
following dependence can be derived

sin(λ− Ω) =
tan θ

tan i
(B.7)

For each i, there exists another orbital plane at

Ω′ = Ω(λ, θ, π − i) + π (B.8)

for ascending/descending crossing of rrr. If the point is located over the
poles, Ω is ill-defined.

B.1.2 Orbit geometries

The perigee radius, rp, is limited from below by the radius of Earth, RE , and
from above by r. The apogee radius, ra, needs to be larger than r. These
limits

RE ≤ rp = a(1− e) ≤ r ≤ ra = a(1 + e) (B.9)

translate into limits on the semi-major axis, a, and the eccentricity, e, as

a ∈ [a0 =
RE + r

2
, a1 =∞) (B.10a)

e ∈ [e0 = |1− r

a
|, e1 = 1− RE

a
) (B.10b)

Fixing a and e imposes the following rule on the true anomaly, f

cos f =
1

e

(p
r
− 1
)

(B.11)

Due to symmetry, another f ′ = 2π − f exists. To find the argument of
perigee, ω, the argument of latitude is required, which can be obtained
unambiguously through

sinu =
sin θ

sin i
cosu = cos(λ− Ω) cos θ (B.12)

To intersect with r, the orbit needs to be rotated into the right angle with

ω = u− f (B.13)
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B Derivations

B.2 Introducing directionality

The dependence on the directional component is considered via the direc-
tional distribution, pφ,ϕ|∆v, with the spherical angles

φ ∈ [0, 2π) ϕ ∈
[
−π

2
,
π

2

]
(B.14)

defined relative to the T -frame. In general, the theory introduced in this
thesis is applicable to any directional distribution. However, the NASA SBM
does not contain any information about the impulse direction. Hence, to find
pφ,ϕ|∆v, an isotropic impulse direction is assumed. Each infinitely small area,
dS, on the sphere defined by the radius, ∆v, is equally likely, hence

pS =
1

4π(∆v)2
(B.15)

Using dS = (∆v)2 cosϕ dφ dϕ and application of Equation (2.9), gives

pφ,ϕ|∆v dφ dϕ = pS dS =
cosϕ

4π
dφ dϕ (B.16)

from which it follows that

pφ,ϕ|∆v = pφ,ϕ =
cosϕ

4π
(B.17)

The marginals

pφ =

∫ π
2

−π
2

pφ,ϕ dϕ =
1

2π
(B.18a)

pϕ =

∫ 2π

0
pφ,ϕ dφ =

cosϕ

2
(B.18b)

show that only φ is uniformly distributed over φ ∈ [0, 2π), but ϕ is not
uniformly distributed. To sample ϕ, the cumulative distribution function,
Pϕ, given as

Pϕ =

∫ ϕ

−π
2

pϕ(ϕ′) dϕ′ =
1

2
(sinϕ+ 1) (B.19)

needs to be solved for ϕ, such that

sinϕ = 2Pϕ − 1 (B.20)

From Equation (B.17), the distribution in spherical velocity coordinates can
be calculated as

p∆v,φ,ϕ = pφ,ϕ|∆vp∆v =
cosϕ

4π
p∆v (B.21)
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B.3 Averaged drag variational equations

Transformation of p∆v,φ,ϕ into Cartesian velocity coordinates in the T -frame,
given as

∆vt = ∆v cosϕ cosφ (B.22a)

∆vn = ∆v cosϕ sinφ (B.22b)

∆vh = ∆v sinϕ (B.22c)

and, using Equation (2.10), results in the directional distribution

p∆vvv =
p∆v,φ,ϕ

(∆v2) cosϕ
=

p∆v

4π(∆v)2
(B.23)

B.3 Averaged drag variational equations

Following the derivations of King-Hele (1964), the perturbing effect of the
drag is considered using the Gauss planetary equations in Keplerian ele-
ments (Battin, 1999, Chapter 10.3). Only the tangential acceleration in-
duced by the aerodynamic drag is considered, i.e.

ad = −1

2
Bρv2 (B.24)

with the density, ρ, the orbital velocity, v, and the ballistic coefficient, B,
defined as

B = cD
A

m
(B.25)

and the drag coefficient, cD, and area-to-mass ratio, A/m. Atmospheric
rotation is ignored here but could be taken into account by multiplying the
right-hand side of Equation (B.24) with the appropriate factor.

The Gauss’ variational equations in semi-major axis, a, and eccentric-
ity, e, considering the acceleration in Equation (B.24) can be written as

da

dt
= −a

2v3

µ
Bρ (B.26a)

de

dt
= −v(e+ cos f)Bρ (B.26b)

with Earth’s gravitational parameter, µ, and the true anomaly, f . Using the
identities for the radius, r, velocity, v, and cos f given as

r = a(1− e cosE) (B.27a)

v =

√
2
µ

r
− µ

a
(B.27b)

cos f =
cosE − e

1− e cosE
(B.27c)
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B Derivations

the variational equations, given in Equation (B.26), can be expressed as a
function a, e and the eccentric anomaly, E, as

da

dt
= −√µaBρ

(
1 + e cosE

1− e cosE

) 3
2

(B.28a)

de

dt
= −

√
µ

a
Bρ

(1 + e cosE)
1
2

(1− e cosE)
3
2

(1− e2) cosE (B.28b)

Given Kepler’s equation

M = E − e sinE (B.29)

it follows that
dM = (1− e cosE) dE (B.30)

Hence, the averaging of the variational equations from Equation (1.31) can
be given in terms of E as

dααα

dt
=

1

2π

∫ 2π

0

(
dααα

dt

)
(1− e cosE) dE (B.31)

Finally, plugging Equation (B.28) into Equation (B.31) results in

Fa =
da

dt
= −
√
µaB

2π

∫ 2π

0
ρ(h)

(1 + e cosE)
3
2

(1− e cosE)
1
2

dE (B.32a)

Fe =
de

dt
= −

√
µ

a

B

2π

∫ 2π

0
ρ(h)

(
1 + e cosE

1− e cosE

) 1
2

(1− e2) cosE dE (B.32b)

The integrals in Equation (B.32) can be solved analytically if the at-
mosphere model describes strict exponential decay as in Equation (3.15).
Rewriting the altitude, h, as

h = a(1− e cosE)−RE
= a− ae cosE −RE
= a− ae+ ae− ae cosE −RE
= a(1− e)−RE + ae(1− cosE)

= hp + ae(1− cosE)

permits to rewrite the density as

ρ(h) = ρ0 exp

(
−h− h0

H

)
(B.34a)

= ρ0 exp

(
−hp − h0

H

)
exp
(
−ae
H

)
exp
(ae
H

cosE
)

(B.34b)

= ρ(hp) exp(−z) exp(z cosE) (B.34c)
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B.3 Averaged drag variational equations

with the auxiliary variable, z, defined as

z =
ae

H
(B.35)

With the definition of ρ from Equation (B.34c) and exploiting the symmetry
of the integrand around E, the averaged dynamics from Equation (B.32)
become

Fa = −ka
π

exp(−z)
∫ π

0
exp(z cosE) da(E) dE (B.36a)

Fe = −ke
π

exp(−z)
∫ π

0
exp(z cosE) de(E) dE (B.36b)

with

ka =
√
µaBρ(hp) (B.37a)

ke = ka/a (B.37b)

da(E) =
(1 + e cosE)

3
2

(1− e cosE)
1
2

(B.37c)

de(E) =

(
1 + e cosE

1− e cosE

) 1
2

(1− e2) cosE (B.37d)

The closed-form approximation of Equation (B.36) can be found for three
different eccentricity regimes. King-Hele (1964) splits the derivations into
four different regimes of which one is omitted here. The regimes are circular
orbits, low eccentric and highly eccentric orbits. He uses a fixed boundary
condition eb = 0.2 to switch between highly and low eccentric orbits.

B.3.1 Circular orbits

For circular orbits, i.e. e = 0, the terms simplify to

exp(−z) = 1 exp(−z cosE) = 1 da = 1 de = cosE

Hence, an exact solution of Equation (B.36) is found as

Fa = −ka (B.38a)

Fe = 0 (B.38b)

B.3.2 Low eccentric orbits

For low eccentric orbits, i.e. e < eb, the terms da and de can be expanded
as a power series in e, e.g. up to second order

da = 1 + 2 cos(E)e+
3

2
cos2(E)e2 +O(e3) (B.39a)

de = cos(E) + cos2(E)e+
(

cos
3
2 (E)− cos(E)

)
e2 +O(e3) (B.39b)
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which, using trigonometric identities and dropping the error, O(e3), results
in

da ≈ 1 + 2 cos(E)e+
3

4
(1 + cos(2E))e2 (B.40a)

de ≈ cos(E) +
1

2
(1 + cos(2E))e+

1

8
(cos(3E)− 5 cos(E)) e2 (B.40b)

After plugging the series expansion into Equation (B.36), the structure of
the individual terms in the integral follows the modified Bessel function of
the first kind, In, which for n ∈ N0 is given as (Abramowitz and Stegun,
1972, p. 376)

In(z) =
1

π

∫ π

0
exp(z cos θ) cos (nθ)dθ (B.41)

Hence, the averaged dynamics for low eccentric orbits can be calculated as

Fa = −ka exp(−z)
[
I0 + 2I1e+

3

4
(I0 + I2)e2 +O(e3)

]
(B.42a)

Fe = −ke exp(−z)
[
I1 +

1

2
(I0 + I2)e+

1

8
(I3 − 5I1)e2 +O(e3)

]
(B.42b)

Equivalently, it can be extended into higher orders, such that

Fa = −ka exp(−z)
[
eeeTKKK l

aIII +O(e6)
]

(B.43a)

Fe = −ke exp(−z)
[
eeeTKKK l

eIII +O(e6)
]

(B.43b)

with

eeeT =
(

1 e e2 e3 e4 e5
)

IIIT =
(
I0 I1 I2 I3 I4 I5 I6

)
and

KKK l
a =



1 0 0 0 0 0 0

0 2 0 0 0 0 0
3
4 0 3

4 0 0 0 0

0 3
4 0 1

4 0 0 0
21
64 0 28

64 0 7
64 0 0

0 30
64 0 15

64 0 3
64 0


(B.45a)

KKK l
e =



0 1 0 0 0 0 0
1
2 0 1

2 0 0 0 0

0 −5
8 0 1

8 0 0 0

− 5
16 0 − 4

16 0 1
16 0 0

0 − 18
128 0 − 1

128 0 3
128 0

− 18
256 0 − 19

256 0 2
256 0 3

256


(B.45b)
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B.3 Averaged drag variational equations

B.3.3 Highly eccentric orbits

To find an analytical expression of the integral for highly eccentric or-
bits, King-Hele (1964) performs a substitution via

cosE = 1− λ2

z
(B.46)

such that

dE =

√
2

z
(
1− λ

2z

) dλ (B.47)

Plugging Equations (B.46) and (B.47) into Equation (B.36) gives

Fa = −ka
π

√
2

z

∫ √2z

0
exp
(
−λ2

)
d̂a(λ) dλ (B.48a)

Fe = −ke
π

√
2

z
(1− e2)

∫ √2z

0
exp
(
−λ2

)
d̂e(λ) dλ (B.48b)

with

d̂a(λ) =

(
1 + e

(
1− λ2

z

)) 3
2

(
1− e

(
1− λ2

z

)) 1
2

1(
1− λ2

2z

) 1
2

(B.49a)

d̂e(λ) =

1 + e
(

1− λ2

z

)
1− e

(
1− λ2

z

)


1
2

1− λ2

z(
1− λ2

2z

) 1
2

(B.49b)

These two terms can be expanded in λ2/z, e.g. in second order

d̂a(λ) =
(1 + e)

3
2

(1− e) 1
2

(
1 +

ka1

(1− e2)

λ2

z
+

ka2

(1− e2)2

λ4

z2
+O

(
λ6

z3

))
(B.50a)

d̂e(λ) =

(
1 + e

1− e

) 1
2
(

1 +
ke1

(1− e2)

λ2

z
+

ke2
(1− e2)2

λ4

z2
+O

(
λ6

z3

))
(B.50b)

with

ka1 =
1

4

(
1− 8e+ 3e2

)
ka2 =

1

32

(
3− 16e+ 50e2 + 16e3 − 5e4

)
ke1 =

1

4

(
−3− 4e+ 3e2

)
ke2 =

1

32

(
−5 + 24e+ 26e2 + 8e3 − 5e4

)
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Replacing the upper integration limit in Equation (B.48) of
√

2z with ∞,
which introduces small relative errors, and thus noting that the individual
integrands can be solved analytically through integration by parts (King-
Hele, 1964)

∫ ∞
0

λ2 exp
(
−λ2

)
dλ =

1

2

∫ ∞
0

exp
(
−λ2

)
dλ =

1

4

√
π (B.52a)∫ ∞

0
λ4 exp

(
−λ2

)
dλ =

3

8

√
π (B.52b)

the averaged dynamics for highly eccentric orbits can be calculated as

Fa = −kaca
[

1

2
+

1

4

ka1

z(1− e2)
+

3

8

ka2

z2(1− e2)2
+O

(
1

z3

)]
(B.53a)

Fe = −kece
[

1

2
+

1

4

ke1
z(1− e2)

+
3

8

ke2
z2(1− e2)2

+O
(

1

z3

)]
(B.53b)

with

ca =

√
2

πz

(1 + e)
3
2

(1− e) 1
2

(B.54a)

ce =

√
2

πz
(1− e2)

(
1 + e

1− e

) 1
2

(B.54b)

As before, the expansion can equivalently be performed considering higher
terms such that

Fa = −kaca[kkkTKKKh
aeee+O

(
1

z6

)
] (B.55a)

Fe = −kece[kkkTKKKh
eeee+O

(
1

z6

)
] (B.55b)

with

kkkT =
(

1 1
z(1−e2)

1
z2(1−e2)2

1
z3(1−e2)3

1
z4(1−e2)4

1
z5(1−e2)5

)
eeeT =

(
1 e e2 e3 e4 e5 e6 e7 e8 e9 e10

)
179
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and the constant matrices

(
KKKh
a

)T
=



1
2

1
16

9
256

75
2048

3675
65536

59535
524288

0 −1
2 − 3

16 − 45
256 − 525

2048 −33075
65536

0 3
16

75
128

675
2048

5985
16384

288225
524288

0 0 3
16 − 75

128 − 105
2048

10395
16384

0 0 − 15
256 −3735

2048
21945
32768 −344925

262144

0 0 0 − 45
256

13545
2048 −129465

32768

0 0 0 105
2048

110985
16384 −7687575

262144

0 0 0 0 525
2048 −836325

16384

0 0 0 0 − 4725
65536 −16288965

524288

0 0 0 0 0 −33075
65536

0 0 0 0 0 72765
524288



(
KKKh
e

)T
=



1
2 − 3

16 − 15
256 − 105

2048 − 4725
65536 − 72765

524288

0 −1
4

9
32

75
512

735
4096

42525
131072

0 3
16

39
128 − 405

2048
525

16384
152145
524288

0 0 3
32 −375

256
735
4096 −31185

32768

0 0 − 15
256 −1515

2048
123585
32768 −530145

262144

0 0 0 − 45
512

31605
4096 −1165185

65536

0 0 0 105
2048

40845
16384 −10235295

262144

0 0 0 0 525
4096 −1505385

32768

0 0 0 0 − 4725
65536 −5716305

524288

0 0 0 0 0 − 33075
131072

0 0 0 0 0 72765
524288



B.4 Jacobian of drag variational equations

The partial derivatives of the dynamics with respect to a and e are given
here for the three different regimes discussed in Appendix B.3. The partial
derivatives of a partial atmosphere defined in Equation (3.17) (dropping the
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subscript j), and given hp = a(1− e)−RE , can be found as

∂ρ(hp)

∂a
= −1− e

H
ρ(hp) (B.57a)

∂ρ(hp)

∂e
=

a

H
ρ(hp) (B.57b)

Thus, the partial derivatives of ka and ke (see Equation (B.37)) with respect
to a and e are

∂ka
∂a

= δ
√
µ

(
ρ(hp)

2
√
a

+
√
a
∂ρ(hp)

∂a

)
= ka

(
1

2a
− 1− e

H

)
(B.58a)

∂ka
∂e

= δ
√
µa
∂ρ(hp)

∂e
= ka

a

H
(B.58b)

∂ke
∂a

= δ
√
µ

(
−ρ(hp)

2a
3
2

+
1√
a

∂ρ(hp)

∂a

)
= ke

(
− 1

2a
− 1− e

H

)
(B.58c)

∂ke
∂e

= δ

√
µ

a

∂ρ(hp)

∂e
= ke

a

H
(B.58d)

B.4.1 Circular Orbit

For circular orbits, the rate and derivative in e vanishes and the partial
derivative of Fa with respect to a, combining Equation (B.38) and Equa-
tion (B.58), is

∂Fa
∂a

=

(
1

2a
− 1

H

)
Fa (B.59)

B.4.2 Low Eccentric Orbit

For low eccentric orbits, i.e. e ≤ eb, the partial derivative of Fa and Fe with
respect to a and e, combining Equations (B.43) and (B.58) and using the
product rule, are

∂Fa
∂a

=

(
1

2a
− 1

H

)
Fa − ka exp(−z)eeeTKKK l

a

e

H

∂III

∂z
(B.60a)

∂Fa
∂e

= −ka exp(−z)
[
∂eeeT

∂e
KKK l
aIII + eeeTKKK l

a

a

H

∂III

∂z

]
(B.60b)

∂Fe
∂a

=

(
− 1

2a
− 1

H

)
Fe − ke exp(−z)eeeTKKK l

e

e

H

∂III

∂z
(B.60c)

∂Fe
∂e

= −ke exp(−z)
[
∂eeeT

∂e
KKK l
eIII + eeeTKKK l

e

a

H

∂III

∂z

]
(B.60d)

where

∂In(z)

∂z
=

1

2
(In−1(z) + In+1(z))

∂I0(z)

∂z
= I1(z) (B.61)
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and

∂ed

∂e
= ded−1 (B.62)

B.4.3 High Eccentric Orbit

Using the partial derivatives of ca and ce from Equation (B.54) with respect
to a and e

∂ca
∂a

= ca

(
− 1

2a

)
(B.63a)

∂ca
∂e

= ca

(
−1− 4e+ e2

2e(1− e2)

)
(B.63b)

∂ce
∂a

= ce

(
− 1

2a

)
(B.63c)

∂ce
∂e

= ce

(
−1− 2e+ 3e2

2e(1− e2)

)
(B.63d)

it follows that

∂

∂a
(kaca) = kaca

(
−1− e

H

)
(B.64a)

∂

∂e
(kaca) = kaca

(
a

H
− 1− 4e+ e2

2e(1− e2)

)
(B.64b)

∂

∂a
(kece) = kece

(
−1

a
− 1− e

H

)
(B.64c)

∂

∂e
(kece) = kece

(
a

H
− 1− 2e+ 3e2

2e(1− e2)

)
(B.64d)

and the partial derivatives of Fa and Fe for high eccentric orbits (see Equa-
tion (B.55)), with e ≥ eb, with respect to a and e become

∂Fa
∂a

=

(
−1− e

H

)
Fa − kaca

∂kkkT

∂a
KKKh
aeee (B.65a)

∂Fa
∂e

=

(
a

H
− 1− 4e+ e2

2e(1− e2)

)
Fa − kaca

[
∂kkkT

∂e
KKKh
aeee+ kkkTKKKh

a

∂eee

∂e

]
(B.65b)

∂Fe
∂a

=

(
−1

a
− 1− e

H

)
Fe − kece

∂kkkT

∂a
KKKh
eeee (B.65c)

∂Fe
∂e

=

(
a

H
− 1− 2e+ 3e2

2e(1− e2)

)
Fe − kece

[
∂kkkT

∂e
KKKh
eeee+ kkkTKKKh

e

∂eee

∂e

]
(B.65d)
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where

rd = l−d =
(ae
H

(1− e2)
)−d

(B.66a)

∂rd
∂a

= −dl−(d+1) e

H
(1− e2) = −d

a
rd (B.66b)

∂rd
∂e

= −dl−(d+1) a

H
(1− 3e2) = −d(1− 3e2)

e(1− e2)
rd (B.66c)

B.5 Derivatives of cost function with respect to
parameters

The following subsections show how to derive the Jacobian, JJJ , i.e. the
gradient, and the Hessian, HHH, of the cost function in Equation (4.11) with
respect to its parameters. This requires the first and second derivative of
the normal distribution (Equation (4.2)) and GMM (Equation (4.1)), given
in the following.

B.5.1 Derivatives of the normal distribution

The derivatives of the normal distribution with respect to its parameters are
more easily derived in the logarithmic space. Using the shortened notation
Nxxx|θθθk = N (xxx|θθθk), the conversion can be achieved using the chain rule

∂Nxxx|θθθ
∂θθθ

= Nxxx|θθθ
∂ lnNxxx|θθθ
∂θθθ

(B.67)

for the first derivative and, using the chain rule again, as

∂2Nxxx|θθθ
∂θθθ2

=
∂Nxxx|θθθ
∂θθθ

∂ lnNxxx|θθθ
∂θθθ

+Nxxx|θθθ
∂2 lnNxxx|θθθ
∂θθθ2

= Nxxx|θθθ
{(

∂ lnNxxx|θθθ
∂θθθ

)2

+
∂2 lnNxxx|θθθ
∂θθθ2

} (B.68)

for the second derivative. The logarithm of the multivariate normal distri-
bution, l, dropping the parameter θθθ for better readability, is

lxxx = lnNxxx = −1

2

{
D ln 2π + ln |ΣΣΣ|+ (xxx−µµµ)TΣΣΣ−1(xxx−µµµ)

}
(B.69)

Bounded parameters

The partial derivative of l with respect to µµµ is

∂lxxx
∂µµµ

= ΣΣΣ−1(xxx−µµµ) = ΣΣΣ−1zzz (B.70)
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with zzz = xxx−µµµ ∈ RD. Using the following identities (Petersen and Pedersen,
2012)

∂ ln |YYY |
∂YYY

= YYY −T (B.71a)

∂aaaTYYY −1bbb

∂YYY
= −YYY −TaaabbbTYYY −T (B.71b)

and using the fact that the inverse of a symmetric matrix is also symmetric,
the partial derivative of l with respect to ΣΣΣ can be found as

∂lxxx
∂ΣΣΣ

= −1

2

(
ΣΣΣ−1 −ΣΣΣ−1SSSΣΣΣ−1

)
(B.72)

where
SSS = zzzzzzT ∈ RD×D (B.73)

In the following, the notation of Magnus and Neudecker (1985) is used for
the derivation of the second partial derivatives of l. Given any functionUUU(YYY )
where YYY ∈ Rn×q and UUU ∈ Rm×r, the derivative of UUU with respect to YYY is

∂UUU

∂YYY
=

∂ vecUUU

∂ vec(YYY )T
∈ Rmr×nq (B.74)

where the vectorisation, vec, linearly transforms a matrix by stacking its
columns vertically. The derivation of a matrix multiplication between UUUVVV
with respect to YYY , with YYY and UUU as before and VVV = VVV (YYY ) ∈ Rr×p, can be
found as (Magnus and Neudecker, 1985)

∂UUUVVV

∂YYY
= (VVV T ⊗ IIIm)

∂ vecUUU

∂(vecYYY )T
+ (IIIp ⊗UUU)

∂ vecVVV

∂(vecYYY )T
∈ Rmp×nq (B.75)

with the Kronecker product, ⊗, and the identity matrix, III. The derivation
of a Kronecker product, using YYY as before and UUU = UUU(YYY ) ∈ Rm×p and
VVV = VVV (YYY ) ∈ Rr×s, is (Magnus and Neudecker, 1985)

∂UUU ⊗ VVV
∂YYY

= (IIIp ⊗GGG)
∂ vecUUU

∂(vecYYY )T
+ (HHH ⊗ IIIr)

∂ vecVVV

∂(vecYYY )T
∈ Rmprs×nq (B.76)

where

GGG = (KKKsm ⊗ IIIr)(IIIm ⊗ vecVVV ) ∈ Rmrs×m (B.77a)

HHH = (IIIr ⊗KKKsm)(vecUUU ⊗ IIIs) ∈ Rmps×m (B.77b)

with the commutation matrix, KKKsm ∈ Rms×ms.
Thus, the second derivative of l with respect to µµµ can be found by taking

the derivative of Equation (B.70) with respect to µµµ and applying Equa-
tion (B.75) as

∂2lxxx
∂µµµ2

= (III1 ⊗ΣΣΣ−1)
∂zzz

∂µµµ
= −ΣΣΣ−1 (B.78)
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The derivative of the inverse of ΣΣΣ with respect to ΣΣΣ, required below, can be
derived using Equation (B.71b) and going through all combinations of aaa and
bbb, as

∂ΣΣΣ−1

∂ΣΣΣ
= −(ΣΣΣ−1 ⊗ΣΣΣ−1) (B.79)

The second derivative of l with respect to µµµ and ΣΣΣ can be found by taking
the derivative of Equation (B.70) with respect to ΣΣΣ and applying Equa-
tion (B.75) as

∂2lxxx
∂µµµ∂ΣΣΣ

= (zzzT ⊗ IIID)
∂ΣΣΣ−1

∂ΣΣΣ
(B.80)

The second derivative of l with respect to ΣΣΣ can be found by taking the
derivative of Equation (B.72) with respect to ΣΣΣ, setting

BBBBBBBBB = ΣΣΣ−1SSS (B.81a)

∂BBB

∂ΣΣΣ
= (SSS ⊗ IIID)

∂ΣΣΣ−1

∂ΣΣΣ
(B.81b)

and applying Equation (B.75) as

∂2l(xxx)

∂ΣΣΣ2
= −1

2

(
∂ΣΣΣ−1

∂ΣΣΣ
− (ΣΣΣ−1 ⊗ IIID)

∂BBB

∂ΣΣΣ
− (III ⊗BBB)

∂ΣΣΣ−1

∂ΣΣΣ

)
(B.82a)

= −1

2
(IIID2 −BBB ⊗ IIID − IIID ⊗BBB)

∂ΣΣΣ−1

∂ΣΣΣ
(B.82b)

using
(ΣΣΣ−1 ⊗ IIID)(SSS ⊗ IIID) = (ΣΣΣ−1SSS ⊗ IIID) = (BBB ⊗ IIID) (B.83)

Unbounded parameters

Using the lower triangular matrix, LLL, to define ΣΣΣ as follows

ΣΣΣ = LLLLLLT (B.84)

the optimisation can be performed unbounded. The derivative of l with
respect to LLL – using the chain rule – is

∂lxxx
∂LLL

= vec

(
∂lxxx
∂ΣΣΣ

)T ∂ΣΣΣ

∂LLL
(B.85)

where the derivative of ΣΣΣ with respect to LLL, using Equation (B.75), is

∂ΣΣΣ

∂LLL
=
∂LLLLLLT

∂LLL

= (LLL⊗ IIID)
∂LLL

∂LLL
+ (IIID ⊗LLL)

∂LLLT

∂LLL
= LLL⊗ IIID + (IIID ⊗LLL)KKKD,D

(B.86)
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B.5 Derivatives of cost function with respect to parameters

The second derivative of l with respect to µµµ andLLL can be found by taking the
derivative of Equation (B.70) with respect to LLL, and using Equation (B.75)
and the chain rule, as

∂2lxxx
∂µµµ∂LLL

= (zzzT ⊗ΣΣΣ−1)
∂ΣΣΣ−1

∂ΣΣΣ

∂ΣΣΣ

∂LLL
(B.87)

The second derivative of l with respect to LLL can be found by taking the
derivative of Equation (B.85) with respect to LLL using Equation (B.75) and
the chain rule as

∂2lxxx
∂LLL2

=

((
∂ΣΣΣ

∂LLL

)T
⊗ III1

)
∂2lxxx
∂ΣΣΣ∂LLL

+

(
IIID2 ⊗ vec

(
∂lxxx
∂ΣΣΣ

)T) ∂2ΣΣΣ

∂LLL2

=

(
∂ΣΣΣ

∂LLL

)T ∂2lxxx
∂ΣΣΣ2

∂ΣΣΣ

∂LLL
+

(
IIID2 ⊗ vec

(
∂lxxx
∂ΣΣΣ

)T) ∂2ΣΣΣ

∂LLL2

(B.88)

The second derivative of ΣΣΣ in LLL can be found by taking the derivative of
Equation (B.86) with respect to LLL and applying Equation (B.75) once and
Equation (B.76) twice as

∂2ΣΣΣ

∂LLL2
= (IIID ⊗GGG)

∂LLL

∂LLL
+ (KKKT

D,D ⊗ IIID2)(HHH ⊗ IIID)
∂LLL

∂LLL

= IIID ⊗GGG+ (KKKT
D,D ⊗ IIID2)(HHH ⊗ IIID)

(B.89)

where GGG and HHH, defined in Equations (B.77a) and (B.77b), are identical for
the given case and can be found as

GGG = HHH = (KKKD,D ⊗ IIID)(IIID ⊗ vecIIID) (B.90)

B.5.2 Derivatives of the Gaussian mixture model

The partial derivatives of n̂ with respect to πππ and θθθ are

∂n̂xxx
∂πk

= Nxxx|θθθk (B.91a)

∂n̂xxx
∂θθθk

= πk
∂Nxxx|θθθk
∂θθθk

(B.91b)

The second partial derivatives of n̂ with respect to πππ and θθθ are

∂2n̂xxx
∂π2

k

= 0 (B.92a)

∂2n̂xxx
∂πk∂θθθk

=
∂Nxxx|θθθk
∂θθθk

(B.92b)

∂2n̂xxx
∂θθθ2

k

=
∂2Nxxx|θθθk
∂θθθ2

k

(B.92c)
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B Derivations

Introducing the unbounded logarithmic weight, κκκ ∈ RK , such that

πππ(κκκ) = expκκκ (B.93)

the partial derivatives of πππ with respect to κκκ are

∂2πk
∂κ2

k

=
∂πk
∂κk

= πk (B.94)

The partial derivative of n̂ with respect to κκκ is thus

∂n̂xxx
∂κk

=
∂n̂xxx
∂πk

∂πk
∂κk

= πkNxxx|θθθk (B.95)

The second partial derivatives of n̂ with respect to κκκ can be found as

∂2n̂xxx
∂κ2

k

= πkNxxx|θθθk =
∂n̂xxx
∂κk

(B.96a)

∂2n̂xxx
∂κk∂θθθk

= πk
∂Nxxx|θθθk
∂θθθk

(B.96b)

B.5.3 Derivatives of the cost function

The derivative of CC with respect to any parameter, p, is

∂CC
∂p

=
2

C

C∑
i=1

(ln n̂i − lnni)
∂ ln n̂i
∂p

(B.97)

For CR, all the derivatives other than with respect to κκκ are zero. The latter
is

∂CR
∂κk

=
∂CR
∂πk

∂πk
∂κk

= 2Rπ2
k (B.98)

The Jacobian, JJJ , is the sum of the two

JJJ =
∂C
∂ppp

=
∂CC
∂ppp

+
∂CR
∂ppp

(B.99)

To validate the formulae and its implementation, a comparison against
numerical derivation is performed. Each individual component of the nu-
merically derived Jacobian, J̃̃J̃J , can be found with

J̃i =
C(ppp0 + εeeei)− C(ppp0)

ε
i = 1, . . . , Np (B.100)

with some small value of ε � 1 and with the vector, eeei, which contains
all zeros apart from the i-th position which is 1. Figure B.1a shows the
comparison for different values of ε for a random GMM with D = K = 2,
evaluated at C = 100 randomly chosen sample points. The comparison
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Figure B.1: Relative error between numerically estimated derivation and the
analytical, exact derivation. For better readability, the legend is omitted.

shows a very typical pattern, where the Np = 12 components become more
accurate as ε→ 0, until a certain point where the accuracy reaches a floating
point rounding limit.

The second derivative of CC with respect to any two parameters, pk and
pl, can be found as

∂2CC
∂pk∂pl

=
2

N

N∑
i=1

∂ ln n̂i
∂pk

∂ ln n̂i
∂pl

+ (ln n̂i − lnni)
∂2 ln n̂i
∂pk∂pl

(B.101)

For CR, the derivatives with respect to κk and κl is

∂2CR
∂κk∂κl

= 4Rπ2
kδkl (B.102)

where

δkl =

{
1, if k = l

0, otherwise
(B.103)

The Hessian, HHH, is the sum of the two

Hij =
∂Ji
∂pj

=
∂2C
∂pi∂pj

=
∂2CC
∂pi∂pj

+
∂2CR
∂pi∂pj

i, j = 1, . . . , Np (B.104)

Again, the analytical implementation can be cross checked by comparing
against numerical derivation of the Hessian, H̃̃H̃H, with

H̃ij =
Ji(ppp0 + εeeej)− Ji(ppp0)

ε
i, j = 1, . . . , Np (B.105)

Figure B.1b compares the exact and approximate Hessians for different val-
ues of ε and the same scenario as for the comparison of the Jacobian. As
before, the pattern for each of the N2

p = 144 elements validates HHH.
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C Parameters

In the following, the parameters of the NASA SBM (Appendix C.1) and the
variable smooth exponential atmosphere model (Appendix C.2) are listed.

C.1 NASA SBM Parameters

The parameters presented here are compiled from Johnson et al. (2001).
Table C.1 contains the parameters required to calculate the number of frag-
ments with Equation (2.52). The fragmenting mass in the collision, Mc, is
dependent on the impact energy per target mass (Krisko, 2007)

ε =
1

2

mc

mt
v2
c (C.1)

with the mass of the chaser, mc, the mass of the target, mt > mc, and the
impact velocity, vc. If ε > 40 J/g, the collision is considered catastrophic,
i.e. both chaser and target are completely fragmented, and Mc is the sum
of both objects

Mc = mc +mt (C.2)

If ε < 40 J/g, a non-catastrophic collision occurred, i.e. the target is cratered
only. The fragmenting mass is composed of the chaser mass scaled with the
square of vc, as

Mc = mc

(
vc [km/s]

1 [km/s]

)2

(C.3)

Note that this formulation differs from the one given in the original pub-
lication, however, was corrected to be of the form given in Equation (C.3)
in NASA (2011). The empirically derived, unitless scaling factor, 0.1 ≤ s ≤
1, is dependent of the explosion body type.

The parameters required to calculate the logarithm to base 10, χ, of the
area-to-mass ratio, A/m, as a function of the logarithm to base 10, λ, of the
characteristic length, L, in Equation (2.60a) are dependent on the parent
type, i.e. rocket body or payload, and on the size regime. The distributions
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C.1 NASA SBM Parameters

Table C.1: Unitless parameters related to the number of fragments, with the
mass, Mc, and a scaling factor, s.

Fragmentation k β

Collision 0.1
(
Mc [kg]
1 [kg]

)0.75
1.71

Explosion 6s 1.6

for objects larger than L > 11 cm were derived by analysing decay rates of
orbital fragments. For both, rocket bodies and payloads, the distribution for
large objects is bimodal, composed of two normal distributions. For rocket
bodies, the parameters for large objects are

α1 =


1 λ ≤ −1.4

1− 0.3571(λ+ 1.4) −1.4 < λ < 0

0.5 0 ≤ λ
(C.4a)

µ(1)
χ =


−0.45 λ ≤ −0.5

−0.45− 0.9(λ+ 0.5) −0.5 < λ < 0

−0.9 0 ≤ λ
(C.4b)

σ(1)
χ = 0.55 (C.4c)

α2 = 1− α1 (C.4d)

µ(2)
χ = −0.9 (C.4e)

σ(2)
χ =


0.28 λ ≤ −1.0

0.28− 0.1636(λ+ 1) −1.0 < λ < 0.1

0.1 0.1 ≤ λ
(C.4f)

For payloads, the parameters for large objects are

α1 =


0 λ ≤ −1.95

0.3 + 0.4(λ+ 1.2) −1.95 < λ < 0.55

1 0.55 ≤ λ
(C.5a)

µ(1)
χ =


−0.6 λ ≤ −1.1

−0.6− 0.318(λ+ 1.1) −1.1 < λ < 0

−0.95 0 ≤ λ
(C.5b)

σ(1)
χ =


0.1 λ ≤ −1.3

0.1 + 0.2(λ+ 1.3) −1.3 < λ < −0.3

0.3 −0.3 ≤ λ
(C.5c)

α2 = 1− α1 (C.5d)
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µ(2)
χ =


−1.2 λ ≤ −0.7

−1.2− 1.333(λ+ 0.7) −0.7 < λ < −0.1

−2.0 −0.1 ≤ λ
(C.5e)

σ(2)
χ =


0.5 λ ≤ −0.5

0.5− (λ+ 0.5) −0.5 < λ < −0.3

0.3 −0.3 ≤ λ
(C.5f)

For small objects (L < 8 cm), the distribution – composed of one normal dis-
tribution only – is identical for rocket bodies and payloads. The parameters
are

α1 = 1 (C.6a)

µ(1)
χ =


−0.3 λ ≤ −1.75

−0.3− 1.4(λ+ 1.75) −1.75 < λ < −1.25

−1.0 −1.25 ≤ λ
(C.6b)

σ(1)
χ =

{
0.2 λ ≤ −3.5

0.2 + 0.1333(λ+ 3.5) −3.5 ≤ λ
(C.6c)

For the range between 8 cm < L < 11 cm, the original paper simply states
that a transition function is being used but does not elaborate on the type
of function. For the sake of simplicity, here, a linear transition function in λ

αλ =
λ− λl
λu − λl

∀λl = log10(0.08) ≤ λ ≤ λu = log10(0.11) (C.7)

is employed, such that

ptransition
χ|λ = αλp

large
χ|λ + (1− αλ)psmall

χ|λ ∀λl ≤ λ ≤ λu (C.8)

The parameters required to calculate υ as a function of χ in Equation (2.60b),
depending on the fragmentation type, are given in Table C.2. Finally, the
parameters required to calculate A as a function of L in Equation (2.66a)
are

b/γ =

{
0.540424/2 L ≤ 0.00167 m

0.556945/2.0047077 else
(C.9)

C.2 Variable atmosphere model parameters

Tables C.3 and C.4 list the parameters to calculate aaa and bbb according to
Equation (3.29) as a function of the normalised T̃∞. The two vectors are
needed to recover ρ̂j and Hj ∀j, according to Equation (3.31). Note that
the model should only be used for T∞ ∈ [T0 = 650, T1 = 1350] K.

191



C.2 Variable atmosphere model parameters

Table C.2: Parameters for the derivation of the ejection velocity.

Type µυ συ

Collision 0.9χ+ 2.9 0.4

Explosion 0.2χ+ 1.85 0.4

Table C.3: Parameters to calculate aaa as a function of T̃∞. The factors are
of unit [km−1].

j aj0 aj1 aj2

1 −1.98541× 10−1 −1.40701× 10−2 1.87647× 10−2

2 −9.71648× 10−2 7.16062× 10−3 4.77822× 10−2

3 −5.05069× 10−2 3.33725× 10−2 −1.85987× 10−2

4 −2.83356× 10−2 1.64584× 10−2 −3.32683× 10−2

5 −2.18893× 10−2 8.84693× 10−3 5.46460× 10−2

6 −6.24488× 10−3 4.90041× 10−3 −6.03999× 10−3

7 −2.82771× 10−3 −3.17505× 10−3 1.93697× 10−3

8 −8.53512× 10−4 7.92640× 10−4 −1.24063× 10−3

j ap3 ap4 aj5

1 −1.72925× 10−2 2.77798× 10−2 −9.95750× 10−2

2 −1.51184× 10−1 3.51432× 10−1 −7.02642× 10−1

3 −1.03728× 10−1 5.51289× 10−1 −1.41638× 10−0

4 8.69501× 10−2 −6.20406× 10−2 −3.36952× 10−1

5 −2.34999× 10−1 5.47095× 10−1 −8.27779× 10−1

6 −7.24190× 10−2 5.32824× 10−1 −1.79828× 10−0

7 4.29619× 10−2 −1.78919× 10−1 3.53528× 10−1

8 4.65874× 10−3 −1.87465× 10−2 8.70408× 10−3

j aj6 aj7 aj8

1 1.76679× 10−1 −1.37542× 10−1 3.94618× 10−2

2 9.01640× 10−1 −6.03103× 10−1 1.59691× 10−1

3 1.87770× 10−0 −1.22379× 10−0 3.11852× 10−1

4 8.28293× 10−1 −6.99209× 10−1 2.06734× 10−1

5 7.76841× 10−1 −4.02671× 10−1 8.74533× 10−2

6 2.85818× 10−0 −2.11311× 10−0 5.91400× 10−1

7 −3.82857× 10−1 2.16923× 10−1 −5.02721× 10−2

8 3.62357× 10−2 −4.73838× 10−2 1.66805× 10−2
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Table C.4: Parameters to calculate bbb as a function of T̃∞. The factors are
of unit [ln(kg/m3)].

j bj0 bj1 bj2

1 5.35674× 10−0 1.36142× 10−0 −1.71993× 10−0

2 −6.96022× 10−0 −1.71534× 10−1 −6.26282× 10−0

3 −1.33334× 10+1 −4.29240× 10−0 1.12545× 10−0

4 −1.78792× 10+1 −2.89047× 10−0 3.93500× 10−0

5 −2.09320× 10+1 8.52674× 10−0 −5.08863× 10+1

6 −2.93700× 10+1 5.68339× 10−2 −2.61029× 10+1

7 −3.29807× 10+1 4.90080× 10−0 1.78391× 10+1

8 −3.51561× 10+1 −2.66659× 10−0 1.73783× 10−0

j bj3 bj4 bj5

1 1.48408× 10−0 −2.43815× 10−0 9.19988× 10−0

2 1.70218× 10+1 −3.66333× 10+1 7.26606× 10+1

3 1.41418× 10+1 −6.27283× 10+1 1.53398× 10+2

4 1.67754× 10+1 −1.15289× 10+2 3.24667× 10+2

5 1.56893× 10+2 −3.21951× 10+2 4.61948× 10+2

6 2.90804× 10+2 −1.47321× 10+3 3.87334× 10+3

7 −9.35850× 10+1 2.24591× 10+2 −3.60868× 10+2

8 −4.98942× 10−0 2.71676× 10+1 4.15537× 10+1

j bj6 bj7 bj8

1 −1.64492× 10+1 1.28147× 10+1 −3.67526× 10−0

2 −9.47544× 10+1 6.43396× 10+1 −1.72245× 10+1

3 −2.00134× 10+2 1.29740× 10+2 −3.30267× 10+1

4 −4.59063× 10+2 3.15704× 10+2 −8.42405× 10+1

5 −4.34126× 10+2 2.32404× 10+2 −5.27733× 10+1

6 −5.21125× 10+3 3.43718× 10+3 −8.85649× 10+2

7 3.73065× 10+2 −2.15221× 10+2 5.18052× 10+1

8 −1.88208× 10+2 1.86631× 10+2 −5.96266× 10+1
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D Validation

The validation of the newly proposed averaging method section is split into
two parts. In Appendix D.1, the smooth exponential atmosphere, ρS , is val-
idated against the Jacchia-77 model, ρJ , during semi-analytical propagation
using the GL contraction method. In Appendix D.2, the SI-KH is validated
by comparing the contraction approximation along a full orbit, ∆a and ∆e,
defined as

∆a = P Fa ∆e = P Fe (D.1)

with the orbital period, P , to numerical quadrature. For completeness, prop-
agations of a grid of initial conditions are performed using the GL and SI-KH
methods and full numerical, i.e. non-averaged integration. The latter does
not resort to any averaging technique, instead integrates the full dynamics
of Equation (B.26), including the fast variable: the eccentric anomaly, E.

D.1 Smooth exponential atmosphere model

To validate the smooth exponential atmosphere, ρS , against the Jacchia-77
density, ρJ , for T∞ = 750 K, 1000 K and 1250 K and at the same time
distinguish it from the effects introduced by the SI-KH method, the fol-
lowing orbits are propagated using the GL method only. All unique initial
orbit configurations on a 46 × 46 grid from 250 km ≤ hp ≤ 2500 km and
250 km ≤ ha < 2500 km are propagated, using B = 1 m2/kg. The lower
limit, 250 km, is selected as an object with such a large B on a circular orbit
at this altitude survives for a fraction of a day only at which point propaga-
tion in averaged dynamics becomes inaccurate. The upper limit, 2500 km, is
being imposed by definition of ρJ , but can be overcome by fitting to another
model. The chosen B is large, but does not limit the validity of this vali-
dation, as inaccuracies from the averaged approach affect the propagation
equally for both atmosphere models.

The integration is performed using Matlab’s ode113 – a variable step,
variable order Adams-Bashforth-Moulton integrator (Shampine and Reichelt,
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Table D.1: Comparison of propagations of orbits in terms of computational
efficiency and accuracy. With the total number of function evaluations, N tot

f ,

the total integration evaluation time, ttotCPU , and the minimum and maximum
lifetime estimation error, εtL,min/max.

T∞ [K] ρ N tot
f [−] ttotCPU [s] εtL,min/max [%]

750 ρJ 593255 1086.9

ρS 592124 169.5 −0.060/0.051

1000 ρJ 568140 986.3

ρS 568140 153.6 −0.077/0.056

1250 ρJ 550021 789.9

ρS 549063 149.3 −0.074/0.048

1997) – and a relative and absolute error tolerance, γrel= 10−6 and γabs=
10−12, respectively. Figure D.1 shows the orbit lifetime, tL, for the initial
orbit grid, for propagations subject to ρS , and the relative error, εtL , defined
as

εtL =
tL(ρS)− tL(ρJ)

tL(ρJ)
(D.2)

comparing the propagations for each grid point using ρS and ρJ , respectively.
Table D.1 contains information about the maximum lifetime estimation er-
ror, εtL,min/max, and the computational effort in terms of the total number of
function evaluations, N tot

f , and the total integration evaluation time, ttotCPU .
Over the whole specified domain and for all T∞ ∈ [750 K, 1000 K, 1250 K],
εtL remains within [−0.1%, 0.1%], which considering the uncertainties in at-
mospheric density modelling is more than accurate enough (Sagnieres and
Sharf, 2017). Towards low perigees (hp < 500 km), the fitted ρS starts to
wobble around the underlying model (see Figure 3.4a), which is also appar-
ent for the propagated orbits. A 6-fold speed improvement can be observed,
as no numerical integration is required when calculating the density with ρS .

The reduction in function evaluations and computational time observable
with an increasing T∞ is a consequence of the different density profiles.
Increasing T∞ leads to an increased ρ, which increases the drag force and thus
decreases the lifetime. However, the variable-step size integration method
can compensate this by increasing the step size. Two possible explanations
are: as the integrator is initialised with the same properties for all three
cases, the initially set (small) step size favours shorter lifetimes; and the
shape of the density profiles with high T∞ are more smooth, decreasing the
number of failed function evaluation attempts.
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Figure D.1: Lifetimes (left) and comparison of accuracy for lifetime estima-
tion (right) for objects being subject to ρJ and ρS at T∞ = 750 K (top),
T∞ = 1000 K (middle) and T∞ = 1250 K (bottom).
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D.2 Superimposed King-Hele method

The semi-analytical propagation relies on an accurate approximation of ∆a
and ∆e. Figure D.2 shows – for different orbital configurations – the relative
integral approximation error, ε∆x, defined as

ε∆x =
∆x(C2)−∆x(C1)

∆x(C1)
(D.3)

where ∆x is the averaged variation over a full orbital revolution for a and e,
respectively. C is the selected contraction method: C1 is the numerical GL
method computed using 65 nodes; and C2 describes the analytical formula-
tion, KH or SI-KH, using series expansion up to 5th order.

Figure D.2a shows again why orbits are predicted to re-enter much later
using the classical KH contraction method: the density is underestimated
at altitudes above hp. The largest errors occur around hp = 125 km and
800 km, where the rate of change in H with respect to h is large. There, the
density profile is far from following a strictly exponentially decaying profile
(e.g. see Figure 3.2a). Around these two altitudes, the densities at apogee
altitude and thus the contraction rate in a is underestimated by more than
10% and 20%, respectively, if e > 0.03.

Instead, using the SI-KH method, the relative error remains well below
0.1% for all hp ∈ [100 km, 2500 km] and ha ∈ [100 km, 100000 km] (see Fig-
ure D.2b), a range that includes the vast majority of all Earth orbiting ob-
jects. Discontinuities can be found whenever e passes through eb = eb(Hp).
The biggest step occurs for the largest Hj . Those discontinuities slightly in-
crease the number of steps required during the integration. However, given
the averaged dynamics, γrel can be chosen large enough during integration
mitigating the effects of the discontinuities.

To see how the SI-KH compares against GL and non-averaged propaga-
tion in terms of accuracy and computational power, the results from different
initial orbit conditions are compared, for two scenarios:

a) Short-term re-entry duration: tL = 30 days

b) Mid-term re-entry duration: tL = 360 days

The reasons why long-term re-entry cases are not discussed here are two-
fold: First, for long time spans, the non-averaged integration requires small
relative tolerances. If they are not met, the result cannot be trusted; Sec-
ondly, the longer the time spans, i.e. the smaller B, the more accurate the
assumptions made for the averaged propagation.

The initial conditions are spaced in hp ∈ [250 km, 2500 km] and ha ∈
[250 km, 100000 km] and consist of all unique solutions on a 46 × 46 grid,
where the grid spacing in ha is chosen to be logarithmic, as opposed to the
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(a) Analytical KH approximation compared against GL quadrature. Differences of up to
25% can occur for certain orbital configurations.

1000 2000

Perigee height hp [km]

102

103

104

105

A
p

o
g
ee

h
ei

g
h
t
h
a

[k
m

]

e=0.1

e=0.3

e=0.5

e=0.7

1000 2000

Perigee height hp [km]

102

103

104

105

A
p

o
g
ee

h
ei

g
h
t
h
a

[k
m

]

e=0.1

e=0.3

e=0.5

e=0.7

−0.028 −0.016 −0.004

Rel. error ε∆a [%]

−0.030 −0.015 0.000

Rel. error ε∆e [%]

Comparison between SI-KH and GL approximations

(b) Analytical SI-KH approximation compared against GL quadrature. The error remains
below 0.1% across the domain.

Figure D.2: Comparison for accuracy in ∆a (left) and ∆e (right) for different
approximation methods. The underlying atmosphere model is ρS at T∞ =
1000 K. Note that the colour bar range of the lower figure is 3 orders of
magnitudes smaller than the one of the upper figure.
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D Validation

(a) Effective area-to-mass ratio required to
re-enter in 30 days.

(b) Effective area-to-mass ratio required to
re-enter in 360 days.

Figure D.3: The minimum ballistic coefficient is Bmin = 1.5 × 10−4 m/kg2

in order to remain in orbit for 360 days from a circular orbit at hp = ha =
250 km. The maximum, in order to re-enter in 30 days from hp/ha =
250/100000 km, is Bmax = 3.0× 106 m/kg2.

equidistant grid in hp. Two preliminary runs were performed using the SI-
KH method to calculate the lifetimes. This way, the B required to re-enter
within the given timespan can be estimated. Figure D.3 shows the grids of
the resulting B for both scenarios. Note that B varies by almost 13 orders
of magnitude.

The accuracy is described again as the relative lifetime, εtL , this time
defined as

εijtL(M1,M2, hp,i, ha,j) =
tL(M1, hp,i, ha,j)− tL(M2, hp,i, ha,j)

tL(M2, hp,i, ha,j)
(D.4)

whereM is the selected contraction and integration method, combined with
a given relative integrator tolerance, γrel, during integration. To give a
feeling for the accuracy across all the different initial conditions, the 50%-
and 100%-quantiles, i.e. the median and maximum denoted as εtL,50% and

εtL,100%, respectively, over all the |εijtL | are given. The computation effort is
compared via the total number of function calls, N tot

f , and time required for
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D.2 Superimposed King-Hele method

Table D.2: Performance of the different propagation and contraction meth-
ods, for a) tL = 30 days and b) tL = 360 days and various relative integration
tolerances, γrel. NA stands for not averaged, i.e. full numerical propagation.
All figures are unitless.

M1 M2 εtL,50% εtL,100% εNf εtCPU

a) SI-KH/10−6 SI-KH/10−12 3.2e− 6 8.4e− 5 3.0e− 1 2.9e− 1

GL/10−6 GL/10−12 3.3e− 6 7.0e− 5 3.7e− 1 3.7e− 1

NA/10−6 NA/10−12 1.3e− 3 2.5e− 2 3.4e− 1 3.4e− 1

NA/10−9 NA/10−12 1.6e− 6 3.1e− 5 6.0e− 1 6.2e− 1

SI-KH/10−6 NA/10−12 8.7e− 4 1.8e− 3 1.1e− 2 2.2e− 2

GL/10−6 NA/10−12 8.7e− 4 1.7e− 3 1.0e− 2 3.6e− 2

b) SI-KH/10−6 SI-KH/10−12 3.2e− 6 6.9e− 5 3.1e− 1 3.2e− 1

GL/10−6 GL/10−12 3.7e− 6 6.9e− 5 3.9e− 1 4.0e− 1

NA/10−6 NA/10−12 1.6e− 2 2.6e− 1 3.4e− 1 3.7e− 1

NA/10−9 NA/10−12 1.9e− 5 4.1e− 4 6.1e− 1 6.4e− 1

SI-KH/10−6 NA/10−12 7.0e− 5 3.2e− 4 5.8e− 4 1.1e− 3

GL/10−6 NA/10−12 7.2e− 5 4.9e− 4 5.8e− 4 2.1e− 3

the integration itself, ttotCPU

εNf (M1,M2) =
N tot
f (M1)

N tot
f (M2)

(D.5a)

εtCPU (M1,M2) =
ttotCPU (M1)

ttotCPU (M2)
(D.5b)

Table D.2 shows the performance of propagating with the various con-
traction methods and tolerances. For both SI-KH and GL, the absolute
maximum error over the whole grid and over both scenarios remains below
0.01%, when decreasing γrel from 10−6 to 10−12. Given this force model,
it is therefore sufficient to use γrel = 10−6. For the Non-Averaged (NA)
integration, this is not the case. While the maximum error remains modest
(0.18%) in the short-term case, it becomes large when the re-entry span is
increased to one year (26%), when decreasing γrel. Decreasing γrel = 10−9

and comparing to integration with γrel = 10−12, reduces the maximum error
for the non-averaged propagation in the mid-term case to 0.032%.

For the comparison of the averaging techniques against non-averaged
propagation, the tolerance of the latter is set to γrel = 10−12. Again, SI-KH
and GL fare very similar. For the short-term case, the boundaries of the av-
eraged propagation can be recognised for very high B, leading to still small
maximum errors of 0.18% and 0.17%, respectively. Figure D.4a shows the
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(a) Small errors occur for large effective
area-to-mass ratios (B > 104 m2/kg).

(b) Two areas of very small errors can
be distinguished, stemming from the series
truncation.

Figure D.4: Relative error εtL when comparing averaged propagation using
SI-KH with γrel= 10−6 against non-averaged integration with γrel = 10−12.

resulting lifetime comparison for SI-KH and tL = 30 days. As B increases
to values above 104 m2/kg, the assumption of constant a and e over one
orbit starts to break down and small relative errors up to 0.2% are intro-
duced. This might be an issue for small debris such as multi-layer insulation
fragments and paint flakes. For the mid-term scenario, the maximum error
reduces by one order of magnitude for both averaging methods tested. For
high ha > 10000 km, the relative errors introduced due to the series expan-
sion applied in the SI-KH method remain below 0.04% (see Figure D.4b).
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E Optimisation

Two frameworks for the minimisation of the cost function are studied here:
line search and trust-region (Nocedal and Wright, 2006). Both use a quadratic
approximation of the objective function. The two frameworks and various
optimisation methods are presented in Appendix E.1 and compared in Ap-
pendix E.2 in terms of speed of convergence.

E.1 Methods

In the line search framework, the model is used to find a suitable search
direction. The search direction generally follows a descent direction, i.e. is
within 90 deg of the steepest descent. The function is then minimised along
this line. In an iterative procedure, the distance along the search direction
is given by a variable step length.

The trust-region framework uses the model, which is trusted within the
region, to optimise the step direction and size simultaneously. In case a
step is not acceptable, i.e. the model did not appropriately approximate
the function, the step is rejected, and the trust-region shrinks. If, however,
the model approximates the function adequately, the trust-region can be
increased to accelerate convergence.

Different optimisation methods exist that can be employed in either
framework. Here, a very brief overview is given, following Nocedal and
Wright (2006) and mentioning the corresponding algorithm implemented in
the SciPy package (Jones et al., 2001). An overview of the methods is given
in Table E.1

One of the conceptually easiest methods is the one using the steepest de-
scent direction. To find the direction, the gradient of the function is required
at each iteration, but not the Hessian. However, for difficult problems, con-
vergence to the minimum can be slow.

The Newton method makes use of a quadratic model approximation.
Thus, it requires the Hessian around each point, which is used to obtain the
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Table E.1: Overview of optimisations algorithms implemented in SciPy.
Optional means that – if the derivatives are not given – the algorithm ap-
proximates them.

Algorithm Method JJJ req. HHH req. stop tol.

CG Non-linear CG optional no 10−5

BFGS Quasi-Newton optional no 10−5

L–BFGS–B Quasi-Newton optional no 10−5

Newton-CG Newton CG yes optional 3× 10−3

TNC Newton CG optional no 2× 10−4

trust-ncg Newton CG yes yes 10−4

trust-krylov Lanczos yes yes 10−4

search direction. Such methods converge typically very fast. However, eval-
uating the Hessian, if given analytically, can be computationally expensive
as the number of elements grows with ∝ D4. Another class of methods to
find search directions is the non-linear Conjugate Gradient (CG) method,
that was originally developed to solve linear systems. In this algorithm, sub-
sequent search directions are found that are conjugate to each other. Only
the gradient information is required to derive the directions.

To mitigate the expensive calculation of the Hessian to find the directions
defined by the Newton method, the Quasi-Newton method can be helpful. In-
stead of calculating the true Hessian, an approximation of it is maintained
using gradient information only. The approximation of the Hessian is up-
dated at each iteration. Thus, a better search direction can be derived
leading to a fast, superlinear convergence rate. An example is the BFGS
algorithm (Nocedal and Wright, 2006, Chapter 6.1), or its memory limited
version, the L–BFGS–B, which continuously forgets previous steps.

Other methods for large-scale unconstrained optimisation are inexact
Newton methods, where approximations to the Newton method are found
using the CG method or the Lanczos method. The storage of the full Hessian
approximation is not required, as the Hessian-vector product, i.e. the matrix
multiplication between the Hessian and the search direction, can be found
directly using finite differences. Examples in the line search framework are
the Newton-CG and the truncated Newton (TNC) algorithm and in the
trust-region framework the trust-ncg and trust-krylov.
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E.2 Benchmarking

To find a suitable candidate algorithm for the minimisation in Equation (4.14),
a random GMM is generated, sampled and fitted using the different methods
given in Table E.1. The number of kernels of the randomly sampled model
is set as K = 2D and that of the surrogate model as K = 2(D− 1) to allow
for inexact results. The tolerances for the stop criteria were selected such as
to achieve comparable cost function values. The fitting process was repeated
10 times to find robust results. The benchmarking tests were performed on
Intel R© Xeon R© E5-4620 v4 CPUs.

The results in terms of computational time required, tCPU , number func-
tion evaluation, Nf , and cost, C, for a three- and six-dimensional case can be
found in Figure E.1, corresponding to optimisation in Np = 40 and Np = 280
parameters, respectively. The dimensionality of the two cases is chosen such
as to allow a wide range of applications to fragmentation modelling (see
Chapter 6). For all the algorithms where using an analytical function of JJJ
or HHH is optional, the finite-differences approximation is benchmarked too
(marked with δJ or δH). Note that due to their poor performance in D = 3,
gradient-based algorithms using finite differences, are omitted in the D = 6
benchmarking test. There is a lot of information in this figure, allowing to
draw a few preliminary conclusions. Note that the application of each of the
methods could be fine-tuned to further increase their efficiency. Hence, the
following considerations are to be taken with caution.

First, as required, all algorithms terminate around a similar accuracy,
except the TNC-δJ algorithm. It performs worse than the other algorithms
in terms of computational cost despite stopping early. The linear search of
TNC-δJ failed 2 out of 10 times, probably due to insufficient accuracy in
estimating the gradient. None of the other methods ever failed to converge.
Second, algorithms that use finite differences to derive the gradient require
nearly 2 orders of magnitude more function evaluations than the ones that
use the analytical expression. Thus, despite the expensive evaluation of JJJ ,
the latter outperform the former easily. Third, fully estimatingHHH with finite
differences versus using the exact formulation has mixed results. The num-
ber of function evaluations is lower with the analytical expression, however,
the higher the dimensions, the slower the evaluation ofHHH. Even though fully
Hessian-based algorithms use the least amount of Nf , they are being out-
performed by analytical gradient-based algorithms in terms of tCPU . This
is related to the specific implementation of the evaluation of HHH, however, it
is also a general observation made by Bishop (2006).

Surprisingly, the L–BFGS–B outperforms the BFGS algorithm by an
order of magnitude in D = 6. The speed increase arises not from an increase
in efficiency, but from finding a better path. One reason might be, that the
initial guess is far from the minimum. Thus, being able to forget previous
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(a) For the 3-dimensional case.
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(b) For the 6-dimensional case.

Figure E.1: Comparison of the algorithms in terms of speed for D = 3 and
D = 6. The points indicate the result of each optimisation run, the dashes
the median.
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estimates ofHHH – the L–BFGS–B takes only information of the last iteration –
could be an advantage. Together with the TNC, the L–BFGS–B seems best
suited to the task. The latter is chosen as the default optimiser, solving an
optimisation problem in Np = 280 parameters within 1− 4 s.
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