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Abstract: Upper limb motion impairment resulting from neurological disorders
significantly hinders individuals in their interactions with the environment and
performing activities of daily living (ADL). Effective rehabilitative therapies can
greatly enhance the quality of life for people living with such disabilities. Rehabil-
itation robotics has proven to be a valuable complement to traditional therapies,
enabling a high volume of training sessions in a safe and controlled environment.
When combined with an efficient Intention Detection Strategy (IDS), motor re-
covery potential can be maximized, enabling individuals affected by neurological
disorders to regain their autonomy and perform ADL with precision and consis-
tency in task execution. An IDS is a method or approach used to identify an
Advisor: individual’s volitional movements or intentions. It acts as the crucial link between
Prof. Emilia Ambrosini human intention and the response generated by technology. In cases where a person
has suffered a neurological injury or has a disability affecting their motor functions,
such as arm or leg movements, the ability to detect their intention to move and
translate it into a action thanks to the innovative technology, can be life-altering.
The study conducted experiments with healthy subjects wearing an exoskeleton on
their rigth arm, named "AGREE", to detect the intention of various movements,
with a particular focus on reaching tasks. The collected data, acquired with the
built-in sensors of the exoskeleton, were then used to train machine learning archi-
tectures. Then, a real time evaluation has been performed by testing four subjects
with the same protocol directly in the robotic platform. The results demonstrated
that the exoskeleton is capable of recognizing the intention to move in an impres-
sively short timeframe, with a latency of 5.2 milliseconds with an accuracy of 84%.
Future developments in this field will involve expanding the range of exercises for
which intention detection is possible. This includes tasks like bringing the hand to
the mouth or lateral elevation, thereby allowing the exoskeleton to assist patients
with a wide variety of movements. Such advancements in the fusion of rehabil-
itation robotics and IDS hold the potential to significantly improve the lives of
individuals affected by neurological disorders.
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1. Introduction

1.1. Neurological disorders and motion impairment

Our upper limbs are indispensable for a wide range of daily activities, enabling us to engage physically and
socially with our surroundings. When functional limitations in the upper limbs occur, often stemming from
neurological injuries or diseases, they can profoundly affect the independence, health, and overall well-being
of individuals. These limitations extend beyond the physical realm, impacting emotional, cognitive, and be-
havioural aspects of their lives. Neurological diseases have become more present among the society rather
than the past, this is due to the aging of population, sedentary and the current lifestyle. Furthermore, thanks
to the advance medical technologies and therapies, more people can survive from such disorders and so more
rehabilitation robotic techniques are needed. Neurological disorders represent the primary cause of disability
and the second cause of death worldwide [11]. Furthermore, people affected by these disabilities present strong
disadvantages regarding the daily life activities (DLA), social activities and relationships. Simple actions, such
as drinking a glass of water, results strongly hostile and difficult due to the motion limitation because of the
disorders. Deeper, the Neurological disorders are a broad category of medical conditions that affect the nervous
system, including the brain, spinal cord, and peripheral nerves. These disorders can impact the normal function
of the nervous system and cause a wide range of symptoms and health issues. Some examples of neurolog-
ical disorders include epilepsy, stroke, Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, peripheral
neuropathy, spinal cord injury and many other conditions [20]. Each disorder has specific causes, symptoms,
and treatments, and managing such disorders often involves neurologists and other healthcare professionals
specialized in the field of neurology. [22] Stroke is a neurological condition resulting from a sudden injury to the
central nervous system, typically caused by vascular issues. According to data from the World Health Organi-
zation (WHO), it stands as a significant contributor to long-term disability, impacting 15 million individuals
globally, with about one-third of them facing permanent disability. Consequently, stroke carries substantial
social and economic consequences for society. A majority (77%) of stroke survivors experience a decline in
motor function, leading to mobility issues and a subsequent decrease in their quality of life [1]. The mobility-
related impacts of a stroke often manifest as muscle weakness (known as spastic paresis) and the development
of contractures. Specifically addressing spasticity, it is recognized as one of the outcomes of upper motor neuron
syndrome. Spasticity is defined as a sensorimotor disorder that affects the ability to voluntarily activate certain
muscle groups. The process of motor recovery following brain injury is intricate, dynamic, and influenced by
various factors. These factors include genetics, pathophysiology, sociodemographic elements, and therapeutic
interventions, all of which collectively shape the overall trajectory of recovery [1, 9]. Currently, a wide range
of techniques is available to enhance the rehabilitation process following the manifestation of a neurological
pathology. According to the current state of the art, it is feasible to stimulate the reacquisition of motor skills
by increasing the intensity of the exercise, involving the patient’s volitional aspect, and ensuring that the ex-
ercise is performed correctly; these aspects represent the benefits of applying functional electrical stimulation
(FES) and rehabilitation robotics [8, 23]. Among the field of neurological disorders, the rehabilitation robotics
is regarded as a fundamental and innovative technique in order to promote the motor recovery, as it is able to
limit the disabilities and the difficulties of the interaction between the subjects and the environment itself and
most importantly, it is able to personalize the training for the specific patients regarding the different features
of the disorder and the motor characteristics of the subject. In the following chapter a better explanation of
the powerful, and limitations of the rehabilitation robotics is described.



1.2. Neural plasticity and neurorehabilitation

Regarding the literature [9], the brain is able to change or reorganize itself to recover after disorders or injures.
This is called neuroplasticity, and it is a very powerful brain adaption that can promote the motor relearning.
Neuroplasticity encompasses all the changes in the arrangement of neural elements that take place in the central
nervous system throughout a person’s entire lifespan. It has been well-established that the cerebral cortex
demonstrates spontaneous instances of brain plasticity when responding to injuries [17]. Damage to specific
brain areas prompts a restructuring of neural connections, and the extent of this rewiring is greatly influenced
by the experiences following the injury. These plastic changes primarily affect the tissue surrounding the injured
area in the same hemisphere, but they can also impact the opposite hemisphere, as well as subcortical and spinal
regions. [20]

According to the period following a neurological injury two different phases can be distinguished:

e In the short-term plasticity phase, we observe biochemical, biophysical, vascular, and neurovegetative
changes.

e During the long-term plasticity phase, we primarily observe morphological and functional neuroplastic
changes.

The primary aim of rehabilitation is to leverage neuroplasticity to achieve the best possible outcome for each
patient. However, it’s important to note that many patients tend to reach a plateau in their recovery, typically
at around 70-80% of their initial impairment [19].

Neurorehabilitation encompasses a range of goals: preventing further losses, reversing damage when feasible,
restoring function, developing new strategies for compensation, and adapting to functional impairments resulting
from neurological injury or disease. These efforts often extend beyond immediate clinical care and continue to
play a significant role throughout a patient’s lifetime. Therefore, neurological rehabilitation should be a vital
and ongoing component within systems of care for individuals dealing with neurological disorders. Currently a
lot of techniques for motor rehabilitation are present: the usage of a treadmill, virtual environments, Functional
Electrical Stimulation (FES) and rehabilitation robotics are examples. The key role of the neurorehabilitation
is the constant activity of the patient during the rehabilitation treatment. In fact, it has been demonstrated
that people actively involved during the exercises are more subjected to promote the motor relearning and, as
mentioned before, the rehabilitation robotics results a fundamental principle of the motor recovery.[21]

1.3. Rehabilitation robotics

Rehabilitation robotics aims to understand and enhance recovery through the application of robotic devices.
The main aspect is the use of robots as therapy tools rather than mere assistive devices [7, 8, 32]. Furthermore,
there are currently different types of modalities through which rehabilitation robotics can work.

The exoskeleton represents a category of wearable robots in which the kinematic chain of the exoskeleton overlaps
harmoniously with the anatomy of human limbs. There is a two-way correspondence between human anatomical
joints and robot joints or sets of joints. Its main purpose is to enhance, assist or recover the functionality of
human limbs [31].

Exoskeletons can be considered as a viable and highly valued solution for providing assistance to individuals with
varying degrees of upper-limb motor impairment. These devices can operate in different modalities. Passive
devices are the most prevalent among current solutions, but they may not be suitable for severely impaired
patients as they require users to have some remaining ability to initiate movement. The only effective means of
assisting patients in severe conditions is through the use of a fully active exoskeleton. Active exoskeletons are
powered systems that are more complex than their passive counterparts. This complexity arises from the need to
devise a strategy for precisely controlling joint movements in accordance with the patient’s needs. Additionally,
in terms of usability, accurately interpreting the user’s desire to move and using it as a trigger to initiate
the intended exoskeleton movement is crucial. Exoskeletons can be a valuable supplement to therapist-based
training for post-stroke patients. These robotic devices enable individuals to engage in functional, high-dosage,
and repetitive exercises that are crucial for their recovery.[16, 33]
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Figure 1: Training modalities in robot-mediated therapy. [23]

Robots can be exploited with an active participation with the patient or just coaching without any interaction.
Inside these “active” category the key word is the assistance: studies and research have recently demonstrated
that the active participation of the subject is fundamental for a powerful motor relearning, thus the robots
have to assist the patient in a proper way to exploit the maximum volitional movement of the injury muscles.
The objective of control algorithms in robotic therapy is to govern robotic devices specifically designed for
rehabilitation exercises. The aim is to ensure that the exercises selected for participants stimulate motor
plasticity, thereby enhancing motor recovery. Consequently, control algorithms for robotic therapy are typically
developed on a case-by-case basis, often drawing inspiration from principles found in the fields of rehabilitation,
neuroscience, and motor learning literature.[3, 23] According to the state of the art there are four categories
of robots: Assistive controller, Challenge-based controllers, Haptic stimulation with Virtual Reality and the
non-contact coaching. The most significant one to be mentioned within this article belongs to the first category
in which the goal of the robot is to help the participant to move the limb in the desired pattern through a
physical assistance to the patience. This recovery modalities shows interesting advantages: prevention muscle
stiffness, spasticity reduction, moreover the robot can help the patient doing the correct task in safety conditions.
Furthermore, the medical device is able to change the difficulty of the training with phycological benefit like
the rewarding of the subject. Therefore, this kind of solution described powerful gains for the subjects affected
by neurological injures. One key point that is always well highlighted in literature is that the rehabilitation
robotics does not want to replace the rule of the physiotherapist, but they have to collaborate each other in
order to give to the patience best training recovery as possible.[29] Conversely, there are certain limitations to
consider. The primary objective is to assist the patient in achieving the correct physical movements, as they
might not be able to perform these movements without assistance. It is also essential to address the "slacking
hypothesis" where individuals may passively rely on the robot to complete tasks if they realize that minimal



effort on their part will suffice.

The concept known as "assistance as needed" has gained significance in active rehabilitation strategies. The
primary aim is to stimulate the user’s active participation and provide assistance as necessary to help them
successfully complete the task. According to the state of the art different categories of assistance as needed are
present, in this article the focus is on the impedance base controller and performance-based. The key idea is to
modulate the level of assistance provided by the robot dynamically. To achieve this, various parameters based on
the individual’s contribution are adjusted. When the patient is performing well, the robot decreases assistance
or increases the task’s difficulty. The common idea of the assistance as needed is that when the subjects
moves along a desired trajectory the robot should not provide any assistance while when the the participant
deviates from the trajectory, the exoskleton provides assistance through a resistive force which is created from
a mechanical impedance. In the case of controller base, the resisting force increases as the participant deviates
from the desired trajectory. For instance, in the case of a position feedback controller utilizing proportional and
derivative components, when the participant deviates from the intended trajectory, the force generated by the
controller rises proportionally. This behavior can be likened to the controller’s response resembling that of a
damped spring. The control strategy employed by robotic aids plays a pivotal role in the therapy’s effectiveness
and is typically designed to tailor the technology to the patient’s specific requirements. While there are non-
motorized passive devices that merely support the limb without facilitating movement, the integration of active
motors is generally favoured. This approach allows for a more substantial and dynamic contribution to the
rehabilitation process, enhancing its overall impact. In the following chapter the intention detection strategy
is described, this is a fundamental strategy that aims to capture the initial volitional movement of the patient
in order to start the task, thus, to define the trigger point for the beginning of the robot assistance. When a
patient possesses some remaining capabilities, it becomes crucial for the patient to be alert and actively engage
in attempting movements rather than remaining passive. This approach is essential for stimulating neural
plasticity as it activates motor planning pathways. [6, 23, 29]

(a) Powered exoskeleton. (b) Armeo Spring.

Figure 2: Examples of rehabilitation robots for upper limb:(a) Powered exoskelton [26], (b) Armeo
Spring. [28]

1.4. Intention detection strategies

In addition to the development of rehabilitation devices, there is significant emphasis on identifying the most
effective Intention Detection Strategy (IDS) to detect a subject’s voluntary movements and initiate the assistance
provided by rehabilitation robots. Researchers and engineers face the challenge of selecting the most suitable IDS
tailored to the specific task, as it plays a pivotal role in designing training protocols aimed at promoting motor
recovery. Thus, IDS is a vital component of various applications, particularly in the context of rehabilitation
robotics and assistive technologies. Therefore, IDS is a method or approach used to recognize the volitional
movements or intentions of an individual. It serves as the bridge between human intention and technological
response. In a scenario where someone suffers a neurological injury or is living with a disability that affects their
motor functions, such as moving their arm or legs, in these cases the ability to detect their intention to move and
translate it into action through technology can be life changing. In essence, IDS is about enabling individuals to



regain control and independence in their lives. It empowers them to interact with the world and carry out daily
activities. An often-underestimated advantage is the restoration of dignity and the enhancement of the overall
quality of life. When Intention Detection Strategies are effectively applied, they not only enable individuals to
regain control over their movements but also grant them a sense of dignity by fostering independence. Moreover,
this technology can significantly improve the day-to-day experiences and well-being of those who benefit from
it, highlighting the profound impact it has on the human spirit and sense of self-worth. Furthermore, IDS is
not limited to physical rehabilitation alone. It has the potential to revolutionize various fields, from gaming
and virtual reality to smart homes and human-computer interaction. By accurately detecting human intention,
IDS can make technology more responsive, intuitive, and user-friendly.

According to the literature, different types of intention detection strategies can be performed.[5, 12, 13, 34, 35]

e Bio-Signal-Based IDS: This approach relies on detecting biological signals, such as brain activity
through EEG, thanks to scalp electrodes, or muscle activity through EMG, thanks to superficial elec-
trodes. Bio-signal-based IDS enables direct control of devices through the brain or muscles, opening the
door to solutions like mind-controlled prosthetics and brain-computer interfaces. In the field of assistive
technology, electromyography (EMG) signals generated during muscle activation are commonly used for
control. EMG signals are employed in 40.2% of the studies due to their ease of acquisition using standard
hardware and wearable technology like Myo armbands or sleeves. However, EMG signals have limitations,
including sensitivity to changes in electrode placement, skin impedance, sweat, and muscle fatigue.

e Vision-Based IDS: These IDS use cameras and artificial vision systems to detect body movements.
They are often used in applications like gesture recognition and motion tracking in video games. Gesture
recognition technology is becoming increasingly common in our daily lives. Eye movement is a critical
component in human motion planning as it gathers information about the environment and objects before
initiating movement. Visual input, obtained through tracking eye motion or gaze, can be used to guide
upper limb movements in tasks like reaching and grasping. This is especially relevant for individuals with
limited upper limb functionality due to neurological deficits, as eye movement is typically unaffected.
Various eye-tracking techniques are available, such as video-oculography and electrooculography (EOG),
making it feasible for a broad target population.

e Inertial Sensor-Based IDS: These devices, like gyroscopes and accelerometers, monitor body orien-
tation and acceleration. They are often integrated into wearables like smartwatches and smartphones,
but they also find applications in rehabilitation for motion monitoring and assessment. They exploit
the property of inertia; the goal is to find the volitional movement of the patient tanks to value of the
kinematics chain of the limb. IMUs are easy to wear, not codependent on skin conductivity and they
provide a wide range of detection. However, they are sensitive to possible electronic interference, sensitive
to the mounted position and they require the process of calibration.

e Voice-Based IDS: This type of IDS relies on the analysis of vocal sounds and voice commands. They
are widely used in voice assistant systems, allowing us to control devices and obtain information through
voice recognition. It can be used by a broad range of people with impairments, as long as their speech
abilities are not severely affected. The potential number of distinguishable states with voice control
is theoretically infinite, but it is practically limited by computational power, software capabilities, and
the need for internet connectivity. However, the accuracy of voice control may be affected in noisy
environments with interfering sounds.

e Upper limb movement IDS: This approach stands on identifying the volitional movement of the patient
through the joint rotation or kinematics of the upper limb segments. The goal of upper limb movement
IDS is to facilitate more natural and intuitive interaction between individuals and technology, especially
in cases where individuals may have limited upper limb function due to injury, disability, or other factors.
Intention detection systems (IDS) that rely on joint rotation or the kinematics of upper limb segments
offer a natural and easy way to control devices. However, they are primarily suitable for users with
sufficient residual upper-limb function, making them ideal for devices designed to augment neurologically
intact individuals or orthoses to assist those with limited but residual upper limb functionality. These
IDS are not practical alternatives for individuals with more severe impairments or full paralysis.

The focus of this the article regards the upper limb movement strategy and the interaction between this IDS
and the rehabilitation robotics therapy for the upper limb after neurological disorders.
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Figure 3: Schematic representation of intention detection model. [4]

1.5. Example of upper limb movement IDS from literature

This study initially focused on the exploration of artificial intelligence classifiers and the identification of effective
parameters within guided research studies in the field of robotic rehabilitation. The primary objective of [14] is
to assess the real-time classification accuracy for reaching tasks performed with an upper limb robotic prosthesis
equipped with inertial sensors and a camera-based vision system. Each object was systematically tested at all
18 possible locations, with data recorded for the object placed at angular orientations of -45 degrees, 0 degrees,
and +45 degrees, as well as at depths of 20 cm and 30 cm. Data have been gather from ten healthy subjects.
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(a) Experimental protocol.
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Figure J: Ezperimental protocol (a) and object location (b) of the rehabilitation exercises of the study.

[14]



Following it is possible to see the different classifiers used and their performances:

Il K-Nearest Neighbours
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Figure 5: Comparison of the misclassification errors of the different classifiers for each task. [14]

Thus, in this experiment the best model is the KNN with an average accuracy of 8% for the grasping task.
In the study [18] the aim is to assess the performance of machine learning models in categorizing nine distinct
upper extremity exercises using kinematic data collected from a device that relies on Inertial Measurement
Units (IMUs). Fifty participants executed a series of exercises, comprising one compound exercise and eight
isolation exercises, all using their right arm. Each exercise was repeated ten times, resulting in a total of 4,500
trials. Joint angles were determined by employing IMUs positioned on the hand, forearm, upper arm, and torso.
Participants were instructed to perform a set of nine exercises, which included: Standing row, External rotation
with the arm abducted 90°, External rotation, Bicep curl, Forearm pronation/supination, Wrist curls, Lateral
arm raise, Front arm raise, Horizontal abduction.

Accuracy Train time (s)  Test time (s)

RF (flattened) 98.6% 12.4 678

RF (ROM) 91.9% 1.35 0.116
3-NN (flattened) 97.4% 0.820 13.264
3-NN (ROM) 91.8% 0.003 0.063

MLP (flattened) 95.7% 1920.15 0.549
MLP (ROM) 89.3% 360.57 0.004
Lincar SVC (ROM) 75.6% 0.048 0.001

Flattened average 97.2%

ROM average 91.0%

Total average 94.1%

(a) Imu set-up. (b) Classification models’ accuracy.

Figure 6: Imu set-up (a) and classification models’accuracy (b) of the rehabilitation exercises of the
study. [18]

In conclusion, for both the previous experiments described the best accuracy for the upper limb exercises results
with the KNN and random forest classifier and while for the classifiers as support vector machine and linear
classifier the results cannot be considered reliable for a real time classification.

Furthermore, also the latency of the task recognition has been investigated; regarding the study [24] aims to
design a novel embedded algorithm to perform accurate human activity in real-time. The exercises like standing,
running and walking have been tested by two participants who wore three IMU sensors on bust, thigh and tibia.
Data processing is characterized by a windows length of 450 ms (1080 samples). The machine learning models
tested were the KNN, SVM with radial kernel and spherical normalization. The K-Nearest Neighbours (KNN)



model is a simple and effective supervised learning algorithm that can be used to solve both classification and
regression problems. The KNN algorithm operates on an intuitive principle: similarity between objects. In
other words, similar objects exist in close proximity to each other.

Instead, the Support Vector Machine (SVM), initially presented by Vapnik, encompasses a collection of super-
vised learning algorithms employed for tasks such as classification, regression analysis, and outlier detection. It
operates as a binary classifier. This method of machine learning is designed to minimize empirical risks while
maximizing the margin between the delineating hyperplanes and the data representing two distinct classes.
Non-linear classification is attainable through various kernel methods like RBF or polynomial kernels. These
kernel methods transition data from the original data domain into a higher dimensional domain known as the
feature space. Spherical Normalization (SN) emerges as a normalization technique initially introduced in the
realm of Speaker Verification. It serves as a preconditioning phase that utilizes a transformation to position
each feature vector on the surface of a unit hypersphere.

The best accurate model results the SVM with the radial kernel, and from the figure below it is possibe to see
that the average latency is of 107.1 ms with a standard deviation of 8,5 ms.
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Figure 7: Latency and standard deviation of the SVM radial base model [24]

1.6. Limitation of robotics and IDS

So far, the strengths of Intention Detection Strategies (IDS) in the rehabilitation therapy process have been
highlighted. However, it is crucial to consider all the attributes and features that influence the selection and
limitations of different IDS. The first attribute to address is reliability, which measures how effectively a strategy
performs its designated functions under specified, unchanging conditions. In real-time scenarios, adhering to
non-varying conditions can be challenging, emphasizing the distinction between reliability and robustness. This
attribute can be quantified through qualitative user feedback or by calculating the percentage of successes and
errors. Additionally, the temporal delay between the user’s actual intent and its detection is of paramount
importance in effective rehabilitation training; this is known as "temporal workload." It can be assessed by
considering factors such as task duration and task speed, accounting for the inherent mechanical delay of the
medical robotic device. Another crucial aspect is the user’s ease of controlling the device using the IDS. Research
has shown that the more user-friendly and comfortable the IDS, the greater the user’s active participation. In
contrast to reliability, robustness hinges on how well an IDS performs under different conditions, including
variations, invalid user inputs, and environmental factors. Furthermore, the setup of the IDS is a critical
discussion point. Sensor placement and straightforward calibration are essential requirements for an effective
and efficient strategy. Lastly, regarding the exoskeleton itself, other vital characteristics include the cost of the
device, which reflects the financial investment, and the comfort or ergonomics perceived by users during usage.
Considering these attributes and features ensures a comprehensive evaluation of IDS and its application in the
context of rehabilitation and medical robotics.

Therefore, a trade-off between all the parameters mentioned above should be find in order to encompasses the
best option of IDS possible for the specific task and injury.



1.7. Objectives

The aim of this study is to develop an effective intention detection strategy for robot assisted exoskeleton
and validate its accuracy and reliability for the motor recovery during rehabilitation therapy for upper limb
movements in real time, based on kinematics data. This strategy combines the strengths of the best available
Intention Detection Systems (IDS) with a robotic platform designed for upper limb rehabilitation. The hybrid
system’s primary function is to recognize three distinct tasks and, upon identification through the IDS; initiate
specific upper limb movements to assist individuals with their rehabilitation therapy. The three tasks begin
from a "resting position" where the exoskeleton remains stationary. From this starting point, the exoskeleton
can move to three different final positions, each corresponding to a different upper limb movement. The study
involved healthy subjects who wore the exoskeleton and performed these tasks while data were collected from
specific sensors integrated into the hybrid system. The collected data were then analysed to develop the most
effective intention detection strategy possible, which was subsequently tested. Once the best machine learning
model, trained on data acquired from the subjects, was identified, it was implemented in AGREE and tested
in real-time to verify its correct performance and proper usage. The following chapters of the study provide
in-depth information on the robotic platform used (AGREE), including details on the materials and methods
employed. Additionally, the study outlines the hybrid control system’s design and operation. The development
of the IDS is a critical component of this research, and the subsequent chapters provide a comprehensive
overview of the steps taken in its implementation. In summary, this study seeks to create an intention detection
strategy that combines IDS technology with a robotic platform to assist in upper limb rehabilitation. The
study involves collecting data from healthy subjects and uses them to develop and test different models such
as KNN, Random Forest (RF), Gradient Boosting (GB), Extremely Randomized Trees (Extra Trees), Extreme
Gradient Boosting (Xgboost) and Long Short-Term memory (LSTM). Once they were compared, the best one
was chosen for real-time evaluation on AGREE. Finally, the final results were compared with the state of the
art in the literature. Detailed descriptions of the robotic platform and the IDS development phases are given
in the following chapters.
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2. Material and methods

2.1. AGREE robotic platform: exoskeleton design.

The device known as "AGREE" (Arm exoskeleton and Grip assistance for REhabilitation and indipEndent
living) is a powered exoskeleton designed to assist neurological patients during seated rehabilitative exercises
such as hand-to-mouth, lateral elevation, and arm reaching ones. This advanced device has been developed
through collaboration between several high-tech healthcare companies, including Ab.Acus, STAM S.r.l, Sapra
Elettronica, and EMAC S.r.l. Additionally, the project involved the Department of Electronics, Information,
and Bioengineering (DEIB) and the Department of Mechanics at Politecnico di Milano, including the NearLab
and WeCobot laboratories. It can easily be re-organized to work differently with right upper limb and the left
one.

o >

(a) Mechanical structure. (b) Wearability (rigth side).

Figure 8: Degrees of freedom of the AGREE system. J1: shoulder horizontal abduction/adduction,
J2: shoulder flexion/extension, J3: intra/extra humeral rotation abduction, and J4: elbow flez-
ion/extension (a) Wearability of the esxoskeleton (b).[15]

The goal of AGREE is to provide advanced support during rehabilitation exercises, helping patients to improve
their mobility and independence in daily activities. This exoskeleton has been developed by combining expertise
in healthcare and advanced technology, enabling the integration of engineering and medical knowledge to create
a highly specialized and effective rehabilitation device for neurological patients in the recovery phase. Deeper,
the device is characterized by four degrees of freedom which feature three actuated joints at the shoulder one
actuated joint for the elbow and one passive joint for the forearm.
Thus, the mechanical design is embodied with four active joints:

e J1: shoulder horizontal abduction/adduction

e J2: shoulder flexion/extension

e J3: intra/extra humeral rotation abduction

e J4: elbow flexion/extension

The shoulder flexion/extension joint is equipped with a passive anti-gravity system based on springs to coun-
teract the gravitational forces acting on the arm. The exoskeleton’s design is aligned with the natural human
joint structure and provides support for the user’s arm at two interface points, located on the upper arm and
forearm. Unlike traditional exoskeletons, this design does not include a handle at the end-effector, allowing the
user to perform grasping tasks with real objects. Each joint of the exoskeleton is driven by an actuation unit
that relies on load cells for precise measurement and control of human-robot interaction torques. This design
ensures that the exoskeleton can respond compliantly to both forces generated by the user and forces applied
by the therapist. Additionally, mechanical end-stops are incorporated into each joint to prevent the arm from
moving beyond its natural range of motion, prioritizing safety during rehabilitation exercises.[10, 15]
Exoskeleton rehabilitation robots typically employ electric motors combined with high transmission ratio gear-
boxes to enhance the output torque generated at each joint. However, this design limits the mechanical back
drivability of the actuation unit.

For each joint of the exoskeleton the parameters angular position, rotational velocity and generated output
torque are acquired. Position and velocity are recorded using incremental encoders, specifically MILE encoders
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Joint | Range of Motion (ROM) [deg| | Nominal Torque [Nm| | Loadcell Range [Nm| | Transmission Ratio
J1 -50:30 3.48 5.65 26:1
J2 10:110 20 22.6 156:1
J3 0:60 3 *3.48 3 *5.65 3 *26:1
J4 0:125 10.85 22.6 81:1

Tuble 1: Specificationoftheright-sided A GREFEexoskeletonactivejoints. ROM:rangeofmotion.[10]

from Maxon Motor in Switzerland. Output torque is acquired through torsional load cells located at the output
shaft of the actuator, using TRT load cells from Transducer Techniques in the United States. By measuring
the joint load cell torque and subtracting the gravitational torque due to the robot’s weight, the resulting
value represents the human-robot interaction effort. This measurement provides a good estimate of the as-
sistance provided by the robot at each joint. Additionally, the system offers the option to connect an EMG
(Electromyography) and EEG (Electroencephalography) device, specifically the Sessantaquattro device from
OTBioelettronica in Italy, for monitoring muscular and brain activity across a total of 64 channels.

In the context of a hand-to-mouth exercise, the signals acquired during a sample trial include the position pro-
file showing movement amplitude and speed, the torque profile indicating robot support with torque up to 14
Nm at the shoulder level, and electromyographic signals demonstrating the contraction of the anterior deltoid
during the ascending phase and relaxation during the descending phase of the exercise. Moreover, the system
incorporates a visual feedback component designed to assist both therapists during rehabilitation sessions and
subjects as they perform specific movement tasks on a table. This visual feedback system utilizes a cost-effective
LED-based mat, constructed using semi-plastic materials with dimensions of 100x50 ¢cm. The mat is equipped
with a grid of 450 LEDs, evenly spaced at intervals of 3.3 c¢m, and their colour and light intensity can be
controlled via a microcontroller. During the reaching tasks phase of rehabilitation, this visual feedback system
is employed to illuminate the target points that need to be reached. This feature serves to enhance the spatial
and temporal understanding of the desired movements, aiding both therapists and subjects in achieving the
rehabilitation goals effectively.[10, 15]
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== — |
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EMG/EEG [ ] === ode

| O Network router
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: LEDs-matrix
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e 1.
- v» | ("

______________ |
& / Mechatronic Exoskeleton
AGREE sensors

Control system

generator

Figure 9: The AGREE modular concept.[15]

The exoskeleton system is managed by a real-time control unit based on Linux. This control unit utilizes
C++ libraries that are built upon the Simple Open-Source EtherCAT Master (SOEM) framework. SOEM is
employed to facilitate communication with the motor drivers and sensors, ensuring precise and real-time control
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of the exoskeleton’s movements and interactions. Furthermore, communication between the middle-level and
high-level components of the system is established through the Robotic Operating System (ROS) [10, 15].

2.2. Data Acquisition and Segmentation for Movement Start Identification

One of the fundamental aspects of an effective rehabilitation program is the inclusion of goal-oriented activities
that optimize the engagement of the participant. In clinical assessment and within the rehabilitation context,
one of the most studied movements is the reaching task, where the subject is asked to reach a point in space
[25]. This type of exercise was already implemented in the AGREE platform.

Subject Gender Age

S1 F 26
52 M 24
S3 M 23
5S4 F 25
SH M 23
S6 F 24
ST M 24
S8 M 24
S9 F 23
S10* F 24
S11* M 24
S12%* M 24
S13* M 24

Table 2: Information about the subjects that were recruited in this study. (*)The asterisk indicates the
subjects used for the real-time evaluation on AGREE.

The data collection was conducted on 9 healthy subjects who donned the exoskeleton and were positioned
seated at a table. Additionally, for the real-time evaluation using the AGREE system, four more subjects were
involved. The reaching movement was executed as follows: the subject started from a rest position and was
required to reach a point on the table. Upon reaching the point of interest, they were to return to the rest
position where they were to remain for at least 3 seconds.

There were three reaching tasks: the contralateral, where the point of interest was placed to the left of the
subject; the frontal, where the point was placed directly in front; and finally, the ipsilateral, where the point of
interest was placed to the right of the subject. As can be seen in Figure 10. They were required to perform 15
movements for each task, totaling 45 reaching movements per subject. The acquisition protocol was conducted
with the approval of the ethical committee of Politecnico di Milano. The rest position and the three different
destinations were determined in accordance with the arm model integrated into the AGREE platform.

The movements were carried out with the exoskeleton in transparent mode in which the exoskeleton compensates
only for the weight of its own arm and the movement was performed only by the propulsive force of the subject;
thus, the subject was not required to follow a predetermined trajectory and could execute the movement at
their preferred speed, aiming to provide as much variability as possible and furthermore making the movement
as similar as possible to an ADL (Activities of Daily Living). Once all 15 repetitions for a task were completed,
before executing the next task, AGREE was set to gravity mode where it compensates for the weight of its own
arm and for the gravity force. The data from the encoders positioned respectively on the 4 joints of AGREE
(J1, J2, J3, J4) [15] were saved at a frequency of 1KHz in a CSV file.
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Figure 10: The 8 tasks performed by the subjects and the rest position they had to assume between one
repetition and the next.

2.3. Data processing

The CSV file contained information regarding the kinematics for each of the joints of the exoskeleton and had
a column where the motion command was saved, which through identifying codes separates the different modes
in which AGREE is set, thus allowing the division between the weight compensation mode, where the tasks
were performed, and the gravity mode, which was set to prepare the subject for the subsequent movement.
This allowed for the separation of the three tasks to process them independently from each other as they have
different characteristics.

The processing was carried out in Matlab.

The main objective of this study, as previously described, is to recognize the initiation of the movement by the
subject, and once recognized, change the operation mode of the exoskeleton to assist the subject in completing
the movement. To do this, the most crucial part of this processing is extracting time windows to be used for
training machine learning models. So, the initial instants at which each repetition began for each task were first
identified and, of course, also the position of rest.

What was done in this study is based on the idea that by identifying the points where all the velocities of the
exoskeleton joints are equal to zero, the resting phases between one repetition and another are identified, and
moreover, the forward and return movements for every single repetition can also be distinguished, although for
the objective of this study it is not strictly necessary. Since the velocities will never instantaneously be equal
to zero, a rounding to the first digit after the decimal point was performed to facilitate the identification of the
resting phases. This corresponds to setting a threshold on speeds of 0.05, so all values below this value are set
to zero. Obviously, the same process was done for negative values. For this operation, only 3 of the 4 joints
representing the exoskeleton were used since J3 is held fixed, thus considering it would have only introduced
variations due to noise. The figure 11 shows the graph resulting from this operation.
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Figure 11: This figure represents the velocities of the three considered joints (J1, J2, J4). The threshold
18 the value below which all three velocities are set equal to zero. While the dots represent the instants
at which all three velocities are zero simultaneously.

In this way, all time intervals where velocities are zero were identified. Time intervals are understood to be
both the moments when the subject was in the rest position ready to start the movement, and the moments
when the subject reached the target point in each repetition, i.e. the point separating the outward from the
return. Having identified all the points where the velocities are simultaneously zero, only the last point for each
identified interval was taken, by searching for where there was a temporal jump in the points found.
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Figure 12: Representation of points where all joint velocities are zero at the same time after applying
the first step in which the number of points went down to select the last one for each time interval.
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In the process of data analysis, it was observed that the number of identified time intervals exceeded the actual
count. This discrepancy is likely attributable to the fact that a subject, despite being in a resting position,
exhibited minute movements that were captured as distinct time intervals. To address this, the differences
between consecutive data points were plotted. Based on this visual representation, a threshold was established
corresponding to the longest observed time span between two consecutive differences. Points falling below this
threshold were subsequently eliminated to retain only the final data point for each genuine time interval.

Upon identification of the threshold value, it was incorporated into an algorithm designed to refine data seg-
mentation. Within this algorithm, the foundational premise was that if the disparity between two consecutive
values fell below the threshold, they were deemed to belong to the same time interval. In such instances, only
the bigger value was retained. Conversely, if the difference between two consecutive data points exceeded the
threshold, it was interpreted as an indication that they originated from distinct time intervals, prompting the
retention of both values.

o8 controlateral velocity
. T T T T

e

Velocity values

0 20 40 60 80 100 120 140
Time (s)

Figure 13: Final result obtained after implementing all necessary steps to isolate a single point for each
time interval. In this context, the points denote moments in time when the subject remained stationary,
both prior to initiating the movement and upon reaching the target point during the execution of the

reaching movement.

After this fundamental step, a point was obtained, ideally the last, for each resting interval. From these points,
only one out of every two points was selected to derive a vector that contains the last point and exclude
those points representing the instance between the onward and return movement, or the instance immediately
preceding the beginning of the movement, for every single repetition.

This all process was replicated for each of the three tasks considered.

To experimentally validate the adopted approach, a graph was generated that correlates the position of a joint
with its velocity, also highlighting the instances designated as the beginning of the movement. This graphical
representation helps provide a clear and direct visualization of the correlation between the position and velocity
of the joint, along with the considered initial instances, thus facilitating the analysis and interpretation of the
obtained results.

16



J1 controlateral task

o position
AN | 1 | :
S o2 ]
o o0 1
g‘:8§7 I I | | |
@ 0 20 40 60 80 100 120
time(s)
g 1 | | yelocityl | |
©
>
2o MAMAAN N \/\_\/\\/kv/\\/k\/\vj\_
Q
o 4 I i \ I I !
g 0 20 40 60 80 100 120
time(s)
§ torque
- 5007 T T T T T e |
o o
A AVAV AV AV AV AV AV AV AV &l
S 500 -
% -1000 | I | I | |
> 0 20 40 60 80 100 120
time(s)

Figure 1/: This figure depicts the comparison between the position of an exoskeleton joint, in this case
J1, its velocity and its torque. These three quantities were the pieces of information, for each joint,
that were saved in the dataset extracted from MATLAB for subsequent training of the machine learning
models.

2.4. Windows creation

The primary objective of this study pertains to the identification of movement intention, as well as the recog-
nizability of the task executed by the subject. To accomplish this aim, the creation of a dataset for training
the selected machine learning models for this analysis was necessary. Consequently, the processing of temporal
windows was conducted, each containing a set of data, starting from the data point following the one identified
in the previous processing phase. This allowed for obtaining a window for each repetition of every task. For ex-
ample, in [24] they use machine learning models to perform motion recognition, achieving a latency of 107.5ms.
Moreover, in this article [27], they perform the same task but with a latency of 10ms. For this reason, it was
decided to create and subsequently test different window sizes, to allow for performance evaluation across all
of them. The dimensions of the windows examined varied, including: 10ms, 20ms, 30ms, 50ms, 100ms, 150ms,
200ms, and 300ms.

The flow followed for their creation was as follows: for each repetition, the point identifying the instant at
which the subject began the movement was taken, and from that point a window was extracted, containing
a quantity of values allowing the identification of the beginning of the movement by the automatic classifiers
and therefore each point in the window has been associated with the same class. Furthermore, to allow the
models to recognize the rest position, the same window was extracted to the left of the instant at which the
movement began to contain all points at which the velocities of the joints were zero and in this case each value
was associated with the '/REST” class. Figure 16. For each type of window created, the same number of samples
were extracted and then cleaned to form the dataset extracted from MATLAB.
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Figure 15: In this tmage, a portion of the signal pertaining to the position of the three joint of the
exoskeleton selected over time in the controlateral movement are represented. In the figure, the red
vertical lines identify the points determined as the beginning of the movement, while the black ones
represent the windowing considered for each repetition. In this case, the windowing of 300ms is shown,
but the steps are the same for every chosen interval
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Figure 10: In this image, a portion of the signal pertaining to the position of a single joint of the
exoskeleton selected over time in the contralateral movement is represented. In the figure, the red
vertical lines identify the points determined as the beginning of the movement, while the black ones
represent the windowing considered for each repetition. In this case, the windowing of 300ms is shown,
but the steps are the same for every chosen interval

Given that the signal obtained from the encoders was sampled at 1000Hz, selecting a window of 10ms entails the
acquisition of 10 samples for each repetition, plus 10 identifying samples of the resting phase for each repetition
of movement. This procedure was replicated for every window size, for every task, and for every subject.
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Figure 17: In this tmage, a portion of the signal pertaining to the position of the three joint of the
exoskeleton selected over time in the controlateral movement are represented. In the figure, the red
vertical lines identify the points determined as the beginning of the movement, while the black ones
represent the windowing considered for each repetition. In this case, the windowing of 300ms is shown,
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In the concluding phase, only the columns deemed most informative were selected for the compilation of a CSV
file, designated for export from MATLAB for use in training. The selected columns included: the velocities of
joints J1, J2, and J4; the respective positions of the three joints and the torque recorded for every instance on
the same. Additionally, a column named ’labels’ was included, to which an integer value representing the specific
class of each task was associated: 1’ for contralateral movement, 2’ for frontal movement, ’3’ for ipsilateral

movement, and ’0’ for the resting mode.

42 L 46 48 50 52 54 56
time(s)
controlateral J4 position
4‘2 4‘4 4‘6 4‘8 5I(] 52 5‘4 56

Pos J1 Pos J2  Pos J4 Torque J1 Torque J2 Torque J4  Velocity J1 =~ Velocity J2 Velocity J4 Label
0.306531 -1.33999 1.77517  227.868 -8630.17 993.735  -0.000786496 -0.0382213  -0.00196535 0
0.306531 -1.34009 1.77513 227.93 -8630.09 994.087 -0.00078453  -0.0394906  -0.00214388 0
0.306472 -1.34109 1.77493  228.707 -8628.95 997.002  -0.000911922  -0.0506099 -0.00302225 1
0.306472  -1.3412 1.77492  228.796 -8628.95 997.285  -0.000909643 -0.0518007 -0.00306972 1
0.548634 -1.31349 1.90294  218.037 -8327.57 1016.3 0.00053716  -0.0501928  0.00682989 2
0.548634 -1.31355 1.90294  217.808 -8327.12 1016.15 0.000535817  -0.0504597  0.00679575 2
0.316591 -1.30821 1.81959  241.876 -8517.85 1095.13 -0.014304 -0.0520803  0.000794319 3
0.316561 -1.30828 1.81959  242.013 -8517.67 1094.81 -0.014342 -0.0523095 0.000790347 3

Table 3: This is an example of a dataset extracted from MATLAB at the end of the data processing that
will be used to train the models. The columns representing the features were joint positions, velocities,

and torques. Additionally, a column representing the label was added.

2.5. Learning model

The CSV files generated in MATLAB, at the end of all the processing operations, were structured in tables
segmented by subject and time interval, containing several samples equivalent to the width of the time windows.
Once acquired, these data were imported into Python for the training of Machine Learning and Deep Learning
models, with the aim of identifying the type of task performed with the highest accuracy and the lowest possible
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latency. The models that were tested were chosen from those most frequently used in the literature, like [24],
[27], [2] and [30].

Initially, the data were imported, and all the necessary libraries were installed. Subsequently, the division
of the training set and the test set was carried out as follows: of the 13 subjects selected for analysis, 8
were included in the training set, 1 in the test set, while the other 4 subjects were used for real-time model
evaluation, once the training and testing phases were completed. For the optimization of the parameters of the
considered classifiers, a Grid Search was employed, which conducted a search for optimal parameters over a
predefined range, using cross-validation and adopting accuracy as the evaluation metric. Moreover, in the grid
search process, the generation of the normalized confusion matrix was also included, to analyze the model’s
performance in terms of correct and incorrect classification for each class. All the models examined belong to
the category of supervised models, since labels related to the tasks under examination were available.

The first model evaluated was the K-Nearest Neighbors (KNN) model for its simplicity of implementation, having
only two parameters to configure: the number of neighbors to consider for classification and the distance metric
to adopt. In this model, the data was used without scaling, and moreover, a varying number of neighbors was
used depending on the tested window. This number ranged from 95 to 400 and all points in each neighborhood
are weighted equally. Instead, the Euclidian distance was used as the distance measure.

The second model considered was the Random Forest (RF) model for its proven validity in various studies present
in the literature involving human movements, both upper and lower limb. Furthermore, the RF algorithm can
autonomously perform a selection of the most relevant features in the creation of decision trees, and is also more
robust against overfitting, taking into account an average among the predictions of multiple decision trees. In
this model, the parameter values employed varied based on the specific window under analysis. On average,
the number of estimators, or more precisely, the simpler trees utilized, was set at 70. The criterion adopted to
gauge the quality of data splits was the Gini index. The maximum tree depth was configured to 3 for certain
windows and 4 for others. Additionally, both the minimum number of samples mandated to divide an internal
node and those required for a node to become a leaf differed across windows, averaging 5 for each criterion.

Another model explored was Gradient Boosting which, unlike RF, seeks to correct the errors made by previous
trees through the calculation of residuals for each simple tree used. This model shares several parameters with
the RF. The number of estimators employed ranged from 50 to 100, contingent upon the specific window under
analysis. The learning rate was set at 0.1. The maximum depth of each tree was capped at 1. The minimum
number of samples required to split an internal node, as well as the minimum samples required for a node to
become a leaf, varied across each window, with an average of 8. Moreover, to expedite the model’s training
process, the subsample parameter was configured to 0.8. This configuration allowed for 80% of the data to be
utilized for training each individual tree, which also contributed to mitigating the potential for overfitting.

The Extremely Randomized Trees (Extra Trees) model was also evaluated, which, unlike RF, determines the
split of the features in a completely random manner, making the decision trees even more randomized, and is
particularly useful in scenarios where training speed is crucial. This model shares numerous parameters with
the Random Forest. Specifically, the number of estimators used ranged between 50 and 200, varying based on
the specific window under consideration. The maximum depth of the tree was set at 7. Regarding the splitting
criteria, the minimum number of samples required for a split in an internal node, and the minimum number
needed for a node to be considered a leaf varied across windows, averaging at 9. Similarly, to the Random Forest,
the criterion adopted to determine the quality of data splits in relation to the label was the GINI criterion.

The eXtreme Gradient Boosting classifier was tested as it represents an optimized implementation of Gradient
Boosting, made more efficient, faster and, thanks to the inclusion of a regularization term in its objective
function, more robust compared to a standard Gradient Boosting. In this model, several parameters were finely
tuned, among which include: the learning rate, which was set to 0.01 up to the 50ms window and then adjusted
to 0.001; the maximum depth of a tree, which was configured to 2; and lastly, the subsample, which was set at
0.8 to mitigate overfitting.

Lastly, after exploring all models that learn in a pointwise manner, the Long Short-Term Memory (LSTM) model
was tested, a recurrent neural network capable of handling and learning from data with long-term temporal
dependencies. For this model, the data was scaled using a standard scaler. Additionally, depending on the
window considered, the network had a number of layers ranging from 2 to 4, with the number of neurons
varying from layer to layer based on the window.
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2.6. Online Testing

Once the results of the models listed above were compared, the best one was integrated on AGREE to perform
the real-time evaluation. it is important to note that the model performs a pointwise recognition. This means
that for each set of velocity, torque and position values of each joint it will make a prediction. To make the
result more robust, logic was used such that the model had to perform a series of consecutive predictions of the
same class to effectively classify the direction of movement made by the subject. In order to choose the number
of consecutive predictions to be performed, different quantities of samples were tested using one subject: 5, 10,
20, 30, 40 and 50. They were evaluated according to the resulting accuracy, as shown in Figure 18. The result
showed that the accuracy remained the same for the number of samples ranging from 5 to 30 and decreased in
40 and 50. With the same results, 5 was chosen as the number of samples used to predict the class as the speed
of direction recognition is a key point in real-time applications. Thus, in addition to evaluating the performance
of the movement direction recognition and REST phase by accuracy and confusion matrix, latency was also
evaluated, calculated as the time taken by the model to make five consecutive predictions of the same class was
calculated.
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Figure 18: The figure displays the accuracy calculated for the different latencies tested for real-time
evaluation. In this context, latency is defined as the time in which the model must consecutively predict
the same class to allow the recognition of the movement’s direction.
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3. Result and Discussion

3.1. Models result

The models under discussion were trained on a training set composed of data from 8 subjects, while a test set
was derived from a single subject. Details regarding the training outcomes are illustrated in Figure 19, where
bar charts are presented comparing the training set accuracy with that of the test set for different time windows.
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Figure 19: The figure displays the results of the models for each created time window: K-Nearest
Neighbors, Random Forest, Gradient Boosting, Extremely Randomized Trees, Extreme Gradient Boost-
ing, and Long Short-Term Memory, respectively.

The analysis of the K-Nearest Neighbors (KNN) model reveals a higher training accuracy compared to the test
accuracy, indicating the presence of overfitting, which becomes more pronounced with the increase in the size
of the time window. The 50 ms window was identified as optimal for this model, with an overall accuracy
exceeding 50%. It is noteworthy that the chance level is 25%, as there are four classes to predict.

The Random Forest (RF) model displays an overall accuracy higher than KNN, exceeding 70%. Overfitting is
also reduced in this context. For RF, the optimal time window is 50 ms, with an accuracy of 78%.
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Gradient Boosting surpasses the other models with an overall accuracy above 80%. The introduction of sub-
sampling has mitigated overfitting. Similar to other models, the 50 ms time window was chosen as the most
suitable.

Regarding the Extra Trees, the model shows a lower overall accuracy compared to RF and Gradient Boosting
for the same time windows. Consequently, for this model, the 100 ms time window was considered the most
suitable.

The XGBoost model, although being a variant of Gradient Boosting, has reduced accuracy and increased
overfitting with the rise in the size of the window. The 50 ms window showed the best results with an accuracy
of 76%.

The LSTM model, although designed to emphasize the importance of temporal sequencing, produced an overall
accuracy lower than RF and Gradient Boosting. Once again, there is an increase in overfitting with the
enlargement of the time window. The 100 ms window provided the best results for this model.
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(a) Gradient Boosting result.
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Figure 20: (a) Comparison of the models used in this study among the windows with the best results.
The circled model is the one that was chosen as the best and that was used in the real-time evaluation.
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Figure 20a presents a comparison between the best time windows of each model considered in this analysis. It
is evident that Gradient Boosting stands out as the most accurate model, achieving an accuracy of 84% on the
test set, using only a 50ms time window. By examining the normalized confusion matrix, shown in Figure 20b,
one can observe that the model accurately classifies the "Rest" class and the "ipsilateral" direction. However,
it faces challenges in classifying movement in the frontal direction.

It is crucial to highlight that such discrepancies might be attributed to data acquisition conditions. The
variable positioning of the table, not standardized among subjects, might have influenced data collection.
Besides, interindividual variations in movement mechanics, particularly concerning shoulder movement, could
have impacted classification. For instance, a subject performing a frontal movement emphasizing the use of the
shoulder could be mistakenly classified as a contralateral or ipsilateral movement.

The Gradient Boosting model was employed for real-time evaluation, thus determining the latency time between
the start of the subject’s movement and the model’s detection of the movement direction.

3.2. Real-time evalutation

The real-time evaluation was conducted by implementing the Gradient Boosting algorithm, chosen as the most
effective model, within the AGREE system. This approach was adopted in order to enable the system to predict
in real time the direction of the movement performed by the participants. Once the movement was recognized,
the system assisted the subjects in completing the undertaken trajectory and returning them to the resting
position. For the execution of this evaluation, four individuals were involved, following the same protocol used
during the data collection phase. The confusion matrix, based on data from the subjects, is depicted in Figure 21
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Figure 21: Normalized confusion matriz of the Gradient Boosting model used on the four subjects for
real-time assessment.

It is observed that the model has a perfect ability to identify the "rest" position. Contrary to the results obtained
with the test set, in this assessment, the model displayed significant precision in classifying movement in the
contralateral direction. However, suboptimal performance is recorded for movements in frontal and ipsilateral
directions. A possible explanation, as previously mentioned, could be due to the peculiarities of the movement
performed by the subject: in the frontal movement, the emphasis on shoulder movement might have made it
similar to the ipsilateral movement and controlateral movement, causing difficulties for the model in precisely
distinguishing between the two classes. The time required for the model to classify 5 consecutive times the
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direction of movement was 5.2 milliseconds. Thus, the overall accuracy associated with a latency of 5.2ms
milliseconds is 84%, similar to the training result.

3.3. Comparison with literature

Once the accuracy of the real-time evaluation by the best-performing model in this study, the Gradient Boosting,
was calculated, it was compared with the results found in the state of the art through the literature review
conducted prior to the study. The articles in question are [14] and [18], where machine learning models are used
to respectively perform a real-time classification assessment of reaching tasks performed with an upper limb
prosthesis and to evaluate the performance of learning models to categorize different exercises. These studies
are further described in the paragraph 1.5

Accuracy Results Comparison
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80% 75% 74%
/0% 58%
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Figure 22: Comparison between the accuracy found in the K-Nearest Neighbors and Random Forest
models present in the analyzed literature and that of the same models in this study. The first study is
indicated by: [14]. The second study is indicated by: [18].

As highlighted in Figure 22, when comparing the accuracies of the KNN and RF models found in the literature
with those from the current study, it is observed that in this study the same models show lower performance.
However, when comparing the accuracy of these same models with that of the Gradient Boosting model,
identified as the best in our study, it is noted that the latter is in the range of the standards reported in the
state of the art. This can be seen in Figure 23.
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Accuracy GB Comparison
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Figure 23: Comparison between the accuracy found in the K-Nearest Neighbors and Random Forest
models present in the analyzed literature and the accuracy of the Gradient Boosting, chosen in this
study as the best. The first study is indicated as: [14]. The second study is indicated as: [18].

Regarding the latency, understood as the time interval between real-time data recording and the moment when
the model predicts the movement direction, the Gradient Boosting model, identified as the most efficient in this
study, has shown superior performance compared to what is reported in the literature. For the analysis of this
parameter, we used a comparison based on another scientific study [24] identified during the literature review,
in which a Support Vector Machine model is used for the classification of 8 total body movements.

Latency and accuracy comparison
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Figure 2/: Comparison using accuracy value and latency parameter between an SVM model present in
the literature [24] and the model presented in this study.
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From the analysis of figure 24, it can be observed that the accuracy reported in the cited literature surpasses
that achieved in the current study. However, focusing on the latency parameter, the proficiency of the Gradient
Boosting model in accurately predicting movement direction becomes evident. In fact, this model ensures
support to the subject while performing the specified task with a latency of only 5ms, significantly lower than
the 107.1ms latency mentioned in the literature.

The primary objective of these models is their real-time implementation to assist rehabilitative sessions, making
the minimization of temporal delay paramount. A reduced latency offers optimal synchronization between the
patient and the exoskeleton, ensuring smooth movements and preventing unnatural or abrupt actions, which
could be potentially harmful. This synchronicity is crucial to avoid injuries from uncoordinated movements and
makes each rehabilitative session more effective. Timely assistance instills confidence in the patient throughout
the rehabilitation process, fostering a perception of greater autonomy. If the patient suddenly changes the
direction or speed of the movement, low latency allows the exoskeleton to respond instantly, ensuring consistent
support. From a clinical perspective, this responsiveness allows therapists to better assess the patient’s progress,
enhancing the quality of the rehabilitative treatment.
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4. Conclusions

The aim of this study was to investigate the feasibility of using a kinematics and torque-based identification (ID)
node for recognizing different directions of frontal reaching movements through the robotic platform AGREE.
Several machine learning models were tested for three different tasks: contralateral, frontal, and ipsilateral. The
best-performing architecture was the gradient boosting technique, achieving an accuracy of 85%. However, the
frontal task had a lower accuracy of approximately 42% compared to the other tasks. This discrepancy could be
attributed to non-standardized table positions during data acquisition and variations in how healthy subjects
executed the shoulder movements.

Additionally, four final subjects were tested for real-time evaluation of the gradient boosting model, which
yielded a final accuracy of 84% and a low latency of 5,2ms. The final accuracy had decreased compared to the
offline evaluation, and the accuracy of the ipsilateral movement also decreased, though it did not perform as
well as in the offline evaluation, where it achieved an accuracy of 85%.

These results deviate from what is found in the literature, where the best models used EMG and IMU sensors,
while this study focused solely on kinematics and torques data from the built-in exoskeleton sensors. The
latency observed in this study was significantly lower (5,2ms) compared to the literature (107,1ms).

In summary, the best model in this study exhibited a similar accuracy compared to models in the literature
but offered a much faster ability to recognize the intended movement. This discrepancy may be attributed to
differences in data sources (kinematics vs. EMG and IMU and built-in sensors) and the emphasis on low latency
in this study.

In terms of future developments for this study, several improvements and expansions can be considered:

e Increased Data Diversity: Expanding the dataset by including more healthy subjects is a positive
step. A larger and more diverse dataset can help improve the generalizability of the machine learning
models and increase their accuracy. It’s important to include subjects with varying characteristics, such
as age, gender, and physical abilities, to ensure that the models can be applied to a wider population.

e Standardized Table Position: Standardizing the table position during data acquisition is crucial for
reducing variability in the data. This can help improve the accuracy, particularly for the frontal movement
category, which showed lower performance in the current study due to non-standardized table positions.

e Evaluation of Additional Movement Categories: Expanding the scope of the study to include
other movement categories, such as hand-to-mouth and lateral elevation, is a valuable extension. This
can provide a more comprehensive assessment of the capabilities of the robotic platform AGREE and the
machine learning models in recognizing a broader range of movements.

e Fine-Tuning Machine Learning Models: While gradient boosting showed promise in the current
study, further optimization and fine-tuning of machine learning models should be explored to achieve even
better accuracy. Experiment with different model architectures, hyperparameters, and feature engineering
techniques.

e Real-Time Performance: Continue to focus on low latency for real-time movement recognition. Re-
ducing latency is critical for practical applications of this technology, especially in the context of assistive
devices or rehabilitation.

By addressing these aspects and iteratively improving the study, you can enhance the accuracy, reliability, and
practical applicability of the kinematics-based ID node for recognizing various movements through the robotic
platform AGREE.
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Abstract in lingua italiana

Le persone affette da disturbi neurologici sperimentano notevoli difficolta nell’interagire con l’ambiente cir-
costante a causa della ridotta capacita di movimento degli arti superiori e nell’esecuzione delle attivita quotidiane
(ADL). Terapie riabilitative efficaci possono notevolmente migliorare la qualita della vita delle persone affette
da tali disabilita. La robotica riabilitativa si é dimostrata un complemento prezioso alle terapie tradizionali,
consentendo un alto numero di sessioni di allenamento in un ambiente sicuro e controllato. Quando combinata
con una strategia di rilevamento delle intenzioni efficiente (IDS), il potenziale di recupero motorio puo essere
massimizzato, consentendo alle persone affette da disturbi neurologici di riguadagnare I’autonomia e di eseguire
le ADL con precisione e coerenza. Un IDS ¢ un approccio o un metodo utilizzato per identificare e comprendere
le intenzioni di un individuo in base ai suoi comportamenti o azioni. Essa costituisce il collegamento essenziale
tra la volonta dell’individuo e la risposta prodotta dalla tecnologia. Nei casi in cui una persona abbia subito una
lesione neurologica o abbia una disabilita che influisce sulle funzioni motorie, come i movimenti degli arti supe-
riori o inferiori, la capacita di rilevare I'intenzione di muoversi e tradurla in un’azione tecnologica puo cambiare
radicalmente la vita. Lo studio si riconduce a esperimenti con soggetti sani che indossavano un esoscheletro sul
braccio destro, chiamato "AGREE", per rilevare 'intenzione di vari movimenti, con particolare attenzione alle
attivita di raggiungimento. I dati raccolti, acquisiti con i sensori integrati dell’esoscheletro, sono stati quindi
utilizzati per addestrare architetture di apprendimento automatico. Successivamente, quattro soggetti sono
stati utilizzati per una valuatione in tempo reale eseguendo lo stesso protocollo direttamente sulla piattaforma
robotica. I risultati hanno dimostrato che 1’esoscheletro ¢ in grado di riconoscere 'intenzione di muoversi in
un breve lasso di tempo, con una latenza di 5,2 millisecondi con una accuratezza dell’ 84%. Sviluppi futuri in
questo campo comporteranno ’espansione della gamma di esercizi per i quali é possibile rilevare 'intenzione
di movimento da parte del soggetto. Cid include attivitd come portare la mano alla bocca o 'innalzamento
laterale, consentendo cosi all’esoscheletro di assistere i pazienti in una vasta gamma di movimenti. Tali progressi
nella fusione tra la robotica riabilitativa e I'IDS hanno il potenziale per migliorare significativamente la vita
delle persone affette da disturbi neurologici.
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