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Abstract

Exoscopes represent a promising 3D visual solution in the neurosurgical field aimed at
offering an improved field of view and ergonomics to the surgeons compared with tradi-
tional surgical microscopes. However, the need for manual repositioning of the exoscope,
each time a different viewpoint of the scene is required, may compromise the smoothness
of the surgical procedure and bring to longer operation times. Researchers of the Nearlab
Laboratory of the Politecnico di Milano proposed a working framework for an autonomous
vision-guided camera holder (a redundant robotic manipulator) that tracked and followed
a selected surgical instrument based on a markerless visual servoing technique. Unfortu-
nately, the low processing speed of the Convolutional Neural Network, used to detect the
tool in the images, causes a low system responsiveness with respect to tool movements
and, as a consequence, a slow and inaccurate tracking of the surgical instrument.

In this thesis work, a novel hybrid tracking module is proposed to allow the autonomous
exoscope system to achieve a real-time tool tracking. This module is composed of an Op-
tical flow tracking method that substitutes the Convolutional Neural Network and by a
modified Particle Filter predictor designed to estimate the future position of the tracked
instrument on the basis of the previous movements. To control the robot a resolved
velocity controller was employed in two different ways (Position control and Orienta-
tion control). The hybrid tracking module was validated employing simultaneously two
robots, one to move the surgical tool in a repeatable, predefined trajectory at two dif-
ferent speeds and above two different backgrounds, and one as automatic camera holder.
After the validation, the controller was fine-tuned enabling the autonomous exoscope to
follow the surgical tool in real-time with high accuracy (tracking error in Position control
mode approximately equal to 1 cm). Finally a User Study was conducted to investigate
if the proposed system was able to reduce the users’ workload with respect to the manual
repositioning of the camera and the results confirmed the effectiveness of the automatic
control, showing that it offers a better field of view and reduce the task duration.

Keywords: Visual Servoing, Tool Tracking, Optical Flow, Particle Filter, Exoscope,
Collaborative Robotics





Sommario

Gli esoscopi sono una soluzione visiva promettente nel campo della neurochirurgia. Il
loro scopo è offrire ai chirurghi una migliore visuale e una maggiore ergonomia rispetto
ai microscopi chirurgici tradizionali. Tuttavia, la necessità di riposizionare manualmente
l’esoscopio, ogni volta che è richiesto un punto di vista differente, può compromettere
la fluidità della procedura chirurgica e allungarla. I ricercatori del Laboratorio Nearlab
del Politecnico di Milano hanno proposto come soluzione il fissaggio dell’esoscopio a un
supporto (un manipolatore robotico ridondante) mosso automaticamente sulla base delle
informazioni visive derivanti dall’esoscopio stesso. Questo sistema inseguiva uno specifico
strumento chirurgico tramite una tecnica di Markerless Visual Servoing, ma a causa della
bassa velocità di elaborazione della Rete Neurale Convoluzionale (utilizzata per rilevare
lo strumento), l’inseguimento dello strumento chirurgico era lento, impreciso e instabile.

In questa tesi, per consentire all’esoscopio autonomo un inseguimento in tempo reale,
viene proposta un’innovativa tecnica ibrida di inseguimento. Questa prevede l’uso del
flusso ottico come sostituto della rete neurale e l’impiego di un Particle Filter predictor
per predire, in base ai movimenti precedenti, la posizione futura dello strumento. Per
controllare il robot è stato utilizzato un Resolved Velocity Controller in due modalità
(controllo in posizione e in orientamento). La tecnica ibrida sviluppata è stata validata
ricorrendo simultaneamente a due robot, uno per spostare lo strumento chirurgico lungo
una traiettoria ripetibile e predefinita a due differenti velocità e sopra due sfondi diversi,
e l’altro per consentire alla videocamera di inseguire lo strumento. Dopo la validazione,
i parametri del controllore sono stati messi a punto permettendo al sistema di seguire
lo strumento chirurgico in tempo reale e con elevata precisione (errore di inseguimento
intorno a 1 cm durante il controllo in posizione). Infine, è stato condotto uno studio
con utenti per verificare che il controllo autonomo, rispetto a quello manuale, fosse effi-
cace nel ridurre il carico di lavoro. I risultati confermano l’ipotesi: il controllo autonomo
offre un migliore campo visivo e può ridurre il tempo necessario per eseguire le operazioni.

Parole chiave: Visual Servoing, Inseguimento dello strumento, Flusso ottico, Particle
Filter, Esoscopio, Robotica Collaborativa
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1| Introduction

1.1. Motivation

Exoscopes represent a promising visual solution in the neurosurgical field aimed at offering
an improved field of view and ergonomics to the surgeons compared with traditional
surgical microscopes. These are 3D surgical video telescopes which enable a flexible and
ergonomic working environment, together with improved image quality. They can be
mounted above the surgical scene at a great distance by means of holding arms providing
the surgeon with an extended workspace. Exoscopes usually project the images on an
external monitor, enabling the surgeon to operate in a more comfortable position with
respect to traditional microscopes that require the contact with the eyepieces as shown
in Figure 1.1.

Figure 1.1: Traditional Microscope VS Exoscope setups: on the left-hand side it can be
appreciated the traditional setup with the microscope (image taken from Leica Microsys-
tem website) while on the right-hand side the photo of a typical exoscope setup during
cranial surgery taken from [1].

The exoscopes have been largely accepted in the operating room and their superiority in
terms of ergonomics has been ascertained [2]. However, the need for manual repositioning
the exoscope, each time a different point of view of the scene is required, may threaten to
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diminish the advantages brought: indeed, the manual movement of the exoscope causes
the continuous switching between operation theatre and visualization system leading to
interruptions that compromise the smoothness of the surgical procedure and that can
possibly lead to longer operation times [3].
Alternatives to the manual repositioning (e.g. manual control units [3], foot-joystick con-
trol [4], gaze control [5], voice control [6], head gesture control [7]) have been proposed
but none of them seemed to provide optimal operating conditions. Researchers of the
Nearlab Laboratory of the Politecnico di Milano have proposed [8] a framework for an
autonomous vision-guided camera holder that tracked and followed a selected surgical
instrument based on a markerless visual servoing technique. However, the problem of this
system is represented by the low processing speed of the Convolutional Neural Network
(CNN) used to detect the tool in the images. This issue caused a low responsiveness of
the system with respect to tool movements and, as consequence, a slow, inaccurate, and
unstable tracking of the surgical instrument.
In this context, visual tracking techniques combined with position predictors could over-
come the above presented limitations. Indeed, tracking algorithms are usually character-
ized by higher processing speed with respect to the object detection methods thanks to
the fact that they exploit prior knowledge. These approaches track some points between
consecutive frames and so they can use appearance and motion information acquired in
the previous frames to speed up their task and make it more efficient. Predictors like
the Kalman Filter predictor or the Particle Filter predictor, moreover, can be used to
estimate the future position of a moving object exploiting its model and measurements
coming from various sensors. The combined action of tracking technique and of position
predictors applied to the autonomous exoscope system demonstrates high potential in
facilitating the adoption of autonomous exoscopes in neurosurgery. This would allow the
surgeon to focus entirely on the surgical operation while the camera repositioning task
would be executed in real-time by a robotic holder assistant.

1.2. Aim of the Work

In this thesis work, a novel hybrid tracking module is proposed to solve the issues caused
by the use of the CNN and so to allow the autonomous exoscope system to achieve a real-
time tool tracking. The hybrid tracking module is composed of an Optical flow tracking
module that substitutes the CNN whenever is possible and by a modified Particle Filter
predictor designed to estimate the future position of the tracked instrument on the basis
of the previous movements.
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This thesis work is organized as follows. Chapter 2 is dedicated to the description of the
state of the art. First, a brief overview of tool detection and tracking is presented. Then,
various visual servoing techniques are discussed. Chapter 3 contains the materials and
methods used in this work: it describes how the surgical tool is detected in the images
and how this is tracked thank to the new proposed strategies. Then, the techniques used
to control the camera holder are discussed. After that, a description of the experimental
protocol followed in order to validate the system and to test its effectiveness is presented
in Chapter 4. Finally, Chapter 5 illustrates the results of the conducted experiments
that are then discussed in section 6. The final considerations on the work as well as the
limitations and further research can be found in Chapter 7.
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2| State of the Art

2.1. Object Detection

Object detection is a computer vision task that involves identifying and locating objects
of interest within an image or video. It has numerous applications, including autonomous
driving, visual servoing, surveillance, facial recognition, augmented reality and more [9].
Among object detection approaches, there are two fundamental categories: marker-based
and markerless object detection [10]. Each approach has distinct characteristics and ap-
plications.
Marker-based object detection relies on the presence of physical markers or patterns specif-
ically designed to aid in the detection and tracking of objects within a visual scene. These
markers are typically artificial and may include passive markers and active markers: to
the first category belong for example color and shape-based markers (QR codes, barcodes,
fiducial markers, unique patterns) and optical retro-reflective markers (that reflect a non-
visible wavelength of light). One example of active markers is represented by infrared
markers that emit (and not only reflect) infrared light to facilitate the localization of an
object. The main steps involved in marker-based object detection are the following:

1. Marker Identification: The system identifies and locates markers within the scene
by recognizing their unique patterns or codes.

2. Pose Estimation: Once markers are detected, their positions and orientations are
calculated relative to the camera or sensor.

3. Object Localization: Objects associated with these markers can be accurately lo-
cated based on the known marker positions.

Markerless object detection, instead, aims to identify and locate objects within an image
or video without relying on predefined markers or patterns. This approach relies on
the inherent visual features and characteristics of objects in the scene. In this case, the
primary steps involved are the following:

1. Feature Extraction: The system extracts distinctive features, such as edges, corners,
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textures, or key points, from the image or video frames.

2. Object Recognition: Using machine learning or computer vision algorithms, objects
are recognized based on the extracted features, and their positions are estimated.

3. Object Localization: Bounding boxes or masks are placed around the recognized
objects to indicate their locations.

Among the markerless objects detection methods, there is one that is based on the kine-
matic chain of the robot [11][12]. The position estimated with this strategy, however,
could not be accurate because of measuring errors in the kinematic chain reconstruction.
Markerless object detection is particularly valuable in applications where the use of phys-
ical markers or patterns is impractical or undesirable, such as in surgery, where adding
markers could create problem of manageability and in sterilization phases [10]. Advances
in deep learning have significantly improved the accuracy and robustness of markerless
object detection systems.
Deep learning-based objects detection involves the use of neural networks (NN), partic-
ularly CNNs, to recognize objects of interest in images or video frames and to estimate
their position [13]. The key steps in deep learning-based object detection are:

1. Data Collection and Annotation: A labeled data set is collected, containing images
of objects along with corresponding annotations that specify the object’s class (e.g.
in surgical field: laparoscopic instrument, suction cannula, blood vessel) and the
bounding box indicating its location within each image.

2. Model Architecture: A deep neural network architecture is chosen or designed for the
task. Common choices include Faster R-CNN, YOLO, SSD, or custom architectures
tailored to the specific requirements of object detection.

3. Training: The model is trained on the labeled data set using techniques like back-
propagation and gradient descent. During training, the network learns to recognize
features and patterns that represent objects.

4. Inference: After training, the model is used for inference on new, unlabeled data. It
takes an input image and produces predictions regarding the presence and location
of objects.

5. Post-processing: The model’s output, which includes bounding boxes and class
probabilities for detected objects, may undergo post-processing steps such as non-
maximum suppression to refine and filter the detections.

For what specifically concern this thesis work, as reported in [10], most of the aforemen-
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tioned markerless and marked-based tool detection techniques have been used to detect
surgical tool in many research and a lot of studies are in progress.

2.2. Visual Object Tracking

Object tracking is a computer vision task that involves locating and following a specific
object within a video sequence or a series of images. It finds applications in various
domains, including surveillance, robotics, autonomous vehicles, and more [14].
Object tracking algorithm works as follows:

1. Initialization: The object tracker is initialized by specifying the object to track in
the initial frame. This is often manually or automatically (e.g. using an object
detection algorithm) by drawing a bounding box around the object.

2. Tracking: The tracker continuously estimates the position and scale of the object in
subsequent frames by analyzing different features. Various tracking algorithms can
be used for this purpose.

3. Re-detection (optional): To handle challenges like occlusion or tracking failure, some
tracking systems incorporate re-detection steps to identify the object in the presence
of difficulties.

The object’s characteristics that a tracking algorithm can use for its purpose are multiple
[15]. Here some examples are reported together with the relative tracking methods:

• Specific features or key points within the object (Feature point tracking, Corner
detection-based tracking);

• Color information or color histograms (Color histogram matching, Color-based mean-
shift tracking);

• Edge information (Edge detection-based tracking)

• Motion cues or optical flow (Lucas-Kanade optical flow-based tracking, Motion
model-based tracking)

• Handcrafted features and mathematical models (Mean-Shift, KLT Tracker, Tem-
plate Matching)

• Object templates (Template matching, Normalized cross-correlation).

There exist also tracking algorithms that combine multiple tracking techniques for im-
proved performance and robustness (e.g. combining color and motion information).
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Tracking algorithms can be classified on the basis of when the procedure is carried out
and so they are divided in online tracking methods and offline tracking methods or based
on the number of objects that they tracks simultaneously (Single Object vs. Multi-Object
Tracking).
Tracking algorithms compared with tool detection methods have several advantages and
disadvantages [16] that are listed in the table below:

Advantages Disadvantages
Motion analysis: they provide information
about object motion, velocity, and trajec-
tory

Accuracy: tracking accuracy can vary de-
pending on factors like object appearance
and motion

Real-time monitoring: they allow for contin-
uous monitoring of objects in video streams

Initialization: they have to be initialized to
know which objects/pixels have to follow

Robustness against partial occlusions: they
can maintain tracking even when objects are
temporarily occluded

Challenging environments: object tracking
can be difficult in complex or changing en-
vironments

Behavior analysis: useful for understanding
and predicting object behavior

Object occlusion: they struggle when ob-
jects are heavily occluded.

Object model and training not needed: of-
ten these algorithms follow simple points
between frames without any knowledge of
the complex model of the object. Moreover,
they do not need training or data set like
neural network tool detection methods

Assumptions: many of these algorithms are
based on constancy assumptions (e.g. the
intensity of a pixel does not change, shape
or color of object remain constant) or on
simplifying assumptions (e.g. small move-
ments between frames)

Computationally efficient: using the prior
knowledge given by motion and behaviour
analysis they can track the object rapidly
and without an high computational cost

Table 2.1: Advantages and disadvantages of tracking algorithms compared to tool detec-
tion methods.

The choice between object tracking and tool detection depends on the specific application
and the goals of the computer vision system. Some applications may require a combination
of both tasks to achieve the desired functionality (sometimes the object detection methods
are used to initialize the tracking algorithms and to correct their possible drifts caused to
long executions).
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As reported in [10], also in the surgical field tracking algorithm are used and are under
study.

2.3. Visual Servoing

Vision plays a key role in a robotic system, as, mimicking human sight, it can be used
to retrieve geometrical and qualitative information on the workspace where the robot
operates, without contact. Such information may be employed for an online path planning
or for feedback control [17]. Nowadays several robotic controllers integrate vision systems
in order to, for example, facilitate the pick and place task in case of non-constant position
or orientation of the object to handle (bin-picking problem) [18] or to catch a flying ball
with a robotic arm [19] or to follow an object [1][8].
In visual servoing, the vision sensor (e.g. a 2D camera, a stereo camera, an exoscope, a
LIDAR) is used as the main sensor in the loop feedback to compute an appropriate error
vector defined between the current pose of the object identified by the camera and the
pose of the robot’s end-effector.
The vision-based control schemes can be divided into two categories on the basis of the
space in which they realize visual servoing:

• Position-based visual servoing, when it is realized in operational space;

• Image-based visual servoing, when it is realized in the image space.

The main difference lies in the fact that the schemes of the first category use visual
measurements to reconstruct the relative 3D pose of the object with respect to a specific
reference frame, while the schemes of the second category define an error function in terms
of quantities that can be directly measured in an image. For example, with image-based
methods if the goal is to track a point that the camera is observing, then the feedback
error will be computed directly in the image plane as the Euclidean distance between the
center of the image and that point. Then, a control law, which maps this error directly
to robot motion, is constructed.
The position-based visual servoing approach is conceptually similar to the operational
space control. The main difference is that feedback is based on visual measurements
and pose reconstruction. The advantage of this method regards the possibility of acting
directly on operational space variables, while the drawback of this approach is that the
feedback loop could open due to lack of visual measurements and so instability may occur,
if the object exits from the camera field of view.
In the image-space visual servoing approach, the control action is computed on the basis
of the error defined as the difference between the desired and actual values of the image
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feature parameters. In this case the advantages are that the 3D pose of the object do
not need to be reconstructed and that the aforementioned opening of the feedback loop is
less probable thanks to the direct control on the image features. However, the non-linear
mapping between the image feature parameters and the operational space variables, can
cause singular configurations that could bring to instability or saturation of the control
action. Moreover, since the end-effector trajectories cannot be easily predicted, collisions
with obstacles or joint limits violation may occur.
Another important aspect to take into account when discussing visual servoing is the
camera positioning. There exist two main configurations: eye-in-hand and eye-to-
hand.

Figure 2.1: Camera configurations: on the left-hand side eye-in-hand setup and on the
right-hand side eye-to-hand setup (Figure taken from [20]).

As shown in Figure 2.1, in eye-in-hand setup the camera is attached to the end effector
or to the wrist of the robot. This configuration is optimal to observe without occlusions
the area in which the end effector operates, but the geometric relationship between the
camera and the workspace changes as the manipulator moves and the field of view can
change dramatically for even small motions of the robotic arm.
In the eye-to-hand configuration, as represented in Figure 2.1, the camera is mounted in
a fixed location so that it can observe the manipulator and its workspace. Differently
from the previous setup, in this case the field of view does not change as the manipulator
moves and the geometric relationship between the camera and the workspace is fixed and
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can be calibrated offline. The drawbacks of this configuration are the possible occlusions
of the workspace caused by the robotic arm motion.
Among all the visual servoing setups, two are particularly relevant in the contest of neu-
rosurgery in general and of this thesis work in particular: the Modus V system released in
2017 by Synaptive Medical [1] and the markerless autonomous exoscope system developed
by the Nearlab laboratory of the Politecnico di Milano described in [8].
The Modus V system represents the first autonomous camera control in neurosurgery.
The system achieves hands free manipulation by means of robotic arm technology based
on the Canadarm device. One surgical tool is equipped with passive markers that are rec-
ognized by a special stereo camera mounted in eye-to-hand configuration. In the system
is present a foot pedal for motion activation, zoom in/out and auto-focus on/off.
The markerless autonomous exoscope presented in [8], instead, mount the exoscope on a
7 degrees of freedom redundant collaborative manipulator (KUKA LWR 4+ released by
KUKA Roboter GmbH). It exploits the images streamed by the exoscope and a Yolo V3
Convolutional Neural Network (CNN) to detect, without the use of any type of marker,
a specific surgical instrument and then uses visual servoing to align the camera with the
tool.
The second setup is thought to be cheaper, to reduce the number of devices needed to
guide the exoscope and to overcome the problem of sterilization given by the modification
of the surgical instruments with markers. Unfortunately, because of a series of limitations,
among which the most relevant is the low processing speed of the system caused by the
use of the CNN, this system is not ready to the application in a real scenario.
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3| Materials and Methods

In this Chapter, an overview of the implemented system is presented, starting with a
description of the employed hardware and then proceeding to explain the three different
modules constituting the system, as shown in Figure 3.1:

• Tool detection module: it is employed to recognize a selected surgical instrument.

• Hybrid tracking module: it is used to track and predict the future position of
the target tool.

• Visual-servoing controller: it is responsible for zeroing the error between the
desired and actual pose of the robot.

Figure 3.1: Overall System: images acquired by the stereo camera are sent to a CNN
which detects the surgical tool. The 2D position of the tool is sent to a tracking module,
then a prediction module estimates the future position of the tool in the image space.
Finally, the 3D position of the tool is extracted from the predicted position and is fed to
a visual-servoing controller.
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3.1. Hardware Overview

The system is composed of a 7 Degrees of Freedom (Dof) manipulator, a 3D camera
attached to its end-effector in an eye-in-hand configuration through a 3D printed support
and a computer equipped with a 40GB GPU (Nvidia A100).

3.1.1. The Vision Sensor

In this study, the JVC Everio GS-TD1 Full HD 3D Camcorder was used as a vision sensor.
The camera streams two images, right and left (one for each lens), that are used for the
3D position reconstruction of a laparoscopic instrument.
The camera is equipped with two 1/4.1" CMOS sensors and Twin HD GT lenses with
an intra-axial distance of 35 mm (Figure 3.2) which allows to capture the scene from two
slightly different point of views, granting so the 3D capabilities to the camera.

Figure 3.2: Vision sensor: JVC GS-TD1 Full HD 3D Camcorder.

In addition to the 3D capture, it offers full 1920×1080p high-definition capabilities as well
as various zoom modes in both formats (3D and 2D) as shown in Table 3.1.
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Image sensor 2x 1/4.1" CMOS
Lens(3D) F1.2 - 2.28, f= 3.76 mm to 18.8 mm
Lens(2D) F1.2 - 2.8, f= 3.76 mm to 37.6 mm
Intra-axial distance 35 mm
Image quality (3D) 3D Full HD 1920×1080 ×2
Image quality (2D) 2D Full HD 1920×1080
Zoom Optical: ×5(3D) Optical: ×10(2D) Digital: ×200(2D)
Weight 675.85 g
FPS 30

Table 3.1: JVC GS-TD1 Full HD 3D Camcorder specifications.

The stereo camera is thus composed of two different 2D cameras and the most adopted
representation of a 2D camera is the so-called “pinhole” camera [21].
A pinhole camera is a simple camera without a lens and with a single small aperture (so,
it is an ideal model of a camera). Light rays pass through the aperture and project an
inverted image on the opposite side of the camera, on the so-called image plane.
Figure 3.3 shows how the pinhole camera model works.

Figure 3.3: Pinhole camera model: the projection center O is the point where all the
rays of light passing through the pinhole intersect. P (X, Y, Z) represents a point in the
camera coordinates system which is projected on the camera image plane as p(x, y) or
in pixel p(u, v). f represents the focal length, the distance of the image plane from O

measured on the optical axis, where the camera is punting at. C is the principal point,
where the camera image plane and the optical axis intersect.
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The pinhole camera model relates a three-dimensional scene to the two-dimensional im-
age captured on the camera sensor using similar triangles. Considering this model, the
relationship between 2D projection of a point on the image and its 3D coordinates with
respect to a world coordinates frame can be represented as follows

s

uv
1

 =

fx 0 cx 0

0 fy cy 0

0 0 1 0



r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1



X

Y

Z

1

 (3.1)

where s is an arbitrary scaling factor accounting for the fact that points along a ray
through the camera’s pinhole are projected to the same image point, u and v are the 2D
coordinates of the point expressed in pixel in the image plane.
fx and fy are the ratios (expressed in pixel) between the focal length f (expressed in mm)
and the size of the pixel, sx and sy (fx = f/sx, fy = f/sy). fx and fy, together with the
coordinates of the principal point (cx,cy), constitute the camera intrinsic matrix.
The extrinsic matrix instead is composed of the rotation (r) and translation (t) of the
camera with respect to the world reference frame.
Finally, (X, Y, Z) are the 3D coordinates of the point expressed in the camera reference
frame.
For simplicity the intrinsic and extrinsic parameter matrices will be called A and T

respectively, so the equation 3.1 becomes:

sp = ATP (3.2)

Lenses that are used in cameras introduce two types of distortions not considered in
the ideal pinhole model: radial and tangential. Radial distortions are caused by lens
imperfect shape and causes straight lines in real world to be bulged out in the image.
Radial distortions can be represented as follow

xdistorted = x(1 + k1r
2 + k2r

4 + k3r
6) (3.3)

ydistorted = y(1 + k1r
2 + k2r

4 + k3r
6) (3.4)

The tangential distortions, instead, are caused by the CMOS chip not being perfectly
parallel to the lens, making some areas in the image look nearer than expected and are
represented as

xdistorted = x+ [2p1xy + p2(r
2 + 2x2)] (3.5)
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ydistorted = y + [p1(r
2 + 2y2) + 2p2xy] (3.6)

where k1, k2, k3, p1, p2 are the five camera distortion parameters.
Since these distortions are not taken into account in the pinhole model, its validity de-
creases toward the edges of the image where distortions effects increase while it remains
reliable around the center. Distortion matrices are thus computed during the calibration
procedure and applied to the images captured by the camera to avoid the loss of validity
of the model.

A crucial aspect in the visual servoing framework is to have reliable information coming
from the camera, since this sensor provides the feedback information to the controller. In
order to guarantee reliability, the camera calibration process is carried out.
The calibration procedure aims at estimating:

• the intrinsic parameters represented by the matrix A in equation 3.2, expressing
geometrical properties of the camera;

• the extrinsic parameters represented by T in 3.2 and expressing the pose of the
camera frame with respect to the base frame.

The camera calibration was performed by the researchers of the NearLab laboratory ex-
ploiting the Zhang method [22] which is implemented in the OpenCv library. This ap-
proach requires extracting some image points observing a pattern from different orienta-
tions. The image 2D coordinates (x, y) and the corresponding 3D real world coordinates
of those points are the information needed for the calibration. For the system described in
this work, a (13×9) chessboard pattern has been used and the points extracted were the
intersection of two black squares. A number of 17 images of the calibration pattern were
used and the 3D positions of the points in the real world were expressed with respect to
the chessboard upper left corner. The algorithm supposes, without loss of generality, that
the pattern used is being kept stationary at XY plane meaning that the Z coordinate of
the points in the real world is equal to zero. To eliminate the scaling factor ambiguity,
the length of the sides of the squares (20 mm, as shown in Figure 3.4) was provided to
the algorithm.
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Figure 3.4: Chessboard pattern and examples of extracted points (red dots). Real 3D
coordinates are expressed with respect to the upper left corner of the chessboard pattern.

The intrinsic parameters for the right camera resulting from the camera calibration are
the following:

AR =

1062.92 0 467.91 0

0 2124.9 541.86 0

0 0 1 0

 (3.7)

The extrinsic parameters, expressing the position of the left camera with respect to the
right one, were the identity matrix for the rotation and a −34.7 mm translation along the
X axis. This result is coherent with the data provided by the stereo camera manufacturer
which reports 35 mm lens spacing (intra-axial distance in table 3.1).
The distortion coefficients obtained with the camera calibration are:

Distcoeff =
[
−2.78E − 1 2.15E − 1 7.61E − 4 8.94E − 5 −8.30E − 2

]
(3.8)

and have been used to undistort the images before the triangulation procedure explained
in Section 3.4.1.

3.1.2. The Camera Holder

The camera holder structure is composed of the 7 DOF robotic manipulator and the 3D
printed camera support.
In this work, the stereo camera has been mounted in an eye-in-hand configuration on a
KUKA LWR 4+ robotic manipulator, released in 2010 by the German manufacturer of
industrial robots KUKA Roboter GmbH. This is a collaborative robot, so it has been
purposely designed to directly cooperate with humans inside a defined workspace thanks
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to appropriate safety measures dedicated to avoiding injuries to people. This robot has
been widely used for research purposes.

Figure 3.5: Main assemblies and robot axes.

As shown in Figure 3.5, the robot is composed of a 2-axis in-line wrist (1), five joint mod-
ules (2), and a base (3) totaling to 7 degrees of freedom. When the joint space dimension
is higher than the task space dimension (7 > 6), robots are defined "redundant". Re-
dundant manipulators are usually characterized by high dexterity and manoeuvrability,
easier obstacle and singularities avoidance, energy efficiency and increased safety. It is a
lightweight robot (approx. 16 kg) and it can lift up to 7 kg (rated payload).

In order to secure the 3D camera on the Kuka LwR 4+ robotic manipulator, the NearLab’s
researchers have modeled a support in Solid Works and they have printed it using the
Ultimaker S3 3D printer. To be able to sustain the weight of the camera, the support
was printed in ABS with an 80% infill density and triangular infill pattern. The printed
camera support is shown in Figure 3.6.



20 3| Materials and Methods

Figure 3.6: 3D model of the camera support in two pieces on the left-hand side and
support (light grey), camera (black), end-effector (dark grey) assembly. The center of
mass (COM) is computed with respect to the coordinates frame on the upper flange.

Once everything has been printed and assembled, some parameters necessary for the robot
control (in particular for the gravity compensation) have been estimated:

• Mass = 1, 713 kg

• Density = 0, 842 g/cm3

• PCOM = (−1.071, 46.481, −57.252) mm

The coordinates of the load center of gravity (PCOM) must be expressed with respect to
the face of the mounting flange on axis A7 as described in the robot manual and illustrated
in Figure 3.7.

Figure 3.7: Face of the mounting flange on axis A7.
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In order to retrieve the transformation T EE
C that relates the end-effector (EE) frame and

the camera frame, eye-in-hand calibration [23] was finally performed by the NearLab’s
researchers. The process is similar to the one carried out to estimate intrinsic and ex-
trinsic camera parameters. Eye-in-hand calibration consisted in retrieving the position
in the camera frame of a (13×9) stationary chessboard pattern shown to the camera
while recording the position of the EE (computed through the forward kinematic of the
manipulator). A number of 8 poses together with the relative image coordinates of the
chessboard pattern have been recorded. Knowing that the position of the pattern with
respect to the base frame remains unchanged during the motion of the robot, the com-
putation of the position of the camera with respect to the EE is reduced to the solution
of an ATEE

C = TEE
C B equation, where A is the transformation between two different

robot EE positions and B is the transformation between the camera positions corre-
sponding to the robot EE positions considered. Using the OpenCV implemented function
calibrateHandEye(), the camera-EE relation is obtained:

T EE
C =


1 0 0 −0.00619

0 1 0 0

0 0 1 0.213

0 0 0 1

 (3.9)

meaning no rotations, −0.619 cm and 21.3 cm translation along X and Z axes respectively.
All the other transformations between different reference frames will be discussed in the
control Chapter 3.4.
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3.2. Tool Detection Module

The tool detection module has the role of recognizing the tip of the surgical instrument
in the images coming from the stereo camera and estimating its position. To achieve this,
a CNN YoloV5 (You Only Look Once, version 5) [24] has been employed.
YoloV5 is an advanced object detection framework that employs a single-stage architec-
ture for real-time object detection within images and videos. It is characterized by its
streamlined and efficient design, emphasizing accuracy, speed, and ease of use. YoloV5
has been used in this work since the detection of the instrument must be performed in
real-time to have a fast repositioning of the camera.

Figure 3.8: Left and right images before (left-hand side) and after (right-hand side)
processing them and feeding the NN. (XL,t, YL,t) and (XR,t, YR,t) represent the center
coordinates of the bounding box in the left image plane and in the right image plane
respectively.

In this work’s setup, the two images, right and left, acquired by the stereo camera come
together with total a resolution of 1920× 1080 pixels (see Figure 3.8). The image is then
divided in two with size 960× 1080 pixels and the two images obtained are downsampled
to 640 × 640 pixels in order to speed up the inference while maintaining good accuracy.
Finally, the downsampled images are sent to the NN.
The output of the NN [x1, y1, x2, y2, conf, classpred], for each image, is represented by the
image coordinates of the upper right corner and lower left corner of the bounding box,
the confidence of the prediction and the class predicted i.e. the instrument’s tip. After
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the identification of the instrument, the bounding box was extrapolated to the original
images size and the actual position of the tooltip on the image plane was considered to
be as the center of the bounding box, (XR,t, YR,t) for the right image and (XL,t, YL,t) for
the left image.

A pre-trained model of the object detection NN on the Common Objects in Context
(COCO)[25] data set is made available by the author. Even if this data set does not
include images of medical instruments in surgical scenarios, it has been chosen to fine-
tune the model since training the detector from scratch would require a very high amount
of data and computational power. The fine-tuning was performed with a custom data set
created in the NearLab laboratory. This data set is not representative of a clinical scenario,
but it has been used to demonstrate this work’s method conceptually. An example of this
data set can be appreciated in Figure 3.9.

Figure 3.9: Training/validation data set: laboratory recorded images and real endoscopic
ones from the EndoVis challenge.

A number of 4100 images of the laparoscopic grasping forceps used in this study were
recorded in the laboratory setup and were manually annotated. Different backgrounds
were used in order increase the variability and provide robustness in the training proce-
dure. Also, given that the grasping forceps is very similar to the surgical instruments of
the Da Vinci surgical robot by Intuitive, another 1800 images were extracted from the
2017 EndoVis challenge[26] for which the bounding boxes were extracted from the seg-
mentations provided. The obtained final data set totals to a number of 5900 images and
was split in 5300/600 for the training and validation step.
The training procedure was performed by the NearLab’s researchers with a number of
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5300 images while data augmentation was performed as rotations, translations, changes
in brightness and left-right flips. A mini-batch size of 8 images was used. The hyper-
parameter Intersection over Union (IoU) which represents how much the predicted bound-
ing box overlaps with the ground truth was set to 0.5 meaning that a predicted bounding
box that overlaps more than 50% with the ground truth is considered a True Positive
(TP) while it is considered a False Positive (FP) otherwise. The learning rate was set to
0.001 and the network was trained for a maximum of 400 epochs. Finally, the confidence
threshold was set to 0.4 representing the value above which a prediction is considered to
be valid.

The CNN worked on every single frame sent by the camera and returned a position
estimation at a frequency approximately of 12.5 Hz because of the large computational
load of the NN.
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3.3. Tracking Module

Since the tool detection module is too slow, because of the delays deriving by the use of
the CNN, new approaches have been investigated to face this problem, giving rise to the
so-called "Hybrid tracking module".
First of all, different approaches for the tool detection have been investigated to reduce
the computational load coming from the CNN (CNN15 and CNN30 strategies). After
that, a modified Particle Filter has been introduced to predict the future position of the
surgical instrument and to consequently reduce the tool detection delay (PARTICLE
strategy). Then, an efficient tracking module has been considered to substitute, whenever
is possible, the CNN (OPFL strategy). Finally, a hybrid strategy that involves both
the tracking module and the particle filter predictor has been used to reduce as much as
possible all the system’s delays (HYBRID strategy).
The first two strategies were developed by the NearLab laboratory, while the other three
strategies are the main contribution of this thesis work. All these methods will be dis-
cussed in detail in the following Subsections.
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3.3.1. CNN-Based Strategies

To reduce the computational load given by the use of the CNN, the NearLab’s researchers
changed the activation protocol of the CNN. Firstly, they developed a strategy that uses
the CNN only on the right image and exploits the epipolar geometry concept (briefly
explained in Appendix A) to determine the position of the instrument in the left image.
In Figure 3.10 is shown a simplified version of the workflow of the system that employs
the aforementioned strategy.

Figure 3.10: The CNN15 strategy (simplified) workflow.

This strategy allows to reach an estimated position publication rate equal to 15 Hz, so it
has been named "CNN15".
To further reduce the computation load of the method just described, researchers found
a compromise strategy between surgical instrument detection accuracy and speed. They
discovered that by making inferences every 2 frames, the system achieves a processing
speed close to 30 Hz, which is also the frame rate of the camera. Thanks to this functioning
frequency, the strategy that exploits this compromise is called "CNN30".
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3.3.2. Particle Filter Strategy

A Particle Filter, also known as a Sequential Monte Carlo method, is a powerful and
versatile estimation technique used in probabilistic filtering and state estimation prob-
lems [27]. It is particularly effective in scenarios where the underlying system dynamics
are nonlinear, non-Gaussian, and may involve significant uncertainties. Particle Filters
provide a flexible framework for tracking and estimating the evolving state of a system
over time by combining principles from probability theory and Monte Carlo simulations.
In a Particle Filter, the state of a dynamic system is represented by a set of particles,
where each particle corresponds to a potential state hypothesis. These particles are prop-
agated through time using the system’s nonlinear dynamics, and at each time step, they
are updated based on new measurements or observations. Weights are assigned to the
particles according to their likelihood of explaining the observed data, and resampling is
performed to generate a new set of particles that better represent the true state of the
system [28].

Figure 3.11: The usual Particle filter workflow (MathWorks [29]).
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The usual particle filter algorithm (Figure 3.11), after the initialization phase and the
first sampling, acts as follows at each time instant:

1. Predict next state: based on a specified state transition function, particles evolve
to estimate the next state.

2. Get measurements: collect the measurements from the sensors.

3. Correct state using measurements: measurements are used to adjust the pre-
dicted state and correct the estimate.

4. Extract best state estimation: the best state estimate is automatically extracted
based on the weights of each particle.

5. Decide if is necessary to resample or not: once the state has changed enough,
resample the particles based on the newest estimate. If resampling is not triggered,
the same particles are used for the next estimation. If resampling is activated,
particles are resampled using different methods and policies [30].

This method is used in very different fields (robotics, economics, statistics, etc.) and in
this work has been used just as a predictor of a system difficult to model. In fact, the
purpose is to predict future movements of a surgical tool without any sensor placed on
the instrument or on the surgeon hand, and without any clue about the task the tool is
used for in that moment.
Particle filter has been preferred to the more common Kalman filter because the latter is
based on the model Gaussianity assumption and since our model cannot be considered
Gaussian, the Particle filter, which employs simulation methods to generate state and
innovation estimates, was more suitable.
Considering this, a modified Particle filter has been developed and its workflow is described
below.
Firstly, the weight of every single particle is initialized with the following formula:

wR,i =
1

N
= wL,i (3.10)

where wR,i and wL,i indicate the weight of the ith particle related to the right and the left
image respectively, and N the total number of particles used.
Every time a new tool position estimation, (XR,t, YR,t)(k) from the CNN or (XL,t, YL,t)(k)

from the epipolar geometry, is available, the Particle filter is used to predict the future
position of the tool and it works as follows (considering for simplicity only the tool position
in the right image (XR,t, YR,t)(k) as input, since for the left image all happens in exactly
the same way):
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1. Speed and direction estimation: the speed and the direction of the instrument
movement are computed. To estimate the velocity, the discrete derivative between
two consecutive positions is used:

speedR,t(k) =

√
∆2

X,R(k) + ∆2
Y,R(k)

∆t(k)
(3.11)

where speedR,t(k) is the speed of the tool at the kth instant, and ∆X,R, ∆Y,R, ∆t

are the variation of the tool x coordinate, tool y coordinate and time t, respectively,
between two consecutive position received by the tool detection module at instant
k and k − 1. These variations are defined as follows:

∆X,R(k) = XR,t(k)−XR,t(k − 1)

∆Y,R(k) = YR,t(k)− YR,t(k − 1)

∆t(k) = t(k)− t(k − 1)

in which XR,t(k) and YR,t(k) are the tool coordinates at the kth instant in the right
image, while XR,t(k−1) and YR,t(k−1) are the same coordinates but at the instant
k−1. t(k) and t(k−1) represent the time at which the kth and the (k−1)th positions
have been received from the NN.
Since the speed estimated through discrete derivative results very noisy, it has to
be filtered through a low-pass Finite Impulse Response filter of the first order:

vR,t(k) = speedR,t(k)(1− α) + vR,t(k − 1) · α (3.12)

where vR,t(k) is the filtered tool velocity and α = 0.9 is a parameter that has been
fine-tuned experimentally.
The function atan2 is used instead to determine the direction of motion:

hR,t(k) = atan2(∆Y,R(k),∆X,R(k)) (3.13)

2. Particles’ heading randomization: once the direction of motion of the tool
hR,t is estimated the heading of each particle is distributed normally around that
direction:

hparticles,R(k) ≈ Norm(hR,t(k), 0.1) (3.14)

where hparticles,R(k) is the vector of all the hR,i(k) headings of the particles.
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3. Prediction of future particles’ position: as discussed above, the modelling of
the surgical tool moving in the space was complicated. To overcome this problem
the concept of "odometry" has been used. Odometry is a position estimation tech-
nique widely used in mobile robots’ applications and it consists in the estimation
of the variations in a robot’s pose (translation and orientation) over time using the
measurements coming from different sensors [31].
In this work the only sensor available to detect the tool position and movements is
represented by the camera fixed to the robot. The velocity (vR,t) and direction (hR,t)
of movements estimated above, a predefined prediction horizon dt, and odometry
have been used to predict the future particles’ position (XR,i, YR,i).
In particular the Runge-Kutta odometry is exploited when the absolute value of the
heading variation |∆h,R(k)| = |hR,t(k)− hR,t(k − 1)| is under a certain threshold:

XR,i(k) = XR,t(k) + vR,t(k) · dt · cos
(
hR,i(k) +

∆h,R(k) · dt
2

)
(3.15)

YR,i(k) = YR,t(k) + vR,t(k) · dt · sin
(
hR,i(k) +

∆h,R(k) · dt
2

)
(3.16)

When |∆h,R(k)| is over the threshold, the exact odometry is used:

XR,i(k) = xR,t(k) +
vR,t(k) · (sin (hR,i(k) + ∆h,R(k) · dt)− sin (hR,i(k)))

∆h,R(k)
(3.17)

YR,i(k) = yR,t(k)−
vR, t(k) · (cos (hR,i(k) + ∆h,R(k) · dt)− cos (hR,i(k)))

∆h,R(k)
(3.18)

The prediction horizon dt has been fine-tuned on the real system.

4. Prediction of future position of the tool: the future position of the tool
(X̂R,t, ŶR,t)(k) is estimated taking a weighted average of the particles’ position com-
puted above:

X̂R,t(k) =

∑N
i=1wR,i(k − 1) ·XR,i(k)∑N

i=1wR,i(k − 1)
(3.19)

ŶR,t(k) =

∑N
i=1wR,i(k − 1) · YR,i(k)∑N

i=1 wR,i(k − 1)
(3.20)

5. Particles’ weight update: the weight of the particles is updated taking into
account the Euclidean distance between the predicted particle position and both
the actual tool position and a potential future position of the tool. This additional
term was intended to assign more weight to the direction of the motion being tracked.
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From the equation point of view:

wR,i(k) =
max (distanceR)(k)− distanceR,i(k)∑N

i=1(max (distanceR)(k)− distanceR,i(k))
(3.21)

where distanceR(k) is the vector of all the distanceR,i(k) that derive from the
equation 3.22 in which all the value are referred to the kth instant, ∆XR,t,i = XR,i−
XR,t, and ∆YR,t,i = YR,i − YR,t:

distanceR,i =
√

∆X2
R,t,i +∆Y 2

R,t,i +
√

∆X2
future +∆Y 2

future (3.22)

where ∆Xfuture = ∆XR,t,i − vR,t · dt · cos(hR,t) and ∆Yfuture = ∆YR,t,i − vR,t · dt ·
sin(hR,t) represent the difference between the current position and the potential
future position.

The algorithm of the modified Particle filter above described can be appreciated also in
Figure 3.12

Figure 3.12: The modified Particle filter workflow presented in this work.

The modified Particle filter described above has been integrated in the CNN30-based
system as shown in Figure 3.13.
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Figure 3.13: The Particle filter strategy (simplified) workflow.

The estimated future tool coordinates obtained by this technique are a bit noisy, so they
have to been filtered. To do so, a low-pass Finite Impulse Response filter of the first order
is employed:

X̃R,t(k) = X̂R,t(k)(1− β) + X̃R,t(k − 1) · β (3.23)

ỸR,t(k) = ŶR,t(k)(1− β) + ỸR,t(k − 1) · β (3.24)

where X̃R,t(k) and ỸR,t(k) are the filtered coordinates of the tool in the right image at the
kth instant and β = 0.7 is a parameter that has been fine-tuned experimentally.
Once the tool future coordinates in the two images, (X̃R,t, ỸR,t) and (X̃L,t, ỸL,t), have
been estimated these are used to triangulate the tool 3D position P C

t = (Xt, Yt, Zt) in
the camera frame and then, through the necessary transformations, in the base frame, (as
described in the Chapter 3.4.1).
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3.3.3. Optical Flow Strategy

This strategy exploits the computational efficiency of the objects tracking modules to
follow one or more points in the image between two consecutive frames. [14]
In fact, usually tracking algorithms are faster than detection algorithms because when
these methods are tracking an object that was detected in the previous frame, they know
a lot about the appearance of the object. These algorithms also know the location in the
previous frame and the direction and speed of its motion. So, in the next frame, tracking
modules can use all this information to predict the location of the object in the next frame
and do a small search around the expected location of the object to accurately locate the
object. A good tracking algorithm will use all information it has about the object up to
that point while a detection algorithm always starts from scratch.
There are many different techniques to track an object in the images and in this work,
to track the surgical tool, the Optical flow-based method has been used. This choice has
been made because Optical flow-based methods offer several advantages in the context of
video object tracking, including:

• Motion Estimation: Optical flow inherently captures the motion information
between consecutive frames. This enables trackers to accurately estimate the dis-
placement of objects even in challenging scenarios with complex motion patterns.

• No Need for Object Models: Unlike appearance-based methods that rely on
object models and templates, Optical flow methods do not require prior knowledge
of the object’s appearance. This makes them robust in situations where the object’s
appearance changes due to illumination variations or occlusions.

• Low-Level Features: Optical flow operates on pixel-level information, which
means it can capture fine-grained motion details. This can be advantageous when
tracking objects with subtle motion cues or when dealing with partial occlusions.

• Real-time Processing: Optical flow algorithms can often be implemented effi-
ciently, making them suitable for real-time applications where timely tracking up-
dates are crucial.

• Robustness to illumination and object appearance changes: Optical flow
methods are less affected by lighting changes compared to appearance-based meth-
ods. This is because they focus on tracking the motion of pixels rather than relying
heavily on color or texture information. In addition, since Optical flow is primarily
concerned with motion estimation, it can track objects with similar motion patterns
even when their appearances differ significantly.
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• Simple Assumptions: Optical flow methods are based on the assumption of
brightness constancy, which simplifies the tracking process. This makes them appli-
cable to a wide range of scenarios without overly complex model requirements.

The Optical flow is the pattern of apparent motion of image objects between two consec-
utive frames caused by the movement of an object or camera [32]. Optical flow is based
on the assumption that neighboring pixels in successive frames of a video sequence move
together with similar velocities, preserving their spatial relationships. In other words,
if an object in an image is moving, the pixels belonging to that object should exhibit
consistent movement across frames.
To compute Optical flow, algorithms analyze the changes in pixel intensity values between
consecutive frames. The displacement of pixels or image patches is estimated based on
how their intensity values shift.
Various methods can be used for this purpose and in this thesis the so-called "Differential
method" of Lukas-Kanade technique has been exploited [33]. This method utilizes the
brightness constancy assumption, stating that the intensity of a pixel remains unchanged
between frames.
In particular, the Lucas-Kanade method assumes small motion between frames and min-
imizes the difference between the intensity values of corresponding pixels. The basic
formulation involves the partial derivatives of image intensity with respect to time and
spatial coordinates.
Considering the intensity of a pixel I(x, y, t) in one frame and the same pixel in the fol-
lowing frame, after ∆t seconds, because of the assumption that intensity does not change,
the following equation is obtained:

I(x, y, t) = I(x+ dx, y + dy, t+∆t) (3.25)

where I is the intensity of a pixel, x and y are the coordinates of the pixel in the image
at time t, while dx and dy represent how much the coordinates of the pixel have changed
in ∆t seconds. Using the Taylor series approximation on the right-hand side, removing
common terms, and dividing by ∆t, the Optical flow equation can be obtained:

fx · u+ fy · v + ft = 0 (3.26)

In this equation fx =
δf

δx
and fy =

δf

δy
are image gradients. Similarly, ft is the gradient

along time. u =
δx

δt
and v =

δy

δt
are unknown and are computed using the Lukas-Kanade

method.
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Because of the assumption that all the neighboring pixels will have similar motion, Lucas-
Kanade method takes a 3 × 3 patch around the points to follow, so all the 9 points have the
same motion. The gradients fx,fy,ft can be found for these 9 points. So now the problem
becomes solving 9 equations with two unknown variables which is over-determined. The
solution is obtained with the least square fit method:[

u

v

]
=

[ ∑
i f

2
xi

∑
i fxi

fyi∑
i fxi

fyi
∑

i f
2
yi

]−1

·

[
−
∑

i fxi
fti

−
∑

i fyifti

]
(3.27)

While Optical flow-based methods offer many advantages, it is important to note that they
also have limitations. They can struggle in cases of occlusions, abrupt motion changes, or
scenarios where the brightness constancy assumption is violated. Furthermore, handling
large displacements and scale changes might pose challenges.
It is also common for tracking algorithms to accumulate errors and the bounding box
tracking the object slowly drifts away from the object it is tracking. To fix these prob-
lems, a detection algorithm is run every so often. Therefore, while designing an efficient
system usually object detection is run on every nth frames while the tracking algorithm
is employed in the n− 1 frames in between.

Figure 3.14: The Optical flow tracking applied to the surgical scenario: the white tracks
are the paths followed by the tool from the last tool detection via CNN to the frame in
the image. The paths are composed of multiple positions tracked by the Optical Flow
tracking algorithm.
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This work proposes an Optical flow strategy that is based on the Lukas-Kanade method
with pyramids offered by OpenCV [34] and that works as explained above but includes
some extra "safety measures".
In particular, pyramids are used to solve the "large displacements" problem. In fact, they
are employed to accommodate not only small movements of the tracked points but also
larger ones since they allow for image scaling, enabling the system to perceive significant
movements as if they were smaller, contributing to improved tracking performance.
An example of the tracking of the optical flow applied to this work’s scenario can be
appreciated in Figure 3.14.

Figure 3.15: The Optical flow strategy (simplified) workflow.

The workflow of the proposed strategy is illustrated in Figure 3.15 and described in detail
below. In this strategy, the same approach is applied to the left and right images coming
from the camera (epipolar line is not used), on the contrary to what has been seen in the
first three strategies. Knowing this, during the explanation of the OPFL approach, only
what happens on the right image will be considered, since on the left image the algorithm
works in the exact same way:



3| Materials and Methods 37

• On the first frame that comes from the camera an object detection is made using
the CNN. The result of the tool detection is represented by the tool coordinates
in the image space (XR,t, YR,t) which are used for two purposes: these are the co-
ordinates used to determine the instrument position P C

t = (Xt, Yt, Zt) in 3D and
they are the starting point for the Optical flow functioning. In fact, this point in
the image space and other 8 surrounding points to be followed are passed to the
tracking algorithm (Figure 3.16). 9 points are thus used to track the tool on the
following frame. The choice of using 9 points has been made to be more robust with
respect to partial occlusions or small changes in the pixel intensities.
The first frame is then converted to gray scale and saved since it is needed for the
Optical flow algorithm.

Figure 3.16: The 9 points tracked by the Optical flow (in red the point found by the CNN,
in green the surrounding points).

• On the second frame the Optical flow tracking is used for the first time. It
requires the current frame (the second one) converted to gray scale, the previous
gray frame, the vector of points to follow, and some parameters (e.g. the number of
pyramids to use) that have been fine-tuned experimentally to grant a good tracking
in different scenarios of tool speed and image background.
The Optical flow function offered by OpenCV returns a vector with the points it
has been able to track between the two consecutive frames. Taking the mean value
of the x coordinates and of the y coordinates between the aforementioned points,
the tool coordinates in the image space (XR,t, YR,t) are obtained.
Once the tool coordinates are retrieved on both images, the algorithm presented in
this thesis work checks for inconsistencies in the estimated positions and if it finds
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them, it generates a different type of errors. The anomalies detected and the error
returned are presented in Table 3.2 (here, for completeness, the errors on the right
and left images are reported).

Inconsistency Error on
Zero points (over 9) tracked by the Optical flow
function on the Right/Left image

Right/Left image

Tool detected in an area too close to borders of
Right/Left image

Right/Left image

The distance between the previous and the current
positions in the Right/Left image is too large

Right/Left image

The position in the Right/Left image has not
changed in the last 60 frames

Right/Left image

Inconsistency between Right and Left positions:
error triggered if the distances between the x co-
ordinates (XR,t and XL,t) or between the y coordi-
nates (YR,t and YL,t) becomes too large

Both images

Table 3.2: Inconsistencies detected and relative errors generated: the first four inconsis-
tencies generate error only on the specific image in which they happened, while the last
inconsistency causes an error on both the images at the same time.

Depending on the presence of one or more errors and on which kind of errors have
been activated, the algorithm will use or not the position estimated on a specific
image to triangulate the tool in 3D space P C

t = (Xt, Yt, Zt) and it decides if activate
the tool detection through CNN on the following frame. In particular, (considering
just the Right image case), if the "Error on Right image" is not present, the position
estimated on this image (XR,t, YR,t) is used for the triangulation and it will be saved
together with 8 surrounding points for the functioning of the Optical flow on the
following frame (including also the current frame in gray scale). If the "Error on
Right image" has been generated, the estimated point (XR,t, YR,t) is discarded, the
previous tool position (estimated using the previous frame) is used to triangulate
the tool position and on the following frame, the CNN tool detection is employed.
If an error is present on both images (like in the case of "Inconsistency between
Right and Left position"), for safety reasons, no position will be sent to the robot
as desired position.
Table 3.3 resumes all the possible cases and the algorithm behavior at the kth instant.
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Error case
Positions used at instant k for
triangulation

Method used at instant k+
1 for position estimation

Right Left Right Left
None (XR,t, YR,t)(k) (XL,t, YL,t)(k) OPFL OPFL
Only Right (XR,t, YR,t)(k−1) (XL,t, YL,t)(k) CNN OPFL
Only Left (XR,t, YR,t)(k) (XL,t, YL,t)(k−1) OPFL CNN
Both No command sent to the robot CNN CNN

Table 3.3: Table of error cases and relative algorithm behavior.

• Every time a new frame comes the algorithm checks if in the previous iteration
(on the previous frame) of the Optical flow one or more errors occurred and if
the number of the frame arrived is a multiple of 450. If at least one of these two
conditions holds, the tool detection is triggered. As seen before, if one error occurs
on one image, the CNN will be used on that image, and in the case of a frame
multiple of 450, object detection is performed on both images. This periodic use of
the CNN is done approximately every 15 seconds and it has the aim to guarantee
that the Optical flow continues to follow always the same area of the tool.
Once determined which strategy to use to estimate the tool position in the current
frame, all works as described for the first frame in the case of CNN or for the second
frame in the case of Optical flow.

The sporadic use of the CNN on both the images that happens in this strategy does not
affect the system’s performance. In fact, the OPFL strategy allows to reach a frequency
of publication of the position estimation equal to 30 Hz. In this case, moreover, the
bottleneck of the publication frequency is not represented by the computer vision strategy
but by the hardware of the experimental setup. Indeed, during some tests, it has been
proven that this strategy can reach a position estimation frequency close to 200 Hz, but
since the frame rate of the 3D camera is equal to 30 Hz, so is the position publication
frequency.



40 3| Materials and Methods

3.3.4. Hybrid Strategy

The last strategy developed is called "Hybrid" because it employs both the Optical flow
and the modified Particle filter. The aim of this strategy is to exploit the advantages
deriving from the two methods: the tool’s coordinates are estimated efficiently through the
tracking module and a prediction of the future position is made to face all the unavoidable
delays.
The flowchart of this strategy is showed in a simplified way in Figure 3.17.

Figure 3.17: The Hybrid strategy (simplified) workflow.

The main structure of the algorithm is the same as the Optical flow. There is a tool
detection via CNN on the first frame, every 450 frames, and each time is needed because
of an inconsistency in the position estimation or tracking that fails. Then, in all the other
cases, the Optical flow tracks the tool between two consecutive frames. As before, the
estimated position and the frame in gray scale are saved for the next functioning of the
tracking module. As explained in the previous Section, since most of the Hybrid strategy
is composed of the OPFL strategy, also in this case, the same approach is applied to the
left and right images coming from the camera. What changes in the Hybrid strategy with
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respect to the Optical flow approach is the presence of the modified Particle filter after
the estimation of the tool position.
Once the positions (XR,t, YR,t) and (XL,t, YL,t) have been retrieved through the tool detec-
tion or via the tracking module, they are passed to the Particle filter algorithm to predict
the future tool positions in the two images (X̂R,t, ŶR,t) and (X̂L,t, ŶL,t).
Finally, the above-mentioned future tool positions, after being filtered as described in
Section (3.3.2), are used to triangulate the tool in the 3D space. The obtained position
P C

t = (Xt, Yt, Zt) is therefore taken as a reference position for the visual servoing (after
the transformation from the camera reference frame to the base frame, as described in
the Chapter 3.4.1).
Also in this case, the frequency of publication of the tool positions can reach up to 30 Hz
and the bottleneck is represented by the hardware of the experimental setup.

A table summarizing the main characteristics of the different strategies used in the tool
detection and in the hybrid tracking modules is reported.

CNN15 CNN30 PARTICLE OPFL HYBRID
Frames used 100% 50% 50% 100% 100%
Functioning fre-
quency

15 Hz ≈ 30 Hz ≈ 30 Hz 30 Hz 30 Hz

Tool position es-
timation mainly
through (right
image)

CNN CNN CNN OPFL OPFL

Tool position es-
timation mainly
through (left im-
age)

Epipolar line Epipolar line Epipolar line OPFL OPFL

Particle filter
prediction

No No Yes No Yes

Position low-
pass filtering

No No Yes No Yes

Table 3.4: Tool position estimation strategies compared.
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3.4. The Control Module

The role of this module is to actually make the camera move autonomously. To achieve
this, the camera holder (the robotic manipulator) has to be moved by a position-based
visual servoing controller in a fast and accurate way.
Before controlling the robot, the position of the tool, PR,t = (XR,t, YR,t) and PL,t =

(XL,t, YL,t) obtained from the tool detection module or the hybrid tracking module, is
triangulated to get a point in the 3D space. After the triangulation, the 3D position is
transformed from the camera reference frame to the reference frame of the base of the
robot and finally, it is used as a reference position for the visual servoing controller.
Since surgical exoscope movements can be divided into translational and rotational, two
strategies have been employed to move the robot’s end-effector in the Cartesian space:

• Position control: the camera moves in the space keeping the orientation fixed and
a constant vertical distance from the tool.

• Orientation control: the camera rotates around a predetermined fixed point exploit-
ing the concept of the "Remote Center of Motion".

The chosen regulator is based on the so-called "Resolved velocity controller" strategy.
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3.4.1. Tool Position Triangulation and Transformation

Once the positions of the surgical instrument have been identified in the two images,
PR,t = (XR,t, YR,t) and PL,t = (XL,t, YL,t), the next crucial step for the visual servoing
problem is the 3D reconstruction of the position of the tool with respect to one of the
two cameras. Given that during the calibration procedure the extrinsic parameters of the
left camera were computed with respect to the right image, the right one was used as a
reference also in this situation.
The reconstruction of the position was done by triangulation as shown in Figure 3.18.

Figure 3.18: Triangulation procedure: to reconstruct the 3D position of the tool in the
camera frame, P C

t ((Xt, Yt, Zt), the positions of the tool estimated with respect to the two
images frames, (XR,t, YR,t) and (XL,t, YL,t), are used. b is the so-called "Baseline" and is
the distance between the optical centers of the two camera sensors. f is the focal length.
b and f are two fundamental parameters for the position triangulation.

The first step consists in removing the distortions from the points that represent the tool
using the distortion coefficients computed during the calibration procedure. This is done
in order to eliminate the effects introduced by the lenses of the camera. In this way, the
relationship between the 2D coordinates in the image plane and 3D coordinates in the
camera reference frame can be considered linear. Thanks to this property and to the
(3 × 4) projection matrices, MR and ML (comprising both the intrinsic and extrinsic
parameters of the two cameras), is possible to reconstruct the 3D coordinates P C

t of a
point by triangulation.
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Given that PR,t and PL,t are the 2D coordinates in the image plane of the same point P C
t

in the 3D world, the following relationships can be written

PR,t = MRP
C
t (3.28)

PL,t = MLP
C
t (3.29)

Since the measurements of PR,t and PL,t are usually noisy and generally no point P C
t will

satisfy both equations, the best fit must be found.
By computing the cross-product between PR,t and MRP

C
t (that have the same direction)

the homogeneous scale factor s is eliminated and the following is obtained:XR,t

YR,t

1

×

m
T
R1P

C
t

mT
R2P

C
t

mT
R3P

C
t

 =

00
0

 (3.30)

where mT
Ri represents the ith row of the projection matrix for the right camera.

In this way, for the image point of the right camera PR,t, the following equations can be
written

YR,t(m
T
R3P

C
t )−mT

R2P
C
t = 0 (3.31)

XR,t(m
T
R3P

C
t )−mT

R1P
C
t = 0 (3.32)

XR,t(m
T
R2P

C
t )− YR,t(m

T
R1P

C
t ) = 0 (3.33)

After that the same relations for the left image have been computed, by putting together
the linearly independent equations written for PR,t and PL,t, the following expression is
obtained:

AP C
t = 0 (3.34)

where

A =


YR,tm

T
R3 −mT

R2

XR,tm
T
R3 −mT

R1

YL,tm
T
L3 −mT

L2

XL,tm
T
L3 −mT

L1

 (3.35)

Solving for A by means of singular value decomposition(SVD), the 3D coordinates P C
t is

reconstructed.
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Once the surgical instrument has been triangulated in the 3D space and the position
P C

t = (Xt, Yt, Zt) has been obtained, several reference frame transformations have to take
place before computing the feedback error needed by the regulator.
They are described in Figure 3.19:

Figure 3.19: Transformations between different reference frames: {B} is the reference
frame of the robot base, {EE} is the reference frame of the end-effector, {C} and {Cdes}
are the references frames associated to the actual and desired camera poses, respectively.
TB
EE and T EE

C are the transformation between the base frame and the EE frame and
between the EE frame and the camera frame. PB

C and PB
Cdes

are the actual and desired
poses of the camera frame with respect to the base frame. P C

t , P Cdes
t , and PB

t are the
positions of the tool in the {C}, {Cdes} and {B} frame respectively.

By using the kinematic chain of the manipulator TB
EE together with the transformation

obtained by the eye-in-hand calibration procedure T EE
C , the estimated object position P C

t

can be expressed with respect to the manipulator’s base reference frame:

PB
t = TB

EE · T EE
C · P C

t (3.36)
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The elements of the homogeneous transformation P Cdes
t (between the tool position and

the camera desired pose) will be discussed in the Subsections 3.4.2 and 3.4.3 on the basis
of the camera movements strategy used.
Exploiting P Cdes

t and PB
t , the new pose of the camera with respect the base frame can

be computed:

PB
Cdes

= PB
t (P Cdes

t )−1 (3.37)

while the actual pose of the camera, PB
C , can be derived from:

TB
C = TB

EE · T EE
C (3.38)
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3.4.2. Position Control

The position control error is given by:

epos = PB
Cdes

− PB
C (3.39)

In this case, the homogeneous transformation between the tool position and desired cam-
era pose is the following:

P Cdes
t =


1 0 0 0

0 1 0 0

0 0 1 d

0 0 0 1

 (3.40)

since the goal is to keep the instrument close to the center of the camera image with a
distance d on the Z coordinate (without modifying the initial orientation of the camera).
This error, epos, was then fed into a Resolved velocity controller which calculates the
desired joint velocities as explained later on the controller Subsection.
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3.4.3. Orientation Control

The concept of the Remote Center of Motion (RCM) is a fundamental principle in robotics
and biomechanics that plays a crucial role in designing and controlling robotic systems,
particularly in minimally invasive surgical procedures. The RCM, also known as the
Instantaneous Center of Rotation (ICR) or Pivot Point, is a point within a mechanism
or robotic system where the motion of a tool or end-effector is equivalent to a rotational
movement around a stationary point. This is particularly relevant in applications where
precise and controlled movement is required within confined spaces, for example when
surgical instruments are used in laparoscopic or robotic-assisted procedures [35] [36].
The RCM has numerous applications beyond medicine, including robotics, kinematics,
and mechanical engineering. Its significance lies in its ability to facilitate safe and accurate
manipulation of tools within constrained environments while minimizing tissue damage
and enhancing the dexterity of the robotic system.
In this work the idea behind the RCM is exploited in the Orientation control. This
movement strategy includes an initial positioning phase, and the general functioning steps
are the following:

1. While the initial positioning is running, the surgeon is asked to move the surgical
tool approximately in the center of the area in which the surgical operation will
happen. In this phase, the camera moves in the position control mode and the
purpose is to establish the ICR position in such a way that the camera offers an
optimal field of view without tilting too much. This is a very important step for
the overall orientation control operative success because the performance of this
strategy is highly affected by the ICR position.

2. Once the tool stops at the center of the working space and the controller detects a
null error between the camera position and the tool position, the ICR is defined,
the position control mode is disengaged, and the orientation control modality starts
to work.

3. When the orientation control is working, the position of the target object, PB
t , is

used to compute the desired orientation of the EE, which rotates around the ICR,
located in the middle of the tool as shown in Figure 3.20.
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Figure 3.20: Position constraint representation. The robot rotates around ICR by an
angle θ calculated as the angle between the initial position PB

tinit
and the desired position

PB
t .

To control the orientation of the robot, firstly, the rotation angle between the initial
tool direction û = PB

tinit
− ICR and the desired tool direction ûd = PB

t − ICR is
defined as:

θ = arctan−1 ||ûd × û||
ûd · û

(3.41)

The vector describing the rotation from û to ûd in Figure 3.20 is computed as:

u =
ûd · û

||ûd × û||
(3.42)

Finally, the desired orientation was calculated as described in [36]:

RB
Cdes

= (I +Λ · sin(θ) + 2 ·Λ2 · sin 2(θ
2
))RB

C (3.43)

where Λ is the rotation matrix given by u, and RB
C is the actual orientation of the

EE computed from the kinematic chain of the robot. From RB
Cdes, the orientation

error is computed using quaternion notation as:

erot = qrotC · q−1
rotCdes

(3.44)

where qrotC and q−1
rotCdes

are the current and desired quaternions. This error, erot is
then sent to the Resolved velocity controller to calculate desired joints’ velocities as
in the position control mode.
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For a matter of optimization and constancy of the field of view, it has been chosen to
keep the yaw angle constant and to vary the roll and pitch angles. To understand which
are the used roll, pitch and yaw angles, please refer to Figure 3.21.

Figure 3.21: The roll, pitch and yaw angles used.
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3.4.4. Resolved Velocity Controller

A position-based visual servoing control approach has been implemented for this study.
Usually position-based visual servoing control is realized using a PD controller with gravity
compensation, whose control law has the following expression:

u = g(q) + J#
AW

(q)(KP · e−KD · JA(q) · q̇) (3.45)

where u is the control input, q is the vector of joints’ position, q̇ is the vector of joints’
velocity, and g(q) is the gravity compensation term. J#

AW
(q) is the pseudo-inverse of the

analytical Jacobian matrix, e is the error vector and JA(q) is the analytical Jacobian of
the manipulator in the operational space. Finally, KP and KD are the proportional and
derivative gains respectively.
The pseudo-inverse has to be employed when the robot is redundant and so infinite solu-
tions exist to the inverse kinematics problem [37]. In particular, in this work, the weighted
pseudo-inverse of the analytical Jacobian has been used:

J#
AW

(q) = W−1 JT
A (q) (JA(q) W

−1 JT
A (q))

−1 (3.46)

where W is the matrix of the weights of the joints’ velocities and JA is the analytical
Jacobian.

In this system, like in many other similar setups, the information deriving from visual
measurements is computed at a frequency lower or equal to the camera frame rate. This
quantity is at least one order of magnitude lower than the typical frequencies used for
motion control of robot manipulators [17]. As a consequence, in the digital implementa-
tion of the typical control law (3.45), to preserve the stability of the closed-loop system,
the control gains must be set to values much lower than those typically used for motion
control. Therefore, the performance of the closed-loop system in terms of speed of con-
vergence and disturbance rejection capability turns out to be poor.
Neglecting the effects of the tracking errors deriving from manipulator dynamics and dis-
turbances, the controlled manipulator can be considered as an ideal positioning device.
This allows to assume that the manipulator is equipped with a high-gain motion con-
troller in the joint space and that the desired and actual joints’ positions and velocities
are approximately equal, so q ≈ qdes and q̇ ≈ q̇des.
These assumptions have been verified on the real robot, which results to be very accurate
and fast in reaching the desired joints’ positions and speeds.
Visual servoing can be thus achieved by computing the trajectory q̇des(t) on the basis of
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visual measurements, so that the operational space tracking error e goes asymptotically
to zero.
The joints’ trajectory qdes(t) can be computed integrating the joints’ velocity profile
q̇des(t), that is obtained as follows:

q̇des(t) = J#
AW

(q)Ke (3.47)

in which J#
AW

is the analytical Jacobian pseudo-inverse, K is the matrix of the controller
gains, and e is the vector of feedback errors.
The study of the stability for this type of controller can be performed with the so-called
"Lyapunov Method". The Lyapunov function V can be chosen as follows:

V =
1

2
eTe (3.48)

V is of course greater than zero. The time derivative of the Lyapunov function V̇ can be
obtained as:

V̇ = eT ė (3.49)

Knowing that the following equation holds:

ė = −JA(q)q̇ (3.50)

It is straightforward that equation 3.47 becomes:

ė+Ke = 0 (3.51)

And exploiting the relation 3.51, the equation 3.49 becomes:

V̇ = −eTKe (3.52)

that is lower than zero if and only if K is positive definite. So, thanks to the Lyapunov
Method, since V > 0 and V̇ < 0, with K positive definite, the equilibrium e = 0 is
proven to be globally asymptotically stable. Moreover, for a positive definite matrix K,
equality 3.51 implies that the operational space error tends to zero asymptotically with
a convergence of exponential type and speed depending on the eigenvalues of matrix K;
the larger the eigenvalues, the faster the convergence.
The controller described above is called Resolved Velocity Controller, and in this thesis
it has been implemented as shown in Figure 3.22.
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Figure 3.22: Control scheme of the overall system: the estimated position of the tool in
the base frame, PB

t , is processed to generate the desired position of the camera, PB
Cdes

(according to the type of control: position or orientation). The actual position of the
camera, PB

C , is derived from the forward kinematics calculated thanks to the joints’
positions and velocities measurements given by the robot’s sensors. Then, the feedback
error e is computed through PB

Cdes
and PB

C and it is fed into a resolved velocity controller.
This controller is composed of the positive-definite gain matrix K, by the weighted pseudo-
inverse matrix of the analytical Jacobian and by the controlled manipulator.

The value of K has been fine-tuned experimentally in order to guarantee rapidity and
smoothness of the movements at the same time. This process has taken place after the
evaluation of the optimal strategy of the hybrid tracking module, and has determined the
choice of the following parameters:

Errors on Position control gains Orientation control gains

XY
Z

 Kpos =

4.0 0.0 0.0

0.0 4.0 0.0

0.0 0.0 1.0

 Kpos = 0.0 · I(3)

 roll

pitch

yaw

 Krot = 1.0 · I(3) Krot = 0.7 · I(3)

Table 3.5: Resolved velocity controller parameters.

As can be noticed from Table 3.5, different parameters are needed for the two motion
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control strategies because errors have to be weighted differently depending on the approach
used. In particular, when the robot is in position control mode the robot has to vary
especially the X and Y camera positions, while the Z position does not have to change
that much and not very quickly. The orientation errors should be equal to zero with this
strategy but if they are not, they are rapidly corrected.
In orientation control strategy if the errors on X, Y or Z would be considered, the camera
would not rotate around a fixed point but would try to follow the surgical instrument as
in position control mode, so the position errors have not to be taken into account. The
errors on the angles, in this case, are bigger than in the previous strategy, so, to guarantee
smoothness and stability, the gains have to be smaller.

To control the robotic manipulator, the ROS (Robotic Operating System) middleware
has been employed. The robot and the ROS network communicate through the "Fast
Robot Interface" (FRI) of KUKA that allows to have a fast (up to 1 kHz) and reliable
communication channel. The control frequency used in this thesis’ setup is 200 Hz.
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This chapter describes how the proposed system was evaluated.

First, the different tool tracking strategies were tested to assess which one guarantees
the best performance in surgical instrument tracking using the position-controlled au-
tonomous exoscope.

Then, the tuning of the position and orientation controllers was carried out, and the same
experiment was performed, exploiting the best strategy of the previous testing phase, to
evaluate the improvements achieved in the robot control.

Finally, the overall system was validated through a User Study to assess whether the
proposed system was able to overcome the limitations of the camera control strategies
currently used in neurosurgery by comparing traditional (manual) and proposed (auto-
matic) modes of camera movement.
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4.1. System Characterization

4.1.1. Strategies Validation

In this evaluation phase, the strategies developed by the Nearlab laboratory (CNN15 and
CNN30) and the ones introduced in this thesis work (PARTICLE, OPFL, and HYBRID)
were compared to assess which offered the best performance in tracking the surgical
instrument.
The test involved the use of a second 7 DoF robotic manipulator (KUKA LBR iiwa
produced by KUKA Roboter GmbH) to move the surgical tool along a predefined 2D
trajectory. This second robotic arm was used to guarantee a high degree of repeatability
across the experiments, since it allowed to move the tool along the same trajectory and
with the same velocity profile in all the tests ensuring their comparability.
How the experimental setup is structured can be appreciated in Figure 4.1.

Figure 4.1: Experimental setup from different point of view. The KUKA LWR 4+ robotic
arm moves the stereo camera trying to track the surgical tool attached to the EE of the
KUKA LBR iiwa robot. The background under the instrument can be changed (green
background and realistic background are available). The camera view shows what the
camera sees during the experiments.
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To test the robustness of the various strategies, the system was tested in 4 different
scenarios considering two different tool speeds and two different backgrounds.
The two speeds were chosen on the basis of a study carried out with neurosurgeons about
the typical speeds reached during brain surgeries: the system was thus tested with the
tool moving at about 2.5 cm/s (low speed) and about 4 cm/s (high speed).
The two backgrounds were:

• A green background, which should facilitate the tool detection;

• A realistic background representing a portion of the brain during a surgical opera-
tion, which mimics the real scenario of the use of the exoscope and that complicates
the tool detection.

The second redundant manipulator was programmed with the KUKA’s proprietary soft-
ware KUKA Sunrise Workbench © to move the surgical tool with the two different ve-
locities following the trajectory described below and in Figure 4.2:

1. The first movement was represented by a circular trajectory with a 7 cm diameter
traveled in counterclockwise direction starting from the lowest point;

2. Then a movement of 5 cm in the x positive direction was made (referring to the red
axis drawn in Figure 4.1 and Figure 4.2);

3. It followed a 10 cm linear movement in the x negative direction;

4. The tool then went back to the initial position with a 5 cm linear movement in the
x positive direction;

5. It followed a linear motion of 7 cm in the y positive direction;

6. The last movement, before concluding the test, was represented by a half circular
trajectory with a 7 cm diameter traveled in clockwise direction toward the test’s
initial position;

Figure 4.2: Trajectory followed by the surgical tool during the evaluation of the tool
tracking strategies.

All the tests were repeated 5 times and, during this experimental phase, only the Position
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control mode was used to move the camera (so the orientation of the camera was constant).
Since the controller was not already tuned and for safety reasons, due to the presence of
instabilities, during these experiments the proportional gains of the controller were set
equal to one, resulting in Kpos = I3 and Krot = I3.

To summarize, five strategies were tested in this evaluation performing five repetitions for
each of the four scenarios.

The performance indexes evaluated for these tests were the Tracking Error and the Center
Error explained below.
The Tracking Error, TExy, was defined as the xy distance between the position of the
tool and the position of the camera and it was computed as follows:

TExy = ||PB
C − PB

tool|| =
√
(XB

C −XB
t )

2 + (Y B
C − Y B

t )2 [mm] (4.1)

where PB
C (XB

C , Y
B
C ) and PB

tool(X
B
t , Y

B
t ) are the positions of the camera and of the tool

respectively expressed in the base frame.
The Center Error, CExy, was defined as the distance between the tool position in the
camera frame, P C

tool(X
C
t , Y

C
t ), and the center of the image (Cx, Cy):

CExy = ||XC
t − Cx, Y

C
t − Cy|| =

√
(XC

t − Cx)2 + (Y C
t − Cy)2 [mm] (4.2)

4.1.2. Control Module Validation

After the validation of the detection strategy, the system controllers were fine-tuned.
To evaluate the effectiveness of the fine-tuning, the system was tested again with an
experiment in both the control modality: position and orientation.

Position Control

In the Position control mode, the experiments performed were exactly the same as the
strategies evaluation described in Section 4.1.1. The only difference was that, in this case,
just the best tracking strategy was used with the tuned controller.

Orientation Control Validation

The tests of the system in the Orientation control mode, in principle, worked similarly
to the experiment performed to evaluate the strategies and the fine-tuning of the Posi-
tion control mode. The differences in the tests performed on this control modality were
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represented by:

• A smaller trajectory traveled by the tool: since the Orientation control mode
was designed to be applied to scenarios where the movements are small, the con-
sidered trajectory was smaller. In particular, the trajectory followed by the tool
was equal in terms of sequence of motions to the one described in Section 4.1.1, but
different in dimensions, as described in Figure 4.3.

Figure 4.3: Trajectory followed by the surgical tool during the evaluation of the orientation
controller tuning.

• The metrics considered: since the camera in this control mode rotated around a
fixed point, the Tracking Error TExy considered in the Position control mode was
no longer suitable to evaluate the performance of the system. So, the performance
indexes evaluated in this case were: the Center Error CExy (computed as described
in equation 4.2 of the previous Section) and two new Tracking Errors, TEroll and
TEpitch. TEroll was defined as the distance between the current and desired roll
angle of the camera and it was obtained as follows:

TEroll = min(|rollcam − rolldes| , 2π − |rollcam − rolldes|) [deg] (4.3)

where rollcam is the actual roll angle of the camera, while rolldes is the desired
roll angle of the camera. TEpitch was computed ins the same way of TEroll but
considering the pitch angle:

TEpitch = min(|pitchcam − pitchdes| , 2π − |pitchcam − pitchdes|) [deg] (4.4)

where pitchcam is the actual pitch angle of the camera, while pitchdes is the desired
pitch angle of the camera.

Also with the Orientation control mode the best tool tracking strategy was used during the
tests that involved four scenarios (given by two instrument speeds and two backgrounds
as described in 4.1.1)
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4.2. User Study

A User Study was conducted to check if the developed system, compared to the traditional
exoscope control mode, was effective in reducing the users’ workload during the execution
of a task. To mimic the surgical environment, 12 users were requested to perform a
bimanual task using two surgical instruments and moving the stereo camera in three
different modalities:

• Manual: the users had to move manually the camera in the XY plane trying to
keep the two tools at the image center. The users had to move the tools towards
the desired direction, then leave one of the two tools (usually the cannula) and use
the free hand to move the robot. The robot that is controlled through a Cartesian
Impedance regulator (the orientation and the Z coordinate are kept constant);

• Auto - Translation: the autonomous exoscope system is controlled with the Po-
sition control mode (described in Chapter 3.4.2) and the users decide when to track
the tool with the camera by pressing a pedal;

• Auto - Rotation: the autonomous camera is controlled with the Orientation con-
trol mode (described in Chapter 3.4.3) and the users decide when to track the tool
with the system by pressing a pedal.

All users had to perform the tests using all the strategies and they had to repeat the
experiments three times for each mode.
To avoid that the eventual presence of a learning curve could affect the results of this
testing phase, the order of the strategies proposed to the users was chosen from the
set of permutations of the strategies. For example, the first user followed this order:
t1, t2, t3, r1, r2, r3,m1,m2,m3 where the numbers indicate the repetitions, t stands for
Translation, r for Rotation, and m for Manual. While, for instance, the second user
followed this order: r1, r2, r3,m1,m2,m3, t1, t2, t3.
Before the start of each User Study, users signed an informed consent document that
described the tests they had to perform and how the recorded data were stored. After
that, they were instructed on how the system works and they had some time to familiarize
themselves with each camera control mode.

The experimental setup of the User Study can be appreciated in the Figure 4.4.
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Figure 4.4: User Study Setup (left-hand side) including everything the users were re-
quested to employ during the User Study: the robot to move the camera, the stereo cam-
era to observe the scene, the external monitor to look at camera images, the workspace
where to accomplish the task, two surgical tools and a pedal, to decide when to move the
robot in the automatic control modes. User Study Workspace (right-hand side): it was
divided into 4 different targets, a release zone, and the initial/final position of the surgical
instrument.

The workspace, shown in Figure 4.4, was composed of a wood board to which many
images of a human brain were glued. On the top of these photos, four different targets
were fastened. Each target was made by two pieces of tissue partially attached to the
structure below. The two tissues were in part overlapped to allow to hide the object
which was represented by a rubber gasket. The workspace included also an initial and
final position for the surgical instruments and a release zone for the rubber ring.

A bimanual pick and place of a hidden object was the task considered in this study to
mimic a surgical scenario in which the surgeon has to use both the hands to carry out the
surgical operation. This specific task was also chosen to test the system on a big surface
and to force the users to use both the hands.
The tests, after that the User Study supervisor hid the rubber ring under one of the
targets (while the user was not looking at the workspace), were structured as follows:

1. Starting position: the users start the test with the tools in the initial position;

2. Searching for the hidden ring: the users look for the object under various targets
until they find it.
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3. Pick and Place: once the rubber ring is grasped, the users bring it to the release
zone and place it there;

4. Final position: the users move the tools towards the final position and when they
are in place, the test is concluded. Since initial and final position coincide, a new
test, after the reset of the workspace, can be performed.

The phases described above are shown in Figure 4.5.

Figure 4.5: Phases of the User Study tests.

In Figure 4.6 is shown what happened when the users arrived on a target to look for the
rubber ring under it, in case of unsuccessful and successful research.
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Figure 4.6: Phases of the object’s research. On the left-hand side is shown what happens
if the research fails: arrival on the target, movement of the upper tissue, discovery of the
absence of the ring. On the right-hand side is shown what happens when the ring is under
the target: arrival on the target, movement of the upper tissue, discovery of the ring, ring
grasping and removal.

The order of targets to visit was chosen by each user.
During the execution of the test, the users were requested to look only at the external
monitor that streamed the camera images and not directly to the scene. They were also
asked to try to keep always both tools at the center of the image. This last request in
the manual control mode was accomplished by following a precise sequence of actions in
case long movements were necessary: the users had to move the tools towards the desired
direction, then leave one of the two tools (usually the cannula) and use the free hand to
move the robot. Finally, they had to grasp again the released tool. These actions had to
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be repeated until the desired position was reached.

Different metrics were recorded and analyzed to evaluate the User Study:

• A score accounting for the distance of the laparoscopic tool from the camera center;

• The duration of the task;

• The path length travelled by the tool between specific areas of the workspace;

• A NASA Task Load Index (NASA-TLX) survey for each control strategy;

• A questionnaire.

The score was obtained as described in the following algorithm:

Algorithm 4.1 Score Computation Algorithm (Xt, Yt, IS_OUT_FOV, scorecurr).

1: d =
√

(Xt −Xc)2 + (Yt − Yc)2

2: if IS_OUT_FOV then
3: scorecurr = scorecurr − 5

4: else if d > 0.05 then
5: scorecurr = scorecurr − 1

6: end if
7: return scorecurr

where (Xt, Yt) are the coordinates (in meters) of the surgical tool deriving from the tool de-
tection or tracking module. IS_OUT_FOV is a Boolean variable that indicates whether
the surgical tool cannot be detected in the images by the CNN or the tracking algorithm
because it is occluded or out of the field of view of the camera. scorecurr is the score of the
test, computed up to the current iteration. d is the Euclidean distance between (Xt, Yt)
and the camera center, (Xc, Yc).



4| Experimental Protocol 65

Figure 4.7: User Study Score Areas: in the green zone zero points are assigned, in the
yellow zone (all the field of view except for the 5 cm circumference around the camera
center) -1 point was assigned, in the red area, out of the field of view of the camera, -5
points are assigned. (Xt, Yt) is the tool position, while (Xc, Yc) is the camera center. d is
the distance between (Xt, Yt) and (Xc, Yc).

So, a penalty of 5 points was assigned if the tool was outside the field of view of the
camera, 1 point was subtracted if the tool was more far than 5 cm from (Xc, Yc) and
nothing happened if the tool was inside the 5 cm circumference centered in (Xc, Yc).
The obtained score was then normalized with respect to the number of attempts needed
by the user to find the rubber ring:

score_attemptsr =
scorer

attemptsr
(4.5)

where the subscript r indicates the specific repetition of a test. score_attemptsr is the
score of a specific test normalized with respect to the number of attempts of that test,
attemptsr. The score of the test before the normalization is represented by scorer.
Then, the different score_attemptsr were normalized again to obtain a value between 0
and 100, considering the worst score observed in the tests:

score_normr = −100 · score_attemptsr −min(score_attempts)

min(score_attempts)
(4.6)

where score_normr is the score of the single tests used to analyze the performance of
the control modes and score_attempts is the vector containing all the scores normal-
ized with respect to the attempts computed with equation 4.5. A score equal to zero
represented the worst test, while a score equal to 100 indicated a perfect experiment.

For what concerns the duration and the path length measured during the tool motions,
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Figure 4.8 describes which movements were considered in the computations.

Figure 4.8: Movements considered and not during the evaluation of the duration and the
length of the tool motions. The movements considered were: M i

B, motions between the
initial position and one of the i targets, M j

i , motions between two different targets i and
j, and MB

R , movement from the release zone to the initial/final position. The movements
not considered were M i

i , representing the motions done on the same target while looking
for the hidden ring, and MR

i , which indicate the movements from the target under which
the ring was found to the release zone.

The movements M i
i were not considered since highly dependent on the user’s agility in

looking for the object and in grasping it, while motions MR
i were not taken into account

because too much dependent on the distance of the last target (the one under which the
rubber ring was hidden) from the release zone.

The duration was thus computed as follows:

durationr =
tr(M

i
B) +

∑
tr(M

j
i )

attemptsr
+ tr(M

B
R ) (4.7)

where durationr is the duration corresponding to the rth repetition of a test. tr(M) is the
time needed to perform a specific movement M in the test identified by r. attemptsr are
the number of targets visited before discovering the ring.

Similarly, the path length was computed as shown below:

path_lengthr =
lr(M

i
B) +

∑
lr(M

j
i )

attemptsr
+ lr(M

B
R ) (4.8)

where path_lengthr is the path length of the test during the rth repetition of a test.
lr(M) is the length of the path that the tool has travelled during a movement M in the
test identified by r.
The length of the path lr(M) in particular was measured as the distance between two
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consecutive positions of the tool:

lr(M) =
∑
k

√
(XR,t (k)−XR,t (k − 1))2 + (YR,t (k)− YR,t (k − 1))2 (4.9)

in which the ks are the instants past during the execution of the movement M , the position
of the tool in the right image at the kth instant is represented by (XR,t (k) , YR,t (k)) and
(XR,t (k − 1) , YR,t (k − 1)) is the position of the tool in the right image at the (k − 1)th

instant.

The NASA-TLX is a multi-dimensional scale designed to obtain workload estimates from
one or more operators while they are performing a task or immediately afterwards [38].
It requires the user to give a score from 0 to 100 (with a step of 5) to six different aspects
related to the task described in table 4.1.

Title Description

Mental Demand

How much mental and perceptual activity was required (e.g.
thinking, deciding, calculating, remembering, looking, search-
ing, etc.)? Was the task easy or demanding, simple or complex,
exacting or forgiving?

Physical Demand
How much physical activity was required (e.g. pushing, pulling,
turning, controlling, activating, etc.)? Was the task easy or de-
manding, slow or brisk, slack or strenuous, restful or laborious?

Temporal Demand
How much time pressure did you feel due to the rate of pace at
which the tasks or task elements occurred? Was the pace slow
and leisurely or rapid and frantic?

Performance
How successful do you think you were in accomplishing the goals
of the task set by the experimenter (or yourself)? How satisfied
were you with your performance in accomplishing these goals?

Effort
How hard did you have to work (mentally and physically) to
accomplish your level of performance?

Frustration
How insecure, discouraged, irritated, stressed and annoyed ver-
sus secure, gratified, content, relaxed and complacent did you
feel during the task?

Table 4.1: NASA-TLX aspects analyzed.

For each camera control mode one NASA-TLX was compiled by the user just after the
execution of the third repetition.
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Finally, a questionnaire was proposed to investigate more deeply the users’ preferences.
It was compiled by users after the very last test and was composed of the questions and
the possible answers listed below:

Question Which camera movement modality facilitates the most the task
accomplishment?

Possible answers
• Automatic translational
• Automatic rotational
• Manual
• They are similar from this point of view

Question Which movement modality presents the best field of view to
perform the task?

Possible answers
• Automatic translational
• Automatic rotational
• Manual
• They are similar from this point of view

Question Which automatic modality is more suitable to accomplish the
task?

Possible answers
• Automatic translational
• Automatic rotational
• They are similar from this point of view

Question Is there a camera movement mode that makes you feel unsafe?
(because of unexpected movements or other reasons)

Possible answers
• Automatic translational
• Automatic rotational
• Manual
• No

Table 4.2: Questionnaire: questions and relative possible answers
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5| Results

In this chapter, the results obtained from the validation experiments and the User Study
described in Chapter 4 are presented.

5.1. System Characterization

In the System Characterization phase the proposed tool tracking strategies were tested.
After the best one was established and exploited for the fine-tuning of the controllers, the
performance of two control modes (position and orientation) were evaluated. The results
of all these tests are reported below.

5.1.1. Strategies Validation

The comparison between the two instrument tracking strategies developed by the Nearlab
(CNN15 and CNN30) and the three new methods introduced by this thesis work (PAR-
TICLE, OPFL and HYBRID) brought the results presented hereafter.
For what concerns the metrics analyzed, Figure 5.1 represent the boxplots of the Tracking
Errors TExy of the different strategies divided by background (BG) and tool speed.

Figure 5.1: Boxplots of the TExy divided by speeds and backgrounds. (Wilcoxon signed-
rank test: *, p < 0.05; **, p < 0.01; ***, p < 0.001).
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In the boxplots above the HYBRID strategy is the one that presents always the lowest
tracking errors. Also the OPFL has very good performance, but the absence of the
advantages given by the Particle filter prediction is evident.
All the strategies were compared in pairs through a Wilcoxon signed-rank test for matched
samples (with statistical significance established at a threshold of p < 0.05). The HYBRID
strategy was always statistically different from all the other strategies, as can be noticed
in the figure.
The TExy means and standard deviations of the different tests are reported in the following
table:

TExy Mean & Standard deviation [mm]

Strategy
Low speed tests High speed tests

Green BG Realistic BG Green BG Realistic BG
CNN15 25.33± 0.10 24.07± 0.27 30.01± 0.28 33.09± 0.43

CNN30 25.50± 0.18 24.22± 0.13 30.66± 0.12 33.06± 0.52

PARTICLE 24.18± 0.21 24.14± 0.17 29.74± 0.09 32.89± 0.65

OPFL 23.91± 0.08 23.82± 0.35 28.92± 0.18 28.49± 0.95

HYBRID 22.36± 0.10 22.12± 0.15 26.59± 0.20 27.06± 0.55

Table 5.1: Strategies validation tests: TExy means and standard deviations.

The second performance index analyzed was the Center Error CExy. The boxplots of the
tests are reported in Figure 5.2.

Figure 5.2: Boxplots of the CExy divided by speeds and backgrounds. (Wilcoxon signed-
rank test: *, p < 0.05; **, p < 0.01; ***, p < 0.001).
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Also in the boxplots of the Center Error, the HYBRID strategy is the one that presents
always the lowest errors. In general, the relationships between the various strategies are
similar considering the two performance indexes.
The strategies were compared again in pairs through a Wilcoxon signed-rank test for
matched samples. The OPFL and the HYBRID strategy were always statistically different
from all the other strategies and between themselves, as can be noticed in the figures.
The CExy means and standard deviations of the different tests are reported in the following
table:

CExy Mean & Standard deviation [mm]

Strategy
Low speed tests High speed tests

Green BG Realistic BG Green BG Realistic BG
CNN15 39.76± 0.07 36.32± 0.18 47.75± 0.11 47.80± 0.20

CNN30 40.35± 0.09 36.24± 0.04 48.52± 0.17 47.23± 0.19

PARTICLE 36.42± 0.12 36.46± 0.10 43.16± 0.19 43.97± 0.57

OPFL 35.63± 0.04 35.24± 0.07 42.52± 0.24 41.60± 0.48

HYBRID 31.16± 0.10 31.01± 0.11 35.94± 0.24 35.35± 0.47

Table 5.2: Strategies validation tests: CExy means and standard deviations.

When the tool moves at high speed, instead, the strategies that estimate the position
of the tool mainly with the CNN (CNN15, CNN30 and PARTICLE) failed. This can
be noticed in particular in Figures 5.3 and 5.4 where it is evident that these strategies,
around the second 12 of the tests, presented peaks representing instabilities. Indeed, in
these cases, because of the low computational speed of these methods, the tool exited
from the field of view of the camera and the robot started to diverge. If the reachable
workspace of the camera holder was not limited for safety reasons, the peaks would have
been larger. These behaviours were present in both the backgrounds scenarios, but they
were more evident with the realistic background, since in this case it was more difficult
for the CNN to detect the tool.
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Figure 5.3: Strategies validation tests with high speed (4 cm/s) and green background.

Figure 5.4: Strategies validation tests with high speed (4 cm/s) and realistic background.



5| Results 73

5.1.2. Control Module Validation

The position and the orientation controllers were then fine-tuned exploiting the HYBRID
strategy and the results of this process are reported in the following Sections.

Position Control

The fine-tuning of the controllers for the Position control mode resulted in the choice of
the gains reported in the second column of table 3.5. In position control mode, exploiting
the HYBRID strategy and the tuned gains, the same experiments with the two robots
were carried out.
In Figure 5.5 are compared the plots of the test with the realistic background and the
tool moving at high speed before and after the fine-tuning.

Figure 5.5: Position control validation tests with high speed (4 cm/s) and realistic back-
ground before (above) and after (below) tuning. On the left-hand side there are the plots
of the x coordinate, while on the right-hand side the plots of the y coordinate are shown.
The colored lines represent the actual motions while the black ones the reference trajec-
tory.
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The tables below report a comparative analysis of the two evaluated metrics before and
after the fine-tuning of the controller.

TExy Mean & Standard deviation [mm]

Controller
Low speed tests High speed tests

Green BG Realistic BG Green BG Realistic BG
NOT TUNED 22.36± 0.10 22.12± 0.15 26.59± 0.20 27.06± 0.55

TUNED 10.00± 0.15 9.84± 0.08 12.92± 0.31 13.11± 0.39

Table 5.3: Position control validation tests: TExy means and standard deviations.

CExy Mean & Standard deviation [mm]

Strategy
Low speed tests High speed tests

Green BG Realistic BG Green BG Realistic BG
NOT TUNED 31.16± 0.10 31.01± 0.11 35.94± 0.24 35.35± 0.47

TUNED 16.35± 0.15 16.14± 0.14 20.96± 0.19 20.80± 0.16

Table 5.4: Position control validation tests: CExy means and standard deviations.

Tables 5.3 and 5.4 highlight how much the two metrics were reduced after the fine-tuning.

Orientation Control Validation

In the third column of table 3.5 are reported the gains deriving from the fine-tuning of
the Orientation controller.
The validation of the Orientation control mode was performed evaluating the performance
indexes described in Chapter 4.1.2.
The results of this validation phase are shown in the following table:

Mean & Standard deviation

Metric
Low speed tests High speed tests

Green BG Realistic BG Green BG Realistic BG
TEroll [deg] 4.56± 0.03 4.29± 0.06 6.00± 0.07 5.68± 0.08

TEpitch [deg] 4.79± 0.03 4.63± 0.08 5.78± 0.07 5.65± 0.08

CExy [mm] 24.56± 0.18 22.41± 0.39 30.05± 0.31 27.62± 0.43

Table 5.5: Orientation control validation tests: means and standard deviations of the
various performance indexes.
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5.2. User Study

In the overall system validation, 12 users were requested to perform a bimanual task with
the system controlled in three different camera control modes and to compile a NASA-TLX
and a custom questionnaire about their experiments. During the tests, three performance
metrics (duration, score, and path length) were recorded. Since the user had to repeat
each experiment three times, the first analysis of the data was aimed at investigating the
eventual presence of a learning curve between repetitions.
In Figure 5.6, 5.7, and 5.8 are reported the various performance indexes divided by repe-
titions and camera control mode.

Figure 5.6: Barplots of the Duration performance index divided by repetitions and camera
control modes.

Figure 5.7: Barplots of the Score performance index divided by repetitions and camera
control modes.
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Figure 5.8: Barplots of the Path length performance index divided by repetitions and
camera control modes.

As can be noticed from the plots above, there was not a learning curve between repeti-
tions and so, the average of the performance indexes of the three repetitions of the tests
executed by the same user with the same camera control mode, was computed.
Since the sample size is small, a normality test would not be reliable and thus a non-
parametric test was considered to analyze data. The test chosen to compare the per-
formance of the three camera control modes is the Kruskal - Wallis test (with statistical
significance established at a threshold of p < 0.05). If a statistical significance was present
a post-hoc Dunn-Sidak test was then performed to discover which couples of strategies
were statistically different. From these tests and the post-hoc Dunn-Sidak tests, it can be
noticed that, for all the performance indexes analyzed, the automatic control modes were
always statistically different from the manual mode, as reported in Figure 5.9. Between
the two automatic modes, instead, there was not a statistical difference.
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Figure 5.9: Barplots of the three performance indexes divided by camera control strategy.
(Kruskal- Wallis test and Dunn-Sidak test: *, p < 0.05; **, p < 0.01; ***, p < 0.001).

In table 5.6 the medians and the standard deviations of the data reported in the figure
above are shown. It can be noticed that the Automatic - Translational control mode
presents the highest score while Automatic - Rotational modality registered the lowest
duration and the lowest path length.

Median & Standard deviation
Camera control mode Duration [s] Score [pts] Path length [m]

Manual 17.51± 2.71 77.46± 9.69 0.51± 0.25

Automatic - Translational 9.72± 1.58 98.06± 2.61 0.21± 0.10

Automatic - Rotational 6.87± 1.62 96.76± 4.17 0.20± 0.08

Table 5.6: Orientation control validation tests: means and standard deviations of the
various performance indexes.
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The results of the NASA-TLX survey are reported in Figure 5.10.

Figure 5.10: Barplots with the results of the NASA-TLX survey. (Kruskal- Wallis test
and Dunn-Sidak test: *, p < 0.05; **, p < 0.01; ***, p < 0.001).

Kruskal- Wallis and Dunn-Sidak tests were performed also on the scores corresponding
to the NASA-TLX answers. These tests highlighted a statistical difference between the
automatic modalities and the manual one in Physical Demand, Temporal Demand, Effort,
and Frustration categories. Even if not statistically different, also the scores of the Mental
Demand and Performance fields resulted better with the automatic strategies.
For what concerns the questionnaire, the answers are reported in Figure 5.11.
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Figure 5.11: Answers to the User Study questionnaire.





81

6| Discussion

The results reported in the previous Chapter are discussed below.

For what concerns the Strategies Validation, the proposed methods demonstrated to be
more reactive and accurate in tracking the surgical tool with respect to the pre-existing
ones (CNN15 and CNN30). In particular the employment of the Optical flow tracking
module allowed to reduce considerably the computational load, resulting in an increased
processing speed that in turn permitted to send to the robot a reference position more
frequently. This explains why the OPFL and HYBRID strategies performed better than
the other ones. The PARTICLE strategy, even if showed better performances with respect
to CNN15 and CNN30 strategies, was affected by the low processing speed of the CNN
and this resulted in larger Tracking and Center Errors than OPFL and HYBRID methods.
Moreover, when the Optical flow-based strategies (OPFL and HYBRID) were employed,
no instabilities occurred, demonstrating that these methods are more robust than CNN-
based ones against different scenarios. In general, the HYBRID strategy showed to be
the most suitable for the tool tracking task compared to the other methods, indeed the
combined action of the Optical flow and of the Particle Filter predictor allowed to obtain
the lowest Tracking Error and the lowest Center Error and to follow the tool in a fast,
robust and accurate way,

The fine-tuning of the controllers proved to be effective. As a matter of fact, by comparing
the Tracking Errors and the Center Errors before and after the tuning, reported in tables
5.3 and 5.4, and by looking at Figure 5.5, the improvements are evident. The Tracking
Error was more than halved in all the scenarios, while the Center Error after the tuning
was approximately 40% lower than before. The performance indexes result satisfactory
for the Position control mode (≈ 1 cm for the Tracking Error and ≈ 1.8 cm for the Center
Error) and acceptable for the Orientation control mode (≈ 5° for the Tracking Error on
the roll and pitch angles and ≈ 2.6 cm for the Center Error). Therefore, after the tuning,
the camera moved faster and in a more accurate way than before.

Finally, the User Study demonstrated the preeminence of the Automatic camera control
modalities with respect to the traditional way to move the camera. Indeed, the auto-
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matic translational and the automatic rotational mode obtained the best values from
the performance indexes point of view, resulting always statistically different from the
manual mode. In particular, automatic modes allowed to obtain the lowest values of the
"duration" metric meaning that if these strategies are used, surgical operation could last
less, aspect that is fundamental when the workload and the fatigue of the surgeon are
considered. Moreover, the automatic control modalities, permitted to achieve the best
results in the "score" field, showing that these modes allow to keep the tool at the image
center more effectively with respect to the manual control and so, to reduce the risk of
undesired contacts of the surgical instruments with the surrounding tissues while they are
out of the camera field of view. Finally, automatic strategies showed the lowest values
also for the "path length" index, indicating that they require smaller movements of the
tool to track. These results were confirmed also by the users perceptions collected in the
NASA-TLX, that also underlined other advantages of the employment of the automatic
control modalities. The automatic modes (in particular the translational one) requested
the lowest physical and temporal demands that is very important if the real scenario of
a surgical operation is considered. Low physical demand means that the surgical opera-
tions, that usually last many hours, will be less tiring and thank to the lower temporal
demand, they could also be shorter. Moreover, in the NASA-TLX the automatic modes
resulted to be less effort-requesting and less frustrating to use, that are other very impor-
tant aspects. Finally the questionnaire highlighted that users think that the automatic
strategies are more effective than the manual mode in facilitating the task accomplish-
ment. In the users’ opinion the automatic translational control mode offers the best field
of view and between the two automatic strategies there is not a significant difference in
terms of suitability of their employment in the task to execute. The last question of the
survey revealed that some user felt unsafe with the manual mode (17%) and with the
automatic translational control mode (41%) because of unexpected movements or other
reasons, while the remaining felt safe (42%) with the system. The fact that some user
felt unsafe with the automatic translational camera control mode can be explained by the
nature of this strategy. Indeed this method moves automatically the robot on larger dis-
tances with respect to the automatic rotational control modality and, if the surgical tool
to follow is close to the user, the robot moves next to the user (with all the safety measures
that collaborative robots are equipped with) and this can make people feel unsafe.
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7.1. Conclusions

Exoscopes represent a promising visual solution in the neurosurgical field aimed at offering
an improved field of view and ergonomics to the surgeons compared with traditional
surgical microscopes. However, the need for manual repositioning the exoscope, each
time a different point of view of the scene is required, may threaten to diminish the
advantages brought: indeed the manual movement of the exoscope causes the continuous
switching between operation theatre and visualization system leading to interruptions
that compromise the smoothness of the surgical procedure and that can possibly lead to
longer operation times.

The researchers of the Nearlab laboratory developed a solution to the aforementioned
problem that consists in fastening an exoscope on the end effector of a redundant robotic
manipulator and using the images coming from the camera to detect a specific surgical
tool and to follow it. This visual servoing-based system worked but was impacted by the
low processing speed of the CNN used to recognize the instrument.

In this thesis work, a novel hybrid tracking module is proposed to solve the issues caused by
the use of the CNN and to allow the system to achieve real-time tool tracking. The hybrid
tracking module is composed of an Optical flow tracking module that substitutes the CNN
whenever possible and a Particle Filter predictor designed to estimate the future position
of the tracked instrument on the basis of the previous movements. Both the components
of that module were firstly validated singularly and then together to demonstrate that
the proposed strategies improve the system performance and that the combined action of
the Optical flow and of the Particle Filter allows to obtain the best tool tracking. Once
the validation of the strategies was performed, the Position controller and the Orientation
controller were fine-tuned to make the system faster and more accurate in tracking the
surgical instrument. This process was effective and enabled the autonomous camera
system to follow the tool in real time. Finally, a User Study was organized to investigate
whether the proposed system was effective in reducing the users’ workload during the
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execution of a task compared to the traditional exoscope control mode (manual control).
From the User Study emerged that the automatic control modes developed to move the
camera (translational and rotational) allow to reduce the duration of the task and the tool
path length needed to accomplish it, and they permit keeping the instrument at the center
of the image better than the manual control. Moreover, from the responses collected for
the NASA-TLX survey, it can be concluded that users perceived the task completed by
exploiting the automatic control as less physically and temporally demanding, stressful,
and in need of effort. Finally, a questionnaire highlighted that automatic camera control
modalities, with respect to manual control, facilitated task accomplishment more and
offered the best field of view during the test execution in the user’s opinion.

7.2. Limitations and further research

The hybrid tracking module proposed in this thesis work demonstrated potential for
improving the performances of the pre-existing system by increasing the functioning speed
and reducing the tracking errors during its employment. It could facilitate the adoption
of autonomous exoscopes in neurosurgery, but, in its present form, a series of limitations
are still present:

• The data set used for training is not representative of a clinical scenario, so to
translate the system into a real application a more robust training would be required.
This should be done using a data set composed of real clinical images comprising
also the specific artifacts present in neurosurgery.

• The system in general has not been tested on a realistic scenario. To solve this, it
should be tested by surgeons in a scenario that comprise the use of a real exoscope
equipped with different zoom capabilities, the variation of the lighting conditions,
the employment of multiple tools and of a workspace that better mimic the one in
which the surgeon has to actually operate.

• To decide when is right to move the system in automatic modes, it is now necessary
that the user press a pedal. Without this pedal, because of occlusions or movements
of the surgical tool outside the workspace of the camera holder (and so, out of the
field of view of the camera), the system could diverge and instabilities could occur
since the tool detection and tracking module fail.

• The system is not able, at the moment, to avoid obstacles nor to establish which is
the best trajectory to follow to not hinder the surgical operation.

In future research, therefore, the system should be equipped with an intelligent control



7| Conclusions 85

system that decides autonomously when is the right moment to make the camera holder
move. The autonomous exoscope should be also empowered with a trajectory planner to
establish how to move every single link of the redundant robot to avoid collisions with the
environment or hinder to the surgeons, maybe exploiting the Artificial Potentials method.
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A| Epipolar Geometry

Epipolar geometry [39] is a fundamental concept in computer vision and stereo imaging
that describes the relationship between corresponding points in two images taken from dif-
ferent viewpoints. It provides a geometric framework for understanding the 3D structure
of a scene and the relative pose of cameras observing that scene.

Figure A.1: After that the CNN has estimated the tool position in the right image PR,t =

(XR,t, YR,t), The epipolar line is then found and a window is slid along it to find the
corresponding point in the left image, PL,t = (XL,t, YL,t).

Considering F (the fundamental matrix computed during the camera calibration phase),

x =
[
XL,t YL,t

]T
, and x′ =

[
XR,t YR,t

]T
, then:

xTFx′ = 0 (A.1)

is the relation between corresponding points (PR,t and PL,t) in the two images.
The epipolar line l is found as follows:

l = Fx′ (A.2)
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The window size is defined on the basis of the right image bounding box dimension.
Exploiting the OpenCV package "cv2", the cross-correlation between the contents of the
bounding box and of the sliding window is computed and, finally, the tool position in the
left image is estimated as shown in Figure A.1.
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List of Abbreviations

2D Two Dimensional
3D Three Dimensional
BG Background
CNN Convolutional Neural Network
CNN15 CNN-based strategy with publication frequency equal to 15 Hz
CNN30 CNN-based strategy with publication frequency equal to 30 Hz
COCO Common Objects in Context
COM Center of Mass
DoF Degrees of Freedom
EE End Effector
FOV Field of View
FP False Positive
FPS frames per second
GPU Graphical Processing Unit
HD High Definition
ICR Instantaneous Center of Rotation
IoU Intersection over Union
NN Neural Network
OPFL Optical Flow tracking strategy
RCM Remote Center of Motion
SVD Singular Value Decomposition
TLX Task Load Index
TP True Positive
YOLO You Only Look Once





95

List of Figures

1.1 Traditional Microscope VS Exoscope setups: on the left-hand side it can be
appreciated the traditional setup with the microscope (image taken from
Leica Microsystem website) while on the right-hand side the photo of a
typical exoscope setup during cranial surgery taken from [1]. . . . . . . . . 1

2.1 Camera configurations: on the left-hand side eye-in-hand setup and on the
right-hand side eye-to-hand setup (Figure taken from [20]). . . . . . . . . . 10

3.1 Overall System: images acquired by the stereo camera are sent to a CNN
which detects the surgical tool. The 2D position of the tool is sent to a
tracking module, then a prediction module estimates the future position of
the tool in the image space. Finally, the 3D position of the tool is extracted
from the predicted position and is fed to a visual-servoing controller. . . . . 13

3.2 Vision sensor: JVC GS-TD1 Full HD 3D Camcorder. . . . . . . . . . . . . 14
3.3 Pinhole camera model: the projection center O is the point where all the

rays of light passing through the pinhole intersect. P (X, Y, Z) represents
a point in the camera coordinates system which is projected on the camera
image plane as p(x, y) or in pixel p(u, v). f represents the focal length, the
distance of the image plane from O measured on the optical axis, where
the camera is punting at. C is the principal point, where the camera image
plane and the optical axis intersect. . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Chessboard pattern and examples of extracted points (red dots). Real
3D coordinates are expressed with respect to the upper left corner of the
chessboard pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5 Main assemblies and robot axes. . . . . . . . . . . . . . . . . . . . . . . . . 19
3.6 3D model of the camera support in two pieces on the left-hand side and

support (light grey), camera (black), end-effector (dark grey) assembly.
The center of mass (COM) is computed with respect to the coordinates
frame on the upper flange. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.7 Face of the mounting flange on axis A7. . . . . . . . . . . . . . . . . . . . . 20



96 | List of Figures

3.8 Left and right images before (left-hand side) and after (right-hand side)
processing them and feeding the NN. (XL,t, YL,t) and (XR,t, YR,t) represent
the center coordinates of the bounding box in the left image plane and in
the right image plane respectively. . . . . . . . . . . . . . . . . . . . . . . 22

3.9 Training/validation data set: laboratory recorded images and real endo-
scopic ones from the EndoVis challenge. . . . . . . . . . . . . . . . . . . . 23

3.10 The CNN15 strategy (simplified) workflow. . . . . . . . . . . . . . . . . . . 26
3.11 The usual Particle filter workflow (MathWorks [29]). . . . . . . . . . . . . . 27
3.12 The modified Particle filter workflow presented in this work. . . . . . . . . 31
3.13 The Particle filter strategy (simplified) workflow. . . . . . . . . . . . . . . 32
3.14 The Optical flow tracking applied to the surgical scenario: the white tracks

are the paths followed by the tool from the last tool detection via CNN
to the frame in the image. The paths are composed of multiple positions
tracked by the Optical Flow tracking algorithm. . . . . . . . . . . . . . . . 35

3.15 The Optical flow strategy (simplified) workflow. . . . . . . . . . . . . . . . 36
3.16 The 9 points tracked by the Optical flow (in red the point found by the

CNN, in green the surrounding points). . . . . . . . . . . . . . . . . . . . . 37
3.17 The Hybrid strategy (simplified) workflow. . . . . . . . . . . . . . . . . . . 40
3.18 Triangulation procedure: to reconstruct the 3D position of the tool in the

camera frame, P C
t ((Xt, Yt, Zt), the positions of the tool estimated with

respect to the two images frames, (XR,t, YR,t) and (XL,t, YL,t), are used. b

is the so-called "Baseline" and is the distance between the optical centers of
the two camera sensors. f is the focal length. b and f are two fundamental
parameters for the position triangulation. . . . . . . . . . . . . . . . . . . . 43

3.19 Transformations between different reference frames: {B} is the reference
frame of the robot base, {EE} is the reference frame of the end-effector,
{C} and {Cdes} are the references frames associated to the actual and
desired camera poses, respectively. TB

EE and T EE
C are the transformation

between the base frame and the EE frame and between the EE frame and
the camera frame. PB

C and PB
Cdes

are the actual and desired poses of the
camera frame with respect to the base frame. P C

t , P Cdes
t , and PB

t are the
positions of the tool in the {C}, {Cdes} and {B} frame respectively. . . . 45

3.20 Position constraint representation. The robot rotates around ICR by an
angle θ calculated as the angle between the initial position PB

tinit
and the

desired position PB
t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.21 The roll, pitch and yaw angles used. . . . . . . . . . . . . . . . . . . . . . . 50



| List of Figures 97

3.22 Control scheme of the overall system: the estimated position of the tool
in the base frame, PB

t , is processed to generate the desired position of
the camera, PB

Cdes
(according to the type of control: position or orienta-

tion). The actual position of the camera, PB
C , is derived from the forward

kinematics calculated thanks to the joints’ positions and velocities mea-
surements given by the robot’s sensors. Then, the feedback error e is
computed through PB

Cdes
and PB

C and it is fed into a resolved velocity con-
troller. This controller is composed of the positive-definite gain matrix K,
by the weighted pseudo-inverse matrix of the analytical Jacobian and by
the controlled manipulator. . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Experimental setup from different point of view. The KUKA LWR 4+
robotic arm moves the stereo camera trying to track the surgical tool at-
tached to the EE of the KUKA LBR iiwa robot. The background under
the instrument can be changed (green background and realistic background
are available). The camera view shows what the camera sees during the
experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Trajectory followed by the surgical tool during the evaluation of the tool
tracking strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Trajectory followed by the surgical tool during the evaluation of the orien-
tation controller tuning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 User Study Setup (left-hand side) including everything the users were re-
quested to employ during the User Study: the robot to move the camera,
the stereo camera to observe the scene, the external monitor to look at
camera images, the workspace where to accomplish the task, two surgical
tools and a pedal, to decide when to move the robot in the automatic con-
trol modes. User Study Workspace (right-hand side): it was divided into 4
different targets, a release zone, and the initial/final position of the surgical
instrument. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Phases of the User Study tests. . . . . . . . . . . . . . . . . . . . . . . . . 62
4.6 Phases of the object’s research. On the left-hand side is shown what hap-

pens if the research fails: arrival on the target, movement of the upper
tissue, discovery of the absence of the ring. On the right-hand side is
shown what happens when the ring is under the target: arrival on the tar-
get, movement of the upper tissue, discovery of the ring, ring grasping and
removal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



98 | List of Figures

4.7 User Study Score Areas: in the green zone zero points are assigned, in the
yellow zone (all the field of view except for the 5 cm circumference around
the camera center) -1 point was assigned, in the red area, out of the field
of view of the camera, -5 points are assigned. (Xt, Yt) is the tool position,
while (Xc, Yc) is the camera center. d is the distance between (Xt, Yt) and
(Xc, Yc). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.8 Movements considered and not during the evaluation of the duration and
the length of the tool motions. The movements considered were: M i

B,
motions between the initial position and one of the i targets, M j

i , motions
between two different targets i and j, and MB

R , movement from the release
zone to the initial/final position. The movements not considered were M i

i ,
representing the motions done on the same target while looking for the
hidden ring, and MR

i , which indicate the movements from the target under
which the ring was found to the release zone. . . . . . . . . . . . . . . . . . 66

5.1 Boxplots of the TExy divided by speeds and backgrounds. (Wilcoxon
signed-rank test: *, p < 0.05; **, p < 0.01; ***, p < 0.001). . . . . . . . . 69

5.2 Boxplots of the CExy divided by speeds and backgrounds. (Wilcoxon
signed-rank test: *, p < 0.05; **, p < 0.01; ***, p < 0.001). . . . . . . . . 70

5.3 Strategies validation tests with high speed (4 cm/s) and green background. 72
5.4 Strategies validation tests with high speed (4 cm/s) and realistic background. 72
5.5 Position control validation tests with high speed (4 cm/s) and realistic

background before (above) and after (below) tuning. On the left-hand side
there are the plots of the x coordinate, while on the right-hand side the
plots of the y coordinate are shown. The colored lines represent the actual
motions while the black ones the reference trajectory. . . . . . . . . . . . . 73

5.6 Barplots of the Duration performance index divided by repetitions and
camera control modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.7 Barplots of the Score performance index divided by repetitions and camera
control modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.8 Barplots of the Path length performance index divided by repetitions and
camera control modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.9 Barplots of the three performance indexes divided by camera control strat-
egy. (Kruskal- Wallis test and Dunn-Sidak test: *, p < 0.05; **, p < 0.01;
***, p < 0.001). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.10 Barplots with the results of the NASA-TLX survey. (Kruskal- Wallis test
and Dunn-Sidak test: *, p < 0.05; **, p < 0.01; ***, p < 0.001). . . . . . . 78



| List of Figures 99

5.11 Answers to the User Study questionnaire. . . . . . . . . . . . . . . . . . . 79

A.1 After that the CNN has estimated the tool position in the right image
PR,t = (XR,t, YR,t), The epipolar line is then found and a window is slid
along it to find the corresponding point in the left image, PL,t = (XL,t, YL,t). 91





101

List of Tables

2.1 Advantages and disadvantages of tracking algorithms compared to tool
detection methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 JVC GS-TD1 Full HD 3D Camcorder specifications. . . . . . . . . . . . . . 15
3.2 Inconsistencies detected and relative errors generated: the first four incon-

sistencies generate error only on the specific image in which they happened,
while the last inconsistency causes an error on both the images at the same
time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Table of error cases and relative algorithm behavior. . . . . . . . . . . . . . 39
3.4 Tool position estimation strategies compared. . . . . . . . . . . . . . . . . 41
3.5 Resolved velocity controller parameters. . . . . . . . . . . . . . . . . . . . . 53

4.1 NASA-TLX aspects analyzed. . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Questionnaire: questions and relative possible answers . . . . . . . . . . . . 68

5.1 Strategies validation tests: TExy means and standard deviations. . . . . . . 70
5.2 Strategies validation tests: CExy means and standard deviations. . . . . . 71
5.3 Position control validation tests: TExy means and standard deviations. . . 74
5.4 Position control validation tests: CExy means and standard deviations. . . 74
5.5 Orientation control validation tests: means and standard deviations of the

various performance indexes. . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.6 Orientation control validation tests: means and standard deviations of the

various performance indexes. . . . . . . . . . . . . . . . . . . . . . . . . . . 77





103

Acknowledgements

Concludendo questo tortuoso percorso caratterizzato da qualche intoppo ma anche pieno
di soddisfazioni, vorrei ringraziare tutti coloro che mi hanno supportato e mi hanno dato
la forza per portarlo a termine.
In primo luogo, vorrei ringraziare la mia Famiglia e Tiziana, che mi hanno dimostrato
ogni giorno il loro affetto, credendo in me, standomi sempre vicini e cercando di rendere
più semplici, felici e spensierati questi anni.
Vorrei poi ringraziare la Professoressa Elena De Momi che mi ha accolto nel suo gruppo
e mi ha dato consigli utilissimi per la stesura di questa tesi. Vorrei esprimere poi la mia
gratitudine a Elisa Iovene per il costante e preziosissimo aiuto durante tutte le fasi di
realizzazione di questa tesi. Inoltre, vorrei ringraziare tutti i dottorandi e gli studenti del
Nearlab, in particolare Junling Fu, che sono stati sempre molto disponibili nei momenti
di difficoltà e che mi hanno fatto apprezzare ancora di più questo ultimo anno, grazie ad
attimi di spensieratezza e numerose pause caffè.
Vorrei ringraziare anche i miei amici e i miei compagni di università che mi hanno accom-
pagnato durante questo percorso, allietandolo. In particolare, vorrei menzionare Fabio,
per tutti i lavori di gruppo fatti insieme e per il reciproco supporto che ci scambiati.
Infine, vorrei ringraziare ancora tutti coloro che in questi anni mi hanno sopportato e che
mi sono stati accanto nonostante tutti i "Mi dispiace ma non posso, devo studiare" e gli
sbalzi d’umore derivanti da esami o progetti.
Grazie, senza il vostro supporto forse non sarei riuscito a concludere questo percorso.
Spero di riuscire a restituirvi ciò che voi avete dato a me.




	Abstract
	Sommario
	Contents
	Introduction
	Motivation
	Aim of the Work

	State of the Art
	Object Detection
	Visual Object Tracking
	Visual Servoing

	Materials and Methods
	Hardware Overview
	The Vision Sensor
	The Camera Holder

	Tool Detection Module
	Tracking Module
	CNN-Based Strategies
	Particle Filter Strategy
	Optical Flow Strategy
	Hybrid Strategy

	The Control Module
	Tool Position Triangulation and Transformation
	Position Control
	Orientation Control
	Resolved Velocity Controller


	Experimental Protocol
	System Characterization
	Strategies Validation
	Control Module Validation

	User Study

	Results
	System Characterization
	Strategies Validation
	Control Module Validation

	User Study

	Discussion
	Conclusions
	Conclusions
	Limitations and further research

	Bibliography
	Epipolar Geometry
	List of Abbreviations
	List of Figures
	List of Tables
	Acknowledgements

