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1. Introduction

Deep learning is becoming progressively more
challenging to navigate and comprehend: deep
neural architectures are increasing in complexity
to deal with novel and more complex problems.
We believe that attaining a formal definition of
neural architecture and thus being able to rep-
resent deep learning models as points in a well-
defined mathematical space would accelerate the
design and implementation of neural networks,
make models more easily shareable, and possibly
provide guarantees of convergence and stability
of such models.

We aim to compare classical deep-learning net-
works and novel models drawn from the para-
metric machines framework [4] on tasks such as
classification and forecast of time-varying sig-
nals. Moreover, we investigate the foundational
parametric-machine framework to discuss the
generalization power (i.e., the ability to forecast
or classify data with different features than the
ones belonging to the training set) of paramet-
ric machines and probe their internal dynamics
to provide a notion of explainability (i.e., the
capacity to give an explanation to the internal
process of the model) for such models.

2. Mathematical framework

The intuition behind machines is that neural
networks can be considered as an endofunction
f X — X on a space of global functions X
(defined on all neurons on all layers). Instead,
in a classical deep learning framework, different
layers in a network are combined using compo-
sition. However, this framework brings with it
some disadvantages: shortcut connections are
not supported and non-sequential architectures
fail to be created.

In [4], the authors consider a global space X =
QB?:O X; and the global endofunction

d
f=Y lLeC (X X)

i=1
In this framework, classical and novel neural ar-
chitectures are described as points of a function
space. Among these points, we find novel archi-
tectures with a rich shortcut structure that could
enable us to overcome issues such as vanishing
and exploding gradient or instability.
In particular, in a feedforward machine (dense
and convolutional), all layers of higher depth
take knowledge from all layers of shallower
depth, building a network with complete short-
cuts.



In the time machine, an additional knowledge
dimension is added: the timestamp. All layers,
as well as learning from the previous layers, also
evolve with past knowledge. In practice, a time
machine is a hybrid of recurrent and convolu-
tional architectures, based on parameters choice.
The implementation of these architectures can
be found in [1].

3. Classification

We aim to test parametric machines on time se-
ries classification and provide strategies to reg-
ularize and interpret the parameters learned by
the machine during training. With this aim in
mind, we consider the ECG200 dataset, a bench-
mark data set for time series classification [5].
Each series traces the electrical activity recorded
during one heartbeat. Time series are labelled
as normal or abnormal heartbeats (myocardial
ischemia). Importantly, alterations of the hear-
beat signal due to ischemia can be extremely
varied. This variability and the complexity of
the mechanics underlying heart dynamics make
the ECG200 dataset suitable for testing novel
techniques and architectures such as parametric
machines.

We consider two types of architectures: the
dense and time machines (see [2]). Using both,
the results surpass the state of the art, reaching
an accuracy of 0.9 and 0.91 respectively.

Regularization During training, we decide to
add a regularization term to the loss function
encouraging the model to learn patterns that are
consistent over time and reducing noise impact
in data. In our scenario, the smoothing process
is only applied to the temporal dimension, which
involves squaring the difference between model
weights in two consecutive data points in the
time series:

T

T=A) (w(t) —w(t - 1)) (1)

t=1

In practice, the smoother the weights in time,
the smaller the regularization term will be. The
strength of time smoothness regularization is
controlled by a hyperparameter A\, which deter-
mines the tradeoff between fitting the training
data well and keeping the weights smooth.

4. Explainability

The word explainability refers to the ability to
understand and interpret the decision-making
process of a machine-learning model in an input-
dependent fashion. In this sense, our aim is to
devise a technique that could effectively commu-
nicate the workings of deep learning models to
individuals who lack expertise in the field.

We devise and implement an explainability
module—sensitivity maps—that takes advan-
tage of the formal definition of parametric ma-
chines. Since machines are endofunctions on a
global space, we compute the derivative of the
nonlinear activation function on the linearized
machine. On the one hand, sensitivity maps al-
low us to highlight parts of the signal that are
relevant for the model. Hence, sensitivity maps
could be useful to the end-user to gain intuition
on the model’s decisions (see fig. 1, panel a) and
b)). In symbols, we express the sensitivity p as

y=W=xz+x9
z=0(y)
p=0'(y)

where y is the machine’s output before the non-
linearity o, W is the weights matrix, x¢ is the
input vector and z the machine’s output after
the nonlinearity.

On the other hand, via a dimensionality
(UMAP) and cardinality (Mapper) reduction al-
gorithms, we provide a measure of classification
uncertainty on test data. The two observed clus-
ters (see fig. 1, panel d)) divide the observations
based on the degree of loss, providing an indi-
cation of their reliability in terms of classifica-
tion. Specifically, the cluster with lower loss is
considered more reliable, while the cluster with
greater loss is less reliable. The next step is to
identify, given a new observation, which of these
two clusters it will belong to, so as to be able to
say something about the degree of uncertainty of
the classification and to provide to the medical
doctor examples of uncertain cases.

5. Forecast

The second task we try to solve is a forecast-
ing problem regarding energy consumption time
series. Data consists of 255 time series about
energy consumption, one per user, sampled ev-
ery 15 minutes. The differences in distribution



among various users are significant, as the areas
and energy usage can vary greatly. These differ-
ences can have important implications for under-
standing patterns of energy usage and identify-
ing areas where energy efficiency improvements
may be needed. Furthermore, the ultimate ob-
jective is to predict real power demand for week
44.

In this framework, there is not a pre-existing
state of the art, so we implement three different
models: a time machine and two classical convo-
lutional neural networks (CNNs). We build the
two CNNs models to have a fairly comparison
with the time machine. The first CNN (CNN-
1) has the same layers structure of the time
machine. The second model (CNN-2) has the
same number of parameters of the time machine
(see [3]).

Moreover, we train the models on a single user
and test them to all the other. The results proof
that the time machine is able to predict more
accurately then the sequential models and the
train pipeline allows us to show the generaliza-
tion power of the time machine.

6. Generalization

The study led us to observe a fundamental char-
acteristic of parametric machines: their capac-
ity to generalize to unseen data. Initially, the
study focused on individual users due to com-
putational issues, but it ultimately led to a sur-
prising result. By analyzing individual users,
the model demonstrate very strong generaliza-
tion abilities that extended to all other users, re-
sulting in highly accurate predictions (see fig. 2).

7. Conclusions

We consider a novel deep-learning framework—
parametric machines—that generalizes deep
neural architectures and provides a formal math-
ematical definition of operators and models com-
monly used in deep learning. We apply para-
metric machines to two case studies: a classifi-
cation and forecasting problem regarding time
series. The two proposed case studies are, by
their very own nature, challenging for classical
deep-learning models. In both cases, we show
that parametric machines outperform the clas-
sical models. Moreover, this article has directly
addressed two open problems in deep learning:
explainability and generalization. The formal

mathematical framework shows that paramet-
ric machines are good models to delve into these
topics. In a forthcoming paper, we plan to fur-
ther explore the potential of these models in dif-
ferent fields and applications, which could lead
to the development of more accurate, reliable,
and explainable deep learning solutions.
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a) Sensitivity map, time machine
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b) Sensitivity over series, time machine
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c) Umap representation of sensitivity on training data d) Graph representation via Mapper algorithm
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Figure 1: Sensitivity maps, time-series visualization, UMAP and Mapper algorithm representation.
a) Sensitivity map for a time machine considering a normal and an ischemia time series. b) Normal
and abnormal heartbeat series colored by sensitivity. We can observe that the most sensitive part of
the signal are the peaks in the normal heartbeat that correspond to a ST depression in the ischemia
sample and the initial slope. ¢) Sensitivity map visualization after dimensionality reduction (UMAP).
d) Mapper graph on reduced sensitivity maps. The sensitivity maps obtained from the training set
are first vectorized and reduced to 40-dimensional points through UMAP. Then, the projected points
are clustered via Mapper. The graph presents connected components organized according to the
loss realized by the samples associated with their nodes. The green star represents the mapping of a
correctly classified test sample according to its sensitivity map. Symmetrically, the red star corresponds
to a misclassified sample.
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a) Ground truth vs predictions for the trained user b) MSE for the three models
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Figure 2: Predictions and performance evaluation. a) Ground thruth for the 44th week and predictions

for the three models. Parametric machine is able to predict accurately the behaviour of the energy

demand, the two CNNs tend to predict a sinusoidal trend over time. b) MSE barplot showing that the

parametric machine model performs better then the other models in the majority of the observations.

¢) Two new user’s predictions example using models trained on a single different user. Parametric
machines perform well also on new users showing their generalization power.
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