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This work is part of a ten-year collaboration 
between the Veneranda Fabbrica del Duomo di 
Milano and the Politecnico di Milano, 3D Sur-
veyGroup, DABC. The basis of this work dates 
back to several years ago, specifi cally when the 
3D SurveyGroup of the Politecnico started to 
use the TLS and the photogrammetry, besides 
other techniques, as the two primary sources 
from which point clouds are obtained. There-
fore, this work represents an additional contri-
bution to the ongoing project. (et al. Achille, 
C., Fassi, F., Mandelli, A., Perfetti, L., Rechichi, F., 
Teruggi, 2020)
The importance of surveying processes in the 
fi eld of heritage conservation and restoration is 
well established and widely used worldwide. It 
is evident that nowadays, surveying techniques 
are able to solve almost any problematic situa-
tion in terms of data acquisition and data ela-
boration. The major gap still concerns the use 
of data at a professional level in daily practice. 
In these terms, an example would be the fact 
that point clouds are often used as a transitio-
nal tool between the surveys and the manual 
realization of 3D models, rather than exploiting 
its other potential and unique features. 
Consequently, this investigation may be consi-
dered as part of the contemporary national and 
international research eff ort, so that the raw 
products of 3D acquisitions (point clouds) can 
be easily used professionally. In particular, the 
thesis utilizes the artifi cial intelligence (AI) sy-
stem and examines the techniques for the clas-
sifi cation of 3D point clouds to be used as real 

Questo lavoro fa parte di una collaborazione 
decennale tra la Veneranda Fabbrica del Duo-
mo di Milano e il Politecnico di Milano, 3D 
SurveyGroup, DABC. Le basi di questo lavoro, 
infatti, risalgono a molti anni fa, quando il la-
boratorio 3Dsurvey group del Politecnico ha 
iniziato a utilizzare il TLS e la fotogrammetria 
(oltre a varie altre tecniche): le due fonti pri-
marie da cui si ottengono le nuvole di punti su 
cui si concentra questo lavoro. Pertanto, questo 
lavoro rappresenterà un piccolo mattone in un 
progetto in continuo sviluppo. (et al. Achille, C., 
Fassi, F., Mandelli, A., Perfetti, L., Rechichi, F., Te-
ruggi, 2020)
L’importanza dei processi di rilievo nel campo 
della conservazione e del restauro del patrimo-
nio è ben consolidata e ampiamente utilizza-
ta in tutto il mondo. È anche chiaro che oggi 
le tecniche di rilievo possono risolvere quasi 
tutte le situazioni in termini di acquisizione ed 
elaborazione dei dati. La grande lacuna rima-
ne oggi l’utilizzo dei dati a livello professionale 
nella pratica quotidiana, è esemplare in questi 
termini fatto che le nuvole di punti sono spes-
so utilizzate come strumento di passaggio tra il 
rilievo e la realizzazione manuale di modelli 3D.
La ricerca presentata in questo lavoro si inseri-
sce negli sforzi di ricerca nazionali e internazio-
nali affi  nché i prodotti grezzi delle acquisizioni 
3D (nuvole di punti) possano essere facilmente 
utilizzati a livello professionale. In particolare, la 
tesi indaga, attraverso l’uso di sistemi di intelli-
genza artifi ciale (AI), le tecniche per classifi care 
le nuvole di punti 3D da utilizzare come veri 

3D models structured for diff erent purposes of 
the professional practice in the Cultural herita-
ge’s world.  (et. al. Grilli, E. and Remondino, F.: 
‘Classifi cation of 3D Digital ‘Heritage’, Remote 
Sens., 11, 847, 2019. https://doi.org/10.3390/
rs11070847
In addition to the more obvious preservation 
benefi ts, a lesser-known potential of 3D digi-
tal data is that it permits a comprehensive in-
terpretation of architecture, beginning with an 
understanding of the elements’ semantics and 
proceeding through an examination of their 
structural and compositional roles, to a consi-
deration of the building’s forms and its relation-
ship to space, both real and imagined.
The Milan Cathedral constitutes a unique op-
portunity for this study mainly because it is 
both a complex and extensive case study that 
has proven to be one of the most diffi  cult in the 
fi eld of surveying and because it necessitates 
the classifi cation of 3D point clouds of all the 
architectural elements, which are all of remar-
kable peculiarity and complexity.

e propri modelli 3D strutturati per diversi sco-
pi durante la pratica professionale nel mondo 
dei beni culturali.  (et. al. Grilli, E. e Remondi-
no, F.: “Classifi cazione del patrimonio digitale 
3D”, Remote Sens., 11, 847, 2019. https://doi.
org/10.3390/rs11070847 
Oltre ai più ovvi benefi ci per la conservazione, 
una potenzialità meno nota dei dati digitali 3D è 
quella di consentire un’interpretazione comple-
ta dell’architettura, a partire dalla comprensio-
ne della semantica degli elementi, procedendo 
attraverso il loro ruolo strutturale e compositi-
vo, fi no alla considerazione delle forme dell’edi-
fi cio e del suo rapporto con lo spazio, sia reale 
che ideale.
Il Duomo di Milano rappresenta un’opportunità 
unica per questo studio, sia perché è un caso 
di studio complesso ed esteso che si è rivela-
to uno dei più diffi  cili nel campo del rilievo, sia 
perché richiede la classifi cazione delle nuvole di 
punti 3D di tutti gli elementi architettonici, tutti 
di notevole peculiarità e complessità.

ABSTRACT ENGLISH ITALIAN
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Evolution and progress can be considered a 
continuous succession of events and elements 
that constitute “history” over time. This state-
ment fi nds its highest expression in artistic di-
sciplines, which have always played a dual role 
throughout human development: that of inspi-
ring social development and of being a mirror 
of this progress. However, it is worthwhile to 
identify what “ancient” means: when does so-
mething cease to live its time and become an 
“ancient” entity host to the present? Narrowing 
the focus of this research to the art of archi-
tecture alone, one would think that “ancient” 
is what embodies knowledge and information 
that cannot be found in contemporaneity. It 
is, therefore, natural to ask ourselves when a 
work becomes “antique” and according to whi-
ch logic the adjective may be attributed to so-
mething. 
 
The Cathedral was for sure a signifi cant symbol 
for Milan and its citizens, more than for its re-
ligious value, for its being a sign of rehabilita-
tion and certifi cation of the centrality of the city, 
which was losing its importance due to internal 
political disputes among the Visconti family. 
During the 1386, the construction of the Duo-
mo triggered a series of social and economic 
mechanisms without precedent: new models of 
site management and materials have given the 
enormous architectural challenge to be accom-
plished. As in the past, the Dome is again today 
a forerunner of new models of study and analy-

sis. So, even centuries later, the Milan’s Cathe-
dral provides us the opportunity to progress 
and evolve new approaches and techniques.
The fact that the Duomo is the subject of this 
work is undoubtedly not coincidental; whether 
it is 1386 or 2023, the same church, over the 
years, confi rms itself as the symbol of centrality 
and progress. 

“Torniamo all’antico e sarà un progresso.”
“Let’s go back to the past and it will be a progress.”

Giuseppe Verdi.
 
Giuseppe Verdi’s words resonate in these terms: 
‘Let us return to the ancient: it will be progress.’ 
According to this philosophy, with the ability to 
investigate, recognize and respect what is “an-
cient”, we have the possibility of projecting it 
directly into our present and learning the lesson 
of the past. These are the most appropriate and 
meaningful words to describe this work and the 
research behind it: starting with the symbolic 
signifi cance that the Duomo has had throu-
ghout history, and then concluding with the 
analysis of the individual indivisible architectu-
ral elements that compose it. In other words, an 
investigation that starts from far away and then 
becomes an intimate knowledge of the Cathe-
dral, using modern technology to detect and 
get to know the ancient forms and elements. 
Gothic ornaments and decorations were consi-
dered essential to the realization of a Cathedral 
worthy of being called such; the reality is that 

PART 0 Introduction
THE CATHEDRAL OF MILAN: HISTORY OF CONTINUOUS PROGRESS it carries way more meanings in the elemen-

ts of which it is composed. Every single ashlar 
that is part of an architectural element encloses 
within itself a history and a meaning that goes 
beyond the passage of time. Each of these pie-
ces encompass a sense of completeness in their 
cohesion and in their belonging to something 
greater, and in their entirety travel through time 
to communicate the ancient to the present and 
the future.
This is probably the most intimate and impor-
tant value that I have learnt to identify and 
appreciate in historical architecture, and it is 
thanks to modern surveying technology and 
the work done in this paper that I have had the 
opportunity to go beyond the canonical per-
ception of human senses of space and forms 
in architecture. The use of point clouds, as well 
as the possibility of creating new forms of re-
presentation and relief of historical heritage, 
has provided me a new system of analysis and 
perception, which has revealed sides apparent-
ly indistinguishable to the human eye alone. 
The possibility of understanding how individual 
elements are composed and how they intersect 
with each other is one of the assets that im-
pressed me most about point clouds.
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Point cloud segmentation of cultural heritage is 
an important research area in 3D computer vi-
sion. It aims to automatically extract meaningful 
information from point clouds captured by 3D 
scanning technologies, such as laser scanners, 
photogrammetry, or structured light scanning. 
The goal is to segment the point cloud into me-
aningful regions, such as walls, windows, doors, 
and ornaments, to ensure the creation of accu-
rate and detailed 3D models of cultural herita-
ge sites. 
The increasing demand and size of heritage 
survey data have led to developing new sy-
stems to manage this data. Over the last few 
years, studies have shown that artifi cial intelli-
gence should be used to cope with this condi-
tion and quickly perform tasks that would take 
humans much longer to do.

Artifi cial intelligence (AI) may be defi ned as a 
discipline that studies whether and how it is 
possible to develop intelligent computer sy-
stems capable of simulating the capacity and 
behavior of human thought. There are seve-
ral detailed defi nitions of it but the one that is 
here useful to outline is the diff erence between 
Narrow AI and General AI. The former is a type 
of artifi cial intelligence that focuses on solving 
specifi c tasks, and only specializes in the fi eld of 
research in which it is employed. The second AI, 
on the other hand, is capable of managing any 
issue or situation. Considering the complexity 
of the data and answers that the General AI has 
to process, it is seen as the closest approxima-
tion to the human brain, making its develop-
ment extremely complex and slow.  
Narrow AI has been the subject of numerous 
studies and implementations in the fi eld of au-
tomatic classifi cation, mainly due to the possi-
bility of focusing on a single area of research. In 
recent years, the generic model that has been 
most successful is the family of Neural Networ-
ks (NN), whose main advantage is its modulari-
ty and the consequent possibility of being de-
composed and recomposed according to the 
tasks to be performed. The most basic NN mo-
del (fi g. below) is the perceptron, which consists 
of two input nodes, an intermediate processing 
node (kernel) and an output node that consti-
tutes the fi nal result of the processing. The data 
received from the input nodes is infl uenced by 
the weight-value (called Wa and Wb) that the 
network assigns to the feature of that node. 

Most studies on automatic classifi cation have 
involved the so-called Machine Learning, an AI 
system that learns through information provi-
ded by the operator. Its primary use concerned 
the 2D image because of the easy extraction 
of information, which are necessary for both 
the learning and the subsequent classifi ca-
tion through Convolutional Neutral Networks 
(CNN). CNNs are neural networks consisting of 
layers of nodes through which information is 
processed and passed on and are a subset of 
machine learning. 

The main development of this system in the 
fi eld of 2D is a consequence of the fact that an 
image can be read as a grid of pixels in whi-
ch it has only three characteristics (R, G, B) 
and in which the grid composition always has 
the same characteristics of distance and posi-
tion between pixels. Such systems are called 
‘structured’ and, as such, it is easier to establish 
a fi xed analysis system for these features. 3D 

point clouds, unlike 2D images, do not have a 
regular structure, as each point in the cloud is 
surveyed by the laser independently of all the 
others; therefore, there is no automatic rela-
tionship regarding the positions of the points. 
This necessitates the integration of feature as-
signment systems that can provide additional 
useful information for feature detection. (Cao, 
Y. and Scaioni, M.: A Pre-Training Method For 
3d Building Point Cloud Semantic Segmenta-
tion, ISPRS Ann. Photogramm. Remote Sens. 
Spatial Inf. Sci., V-2-2022, 219–226, 2020.)
As a consequence of the recent overwhel-
ming success of convolutional neural networks 
(CNNs) for image analysis Y. Wang et. al. (2019) 
suggests the value of implementing the abilities 
of CNNs to the world of point clouds. Wang 
proposes a new neural network module called 
‘EdgeConv’ suitable for high-level CNN-based 
tasks for point clouds, which include classifi ca-
tion and segmentation. 
Compared to previous modules that operate 
in extrinsic space or treat each point indepen-
dently, EdgeConv investigates by incorporating 
the local neighborhood information of each 
point. Furthermore, EdgeConv is diff erentiable 
and can be inserted into existing architectures.  

A study by Thomas et. al. (2019) (28) showed 
that it is possible to use kernel points as con-
volution fi lters and to operate on the points wi-
thout transformations. Convolution weights are 
learned from kernel points and their neighbors 
in Euclidean space. On the other hand, GCNs 

STATE OF THE ART
fi g. 2 Abstract scheme of how CNN works

fi g.1 Abstract scheme of how perceptron 
works.
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(Global Convolutional Networks) can naturally 
extract geometric information from their sur-
roundings by exploiting Graph Neural Networ-
ks (GNNs) as a representative method, which is 
based on the use of CNNs to extract data from 
the graphs of each point.  

In the same paper by Y. Wang Li et al. (2019) 
(30) mentioned before, he proposes a method 
that combines GCNs and attention mechani-
sms to segment point clouds in CAD models. 
The method is based on a graph representation 
of the point cloud, where each point is a node 
in the graph, and the edges between the nodes 
represent the spatial relationships between the 
points. 
Recent studies conducted by Teruggi et al. (29) 
have shown that basing the fi rst approach on 
the automatic recognition and categorization 
of architectural elements using machine lear-
ning can be a winning choice. This makes it 
possible to obtain cloud models based on the 
semantic meaning of the elements, concentra-
ting any manual modelling operations on alre-
ady categorized data and simplifying the crea-
tion of models. 
According to Teruggi et al. (29), Machine Le-
arning (ML) and Deep Learning (DL) methods, 
as opposed to manually performed opera-
tions, are objective, replicable and repeatable 
to other data not belonging to the same case 
study. Standard supervised ML techniques in-
volve algorithms taking as input some manually 

annotated parts of the point cloud, along with 
the so-called “geometric features”, and/or ra-
diometric attributes selected by the operator 
to facilitate learning and distinction of the clas-
ses to be segmented. On the other hand, DL 
strategies include the automatic generation of 
features, which learn through large amounts of 
annotated input data. 
The direct classifi cation of point clouds is a fi eld 
that has not yet been fully developed. Conse-
quently, this kind of work aims to implement 
the database of knowledge and experience re-
lated to this classifi cation method. That is to say 
that the objective of this thesis is to contribute 
to the implementation of the purpose mentio-
ned and to provide new insights into the cata-
loguing and maintenance of cultural heritage. 
In summary, recent research in point cloud seg-
mentation of cultural heritage has demonstra-
ted the potential of deep learning techniques 
to achieve accurate and effi  cient segmentation 
of complex and noisy scenes. These methods 
have shown promising results in achieving sta-
te-of-the-art performance on benchmark da-
tasets. They are expected to be increasingly 
important in creating accurate and detailed 3D 
models of cultural heritage sites. 
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In recent years, modern technologies have 
spread the use of point clouds to survey histo-
rical heritage for analysis, documentation, and 
conservation purposes. The point cloud consi-
sts of a set of points surveyed in the area under 
investigation and inserted into a three-dimen-
sional reference system.
Point clouds are the fi rst data generated by 
surveying operations that exploit modern te-
chniques to acquire and digitize buildings for-
ms. Thanks to their ability to detect a signifi cant 
amount of points in a few minutes, the point 
clouds provide information on the spatial cha-
racteristics of the surveyed elements. The main 
surveying techniques used in this fi eld are Terre-
strial Laser Scanning (TLS) and photogramme-
try. The fi rst one uses a LiDAR system to detect 
the distance of objects points by calculating the 
time it takes a laser pulse to hit them and return 
back to the source. Based on the return time of 
the laser signal, it can determine the distance 
of the point from the origin and, based on the 
measurement of the zenith and azimuth angles 
according to which the instrument is oriented, 
it can defi ne the position of each point within 
a Cartesian reference system by assigning x, 
y, and z coordinates. In addition to these po-
sition-related characteristics, the TLS is able to 
provide information about the intensity and the 
refl ectance of diff erent materials by comparing 
the strength of the incoming signal to the lau-
nched one. The main advantage of using this 
instrument is the ability to survey millions of 

points per second in a 360° fi eld of acquisition 
around the instrument position. 
Photogrammetry, on the other hand, is a sur-
veying technique that allows the metric mo-
delling  based on the stereometric information 
derived from several frames that capture the 
same surface portions. From a practical point 
of view, the principal advantage of this type of 
survey regards the use of a digital camera, a 
much cheaper and more fl exible tool than TLS. 
While the TLS needs to remain stationary in a 
fi xed position for several minutes, taking a sin-
gle frame with the camera requires a few ten-
ths of a second (under optimal environmental 
conditions). This allows greater fl exibility in the 
photogrammetric survey as, for example, al-
lowing the acquisition from moving cranes or 
UAVs. 
Latterly, the speed, the completeness, and the 
ease of use of these surveying methods have 
extended their use on a large scale, both for the 
simplest and most primitive geometries and for 
architectures containing more complex decora-
tive elements.

In general, 3D point clouds are data obtained 
by surveying each point as a single element in 
space and then placing it in a three-dimensio-
nal reference system with all the others. In the-
se terms, point clouds are often used as a tran-
sition tool between surveying and the manual 
realization of 3D models, as they provide very 
precise metric information for individual points. 

With the development of surveying techniques 
and tools, the amount and dimension of sur-
veying sites have increased exponentially, brin-
ging to attention the opportunity to enrich this 
data with a hierarchical or semantic structure of 
points. 

PART I Chapter 1: The Digital Survey
POITN CLOUDS



fi g.3 fi g.4

1514

Chapter 2: Classifi cation

In point cloud processing, classifi cation means 
grouping portions of the cloud in which points 
have common properties into diff erent catego-
ries. According to E. Grilli et al., (9) (Classifi cation 
of 3D Digital Heritage, E. Grilli, F. Remondino, 
2019), a correct approach to process historical 
heritage data is based on three main concepts: 
segmentation, structuring the hierarchical rela-
tionships of the elements and implementation 
of semantics.
The principle driving this research is that the 
machine can do the most straightforward thin-
gs than man, even in a signifi cantly faster and 
more objective way. All it needs is to learn to do 
the operations it is asked to do. 
This paper will test and discuss the classifi cation 
method based on Machine Learning which, as 
stated before, solves problems by using algori-
thms and statistical models to extract knowle-
dge from data. It is a subset of Artifi cial Intelli-
gence that exploits algorithms for the learning 
and subsequent resolution of specifi c tasks on 
a model to be classifi ed. In our specifi c case, it 
will be provided with information from which to 
learn what features the points belonging to the 
diff erent categories display. In this way it will be 
able to examine the data points to be classi-
fi ed and, based on the characteristics it fi nds in 
each, assign it to the category it considers most 
suitable. 

In general, it is possible to distinguish three 
types of Machine Learning: supervised Lear-
ning, unsupervised Learning, and reinforce-
ment Learning. (13) (V. Gupta, V. K. Mishra, P. 
Singhal, and A. Kumar, “An Overview of Super-
vised Machine Learning Algorithm,” 2022 11th 
International Conference on System Modelling 
& Advancement in Research Trends (SMART), 
Moradabad, India, 2022, pp. 87-92, doi: 10.1109/
SMART55829.2022.10047618.)
Supervised learning works on labeled and su-
pervised datasets. It requires to provide ma-
nually the information necessary for the al-
gorithm to recognize the elements with their 
semantic meaning to classify them. So, this 
working methodology involves extrapolating 
signifi cant portions from the initial data to ma-
nually classify the elements concerned. Based 
on this study model, the algorithm will train to 
segment the initial data.
Usually, for classifi cation purposes, machine le-
arning usually exploits the Decision Trees (DT) 
technique, an instrument in which each piece of 
data to be classifi ed is examined to draw con-
clusions on a series of observations. It is a tree 
model of decisions and possible consequences 
on the iterative basis of the information avai-
lable for class identifi cation. The depth of the 
tree is directly proportional to the amount of 
information the code has available. This does 
not always correspond to a better accuracy of 
the fi nal result for two main reasons: the fi rst 
is that, given the simplicity of the tree, the va-

riation of a single parameter could signifi cantly 
alter the fi nal result; the second is that, in more 
complex situations where the number of labels 
and features increases, the performance will re-
verse its trend, taking longer and providing less 
accurate results. 
The Decision Tree algorithm is easy to under-
stand and interpret, but this also makes it a 
limited method mainly because a single tree 
is insuffi  cient to produce eff ective results in 
complex situations. This is where the Random 
Forest (RF) algorithm comes in, the one most 
commonly used by data scientists. RF is an ex-

tension of the bootstrap aggregation of Deci-
sion Trees and can be used for classifi cation and 
regression problems. It is a collective learning 
algorithm, which builds a multitude of Decision 
Trees instead of following a single branch con-
sidered most important as in the Decision Tree. 
For each joint in each individual tree, the deci-
sion is not made on the basis of the feature with 
the best information match, but based on the 
best of a randomly chosen subset of n. features. 
The RF model performs well in the point-based 
classifi cation approach, even for unbalanced 
classifi cation datasets.

fi g.3 Schematic functioning of two the Deci-
sion Tree (in green positive fi ndings to conti-
nue, in red negative fi ndings that interrupt the 
branch)
fi g.4 Schematic functioning of the Random 
Forest (in green are positive hits to continue 
from, in red are negative hits that interrupt the 
branch)

CLASSIFICATION CRITERIA



fi g.5

1716

As anticipated before, the classifi cation method 
adopted was the Random Forest (RF). This is 
a supervised classifi cation algorithm develo-
ped by Leo Breiman (2001) that exploits a set 
of classifi cation trees, obtains a prediction from 
each tree, and lastly selects the best solution by 
voting. Two parameters are required to activate 
the forest of trees: the number of Decision Tre-
es to be generated (Ntree) and the number of 
variables to be selected and evaluated for the 
best subdivision during tree growth (Mtry).

This algorithm was selected for this paper 
mainly because of some of its characteristics, 
which were explored by E. Grilli et. al. (12) (Grilli, 
E., Farella, E. M., Torresani, A., and Remondino, 
F.: “Geometric Features Analysis for The Classi-
fi cation of Cultural Heritage Point Clouds”, Int. 
Arch. Photogramm. Remote Sens. Spatial Inf. 
Sci., XLII-2/W15, 541-548, 2019): 

- RF is considered a relatively accurate and ro-
bust method due to the number of Decision 
Trees involved in the process.

- RF off ers a useful feature selection indicator. 
In particular, it shows the relative importance or 
contribu-tion of each feature in the prediction: 
it automatically calculates the relevance score 
of each feature in the training phase, then sca-
les the relevance so that the sum of all scores 
is equal to 1. 

In accordance with Teruggi et al. (29) (Terug-
gi, S.; Grilli, E.; Russo, M.; Fassi, F.; Remondino, 
F.: “A Hierarchical Machine Learning Approach 
for Multi-Level and Multi-Resolution 3D Point 
Cloud Classifi cation.”), a multi-level and mul-
ti-resolution approach was applied, both consi-
dering the size of the data to be processed and 
the presence of numerous elements at diff erent 
scales. This approach involves dividing the work 
into three classifi cation levels, modifying the re-
solution of the cloud from time to time to adapt 
it to the scale of elements to be recognized at 
each stage. 
One of the primary keys to achieving a proper 
classifi cation is to design the development of 
the work in order to balance the time as much 
as possible, and to fi nd the correct proportion 
between manual and automatic operations. 
This is because when dealing with clouds of 

millions of points, it is clear that it will never be 
possible to achieve 100 per cent accuracy, and 
certainly, trying to get closer and closer to this 
value would be a waste of time. So, this entire 
work is not based on a single level of classifi ca-
tion but on a stratifi cation of increasingly detai-
led operations, providing the possibility of cor-
recting any inaccuracies in subsequent steps, 
with more suitable point intensities.
From the following images it is possible to ap-
preciate the use of the MLMR approach in the 
case of a section of the Cathedral’s intentions. 
At the fi rst level (left image) there is a 50mm re-
solution cloud in which the main elements were 
segmented. At the second level (right) the clas-
ses of pillars and vaults derived from the pre-
vious level were in turn segmented into other 
sub-categories of elements.

MULTI-LEVEL AND MULTI-RESOLUTION APPROACH (MLMR)
fi g.5 Example of diff erent layers of classifi cation
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Classifi cation by Machine Learning exploits the 
Random Forest, which learns from study mo-
dels what characteristics the points belonging 
to the diff erent classes have, and then analy-
ses the data to be segmented and decides, ba-
sed on the geometric characteristics it analy-
ses, which category to assign each point in the 
cloud to. 
It has previously been stated that classifi cation 
is based on the recognition of common geome-
tric links among points belonging to the same 
architectural element to be identifi ed. The fact 
that clouds are composed of points with only 
spatial (x, y, x) and physical (intensity, refl ectan-
ce, etc.) characteristics means that they do not 
carry, by default, information on the geometric 
relations among points; they instead constitute 
entirely separate entities. 
For each point, we calculate a weight that mea-
sures the presence (meaning the manifestation) 
of the feature. Our feature classifi cation is ba-
sed on estimates of surface variation using local 
neighborhood covariance analysis. It is possible 
to apply a classifi cation approach that works 
directly on point clouds, analyzing the eff ecti-
veness of geometric covariance features cal-
culated on spherical neighborhoods at various 
radius dimensions to support the classifi cation. 
In order to assign geometric features to each 
point, it is necessary to take advantage of a 
Cloud Compare tool that allows us to compute, 
for each point, the incidence of the geometric 
features as n. perceptual fi elds that correspond 
to the survey radius to be considered. 

The tested properties refer to the covariance 
matrix calculated within a local area of a point in 
3D space. The values of the properties indicate 
the main linear (1D), planar (2D) or volumetric 
(3D) structure of the point cloud in its vicinity. 
(12) (Grilli, E., Farella, E. M., Torresani, A., and 
Remondino, F.: “Geometric Features Analysis 
for The Classifi cation of Cultural Heritage Point 
Clouds”, Int. Arch. Photogramm. Remote Sens. 
Spatial Inf. Sci., XLII-2/W15, 541-548, 2019. They 
also provide additional features and help to di-
scriminate planes, edges, angles, lines, and vo-
lumes. These features describe the local spatial 
distribution of 3D points. (6) (Nesrine Chehata, 
Li Guo, Clément Mallet. Airborne Lidar Feature 
Selection for Urban Classifi cation Using Ran-
dom Forests. Laserscanning, Sep 2009, Paris, 
France).

The diagrams below demonstrate that, depen-
ding on the perceptual fi eld, in the form of a 
radius, the behavior of the points changes in 
relation to those contained within this set. (et. 
al. Rusu, R. B., Blodow, N. and Beetz, M.: “Fast 
Point Feature Histograms (FPFH) for 3D regi-
stration,” 2009 IEEE International Conference 
on Robotics and Automation, Kobe, Japan, pp. 
3212-3217, 2009)
As mentioned earlier, this is a three-dimensio-
nal environment in which the points assume a 
scattered order in the reference system, so the 
perceptual fi eld actually a spherical fi eld calcu-
lated with a ray with center at the point being 
investigated. (fi g.6)

aking Verticality as an example, with a radius 
of 0.50 cm the point under study shows a con-
stant increasing verticality in relation to the 
other points under study within the radius, so 
the characteristic verticality of the point under 
analysis will show a rather high value. Analyzing 
the verticality of the same point with a larger ra-
dius of analysis, one appreciates that the point 
in question has a softer behavior than before; 
since the added points soften its verticality, it 
will show a lower value than before. 

FEATURES AND PERCEPTURAL FIELD
The Perceptual Field fi g.6 3D rapresentation of perceptural fi eld of 

a point

fi g.7 Plan scheme of perceptive fi eld

fi g.8 Section scheme of perceptive fi eld
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As illustrated in the diagram 1, an increase in 
the spherical perceptual fi eld, within which to 
investigate the geometric relations of a point 
with those around it, corresponds to a logical 
exponential increase in the quantity of points 
that will be included within this range. Conse-
quently, this leads to an increase in the accuracy 
of the fi nal result given the enormous amount 
of geometric information among the individual 
points. It is clear, in this sense, that there is a 
radius limit below which it is appropriate to stu-
dy the relationships between the points (green 
dot), while beyond which one would obtain re-
sults with too many points. As we will consider 

later, an increase in the information contained 
in the model, more often than not, corresponds 
to a diffi  culty for the algorithm in identifying 
which are the best characteristics to exploit in 
order to determine the class in which to include 
each point. This is because the Random Forest 
algorithm will use the information from every 
radius of investigation chosen, even those that 
are not really useful at each individual scale of 
the process. For this reason, it is advisable to 
analyze and prepare a data with appropriate 
information to the scale of the elements to be 
classifi ed. 

fi g.9 Graph showing the directly proportional 
relationship between the size of the radii and 
the number of points included

fi g.12 Anisotrophy witht radius 0.1m

fi g.11 Spectrum of the presence of a feature in 
a point

fi g.13 Anisotrophy witht radius 0.5m
fi g.10 Graph showing the directly proportional 
relationship between the increasing of the ac-
curacy and the time necessary to the process

The characteristics selected to achieve our aim are: Anisotropy, Planarity, Linearity, Surface Varia-
tion, Sphericity and Verticality. All the following examples are based on a 50mm resolution point 
cloud. 
As the graph below shows, the presence of a feature manifests itself in direct proportion to the 
variation of the color in the spectrum. 

Anisotropy: property whereby the value of a 
physical quantity, all other conditions being 
equal, depends on the direction being analy-
zed. From the comparison of the following ima-
ges, it is possible to understand the behavior of 
this feature as the radius varies. In the fi rst case 
(anisotropy 0.1m) almost all the elements that 

make up the interior of the windows and the 
details of the capitals are visible. In the second 
(anisotropy 0.5m) the window details almost 
completely disappear, and the capitals are di-
stinguishable as a single element with no inter-
nal details.



fi g.14

fi g.16

fi g.15

fi g.17
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Planarity: property by which a point ‘P’ lies on 
a given reference plane, generated on the ave-
rage basis of the other points taken into consi-
deration. By comparing the following fi gures, it 
is possible to understand the behavior of this 
feature even at the smallest radius. At a radius 
of 0.1 m (fi gure dx) almost all points show a 
non-linear behavior due to the type of mate-
rials and the wear of the materials with which 
the Dome is made. At a radius of 10 cm, in fact, 
every point will show this non-planarity due to 
the imperfections of the materials and not to 

the composition of the architectural elements. 
By increasing the radius to 0.2 m (second fi gu-
re), it is possible to distinguish the shapes of 
the main architectural elements, since the ra-
dius makes it possible to see the relationships 
between several points that lie on the same 
plane. 
With this radius, for example, it is possible to 
distinguish points along the shaft of pillars or 
along vaults as planar due to the greater num-
ber of points examined.

fi g.14 Planarity witht radius 0.1m

fi g.15 Planarity witht radius 0.2m

Linearity: the property of a point ‘P’ to occupy 
an aligned position in relation to a reference 
generated on the base of the average of the 
other points considered. The representation of 
this feature is similar to the previous one but, 

since it is referred to a linear reference and not 
a plane, it provides more useful information in 
the case of long objects that develop in a linear 
manner. 

fi g.16 Linearity witht radius 0.1m

fi g.17 Linearity witht radius 0.3m
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Surface variation: the property of a point ‘P’ 
to vary its position in relation to others in the 
perceptual fi eld by taking only its position as a 
reference. This feature is one of the most useful 
in case studies such as this, as its minimal radius 

allows the visualization of many decorations 
and non-architectural objects.  By extending its 
radius to 0.5m (second fi gure), or in general to 
increasing values, it off ers the possibility of ne-
glecting some elements smaller than its radius 
from the visualization. 

fi g.18 Surface Variation with radius 0.1m

fi g.19 Surface Variation with radius 0.5m

Sphericity: property of a point ‘P’ to move in 
a spherical line in relation to the others contai-
ned in the perceptual fi eld of investigation. This 
feature off ers the possibility of distinguishing, 
at various scales, the spherical course of sets of 
points. With a radius of 0.1 m (fi gure 1), this fe-
ature provides a detailed visualization of all de-
corative and small elements, such as statues in 

capitals or window frames, while it fl attens out 
all groups of points that make up large elemen-
ts such as pillar shafts, walls or vaults. By expan-
ding the radius to 1.0 m (fi gure 2), the Sphericity 
feature starts to show the shape of the grooves 
that characterize the section of the shafts given 
their diameter of approximately 3 m.

fi g.20 Sphericity witht radius 0.1m

fi g.21 Sphericity witht radius 1.0m
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Verticality: property of a point ‘P’ to move 
along the vertical axis z in relation to the others 
contained in the perceptual fi eld of investiga-
tion. As can easily be understood, this characte-
ristic is manifested by the presence of points 
along the z-axis within the perceptual fi eld. At 
a radius of 0.1 m (fi gure 1), the statues of the 
giant capitals are visualized clearly enough to 
perceive their shape, while at a radius of 1.0 m 

These six selected features were calculated on sphe-
rical neighborhoods at various radius dimensions, 
to explore the diff erent relationships as a function of 
the diff erent geometric properties of the elements 
under study. (10) (Grilli, E., Farella, E. M., Torresani, 
A., and Remondino, F.: Geometric Features Analy-
sis for The Classifi cation of Cultural Heritage Point 

(fi gure 2), the capitals are barely distinguishable 
from the shaft of the pillars. Using such a high 
perceptual fi eld, larger than the size of objects 
such as the capital statues, the feature will show 
the points of the capital as all vertical to each 
other, as it will be inclined to neglect all varia-
tions along the z-axis smaller than the set ra-
dius.

Clouds, Int. Arch. Photogramm. Remote Sens. Spa-
tial Inf. Sci., XLII- 2/W15, 541-548, 2019).

fi g.22 Verticality with radius 0.1m

fi g.23 Veritcality with radius 1.0m

In Supervised Machine Learning, the operator 
provides the algorithm with a set of labelled 
data from which it learns the features to be se-
arched for in the model that has to be classifi ed. 
The input data, classifi ed manually, is called the 
“training set” and it is useful to provide infor-
mation regarding the geometric characteristics 
of the points belonging to the diff erent classes. 
On the other hand, the “evaluation set” refers 
to the data used to have an initial feedback on 
the ability of the code to recognize the elemen-
ts. Lastly, the data on which the algorithm will 
then process the result is called the “dataset”. 
In concrete terms, the code will learn from the 
training set which type of points belongs to the 
diff erent classes, and on the basis of their geo-
metrical features, it will analyze the features of 
each point of the dataset and will place them in 

the most appropriate category provided by the 
input data. 
In light of this, the importance of choosing whi-
ch part of the initial data has to be extrapolated 
in order to classify the elements manually be-
comes clear. Indeed, it must be a representative 
portion in which all elements to be classifi ed are 
well defi ned and repeatable throughout the en-
tire model. Considering the example of pillars 
in the interior classifi cation, we can appreciate 
three diff erent types of pillars repeated for the 
entire nave. In this case, it will be appropriate 
to defi ne a training set in which all the diff erent 
types of pillars appear; otherwise, if even one 
is missing, the code may run into problems in 
classifying that pillar, since redundant informa-
tion regarding the specifi c composition of that 
type of pillar would not be provided. 

fi g.24 Example of extrapolation and manual 
classi4icationof study model from the dataset
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The main objective arising from this is to mini-
mize the time required for manual operations 
(carried out by the operator) and entrust the 
machine with as much work as possible so as 
to reduce processing times and obtain accura-
te, more objective and repeatable results over 
time. In this perspective, the possibility of ge-
neralizing operations plays a role of primary in-
terest: the correct approach and the quality of 
realization of the study models allow them to 
be generalized to other portions of the cloud 
or even to other architectures. In our case, this 
means being able to work in such a way that 
the study models generated for the classifi ca-
tion of the nave can be repeated for other por-
tions of the interior. As this is one of the fi rst 
cases in which this type of work is carried out 
on a Gothic architecture of this size, it should 
be clarifi ed that the main objective will not be 
to generalize the classifi cation of the data set 
using a single model for the entire church. Ra-

ther, it is to investigate what is the best balance 
in the MLMR approach between manual and 
automatic operations in order to obtain the 
most accurate results possible with the least 
amount of operator time. The complexity of the 
Cathedral’s architectural elements, as well as 
the unique ornaments and decorations on al-
most every surface of the church, highlight the 
necessity of an initial subdivision of architectu-
ral types between interior and exterior. In fact, 
inside the Cathedral, despite a strong presence 
of decorations such as statues and frames, it 
is possible to clearly recognize the main archi-
tectural elements that compose it, since most 
of its pure forms are on display. As far as the 
exterior is concerned, particularly the masonry, 
the clear diff erence from the interior is evident: 
here, in fact, every element that makes up the 
façades is completely covered in relief decora-
tions.

CONCEPT OF GENERALZIATION
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The starting point of the classifi cation work was 
a point cloud with 5 mm resolution of the en-
tire cathedral, both interior and exterior. For 
the purpose of this research, the work was di-
vided into two main parts: interior classifi cation 
and exterior classifi cation. For the classifi cation 
of the interior, the data was divided into three 
parts: the nave, the transept and the apse. Ar-
chitecturally and structurally, all the interiors of 
the Cathedral can be identifi ed as repeatable 
elements, since, for example, the vaults have 
the same composition in the nave, transept and 
apse. What varies is the way in which the ma-

cro-elements are positioned in relation to each 
other. From the following sections one can see 
the repetition of the same architectural ele-
ments such as pillars, walls, windows and vaults 
in both areas of the interior. Similarly, one can 
see that the longitudinal and transverse com-
positions of the interior do not correspond. In 
the nave we have three orders of windows, the 
main ones at the bottom on the perimeter wall, 
the central ones on the pillars dividing the nave 
from the side and middle aisles, and fi nally the 
third order, higher up, on the division between 
the middle and middle aisles.  

PART II Chapter 3: The Case Study
DESCRIPTION OF THE SOURCE DATA

As for the cloud part of the apse, it was isolated 
from the rest of the interior due to its unique 
composition and not suitable for automatic 
classifi cation. For this reason, it will not be in-
vestigated. 
In general, the data on the interior of the chur-
ch is presented as a fully complete and homo-
genous cloud, thanks to the survey work carri-
ed out to perfection in recent years.
The starting data for the classifi cation of exte-
riors is a cloud detected by TLS and interpola-
ted with RGB information from photogramme-
try. This additional information from the cloud 
had a twofold advantage: for manual element 
recognition operations and as additional data 

for the learning and subsequent automatic 
segmentation phase of the algorithm. If from 
the point of view of the information contained 
in the data there was an implementation with 
respect to the interior, from the point of view 
of the completeness of the survey there was no 
such correspondence. The exterior of the Ca-
thedral, due to the larger number of decorative 
elements and direct exposure to the weather, is 
the part most subject to conservation work. A 
large part of the north wing of the transept is 
aff ected by scaff olding that obscures its surfa-
ce, making any relief work impossible. For this 
reason, the external wall datum is missing from 
this portion of the Cathedral.

fi g.25 Secgtion of central nave

fi g.26 Section of transept
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This system entails the repetition of the following pipeline: 
Depending on the size and characteristics of the macro-categories to be identifi ed, the star-
ting cloud is subsampled to lighten its size. It is essential to carefully evaluate the appropriate 
resolution to be used in this fi rst phase, as a cloud that is too detailed would unnecessarily 
increase the processing time, while a cloud that is insuffi  ciently detailed would not allow the 
operator to correctly identify the elements. Based on this, the fi rst level of classifi cation is per-
formed. 

The classifi ed cloud obtained from the previous step is interpolated with one of greater in-
tensity, in order to transfer the semantic information by transferring the classes determined in 
step 1 to a certain circle of points in the higher resolution cloud.

The macro categories of interest are in turn subdivided to identify their components (e.g. vau-
lts into ribs, arches and sails).

The interpolation of the results of step 2 is repeated again with a new, higher-resolution cloud 
for the classifi cation of further classes.

1)

2)

3)

4)

GENERIC APPROACH FOR CLASSIFICATION

fi g.27 Pipeline of generic classifi cation 
approach
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CLASSIFICATION OF INTERIORS CLASSIFICATION LEVEL 1

fi g.28 Scheme of the pipeline for internal clas-
sifi cation

Interior Classifi cation Pipeline
As already mentioned, the main factors to 
consider when choosing the resolution of the 
starting data are the size of the elements to 
be segmented and the presence or absence of 
details of diff erent sizes. The classes to be seg-
mented in this fi rst level are: fl oor, pillars, walls, 
windows, vaults and chains; they can be con-
sidered as large elements if compared to the 
general size of the decorative elements inside 
the Cathedral. Following this analysis, in order 
to perform the automatic classifi cation of the 

main elements, without the decorations hinde-
ring their recognition, a point cloud of 50 mm 
resolution was formed. 
In fact, the main elements to be classifi ed are 
well distinguishable with this point density, as 
each object belonging to a class has a good 
number of points to identify its shape, and si-
milarly, the details and ornaments belonging to 
the main classes should not be composed of a 
suffi  cient number of points to be recognized as 
separate entities. 

fi g.29 Detail of central nave with characteristic 
surface variation 0.1m

fi g.30 Detail of central nave with characteristic 
surface variation 1.0m
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These two images depict the same portion of 
the Cathedral with the characteristic surface 
variation, the one on the left with a perceptual 
fi eld of 0.1 m and the one on the right with a 
perceptual fi eld of 1 m. From this comparison it 
can be appreciated that the details on the co-
lumns are not large enough to be considered 
as a separate entity from the rest of the ele-
ment. Examining the image with a perceptual 
fi eld of 1 m, in fact, it is not possible to precisely 
identify the details on the pillars, which means 
that, with this radius, it is possible to distinguish 
them as a whole from the base shaft and capi-
tal. On a practical level this means that if visual-
ly one cannot see certain details (e.g. the sta-
tues on the capitals) then the code, using this 
information, will also not be able to distinguish 
these elements but will be able to identify the 
pillar as a whole. 
At this stage, the main obstacle is the large 
number of elements that are present in the sce-
ne but not connected to the structure and thus 
to the main architectural elements to be seg-
mented. Objects such as parapets, benches and 
altars attached to the perimeter walls, are to all 
intents and purposes obstacles to the correct 
identifi cation of the forms of the primitive ar-
chitectural elements. The presence of such ele-
ments must therefore be considered in order 
to fi nd a standardized solution to this type of 
problem. To simplify subsequent descriptions, 
these objects will be identifi ed as non-archi-
tectural elements. 

The fi rst issue tackled was that of non-archi-
tectural elements. One solution was to identify 
and classify all these elements with an additio-
nal class to the previous fi ve. According to ini-
tial estimations, it was assumed that these ele-
ments were suffi  ciently homogeneous in shape 
and size to allow the code to identify them as 
separate entities from the main architectural 
elements.
The main risk of this approach lies in the posi-
tion of the non-architectural elements in the re-
ference system in relation to the other objects. 
The following image depicts the training set and 
evaluation set realized for this fi rst approach: in 
green the pillars, in purple the walls, in yellow 
the vaults and in orange the non-architectural 
elements. The frontal view of these models cle-
arly shows the fact that all the architectural ele-
ments develop for varying heights intersecting 
each other, while the non-architectural elemen-
ts all insist in the same band along the z-axis. 
The presence of a class of elements with such a 
strong predominance in a single range of coor-
dinates along the vertical axis leads the code to 
learn that almost all points located in that band 
belong to the category of non-architectural 
elements. In the second image, one can see the 
obvious misclassifi cation of points belonging to 
the category of walls that have been confused 
and segmented as non-architectural elements. 
In this case, it is evident that the classifi cation 
problem is related to the z-coordinate, since all 
the points of the perimeter walls below a cer-
tain height (the same height as the altars) have 
been assigned to the category of non-archi-
tectural elements. 

This analysis brings to attention the fact of how 
important the incidences of geometric features 
used for automatic segmentation are and that it 
is not always possible to act on them to change 
the fi nal result. In this case, it would have been 
pointless to remove the z-coordinate from the 
list of features, as it would have improved the 
classifi cation of the wall bases to some extent, 
but would have created numerous problems 
in the upper part of the cloud, where height is 
crucial for the identifi cation of pillars and vaul-
ts in particular. (Demonstrative images of what 
happens by removing the z will follow). 

fi g.31 Training set and evaluation set with 
non-architectural element class 

fi g.32 Result of automatic classifi cation with 
non-architectural element class 
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                           PRECISION           RECALL                F1-SCORE

Floor         0.99          0.99         0.99     

Pillar          0.93          0.95         0.94    

Wall          0.91         0.86        0.90     

Vault          0.97          0.98         0.98     

Chain           0.93          0.79         0.86    

Non arch. elements   0.86          0.79         0.89      

Accuracy avg    0.95   

Macro avg       0.95         0.89         0.91    

Weighted avg        0.94         0.95         0.96    

8,651,099

35 min

N. POINTS

TIMEOPERATION

612,053

550 sec.

611,056

180 min

Points to clasify 

Manual annotation

Train set points

Time processing

Evalu set points 

Manual reassignment

Table 1

Table 2

Table 3
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The second solution consists of removing the 
architectural elements from the study model, 
as if they were part of the cloud noise to be 
segmented, so that they are not included in the 
automatic data processing phase. This solution 
simplifi es the identifi cation of the main catego-
ries by the algorithm, as it lightens the proces-
sing of a series of information related to very 
diff erent elements. 
A second point that had to be considered in the 
design of the work was how to consider win-
dows at this level, whether as a class in their 
own right or whether to include them in the 
class of walls for the time being. In fact, due 
to their position and composition, the windows 
do not diff er greatly in terms of their geometric 
characteristics in relation to the wall; the depth 
of the frame in relation to the glass does not 
diff er much from that of the decorative profi les 
of the internal wall façade. As can be seen abo-
ve (in the image of the interior set to Surface 
Variation 1 m), in fact, no distinction is made 
between the wall and the windows, but the lat-
ter appears as a variation-free element, totally 
represented in blue. 
On the subject of windows, the main misclas-
sifi cation error occurs along the cornice and in 
the keystone of the ogival arch that closes the 
upper part of the window. In the fi rst case, the 

splay of the cornice composed of irregular and 
non-continuous curves led the algorithm to 
classify those points as a pillar, associating with 
the irregular line of the nave’s pillar section. In 
the second case, the hypothesis is that the ar-
ched shape of the upper part of the cornice, 
combined with the depth of the splay, led the 
program to place those points in the vaults ca-
tegory, since taking that portion of the cornice 
out of context one could actually identify that 
element as a small pointed vault, given the pro-
portion between the depth and the develop-
ment of the arch.  

fi g.33 Training set and evaluation set without 
non-architectural element class 

Table 1
Summary of 3D point cloud number of points

Table 2
Summary of time including manual and auto-
matic operation

Table 3
Accuracy of automatic classifi cation
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fi g.34 Result of automatic classifi cation without 
non-architectural element class 

In light of these observations, it was decided to 
proceed by completely eliminating the non-ar-
chitectural elements within the training model 
and the evaluation set, so as to remove a lot of 
information that not only did not help to better 
identify this category, but also compromised 
the correct segmentation of the remaining clas-
ses. In this way, the non-architectural elements 
of the dataset ended up being classifi ed as part 
of the interior. This made it easier to remove 
them from the rest of the data when cleaning 
the cloud after segmentation, and the main 
classes were recognized in a more defi ned way 
by the code, relieved of redundant information.

With regard to the classifi cation of windows and 
walls, the confusion between window frames 
and pillars was corrected by adjusting the sur-
vey radiuses of the characteristics ‘Surface Va-
riation’ and ‘Sphericity’; by removing the smal-
ler ones, it was possible to provide the program 
the necessary knowledge to better understand 
that only a large-scale continuous sphericity, 
such as the actual sphericity of the pillar, should 
be identifi ed for this category. 
By applying these corrections, the classifi cation 
errors for this category were signifi cantly redu-
ced, providing a more than acceptable result to 
proceed to the data cleaning phase. With re-

gard to the problems in classifying the keysto-
nes of the window arches, it was not possible 
to fi nd a convincing solution that corrected this 
detail without aff ecting the remaining segmen-
tation of the model. For this reason, despite the 

persistence of this error, the overall result was 
considered satisfactory in order to be able to 
proceed to the cleaning phase and the subse-
quent second level of classifi cation. 

fi g.35 Axonometric view of the result of auto-
matic classifi cation 
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                           PRECISION           RECALL                F1-SCORE

Floor         0.99          0.99         0.99     

Pillar          0.96           0.98         0.97    

Wall          0.95         0.86        0.90     

Window          0.91          0.91         0.91     

Vault           0.97          0.98         0.98    

Chain     0.93          0.79         0.86      

Accuracy avg    0.96   

Macro avg       0.95         0.92         0.93    

Weighted avg        0.96         0.96         0.96    

8,651,099

0* min

N. POINTS

TIMEOPERATION

515,272

550 sec.

1,025,246

50 min

Points to clasify 

Manual annotation

Train set points

Time processing

Evalu set points 

Manual reassignment

* Used training and evaluation set rea-
lized for classifi cation with the category 
not architectural element

Table 4

Table 5

Table 6

Table 4
Summary of 3D point cloud number of points

Table 5
Summary of time including manual and auto-
matic operation

Table 6
Accuracy of automatic classifi cation
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fi g.36 axonometric cross-section of the result 
of automatic classifi cation
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fi g.37 Floor class isolated from the fi nal result 

fi g.38 Pillar class isolated from the fi nal result 

fi g.39 Wall class isolated from the fi nal result 

fi g.40 Winsow class isolated from the fi nal re-
sult 

fi g.41 Vault class isolated from the fi nal result 

fi g.42 Chain class isolated from the fi nal result 

CLASSIFICATION LEVEL 2
PILLAR
This second level of classifi cation involves the 
identifi cation of the base, shaft and capital, 
using a 20 mm resolution cloud. 

This stage of work began by identifying the 
presence of three main types of columns that 
are repeated at the division between one nave 
and another. In order of increasing size, we fi nd 
the fi rst (in green in the diagram below) whi-
ch is a parastra located on the perimeter wall, 
the second (in red in the diagram below) whi-
ch divides the two side aisles, and the third (in 
blue in the diagram below) located between 
the central aisle and the side aisle adjacent to 
it. With the help of the following section, I will 
attempt to expose the compositional characte-
ristics of the diff erent pillars that can potentially 
disturb the recognition of the three subcatego-
ries. The fi rst important distinction regards the 
two inner columns and the one juxtaposed to 
the outer wall, which is never shown as a true 
column but as a parasta. This at an architectu-
ral level may not be a very relevant diff erence, 
but for our work it is a substantial diff erence in 
order to identify the geometrical characteristi-
cs of the relationships between the points. The 
main reason why it is necessary to examine the-
se situations is that the parasta, exiting only for 
part of its section from the wall, never presents 
the continuity of points along the diameter that 
we fi nd in traditional columns. Similarly, we can 
note the fact that the two central columns do 
not end with the capital as usual, but continue 

along the upper wall in the form of parastas 
until they reach the last capital. The central co-
lumn (highlighted in red) shows a further pe-
culiarity, namely the fact that the capital at the 
end of the shaft does not crown the entire shaft 
of the column but only the half of it facing the 
nave, continuing instead in a single shaft all the 
way to the second capital on the side facing the 
center of the Cathedral. 

fi g.43 Detail of manual classifi cation of the ca-
pital 
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fi g.45
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A further point on which an operational strate-
gy had to be elaborated concerns the compo-
sition of the tall capitals of the central columns. 
In fact, unlike all the other capitals in the Cathe-
dral, they are not arranged as classical capitals 
with a base that is orthogonal and continuo-
us with respect to the vertical development of 
the column, but (as can be seen in the second 
fi gure) begin with a jagged segment that divi-
des them from the shaft. This characteristic led 
to the defi nition of a standardized approach to 
solve these problems in the construction of the 
study models. For the purposes of the research 
carried out in this work, it was decided to de-
fi ne an abstract limit at which the shaft stops, 
and the capital begins at the lower limit of its 
components. By acting in this way, it was possi-

ble to generalize the information regarding the 
characteristics of the capitals. For the classifi -
cation of the pillars at this level, two sets were 
assigned composed of the three diff erent types 
of pillars inside the Cathedral, one on the north 
side and one on the south side. It was conside-
red that the repetitiveness of these three types 
of pillars was consistent throughout the interior 
of the Cathedral and that these patterns could 
be suffi  ciently representative for the identifi ca-
tion of each class. 

fi g.44 Trainign set and Evaluation set for se-
cond level of classifi cation of pillars

fi g.45 Final result of automatic classifi cation of 
pillars

n the segmentation of these categories of pillar 
components, the correct relationship between 
the resolution of the cloud, the choice of fe-
ature radiuses and the realization of the trai-
ning set and the evaluation set played a key 
role. The correct preparation and handling of 
the preliminary data made it possible to obtain 

an acceptable result right from the start, which 
took only a few minutes to clean up and was 
ready for the subsequent work steps. In this 
particular case, the architectural composition 
and the vertical scanning mode of the elemen-
ts also made the operations, both manual and 
automatic, easier and more eff ective. 



                           PRECISION           RECALL                F1-SCORE 

Base         0.97          0.96         0.96     

Shaft          0.99           0.97         0.98    

Capital          0.95         0.97        0.96     

Accuracy avg    0.97   

Macro avg       0.97         0.97         0.97    

Weighted avg        0.97         0.97         0.97    

12,532,597

35 min

N. POINTS

TIMEOPERATION

1,062,930

650 sec.

1,025,246

10 min

Points to clasify 

Manual annotation

Train set points

Time processing

Evalu set points 

Manual reassignment

Table 7

Table 8

Table 9

Table 7
Summary of 3D point cloud number of points

Table 8
Summary of time including manual and auto-
matic operation

Table 9
Accuracy of automatic classifi cation
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VAULT
The interior vaults of the Cathedral constitute, 
from an architectural point of view, some of the 
purest elements we can fi nd. They are located 
at diff erent heights from the ground depending 
on the portion of the Cathedral they cover, but 
this should not aff ect the automatic classifi ca-
tion of its subcategories too much since, being 
completely separate from each other, they 
should be recognized and analyzed as distin-
ct entities. The aforementioned purity mainly 
concerns the form and surfaces that make up 
the arches, ribs and vaults; these are presented 
almost as they are, without decoration, simpli-
fying their recognizability both during the crea-
tion of the study models by the operator and in 
the automatic classifi cation phase by the algo-
rithm. Furthermore, the similarity of the vaults 
within the cathedral, both in the nave and the 
transept, makes it possible to work using the 
same study models to generalize as much as 
possible the classifi cation of all internal data re-
garding these elements. 

For the second classifi cation level of the vaults, 
given the proportions of the architectural ele-
ments and the elements of detail that can be 
compared with those of the pillars, the same 
basic principles seen in the previous case were 
used: point cloud with a density of 20 mm and 
the same radiuses to investigate the geome-
tric characteristics. The main peculiarity of the 
second level of classifi cation of these elemen-
ts is the composition and development of the 
diff erent parts that compose the vault. Until 
now, in fact, classifi cation has mainly concer-
ned elements with vertical development, such 
as pillars, where the ‘z’ coordinate has played 
a fundamental role in the algorithm’s recogni-
tion of the diff erent element categories. The 
classifi cation of vaults, with the development of 
its components, leads for the fi rst time to the 
consideration of curved elements for which the 
previous approach might not be suffi  cient. In 
particular, it is useful to highlight the substantial 
diff erence between arches and ribs which, from 
an architectural point of view, may be assimila-
ted as structural elements with a linear deve-
lopment, but that, considered as a whole, in the 
same model to be classifi ed, show two diff erent 
trends. The arches, in fact, assuming a reference 
system x and y parallel to a vault seen in plan, 
develop along the x and y axes in a linear man-
ner, while the ribs of the same portion of the 
vault assume an inclined course with respect to 
these axes. One of the most discussed points 
at this level of classifi cation concerned the key-
stones. At fi rst, they were intended for a fourth 



fi g.46 fi g.47

fi g.48

fi g.49
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category but, due to the problems that will be 
explained below, it was decided to reduce the 
number of categories and assign the keystones 
points to one of the three existing categories.
From the following image (left), with the cloud 
set at 0.05 m verticality, one can observe the 
above-mentioned problem related to the z-co-
ordinate. The increase in verticality can be re-
cognized by the increase in the hue of the cold 

colors, from which one can appreciate the fact 
that all elements assume similar behavior as a 
function of this variable.
For the defi nition of the study models to be 
manually classifi ed, a single vault span was se-
lected between two pillars, which was in turn 
divided in half to separate the training and eva-
luation sets. 

fi g.46 Vault dataset with feature verticality 
0.05m

fi g.47 Training set ed Evaluation set for second 
leveò of classifi cation of vault

The defi nition of the initial semantic categories 
involved the identifi cation of arches, ribs, sails 
and keystones. It was assumed that the latter 
could be identifi ed through the contribution of 
the z-characteristic, given their position at the 
top of each vault. The main problem with this 
strategy lies in the fact that the keystones are 
located at the point of intersection of ribs and 
sails, but do not develop in height in relation to 
them, but rather below them. This composition 
of the elements was in itself, at fi rst, a limitation 
in the process of recognition of the elements 
by the operator in the study models. This con-
dition is caused by the instrumental limitation 
and by the resolution of the data used for this 
level of classifi cation.  The fi rst is related to the 
fact that these clouds were detected by positio-
ning the instrument below the vaults in order to 
beat the points of greatest interest; the second 
relates to the subsampling of the original data, 
which reduces the amount of points related to 
the connection between the ribs and the key-
stones. 
These circumstances showed limitations in the 
classifi cation of these four categories from the 
fi rst phase of the creation and evaluation of the 
training set and were then refl ected in the au-
tomatic classifi cation of the algorithm. It must 
be said that the problem, in this case, does not 
concern the general quality of the automatic 
classifi cation (as visible in the following ima-
ges), but rather the architectural composition 
of these elements, which makes them diffi  cult 
to identify both automatically and manually. 
Considering the level of resolution of the cloud, 
the processing time becomes very long and 

comparable to the time that manual classifi ca-
tion would require, going against the purpose 
of this work. The main limitation of this phase 
lies in the fact that, as mentioned at the begin-
ning, the laser scanner technique only surveys 
the surfaces of objects, without any information 
on the overall structural composition of the ele-
ments. These are therefore situations in which, 
for this type of work and with this surveying in-
strumentation, there are no viable solutions.

fi g.48 Plan of the result of automatic vault  
calssifi cation with key’s classes

fi g.49 Detail of the result of automatic vault 
calssifi cation with key’s classes
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fi g.52
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fi g.50 Frontal detail of arches and ribs detail 
with features Surface variation 0.05m

fi g.51 Plan detail of arches and ribs detail with 
features Surface variation 0.05m

A further problem encountered is the simila-
rity between the edges of the arches and ribs; 
these are almost ‘pure’ elements, except for the 
only decoration we can identify, which are the 
moldings. Arches and ribs, in fact, at the point 
where they join the vaulting sails, have regu-
lar moldings that defi ne their limits. The main 
disturbance of this element is that it is present 
on both elements in equal proportions, crea-
ting diffi  culties for the code in deciding which 
category to assign to the points that constitute 

these decorations. In the following images, the 
cloud has been set to the ‘Surface Variation’ fe-
ature with a perceptual fi eld of 0.05 m, in order 
to capture the geometric similarity of the ends 
of the arches and ribs. Although these elemen-
ts are semantically and structurally distinct, it 
must be underlined that this type of data does 
not have the capacity to contain semantic or 
structural information to identify such distin-
ctions.

Regarding the diffi  culty in classifying the vaul-
ting keys, after a few attempts, it was realized 
that no matter how much care was taken in 
creating the study models to defi ne the cor-
rect points belonging to ribs and vaulting keys, 
during the automatic segmentation phase the 
algorithm was unable to identify and separa-
te them correctly. Changing the survey radiu-
ses or removing certain features also did not 
lead to a signifi cant improvement but did not 
compromise the identifi cation of the remaining 
classes. In view of the previous considerations, 
the keystones were incorporated into the ribs 
category, considering them as direct extensions 
of these elements, since from a structural point 
of view they are also closely connected and can 
be considered as the last indivisible composi-
tional element. The result of this was an impro-
vement in the performance of the automatic 
classifi cation and, consequently, a reduction 
in the time required for manual cleaning and 
reassignment of the points to the correct ca-
tegories. The eventual subdivision of the key-
stones from the ribs could, however, later be 
taken from a more specifi c datum, as it lacked 
arches and sails. 
This would result in a cloud with higher resolu-
tion and the consequent computation of new 
perceptual fi elds better suited to the scale. In 
this way, it would be easier to distinguish key-
stones from ribs, both in the modelling phase 
and in the data processing phase of the code. 

fi g.52 Plan of the result of automatic vault  
calssifi cation without key’s classes

fi g.53 Detail of the result of automatic vault 
calssifi cation without key’s classes
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fi g.55

fi g.57

fi g.56
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fi g.54 Final result of automatic classifi cation of 
vaults

From the following image one can appreciate 
the good quality of the result of the automa-
tic classifi cation by the algorithm, in which only 
two problems persist: that of the moldings of 
arches and ribs and that of certain points of the 
keystones classifi ed as sails instead of ribs. With 
regard to the fi rst, as already mentioned, it was 
decided to resolve it during the manual clea-
ning. As for the second, the situation was sim-

plifi ed in view of the cleaning operations, since 
the main problem was distinguishing keystone 
points from ribs. Now that these two classes 
have been unifi ed, despite the persistence of 
a similar number of incorrectly classifi ed poin-
ts, manual operations will simply reassign the 
keystone points classifi ed as sails to the correct 
category of ribs.

fi g.55 Rib class isolated from the fi nal result

fi g.57 Sail class isolated from the fi nal result

fi g.56 Arch class isolated from the fi nal result 



fi g.58

                           PRECISION           RECALL                F1-SCORE

Rib         0.97          0.98         0.98     

Arch          0.97           0.97         0.97    

Sail          0.99         0.98        0.99     

Accuracy avg    0.98   

Macro avg       0.98         0.98         0.98    

Weighted avg        0.98         0.98         0.98    

15,235,708

20 min

N. POINTS

TIMEOPERATION

512,290

900 sec.

509,502

120 min

Points to clasify 

Manual annotation

Train set points

Time processing

Evalu set points 

Manual reassignment

Table 10

Table 11

Table 12

Table 10
Summary of 3D point cloud number of points

Table 11
Summary of time including manual and auto-
matic operation

Table 12
Accuracy of automatic classifi cation

5756

GENERALIZATION FOR INTERNAL CLASSIFICATION
PILLAR CLASSIFICATION LEVEL 2

fi cation of the architectural parts that make up 
the pillars was seen as a success considering 
that the source study model, from which the 
information for the code was extracted, belon-
ged to another area of the cathedral. 

For the second-level classifi cation of the tran-
sept elements, an attempt was made to maxi-
mize the concept of generalization set out abo-
ve. With regard to pillars and vaults, given the 
repetitiveness of the shapes and composition 
of these elements located in the transept, an 
attempt was made to use study models made 
manually in the main nave for their classifi ca-
tion. 
With regard to the pillars, the repetition of the 
same types of bases, shafts and capitals is evi-
dent. The only aspect that varies is the general 
arrangement in space, but since each column is 
at least 5 metres apart, these are relationships 
outside the perceptual fi elds used for feature 
analysis, i.e. outside what the code uses for le-
arning. In this case, the classifi cation provided 
encouraging results, producing automatically 
segmented data with good accuracy. The only 
cases in which the code encountered problems 
in assigning classes to points were at some of 
the lights of the lighting system present only 
on some of the pillars of the transept. Since 
these are non-architectural elements, they did 
not aff ect the overall assessment of the result. 
A fi nal consideration concerns the peducci, ver-
tical elements continuing the four corner colu-
mns on which the pendentives supporting the 
dome of the Cathedral rest. As these are pecu-
liar elements within the Cathedral, it was de-
cided to disregard them and assign them to a 
new category, as they are not part of the cano-
nical elements that make up a pillar. The classi-

fi g.58 Detail of pillar classifi cation with 
“peducci”
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                           PRECISION           RECALL                F1-SCORE

Base         0.96          0.96         0.96     

Shaft          0.98           0.97         0.98    

Capital          0.95         0.97        0.96     

Accuracy avg    0.97   

Macro avg       0.96         0.97         0.97    

Weighted avg        0.97         0.97         0.97    

11,962,193

0* min

N. POINTS

TIMEOPERATION

0*

450 sec.

0*

45 min

Points to clasify 

Manual annotation

Train set points

Time processing

Evalu set points 

Manual reassignment

* Used training and evaluation set reali-
zed for pillar classifi cation in the central 
nave

Table 13

Table 14

Table 15

Table 1
Summary of 3D point cloud number of points

Table 2
Summary of time including manual and auto-
matic operation

Table 3
Accuracy of automatic classifi cation
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fi g.59 Result of the automatic classifi cation of 
the transept pilalrs by generalising the study 
model of the nave



fi g.61

fi g.62

fi g.63
fi g.60 6160

fi g.61 Rib class isolated from the fi nal result

fi g.63 Sail class isolated from the fi nal result

fi g.62 Arch class isolated from the fi nal result 

VAULT CLASSIFICATION LEVEL 2

the transept, the four pendentives resting on 
the peducci and supporting the dome and, fi -
nally, the central lantern at the top of the dome 
itself. The fi rst two listed, given their diff erent 
structural purpose and compositional structure 
within the organism of the vaults, were not ta-
ken into consideration for the evaluation of the 
fi nal result, as they are unique elements both in 
form and composition. As far as the lantern is 
concerned, given its structural function similar 
to a normal keystone and connection between 
the eight ribs that make up the dome, it was 
decided to keep it within the rib category.

For the interior vaults of the transept, the same 
approach was applied as for the pillars: provi-
de the code with the training set created for 
the nave from which it learns the information 
for classifi cation. At the compositional level, no 
particular diff erences are noticeable between 
the vaults of the nave and those of the transept, 
in both spaces they follow the compositional 
system formed by arches, ribs ( joined at the 
meeting point by a keystone) and sails. 
The only peculiar and non-repeatable elements 
are: the vaults of the two side chapels located 
in the center of the north and south walls of 

fi g.60 Result of the automatic classifi cation of 
the transept vaults by generalising the study 
model of the nave
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                           PRECISION           RECALL                F1-SCORE

Rib         0.97          0.98         0.98     

Arch          0.98          0.97         0.97    

Sail          0.99         0.98        0.99     

Accuracy avg    0.98   

Macro avg       0.98         0.98         0.98    

Weighted avg        0.98         0.98         0.98    

13,267,056

0* min

N. POINTS

TIMEOPERATION

0*

850 sec.

0*

150 min 

Points to clasify 

Manual annotation

Train set points

Time processing

Evalu set points 

Manual reassignment

* Used training and evaluation set reali-
zed for vault classifi cation in the central 
nave

Table 16

Table 17

Table 18

Table 16
Summary of 3D point cloud number of points

Table 17
Summary of time including manual and auto-
matic operation

Table 18
Accuracy of automatic classifi cation
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CLASSIFICATION OF EXTERIOR fi g.64 Scheme of the pipeline for external clas-
sifi cation

Exterior Classifi cation Pipeline
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fi g.65 50mm resolution external cloud with 
RGB information

The starting data provided for the classifi cation 
of the exteriors consisted, as for the interiors, 
of a cloud with a resolution of 5 mm, but unlike 
the former, this was implemented with RGB in-
formation derived from interpolation with pho-
togrammetric data. This additional information 
makes it possible to create a point cloud with 
real color data of the revealed surfaces; the 
only limitation of this tool is the color diff erence 
between the areas illuminated by direct sunli-
ght and the ones in shadow. 
The possibility of using this information impro-

ves both manual processing by the operator 
and automatic processing by the code. In the 
fi rst case, due to the presence of the actual co-
lors of the elements, it is easier for those who 
know the semantics of the elements to iden-
tify and divide them. In the second case, the 
RGB data is added to the list of information that 
the code uses to learn and subsequently clas-
sify the individual points. From the following 
images, one can appreciate the visual clarity 
of windows compared to walls provided by the 
color information of the points.

fi g.66 Detail of exteriors cloud at 50mm reso-
lution with RGB information
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fi g.69 fi g.70
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fi g.67 Inizial training set and evaluation set of 
classifi cation level 1 of exterior

fi g.68 Final training set and evaluation set of 
classifi cation level 1 of exterior

CLASSIFICATION LEVEL 1
For the fi rst exterior classifi cation level, the 
same approach was used as for the correspon-
ding interior level, considering similar the pro-
portions of the elements to be classifi ed: Floor, 
Basement, Pillars, Walls and Windows. In fact, 
the source cloud at the 5 mm defi nition was 
subsampled to create a cloud with 50 mm re-
solution on which features were calculated for 
perceptual intervals from 0.1 m to 1 m. The de-
cision to limit the classifi cation to only four ma-
cro-elements arose from the complexity and 
quantity of decorative elements present on the 
external surfaces. One of the main obstacles 
that aff ected operations at this stage was the 
incomplete external survey data. In fact, for the 
reasons stated above, the survey of the nor-
th transept was not available. The complete 
absence of one of the two transepts caused a 
signifi cant gap for the classifi cation of the ex-

teriors, since certain elements, such as the cor-
ner pillars or the protuberances that internally 
correspond to the altars in the center of the 
transepts, are exclusive to these portions of the 
cathedrals and are not repeated in any other 
area. At fi rst, an attempt was made to minimi-
ze manual classifi cation even for quite unique 
portions (such as the transept) in order to test, 
even in non-optimal conditions, the possibility 
of generalizing the data provided for automatic 
segmentation. As the fi rst image below shows, 
initially a portion of the walls of the nave and a 
relatively small portion of the southern transept 
were used as  training set and evaluation set. 
Not obtaining acceptable results in terms of ac-
curacy, the portions included in the training set 
were expanded, resulting in the manual clas-
sifi cation of half of the transept and of a good 
portion of the apse. 

ments on most of the surfaces of the main ele-
ments to be classifi ed. In particular, from the se-
cond image below, it is possible to appreciate 
that the main problem is related to the confu-
sion caused by the decorative elements, such 
as frames and statues, present on the surfaces 
of the walls and along their boundaries with pil-
lars and windows. 

Despite the attempt to provide more informa-
tion to the code through the study models, the 
results obtained with this data resolution were 
not considered satisfactory. As can be appre-
ciated from the image below, the macro-cate-
gories were correctly identifi ed allowing them 
to be distinguished from one another, but they 
presented a large amount of noise due to the 
incorrect segmentation of the decorative ele-

fi g.69 Result of automatic classifi cation with 
50mm point cloud resolution

fi g.70 Detail of the result of automatic classifi -
cation with 50mm point cloud resolution



fi g.71 fi g.72

                           PRECISION           RECALL                F1-SCORE

Floor         1.00          0.97         0.99     

Basment         0.97           0.98         0.97    

Pillar          0.87         0.95        0.91    

Wall           0.91          0.76         0.83     

Window          0.94          0.94         0.94    

Accuracy avg    0.96   

Macro avg       0.95         0.92         0.93    

Weighted avg        0.96         0.96         0.96    

4,618,141

45 min

N. POINTS

TIMEOPERATION

79,197

240 sec.

16,221

Undefi ne

Points to clasify 

Manual annotation

Train set points

Time processing

Evalu set points 

Manual reassignment

Table 19

Table 20

Table 21

Table 19
Summary of 3D point cloud number of points

Table 20
Summary of time including manual and auto-
matic operation

Table 21
Accuracy of automatic classifi cation
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fi g.71 Section of 50mm resolution point cloud 
that frame a window between two external 
pillars

fi g.72 Frontal view of 50mm point cloud reso-
lution

In light of the results obtained, it became evi-
dent that the main cause of the classifi cation 
errors was the incorrect resolution set for the 
starting cloud. In this case, in fact, with a cloud 
resolution of 50 mm and the presence of deco-
rative elements of signifi cant size, we obtain a 
cloud in which the shapes of these decorations 
are defi ned by too many points for them to be 
ignored by the code during the learning and 
classifi cation phase. As can be seen from the 
following images, with this cloud resolution the 
decorative elements, such as the statues along 
the window splay or the frames on the wall 

surface, are represented with too many points 
that defi ne their boundaries too clearly. From a 
practical point of view, we can say that depen-
ding on the resolution of the cloud, the code 
‘sees’ the elements as our eyes see them: if the 
cloud we observe has enough resolution to al-
low us to recognize the shapes of certain ele-
ments, then the code will have enough points 
on which to investigate geometric relationships 
to recognize the same elements. We exploit si-
ght while the code exploits the investigation of 
geometric relationships between points, so we 
use diff erent tools to perceive the same things.



fi g.73 fi g.74 fi g.75 fi g.76
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lower defi nition of the detail elements, both in 
section and elevation.
These sub-sampling operations, as well as im-
proving the accuracy of the automatic classi-
fi cation by the code, allowed to increase the 
number of classes to be segmented directly at 
the fi rst level. At this stage, some tools provided 
by Cloud Compare made it possible to use the 
manually segmented study models on the 50 
mm cloud as a source to transfer the point class 
information to the 100 mm resolution cloud wi-
thout having to perform the manual training 
set creation and evaluation operations again. 
The “Guglia” category was added to the clas-
ses already included in the previous attempt. 
From the very fi rst tries with this new data han-
dling, the results have been encouraging and 
have confi rmed the importance of choosing the 
correct data resolution in relation not only to 

Once the initial resolution error of the cloud 
was recognized as the main problem, we fur-
ther subsampled the cloud to a resolution of 
100 mm. This was considered the most suitable 
solution to minimize the errors caused by the 
decorations in the fi rst classifi cation level. We 
moved from a cloud of 6,244,137 points to one 
of 1,243,909 points. This sub-sampling made it 
possible to obtain a cloud with a smaller num-
ber of points, in which it was no longer possible 
to clearly identify the shapes of the detail ele-
ments that previously had a negative infl uen-
ce on the classifi cation. In addition to that, this 
subsampling allowed a considerable reduction 
in the size of the data and the resulting pro-
cessing times, both manual and automatic. 
Comparing the subsequent images with the 
previous ones, it is possible to notice the lower 
resolution of the cloud and, consequently, the 

fi g.73 Result of automatic classifi cation with 
100mm point cloud resolution

fi g.74 Detail of the result of automatic classifi -
cation with 100mm point cloud resolution

the proportion of macro-elements to be classi-
fi ed, but also to the minor disturbing elemen-
ts that are to be made negligible by the code. 
Comparing the following images (result of the 
classifi cation with the 100-mm cloud) with tho-
se shown previously (result of the classifi cation 
with the 50-mm cloud), it is easy to notice the 
improvements obtained with the new data. 
Noise due to decorative elements has been al-
most completely eliminated, with the exception 
of small portions at the intersection of walls 
and pillars. The result obtained is an excellent 
starting point for the subsequent manual clea-
ning and reassignment of the incorrectly classi-
fi ed points. The problems and related solutions 

adopted in this phase of the classifi cation work 
brought to attention a fundamental value wi-
thin the MLMR approach, as they highlighted 
the fact that more information does not always 
correspond to a better quality of the fi nal result. 
Indeed, in this specifi c case, it was necessary to 
take a step back from what had been planned, 
as the complex uniqueness of the decorations 
on the cathedral’s exterior walls constituted an 
insuperable obstacle by keeping the cloud re-
solution at 50 mm. It was only through a chan-
ge of scale and thus a ‘loss’ of information that 
the correct execution of this level of classifi ca-
tion was achieved.

fi g.69 Result of automatic classifi cation with 
100mm point cloud resolution

fi g.70 Detail of the result of automatic classifi -
cation with 100mm point cloud resolution



fi g.77

fi g.78

                           PRECISION           RECALL                F1-SCORE

Floor         1.00          0.96         0.98     

Basment         0.93           0.95         0.94    

Pillar          0.99         1.00        0.99     

Guglia       1.00          1.00         1.00     

Wall           0.99          0.96         0.97    

Window          0.96          1.00         0.98

Accuracy avg    0.98   

Macro avg       0.98         0.98         0.98    

Weighted avg        0.98         0.98         0.98    

926,216

0* min

N. POINTS

TIMEOPERATION

0*

120 sec.

0*

20 min

Points to clasify 

Manual annotation

Train set points

Time processing

Evalu set points 

Manual reassignment

* Used training and evaluation set reali-
zed for exterior classifi cation with 50mm 
point cloud resolution

Table 22

Table 23

Table 24

Table 22
Summry of 3D point cloud number of points

Table 23
Summary of time including manual and auto-
matic operation

Table 24
Accuracy of automatic classifi cation
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CLASSIFICATION LEVEL 2
This level of classifi cation requires that from the 
classes of walls and pillars are segmented re-
spectively the sub-categories of “falconature” 
and retro spires. The former constitutes the last 
order of decoration of the exterior walls and 
also act as parapets, while the latter constitu-
te the continuation of the former and are ele-
ments that cover the base of the spires. In both 
cases, these subcategories are physically repre-
sented as crowning bands that follow the deve-

lopment of walls and pillars. The realization of 
the study models revealed a remarkable simpli-
city in the manual segmentation of the catego-
ries at this level. Consideration was given to the 
fact that the time required for code processing 
and subsequent cleaning of the obtained data 
would have been longer than the time required 
to manually classify the entire data. For this re-
ason, it was decided not to pursue the investi-
gation of the classes. 

fi g.77 Training set and evaluation set to seg-
ment pillar and retro spire

fi g.78 Training set amd evaluation set to seg-
ment wall and falconature



fi g.79

fi g.80

1,920,203

5 min

N. POINTS

TIMEOPERATION

227,893

240 sec.

227,458

5 min

Points to clasify 

Manual annotation

Train set points

Time processing

Evalu set points 

Manual reassignment

Table 25

Table 26

Table 25
Summary of 3D point cloud number of points

Table 26
Summary of time including manual and auto-
matic operation
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fi g.79 Result of automatic classifi cation of pillar 
and retro spire

fi g.80 Result of automatic classifi cation of wall 
and falconature



fi g.81 fi g.82

857,804

5 min

N. POINTS

TIMEOPERATION

297,166

240 sec.

376,703

5 min

Points to clasify 

Manual annotation

Train set points

Time processing

Evalu set points 

Manual reassignment

Table 27

Table 28

Table 27
Summary of 3D point cloud number of points

Table 28
Summary of time including manual and auto-
matic operation
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CLASSIFICATION LEVEL 3
WINDOWS
For the third and fi nal level of window classifi -
cation, it was required to identify and segment 
the frame (represented by the mullions and 
marble decorations) and the glass, the two ulti-
mate and indivisible elements that make up the 
windows. From the previous classifi cation level, 
a point cloud was obtained that includes all the 
exterior openings of the Cathedral. From an 
initial analysis, it is clear that there are very he-
terogeneous shapes and compositions. In fact, 
we have diff erent types of windows depending 
on their position along the exterior façade of 

the Cathedral, one type along the main nave, 
diff erent types in the transept and, fi nally, the 
three large openings located in the apse. 
In contrast to the interiors, for the third classi-
fi cation level of the exteriors, the elements to 
be identifi ed were larger in size and, as a logi-
cal consequence, the starting point cloud was 
set with a density of 20 mm instead of 5 mm. 
The aim was to best isolate these three featu-
res using the right combination of feature de-
tection radiuses.

fi g.81 Training set and evaluation set to seg-
ment structure, frame and glass

fi g.82 Detail of the defi nition of training set 
amd evaluation set to segment structure, fra-
me and glass



fi g.83 fi g.84
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Given this potential, the development of this 
method of data modifi cation and management 
is fundamental, as it solves the problem of the 
simultaneous presence of decorations of very 
diff erent sizes that hinder the identifi cation of 
architectural classes.
O n a practical level, increasing the radius of 
the relief implies an increase in the study carri-
ed out between points close to each other. The 
presence of a statue with a section greater than 
1 m, and the simultaneous absence of radiuses 
greater than this value, do not allow the algo-
rithm to understand that it is a fi nite element 
belonging to the frame. 

The main diffi  culty lies in clearly distinguishing 
the outer cornice (splay) from the inner window 
due to the presence of large statues along the 
cornice. As can be seen from the detail above 
(fi g. n), part of the points of the outer cornice 
and the window frame overlap each other. The 
fi rst analysis arising from this problem led to 
the hypothesis that the algorithm had diffi  cul-
ties in identifying the cornice as a continuous 
entity due to the presence of the statues, which 
signifi cantly altered the classical shape of the 
outer cornice. In cases like this, where elemen-
tary architectural elements are enriched and, 
consequently, partially covered by numerous 
decorations, it is diffi  cult to identify architectu-
ral forms. Due to their uniqueness in terms of 
geometric forms, decorations, whether statues 
or ornaments, most often assume the role of 
obstacles to the full understanding and identifi -
cation of the elementary forms of architectural 
elements.
By changing the radius of investigation of the 
geometric relationships between points, the ex-
tent of the geometric characteristics that each 
individual point has in relation to the others 
contained within that radius is changed. As a 
result, the data provided to the code for the 
automatic classifi cation of elements also incre-
ases. This operation therefore acts directly on 
the basic information contained in the model, 
without the need for manual modifi cations to 
the cloud. 

fi g.83 Detail of classifi cation errors inside the 
window

After a few attempts, it became clear that at the 
third classifi cation level (cloud intensity 20mm) 
it is inconsistent to identify small elements such 
as statues, due to the composition of the small 
radiuses (of the order of 0.05mm). 
This causes an information overload that con-
fuses the code instead of helping it to impro-
ve. It was therefore found that the main pro-
blem lied in the relationship between the scale 

of the classes to be identifi ed, the intensity of 
the cloud and the radiuses for calculating the 
geometric characteristics. Working with a point 
cloud of 20 mm intensity at the base, the dif-
fi culty of identifying features at such diff erent 
scales emerged: the window frame (10-15 cm) 
and the statues lying along the frame (approxi-
mately 1 m).

fi g.84 Result of third level of classifi cation of 
window



                           PRECISION           RECALL                F1-SCORE 

Frame          0.90          0.84         0.87     

Glass          0.87          0.92         0.90    

Accuracy avg    0.89   

Macro avg       0.89         0.88         0.88    

Weighted avg        0.89         0.88         0.88    

4,011,785

90 min

N. POINTS

TIMEOPERATION

1,082,574

360 sec.

293,938

Undefi ned

Points to clasify 

Manual annotation

Train set points

Time processing

Evalu set points 

Manual reassignment

Table 29

Table 30

Table 31

Table 29
Summary of 3D point cloud number of points

Table 30
Summary of time including manual and auto-
matic operation

Table 31
Accuracy of automatic classifi cation
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From the fi gures above, one can notice the re-
sult of the automatic classifi cation by the algori-
thm. Observing in general (fi g. no. left) the seg-
mentation of the points into the various classes, 
it may appear that the code has succeeded in 
identifying the diff erent elements acceptably. 
The main problem with this result (fi g. right) 
is the fact that no matter how small the clas-
sifi cation errors may be, since we are dealing 
with such detailed and small elements, even a 
small error requires a very long cleaning phase 
and reassignment of the points to the correct 
classes. For the level of detail required by the-
se elements, such cleaning would translate into 
an almost total manual re-classifi cation by the 
operator, which would be in stark contrast to 
the objectives of this paper.

The solution adopted in this case was to take a 
step back and return to the second classifi ca-
tion level, reducing the intensity of the cloud to 
50 mm. Consequently, the number of elements 
to be identifi ed also decreased, which became 
the outer frame and the architectural window 
hole, where the frame and glass are joined. 
As a result, the geometric features were recal-
culated on the basis of diff erent radiuses more 
coherent with the intensity of the cloud. We 
then returned to the third level of classifi cation, 
with cloud intensity and radiuses of the initial 
characteristics, limiting the analysis to the ar-
chitectural hole, in which two classes were di-
stinguished: frame and glass. 



fi g.87

fi g.85 fi g.86
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Fro rom the following fi gure (fi g. n), which re-
presents the direct result of the automatic clas-
sifi cation, we can apreciate the good quality of 
the segmentation performed by the algorithm. 

The simplifi cation of the objects derived from 
the reduced resolution of the cloud proved to 
be the most suitable solution to deal with the 
classifi cation of these elements.

fi g.87 Result of automatic classifi cation of splay 
and windows

BACK CALSSIFICATION AT LEVEL 2
WINDOWS
Going back to the 50mm resolution, it was pos-
sible to divide the window into two categories: 
the splay (which belongs to the wall as an archi-
tectural element) and the window itself. 

Thanks to the creation of the study models that 
occurred in the attempt to classify all window 
elements on the third level, it was suffi  cient 
to interpolate the category information with 

a point cloud at a lower resolution to transfer 
this data. However, wanting to segment the 
data into only two categories instead of the 
previous three, the two classes within the win-
dow, i.e. frame and glass, were merged in order 
to isolate this research to only the two classes 
concerned. The decrease in resolution provided 
for a consistent adjustment of the survey radius 
between 0.1 m and 1 m every 10 cm. 

fi g.85 Parts defi ned as training set and evalua-
tion set

fi g.86 Detail of defi ntiion of training set and 
evaluation set in a single window



                           PRECISION           RECALL                F1-SCORE 

Frame          0.96          0.94         0.95     

Glass          0.97          0.98         0.97    

Accuracy avg    0.97   

Macro avg       0.96         0.96         0.96    

Weighted avg        0.97         0.97         0.97    

857,804

15 min

N. POINTS

TIMEOPERATION

203,126

180 sec.

47,033

40 min

Points to clasify 

Manual annotation

Train set points

Time processing

Evalu set points 

Manual reassignment

Table 32

Table 33

Table 34

Table 32
Summary of 3D point cloud number of points

Table 33
Summary of time including manual and auto-
matic operation

Table 34
Accuracy of automatic classifi cation
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CRITICAL 
CONCLUSION

The objective that was intended to be achie-
ved with this work can be considered fully ac-
complished. The possibility of addressing the 
subject of automatic classifi cation on a Gothic 
architecture of this size made it possible to im-
plement research into which factors most in-
fl uence the algorithms for classifi cation. The use 
of the MLMR approach was a success conside-
ring the level of detail that could be identifi ed 
with automatic segmentation. Thanks to the 
tests performed during this work, the close re-
lationship between the resolution of the point 
cloud and the measurement of the radiuses 
of the perceptual fi elds became evident. The-
se two factors must necessarily be established 
in a coherent manner with the size and sha-
pe of the elements to be classifi ed. Thanks to 
the problems and their elaborated solutions, it 
is possible to establish a hierarchy of the three 
main factors that infl uenced the results of auto-
matic classifi cation: the resolution of the data, 
the computation of the features and the re-
alization of the study models. The fi rst is the 
correct resolution to be used for the starting 
data, the second is the radiuses of the percep-
tual fi elds of the point features and, fi nally, the 
third is the realization of more or less complete 
study models. In situations where unacceptable 
results were obtained, the only useful solution 
turned to be to change the starting resolution 
of the datum. This is because setting an unsui-
table resolution also aff ects the computation of 
the features and the subsequent realization of 
the training set and evaluation set due to the 
density of points that is not consistent with the 
shapes of the features to be identifi ed. In the 

case where there are not enough points to lo-
cate the features, it is clear that there is a default 
error in the resolution. In the case where there 
is an excess of points, at fi rst it will be more dif-
fi cult to clearly perceive the division of one ele-
ment from another, complicating the manual 
modelling phase. While, at a second moment 
the code will fi nd itself examining an exagge-
rated amount of points compared to the size 
of the elements it has to distinguish, unneces-
sarily slowing down the processing time and, 
as seen in some cases, without obtaining ac-
ceptable classifi cation results. For this reason, 
it was considered that the modifi cation of fea-
tures and the implementation of study models 
with other portions of the initial data are va-
riables too dependent on the resolution of the 
starting data. In fact, in all the cases addressed 
in the course of this work, the defi nition of a 
resolution consistent with the elements to be 
classifi ed was always decisive in order to obtain 
acceptable results. On the other hand, as far as 
generalization is concerned, it is considered to 
have provided encouraging results in the situa-
tions in which it was implemented. This strategy 
has proved to be an important resource in the 
context of the second-level classifi cation of ar-
chitectural elements such as pillars and vaults. 
It is not excluded that this generalization could 
also be applied for the classifi cation of pillars 
and vaults within other heritage buildings. 
In summary, the goal of experimenting with 
automatic classifi cation on large point clouds 
with very complex shapes can be considered to 
have been achieved. The experiences derived 
from the development of this work fi t into the 
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national and international research landscape, 
contributing to the development and imple-
mentation of new systems for the management 
and enrichment of point clouds of historical he-
ritage.
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