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Abstract

This thesis revolves around the problem of selling and advertising products
on the Web and exploits techniques from the fields of algorithmic game
theory, mechanism design, and online learning. We study scenarios in
which strategic agents, such as sellers, advertisers, and buyers, interact on
Web platforms, and we analyze optimization problems faced by each party
involved in the interaction. For instance, online marketplaces matching
sellers/advertisers to buyers need to design mechanisms that incentivise
agents to participate, while providing guarantees on their revenue. Taking the
perspective of the online platform, we employ techniques and performance
criteria from the mechanism design literature in order to design novel auction
mechanisms and characterize their performance, with the goal of providing
solutions for new e-commerce scenarios which emerged through recent
advancements of digital advertising platforms. Moreover, we study how to
address problems faced by agents interacting on the platforms, such as sellers
and advertisers. In particular, when an agent has to sell and/or advertise their
products on the Web, they have to repeatedly interact with the mechanism
operated by the platform. The structure of such interaction is distributed
over time: agents are required to perform sequential actions, after which
they observe a reward produced by the environment that also depends on
their decisions. In this setting, online learning techniques are well suited to
design no-regret algorithms which allow agents to learn effective strategies
while addressing the exploration/exploitation dilemma. Inspired by novel
real-world scenarios, we study non-standard learning processes in which, for
instance, the feedback returned by the environment is affected by delays, or
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agents’ actions are subject to time-varying constraints. These scenarios are
common in practice when, for instance, agents are financially constrained
by their budget or want to reach a target profitability in the form of a return-
on-investment (ROI) constraint.

To conclude, this thesis extends classical models for online markets
incorporating novel e-commerce frameworks that have emerged as a result
of the continuous expansion of Web platforms. In doing so, it bridges the
gap between theory and the latest real-world applications.
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CHAPTER1
Introduction

In the last decade, artificial intelligence has been one of the main drivers
of growth for digital markets. For instance, the vast majority of companies
employ digital tools to advertise their products or services, and the annual
spent in digital advertising reached about 150 billion USD worldwide in
2020 (IAB, 2021). Furthermore, many economic reports suggest that arti-
ficial intelligence will contribute to an increase of market value by almost
100% over the next decade (Chui et al., 2018). Indeed, the use of AI tools
in digital advertising has become increasingly common, opening up new
opportunities that were previously unavailable. Some of the advantages
over traditional advertising channels are the possibility of profiling a user
from behavioral data (Devanur and Kakade, 2009), targeting ads in a precise
way (Kempe and Mahdian, 2008), running auction mechanisms to maximize
specific objective functions associated with the revenue (Mohri and Medina,
2014), and evaluating investment performance in real time. Although it is
impossible to optimize these processes manually because of the vast amount
of data provided by platforms and the numerous parameters that need to be
set, algorithms and AI tools can efficiently perform such optimization.

In this thesis, we study new scenarios originating from recent innovations
introduced by Web advertising and e-commerce platforms. Our particular
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Chapter 1. Introduction

focus is on the development of new economic mechanisms and learning
algorithms that leverage techniques from the fields of algorithmic game
theory, mechanism design, and online learning which can be applied to sell
and advertise products on the Web. The thesis is organized in three parts as
follows.
• In the first part, we take the perspective of a seller who aims at selling

their products or services on the Web. Most of the online economic transac-
tions are carried out by posted-price mechanisms, in which sellers need to
propose a take-it-or-leave-it price to each potential buyer. In this part of the
thesis, we study the problem of setting prices over time in scenarios where a
single item or multiple units of the same item have to be sold. We first ana-
lyze the scenario in which a single unit of a single item has to be sold within
a finite period of time, when the value of the item is discounted over time
according to an arbitrary continuous and non-increasing discount function.
Our main result is a new posted-price mechanism, for which we provide
guarantees in the form of bounds on the competitive ratio, that quantifies the
worst-case difference in revenue between our mechanism and an optimal
one that uses additional information about the user, typically unknown to
the seller. Then, we analyze the scenario in which multiple units of the same
item have to be sold. The solution we propose is a new no-regret algorithm
that can effectively address the problem at hand, and can also be applied
to recommendation problems. Specifically, our algorithm is well-suited to
situations where rewards received from the environment are distributed over
a time horizon, thereby bridging the gap between non-delayed and delayed
scenarios in the existing literature.
• The second part of the thesis is centered around the problem of de-

vising mechanisms for novel advertising scenarios. Our initial focus is on
investigating a new type of ad auction that displays ads for similar products
together with their respective prices. This can significantly influence user
behavior and presents an opportunity for jointly optimizing ad allocation and
pricing. To address this challenge, we propose several auction mechanisms
differing in the payment rule and the level of information requested to the
participants. Subsequently, we provide a study of their efficiency. Another
new problem that we study is advertising in the metaverse. Specifically, we
initiate the study of a user model and algorithms to allocate ads optimally in
the metaverse. Our model extends those currently adopted for search and
mobile advertising. In particular, we assume that, during their experience,
users will traverse several scenes during which they could be targeted with
multiple ads, whose performance may depend on the specific scene in which
they are displayed. Furthermore, the ads may be subject to externalities
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due to their sequential display. In this setting, we study the problem of
computing an optimal allocation of ads. In particular, we assess the com-
putational complexity of finding an optimal ad allocation for several model
flavors and provide approximation algorithms with tight theoretical guaran-
tees. Finally, we study advertising from the perspective of media agencies,
whose recent proliferation has been driven by the increasing complexity
of digital advertising. We extensively explore the effects of coordinating
the bidding strategies of a group of advertisers who are participating in the
same ad auction. Such coordination can lead to significant changes in the
strategic interactions underlying the auction and may result in various forms
of collusion, potentially increasing the revenue for the advertisers involved.
We exploit the specific structure and features of the framework to provide
approximate solutions for maximizing the revenue of the agency and the
social welfare of the coordinated advertisers.
• The third part of this thesis studies the problem faced by a constrained

agent that has to learn effective bidding strategies. For example, advertisers
need to optimize their revenue while adhering to limitations such as budget
constraints or a minimum profitability threshold expressed as a ROI con-
straint. Our main contributions are new no-regret algorithms that can tackle
general problems in which a decision maker has to take sequential actions
subject to uncertain and long-term time-varying constraints. In particular,
we propose a best-of-both-worlds algorithm, with no-regret guarantees both
in the case in which rewards and constraints are selected according to an
unknown stochastic model, and in the case in which they are selected at
each round by an adversary. Our framework can be instantiated to handle
full-feedback as well as bandit-feedback settings. Finally, we show how
it can be applied to constrained bidding in repeated first-price and second-
price auctions, since they are de facto standard in large Internet advertising
platforms.

In the following, we introduce the three parts composing this thesis and
summarize the original contributions presented in each of them.

1.1 Algorithmic Pricing with Temporal Dependency

Selling on E-commerce Platforms via Posted Prices. In the first part of the the-
sis, we study problems revolving around buying and selling products on
e-commerce platforms. In this setting, platforms act as intermediaries
connecting sellers to buyers, and operate mechanisms that regulates the
seller-buyer interaction. Therefore, platforms have to deal with the problem
of finding the best way to orchestrate such interaction. Should a seller post a
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Chapter 1. Introduction

fixed price, run an auction, or negotiate the deal with buyers? Although auc-
tions were very popular in the early days of Internet commerce, today online
sellers mostly adopt posted prices. Posted-price mechanisms try to sell an
item by proposing a take-it-or-leave-it price to each arriving user, who then
decides whether to buy the item or not (Chawla et al., 2010). If an agent
opts for purchasing the item, then the mechanism terminates; otherwise,
the agent leaves without any further possibility of buying the item, and the
mechanism goes on by proposing prices to upcoming other agents. Over the
last years, growing attention has been devoted to the analysis of posted-price
mechanisms, both in the economic literature (Seifert, 2006) and in computer
science (Babaioff et al., 2015, 2017; Adamczyk et al., 2017; Correa et al.,
2017), within artificial intelligence and machine learning (Kleinberg and
Leighton, 2003; Shah et al., 2019). Several noteworthy works recent eco-
nomic literature investigates posted-price mechanisms in the presence of
strategic buyers (Chen and Farias, 2018). For instance, Lobel (2020) studies
dynamic pricing in the presence of patient consumers, who wait a certain
period of time for a lower price and will purchase the item as soon as the
price is equal to or below their valuation. Moreover, Golrezaei et al. (2020)
provide an optimal mechanism for pricing goods in a setting where strategic
buyers differ in both their initial valuations and the rates at which their initial
valuation decreases with a delay in making the purchase. The motivation
behind this focus on posted-price mechanisms is driven by the overwhelming
number of online economic transactions carried out through posted-price
mechanisms. This happens, for example, in online travel agencies (e.g.,
Expedia), accommodation websites (e.g., Booking.com), and e-commerce
platforms (e.g., Amazon, eBay). As studied by Einav et al. (2018), an in-
creasing number of eBay users prefer buying goods via posted prices rather
than participating in auctions.

If a seller faces buyers with private information about their willingness to
pay and there are no further transaction costs, there exist auction mechanisms
which are proved to be optimal (see (Harris and Townsend, 1981; Myerson,
1981; Riley and Samuelson, 1981)). An auction aggregates information and
helps the seller identify the appropriate buyer and price. However, posted-
price mechanisms provide many advantages over auction-style mechanisms.
From the designer’s perspective, posting prices requires a much lower effort
than running an auction, since it avoids the burden of first eliciting infor-
mation (the bids) from the agents, and then computing and collecting the
payments. At the same time, posted-price mechanisms retain most of the
desirable properties of classical auctions, such as truthfulness. Indeed, even
though the agents are not required to report their true valuations for the item,
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1.1. Algorithmic Pricing with Temporal Dependency

they are always better off by deciding whether to buy the item or not on the
basis of their true valuations, without acting strategically (Babaioff et al.,
2017). Finally, if buyers appear gradually over time, are impatient, or are
few in number, price posting may be preferable. From the agents’ perspec-
tive, participating in a posted-price mechanism may also be preferable over
competing in an auction. For instance, agents may prefer revealing minimal
information about their true preferences if they plan to participate in similar
markets in the future. Moreover, in some real-world settings, requiring
the agents to figure out their true valuations for the item might need some
additional efforts on their behalf, while answering a take-it-or-leave-it offer
is usually much easier.

In Part I, we focus on two aspects of posted-price mechanisms, char-
acterized by strong temporal components that must be considered in the
analysis. In Chapter 3, we focus on selling a perishable item for which
buyers have valuations decreasing over time. One of the main challenges of
analysing the temporal structure of the problem is balancing the classical
trade-off between setting high prices so as to achieve high revenue, and
setting low prices so as to increase the probability of selling the item, while
taking into account that the value of the item vanishes within a finite time
horizon. Then, in Chapter 4, we study the setting in which the reward
derived by selling products is partitioned over multiple time instant after
the sale and its temporal structure is unknown to the seller. The proposed
price may have delayed effects on the reward, and the seller has to learn
which is the revenue-maximizing price. One of the fundamental challenge
of such a temporal structure is whether it is possible for the seller to exploit
incomplete reward samples to speed up the learning procedure.

We remark that the techniques employed to tackle the two problems
presented in Part I are substantially different. This is due to the different
objectives of the two chapters, which are selling a single unit of a single item,
and selling multiple units of a single item, respectively. Selling many units
of the same item in a sequential way allows the seller to employ learning
techniques in order to find a good pricing strategy. The guarantees provided
by such techniques ensure that the seller does not loose too much during
the learning procedure. On the other hand, no learning is possible when
selling a single unit of product. In the latter case, we provide a posted price
mechanism and we evaluate it by performing a competitive analysis.

Selling a Sigle Unit of a Single Item. In Chapter 3, we study posted-price mech-
anisms for selling a single unit of a single item within a finite period of time,
when the value of the item is discounted over time according to an arbitrary
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continuous and non-increasing discount function. Discounting is common
in many real-world applications and widely studied for a number of eco-
nomic situations, such, e.g., bargaining (Rubinstein, 1982; Gatti et al., 2008)
and auctions (Mao et al., 2018). We tackle settings in which agents arrive
sequentially—a common assumptions in online mechanism design (Lavi and
Nisan, 2004; Parkes, 2007)—and the number of agents is unknown a priori.
In particular, following a mainstream approach in economics (see, e.g., (Ma-
son and Välimäki, 2011; Rosenthal, 2011)), we assume that agents’ arrivals
are governed by a Poisson process. Remarkably, posted pricing with Poisson
arrivals has been previously investigated by Wang (1993) and Rong et al.
(2018) for undiscounted settings, though without providing any theoretical
result.

We assume that each agent arriving at the mechanism has a different
initial (i.e., undiscounted) valuation for the item, which is independently
drawn according to a common probability distribution. This leads to a
fundamental trade-off between setting high prices so as to achieve high
revenue and, on the other side, progressively lowering posted prices so
as to increase the probability of selling the item. Our assumption is that
the mechanism is only aware of the range of valuations, while it does
not know anything about the shape of the distribution. This is reasonable
since, differently from the actual distribution, the range of valuations can be
estimated from previous data or market surveys.

Lavi and Nisan (2004) and Babaioff et al. (2017) provide the main state-
of-the-art results on posted-price mechanisms for single-item single-unit
scenarios. However, their models do not fit to our setting, since the agents’
valuations are not discounted over time and the number of agents is known a
priori. As a result, these models do not embed an explicit time representation
and the proposed pricing strategies are only driven by the number of agents
arrived.

Our model encompasses many real-world scenarios, such as, e.g., long-
term rental of rooms and apartments. Think of a website renting rooms
to students for fixed periods of one year. The value of a room naturally
decreases over time, reflecting the fact that a future tenant will benefit
from the room for a period shorter than one year. Moreover, the potential
customers arrive at the renting website according to a stochastic process,
which can be reasonably modeled by a Poisson process whose rate parameter
can be easily estimated by looking at traffic logs of the website.

Original Contributions - Selling a Single Unit of a Single Item. We adopt the per-
spective of competitive analysis (Borodin and El-Yaniv, 2005) and evaluate
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1.1. Algorithmic Pricing with Temporal Dependency

our mechanisms in terms of competitive ratio, measuring the worst-case
ratio between their revenue and that of an optimal mechanism that knows
the distribution of valuations. As it is customary in the literature (see, e.g.,
(Babaioff et al., 2017; Kleinberg and Leighton, 2003)), we first focus on
the identical valuation setting in which all the agents share the same initial
valuation for the item. Then, we extend our results to the random valuation
setting where the agents’ valuations are drawn i.i.d. from the same distribu-
tion satisfying the monotone hazard rate condition (when the distributions
of valuations are unrestricted, Lavi and Nisan (2004) and Babaioff et al.
(2017) show that then there is no algorithm with good performances). In
the identical valuation setting, we design a posted-price mechanismMC

and prove that it is optimal, i.e., it provides the best possible competitive
ratio. In order to derive the ratio, we first identify two crucial properties that
characterize optimal mechanisms: their undiscounted price is non-increasing
in time and they always guarantee the same fraction of the expected revenue
of an optimal mechanism that knows the agents’ valuation, independently
of its actual value. For the specific case of linear discount, we discuss how
the competitive ratio depends on the parameters. In the random valuation
setting, we first show that mechanismMC still provides good performances
by proving that its competitive ratio is lower bounded by a constant, which
does not depend on the distribution of agents’ valuations. Then, motivated
by real-world scenarios in which the seller is constrained not to change
the posted prices too often, we propose a new mechanism MPC defined
by a piecewise constant pricing strategy and prove that its performances
in terms of competitive ratio are comparable with those obtained byMC.
In conclusion, we empirically compareMC with a natural adaption of the
mechanism proposed by Babaioff et al. (2017) to our setting, showing that
the latter is inefficient even without time discounting. We also empirically
evaluate the performances ofMC andMPC as the frequency with which
prices are allowed to change decreases, showing that, when this is not too
low, then the performances ofMPC andMC are comparable.

Selling multiple units of a single item. When multiple units of the same item are
available, learning approaches based on bandit techniques are customarily
adopted. In particular, Kleinberg and Leighton (2003) study an unlimited-
supply setting where the number of buyers is fixed, and derive upper bounds
on the regret. Several recent works extend the results in Kleinberg and
Leighton (2003). Shah et al. (2019) study a contextual setting, providing a
semi-parametric model that learns from the observation of a binary outcome
which stands for acceptance or rejection of the offered price. Mohri and
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Munoz (2014) study revenue-maximizing learning algorithms for posted
pricing with strategic buyers. In Chapter 4, we also provide bandit techniques
to tackle the problem of sequentially selling multiple units of the same item
when the reward has a specific temporal structure.

Sequential decision-making occurs in many real-world scenarios such
as clinical trials, recommender systems, Web advertising, and e-commerce.
Inspired by these applications, many different flavours of the multi-armed
bandit (MAB) setting have been investigated. A crucial role is played by
the time the reward is observed. In many cases, the reward is subject to
a delay, and such a delay, if not sufficiently short, can prevent the design
of algorithms that are effective in practice. Online learning with delayed
feedback has received considerable attention in recent years, and several
results are available in the literature, e.g., see the seminal work by Joulani
et al. (2013). A major distinction in MABs with delayed feedback concerns
the nature of the rewards, which may be stochastic (Mandel et al., 2015;
Cella and Cesa-Bianchi, 2020) or adversarial (Bistritz et al., 2019; Thune
et al., 2019; van der Hoeven and Cesa-Bianchi, 2021).

Our work focuses on a special class of bandit problems with stochas-
tic and delayed rewards, in which we can get partial feedback over time.
More precisely, we study a novel setting, namely MAB with Temporally-
Partitioned Rewards (TP-MAB), in which the reward associated with an
action, a.k.a. arm, chosen at a given round is collected during a finite num-
ber of rounds following the choice, according to an unknown probability
distribution. In classical delayed-feedback bandits (see, e.g., (Joulani et al.,
2013)), the reward is concentrated in a single round that is (stochastically)
delayed w.r.t. the round in which the learner pulled the corresponding arm.
TP-MABs naturally extend this setting by allowing the reward to be parti-
tioned into multiple elements that are collected with different delays. We
call arm’s per-round reward the partial reward observed by the learner in a
single round, which is assumed to be the realization of a random variable
with an unknown probability distribution. We call arm’s cumulative reward
the random variable given by the sum of all the per-round rewards obtained
by pulling an arm. While the per-round reward can be observed round by
round, the cumulative reward is revealed only at the end. Notice that, in a
single round, the learner observes a per-round reward for each previously
pulled arm whose cumulative reward is not terminated yet. Our goal is to
find a policy to maximize the cumulative reward, exploiting the per-round
rewards as intermediate signals on the arm performance.

The TP-MAB framework is general and captures many of real-world
scenarios, among which, the problem of pricing multiple units of the same
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product presenting the temporally-partitioned reward structure. An example
is the problem of pricing subscription-based music, podcast or video stream-
ing services. In this setting, each arm corresponds to the monthly price and
the reward is proportional to the number of times the user pays that price
for benefiting from the service. The goal is to find the price maximizing the
reward over a time horizon. Suppose that a platform providing such service
has the possibility of proposing a standand or a discounted monthly price to
new users for a fixed time period. The standard price may be a good short-
term choice, however, it may discourage the user to renew the subscription
several times. The opposite reasoning holds for the discounted price. At
each round, the platform propose a price to a new user, whose appreciation
of the service is revealed through multiple steps. In particular, every partial
observation and the related reward correspond to the payment of a monthly
subscription. If the user, does not purchase the subscription for a month,
the corresponding reward is non-positive. The cumulative reward provided
by setting a monthly price corresponds to the sum of monthy subscription
paid over the prefixed time horizon. In the classical delayed-feedback bandit
setting, the feedback on the proposed price is obtained only at the end of
the time horizon. However, in this setting, the platform is able to monitor
each month if the subscription is paid. This provides us useful hints on
the performance of the chosen arm before the end of the time horizon. In
Chapter 4 we provide a further discussion on other real-world applications
of the TP-MAB framework.

Original Contributions - Selling multiple units of a single item. Initially, we focus
on the lower bound of TP-MABs, showing that the TP-MAB setting has the
same regret lower bound of the standard delayed MAB setting when there
is no further assumption about how the rewards are partitioned over time.
Since in many practical applications of interest the cumulative reward of
each arm does not concentrate excessively in a short sub-range of rounds,
we introduce a property describing how the maximum per-round reward
distributes. We call this property α-smoothness where α ≥ 1. In particular,
the minimum value of α = 1 corresponds to the case in which there is no
structure and, therefore, the maximum per-round reward can be the entire
cumulative reward. On the other hand, the maximum value of α is equal to
the maximum delay and corresponds to the case in which the cumulative
reward distributes evenly over time. Thus, the maximum per-round reward
decreases as the value of α increases. We show that the lower bound of
this setting is of a factor 1/α smaller than that when α-smoothness does
not hold. Then, we design two novel algorithms, namely TP-UCB-FR and
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TP-UCB-EW, suited for the TP-MAB setting, which exploit partial feedback
and the α-smoothness property. We show that the regret of TP-UCB-FR
is O(lnT/α), where T is the time horizon of the learning process, and
the regret of TP-UCB-EW is O(lnT ). A comprehensive analysis the regret
bounds of our and state-of-the-art algorithms in various settings can be found
in Tables 4.1, 4.2, 4.3. Finally, we experimentally show that our algorithms
outperform the state of the art over synthetically generated and a real-world
playlist recommendation scenario.

1.2 Algorithmic Advertising: Price Displaying, Collusion and
the Metaverse

In the second part of the thesis, we study recently-emerged advertising
settings originated through the advancements of digital advertising platforms.
In particular, AI will allow the optimization of more and more intricate
economic settings, in which multiple different activities need to be jointly
automated. This is the case of, e.g., Google Hotel Ads and Tripadvisor, where
auctions are used to display ads of similar products or services together with
their prices. Consider, for instance, users who search for the availability of
an hotel room in a given date. The Web page of results shows a ranking of
banners advertising similar hotel rooms that match the search criteria. Each
banner displays the name of the advertiser providing the online booking
service, together with the per-night selling price of the room. Such settings
are similar to standard ad auctions, since the ads are ranked depending on
the advertisers’ bids. On the other hand, they also fundamentally differ
from standard ad auctions, as the ad allocation must also take prices into
account, and these are displayed inside the banners so as to provide a direct
comparison among them. This dramatically affects users’ behavior, as
well as the efficiency and the properties of the mechanism. In Chapter 5,
we investigate how the additional degree of freedom introduced by the
possibility of choosing prices influences the problem of finding an optimal
ad allocation and the revenue of the mechanisms.

Recent years have witnessed another noteworthy phenomenon, which is
the proliferation of media agencies. Media agencies claim to play the role of
intermediaries between advertisers and platforms selling ad slots. This trend
has been driven by the increasing complexity of digital advertising—due
to, e.g., a large amount of available data and of parameters to be set on
advertising platforms—and the rising competition among a growing number
of advertisers. When a group of competing advertisers is managed by a
common agency, it frequently happens that the agency has to place bids on
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behalf of different advertisers participating in the same ad auction. This
dramatically changes the strategic interaction underlying ad auctions, since
agencies can coordinate advertisers’ bidding strategies by implementing
many forms of collusion—e.g., bid rigging—, with the goal of increasing
advertisers’ performance. In particular, simple examples show that colluding
in ad auctions can reward the colluders with a utility that is arbitrarily larger
than what they would get without doing that. Moreover, a recent empirical
study on real-world data by one of the major US agencies (Aegis-Dentsu-
Merkle) shows that collusion is pervasive and leads to a significant reduction
in the average cost-per-click (Decarolis and Rovigatti, 2017).

Finally, we study advertising problems on metaverse platforms, which
will revolutionize advertising in the next decade (Taylor, 2022). In the
metaverse, users are offered a real-time immersive experience which enables
several new marketing opportunities unseen before. One of the central
questions today concerns which ads to display to the users, and at which
time of their experience.

In what follows, we present our contribution to the study of these novel
advertising settings.

Online Advertising with Price Displaying - Original Contributions. The price-
displaying feature introduces externalities among the ads, since the proba-
bility that a user clicks on an ad depends on the prices displayed with both
the ad being clicked and the other ads in the allocation. Several forms of
externalities are investigated in the literature on ad auctions. However, to the
best of our knowledge, no previous work takes into account price displaying
in ad auctions. For instance, Kempe and Mahdian (2008) and Aggarwal
et al. (2008) introduce a basic user model that is currently adopted by most
of the mechanisms. In this model, a Markovian user observes the slots in
a top-down fashion, moving down slot by slot with a given continuation
probability and stopping on a slot to observe the corresponding ad with the
remaining probability. Kempe and Mahdian (2008) propose models where
the probability with which a user moves from a slot to the next one depends
on the ad actually displayed in the former. In this case, it is not known
whether the ad allocation problem admits a polynomial-time algorithm;
however, Farina and Gatti (2016, 2017) provide several algorithms showing
that in special cases a constant approximation can be achieved. Further
externalities models are explored by Fotakis et al. (2011) and Gatti et al.
(2018). However, when these models are adopted, the ad allocation problem
is NP-hard and, in some cases, even inapproximable.

In our model, we assume that the probability with which a user clicks
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on an ad depends on the price displayed with the ad and on the lowest
among all displayed prices. In particular, we model the click probability
as a monotonically decreasing function of the ad price, assuming that the
demand curve is monotonically decreasing in the price and that it is unlikely
that a user clicks on an ad with a price larger than their reserve value. We
also assume that the click probability is monotonically decreasing in the
difference between the ad price and the lowest displayed price, as the user’s
interest in any feature different from price (e.g., brand and loyalty) decreases
as such difference increases.

In our setting, the private information of each advertiser (i.e., their type) is
a pair composed by the probability with which a user visiting the advertiser’s
Web page produces a conversion (e.g., a purchase) and the advertiser’s cost
for a unit of product or service. On the other hand, the prices constitute an
additional degree of freedom that can be controlled by either the advertisers
or the mechanism.

As a first step, we present a direct-revelation mechanism that maximizes
the social welfare by jointly optimizing over the ad allocations and the
prices displayed with the ads. Differently from what happens in most of the
externalities models studied in the literature, such optimization problem can
be solved in polynomial time for a given discretization of price values. We
also study the properties of the direct-revelation mechanism when VCG pay-
ments are used, showing that incentive compatibility, individual rationality
and weak budget-balance hold in our setting.

In real-world scenarios, it is unlikely that the advertisers let the mecha-
nism select prices on their behalf, as required by the direct-revelation mech-
anism. In the (indirect-revelation) mechanisms that are currently adopted in
real-world applications, the optimization over ad allocations and that over
prices are decoupled. In particular, each advertiser finds their optimal price
and bid, while the mechanism optimizes over ad allocations once prices and
bids are given. As for the direct-revelation mechanism, the best ad allocation
can be found in polynomial time given prices and bids. Indirect-revelation
mechanisms allow the advertisers not to reveal private (and potentially
sensitive) information, however, they can lead to inefficient equilibria.

We investigate the equilibrium inefficiency of indirect-revelation mecha-
nisms with GSP and VCG payments, in terms of Price of Anarchy (PoA) and
Price of Stability (PoS) in complete information settings. In the literature,
PoA and PoS are commonly-adopted efficiency metrics for standard ad
auctions, in which the price variable is not taken into account. For instance,
Paes Leme and Tardos (2010), Caragiannis et al. (2011), Lucier and Leme
(2011), and Caragiannis et al. (2015) show that the PoA for the social wel-
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fare of the GSP is upper bounded by 1.3 with complete information and by 3
with incomplete information, while Farina and Gatti (2017) and Giotis and
Karlin (2008) study the inefficiency with specific externalities. In our setting,
the presence of externalities precludes the adoption of the tools provided
by Roughgarden et al. (2017) and Hartline et al. (2014) to bound the ineffi-
ciency of equilibria for the social welfare and the revenue, respectively, thus
pushing us to develop ad hoc approaches. In particular, we show that, in our
setting, the inefficiency of the indirect-revelation mechanisms with VCG and
GSP payments is much higher than that of the classical mechanisms without
prices, even when excluding overbidding, since the PoS for the revenue may
be unbounded even with two slots and the PoA for the social welfare may
be as large as the number of slots. Furthermore, with VCG payments, the
PoS for the social welfare is 1, while, with GSP payments, it is at least 2,
suggesting that indirect-revelation mechanisms with GSP payments perform
worse than those with VCG ones.

A crucial question is whether inefficiency can be reduced when letting
the advertisers choose their prices. We show that, under some assump-
tions, simple modifications to the indirect-revelation mechanism with VCG
payments—requiring each advertiser to report an additional price—achieve
a PoS of 1 for the revenue.

Media Agencies Coordinating Bidders - Original Contributions. We study the
computational problem faced by a media agency that has to coordinate the
bidding strategies of a group of colluders, under GSP and VCG mechanisms.
We assume that the media agency knows the private valuations of the col-
luders (i.e., how much they value a click on their ad), and that it decides
colluders’ bids on their behalf. Moreover, the media agency is in charge
of paying the auction mechanism for a click on an allocated ad, and at the
same time it requires monetary transfers to and from the colluders. These
are necessary to enforce some individual rationality constraints ensuring
that the colluders do not leave the agency and participate in the ad auction
individually. In this chapter, we study two settings that differ for the kind of
monetary transfers that they allow for: the arbitrary transfers setting, where
any kind of monetary transfer to and from the advertisers is allowed, and the
more realistic limited liability setting, in which no advertiser can be paid by
the media agency. Finally, we assume that the bids of the advertisers external
to the media agency are drawn according to some probability distribution.
As a first result, we introduce an abstract bid optimization problem, called
weighted utility problem (WUP), which works for any finite set of possible
bid values and is useful in proving our main results in the rest of the chapter.
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In order to solve such a problem, we first show that the utilities of bidding
strategies are related to the length of paths in a directed acyclic weighted
graph, whose structure and weights depend on the mechanism under study
(either GSP or VCG mechanism). This allows us to solve WUP instances in
polynomial time by finding a shortest path of the graph. Next, we switch the
attention to the original media agency problem, starting from the arbitrary
transfers setting. A major challenge is dealing with a potentially continuous
set of possible bids. Notably, we show that it is possible to reduce the atten-
tion to a finite set of bidding strategies, only incurring in a small additive loss
in the value of the obtained solution and relaxing the incentive constraints by
a small additive amount. The set is built by recursively splitting the interval
of possible bid values, until one gets sub-intervals such that the probability
that an external bid is in a given sub-interval is sufficiently small. Then,
the resulting sub-intervals are used to define the desired finite set of bids.
In conclusion, we cast the problem as a WUP instance and solve it by our
graph-based algorithm in polynomial time. This gives a bi-criteria additive
FPTAS for the original problem, since the (additive) approximation is in
terms of both objective value and incentive constraints. Finally, we study
the limited liability setting. In this case, we leverage the same finite set
of bidding strategies defined for the arbitrary transfers setting in order to
formulate the problem as a linear program (LP) with exponentially-many
variables and polynomially-many constraints. Since we use only a finite set
of bids, we need to relax the individual rationality constraints by an arbitrary
small amount to guarantee the existence of a feasible solution. We solve such
an LP in polynomial time by applying the ellipsoid algorithm (Grötschel
et al., 1981) to its dual, which features polynomially-many variables and
exponentially-many constraints. This requires solving a suitable separation
problem in polynomial time, which can be done by reducing it to a WUP
instance. As in the arbitrary transfer setting, the resulting algorithm is a
bi-criteria additive FPTAS.

While a longstanding literature investigates the role of mediators in ad
auctions—see, e.g., the seminal works by Vorobeychik and Reeves (2008)
and Ashlagi et al. (2009)—, collusion is currently emerging as one of
the central problems in advertising, as the adoption of AI algorithms can
concretely support an agency to find the best collusive behaviors (OECD,
2017). Motivated by the recent study by Decarolis and Rovigatti (2017),
some works provide theoretical contributions to assess how collusion can
be conducted by an agency. Decarolis et al. (2020) study a setting in which
there is no monetary transfer between the agency and bidders by providing
equilibrium conditions. They show that, in simple settings, GSP is more
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inefficient than VCG, both in terms of efficiency and revenue. Lorenzon
(2018) studies a setting with two slots and three bidders that are all controlled
by an agency in a GSP auction. Furthermore, a monetary transfer is possible.
The author shows collusive stable behaviors in which the redistribution
is uniform over the three bidders. Collusion has also been studied in the
context of sequential games where a team of agents has to coordinate (i.e.,
collude) against an adversary (Farina et al., 2018; Celli and Gatti, 2018;
Basilico et al., 2017).

Advertising in the Metaverse - Original Contributions. To the best of our knowl-
edge, the question of which ads to display and at what point in the user’s
experience is unexplored in the metaverse, whereas several works investigate
it in the case of the Web. In particular, the design of an attention model
describing how the user observes the slots in which ads are displayed is
crucial. Indeed, a user model needs to address the tradeoff between, on one
side, a sufficiently accurate description of the user behavior and, on the other
side, the possibility to design allocation algorithms running in polynomial
time to scale up to concrete applications. The seminal model, called cascade
and proposed by Kempe and Mahdian (2008), assumes that users observe
the slots sequentially. The authors also propose some algorithms for special
cases, while Farina and Gatti (2017) provide algorithms for the general
case. Fotakis et al. (2011) and Gatti et al. (2018) propose detailed models
incorporating negative externalities between ads. These models do not admit
constant approximation algorithms. We also mention that Gatti et al. (2014)
adopt a similar approach in the case of mobile advertising.

We initiate the study of a user model and algorithms to allocate ads
optimally in the metaverse. Our model extends those currently adopted for
search and mobile advertising. In particular, we assume that, during their
experience, users will traverse several scenes (e.g., sports events, concerts,
job meetings, tourist sites, lectures, and conferences) during which they
could be targeted with multiple ads of different formats, whose performance
(usually, referred to as quality) may depend on the specific scene in which
they are displayed (e.g., an ad may attract the user attention differently if
shown in a sports event or a concert). Furthermore, the ads may be subject
to externalities due to their sequential display. More precisely, displaying an
ad in a scene may raise negative forward externalities to other ads shown
in future scenes (e.g., when two ads related to products that are strategic
substitutes are displayed sequentially, as shown by Deng and Pekec (2011)).
However, it is unlikely that a user recalls every ad seen in the past. Thus,
we assume that the users’ behavior is affected only by the ads displayed
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in the last k scenes, where k is a finite number. We also allow an ad to be
displayed multiple times, as it is common in real-world scenarios to induce
awareness effects.

In our model, an allocation of ads specifies which ad to display in each
scene, where the possible scenes a user can traverse are connected according
to a tree structure rooted by the scene in which the user is initially. Let
us notice that, in principle, the optimal allocation may prescribe not to
allocate any ad in some scenes so as to exclude externalities to other ads
allocated in future scenes. Indeed, the externalities due to some ads to
those displayed in the following scenes may reduce the latter’s values so
much that it would be more advantageous not to display them at all. We
also study the problem of computing an optimal allocation of ads. In
particular, we assess the computational complexity of finding an optimal ad
allocation for several model flavors and provide approximation algorithms
with tight theoretical guarantees. Interestingly, allowing the ads to have
different qualities in different scenes makes the problem APX-Complete,
and we provide a polynomial-time algorithm with an approximation factor
of (1 − 1/e). Instead, introducing externalities among the ads makes the
problem Poly-APX-Complete, and we provide a polynomial-time algorithm
with an approximation factor of 1/(k + 1), which is tight and shows that
the problem is in APX when k is fixed. Similar upper and lower complexity
bounds hold when adopting the model in the general case. Interestingly,
we show that our algorithms provide approximations arbitrarily better than
allocation algorithms disregarding basic user features in the metaverse.
Furthermore, our algorithms are greedy with a running time compatible
with real-world applications. We also discuss under which conditions our
approximation algorithms are weakly monotone in the sense of Myerson,
thus leading to truthful auction mechanisms. In particular, we show that,
when the qualities are scene-dependent, our algorithms are not weakly
monotone in the sense of Myerson.

1.3 Learning with Constraints in Digital Advertising

In the third part of this thesis, we study online learning problems concerning
ad auctions with constrained decision makers. In the classical online learn-
ing framework an agent repeatedly interacts with the environment. At each
round the agent selects an action and the environment returns an outcome.
This interaction can be stochastic or adversarial. In the first case, the out-
come is stochastically selected according to a distribution unknown to the
decision maker, while, in the latter, an adversary chooses it. We focus on set-
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tings where actions are subject to a set of time-varying constraints. Agents
are allowed to make decisions that are not feasible, provided that, across
a fixed time horizon, the cumulated violations of the overall sequence of
decisions are bounded with respect to a safety measure. Different notions of
safety may be employed to define a safe process. For instance, in Chapter 8
the decision maker is allowed to violate the constraints only with a small
probability during the learning process, while in Chapter 9 we look for a cu-
mulative constraints violation which has to be sublinear in the time horizon.
At the same time, guarantees on the reward cumulated over the learning
process are required. The problem becomes that of finding a sequence of
decisions which guarantees a reward close to that of the best fixed decision
in hindsight while satisfying the constraints. The main challenge addressed
in Part III is dealing with general (i.e., not necessary packing) time-varying
constraints. There are many real-world scenarios in which providing guaran-
tees with respect to general constraints is crucial. One example is ad auctions
with financially constrained bidders. Bidders repeatedly interact with an
auction mechanism and aim at learning revenue-maximizing bidding strate-
gies while satisfying constraints relating to their financial resources, such as
budget and return on investment (ROI) constraints (Auerbach et al. (2008);
Golrezaei et al. (2021a); Li et al. (2020)). Even if traditional budget-pacing
mechanisms are suited for settings that involve only resource consumption
constraints (e.g., budget), it is shown that in real-world scenarios advertisers
take into account covering constraints (e.g., ROI) (Golrezaei et al., 2021b).
This reflects their willingness to achieve a tradeoff between high volumes
and high profitability. In what follows, we propose two different perspective
through which we provide guarantees during the learning process under
time-varying constraints. First, we address the problem in the specific set-
ting of ad auctions with budget and ROI constraints, in which the uncertainty
of constraints and the reward depends on to the stochasticity of the environ-
ment. Then, we introduce a general framework with long-term time-varying
constraints encompassing both adversarial and stochastic settings.

ROI and Budget Stochastic Constraints - Original Contributions In Web adver-
tising, advertisers’ usually set bids so as to balance the tradeoff between
achieving high volumes, corresponding to maximizing the sales of the prod-
ucts to advertise, and high profitability, corresponding to maximizing ROI.
Companies’ business units need simple ways to address this tradeoff, and,
customarily, they maximize the volumes while constraining ROI to be above
a given threshold. The importance of ROI constraints, in addition to standard
budget constraints, is remarked by several empirical studies. We mention,
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e.g., the data analysis on the auctions performed on Google’s AdX by Gol-
rezaei et al. (2021b), showing that many advertisers take into account ROI
constraints, particularly in hotel booking. However, no platform provides
features which guarantee ROI constraints to be satisfied, and some platforms
(e.g., TripAdvisor and Trivago) do not even allow the setting of daily budget
constraints. Thus, the problem of satisfying these constraints is a challenge
that the advertisers need to address by designing suitable bidding strategies.
In this picture, uncertainty plays a crucial role as the revenue and cost of the
advertising campaigns are unknown beforehand and need to be estimated
online by learning algorithms during the sequential arrival of data. As a
result, the constraints are subject to uncertainty, and wrong estimations
of the parameters can make the ROI and budget constraints be arbitrarily
violated. Such violations represent today the major obstacles to adopting AI
tools in real-world applications as often considered unacceptable risks by the
advertisers. In particular, this issue is crucial in the early stages of the learn-
ing process as adopting algorithms with an uncontrolled exploration when
a small amount of data is available can make the advertising campaigns’
performance oscillate with a large magnitude. Therefore, controlling the
exploration in order to mitigate risks and provide safety guarantees during
the entire learning process is of paramount importance.

As customary in the online advertising literature (see, e.g., (Devanur and
Kakade, 2009)), we make the assumption of stochastic (i.e., non-adversarial)
clicks, and we adopt Gaussian Processes (GPs) to model the problem. In
particular, our model combines an optimization and a learning problem.
Initially, we focus on studying our optimization problem without uncertainty,
showing that no approximation within any strictly positive factor is possible
with ROI and budget constraints unless P = NP, even in simple, realistic
instances. However, when dealing with a discretized space of the bids as it
happens in practice, the problem admits an exact pseudo-polynomial time
algorithm based on dynamic programming. Most importantly, when the
problem is with uncertainty, we show that no online learning algorithm
can violate the ROI and/or budget constraints a sublinear number of times
while guaranteeing a sublinear pseudo-regret. Notably, this result holds in
general bandit settings beyond advertising when the constraints are subject
to uncertainty and the arm space or constraints are not convex. We provide
an algorithm, namely GCB, providing pseudo-regret sublinear in the time
horizon T at the cost of a linear number of violations of the constraints.
We also provide its safe version, namely GCBsafe, guaranteeing w.h.p. a
constant upper bound on the number of constraints’ violations at the cost
of a regret linear in T . Inspired by the two previous algorithms, we design
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a new algorithm, namely GCBsafe(ψ, φ), guaranteeing both the violation
w.h.p. of the constraints for a constant number of times and a pseudo-regret
sublinear both in T and the maximum information gain of the GP when
accepting tolerances ψ and φ in the satisfaction of the ROI and budget
constraints, respectively. We experimentally compare our algorithms in
terms of pseudo-regret/constraint-violation tradeoff in settings generated
from real-world data, showing the importance of adopting safety constraints
in practice and the effectiveness of our algorithms. In particular, using small
tolerances ψ and φ with GCBsafe(ψ, φ) guarantees very smooth dynamics
and a negligible loss in reward.

General Time-varying Constraints - Original Contributions We study online
learning problems where a decision maker takes decisions over T rounds.
At each round t, the decision xt ∈ X is chosen before observing a reward
function ft together with a set of m time-varying constraint functions gt.
The decision maker is allowed to make decisions that are not feasible, pro-
vided that the overall sequence of decisions obeys the long-term constraints∑T

t=1 gt(xt) ≤ 0, up to a small cumulative violation across the T rounds.
The problem becomes that of finding a sequence of decisions xt which
guarantees a reward close to that of the best fixed decision in hindsight while
satisfying long-term constraints. This type of framework was first proposed
by Mannor et al. (2009), and it has numerous applications ranging from
wireless communication (Mannor et al., 2009) and multi-objective online
classification (Bernstein et al., 2010), to safe online learning (Amodei et al.,
2016).

Mannor et al. (2009) show that guaranteeing sublinear regret and sub-
linear cumulative constraints violation is impossible even when ft and gt
are simple linear functions. Therefore, previous works either focus on the
case in which constraints are generated i.i.d. according to some unknown
stochastic model, without providing any guarantees for the adversarial case,
or provide results for adversarially-generated constraints under some strong
assumptions on the structure of the problem or using a weaker baseline (a de-
tailed discussion of related works can be found in Chapter 9. A few examples
in the latter case are Sun et al. (2017); Yi et al. (2020); Chen et al. (2017);
Cao and Liu (2018). In the former setting (i.e., stochastic constraints), Wei
et al. (2020) consider a weaker baseline that is feasible for each constraint gt,
going against the basic idea of long-term constraints. A notable exception is
the work by Yu et al. (2017), who employ the same baseline as ours, and pro-
vide an upper bound of Õ(T 1/2) for both regret and constraints violation (see
Table 9.1). We also mention that there are some works studying the problem
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in which constraints are static (see, e.g., Jenatton et al. (2016); Mahdavi
et al. (2012); Yu and Neely (2020); Yuan and Lamperski (2018)), or focus
on specific types of constraints, such as knapsack constraints Badanidiyuru
et al. (2018); Immorlica et al. (2019). Our framework differs from those
works as we deal with arbitrary and time-varying constraints. Moreover, it
also extends the online convex optimization framework introduced by Zinke-
vich (2003) by allowing for general non-convex loss functions ft, arbitrary
feasibility sets X , and arbitrary time-varying long-term constraints.

Given the negative result by Mannor et al. (2009), a natural question is
what kind of guarantees we can reach in the adversarial setting, when adopt-
ing the standard baseline of the best fixed decision in hindsight satisfying (in
expectation) the long-term constraints. We provide the first positive result
going in this direction, by designing a no-α-regret algorithm that guarantees
a sublinear cumulative constraints violation. Moreover, we make a step
forward in the line of work initiated by Bubeck and Slivkins (2012), by
showing that our algorithm is also the first best-of-both-worlds algorithm for
problems with arbitrary long-term constraints. This allows our algorithm
to guarantee good worst-case performance (adversarial case), while being
able to exploit well-behaved problem instances (stochastic case). The only
assumption which we require is the existence of a decision that is strictly
feasible with respect to the sequence of constraints. We denote by ρ the
“margin” by which this decision is strictly feasible (see Section 9.1 for a
definition). At the same time, we show that even without this assumption,
we can recover sublinear regret and violation with stochastic constraints.

Previous work usually assumes that ρ is a given constant. In that case, our
algorithm matches the guarantees by Yu et al. (2017) when constraints are
generated i.i.d. according to an unknown distribution, and has no-α-regret
with α = ρ/(1 + ρ) in the adversarial case (see Table 9.1). Our algorithm
only requires a lower bound on the real value of the feasibility parameter
ρ. In the stochastic case, the lower bound may even be unknown, and the
algorithm can efficiently estimate it from data. Moreover, we argue that if
ρ is allowed to depend on T and take arbitrarily small values, then there
are certain values (ρ ≤ T−1/4), for which any regret bound depending on
1/ρ would be useless (i.e., not sublinear in T , see Section 9.2). This setting
is usually overlooked by previous work, which assumes ρ to be a given
constant. We show that, in the case of an arbitrary feasibility parameter ρ, in
the stochastic setting our algorithm guarantees an upper bound of Õ(T 3/4)
for regret and cumulative constraints violation.

Our framework employs traditional regret minimizers as black-box com-
ponents. Therefore, by instantiating it with an appropriate choice of regret
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minimizers it can handle full-feedback as well as bandit-feedback settings.
In the former case, after playing xt, the decision maker gets to observe ft
and gt, while in the latter case only the realized values ft(xt) and gt(xt) are
observed. Moreover, employing a suitable regret minimizer for non-convex
losses allows the decision maker to seamlessly handle scenarios with non-
convex reward and constraints (see, e.g., Suggala and Netrapalli (2020)).
Our algorithm is based on a two-stage approach in which primal and dual
players interact through Lagrangian games. In the first (play) phase, the
primal player tries to balance out the maximization of their rewards with
constraints violation. In the second (recovery) phase, the primal player
only makes “safe decisions” to avoid violating constraints too much. It
is possible to prove that, in the case of stochastic rewards and constraints,
the algorithm never enters phase two. This property is particularly relevant
for budget-pacing mechanisms in repeated auctions, since it is related to
how budget is allocated. Our framework can also be instantiated to perform
budget allocation subject to constraints that were previously not tractable by
traditional mechanisms, such as ROI constraints Balseiro and Gur (2019);
Conitzer et al. (2021).

1.4 Structure of the Thesis

In this section, we describe the structure of the thesis. In Chapter 2, we
introduce some fundamental concepts related to game theory, mechanism
design and online learning. In particular, we define games and equilibria, we
introduce general economic mechanisms, we summarize the most popular
auction mechanisms, and describe the ad auction framework. Finally, we
provide some notions on the online learning framework and multi-armed
bandit problems.

Part I of the thesis focuses on pricing problems where the time component
plays a fundamental role. In particular, we study mechanisms and strategies
for selling a single unit or multiple units of an item/service in non-standard
scenarios. Our contributions are organized as follows:

• Chapter 3 characterizes a posted-price mechanism to sell a single unit
of a single item within a finite period of time. Buyers arrive online and
their valuations are drawn from an unknown distribution and discounted
over time.

• Chapter 4 studies a novel bandit setting, namely Multi-Armed Bandit
with Temporally-Partitioned Rewards (TP-MAB), which may be ap-
plied to several real-world scenarios, such as the pricing of products or

21



Chapter 1. Introduction

services providing a revenue distributed over a time span following the
purchase.

The results of Part I were published as Romano et al. (2021) at AAAI-2021,
and Romano et al. (2022a) at IJCAI-2022.

Part II of the thesis focuses on advertising mechanisms and strategies,
studied from the perspective of advertising platforms and advertisers, re-
spectively. We focus on recent settings characterized by specific features
which we exploit to provide solutions well suited for each scenario.

• Chapter 5 studies a novel type of auction in which ads of similar
products or services are displayed together with their prices.

• Chapter 6 studies the computational problem faced by a media agency
that has to coordinate the bids of a group of colluding agents, under
GSP and VCG mechanisms.

• Chapter 7 initiates the study of advertising on the metaverse platform,
providing a user model and algorithms to optimally allocate ads in this
brand new setting.

The results of Part II were published as Castiglioni et al. (2022c) at AAAI-
2022, Romano et al. (2022b) at IJCAI-2022. The results of Chapter 7 are
under review.

Part III of the thesis focuses on the problem of providing guarantees to
constrained agents during learning processes. For instance, this is the case
of financially constrained advertisers repeatedly bidding in ad auctions.

• Chapter 8 provides algorithms for the bid optimization of advertising
campaigns subject to uncertain budget and ROI constraints.

• Chapter 9 studies online learning problems in which a decision maker
has to take a sequence of decisions subject to long-term general con-
straints.

The results of Chapter 8, are under review as Castiglioni et al. (2022d), while
the results of Chapter 9 were published at NeurIPS-2022 as Castiglioni et al.
(2022b).

Finally, Chapter 10 concludes the thesis with some possible directions
for future research.

Table 1.1 summarizes the scope and the techniques of each chapter.
Specifically, the first row of the table groups problems which require tech-
niques from the fields of mechanism design and optimization to be solved,
while the second row is about online learning problems. The first column
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1.4. Structure of the Thesis

PRICING ADVERTISING

MECHANISM Chapter 5 Chapter 5
DESIGN Chapter 3 Chapter 6

Chapter 7
ONLINE Chapter 4 Chapter 8
LEARNING Chapter 9

Table 1.1: Summary of the main problems and techniques of each chapter. Yellow cells are
for problems studied from sellers’ perspective, orange cells are for problems studied
from advertisers’ perspective, and blue cells are for problems addressed from the point
of view of Web platforms.

of the table is related to the problem of finding a pricing strategy while the
second one to problems concerning Web advertising. The yellow cells are
for problems studied from the perspective of a seller proposing their products
on the Web who needs to specify a pricing strategy in order to maximize
their revenue. The blue cells are for problems studied by the point of view of
a Web platform. In particular, Chapter 5 deals with an ad allocation problem
in which ads of similar products report the selling prices. We study a model
in which the platform jointly optimizes prices and allocations, and, then,
the more realistic scenario in which the platform optimizes the allocation,
given some prices fixed by the advertisers. This motives the presence of
Chapter 5 in both columns. Finally, the orange cells are for problems from
the perspective of advertisers, who participate in ad auctions with the goal
of finding bidding strategies that maximize their utility.
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CHAPTER2
Preliminaries

In this chapter, we introduce some concepts and notable results from the
literature that will be useful in the reminder of the dissertation. In particular,
we introduce notions from algorithmic game theory and, specifically, from
the mechanism design literature. These concepts are essential when design-
ing mechanisms involving rational agents, such as, for example, auctions
mechanisms employed by e-commerce or advertising platforms. Moreover,
we introduce the online learning framework, which is a fundamental model
of sequential decision making. This can be applied, for instance, when an
agents aims at finding effective bidding strategies though repeated inter-
actions with an auction mechanism. Section 2.1 introduces the classical
representation of finite games, i.e., normal-form games, and defines the ubiq-
uitous solution concept of Nash Equilibrium. Section 2.2 revolves around
mechanism design and auction theory. In this section we present some of
the most popular auction mechanisms such as fist-price, second-price and
Vickrey-Clarke-Groves (VCG) auctions. In the following, we use the term

“agent” to generally identify an actor participating in a game or mechanism.
Furthermore, some synonyms are used for specific contexts. For instance,

“players” are agents involved in a game, “bidders” or “advertisers” partic-
ipate in auctions, while “users” or “buyers” participate in a posted-price

25



Chapter 2. Preliminaries

Symbol Description

Pricing Mechanisms - Chapter 3
M Pricing mechanism

pM(t) Selling price assigned byM at time t to an item
Vi Buyer i’s private valuation for the item
ξi Discount function
Wi Buyer i’s arrival time
Di Buyer i’s discounted valuation defined as D := Viξi(Wi)

Ad Auctions - Chapters 5 6
N Set of agents defined as N := {1, . . . , n}
M Set of slots defined as M := {1, . . . ,m}
θi Agent i’s type
vi Agent i’s valuation
f Allocation function defined as f : N →M ∪ {⊥}
λj Prominence of slot j
bi Agent i’s bid
πi Agent i’s payment
ui Agent i’s utility

SW Social Welfare of an allocation
Rev Revenue of an allocation

Ad Auctions with Price Displaying - Chapter 5
pi Selling price of agent i’s product
ci Supply cost of agent i’s product
αi Conversion probability of agent i’s product
pmin Minimum displayed price

qi(pi, pmin) Agent i’s quality
MD Direct-revelation mechanism
MI Indirect-revelation mechanism

Metaverse - Chapter 7
T Tree of scenes
s Scene in which a user can be

Πs Reach probability of scene s from the root node
πs,s′ Transition probability from scene s to scene s′

a Ad
γa,a′ externalities of ad a on ad a′

qa,s quality of ad a displayed in scene s

Table 2.1: Summary of the notation used in the thesis for ad auctions and pricing mecha-
nisms.
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Symbol Description

Online learning Frameworks - Chapters 4 8 9
T Time horizon
RT Pseudo-regret at time T

TP-MAB - Chapter 4
A Set of arms
τmax Time span over which the reward is partitioned
wi
t Vector of realized per-round rewards collected from the pull of arm i at round t

W i
t,j Random variable of the per-round reward observed at round j from the pull of arm

i at round t ≤ j
wit,j Realization of random variable Xi

t,j

Rit Random variable of the cumulative reward collected from the pull of arm i at round
t

rit Realization of random variable Rit
µi Expected cumulative reward of arm i
i∗ Optimal arm
α Smoothness parameter

Chapter 8
C Advertising campaign composed of N subcampaigns Cj , for j ∈ {1, . . . , N}
xj,t Bid for subcampaign Cj an time t
x̂j,t Bid for subcampaign Cj an time t suggested by a learning policy
λ ROI threshold
β Daily budget

nj(xj,t) Expected number of clicks given the bid xj,t for subcampaign Cj
cj(xj,t) Expected cost given the bid xj,t for subcampaign Cj
vj Value per click for subcampaign Cj

Chapter 9
X Set of strategies
xt Action taken by the agent at time t
ft Reward function selected by the environment at time t
gt Constraint function selected by the environment at time t
m Number of constraints
Ξ Set of strategy mixtures
ξ Strategy mixture
dg Largest possible value for which there exists a strategy mixture satisfying the

constraints by a margin of at least dg
Lf,g Lagrangian function given reward function fand constraint function g
ρ Feasibility parameter
ρ̂ Lower bound on ρ
V T Cumulative violation at time T

Table 2.2: Summary of the notation used in the thesis for online learning frameworks.
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mechanism. In each of the following chapters, we will specify the context,
nonetheless, in many cases these terms are interchangeable. For example,
an auction with strategical bidders can be seen as a game. Moreover, we
use the term “auctioneer” to denote the agent running an auction. We use

“platform” as a synonym of “auctioneer” when we deal with ad auctions
run by Web platforms, and we use the synonym “seller” in the context
of pricing problems. Finally, we provide Table 2.1 and Table 2.2, which
summarizes the notation used in the thesis. Specifically, Table 2.1 specifies
the notation used in chapters revolving around mechanism design problems
while Table 2.2 specifies the notation used in chapters dealing with online
learning problems. Notice that, in ad auctions we define bidder i’s bid as
bi, while in the online learning framework we denote by xt the action taken
by an agent at time t. In Chapter 8 we study a learning problem in which a
bidder has to select a bid, i.e., take an action, at each time instant. Being in
the online learning framework, we use the consistent notation xt to denote
the action even if, in this specific case, it coincides with a bid.

2.1 Games and Equilibria

Games provide a mathematical representation of the strategic interactions
among rational agents. A game is defined by a set of players, a set of actions
for each player, and a set of utility functions mapping the space of players’
strategies to the space of outcomes.

We introduce the normal-form representation of a game. It provides
a static representation of the game, and perfectly describe, for instance,
simultaneous-move games. Formally, we can define a normal-form game as
follows.

Definition 2.1 (Normal-form game). A normal-form game is a tuple (N,A,U)
such that:

• N := {1, . . . , n} is the set of players;

• A := {A1, . . . , An} is the set of action profiles, where Ai denotes the
set of actions available to player i and |Ai| is the number of actions
available to player i;

• U := {U1, . . . , Un} is the set of utility functions and Ui : A1 × . . . ×
An → R is the utility function of player i.

An action profile a = (ai)i∈N is a tuple, with ai ∈ Ai for every i ∈ N .
We denote with a−i = (a1, . . . , ai−1, ai+1 . . . , an) the actions of all the
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players except for player i. When a player deterministically chooses an
action, they are playing a pure strategy. Otherwise, if a player randomizes
among actions, they are playing a mixed strategy. We can represent player i’s
mixed strategies as xi ∈ ∆Ai := {xi ∈ [0, 1]|Ai| :

∑
j∈Ai xi,j = 1}, where

xi,j denotes the probability that player i plays action j ∈ Ai and ∆Ai denotes
the simplex over the space of actions Ai. We denote with x = (x1, . . . , xn)
a mixed strategy profile that specifies a mixed strategy xi ∈ ∆Ai for each
player i ∈ N . Finally, we define ui(x) :=

∑
a∈A U

a
i

∏
i∈N xi,ai the expected

utility of player i ∈ N , where Ua
i correspond to the utility of player i when

the players play action profile a ∈ A.
In this thesis, we consider many game theoretic situations in which a

player is unsure about the preferences or intentions of others. Incomplete
information introduces additional strategic interactions. Formally, we define
Bayesian games, or incomplete-information games, as follows.

Definition 2.2 (Bayesian Game). A Bayesian game cosists of

• N := {1, . . . , n}, a set of players;

• A := {A1, . . . , An}, the set of action profiles, where Ai denotes the
set of actions available to player i and |Ai| is the number of actions
available to player i;

• Θ := {Θ1, . . . ,Θn}, the set of types, where Θi denotes the set of types
of player i. Moreover, there is a prior distribution Di on Θi. A type
θi ∈ Θi is a private information of player i and Di(θi) is the a priori
probability that player i is of type θi;

• U := {U1, . . . , Un}, the set of utility functions, where Ui : Θi × A1 ×
. . .×An → R is player i’s utility function and Ui(θi, a1, . . . , an) is the
utility achieved by player i when their type is θi and the action profile
of all players is (a1, . . . , an).

2.1.1 Solution Concepts

In what follows, we assume that players are rational and aim at maximizing
their utilities. While in single-agent problems it is clear that the best solution
is to optimize the player’s objective, in games including multiple agents with
different objectives, more complex solution concepts are needed. Various
solution concepts has been defined in the game theory literature and, usually,
they represent an equilibrium, i.e., a stable solution in which the players
have no incentive to modify their strategies or leave the game.
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The Nash Equilibrium (NE), introduced by Nash (1950), is the most
famous and used solution concept. This equilibrium is a strategy profile
such that no player has an incentive to unilaterally deviate from their strategy,
when other players’ strategies remain unchanged. Formally:

Definition 2.3. A mixed strategy profile x = (x1, ..., xn) ∈×i∈N ∆Ai is
a Nash Equilibrium of a normal-form game (N,A,U) if for every player
i ∈ N and strategy x′i ∈ ∆Ai it holds that

ui(x) ≥ ui(x
′
i, x−i)

If players are allowed to play mixed strategies, then any normal-form
game admits at least a Nash Equilibrium.

Theorem 2.1 ((Nash, 1950)). Every Normal-Form game admits at least one
Nash Equilibrium.

Now, we provide the notion of equilibrium for Bayesian games.

Definition 2.4 (Bayesian Nash Equilibrium). A pure strategy of player i
is a function si : Θi → Ai. A profile of strategies s = (s1, . . . , sn) is a
Bayesian-Nash Equilibrium (BNE) if for every player i and every type θi we
have that si(θi) is the best response that i has to s−i when player i’s type is
θi, in expectation over other players’ types. Formally, for all i, θi and, a′i:

ED−i [ui(θi, si(θi), s−i(t−i))] ≥ ED−i [ui(θi, a′i, s−i(t−i))]

where ED−i [·] is the expectation over other players’ types θ−i drawn accord-
ing to distribution D−i.

A mixed strategy of a player i is a function s′i : Θi → ∆Ai . An analogous
definition of BNE holds for mixed strategies. In this case, the expected
utilities are computed with respect to the distribution of types and the
randomicity of the strategies.

2.2 Mechanism Design and Auction Theory

Mechanism Design is a subfield of economics and game theory that studies
the design of economic mechanisms or incentives toward desired objectives.
Mechanism design is broadly applied in areas ranging from economics and
politics to networked-systems. Some examples related to the first areas
are market design, auction theory and social choice theory, while Internet
interdomain routing and sponsored search auctions are related to the latter.
The goal of the designed mechanisms is summarized in a social choice
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function which aggregates the preferences expressed by the participants
toward a single decision point. We start by providing the formulation of a
social choice function. Consider a setN := {1, . . . , n} of agents. Each agent
i ∈ N is described by a private type θi ∈ Θi and the tuple θ := (θ1, . . . , θn)
is called type profile.

Definition 2.5 (Social Choice Function). A social choice function f : Θ1 ×
. . .×Θn → X assigns an outcome x ∈ X to each possible profile of agents’
types.

In what follows, we introduce some definitions and properties of mecha-
nisms. We will often refer to the notions provided in this section, particularly
in Part II of the thesis. First, we provide the definition of economic mecha-
nism.

Definition 2.6 (Economic mechanism). An economic mechanism is a tuple
(A1, . . . , An, X, g) where Ai is agent i’s set of actions, X is the set of
outcomes and g : A1 × ...× An → X is the outcome function.

Each agent i chooses their action ai without knowing other agents’ types,
which, at the end of the interaction, affect the utility of i by determining
other agents’ actions. The behavior of agent i is defined by a strategy
function si : Θi → Ai, that specifies an action ai ∈ Ai, given a type θi ∈ Θi.
Therefore, each agent i chooses action si(θi) and the mechanism determines
an outcome x = g(s1, ..., sn). Now we define a class of mechanisms in
which the actions available to each agent i are given by the set Θi of types
of that agent and the outcome function is a social choice function.

Definition 2.7 (Direct Revelation Mechanism). Given a social choice func-
tion f : Θ1 × ...×Θn → X , a mechanism (Θ1, ...Θn, X, f) is called direct
revelation. A mechanism that is not a direct revelation is called indirect
revelation.

For instance, in the auction setting, an auction mechanism is direct-
revelation if all bidders bid their true valuation, otherwise the auction mech-
anism is indirect revelation.

Since agents are rational, given a mechanism, they select strategic actions
to maximize their utility functions. This behavior induces a Bayesian game.

Definition 2.8. An economic mechanism (A1, . . . , An, X, g) combined to-
gether with each agents i’s possible types Θi, probability distributions Ωi

over types, and agents’ utility functions is a Bayesian game.
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Definition 2.9. A mechanism (A1, . . . , An, X, g) implements a social choice
function f : Θ1 × . . . × Θn → X if there is a pure-strategy equilib-
rium (s∗1, . . . , s

∗
n) of the Bayesian game induced by the mechanism such

that g(s∗1(θ1), . . . , s∗n(θn)) = f(θ1, . . . , θn),∀(θ1, . . . , θn) ∈ Θ1 × . . .×Θn,
where s∗i (θi) denotes the optimal strategy of agent i when their type is θi.

The implementation of a social choice function can be achieved by differ-
ent solution concepts such as dominant-strategy equilibrium, if (s∗1, . . . , s

∗
n)

is a (weak) dominant-strategy equilibrium, or Bayes-Nash equilibrium, if
(s∗1, . . . , s

∗
n) is a Bayes-Nash equilibrium. Now, we define mechanisms that

induce the agents to report their true type.

Definition 2.10. A social choice function f : Θ1 × . . .×Θn → X is said
incentive compatible (or truthful, or strategyproof) if the Bayesian game
induced by the direct revelation mechanism (Θ1, . . . ,Θn, X, f) has a pure
equilibrium s∗ = (s∗1, . . . , s

∗
n) such that s∗i (θi) = θi for every type θi ∈ Θi

and agent i ∈ N .

Definition 2.11. Incentive compatibility can be satisfied according to differ-
ent solution concepts, such as:

• Dominant-strategy incentive compatibility (DSIC), if (s∗1, . . . , s
∗
n), where

s∗i (θi) = θi, for every agent i and type profile θ is a (weak) dominant-
strategy equilibrium

• Bayesian incentive compatibility (BNIC), if (s∗1, . . . , s
∗
n), where s∗i (θi) =

θi, for every agent i and type θi is a Bayes-Nash equilibrium.

The fact that a social choice function f is incentive compatible means
that there is a direct-revelation mechanism that implements f . Since direct-
revelation economic mechanisms constitute a strict subclass of economic
mechanisms, the fact that a social choice function f is not incentive compat-
ible suggests the problem of finding an indirect economic mechanism that
implements f , if such mechanism exists.

Theorem 2.2 (Revelation Principle). Given a social choice function f : Θ1×
. . .×Θn → X , if there is a mechanism (A1, . . . , An, X, g) implementing f
in dominant-strategy , or Bayes-Nash, equilibrium, then f is DSIC, or BNIC,
respectively.

The revelation principle shows that, for dominant-strategy equilibria and
Bayes-Nash equilibria, if a social choice function f is not incentive com-
patible and, therefore, the direct-revelation mechanism does not implement
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it, then there is no indirect economic mechanism implementing it. There-
fore, given a social choice function f , there exists an economic mechanism
implementing it if and only if f is incentive compatible.

Mechanisms Performance Metrics. In the literature, the Price of Anarchy (PoA)
and the Price of Stability (PoS) are commonly-adopted efficiency metrics
for economic mechanisms. In particular, consider a game induced by a
mechanism, and its equilibria. The price of anarchy is the most popular
measure of inefficiency of equilibria and resolves the issue of multiple
equilibria by adopting a worst-case approach. Precisely, the PoA of a game
is defined as the ratio between the worst objective function value of an
equilibrium of the game and that of an optimal outcome. Notice that the
PoA is defined with respect to the choice of an objective function and that
of an equilibrium concept. The PoS is a measure of inefficiency designed to
differentiate between games in which all equilibria are inefficient and those
in which some equilibria are inefficient. Formally, the PoS of a game is the
ratio between the best objective function value of one of its equilibria and
that of an optimal outcome. In a game with a unique equilibria, the PoA and
the PoS are identical. The range of PoA and PoS is [0, 1]. Many works from
the literature define the PoA and the PoS as the inverse of the ratios defined
above. In this case, their range is [1,+∞].

2.2.1 Auctions

The agents interacting in an auction mechanism are the auctioneer and a
set of bidders N := {1, . . . , n}. The set of item sold through the auction
is M := {1, . . . ,m}. In this thesis, we mainly consider single parameter
environments, which are defined as follows. The auctioneer sells a product
and each bidder i has a private valuation vi per unit of product that they get.
The term “private” means that the valuation is unknown to the seller and
to other bidders. Then, there is a feasible set Y and each element of Y is
a tuple y = (yi)i∈N , where yi ∈ Yi denotes the amount of product given to
bidder i, and Yi is bidder i’s feasibility set. For instance, in a single item
auction, yi ∈ [0, 1] if the item is divisible or yi ∈ {0, 1} if it is indivisible.
For all i ∈ N , y is such that

∑n
i=1 yi ≤ 1. Alternatively, if there are k

identical goods and there is a constraint imposing that each bidder gets at
most one of them, the feasible set is such that yi = [0, 1] or yi = {0, 1} for
all i and

∑n
i=1 yi ≤ k. In ad-auction settings where each slot is assigned at

most one bidder, and vice versa, if bidder i is assigned to slot j, then the
component yi equals the click probability on that slot.
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In this environment, each bidder i is characterized by a type θi, that is
their private valuation vi. The tuple collecting all bidders’ valuations is
defined as v = (vi)i∈N , while v−i is the tuple of all bidders’ valuations
except for vi. Moreover, v ∈ V and vi ∈ Vi, where V = V1 × . . .× Vn and
Vi is the set of possible valuation of bidder i. Then, each bidder i privately
communicates a bid bi ∈ Bi to the auctioneer, where Bi is the set of bidder
i’s bids. The bid is an offer reflecting how much they are willing to pay for
the item. This motives the common assumption in standard settings that
bidders do not overbid, i.e., 0 ≤ bi ≤ vi. In the next chapters, we will specify
the scenarios in which bidders can overbid, i.e., bid a value larger than their
valuation. We denote the bid profile by b = (bi)i∈N , while b−i is the tuple of
all bids except for bi. Moreover, b ∈ B, where B = B1 × . . .×Bn.

In the following chapters, we frequently consider the class of sealed-bid
auctions, described by the following steps.

• The auctioneer collects the bids b1, . . . , bn

• Chooses a feasible allocation y(b) ∈ Y as a function of the bids (i.e.,
allocation rule)

• Chooses payments π(b) as a function of the bids (i.e., payment rule)

Intuitively, the auction is defined when the auctioneer fixes the quantity of
items to assign to each bidder and the amount each bidder has to pay for it.

The adopted bidder utility model is called quasilinear utility model and is
defined as follows. Given a bid profile b, an allocation rule y, and a payment
rule π, bidder i has utility of

ui(b) = viyi(b)− πi(b).

When the payment is such that πi(b) ≥ 0, it means that the auctioneer cannot
pay the bidders. In this case, monetary transactions are unidirectional from
bidders to the auctioneer. When the payment is such that πi(b) ≤ biyi(b), it
means that a truthtelling bidder receives nonnegative utility.

We define the social welfare of an auction SW :=
∑

i∈N viyi(b) as the
sum of bidders’ revenues and its revenue Rev :=

∑
i∈N πi(b) as the sum of

bidders’ payments, given the outcome y(b).
Finally, the Price of Anarchy (PoA) and the Price of Stability (PoS) are

commonly-adopted efficiency metrics for auctions mechanisms.
Now we survey some broadly used auction mechanisms.

First-price Auction. Consider a single item that is auctioned for sale among
n bidders. In a first-price auction the allocation rule is such that the winner
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is bidder i ∈ N with the highest bid value bi among all the bidders. The
payment rule is such that the winner pays their own bid value for getting the
item, i.e., πi(b) = maxj bj , and all the other bidders pay zero. Notice that
bidding truthfully in a first-price auction guarantees zero utility. The ideal
amount to underbid depends on the bids of the other bidders.

Proposition 2.1. First-price auction

• can be implemented in polynomial time.

Second-price Auction. Second-price auction is also called Vickrey auction.
Consider a single item that is auctioned for sale among n bidders. In a
second-price auction the allocation rule is such that the winner is bidder
i ∈ N with the highest bid bi among all the bidders. The payment rule is
such that the winner i pays the second highest bid value for getting the item,
i.e., πi(b) = maxj 6=i bj , and all the other bidders pay zero.

In a second-price auction every bidder has a dominant strategy, which is
setting their bid bi equal to their valuation vi. Moreover, every truthtelling
bidder is guaranteed non-negative utility. The following proposition states
the main properties of a second-price auction.

Proposition 2.2. Second-price auction

• is dominant-strategy incentive-compatible (DSIC)

• maximizes social welfare, if bidders bid truthfully

• can be implemented in polynomial time.

Vickrey-Clarke-Groves Mechanism. We denote by K the set of possible allo-
cations and by K−i the set of allocations in which bidder i is not present.
We denote by vi(k) the revenue of bidder i for what they get when the
allocation is k ∈ K. A direct-revelation auction mechanism is a Vickrey-
Clarke-Groves (VCG) mechanism if

y(v) ∈ arg max
k∈K

∑
i∈N

vi(k)

πi(v) := max
k′∈K−i

∑
j∈N\{i}

vj(k
′)−

∑
j∈N\{i}

vj(k), ∀i ∈ N.

Intuitively, bidder i pays an amount equal to the total damage that i
causes to the other bidders, that is the difference between the social welfare
of other bidders with and without i’s participation. Alternatively, we can
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say that the payments are such that each bidder i internalize the externalities
caused to the others by i’s presence in the mechanism.

Proposition 2.3. The Vickrey-Clarke-Groves mechanism

• is dominant-strategy incentive-compatible (DSIC)

• maximizes social welfare, if bidders bid truthfully

Proposition 2.3 states some desirable properties of VCG mechanisms.
While VCG can be infeasible to implement in practice, it is widely used as a
benchmark for other practical approches.

2.2.2 Ad Auctions

We denote by N := {1, . . . , n} the set of bidders. The advertisers compete
for displaying their ads on a set M := {1, ...,m} of slots. Each bidder
i ∈ N has a type, that is a private valuation vi for an advertising slot,
which reflects how much they value a click on their ad. Furthermore, they
are characterized by a parameter βi, which is the probability that a user
clicks on the specific ad of bidder i, and the conversion probability αi,
which is the probability that a user, after clicking the ad, buys the product.
Parameter βi reflects users’ interest in bidder i’s ad content, while αi can
be interpreted as a measure of their intention to effectively purchase the
item. Then, each slot j ∈ M is associated with a prominence parameter
λj ∈ [0, 1], encoding the probability with which the slot is clicked by a
user. The prominence reflects the visibility of a specific solt, which depends
on features such as its dimension and positioning on the Web page. In the
literature, the click-through rate (CTR) is the ratio between the number of
clicks on a specific ad and the number of times that the ad has been showed
on a Web page. We define with CTRi,j := λjβi the click-through rate of
bidder i’s ad in slot j. Moreover, by denoting with Gi bidder i’s gain per
item sold, we define as v1

i := αiGi their expected valuation, given that a user
already clicked on the ad. Sometimes, expliciting parameter βi may cause
an overload of notation. As is customary in the literature, the parameter can
be easily omitted by using the notation v2

i := βiv
1
i to express the expected

valuation of bidder i w.r.t. the clicks and purchases, once the user observed
the corresponding slot. Finally, we provide another compact notation for
bidder i’s expected valuation, which is v3

i := λf(i)βiv
1
i , where f(i) = j if

the allocation rule assigns slot j to bidder i. In this case, the expectation is
w.r.t. users’ observation of the slot, clicks on the ad and purchases.

Each agent i ∈ N participates in the ad auction with a bid bi representing
how much they are willing to pay at most for a click on their ad. We denote
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by b = (bi)i∈N the bid profile composed of all the agents’ bids. W.l.o.g.,
we assume that the slots are ordered in decreasing value of prominence,
so that λ1 ≥ . . . ≥ λm. Moreover, for the ease of presentation, we let
λm+1 = . . . = λn+1 = 0.

The auction goes on as follows. First, bidders select a bidding strategy
b. Then, bidders individually report their bids to the auction mechanism.
Finally, the mechanism allocates an ad to each slot and defines a payment
πi(b) for each bidder i ∈ N .

Given a bid profile b, we denote bidder i’s utility by ui(b) := vi(b)−πi(b),
when i’s ad is assigned to a slot, otherwise the utility is zero. Finally, we
define the social welfare of the allocation as SW =

∑
i vi(b), while its

revenue is defined as Rev =
∑

i πi, where the sums are taken on bidders i
whose ad has been assigned to a slot. Analogously to bidders’ valuations,
also bids, payments, utilities and SWs can be expressed in expectation. The
choice of notation depends on what is more suitable to model a specific
scenario. In Table 2.3 we summarize the notation adopted in the following
chapters, clarifying when we consider expected values. As we did for
bidders’ valuations, we use a superscript equal to

• 1, when the expectation is taken w.r.t. the purchases

• 2, when the expectation is taken w.r.t. the purchases and clicks on the
ad

• 3, when the expectation is taken w.r.t. the purchases, clicks on the ad
and observation of the slot.

Finally, we summarize notable properties of ad auctions mechanisms
(see Mas-Colell et al. (1995) for their general definitions). An ad auction
mechanism is

• individually rational, if for every bidder i, the assigned payment πi is
non-larger than the bid value bi.

• weakly budget-balanced if the sum of payments is always non-negative,
i.e., Rev =

∑
i∈N πi(b) ≥ 0.

• truthful if for every bidder i it is a dominant strategy to report their
type vi to the mechanism, i.e., the utility ui that bidder i achieves by
reporting vi is at least as large as with every alternative input, regardless
of other bidders’ actions.
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Chapter 5

λj Prominence of slot j
αi Bidder i’s conversion probability

qi(pi, pmin) Bidder i’s quality function. Given prices pi, pmin and an allocation, it
coincides with bidder i’s click probability βi. In this chapter we call it
quality and depends on the specific setting under study

pi, ci Selling price and supply cost of bidder i’s product, respectively. The
gain is expressed as Gi := pi − ci

f Allocation function, defined as f : N →M ∪ {⊥}
vi Expected valuation of bidder i, when assigned to slot j, defined as

vi := v3
i = λjqi(pi, pmin)αi(pi − ci).

bi Bidder i’s bid. When truthful, it is such that bi := b1i = αi(pi − ci)
πi(b) Bidder i’s expected payment when assigned to slot j, defined as πi(b) :=

π3
i (b)

Chapter 6

λj Prominence of slot j
vi Expected valuation of bidder i, defined as vi := v2

i

πi(b) Bidder i’s expected payment when assigned to slot j, defined as πi(b) :=
π3
i (b)

bi Bidder i’s bid, defined as bi := b2i .

Chapter 8

vj Bidder’s expected valuation for subcampaign j, defined as vj := v1
j

nj(xj,t) Expected number of clicks for subcampaign j, given action, i.e. a bid,
xj,t at time t

cj(xj,t) Expected cost for subcampaign j, given action, i.e. a bid, xj,t at time t

Table 2.3: Detailed summary of the ad-auction notation and clarifications on its use in the
each chapter.
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Next, we review GSP and VCG mechanisms applied to ad auctions (see
the book by Nisan and Ronen [2001] for their general description). Consider
a bid profile b and a valuation profile v. Assuming w.l.o.g. that b1 ≥ . . . ≥ bn
(by re-labeling bidders accordingly), both mechanisms orderly assign the
first m agents, who are those with the highest bids, to the first m slots, which
are those with the highest prominences. Moreover, the mechanisms assign
the following expected payments.

• GSP mechanism: πGSP
i (b) := λibi+1 for each agent i ∈ [m], and

πGSP
i (b) = 0 for all the other agents.

• VCG mechanism: πVCG
i (b) :=

∑m+1
j=i+1 bj(λj−1 − λj) for each agent

i ∈ [m], and πVCG
i (b) = 0 for the others.

The VCG payments are such that each bidder is charged the externalities
that they impose on other bidders through their participation in the auction.
This makes the VCG mechanism truthful, which means that it is a dominant
strategy for each agent to report their true valuation to the mechanism,
namely bi = vi for every i ∈ N . This is not the case for the GSP mechanism.

2.3 Online Learning Framework

We consider the following online setting. An agent plays a repeated game
over T rounds. At each round t ∈ [T ], the agent plays an action x ∈ X
while the environment selects an utility function u. 1 At each round t ∈ [T ],
after selecting the action xt, the agent observes an utility ut(xt), where
ut : X → [0, 1].

We are interested in algorithms computing xt at each round t. The
performance of such algorithms is measured using the regret computed with
respect to the best fixed action in hindsight. Formally:

RT := max
x∈X

T∑
t=1

ut(x)− E

[
T∑
t=1

ut(xt)

]
,

where the expectation is on the randomness of the online algorithm. Ideally,
we would like to find an algorithm that generates a sequence {xt}t∈[T ] such
that the regret is sublinear in T . An algorithm satisfying this property is
usually called a no-regret algorithm. In the case in which requiring no-regret
is too limiting, we use the following relaxed notions of regret. Given an

1The set {1, . . . , n} is denoted by [n].
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α ∈ [0, 1], the α-multiplicative-regret of an algorithm is defined as follows:

RT
M,α := αmax

x∈X

T∑
t=1

ut(x)− E

[
T∑
t=1

ut(xt)

]
,

while the α-additive-regret of an algorithm is defined as follows:

RT
A,α := max

x∈X

T∑
t=1

ut(x)− α− E

[
T∑
t=1

ut(xt)

]
.

We call an algorithm that has α-multiplicative-regret or α-additive-regret
sublinear in T a no-α-multiplicative-regret or no-α-additive-regret algorithm,
respectively. The idea of no-α-regret is that the algorithm has no-regret with
respect to an approximation of the optimal fixed action.

2.3.1 Multi-Armed Bandit Problems

In a multi-armed bandit problem, the agent chooses an action (i.e. pulls
an arm) at each time step, and then observes the corresponding reward.
Bandit problems are basic instances of sequential decision making with
limited information and naturally address the fundamental tradeoff between
exploration and exploitation in sequential experiments. Indeed, the agent
needs to balance the exploitation of actions that did well in the past and the
exploration of actions that might give higher payoffs in the future. Clinical
trials were the original motivation of Thompson (see Thompson (1933))
for studying bandit problems. When different treatments are available
for a certain disease, one must decide which treatment to use on the next
patient. However, modern technologies have created many opportunities
for new applications. Nowadays, bandit problems play an important role
in several industrial domains. In particular, online services are natural
targets for bandit algorithms, because one can benefit from adapting the
service to the individual sequence of requests. For instance, given a set of
Web advertisements, consider the ad-placement problem which consists of
deciding which advertisement to display on the Web page delivered to the
next visitor of a website. Similarly, website optimization deals with the
problem of sequentially choosing design elements, such as font, images and
layout, for the Web page. Here the payoff is associated with user’s actions,
e.g., clicks or other desired behaviors. Notice that there are important
differences with respect to the basic bandit problem. For instance, in ad
placement the pool of available ads, which are bandit arms, may change
over time, and there might be a limit on the number of times each ad could
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be displayed. Many other real-world scenarios as the ones mentioned above,
can be efficiently solved by applying techniques from the bandits framework.
This fact results in the proliferation of many variants of the standard bandit
problem, such as the one we present in Chapter 4. In what follows, we
present a well-known bandit algorithm from the literature, which applies
to the standard stochastic bandit setting and will be used in the rest of the
thesis.

Algorithm 2.1 UCB1
1: for t ∈ {1, . . . ,K} do . init phase
2: Pull arm it = t
3: Observe the reward ritt of the arm pulled at round t
4: end for
5: for t ∈ {K + 1, . . . , T} do . loop phase
6: for i ∈ {1, . . . ,K} do
7: R̂it−1 ← 1

nit−1

∑t−1
h=1 r

i
h1{ih=i}

8: cit−1 ← R
i
√

2 ln t
nit−1

9: uit−1 ← R̂it−1 + cit−1

10: end for
11: Pull arm it = argmaxi∈[K] u

i
t−1

12: Observe the reward ritt of the arm pulled at round t
13: end for

UCB1 Algorithm. We describe the UCB1 algorithm, from Auer et al. [2002a],
in which the reward ritt provided by pulling arm it at round t is observed
by the learner at time t. We present the case in which the reward rit is the
realization of the random variable Ri with support [Ri, R

i
]. We denote its

policy by UUCB1.
The pseudo-code of the UCB1 algorithm is reported in Algorithm 2.1.

During the initialization phase, all the arms are pulled once (Line 2). Sub-
sequently, at each round t, the learner computes the empirical mean of
the cumulative rewards R̂i

t−1 collected up to round t − 1 (Line 7), where
we denote by nit−1 := 1

ni

∑t−1
h=1 1{ih=i} the number of times the arm i has

been pulled up to round t − 1, and the confidence interval cit−1 (Line 8).
Finally, the learner pulls the arm with the largest upper confidence bound
uit−1 (Line 11), and observes the reward ritt (Line 12).

We provide the following upper bound on the regret of the UCB1 algo-
rithm (see Auer et al. (2002a)):
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Theorem 2.3. The pseudo-regret of UCB1 after T ∈ N∗ rounds on a MAB
problem with rit rewards is:

RT (UUCB1) ≤
∑

i:µi<µ∗

8(R
i
)2 lnT

∆i

+

(
1 +

π2

3

) ∑
i:µi<µ∗

∆i.
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Expanding Algorithmic Pricing:
Temporal Dependency
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CHAPTER3
Online Posted Pricing with Unknown

Time-Discounted Valuations

This chapter studies the problem of selling a perishable item whose value
diminishes over time. A significant challenge in examining the temporal
aspect of this problem is finding a balance between setting high prices to
maximize revenue and setting low prices to increase the probability of selling
the item. This must be done while considering that the item’s value will
expire within a finite time horizon. We provide a posted price mechanism to
address the problem and we evaluate it by performing a competitive analysis.
Selling a single unit of a product does not allow the use learning algorithms,
which is the reason behind the different techniques used in Chapter 3 and
Chapter 4. While the former aims to sell a single unit of a single item, the
latter focuses on selling multiple units of a single item.

In Section 1.1 we introduced the topic of this chapter, which is the prob-
lem of designing posted-price mechanisms in order to sell a single unit of
a single item within a finite period of time. The chapter is structured as
follows: Section 3.1 formally defines the model and the most suitable perfor-
mance measure for this setting which is the competitive ratio. In Section 3.2
we focus on the identical valuation setting, where all the customers value
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the item for the same amount. In this setting, we provide a mechanismMC

that achieves the best possible competitive ratio, discussing its dependency
on the parameters in the case of linear discount. In Section 3.3 we switch
to the random valuation setting. provide posted price mechanisms for the
identical-valuation and the random-valuation setting, respectively. We show
that, if we restrict the attention to distributions of valuations with a monotone
hazard rate, then the competitive ratio ofMC is lower bounded by a strictly
positive constant that does not depend on the distribution. Moreover, we
provide another mechanism, calledMPC, which is defined by a piecewise
constant pricing strategy and reaches performances comparable to those
obtained withMC. This mechanism is useful when the seller cannot change
the posted price too often. Finally, in Section 3.4, we empirically evaluate
the performances of our mechanisms in a number of experimental settings.

3.1 Model

We study a model in which a seller is interested in selling a single unit of
an item within a finite time period of length T . The seller implements a
posted-price mechanism by setting a take-it-or-leave-it price at each time
t ∈ [0, T ]. We denote by p : [0, T ]→ R+ the pricing strategy adopted by the
seller, with p(t) being the price offered at time t ∈ [0, T ]. The agents (i.e.,
the buyers) arrive sequentially over time, according to a Poisson process
with rate parameter λ > 0.

We label agents according to their order of arrival (i.e., agent i is the i-th
agent arriving in [0, T ]). Each agent i has a private valuation Vi for the item,
drawn from a distribution F with finite support [vmin, vmax], where vmax >
vmin > 0 denote the maximum and minimum valuation, respectively. In the
following, for the ease of presentation, we normalize agents’ valuations in
the range [1, h], where h := vmax

vmin
. Accordingly, we scale the support of F to

[1, h]. Then, we denote by f the probability density function of F .
The value of the item for sale decreases over time. In particular, Vi is

agent i’s initial valuation at time t = 0. We model decreasing values by
introducing a continuous non-increasing discount function ξ : [0, T ]→ [0, 1]
such that ξ(0) = 1 and ξ(T ) = 0. By letting Wi be the random variable
representing the arrival time of agent i, we define the agent i’s discounted
valuation as Di := Vi ξ(Wi), which represents how much agent i is willing
to pay upon her arrival. As a result, whenever agent i arrives, she buys the
item if and only if Di ≥ p(Wi), i.e., her discounted valuation is at least as
large as the price offered by the mechanism.

We introduce the following additional notation. We denote by Is,τ :=
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[s, s+ τ ] ⊆ [0, T ] the time interval of length τ ∈ [0, T ] starting from time
s ∈ [0, T − τ ]. The number of agents arriving in Is,τ is a random variable
denoted by Ns,s+τ . Given τ ∈ [0, T ], the random variables Ns,s+τ are
equally distributed for all s ∈ [0, T − τ ], as the arrivals are generated by a
Poisson process. For the sake of presentation, we omit s in Ns,s+τ , denoting
by Nτ the random variable of the number of agents arriving in any time
interval of length τ , which follows a Poisson distribution with parameter
λτ . 1 Thus, NT is the random variable of the total number of agents arriving
in the overall time period. In the following, we sometimes focus on the linear
discount function, denoted as ξlin : [0, T ]→ [0, 1] with ξlin(t) := 1− t

T
. In

this case, each agent i’s discounted valuation is Di := Vi
(
1− Wi

T

)
.

3.1.1 Performances of Posted-Price Mechanisms

Given a deterministic posted-price mechanismM defined by a price function
pM : [0, T ]→ R+, we denote by EF [R(M)] the expected revenue that the
mechanism provides to the seller. The expectation is calculated with respect
to both the Poisson arrivals and the distribution F of agents’ initial valuations.
We made explicit the dependence on F , as we will frequently refer to it
along the chapter.

We adopt the perspective of competitive analysis and measure the perfor-
mances of a mechanismM by comparing the seller’s expected revenue with
that of a benchmark mechanismM?, which is optimal having knowledge
of the distribution F . Notice that the benchmark has no information on the
actual realizations of agents’ initial valuations, but only on their distribution,
whereas the mechanisms we propose operate having knowledge of their
range only.

Our goal is to bound the performances of our mechanisms w.r.t. those of
the benchmarkM? by looking at the worst case over the set F of possible
distributions F , i.e., all those with support [1, h]. This is captured by the
following:

Definition 3.1. The competitive ratio of a deterministic posted-price mecha-
nismM is defined as:

ρ(M) := min
F∈F

ρF (M), where ρF (M) :=
EF [R(M)]

EF [R(M?)]
.

Moreover, we say that a mechanism is optimal when its competitive ratio is
the highest possible among all the deterministic posted-price mechanisms.

1By definition of Poisson distribution, P{Nτ = j} =
(λτ)je−λτ

j!
.

47



Chapter 3. Online Posted Pricing with Unknown Time-Discounted
Valuations

Notice that ρ(M) ∈ [0, 1] and, for every possible distribution F ∈ F ,
we are guaranteed that the seller’s expected revenue EF [R(M)] provided
by mechanismsM is at least a fraction ρ(M) of that achieved byM?, i.e.,
it holds EF [R(M)] ≥ ρ(M)EF [R(M?)].

As previously showed by Babaioff et al. (2017) in similar settings, we
can safely restrict our analysis to mechanisms maintaining the bottom price
for a non-negligible period of time. Indeed, in the case in which F places all
the probability mass on 1, then any mechanism providing a non-null seller’s
expected revenue must set the minimum price during some time interval,
otherwise no agent would buy the item.

Proposition 3.1. Every deterministic posted-price mechanismM such that
ρ(M) > 0 must set the minimum price pM(t) = ξ(t) for every t in a time
interval of length τ > 0.

3.2 Identical Valuation Setting

We start studying the identical valuation (IV) setting, where all the agents
share the same initial valuation v ∈ [1, h] for the item, i.e., it holds Vi = v
and Di = v ξ(Wi) for every agent i. The IV setting is a special case of
the general random valuation model where one restricts the attention to
distributions F placing all the probability mass on a single valuation in [1, h].
In the following, we adjust notation for expected revenues and competitive
ratios accordingly, writing Ev[R(M)] and ρv(M) instead of EF [R(M)]
and ρF (M).

Our main result (Theorem 3.1) is to provide a deterministic posted-price
mechanism, calledMC, which is optimal for the IV setting for every discount
function ξ. We also study the specific case of a linear discount function ξlin,
where we design an optimal mechanismMC,lin (Theorem 3.2) that enjoys
an easily interpretable analytical description.

First, we describe the shape of the benchmark mechanismM? for the
IV setting. Indeed, sinceM? knows the actual initial valuation v, its price
function pM? : [0, T ] → R+ is such that pM?(t) = v ξ(t) for t ∈ [0, T ].
Therefore, we can compute the expected revenue ofM? as follows:

Ev [R(M?)] :=

∫ T

0

pM?(t)λ e−λt dt =∫ T

0

v ξ(t)λ e−λt dt = v k?, (3.1)
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where k? :=
∫ T

0
ξ(t)λ e−λt dt does not depend on v, but only on the problem

parameters T , λ, and the discount function ξ. Let us remark that the expected
revenue of the benchmarkM? defined in Equation (3.1) is expressed as a
linear function of v.

3.2.1 Optimal Mechanism for a General Discount

We start proving two lemmas that highlight two crucial properties which
characterize optimal posted-price mechanisms for the IV setting. Lemma 3.1
implies that the pricing strategy of an optimal mechanism must be such
that the undiscounted price defined as p(t)

ξ(t)
is non-increasing in t, whereas

Lemma 3.2 shows that any mechanism which always provides a constant
fraction of the expected revenue of the benchmark, independently of the
agents’ initial valuation v, is an optimal mechanism.

Lemma 3.1. In the IV setting, given any deterministic posted-price mecha-
nismM, there always exists a deterministic posted-price mechanismM′

with undiscounted price pM′ (t)
ξ(t)

non-increasing in t such that Ev[R(M)] ≤
Ev[R(M′)] for every possible agents’ initial valuation v ∈ [1, h].

Proof. We only need to prove the result for mechanismsM whose undis-
counted price pM(t)

ξ(t)
is not non-increasing in t, otherwise the statement of

the lemma is trivially true. The main idea of the proof is to let the time
period [0, T ] be evenly partitioned into time intervals of length τ such that
the undiscounted price function ofM is constant in each interval. This is
w.lo.g. if we take τ → 0. Then, there must be two consecutive time intervals,
namely I1 := Is,τ and I2 := Is+τ,τ for some starting time s ∈ [0, T − τ ],
such that there exist p1 < p2 ∈ [1, h] with pM(t)

ξ(t)
= p1 and pM(t)

ξ(t)
= p2

during I1 and I2, respectively (otherwise the undiscounted price would be
non-increasing). Now, let us define a mechanismM′ whose undiscounted
price function is the same as that ofM, except for the fact that pM′ (t)

ξ(t)
= p2

during I1 and pM′ (t)
ξ(t)

= p1 during I2 (i.e., intuitively, we exchange the values
in the two intervals so as to make the undiscounted price non-increasing in
that window of time).

We show that the expected revenue provided byM′ is always greater
than or equal to that achieved byM, as long as τ → 0. In order to compare
the expected revenues of the two mechanisms, it is sufficient to focus on the
window of time I1 ∪ I2, where their price functions differ. Given p1 and p2,
we can partition the agents’ valuations v ∈ [1, h] into three different subsets,
as follows:
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• v < p1, implying that v ξ(t) < pM(t) and v ξ(t) < pM′(t) for every
time instant t ∈ I1 ∪ I2;

• p1 ≤ v ≤ p2, implying that pM(t) ≤ v ξ(t) ≤ pM′(t) for every time
instant t ∈ I1 and pM′(t) ≤ v ξ(t) ≤ pM(t) for every time instant
t ∈ I2;

• v > p2, implying that v ξ(t) > pM(t) and v ξ(t) > pM′(t) for every
time instant t ∈ I1 ∪ I2.

In the first case, Ev[R(M)] − Ev[R(M′)] = 0, since both M and M′

achieve an expected revenue equal to 0 during the time window I1 ∪ I2,
given that the item is never sold in that window (as both pM(t) and pM′(t)
are always higher than the agents’ discounted valuation v ξ(t)). As for the
second case, let us assume p1 < v < p2 (since the cases v = p1 and v = p2

are analogous). Then,M can sell the item only during the interval I1, while
M′ can sell the item only during the other interval I2. Thus, we have the
following:

Ev[R(M)]−Ev[R(M′)] =

∫ s+τ

s

p1ξ(t)λe
−λtdt−

∫ s+2τ

s+τ

p1ξ(t)λe
−λtdt,

which goes to 0 as long as τ → 0, given that ξ is continuous. Finally, in the
third case, we can compute the difference between the expected revenues of
the two mechanisms as follows:

Ev[R(M)− Ev[R(M′)] =

=

∫ s+τ

s

p1ξ(t)λe
−λtdt+

∫ s+2τ

s+τ

p2ξ(t)λe
−λtdt

−
∫ s+τ

s

p2ξ(t)λe
−λtdt−

∫ s+2τ

s+τ

p1ξ(t)λe
−λtdt =

= (p1 − p2)

∫ s+τ

s

ξ(t)λe−λtdt− (p1 − p2)

∫ s+2τ

s+τ

ξ(t)λe−λtdt =

= (p1 − p2)

[∫ s+τ

s

ξ(t)λe−λtdt−
∫ s+2τ

s+τ

ξ(t)λe−λtdt

]
,

which is less than or equal to 0 as τ → 0, by continuity of ξ.
By re-iterating the procedure on all the pairs of consecutive infinitesimal

intervals (since τ → 0) defined as I1 and I2 (each time using the last mech-
anismM′ as the newM), we can render the undiscounted price function
non-increasing, obtaining a final mechanismM′ such that Ev[R(M)] ≤
Ev[R(M′)] for every possible agents’ valuation v ∈ [1, h].
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Notice that, since ξ is continuous and non-increasing by definition,
Lemma 3.1 also shows that there is always an optimal mechanism whose
pricing strategy is non-increasing. Moreover, by recalling Proposition 3.1,
we can conclude that any optimal mechanism must set the minimum price at
the end of the overall time period, i.e., during a time interval [t0, T ] ⊆ [0, T ]
defined for some t0 ∈ [0, T ). This result is exploited to prove the following
lemma.

Lemma 3.2. In the IV setting, letM be a deterministic posted-price mecha-
nism whose pricing strategy pM satisfies pM(t) = ξ(t) for t ∈ [t0, T ] with
t0 ∈ [0, T ). If the ratio ρv(M) = Ev [R(M)]

Ev [R(M?)]
forM does not depend on the

agents’ initial valuation v, thenM is an optimal mechanism.

Proof. By contradiction, suppose thatM is not optimal, i.e., there exists an-
other deterministic posted-price mechanismM′ such that ρ(M′) > ρ(M).
According to Proposition 3.1 and Lemma 3.1,M′ must be defined by a pric-
ing strategy pM′ such that the undiscounted price pM′ (t)

ξ(t)
is non-increasing

in t and the minimum price is selected for a time interval [t′0, T ] ⊆ [0, T ]
having non-zero length (recall that ρv(M) > 0 does not depend on v and
ρ(M) = minv∈[1,h] ρv(M)).

Case t′0 ≥ t0. Let us consider the valuation v = 1. Then, we have that
the expected revenue of mechanismM is Ev[R(M)] =

∫ T
t0
ξ(t)λe−λtdt

(accounting for the case in which an agent arrives at t ≥ t0 and buys the
item at price ξ(t)), which is greater than or equal to the expected revenue
of mechanismM′, defined as Ev[R(M′)] =

∫ T
t′0
ξ(t)λe−λtdt. Intuitively,

Ev[R(M)] ≥ Ev[R(M′)] sinceM′ posts the minimum price for a period
of time shorter than that ofM. Therefore, it holds ρ(M′) ≤ ρv(M′) ≤
ρv(M) ≤ ρ(M), which is a contradiction.

Case t′0 < t0. First, suppose that there exists a time instant t′ ∈ [0, t′0]
defined as t′ := sup{t ∈ [0, t′0] | pM(t) < pM′(t)}, i.e., the last time instant
in which pM(t) changes from being less than pM′(t) to being larger than
or equal to pM′(t). Clearly, it holds pM(t) ≥ pM′(t) for every t ∈ [0, T ] :
t > t′. Moreover, let us consider the agents’ valuation v ∈ [1, h] such
that v ξ(t′) = pM(t′) and focus on the case in which pM(t) = pM′(t) (as
the other cases are analogous). Notice that, for every time instant t ≤ t′,
mechanismM′ cannot sell the item, since, by using Lemma 3.1, we get:

v ξ(t) < vpM′(t)
ξ(t′)

pM′(t′)
= vpM′(t)

ξ(t′)

pM(t′)
≤ vpM′(t)

ξ(t′)

v ξ(t′)
≤ pM′(t).

Additionally, with an analogous reasoning we can show that, for all the
times t ∈ [0, T ] : t > t′, both mechanisms may sell the item, but the price
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posted by M′ is always less than or equal to that chosen by M, with a
non-empty time interval in which the former is strictly less than the latter (as
t′0 < t0). Thus, in this case, it holds ρv(M) > ρv(M′), which implies that
ρ(M′) < ρ(M), a contradiction. Finally, it remains to analyze the case in
which a time instant t′ defined above does not exist. Since the undiscounted
price functions are non-increasing by Lemma 3.2 and t′0 < t0, it must
be the case that there is no intersection point between the two functions.
Hence, it must be pM(t) > pM′(t) for all t ∈ [0, t0], which implies that
ρ(M′) < ρ(M) by taking v = h. This leads to a contradiction.

By Lemma 3.2, in order to find an optimal mechanism for the IV setting,
we can restrict the attention to mechanismsM whose ratios ρv(M) do not
depend on the initial valuation v. Therefore, since the expected revenue of
the benchmarkM? is a linear function of v (see Equation (3.1)), we can
search for an optimal mechanism among those having an expected revenue
which linearly depends on v. This crucial observation allows us to design
the optimal mechanismMC in Theorem 3.1 by leveraging the condition
Ev[R(MC)] = k v for every v ∈ [1, h], with k being a suitably defined
constant independent of v. The key insight that allows us to derive an
expression forMC is that we can always find the desired pricing strategy
pMC among the continuous price functions such that pMC (t)

ξ(t)
is non-increasing

in t ∈ [0, T ). Intuitively, using Lemma 3.1, we can always express the
expected revenue Ev[R(MC)] as a function of the time t∗ := sup{t ∈
[0, t0] | pMC (t) > v ξ(t)}, which is the first time in which pMC intersects
v ξ(t). The reason is that it holds pMC (t) ≤ v ξ(t) if and only if t ≥ t∗, and,
thus, only agents arriving after t∗ are willing to buy the item. By using the
relation among Ev[R(MC)] and t∗, we can find the desired pricing strategy
pMC as a solution to a suitably defined differential equation. This leads to
the following theorem.

Theorem 3.1. In the IV setting, there exists an optimal deterministic posted-
price mechanismMC whose pricing strategy pMC is defined as follows:

pMC (t) :=

{
a e

∫
b(t)dt if t ∈ [0, t0)

ξ(t) if t ∈ [t0, T ]
,

where b is a function such that b(t) := λ − λ
kζ(t)
− ζ′(t)

ζ(t)
with ζ(t) := 1

ξ(t)
,

whereas a, k, t0 are suitably defined constants that do not depend on the
agents’ initial valuation v.

Proof. By Lemma 3.2 and using ρv(MC) = Ev [R(M)]
Ev [R(M?)]

, it is sufficient to
search for an optimal mechanismMC whose pricing strategy pMC is such
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that the expected revenue of the mechanism is linearly dependent in v, i.e.,
for every valuation v ∈ [1, h], it must be the case that:

Ev [R(MC)] = kv,

where k > 0 is a suitably defined constant that does depend on v. In the
following, for the ease of presentation, we omit the indexMC from pMC as
the mechanism is clear from the context.

From Proposition 3.1, there must be a t0 ∈ [0, T ) such that p(t) = ξ(t)
for every t ∈ [t0, T ], otherwise ρv(MC) = 0 for the valuation v = 1. Thus,
it remains to define p(t) for t ∈ [0, t0).

For any valuation v ∈ [1, h], by letting t∗ := sup{t ∈ [0, t0] | p(t) >
v ξ(t)}, we can express the expected revenue of the mechanismMC as a
function of t∗. First, notice that, it holds p(t∗) = v ξ(t∗). Moreover, by using
Lemma 3.1, it must be the case that p(t) > v ξ(t) for every t < t∗, since:

v ξ(t) < v p(t)
ξ(t∗)

p(t∗)
= v p(t)

ξ(t∗)

v ξ(t∗)
= p(t).

As a result, the item is never sold before time t∗, which allows us to write
the following:

Ev [R(MC)] = eλt
∗
∫ t0

t∗
p(t)λe−λtdt+ eλt

∗
∫ T

t0

ξ(t)λe−λtdt.

Thus, since we want Ev [R(MC)] = kv, by using v = p(t∗)
ξ(t∗) and letting

ζ(t) := 1
ξ(t)

, we get:

eλt
∗
∫ t0

t∗
p(t)λe−λtdt+ eλt

∗
∫ T

t0

ξ(t)λe−λtdt = kζ(t∗)p (t∗) . (3.2)

By deriving the left-hand side of Equation (3.2) with respect to t∗, we get:

dEv[R(MC)]

dt∗
=

= eλt
∗ dG(t∗)

dt∗
+ λ

[
eλt
∗
∫ t0

t∗
p(t)λe−λtdt+ λeλt

∗
∫ T

t0

ξ(t)λe−λtdt
]

=

= −λp(t∗) + λkζ(t∗)p(t∗)

where G (t∗) :=
∫ t0
t∗ p(t)λe

−λtdt =
∫ t∗
t0
−p(t)λe−λtdt =

∫ t∗
t0
g(t)dt, with

g(t) := −p(t)λe−λt. By applying the fundamental theorem of calculus,
we have that dG(t∗)

dt∗ = g(t∗) = −p(t∗)λe−λt∗ . Thus, the last equality is
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readily obtained by noticing that the term in the squared brackets is exactly
equal to the expected revenue Ev[R(MC)], which, in turn, must be equal to
kζ(t∗)p(t∗). Furthermore, by deriving the right-hand side of Equation (3.2)
with respect to t∗, we get:

d
dt∗

[kζ(t∗)p(t∗)] = kζ ′(t∗)p(t∗) + kζ(t∗)p′(t∗).

By equating the derivatives of the two sides of Equation (3.2), we get the
following differential equation:

p′ (t∗) =

[
λ− λ

kζ ′ (t∗)
− ζ ′ (t∗)

ζ (t∗)

]
p (t∗) (3.3)

By solving Equation (3.3) for p(t), we obtain the function:

p(t) = a e
∫ [
λ− λ

kζ′(t)−
ζ′(t)
ζ(t)

]
dt
,

and, from the boundaries conditions p(0) = h and p(t0) = ξ(t0), we can
derive constants a and k. Notice that the condition p(0) = h can be derived
from the fact that, if p(0) < h, then the expected revenue Ev[R(MC)] is the
same for all the valuations v ∈ [1, h] such that p(0) ≤ v ≤ h, which is not
possible since we want that Ev[R(MC)] linearly depends on v.

We recall that Ev[R(MC)] = kv for all v ∈ [1, h]. Thus, we can use
this in order to find t0 as a function of the problem parameters λ, T , h, and
function ξ. Using v = 1, we get:∫ T−t0

0

ξ(t)λe−λtdt = k, (3.4)

which gives t0 after replacing k with the expression we got from the bound-
aries conditions.

As a byproduct of the proof of Theorem 3.1, we also get an expression
for the competitive ratio of the mechanismMC, as stated by the following
corollary.

Corollary 3.1. In the IV setting, mechanismMC achieves:

ρ(MC) =

∫ T−t0
0

ξ(t)λ e−λt dt∫ T
0
ξ(t)λ e−λt dt

.
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Proof. Let us recall that, from the proof of Theorem 3.1,MC is characterized
by the same ratio ρv(MC) for all v ∈ [1, h]. Hence, we can calculate the
competitive ratio by taking v = 1:

ρ(MC) =
Ev[R(MC)]

Ev[R(M?)]
=

k

k?
=

∫ T−t0
0

ξ(t)λe−λtdt∫ T
0
ξ(t)λe−λtdt

, (3.5)

where we used Equation (3.1) and Equation (3.4) from the proof of Theo-
rem 3.1.

3.2.2 Optimal Mechanism for a Linear Discount

The pricing strategy pMC of the optimal mechanism defined in Theorem 3.1
still depends on some parameters, namely a, k, and t0, which do not admit
an easy analytical formula for a general discount function ξ. Nevertheless,
they can be expressed analytically if we restrict the attention to functions ξ
having a particular shape. In the following Theorem 3.2 and Corollary 3.2,
we analyze the case of a linear discount function ξlin, defining an optimal
mechanismMC,lin for such setting.

Theorem 3.2. In the IV setting with linear discount function ξlin, there exists
an optimal deterministic posted-price mechanism MC,lin whose pricing
strategy pMC,lin is defined as:

pMC,lin(t) :=

{
h
(
1− t

T

)
eλ(1− 1

k)t+
λ

2kT
t2 if t ∈ [0, t0)

1− t
T

if t ∈ [t0, T ]
,

where k := λ t0
2T−t0

2T (λ t0+lnh)
and the time t0 ∈ [0, T ) is defined as the unique

positive real root of the following equation: 1− 1
λT

(
1 + λ t0 − e−λ(T−t0)

)
=

k.

Proof. We follow the line of the proof of Theorem 3.1, i.e., we look for a
mechanism MC such that Ev[R(MC)] = kv for every v ∈ [1, h], where
k > 0 is suitably defined constant that does not depend on v. For the ease of
presentation, we omit the subscriptMC from the pricing strategy pMC .

Let us fix v ∈ [1, h]. By defining t∗ as in the proof of Theorem 3.1,
since in this case the discount is ξlin(t) = 1 − t

T
for t ∈ [0, T ], we have

p(t∗) = v
(
1− t∗

T

)
, which allows us to write the following:

eλt
∗
∫ t0

t∗
p(t)λe−λtdt+ eλt

∗
∫ T

t0

(
1− t

T

)
λe−λtdt = k

T

T − t∗
p (t∗) ,

(3.6)
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where the left-hand side is the expected revenue Ev[R(MC)] and the right-
hand side is kv. By deriving with respect to t∗ the left-hand side of the
Equation (3.6), we get:

dEv[R(MC)]

dt∗
=

= eλt
∗ dG(t∗)

dt∗
+ λ

[
eλt
∗
∫ t0

t∗
p(t)λe−λtdt+ λeλt

∗
∫ T

t0

(
1− t

T

)
λe−λtdt

]
=

= −λp(t∗) + λk
T

T − t∗
p(t∗),

where G (t∗) is defined as in the proof of Theorem 3.1. Now, we derive the
right-hand side of Equation (3.6) with respect to t∗:

d
dt∗

(
kT

T − t∗
p (t∗)

)
=

kT

T − t∗
p′ (t∗) +

kT

(T − t∗)2p (t∗) .

By equating the derivatives of the two sides of Equation (3.6), we get the
following differential equation:

p′ (t∗) =

[
λ− λ (T − t∗)

kT
− 1

T − t∗

]
p (t∗) . (3.7)

After solving Equation (3.7) for p(t), we obtain the general solution:

p(t) = a e
∫
[λ−λ(T−t)

kT
− 1
T−t ]dt = a eλ(1− 1

k)t+
λ

2kT
t2+ln(T−t),

where, using boundary conditions p(0) = h and p(t0) = 1 − t0
T

, we can
derive the expressions a := h

T
and k := λt0

2T−t0
2T (λt0+ln(h))

.
Since Ev[R[MC]] = kv for all v ∈ [1, h], we can use the equation in

order to define t0 with respect to the problem parameters λ, T and h. For
v = 1:∫ T−t0

0

(
1− t

T

)
λe−λtdt = 1− 1

λT

(
1 + λt0 − e−λ(T−t0)

)
= k, (3.8)

and, by replacing k with the expression we got from the boundary conditions,
we obtain:

1− 1

λT

(
1 + λ t0 − e−λ (T−t0)

)
= λ t0

2T − t0
2T (λ t0 + ln(h))

(3.9)

Finally, we can define t0 as the unique positive real root of Equation (3.9).
In particular, it is easy to show that Equation (3.9) always admits a positive
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T →∞ λ→∞ h→∞
t0 Θ(

√
T ) Θ(

√
T/λ) Θ(T )

ρ(MC,lin) Θ
(

1− 1√
T

)
Θ
(

1− 1√
λ

)
Θ
(

1
log2(h)

)
lim ρ(MC,lin) 1 1 0

Table 3.1: Values of t0 and ρ(MC,lin) as T, λ, h go to infinity.

real root in the range (0, T ). Indeed, we call q(x) = λx 2T−x
2T (λx+ln(h))

− 1 +
1
λT

(
1 + λx− e−λ(T−x)

)
. We observe that q(x) is continuous on the interval

[0, T ] and that q(T ) > 0 and q(0) < 0, therefore, for Bolzano’s theorem,
there exists al least a t0 ∈ (0, T ) such that q(t0) = 0. The uniqueness can
be derived as consequence of Lemma 3.2.

The prices posted byMC,lin decrease as a linearly discounted exponential
function until t = t0, starting, at time t = 0, by setting the price equal to the
maximum agents’ initial valuations h. Then, during the time interval [t0, T ],
the price function linearly decreases and equals zero in t = T .

Corollary 3.2. In the IV setting with linear discount function ξlin,MC,lin

achieves a competitive ratio:

ρ(MC,lin) =
1− 1

λT

(
1 + λt0 − e−λ(T−t0)

)
1− 1

λT
(1− e−λT )

.

Proof. We can calculate it by taking v = 1:

ρ(MC) =
Ev[R(MC)]

Ev[R(M?)]
=

k

k?
=

∫ T−t0
0

(
1− t

T

)
λe−λtdt∫ T

0

(
1− t

T

)
λe−λtdt

=
1− 1

λT

(
1 + λt0 − e−λ(T−t0)

)
1− 1

λT
(1− e−λT )

,

where we used Equation (3.1) and Equation (3.8) from the proof of Theo-
rem 3.2.

The asymptotic values of t0 and ρ(MC,lin) as T, λ, h go to infinity are
in Table 3.1. In particular, ρ(MC,lin) goes asymptotically to 1 as λ or T
increases. This corresponds to having an infinite number of agents and, thus,
selling the item with certainty. Instead, ρ(MC,lin) decreases as h increases,
going asymptotically to 0 as 1

log2(h)
. The range [1, h] represents the degree
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of uncertainty that the mechanism has on the agents’ valuation. Therefore,
ρ(MC,lin) decreases as the uncertainty increases and it cannot be lower
bounded by any strictly positive constant if no finite upper bound on h is
known (i.e., when h→ +∞). However, the dependency of ρ(MC,lin) on the
degree of uncertainty is logarithmic. Instead, notice that a trivial mechanism
setting the price equal to ξlin(t) for t ∈ [0, T ] would have a competitive ratio
of 1

h
, which depends linearly on the degree of uncertainty. More details on

the analysis of t0 and ρ(MC,lin) as T, λ, h vary are provided in the following
paragraph.

Analysis of the Competitive Ratio ρ(MC,lin) From Corollary 3.2, we know
that, in the IV setting with linear discount function ξlin, mechanismMC,lin

achieves a competitive ratio:

ρ(MC,lin) =
1− 1

λT

(
1 + λt0 − e−λ(T−t0)

)
1− 1

λT
(1− e−λT )

,

where t0 ∈ [0, T ) is defined in Theorem 3.2 as the unique positive real root
of the equation:

λ t0
2T − t0

2T (λ t0 + lnh)
= 1− 1

λT

(
1 + λ t0 − e−λ(T−t0)

)
. (3.10)

We analyze the behavior of the competitive ratio ρ(MC,lin) when the problem
parameters h, λ and T vary. We summarize our results in Table 3.1. By
using Equation (3.10), we can conclude that t0 is asymptotically equivalent
to
√
T when T →∞. Then, the limit of the competitive ratio is:

lim
T→∞

ρ(MC,lin) = lim
T→∞

1− t0
T

= lim
T→∞

1− 1√
T

= 1.

Similarly, t0 is asymptotically equivalent to
√

T
λ

when λ→∞. Thus:

lim
λ→∞

ρ(MC,lin) = lim
λ→∞

1− t0
T

= lim
λ→∞

1− 1√
Tλ

= 1.

Moreover, it is easy to see that t0 → T when h→∞. Indeed, in this case
we have that t0 is the unique positive real root of the equation:

1− 1

λT

(
1 + λ t0 − e−λ(T−t0)

)
= 0.

Since t0 → T , the limit of the competitive ratio is:

lim
h→∞

ρ(MC,lin) =
1− 1

λT

(
1 + λT − e−λ(T−T )

)
1− 1

λT
(1− e−λT )

= 0.
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Therefore, having a valuation function with finite support is fundamental
in order to achieve a certain fraction of the expected revenue of an optimal
mechanism. There are no guarantees for valuation functions with unbounded
support. In the following we analyze how ρ(MC,lin) goes to 0. We first
observe that ρ(MC,lin) is proportional to λ(T−t0)2

2T
+o(T − t0)2 when h→∞.

Indeed, the numerator of ρ(MC,lin) depends on h through t0:

1− 1

λT

(
1 + λt0 − e−λ(T−t0)

)
=
z

T
− 1

λT
(1−e−λz) =

λ(T − t0)2

2T
+o(T−t0)2,

where z := T − t0 → 0 as h→∞, and the Taylor series e−λz = 1− λz +
λ2z2

2
+ o(z2) is used to expand function e−λz at t0 = T . Notice that the

competitive ratio is decreasing in t0. We compute t̄0, which is an upper
bound for t0, by solving Equation (3.10) with the exponential term e−λ(T−t0)

substituted by parameter a ε. We impose ε and e−λ(T−t0) to have the same
domain, hence ε ∈ (0, 1). Thus, we obtain the following equation:

λx
2T − x

2T (λx+ lnh)
= 1− 1

λT
(1 + λx− ε) . (3.11)

The solution

x =

√
2λT ln(h) + ln2 h+ ε2 − 2ε+ 1− lnh+ ε− 1

λ

is increasing in ε, being its first partial derivative positive for all ε ∈ (0, 1):

∂x

∂ε
=

ε− 1

λ
√

2λT ln(h) + ln2 h+ (ε− 1)2

+
1

λ
.

Hence, by setting ε = 1, we get the following upper bound on t0:

t̄0 :=
− lnh+

√
2λT ln(h) + ln2 h

λ
=

2T ln(h)√
2λT ln(h) + ln2 h+ lnh

.

Notice that T − t̄0 is a lower bound for T − t0. By asymptotic analysis, as
h→∞ we have:

T − t̄0 =
2λT 2 lnh

2 ln2 h+ 2λT lnh+ 2 lnh
√

2λT lnh+ ln2 h
∼ C1

1

ln(h)

59



Chapter 3. Online Posted Pricing with Unknown Time-Discounted
Valuations

where C1 is constant with respect to h and depends on parameters λ and T .
Hence, as h→∞:

ρ(MC,lin) ∼
λ(T − t0)2

2T − 2
λ
(1− e−λT )

≥ λ(T − t̄0)2

2T − 2
λ
(1− e−λT )

∼ C2
1

ln2(h)
,

where C2 is a constant with respect to h and depends on parameters λ and
T . We conclude that, as h→∞, the competitive ratio ρ(MC,lin) converges
to 0 slower than or the same as the function 1

log2(h)
.

3.3 Random Valuation Setting

We now switch to the random valuation (RV) setting, where agents’ initial
valuations Vi are i.i.d. random variables defined by a cumulative distribution
function F with support [1, h]. We focus on distributions F satisfying the
monotone hazard rate (MHR) condition. Formally, a distribution F is MHR
if the hazard rate H(x) := f(x)

1−F (x)
is non-decreasing in x. This assumption

is common when studying posted-price mechanisms that operate without
knowing the shape of the distribution of valuations (see (Babaioff et al.,
2015, 2017)) and many distributions used in practice satisfy it (such as,
e.g., uniform, normal, and exponential distributions). Moreover, the MHR
condition is necessary for proving our main results (Theorems 3.3 and 3.4).
Indeed, when the family of possible distributions is unrestricted, one cannot
design posted-price mechanisms guaranteeing a constant fraction of the
revenue ofM? independently of the distribution F , as shown by Babaioff
et al. (2017) for the easier setting in which agents do not arrive stochastically.

Auxiliary Definitions and Results We introduce the random variable Xλτ as
the maximum initial valuation of agents arriving in an interval of length
τ ∈ (0, T ]. Formally:

Xλτ := max
i∈{1,...,Nτ}

Vi.
2

Xλτ is the first order statistic of Nτ samples drawn from F and, since
agents’ arrivals are governed by a Poisson process, its cumulative distribution
function FXλτ is defined as:

2In the definition of Xλτ and Ys,λτ , overloading the notation, we assume that the agents arriving in the
considered time interval of length τ are labeled from 1 to Nτ according to their order. Their actual labels referred
to the overall period [0, T ] may be different.
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FXλτ (x) :=
∞∑
j=1

P {Nτ = j}FXλτ |Nτ=j(x) =

∞∑
j=1

(λτ)je−λτ

j!
[F (x)]j = e−λτ(1−F (x)).

We also define Ys,λτ as the random variable representing the maximum
discounted valuation of agents arriving in an interval Is,τ of length τ ∈ (0, T ]
starting at s ∈ [0, T − τ ]:

Ys,λτ := max
i∈{1,...,Nτ}

Di.

The cumulative distribution function FYs,λτ of Ys,λτ is:

FYs,λτ (x) :=
∞∑
j=1

P {Nτ = j}FYs,λτ |Nτ=j(x) =

∞∑
j=1

(λτ)je−λτ

j!
FYs,λτ |Nτ=j(x),

where FYs,λτ |Nτ=j is the cumulative distribution function of Ys,λτ conditioned
on the event Nτ = j. Let us remark that, by definition, FYs,λτ depends on
distribution F . In the following, we also let YλT := Y0,λT be the random
variable representing the maximum discounted valuation of agents arriving
in the overall time period [0, T ]. In Appendix A.1.1, for the specific case of
a linear discount function, we show how to exploit some useful properties
of Poisson processes so as to find an analytical expression for FYλT . In
particular, by letting Z := V U , where V and U are independent random
variables distributed according to F and U(0, 1), respectively, we obtain:

FYλT (x) :=
∞∑
j=1

(λT )je−λT

j!
[FZ(x)]j ,

where

FZ(x) :=

{
x
∫ h

1
1
z
f(z)dz if x ∈ [0, 1)

F (x) + x
∫ h
x

1
z
f(z)dz if x ∈ [1, h]

.

3.3.1 Bounding Competitive Ratio in the RV Setting

We show that mechanism MC (see definition in Theorem 3.1), which is
optimal in the IV setting, provides good performances also in the RV setting.
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Our main result (Theorem 3.3) is a lower bound on the competitive ratio
of the mechanism, which is obtained by showing thatMC always provides
at least a constant fraction of the seller’s expected revenue achieved by
the benchmark M?, independently of the distribution of agents’ initial
valuations F . 3 This is surprising since, differently fromM?, our mechanism
works without having knowledge about F (except for its range).

We first need some definitions and lemmas.

Definition 3.2. Let Is,τ be any interval of length τ ∈ (0, T ] starting at
s ∈ [0, T − τ ]. Then, the ratio between the prices posted by MC at the
endpoints of Is,τ is defined as:

κτ (s) :=
pMC (s)

pMC (s+ τ)
.

Intuitively, κτ (s) bounds the slope of the price function ofMC in the
time interval Is,τ , which depends on both the starting time s and the length τ
of the interval. Moreover, notice that κτ (s) ≥ 1 since pMC is non-increasing
by Lemma 3.1. Next, we introduce an upper bound on the price ratios of all
the time intervals of length τ , which is useful in deriving our main result.

Definition 3.3. The maximum price ratio ofMC over intervals of length
τ ∈ (0, T ] is denoted by:

κτ := max
s∈[0,T−τ ]

κτ (s).

The following lemma establishes a relation between the price function
pMC ofMC and the expected value of the random variable XλT representing
the maximum initial valuation of agents arriving in the overall time period.
This is crucial to prove Theorem 3.3.

Lemma 3.3. In the RV setting with agents’ initial valuations drawn from
a distribution F , given τ ∈ (0, T ] and 0 < ε < 1, there exists at least an
interval Is,τ of length τ ∈ (0, T ] starting at s ∈ [0, T − τ ] such that the
prices pMC (t) posted by mechanismMC during the time instants t ∈ Is,τ lie

in the range
[
E[XλT ]ξ(s+τ)(1−ε)

κτ
,E[XλT ]ξ(s+ τ)(1− ε)

]
.

Proof. Given how the function pMC is defined, we can always define a time
interval Is,τ as desired by selecting its starting time s ∈ [0, T − τ ] in such a

3To prove the lower bound, we follow an approach similar to that used by Babaioff et al. (2017) to bound the
competitive ratio of their Equal-Sample-of-Every-Scale mechanism. However, our setting introduces additional
challenges, since the agents’ arrivals are stochastic and the valuations are discounted. Thus, our proofs require
different techniques w.r.t. those of Babaioff et al. (2017).
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way that pMC (s) = E[XλT ]ξ(s+ τ)(1− ε). From Definition 3.3 we know
that κτ (s) ≤ κτ . Hence,

pMC (s+ τ) =
pMC (s)

κτ (s)
=

=
E[XλT ]ξ(s+ τ)(1− ε)

κτ (s)
≥ E[XλT ]ξ(s+ τ)(1− ε)

κτ
.

Since pMC is non-increasing by Lemma 3.1, for every t ∈ Is,τ we have:

pMC (t) ∈ [pMC (s), pMC (s+ τ)] ⊆

⊆
[
E[XλT ]ξ(s+ τ)(1− ε)

κτ
,E[XλT ]ξ(s+ τ)(1− ε)

]
.

Notice that the inequality involving pMC (s+ τ) holds with equality if s ∈
arg maxs∈[0,T−τ ] κτ (s). If this is the case, then there exists a unique interval
verifying the statement.

The following two lemmas are the final pieces that we need to prove
Theorem 3.3. Lemma 3.4 establishes that, if the distribution F is MHR,
then the same holds for the distribution FXλτ of Xλτ . Lemma 3.5, given
two intervals of length τ and τ ′ with τ ≤ τ ′, provides a lower bound on the
expected value of Xλτ which depends on the expected value of Xλτ ′ and the
logarithms of the expected number of agents’ arrivals in the two intervals,
respectively λτ and λτ ′.

Lemma 3.4. FXλτ has non-decreasing monotone hazard rate.

Proof. Let us recall that the cumulative distribution function of Xλτ is such
that:

FXλτ (x) = e−λτ(1−F (x)).

We compute the hazard rate of FXλτ and show it is non-decreasing, as
follows:

HXλτ (x) =
fXλτ (x)

1− FXλτ (x)
=

d
dxFXλτ (x)

1− FXλτ (x)
=
λτf(x)e−λτ(1−F (x))

1− e−λτ(1−F (x))

=
λτf(x)

eλτ(1−F (x)) − 1
= λτ

f(x)

1− F (x)

1− F (x)

eλτ(1−F (x)) − 1

= λτH(x)
1− F (x)

eλτ(1−F (x)) − 1
.

Since F is MHR, the hazard rate H(x) is non-decreasing. Notice that
F (x) is non-decreasing, and, thus, 1− F (x) in non-increasing. As a result,
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proving that 1−F (x)

eλτ(1−F (x))−1
is non-decreasing in x is equivalent to show that

g(y) := y
eλτy−1

is non-increasing in y. We study the first derivative of g(y):

d
dy
g(y) =

eλτy(1− λτy)− 1

(eλτy − 1)2
≤ 0 for all y ∈ [0, 1].

This implies that g(y) is non-increasing in y; hence, 1−F (x)

eλτ(1−F (x))−1
is non-

decreasing in x. We conclude that HXλτ (x) is monotone non-decreasing.

In order to prove Lemma 3.5, we first state the following variant of the
Chebyshev inequality Mitrinovic et al. (2013), where the adopted notation
is specific for the proposition.

Proposition 3.2 (Mitrinovic et al. (2013)). Suppose function h(x) is positive
and non-decreasing on [a, b], function g(x) is non-decreasing on [a, b], and
function f(x) is continuous on [a, b], then the following inequality holds:∫ b

a
h(x)f(x)g(x)dx∫ b
a
h(x)f(x)dx

≥
∫ b
a
f(x)g(x)dx∫ b
a
f(x)dx

.

Lemma 3.5. For every τ, τ ′ ∈ (0, T ] with τ ≤ τ ′, it holds:

E[Xλτ ]

E[Xλτ ′ ]
≥ ln (λτ)

ln (λτ ′)
.

Proof. Recall that FXλτ (x) = e−λτ(1−F (x)). Then, we can write the follow-
ing:

E[Xλτ ] =

∫ ∞
0

xfXλτ (x)dx =

∫ ∞
0

1− FXλτ (x)dx =

=

∫ ∞
0

1− e−λτ(1−F (x))dx =

=

∫ ∞
0

1− F (x)

f(x)

1− e−λτ(1−F (x))

1− F (x)
dF (x) =

=

∫ 1

0

1

H(F−1(1− η))

1− e−λτη

η
dη.

Now, we apply Lemma 3.2. F having non-decreasing monotone hazard
rate implies that h(η) := 1

H(F−1(1−η))
is a non-decreasing function of η.
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Hence, h(k) is non-decreasing and positive on [0, 1]. g(η) := 1−e−λτη
1−e−λτ ′η is

non-decreasing on [0, 1] and f(η) := 1−e−λτ ′η
η

is continuous on [0, 1]. Thus,

E[Xλτ ]

E[Xλτ ′ ]
=

∫ 1

0
1

H(F−1(1−η))
1−e−λτη

η
dη∫ 1

0
1

H(F−1(1−η))
1−e−λτ ′η

η
dη

=

=

∫ 1

0
1

H(F−1(1−η))
1−e−λτ ′η

η
1−e−λτη
1−e−λτ ′η dη∫ 1

0
1

H(F−1(1−η))
1−e−λτ ′η

η
dη

≥

≥
∫ 1

0
1−e−λτη

η
dη∫ 1

0
1−e−λτ ′η

η
dη

=

∫ λτ
0

1−e−t
t

dt∫ λτ ′
0

1−e−t
t

dt
=
Ein(λτ)

Ein(λτ ′)
=

=
γ − Ei(−λτ) + ln(λτ)

γ − Ei(−λτ ′) + ln(λτ ′)
≥ ln(λτ)

ln(λτ ′)
,

where Ein(x) :=
∫ x

0
1−e−t
t

dt is the entire exponential integral function,
Ei(x) :=

∫ x
−∞

et

t
dt is the exponential integral function, and γ ≈ 0.577 is

the Euler’s constant.

Theorem 3.3. Consider the RV setting with λτ = (λT )1−ε ≥ 1 − ln(e −
1) for some τ ∈ (0, T ] and 0 < ε < 1. Then, restricted to the set F
of distributions F satisfying the MHR condition, mechanism MC has a
competitive ratio that can be lower bounded as follows:

ρ(MC) ≥ ξ(t0 + T 1−ελ−ε)(1− ε)
κτe

.

Proof. By hypothesis, we have λτ = (λT )1−ε for some τ ∈ (0, T ] and
0 < ε < 1, which implies that 1 − ε = ln(λτ)

ln(λT )
. Moreover, let us fix a

distribution F satisfying the MHR condition. From Lemma 3.3, there
exists a time interval Is,τ with starting time s ∈ [0, T − τ ] such that

pMC (t) ∈
[
E[XλT ]ξ(s+τ)(1−ε)

κ
,E[XλT ]ξ(s+ τ)(1− ε)

]
for every t ∈ Is,τ . We

distinguish two cases, depending on whether the starting time of the interval
is before or after the time t0 characterizing mechanismMC (as defined in
Theorem 3.1).

Case s < t0. By using the fact that the seller’s expected revenue for the
overall time period is at least that achieved during the interval Is,τ , we have:

EF [R(MC)] ≥ pMC (s+ τ)P {Yλτ ≥ pMC (s)}
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≥ pMC (s+ τ)P {Xλτξ(s+ τ) ≥ E[XλT ]ξ(s+ τ)(1− ε)}
(3.12)

= pMC (s+ τ)P {Xλτ ≥ E[XλT ](1− ε)}

= pMC (s+ τ)P
{
Xλτ ≥ E[XλT ]

ln(λτ)

ln(λT )

}
≥ pMC (s+ τ)P {Xλτ ≥ E[Xλτ ]} (3.13)

≥ pMC (s+ τ)

e
(3.14)

≥ E[XλT ]ξ(s+ τ)(1− ε)
κτe

≥ E[XλT ]ξ(t0 + τ)(1− ε)
κτe

.

Equation (3.12) holds since Xλτξ(s+ τ) is a random variable representing
the maximum initial valuation of agents arriving in a time interval of length
τ weighted by the maximum possible discount, and, thus, it is always
smaller than or equal to Yλτ . Equation (3.13) follows from Lemma 3.5.
Equation (3.14) follows from a result by Barlow and Marshall (1964), which
implies that, for any MHR distribution, the probability of exceeding its
expectation is at least 1

e
.

Case s ≥ t0. In this case, we can lower bound the seller’s expected
revenue for the overall time period with that obtained during the the interval
It0,τ , as follows:

EF [R(MC)] ≥ pMC (t0 + τ)
(
1− e−λτ

)
≥ ξ(t0 + τ)

1

e

≥ E[XλT ]ξ(t0 + τ)(1− ε)
κτe

,

where for the first inequality we used the fact that the expected revenue
in It0,τ is at least the lowest price posted during the interval times the
probability that at least one agent arrives in It0,τ , the second inequality holds
since

(
1− e−λτ

)
≥ 1

e
when λτ ≥ 1 − ln(e − 1) ' 0, 46, while the last

inequality follows from the fact that s ≥ t0. Indeed, by Lemma 3.3, we can
write the following:

pMC (s+ τ) = ξ(s+ τ) ≥ E[XλT ]ξ(s+ τ)(1− ε)
κτ

,

which implies that E[XλT ](1−ε)
κτ

≤ 1.
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We can now compute a lower bound on the ratio ρF (MC) of mechanism
MC, as follows:

ρF (MC) =
EF [R(MC)]

EF [R(M?)]

≥ EF [R(MC)]

E[YλT ]

≥ E[XλT ]

E[YλT ]

ξ(t0 + τ)(1− ε)
κτe

≥ ξ(t0 + τ)(1− ε)
κτe

where the first inequality holds since E[YλT ] is the expected revenue of a
mechanism that knows the actual realization of agents’ initial valuations and
arrival times, i.e., the realization of variable YλT .- This mechanism achieves
an expected revenue greater than or equal to that obtained by the benchmark
M?, since the latter only knows the distribution of valuations. As for the
second inequality, it is easy to see that E[XλT ]

E[YλT ]
≥ 1. Finally, by recalling the

condition λτ = (λT )1−ε, we have τ = T 1−ελ−ε, which allows us to write
the following bound:

ρ(MC) ≥ ξ(t0 + T 1−ελ−ε)(1− ε)
κτe

.

This concludes the proof.

The idea of the proof is to use ρF (MC) ≥ EF [R(MC)]
E[YλT ]

, following from
the fact that EF [R(M?)] cannot be larger than E[YλT ], which is the ex-
pected revenue achieved by an optimal mechanism that knows the real-
ization of agents’ initial valuations and arrivals. Then, EF [R(MC)] is
lower bounded by the revenue thatMC achieves in a suitably defined in-
terval Is,τ , whose existence is guaranteed by Lemma 3.3. Moreover, Lem-
mas 3.3, 3.4, and 3.5, together with the properties of MHR distributions,
allow us to write EF [R(MC)] ≥ E[XλT ]ξ(t0+τ)(1−ε)

κτ e
, giving the result as

E[YλT ] ≤ E[XλT ].

3.3.2 A Mechanism with a Piecewise Constant Price

We introduce a new mechanism MPC whose pricing strategy pMPC is a
piecewise constant function. This turns out to be useful in all the situations
in which the seller is constrained not to change the posted price too often,
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e.g., when the mechanism is required to set prices for time intervals having
a given minimum length. Our main result (Theorem 3.4) is a lower bound
on the competitive ratio ofMPC in the RV setting, which is comparable to
that obtained forMC in Theorem 3.3. Thus, we show that, even in presence
of constraints on the allowed pricing strategies, we are still able to design
mechanisms with good performances in terms of competitive ratio. Clearly,
MPC depends on the minimum length requirement, which influences the
resulting lower bound. In particular,MPC is tuned by a parameter δ related
to the number of time intervals in which the price must be constant.

MechanismMPC works by evenly partitioning the time interval [0, t0]
into dlogδ he sub-intervals of length τ , where δ ∈ (1, h] and t0 ∈ [0, T ]
are suitably defined parameters. Then, the remaining time [t0, T ] is or-
ganized in other sub-intervals of length τ . As a result, [0, T ] is parti-
tioned into

⌈
T
τ

⌉
sub-intervals, which, overloading notation, we denote by

Ii := [(i− 1)τ,min{iτ, T}] for i = 1, . . . ,
⌈
T
τ

⌉
. Notice that τ = t0

dlogδ he
,

and, thus, parameters t0 and δ can be tuned to match the required minimum
length τ . The pricing strategy pMPC ofMPC is defined in such a way that the
price is constant in each interval Ii. By letting pMPC (Ii) be the price posted
during Ii, we define the function pMPC as follows: 4

pMPC (Ii) :=


h
δi
ξ(iτ) if i = 1, . . . , blogδ hc

ξ(iτ) if i = dlogδ he, . . . ,
⌈
T
τ

⌉
− 1.

ξ((i− 1)τ) if i =
⌈
T
τ

⌉
We compare in Figure 3.1 the prices of MC,lin and MPC,lin (i.e., MPC

with a linear discount) in a specific setting for two values of τ . Notice that
MPC can be thought of as an extension of the Equal-Sample-of-Every-Scale
(ESoES) mechanism by Babaioff et al. (2017) to the more general setting in
which agents arrive stochastically according to a Poisson process and agents’
valuations are discounted over time.

Before proving our main result, we need the following lemma, which is
the analogous of Lemma 3.3 working for mechanismMPC instead ofMC.

Lemma 3.6. In the RV setting with agents’ initial valuations drawn from a
distribution F , given 0 < ε < 1, there exists i = 1, . . . , dlogδ he such that
the price pMPC (Ii) posted byMPC during the interval Ii lies in the range[
ν
δ
ξ(iτ), νξ(iτ)

]
, where ν := max{1,E[XλT ](1− ε)}.

Proof. For ease of presentation, in the rest of this proof, we define Ĩi :=[
ν
δ
ξ(iτ), νξ(iτ)

]
for any i = 1, . . . , dlogδ he. By contradiction, suppose that

4Whenever T is not divisible by τ , then the last time interval is shorter than τ . Thus, in order to satisfy the
minimum length constraint, we set its price equal to the one in the preceeding interval.
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t

h

1

Tt0

(a) τ = 1

t

h

1

Tt0

(b) τ = 0.25

Figure 3.1: Prices of mechanismsMC,lin (blue) andMPC,lin (black) when h = 2.8, λ = 10,
and T = 12.

there is no i = 1, . . . , dlogδ he such that pMPC (Ii) ∈ Ĩi. Notice that ν is a
lower bound on E[XλT ] and belongs to the range ∈ [1, h).

We reach a contradiction by employing an iterated reasoning. As a
first step, we observe that either ν ∈

(
h
δ
, h
)

or ν ∈
[
1, h

δ

]
. If ν ∈

(
h
δ
, h
)
,

then pMPC (I1) = h
δ
ξ(τ) is in the range Ĩ1 =

[
ν
δ
ξ(τ), νξ(τ)

]
. Hence, it

must hold ν ∈ [1, h
δ
]. Then, as a second step, we can conclude that either

ν ∈
(
h
δ2 ,

h
δ

]
or ν ∈

[
1, h

δ2

]
. If ν ∈

(
h
δ2 ,

h
δ

]
, then pMPC (I2) = h

δ2 ξ(2τ)

is in the range Ĩ2 =
[
ν
δ
ξ(2τ), νξ(2τ)

]
. Hence, it must hold ν ∈ [1, h

δ2 ].
By iterating the reasoning until the blogδ hc-th step, we obtain that either
ν ∈

(
h

δblogδ hc ,
h

δblogδ hc−1

]
or ν ∈

[
1, h

δblogδ hc

]
.

Let us first consider the case in which it holds blogδ hc 6= dlogδ he. If
ν ∈

(
h

δblogδ hc ,
h

δblogδ hc−1

]
, then pMPC

(
Iblogδ hc

)
∈ Ĩblogδ hc since:

h

δblogδ hc
ξ(blogδ hcτ) ∈

[ν
δ
ξ(blogδ hcτ), νξ(blogδ hcτ)

]
.

Hence, it must hold ν ∈
[
1, h

δblogδ hc

]
. Then, pMPC

(
Idlogδ he

)
= ξ(dlogδ heτ)

belongs to the range Ĩdlogδ he =
[
ν
δ
ξ(dlogδ heτ), νξ(dlogδ heτ)

]
, which leads

to a contradiction.
Now, suppose that blogδ hc = dlogδ he = logδ h. Then, in the blogδ hc-th

step of the iterated reasoning, we can conclude that ν ∈
[
1, h

δlogδ h−1

]
and

pMPC

(
Ilogδ h

)
= ξ((logδ h)τ) is in the range

Ĩlogδ h =
[ν
δ
ξ((logδ h)τ), νξ((logδ h)τ)

]
,

which leads to the final contradiction.
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Now, we provide our main result. The idea behind its proof is similar to
the one used for Theorem 3.3.

Theorem 3.4. Consider the RV setting with λτ = (λT )1−ε ≥ 1 − ln(e −
1) for some τ ∈ (0, T ] and 0 < ε < 1. Then, restricted to the set F
of distributions F satisfying the MHR condition, mechanism MPC has a
competitive ratio that can be lower bounded as follows:

ρ(MPC) ≥ ξ((dlogδ he+ 1)T 1−ελ−ε)(1− ε)
δe

.

Proof. By hypothesis we have λτ = (λT )ε for τ = t0
dlogδ he

∈ (0, T ]. We
distinguish two cases, depending on whether E[XλT ](1 − ε) is greater or
lower than one. Note that E[XλT ](1−ε) is a lower bound for E[XλT ] and that
one is the minimum value that E[XλT ] can assume. In particular E[XλT ] = 1
when F is the point distribution such that P (Vi ≤ 1) = P (Vi = 1) = 1.

Case E[XλT ](1 − ε) >= 1. For Lemma 3.6, there exists an i ∈
{1, . . . , dlogδ he} such that the price p∗i = pMPC (Ii) lies in the range Ĩi =[
E[XλT ]ξ(iτ)(1−ε)

δ
,E[XλT ]ξ(iτ)(1 − ε)

]
. By using the fact that the seller’s

expected revenue for the overall time period is at least that achieved during
the interval Ii, we have:

E[R(MPC)] ≥ p∗iP(Yλτ,i ≥ p∗i )

≥ p∗iP
(
Xλτξ(iτ) ≥ E[XλT ]ξ(iτ)(1− ε)

)
(3.15)

= p∗iP(Xλτ ≥ E[XλT ](1− ε))

= p∗iP
(
Xλτ ≥ E[XλT ]

ln(λτ)

ln(λT )

)
≥ p∗iP(Xλτ ≥ E[Xλτ ]) (3.16)

≥ p∗i
e

(3.17)

≥ E[XλT ]ξ(iτ)(1− ε)
δe

≥ E[XλT ]ξ(dlogδ heτ)(1− ε)
δe

(3.18)

≥ E[XλT ]ξ((dlogδ he+ 1)τ)(1− ε)
δe

Equation (3.15) holds since Xλτξ(iτ) is a random variable representing
the maximum initial valuation of agents arriving in a time interval of length
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τ weighted by the maximum possible discount, thus it is always smaller than
or equal to Yλτ,i. Equation (3.16) follows from Lemma 3.5. Equation (3.17)
follows from a result by Barlow and Marshall (1964), which implies that,
for any MHR distribution, the probability of exceeding its expectation is at
least 1

e
.

Case E[XλT ](1 − ε) < 1. In this case we can lower bound the seller’s
expected revenue for the overall time period with that obtained during the
interval Idlogδ he+1, as follows:

EF [R(MPC)] ≥ p∗dlogδ he+1

(
1− e−λτ

)
≥ ξ((dlogδ he+ 1)τ)

1

e

≥ E[XλT ]ξ((dlogδ he+ 1)τ)(1− ε)
δe

,

where for the first inequality we used the fact that the expected revenue in
Idlogδ he+1 is the price posted during the interval times the probability that
at least one agent arrives in Idlogδ he+1, the second inequality holds since(
1− e−λτ

)
≥ 1

e
when λτ ≥ 1− ln(e− 1) ' 0, 46, while the last inequality

follows from the fact that E[XλT ](1− ε) < 1 and δ ≥ 1.
We can now compute a lower bound on the ratio of the mechanism

ρF (MPC), as follows:

ρF (MPC) =
EF [R(MPC)]

EF [R(M?)]

≥ EF [R(MPC)]

E[YλT ]

≥ E[XλT ]

E[YλT ]

ξ((dlogδ he+ 1)τ)(1− ε)
δe

≥ ξ((dlogδ he+ 1)τ)(1− ε)
δe

where it is easy to see that E[XλT ]
E[YλT ]

≥ 1. By recalling the condition λτ =

(λT )1−ε, we have τ = T 1−ελ−ε, which allows us to write the following
bound:

ρF (MPC) ≥ ξ((dlogδ he+ 1)T 1−ελ−ε)(1− ε)
δe

.

This concludes the proof.
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3.4 Examples of Mechanisms

In order to ease the reader in the understanding of our mechanisms, we pro-
vide their graphical representation for the case of a linear discount function
ξlin(t) := 1− t

T
. In particular, we focus on mechanismsMC,lin andMPC,lin,

where the latter is the linear-discount version of the general-discount mech-
anismMPC. The price function pMPC,lin ofMPC,lin can be easily obtained
from that ofMPC by using the specific definition of the discount function.
We report it below for completeness.

pMPC,lin(Ii) :=


h
δi

(
1− iτ

T

)
if i = 1, . . . , blogδ hc

1− iτ
T

if i = dlogδ he, . . . ,
⌈
T
τ

⌉
− 1

1− (i−1)τ
T

if i =
⌈
T
τ

⌉ .

We tune the parameters h, λ, and T so as to simulate real-world scenarios
representing the long-term rental of a single room. In particular, we fix the
parameter values by analyzing data from a real-world co-living company
operating on the web, counting over 7000 rooms. 5 In this scenario, the goal
is to rent a single room to students for a fixed period of one year. We set
T = 12, assuming that each time interval of length 1 corresponds to a period
of one month, and we fix the starting time t = 0 as the time in which the
contract of the previous tenant ends. Therefore, the room value is discounted
over time as an effect of the ever shorter period of stay of the future tenant.
We also set h = 2.8, which means that the highest valuation for the room is
around three times the lowest one.

Figure 3.2 shows how the shape of mechanismMC,lin changes by varying
the arrival rate λ, which is the expected number of agents arriving in a time
interval of one month. We observe that the price function decreases as a
linearly discounted exponential function in the time interval [0, t0], and,
then, as a linear function in [t0, T ]. Notice that, by comparing Figure 3.2a
and Figure 3.2b, it is easy to see that the time instant t0 gets closer to zero
as the arrival rate λ increases. This can be explained by recalling that the
mechanism has to deal with the trade-off between setting high prices so as
to achieve high revenues and posting lower prices in order to increase the
probability of selling the item. In the first period of time, the seller posts
high prices hoping for the arrival of an agent having an high valuation. This
phase cannot be too long, otherwise the item risks to remain unsold, and,
on the other hand, it cannot even be too short, otherwise the probability of
encountering such an high-valuation agent becomes too small. Therefore,
when the arrival rate decreases, the high-price phase must be enlarged in

5We cannot disclose the name of the company for privacy reasons.
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order to still have some chance of concluding the purchase for an high price
(Figure 3.2b), while, if λ increases, it suffices to post high prices for a shorter
time period (Figure 3.2a).

Figure 3.3 represents the behavior of mechanismMPC,lin when we impose
different constraints on the minimum time in which the price must be
constant. In particular, Figure 3.3a and Figure 3.3b show the shape of
MPC,lin when the posted price does not change for time intervals of length τ
equal to one month (i.e., τ = 1) and one week (i.e., τ = 0.25), respectively.

t

pMC,lin(t)

h

1

Tt0

(a)MC,lin: h = 2.8, λ = 10, T = 12

t

pMC,lin(t)

h

1

Tt0

(b)MC,lin: h = 2.8, λ = 2, T = 12

Figure 3.2: MechanismMC,lin with different rate parameters λ.
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(a)MPC,lin: τ = 1, h = 2.8, λ = 10, T = 12
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(b)MPC,lin: τ = 0.25, h = 2.8, λ = 10, T = 12

Figure 3.3: MechanismMPC,lin with different constraints on the minimum time in which
the price must be constant.

3.5 Empirical Evaluation

We evaluate mechanismsMC,MPC, and a natural adaption of the ESoES
mechanism by Babaioff et al. (2017) to stochastic settings with no time
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discounting (called ESoES-SS). The pricing strategy of ESoES-SS is defined
as follows. First, we compute the prices of ESoES by setting the number
of agents equal to the expected number λT of agents arriving in [0, T ]
according to a Poisson process of parameter λ. Then, ESoES-SS proposes
the price that ESoES would propose to the i-th agent arrived if i ≤ λT and
1 otherwise.

We use the following parameters values for the experiments: λ ∈
{1, . . . , 20}, T ∈ {10, 20, 50, 100}, and h ∈ {2, . . . , 20}. The following
results do not consider time discounting so as to have a fair comparison be-
tween our mechanisms and ESoES-SS. Further results with a linear discount
function are provided in Appendix A.

Result #1 We study a RV setting with a uniform probability distribution over
[1, h]. For every combination of values of λ, T, h, we run 1000 Monte Carlo
simulations, evaluating the revenue provided by mechanisms ESoES-SS,
MC, and MPC. In particular, we analyze some variants of mechanisms
MPC differing for the number of subintervals (i.e., Nsub) in which [0, t0]
is partitioned. Furthermore, we normalize the revenue provided by the
mechanisms in each simulation with respect to h. We report the results in
Figure 3.4 for T = 10 and T = 50, when h = 10. The results obtained
for different values of h are similar. MC and MPC with Nsub = 232
have overlapping performances that beat those of the other mechanisms.
MPC with Nsub = 13 has a performance close to that of the previous two
mechanisms, showing that mechanismMPC provides good performances
even with few subintervals. MPC with Nsub = 4 and ESoES-SS have
almost overlapping performances, showing that very few subintervals are
sufficient to MPC to match the performances of ESoES-SS. The worst
mechanism is MPC with Nsub = 2. The loss of ESoES-SS w.r.t. MC

averaged over the values of λ is about 0.3h when T = 10, and 0.4h when
T = 50. Surprisingly, the performances of ESoES-SS seem to do not strictly
depend on λ and T .

Result #2 We study an IV setting. For every combination of values of
λ, T, h, and for every v ∈ {1.0, 1.5, 2.0, . . . , h}, we run 1000 Monte Carlo
simulations, evaluating the normalized revenue provided by mechanisms
ESoES-SS andMC. For every combination of values of λ, T, h, we calculate
maxv

Ev [R(MC)]−Ev [R(ESoES-SS)]
h

, corresponding to the maximum normalized
loss of ESoES-SS w.r.t.MC over all valuations v, and, then, we calculate
maxv

Ev [R(ESoES-SS)]−Ev [R(MC)]
h

, corresponding to the maximum normalized
loss of MC w.r.t. ESoES-SS over all valuations v. These two indexes
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Figure 3.4: Average normalized revenue of MC, MPC, ESoES-SS in a RV setting w.
uniform distribution (h = 10).
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Figure 3.5: Maximum difference between the normalized revenues ofMC and ESoES-SS
in an IV setting (h = 10).

are shown in Figure 3.5 for T = 10 and T = 50, when h = 10. The
results obtained for different values of h are similar. The loss of ESoES-SS
w.r.t.MC is always larger than 0.5h except when both λ and T assume small
values, while the loss ofMC w.r.t. ESoES-SS is negligible. Furthermore,
the two losses converge to two constants as λ and T increase. This shows
that, even if there are some special settings where ESoES-SS performs
better thanMC, the improvement is negligible. Instead, mechanismMC,
which is designed to deal with stochastic arrivals, provides a very significant
improvement. In particular, we observe that the difference between the
revenue provided by ESoES-SS and that provided byMC is maximized for
small values of v close to 1, while betweenMC and ESoES-SS for large
values of v close to h.
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Result #3 We compareMC,MPC, and ESoES-SS when the distribution of
the agents’ valuations is not MHR. We perform an experiment similar to that
of Result #1. Here, agents’ valuations are drawn from a truncated normal
distribution with µ = h−1

2
, σ2 = 2, and support [1, h]. Figure 3.6 is similar

to Figure 3.4. Observe that, in this setting, the performances ofMPC with
Nsub = 13 andMPC with Nsub = 232 are analogous. This means that,
tuning the parameters in a suitable way, we can impose a time constraint with
almost no loss in the normalized mean revenue. Moreover, the truncated
normal distribution is not MHR, hence, all the bounds on the competitive
ratio of the mechanism do not hold. Despite this fact, we see that, in this
scenario, the behavior of the mean normalized revenue is comparable to
that of Result #1. In particular, the loss of ESoES-SS w.r.t.MC averaged
over the values of λ is about 0.2h when T = 10, and slightly larger when
T = 50.

(a) T = 10 (b) T = 50

Figure 3.6: Average normalized revenue ofMC,MPC, and ESoES-SS.

Result #4 We analyze mechanismsMC andMPC with differentNsub values
when the valuations of the agents are linearly discounted. For every λ we
run 1000 Monte Carlo simulations, with h = 10. Given parameters λ and
h, we simulated the arrivals of agents drawn from a uniform distribution
with support [1, h] and we computed the revenue of the mechanisms. We
normalized the results by h and, for each value of λ, we average by the
simulations. Then, for each value of λ, we plot in Figure 3.7 the normalized
mean revenues of the mechanisms, for T = 10 and T = 50. We observe that
MC is no longer the best mechanism in terms of normalized mean revenue.
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The interesting fact is that, a suitably tuned mechanismMPC can reach a
better average revenue thanMC in some IV scenarios.

(a) T = 10 (b) T = 50

Figure 3.7: Average normalized revenue ofMC,MPC, and ESoES-SS.
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CHAPTER4
Multi-Armed Bandit Problem with

Temporally-Partitioned Rewards: When
Partial Feedback Counts

Chapter 4 studies the setting in which the reward derived by selling products
is partitioned over multiple time instant after the sale and its temporal
structure is unknown to the seller. The proposed price may have delayed
effects on the reward, and the seller has to learn which is the revenue-
maximizing price. One of the fundamental challenge of such a temporal
structure is whether it is possible for the seller to exploit incomplete reward
samples to speed up the learning procedure. We remark that the techniques
employed to address the problem presented in Chapter 3 are significantly
distinct from those implemented in the present chapter. This is due to the
different objectives of the two chapters: Chapter 3 aims to sell a single unit
of an item, whereas Chapter 4 focuses on selling multiple units of the same
item. Selling many units of the same item in a sequential manner allows the
seller to employ learning techniques in order to find a good pricing strategy.
The guarantees provided by such techniques ensure that the seller does not
loose too much during the learning procedure. Conversely, no learning is
possible when selling a single unit of product.
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In this chapter, we study a novel bandit setting, namely Multi-Armed Ban-
ditwith Temporally-Partitioned Rewards (TP-MAB), in which the stochastic
reward associated with the pull of an arm is partitioned over a finite number
of consecutive rounds following the pull. This setting, unexplored so far
to the best of our knowledge, is a natural extension of delayed-feedback
bandits to the case in which rewards may be dilated over a finite-time span
after the pull instead of being fully disclosed in a single, potentially delayed
round. An introduction to the TP-MAB framework is provided in Sec-
tion 1.1, while a further discussion on applications and other related works
from the literature is provided in the following paragraphs. Section 4.1
provides a formal model and a lower bound for the general class of TP-
MAB problems. Section 4.2 introduces the α-smoothness property, which
characterizes the structure of the reward, and provide an improved lower
bound for the α-smooth problem. In Section 4.3 we design two algorithms
to address TP-MAB problems, namely, TP-UCB-FR and TP-UCB-EW,
which exploit the partial information disclosed by the reward collected over
time. We show that our algorithms provide better asymptotical regret upper
bounds than delayed-feedback bandit algorithms when α-smoothness holds.
In Section 4.4 we empirically evaluate their performance across a wide
range of settings, both synthetically generated and from a real-world media
recommendation problem.

Other Motivating Applications. Sequential decision-making occurs in many
real-world scenarios such as clinical trials, recommender systems, web
advertising, and e-commerce. A motivating example for TP-MABs is recom-
mending media content and, in particular, song playlists to a class of users
(i.e., users sharing similar characteristics). In this setting, each arm corre-
sponds to a playlist. The reward is measured in listening time (proportional
to the user’s appreciation). The goal is to find the playlist that maximizes
the reward. The recommendation system suggests a playlist to a new user
at each round, whose appreciation is revealed through multiple steps. In
particular, every partial observation corresponds to a song in the playlist,
and the associated reward is positive if the user listens to that song and
non-positive otherwise. The cumulative reward provided by recommending
a playlist to a single user corresponds to the sum of the reward terms from
all the playlist songs. Notice that the playlist cannot be trivially modeled as
a collection of independent songs, as their order in the playlist affects the
user’s behavior. In the classical delayed-feedback bandit setting, the feed-
back on the recommended playlist is obtained only once the user finishes
listening to the entire playlist. However, the platform monitors whether
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every song is listened to or skipped by the user. Therefore, clues on the
performances of the recommended arm can be exploited before the user
finishes the playlist.

Another scenario captured by the TP-MAB framework is the evaluation
of medical treatments taking place over a long period of time. In this setting,
the per-round reward corresponds to the patient’s state of health at each
daily/weekly medical check, and the goal is to find the treatment providing
the greatest overall benefit to the patient. In the case of severe pathologies,
such as cancer, this type of partial information would span several months
if not years, providing valuable insights that would be otherwise ignored.
Applying a standard delayed-MAB approach to this scenario, i.e., taking
decisions only at the end of each treatment cycle, could negatively affect the
time required to select an effective medical treatment. In this type of setting,
we argue that the partial information provided by patients in periodic medical
checks should be used to speed up the learning process. Other examples of
real-world scenarios which can be modeled through the TB-MAB setting
are provided in Appendix A.2.3.

Other Related Works. In Section 1.1 we introduced part of the literature
realting to both dynamic pricing and multi-armed bandit problems. Now, we
provide additional works relating to the multi-armed bandit framework, and
specifically, to the delayed feedback bandits. To the best of our knowledge,
ours is the first work addressing a bandit problem in which the reward
from a pull is partitioned across multiple rounds. The most related works
concern the Delayed-MAB setting, such as the seminal paper by Joulani
et al. [2013], which summarizes the known results on the regret upper bounds
of online learning algorithms. They also provide a modification of the well-
known UCB1 algorithm from Auer et al. [2002a] for the delayed-feedback
setting, called Delayed-UCB1. More recently, a variety of delayed-feedback
scenarios were studied investigating directions different from ours, such
as linear and contextual (Arya and Yang [2020], Vernade et al. [2020a],
Zhou et al. [2019]), non-stationary (Vernade et al. [2020b]) bandits under
delayed feedback. Pike-Burke et al. [2018] and Cesa-Bianchi et al. [2018]
also analyze the case of delayed, aggregated, and anonymous feedback. For
clarity, we remark that, in our work, per-round rewards corresponding to
different pulls can be received in the same round, and it is known from
which arm they were generated. Many works apply bandits to practical
scenarios, e.g., scheduling Cayci et al. (2019), advertising Nuara et al.
(2018); Castiglioni et al. (2022d); Nuara et al. (2022), pricing Trovò et al.
(2018), and delayed feedback settings Vernade et al. (2017).
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Works from the bandit literature, such as the ones by Dudik et al. [2011],
Desautels et al. [2014], Neu et al. [2013], rely on known constant delays
or maximum delay values. Similarly, in our work, we assume a maximum
finite delay equal to τmax, which is compliant with the real-world scenarios
we aim at modeling, e.g., in the above example of playlist recommendations,
an infinite τmax would correspond to a playlist of an infinite number of
songs. According to the terminology used in the delayed-MAB literature,
our setting is uncensored, meaning that the reward provided by a given
action is eventually observed after a finite maximum delay. Conversely,
many works in the field, such as, e.g., Manegueu et al. [2020] and Vernade
et al. [2017], deals with random delays from an unbounded distribution with
finite expectation.

4.1 Model

Consider a MAB problem withK ∈ N∗ arms, over a time horizon of T ∈ N∗
rounds. At every round t ∈ [T ], the learner pulls an arm i ∈ A = [K] and,
from the pull of that arm, gets a per-round reward wit,m−t+1 at every round
m ∈ {t, . . . , t + τmax − 1}, where τmax ∈ N∗ is the time span over which
the reward is partitioned.1 In particular, τmax − 1 is the maximum delay
affecting the observation of a per-round reward, whose value is known to the
learner. Therefore, at round t+τmax−1, the cumulative reward from pulling
arm i at round t is completely collected by the learner. Furthermore, we
denote bywi

t = (wit,1, . . . , w
i
t,τmax

) the vector of per-round rewards collected
from pulling arm i at round t. For every j ∈ [τmax], the per-round reward
wit,j is a realization of a random variable W i

t,j with support [W i
j,W

i

j]. The
cumulative reward collected from pulling arm i at round t is denoted by
rit, and it is the realization of the random variable Ri

t :=
∑τmax

j=1 W
i
t,j , with

support [Ri, R
i
], where Ri :=

∑τmax

j=1 W
i
j , and R

i
:=
∑τmax

j=1 W
i

j . For every
i ∈ A and t ∈ [T ], we assume that the variables Ri

t are independent with
mean µi := E[Ri

t].
2

A policy U is an algorithm that at each round t chooses an arm it ∈ [K]
. The performance of a policy U is evaluated in terms of pseudo-regret,
defined as the cumulative loss due to playing suboptimal arms during the

1We denote by [n] the set {1, . . . , n}
2W.l.o.g., we assume Xi

j = 0, ∀i ∈ [K], ∀j ∈ [τmax].
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time horizon T , formally:

RT (U) = Tµ∗ − E

[
T∑
t=1

µit

]
,

where µ∗ = maxi∈A{µi} is the expected reward of the optimal arm i∗,
and the expectation is taken w.r.t. the stochasticity of the policy U. Notice
that we adopt the concept of pseudo-regret as for standard bandits, unlike
what is done by Vernade et al. [2017], since our choice allows for a direct
comparison with the vast prior work on delayed bandits.

In what follows, we cast the playlist recommendation problem, described
in the introduction, in the TP-MAB setting.

Example 4.1 (Playlist Recommendation). At each round t, a new user
enters the platform, which provides a playlist suggestion. The different arms
i are the available playlists to suggest, each composed of N songs. Songs
are characterized by 4 listening levels (from “skipped” to “complete”),
each associated with a different Bernoulli random variable representing the
corresponding per-round reward. The vector of realized per-round rewards
of song k ∈ [N ] is (wit,4(k−1)+1, w

i
t,4(k−1)+2, w

i
t,4(k−1)+3, w

i
t,4(k−1)+4). Each

variable assumes a value of 1 if the user reaches the corresponding level,
and a value of 0 if the user stops listening to the song before that level. The
cumulative reward Ri

t for pulling arm i at round t is the sum of the rewards
from the songs in the playlist, and the time span over which the platform
observes the reward is τmax = 4N .

We show that the TP-MAB problem has a lower-bound on the regret
of the same order of the delayed-feedback bandit problem. The rationale
is that no better lower bound is possible as delayed-feedback MABs with
a finite delay are a subclass of TP-MABs whose reward vector wi

t has a
single non-zero element for each i ∈ A and t ∈ [T ]. Most interestingly, the
worst-case instance for the regret lower bound in the TP-MAB setting is the
delayed-feedback bandit.

Theorem 4.1. The regret of any uniformly efficient policy U applied to the
TP-MAB problem is bounded from below by:

lim inf
T→+∞

RT (U)

lnT
≥
∑

i:µi<µ∗

∆i

KL
(

µi
Rmax

, µ∗

Rmax

) , (4.1)

where ∆i := µ∗ − µi is the expected loss suffered by the learner if the arm i

is chosen instead of the optimal one i∗, Rmax := maxi∈[K] R
i
, and KL(p, q)
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is the Kullback-Leibler divergence between Bernoulli r.v. with means p and
q.3

Proof. At first, notice that learning the optimal arm in a TP-MAB problem
P for rewards Ri

t taking values over a generic finite domain [0, R
i
], having

range R
i
, is equivalent to the problem of learning in a TP-MAB problem P ′

with reward Rit
Rmax

having domain [0, 1]. Indeed, from a learning perspective,
distinguish between two arms in the first setting requires the same sample
complexity of distinguish between two arms in the second one. The expected
reward of the i-th arm of the P ′ problem is (µi)

′ = µi
Rmax

and the one
corresponding to the optimal arm is (µ∗)′ = µ∗

Rmax
.

Let us consider for each problem P in the class of TP-MAB problems, its
corresponding P ′ one. For each P ′, we build a corresponding Delayed-MAB
equivalent problem, by delaying all the intermediate rewards corresponding
to a pull at round t to the round t + τmax − 1. Therefore, using the results
on the lower bound of the Delayed-MAB problems provided by Vernade
et al. [2017] (Lemma 15) we have that:

lim inf
T→+∞

E[Ni(T )]

log(T )
≥ 1

KL
(

µi
Rmax

, µ∗

Rmax

) , (4.2)

where E[Ni(T )] is the expected number of times an arm i is selected over a
time horizon of T by the policy U. Due to the equivalence depicted above,
this result holds also for the original problems P in the class of TP-MAB
problems. From the fact that RT (U) = ∆iE[Ni(T )] and summing over the
suboptimal arms, i.e., i 6= i∗, we get the theorem statement.

Notice that the lower bound holds for general TP-MAB problems. In
the following section, we show that focusing on a broad subset of instances
of practical interest, we can design algorithms with a better regret upper
bound.

4.2 α-Smoothness Property

From Theorem 4.1, we know that we cannot design algorithms with regret
upper bounds better than those of the algorithms for the delayed-feedback
bandit setting. Nonetheless, in practice, collecting per-round rewards can
provide useful information on the cumulative reward of an arm. However,

3An uniformly efficient policy chooses the suboptimal arms on average o(ta) times (0 < a < 1) over t
rounds.
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wit,1 wit,2 wit,3 wit,4 wit,τmax

zit,1 zit,α

Figure 4.1: Example of α-smooth reward with φ = 3.

as already pointed out by Manegueu et al. [2020] for the standard delayed-
feedback setting, zero rewards are ambiguous since they do not give any
information on future rewards. In the general setting, small per-round
rewards observed in the first rounds after the pull are not much informative
to bound the values of future ones. To avoid this, we focus on those problems
in which the maximum reward realized over a few rounds cannot exceed a
fraction of the maximum reward R

i
.

Let us consider α ∈ [τmax] s.t. α is a factor of τmax, i.e., τmax

α
=: φ and

φ ∈ N.4 Let us define the vector Zi
t,α :=

(
Zi
t,1, . . . , Z

i
t,α

)
whose element

Zi
t,k is the random variable corresponding to the sum of a set of consecutive

per-round rewards of cardinality φ. Formally, for every k ∈ [α]:

Zi
t,k :=

kφ∑
j=(k−1)φ+1

W i
t,j. (4.3)

The support ofZi
t,k is denoted by [Zi

α,k, Z
i

α,k], whereZi
α,k :=

∑kφ
j=(k−1)φ+1W

i
j ,

and Z
i

α,k :=
∑kφ

j=(k−1)φ+1W
i

j . Intuitively, the α-smoothness property states
that the elements in Zi

t,α are independent and that, when α > 1, the max-

imum reward R
i

of a pull cannot be realized in a single time span corre-
sponding to a Zi

t,k element. Formally:

Definition 4.1 (α-smoothness). In the TP-MAB setting, for α ∈ [τmax],
we say that the reward is α-smooth if and only if τmax

α
= φ, with φ ∈ N,

and, for each k ∈ [α], the random variables Zi
t,k are independent and

s.t. Z
i

α,k = Z
i

α = R
i

α
.

An example of α-smooth environment with φ = 3 is presented in Fig-
ure 4.1, where colors denote the elements zit,k that are the realizations of the
variables Zi

t,k.
4We assume α is a factor of τmax for the sake of presentation. The following results also hold for generic

α ∈ [τmax].
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Consider the extreme values of parameter α. When α = 1, the reward
has no constraint on how it distributes over time. This scenario includes the
delayed-feedback bandit setting in which the cumulative reward provided by
the arm pulled at t is entirely collected at a single round (including the last
possible round t+ τmax − 1). Note that, in this case, at each round before
t+ τmax − 1, the sum of the future per-round rewards is in the range [0, R

i
].

Conversely, when α = τmax, the vector of aggregated rewards coincides
with the vector of per-round rewards, i.e.,Zi

t,τmax
= W i

t , and each per-round

reward is at most W
i

j = R
i
/τmax. Thus, observing low rewards in the first

rounds after the pull provides useful information on the actual cumulative
reward. In particular, after observing the first n < τmax per-round rewards,
we know that the cumulative reward achievable in the following rounds
is in the range [0, τmax−n

τmax
R
i
]. This information dramatically reduces the

uncertainty on the future rewards w.r.t. a setting without smooth rewards
(e.g., α = 1). The α-smoothness property characterizes those setting where
not gaining much in the first rounds precludes the possibility of achieving
the maximum possible reward over the entire interval.

Consider the playlist recommendation problem in Example 4.1. Since
the reward corresponding to a song is composed of 4 Bernoulli variables and
has a maximum of Z

i

α = 4, α-smoothness holds with α = R
i

Z
i
α

= 4N
4

= N .

Assuming α-smoothness, we have a lower bound of:

Theorem 4.2. The regret of any uniformly efficient policy U applied to the
TP-MAB problem with the α-smoothness property is bounded from below
by:

lim inf
T→+∞

RT (U)

lnT
≥
∑

i:µi<µ∗

∆i

αKL
(

µi
Rmax

, µ∗

Rmax

) . (4.4)

Proof. The proof follows the steps provided for Theorem 2.2 in the work
by Bubeck and Cesa-Bianchi [2012] and generalize them to the setting in
which multiple rewards, i.e., α, are earned by a single arm pull.

Let us define an auxiliary MAB setting in which:

• only two arms with expected value µ1 and µ2, with µ2 < µ1 < 1;

• all the arm have maximum reward equal to Ri
t = Rmax;

• the reward Zi
t,k are i.i.d. over k ∈ {1, . . . , α}, meaning that the ex-

pected value of each of the element is µi
α

;
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• the reward are Zi
t,k ∈ {0, Rmax

α
}, i.e., the reward are Bernoulli scaled

by a factor Rmax

α
;

• pulling an arm at time t provides α reward for the arm {Zi
t,1, . . . , Z

i
t,α},

all observed by the learner at the time of the pull.

Let us remark that determining the optimality of an arm in this problem
is no harder than the one in which the reward is spread over the period
{t, . . . , t + τmax − 1}. Therefore, the derivation of a lower bound for this
problem would also provide a lower bound for the original TP-MAB setting
with α-smoothness. Moreover, let us recall that learning in a problem where
the reward are scaled by a factor Rmax

α
, similarly to what has been done

in Theorem 4.1, does not change the complexity of learning. From now
on, we will consider as expected value of the two arms µZ1 := µ1

Rmax
and

µZ2 := µ2

Rmax
. Therefore, to compute the expected value of number of times

an algorithm pulls the suboptimal arm E[N2(T )] we can also use the scaled
rewards. In what follows, we prove that the lower bound for the auxiliary
problem for any uniformly efficient policy U.

Overall proof idea: Let us consider a second instance of the above
defined MAB such that arm 2 is optimal and µZ1 < µ′Z2

< 1. We refer to
it as the modified bandit. Let ε > 0, since w 7→ KL(µZ2 , w) is continuous
one can find µ′Z2

∈ (µZ1 , 1) such that:

KL
(
µZ2 , µ

′
Z2

)
≤ (1 + ε)KL(µZ2 , µZ1). (4.5)

In what follows, we use the notation E′, P′ to denote the expected value and
probability computed in the second bandit instance. The goal is to compare
the behavior of the forecaster on the initial and modified bandits. The idea
of the proof is to show that, with a big enough probability, the forecaster
is not able to distinguish between the two problems. Then, using the fact
that the forecaster is uniformly efficient by hypothesis, we show that the
algorithm does not make too many mistake on the modified bandit and, in
particular, provide a lower bound on the number of times the optimal arm is
played. This reasoning implies a lower bound on the number of times the
suboptimal arm 2 is played in the initial problem.

First step: P(Ct) = o(1)
Let us define, for s ∈ {1, . . . , t}, the empirical estimate of KL

(
µZ2 , µ

′
Z2

)
at
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round t when the arm 2 is pulled s times:

K̂Lαs :=
s∑

n=1

α∑
k=1

ln
µZ2Z

2
n,k + (1− µZ2)(1− Z2

n,k)

µ′Z2
Z2
n,k + (1− µ′Z2

)(1− Z2
n,k)

. (4.6)

We introduce the following event linking the behavior of the forecaster
on the initial and modified bandits:

Ct :=
{
αN2(t) < ft and K̂LαN2(t) ≤ (1− ε/2) ln t

}
, (4.7)

where ft = 1−ε
KL(µZ2

,µ′Z2
)
ln t. Following the proof of Theorem 2.2 from Bubeck

and Cesa-Bianchi [2012], we have:

P′(Ct) = E[1Ct exp
(
−K̂LαN2(t)

)
] ≥ e−(1−ε/2) ln tP(Ct), (4.8)

where we used the change of measure identity for the first equality and use
the fact that K̂LαN2(t) ≤ (1− ε/2) ln t in Ct.5 Combining Equation (4.8),
the definition of Ct, and using the Markov’s inequality, we have:

P(Ct) ≤ t(1−ε/2)P′(Ct) ≤ t(1−ε/2)P′(αN2(t) < ft) ≤

≤ t(1−ε/2)E′ [t−N2(t)]

t− ft/α
= o(1), (4.9)

where with o(1) we denote a quantity whose limit for t→ +∞ is 0 and we
used the fact that the policy U is uniformly efficient, i.e., E′[T2(t)] = o(tβ)
with β < 1.

Second step: P(αN2(t) ≤ ft) = o(1)
Using the Third step of the proof of Theorem 2.2 from Bubeck and Cesa-
Bianchi [2012], we get:

o(1) = P(Ct) ≤ P

(
αT2(t) < ft︸ ︷︷ ︸

E1

∧

∧
KL(µZ2 , µ

′
Z2

)

(1− ε) ln t
max
s<ft/α

K̂Lαs ≤
1− ε/2
1− ε

KL(µZ2 , µ
′
Z2

)︸ ︷︷ ︸
E2

)
.

5For any event A in the σ-algebra generated by {Z2
n,k}n∈{1,...,s},k∈{1,...,α} holds that P′(A) =

E
[
1A exp

(
−K̂LαN2(t)

)]
.
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Using the strong law of large numbers the event E2 is s.t. limt→+∞ P(E2) =
1, we infer that P(E1) = P(αN2(t) < ft) = o(1), and that for t→ +∞ we
have E[N2(t)] > ft/α.

Final step: Using Equation (4.5) we have that, for t→ +∞:

E[N2(t)] > ft/α =
1− ε

αKL(µZ2 , µ
′
Z2

)
ln t ≥ 1− ε

α(1 + ε)KL(µZ2 , µZ1)
ln t,

(4.10)

where the theorem statement follows from the arbitrarity of the value of ε,
substituting µZ1 with µ∗

Rmax
and µZ2 with µ2

Rmax
, and summing over all the

suboptimal arms.

We remark that this bound is tighter than the one provided in Theorem 4.1
by a multiplicative factor of 1/α.

4.3 Algorithms for the TP-MAB Setting

We propose two novel algorithms, namely Temporally-Partitioned rewards
UCB with Fictitious Realizations (TP-UCB-FR) and Temporally-Partitioned
rewards Element-Wise UCB (TP-UCB-EW), for the TP-MAB problem,
which aim at maximizing the cumulative reward and exploit the α-smoothness
property to do that. From now on, we denote the two corresponding policies
by UFR and UEW, respectively.

4.3.1 The TP-UCB-FR Algorithm

The pseudo-code of TP-UCB-FR is provided in Algorithm 4.1. The ratio-
nale is to use the rewards coming from not fully-realized reward vectors
by replacing the missing elements with fictitious realizations. At round t,
fictitious reward vectors are associated to each arm pulled in the time span
H := {t−τmax+1, . . . , t−1}. We denote them by w̃i

h = [w̃ih,1, . . . , w̃
i
h,τmax

]

with h ∈ H , where w̃ih,j := wih,j , if h + j ≤ t, and w̃ih,j = 0, if h + j > t.
The corresponding fictitious cumulative reward is r̃ih :=

∑τmax

j=1 w̃
i
h,j . The

algorithm takes as input the smoothness α ∈ [τmax], and the maximum delay
τmax.6 During the initialization phase, all arms are pulled once (Line 3).

6If these information are not available one should use α = 1, meaning we are not assuming any structure over
the reward, and use as τmax the largest delay observed so far.
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Algorithm 4.1 TP-UCB-FR
1: Input: α ∈ [τmax], τmax ∈ N∗
2: for t ∈ {1, . . . ,K} do . init phase
3: Pull arm it = t
4: end for
5: for t ∈ {K + 1, . . . , T} do . loop phase
6: for i ∈ {1, . . . ,K} do
7: Compute R̂it−1 and cit−1 as in Eq.s (4.11)-(4.12)
8: uit−1 ← R̂it−1 + cit−1

9: end for
10: Pull arm it = arg maxi∈[K] u

i
t−1

11: Observe wihh,t−h+1 for h ∈ {t− τmax + 1, . . . , t}
12: end for

After that, at each round t, it computes the estimated expected reward for
each arm i:

R̂i
t−1 :=

1

nit−1

(
t−τmax∑
h=1

rih1{ih=i} +
∑
h∈H

r̃ih1{ih=i}

)
, (4.11)

where nit−1 :=
∑t−1

h=1 1{ih=i} is the number of times arm i has been pulled
by the policy up to round t− 1, and the confidence interval:

cit−1 := R
i

√
2 ln(t− 1)

αnit−1

+
φ(α + 1)R

i

2nit−1

. (4.12)

Finally, it pulls the arm with the largest upper confidence bound uit−1

(Line 10), and observes its reward (Line 11).
We provide the following upper bound on the regret:

Theorem 4.3. In the TP-MAB setting with α-smooth reward, the pseudo-
regret of TP-UCB-FR after T rounds is:

RT (UFR) ≤
∑

i:µi<µ∗

4(R
i
)2 lnT

α∆i

(
1 +

√
1 +

α(α + 1)φ∆i

2R
i
lnT

)

+ (α + 1)φ
∑

i:µi<µ∗
R
i
+

(
1 +

π2

3

) ∑
i:µi<µ∗

∆i.

Proof. Let us define the true empirical mean of the cumulative reward of
arm i computed over nit samples as follows:

R̂i,true
t :=

1

nit

t∑
h=1

rih1{ih=i}.
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We aim to bound the difference between R̂i,true
t and the approximated empiri-

cal mean of the cumulative reward R̂i
t from arm i computed over nit samples

as in the TP-UCB-FR algorithm. Formally, we have:

R̂i,true
t − R̂i

t =
1

nit

t∑
h=1

τmax∑
j=1

(
wih,j − w̃ih,j

)
1{ih=i} ≤

1

nit

t∑
h=1

τmax∑
j=1

(
wih,j − ˜xwih,j

)
=

1

nit

t∑
h=max{1,t−τmax+2}

τmax∑
j=t−h+2

wih,j (4.13)

≤ 1

nit

α∑
j=1

φj
R
i

α
(4.14)

=
φ

nit

R
i

α

α∑
j=1

j =
φ

nit

R
i

α

α(α + 1)

2
=
R
i
(α + 1)φ

2nit
,

where, Equation (4.13) is due to the fact that Ri = 0 for each i ∈ [K],
and the inequality in Equation (4.14) is due to the α-smoothness of the
environment.

Following the proof of Theorem 1 by Auer et al. [2002a], we bound the
expected number of time a suboptimal arm is pulled as follows:

E[Ni(t)] ≤ `+
∞∑
t=1

t−1∑
s=1

t−1∑
si=`

P
{(
R̂∗t,s + c∗t,s

)
≤
(
R̂i
t,si

+ cit,si

)}
, (4.15)

where R̂∗t,s and c∗t,s are the empirical mean computed as in the TP-UCB-FR
algorithm and the confidence bound, respectively, of the optimal arm i∗

in the case s pulls occurred in the first t rounds, and, R̂i
t,si

and cit,si are
the empirical mean computed as in the TP-UCB-FR algorithm and the
confidence bound, respectively, of the arm i in the case si pulls occurred in
the first t rounds.

Equation (4.15) implies that at least one of the following holds:

R̂∗t,s ≤ µ∗ − c∗t,s, (4.16)

R̂i
t,si
≥ µi + cit,si , (4.17)

µ∗ < µi + 2cit,si . (4.18)

Let us focus on Equation (4.16). We have that:

P
(
R̂∗t,s − µ∗ ≤ −c∗t,s

)
= P

(
R̂∗,true
t,s − µ∗ ≤ −c∗t,s + R̂∗,true

t,s − R̂∗t,s
)
≤
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≤ P

(
R̂∗,true
t,s − µ∗ ≤ −c∗t,s +

R
i
(α + 1)φ

2s

)
=

= P

(
R̂∗,true
t,s − µ∗ ≤ −R∗

√
2 ln t

αs

)
≤

≤ exp


2
(
R
∗
√

2 ln t
αs

)2

s2∑αs
l=1

(
R
∗

α

)2

 ≤ e−4 ln t ≤ t−4, (4.19)

where c∗t,s := R
∗
√

2 ln(t)
αs

+ R
i
(α+1)φ

2s
, R
∗

:= R
i∗

, R̂∗,true
t,s is the empirical mean

of the optimal arm i∗ in the case s pulls occurred in the first t rounds, and
we use the Hoeffding inequality in Equation (4.19).

Similarly, Equation (4.17) is bounded by:

P
(
R̂i
t,si
− µi ≥ cit,si

)
≤ P

(
R̂i,true
t,s − µi ≥ R

i

√
2 ln t

αsi

)
≤

≤ e−4 ln t = t−4, (4.20)

where we used the fact that R̂i,true
t,si ≥ R̂i

t,s by construction of the latter, and
we used the Hoeffding inequality to derive Equation (4.20).

Define:

` :=

⌈
R
i
(α + 1)φ

∆i

+
4(R

i
)2 ln t

α∆2
i

(
1 +

√
1 +

α(α + 1)φ∆i

2R
i
ln t

)⌉
. (4.21)

We have that the following holds:

µ∗ ≥ µi + 2cit,s

∆i ≥ 2

(
R
i

√
2 ln t

αsi
+ φ

R
i
(α + 1)

2si

)

s2
i

(
∆2
i

4

)
− 2si

(
∆iR

i
(α + 1)

4
φ+

(R
i
)2 ln t

α

)
+ φ2 (R

i
)2(α + 1)2

4
≥ 0

si ≥
4

∆2
i

(
∆iR

i
(α + 1)

4
φ+

(R
i
)2 ln t

α
+

+

√
(R

i
)4 ln2 t

α2
+

∆i(R
i
)3(α + 1)φ ln t

2α

)
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si ≥
R
i
(α + 1)

∆i

φ+
4(R

i
)2 ln t

∆2
iα

(
1 +

√
1 +

∆iα(α + 1)φ

2R
i
ln t

)
,

and, therefore, for si ≥ ` the inequality in Equation (4.18) is always false.
Finally, summing up the results derived above and using ` as defined in

Equation (4.21), we have:

E[Ni(t)] ≤

⌈
R
i
(α + 1)

∆i

φ+
4(R

i
)2 ln t

α∆2
i

(
1 +

√
1 +

α(α + 1)φ∆i

2R
i
ln t

)⌉
+

+
∞∑
t=1

t−1∑
s=1

t−1∑
si=`

[
P
(
R̂∗t,s − µ∗ ≤ −c∗t,s

)
+ P

(
R̂i
t,si
− µi ≥ cit,si

)]

≤ 1 +
R
i
(α + 1)

∆i

φ+
4(R

i
)2 ln t

α∆2
i

(
1 +

√
1 +

α(α + 1)φ∆i

2R
i
ln t

)
+

+ 1 +
∞∑
t=1

t−1∑
s=1

t−1∑
si=`

2t−4

≤ R
i
(α + 1)

∆i

φ+
4(R

i
)2 ln t

α∆2
i

(
1 +

√
1 +

α(α + 1)φ∆i

2R
i
ln t

)
+ 1 +

π2

3
.

The theorem follows from RT (UFR) =
∑

i:µi<µ∗
∆iE[Ni(T )].

The dominant term in T has the order of O
(∑

i:µi<µ∗
R

2
max lnT
α∆i

)
, where

Rmax = maxiR
i
. When α = 1, the upper bound scales as the one of

classical MAB algorithms in stochastic settings. Notice that the pseudo-
regret indirectly depends on τmax since R

i
represents the cumulative reward

obtained over τmax rounds. Let us compare this result with the one provided
in Theorem 4.1 for general TP-MAB problems. Applying to Theorem 4.1
the inequality KL(p, q) ≤ (p−q)2

q(1−q) , where for p, q ∈ [0, 1], derived using the
fact that lnx ≤ x− 1, we get:

lim inf
T→+∞

RT (U)

lnT
≥
∑

i:µi<µ∗

β

∆i

, (4.22)

where β = µ∗

Rmax

(
1− µ∗

Rmax

)
.

For α > 4(R
i
)2/β, the multiplicative factor in the dominant term of the

upper bound provided in Theorem 4.3 is better than that in the lower bound
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Algorithm 4.2 TP-UCB-EW
1: Input: α ∈ [τmax], τmax ∈ N∗
2: for t ∈ {1, . . . ,K} do . init phase
3: Pull arm it = t
4: end for
5: for t ∈ {K + 1, . . . , T} do . loop phase
6: for i ∈ {1, . . . ,K} do
7: for k ∈ {1, . . . , α} do
8: Compute Ẑit−1,k and cit−1,k as in Eq.s (4.23)-(4.24)
9: end for

10: uit−1 ←
∑α
k=1

(
Ẑit−1,k + cit−1,k

)
11: end for
12: Pull arm it ∈ arg maxi∈[K] u

i
t−1

13: Observe wihh,t−h+1 for h ∈ {t− τmax + 1, . . . , t}
14: end for

in Theorem 4.1. This suggests that exploiting the α-smoothness provides an
improvement over the classical and delayed-feedback MABs.

4.3.2 The TP-UCB-EW Algorithm

The pseudo-code of TP-UCB-EW is provided in Algorithm 4.2. The key
idea is to compute an upper confidence bound for the average of each set
of k-th realized aggregated rewards zit,k from arm i and use them to build
an upper bound on the overall average reward Ri

t. It takes as input the
smoothness parameter α, and the maximum delay parameter τmax. At first,
it pulls each arm once (Line 3), while, in the following rounds, it computes
the empirical mean:

Ẑi
t−1,k :=

∑t−kφ
h=1 zih,k1{ih=i}

nit−1,k

, (4.23)

where nit−1,k :=
∑t−kφ

h=1 1{ih=i} is the cardinality of the rewards observed up
to round t− 1 for the k-th element of Zi

t−1,α, and the confidence bound:

cit−1,k :=
R
i

α

√
2 ln(t− 1)

nit−1,k

. (4.24)

We remark that Ẑi
t−1,k + cit−1,k is an upper confidence bound for the k-th

element of Zi
t−1,α. Finally, the algorithm computes the upper bound uit−1,

summing the bounds above (Line 10), selects the arm i choosing the largest
uit−1 (Line 12), and observes its reward (Line 13).
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We provide the following upper bound on the regret:

Theorem 4.4. In the TP-MAB setting with α-smooth reward, the pseudo-
regret of TP-UCB-EW after T rounds is:

RT (UEW) ≤
∑

i:µi<µ∗

8(R
i
)2 lnT

∆i

+α

(
φ+

π2

3

)∑
i:µi<µ∗

∆i.

Proof. Following the same proof strategy of Theorem 4.3, we want to bound
the expected value of the number of pulls of suboptimal arms:

E[Ni(t)] ≤ l+
∞∑
t=1

t−1∑
s=1

t−1∑
si=l

P

(
α∑
k=1

(Ẑ∗t,k,s + c∗t,k,s) ≤
α∑
k=1

(Ẑi
t,k,si

+ cit,k,si)

)
,

where Ẑ∗t,k,s and c∗t,k,s are the empirical mean computed as in TP-UCB-EW
algorithm and the confidence bound, respectively, of the optimal arm i∗

in the case s pulls occurred in the first t rounds, and, Ẑi
t,k,si

and cit,k,si are
the empirical mean computed as in the TP-UCB-EW algorithm and the
confidence bound, respectively, of the arm i in the case si pulls occurred in
the first t rounds. Notice that in this case the number of samples collected
from each one of the α aggregated rewards are ≤ s and ≤ si, respectively.
Moreover, for values of l > τmax the quantities regarding the suboptimal
arm are estimated using at least one sample, e.g., 0 < nit,k,s < si. Con-
versely, for s ≤ τmax the optimal arm might have no sample available
to estimate the expected value and the bound. However, since the val-
ues of the upper confidence bound is set +∞ if no sample is collected,
the probability that it is smaller than the one of a suboptimal arm is 0,
(i.e., P

(∑α
k=1(Ẑ∗t,k,s + c∗t,k,s) ≤

∑α
k=1(Ẑi

t,k,si
+ cit,k,si)

)
= 0). As a conse-

quence, the cases in which no sample is available for the optimal bound can
be disregarded.

The condition above is satisfied if at least one of the following 2α + 1
inequalities holds:

Ẑ∗t,k,s − µ∗k ≤ −c∗t,k,s, ∀k ∈ {1, . . . , α} (4.25)

Ẑi
t,k,si
− µi,k ≥ cit,k,si , ∀k ∈ {1, . . . , α} (4.26)

α∑
k=1

µ∗k − µi,k − 2cit,k,si < 0, (4.27)

where µi,k := E[Zi
t,k,si

] and µ∗k := E[Z∗t,k,s] are the expected value of the
aggregated reward Zi

t,k,si
from arm i, and Zi∗

t,k,s from the optimal arm, re-
spectively.
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Let us focus on the k-th inequality in Equation (4.25). We have:

P(Ẑ∗t,k,s − µ∗k ≤ −c∗t,k,s) ≤ exp

−2(n∗t,k,s)
2(c∗t,k,s)

2∑n∗t,k,s
l=1

(
R
∗

α

)2

 (4.28)

≤ exp

{
−

2n∗t,k,s(c
∗
t,k,s)

2α2

(R
∗
)2

}
≤ e−4 ln t ≤ t−4,

where n∗t,k,s is the number of samples available for the estimation of the
expected value of Z∗t,k,s if we pulled s times the arm i∗ at round t. Here,
we assume that the estimates have at least one sample. If no samples are
available, the original probability in Equation (4.25) is bounded by 0.

Similarly, for the inequalities in Equation (4.26), we have:

P(Ẑi
t,k,si
− µi,k ≥ cit,k,si) ≤ exp

−2(nit,k,si)
2(cit,k,si)

2∑nit,k,si
l=1 (R

i

α
)2


≤ exp

{
−

2nit,k,si(c
i
t,k,si

)2α2

(R
i
)2

}
≤ e−4 ln t ≤ t−4. (4.29)

where nit,k,si is the number of samples available for the estimation of the
expected value of Zi

t,k,si
if we pulled si times the arm i at round t.

Define l =
⌈
αφ− 1 + 8(R

i
)2 ln t

∆2
i

⌉
. Notice that l ≥ τmax. We have that the

inequality in Equation (4.27) is false. Indeed, we have that:

α∑
k=1

(
µ∗k − µi,k − 2

R
i

α

√
2 ln t

nit,k,si

)
≥ ∆i − 2

R
i

α

α∑
k=1

√
2 ln t

si − kφ+ 1

≥ ∆i − 2α
R
i

α

√
2 ln t

si − αφ+ 1
= ∆i − 2R

i

√
2 ln t

si − αφ+ 1
, (4.30)

where we used that
∑α

k=1 µ
∗
k − µi,k = µ∗ − µi = ∆i.

If si ≥ αφ− 1 + 8(R
i
)2 ln t

∆2
i

, we have that:

si ≥ αφ− 1 +
8(R

i
)2 ln(t)

∆2
i

(4.31)

∆2
i

4(R
i
)2
≥ 2 ln(t)

si − αφ+ 1
(4.32)
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∆i − 2R
i

√
2 ln(t)

si − αφ+ 1
≥ 0, (4.33)

which implies that the inequality in Equation (4.30) is false.
Finally, summing the above results we have that:

E[Ni(t)] ≤

⌈
αφ− 1 +

8(R
i
)2 ln(t)

∆2
i

⌉
+

+
∞∑
t=1

t−1∑
s=1

t−1∑
si=l

α∑
k=1

[
P(Ẑ∗t,k,s − µ∗k ≤ −c∗t,k,s) + P(Ẑi

t,k,si
− µi,k ≥ cit,k,si)

]
≤

≤ αφ+
8(R

i
)2 ln(t)

∆2
i

+
∞∑
t=1

t−1∑
s=1

t−1∑
si=l

2αt−4 ≤

≤ 8(R
i
)2 ln t

∆2
i

+ α

(
φ+

π2

3

)
.

Recalling that RT (UEW) =
∑

i:µi<µ∗
∆iE[Ni(T )] concludes the proof.

Focusing on the dominant term in T of the regret bound, we do not have
an explicit improvement over the classical and delayed-feedback MAB algo-
rithms. Therefore, in this case, the structure provided by the α-smoothness
seems not to affect the regret bound. Hence, from an asymptotic point of
view, there is not a clear advantage from having α-smooth rewards. How-
ever, the constant term is significantly smaller than that of TP-UCB-FR and
allows TP-UCB-EW to be much more effective than TP-UCB-FR to tackle
TP-MAB problems with a short time horizon.

4.3.3 Theoretical Results Summary

Finally, we provide a table summarizing the results known in the literature
and provided in this chapter. Tables 4.1, 4.2, 4.3 reports the lower and upper
bounds on the regret for different algorithms and settings. Notice that the
lower bound results hold for T → +∞. Moreover, in the tables, we denote
8(R

i
)2

∆i
by Ci and

∑
i:µi<µ∗

by
∑

i. The assumption is that the instantaneous
(for the MAB and Delayed-MAB settings) and cumulative (for the TP-MAB
setting) rewards have support in [0, R

i
]. Moreover, in the Delayed-MAB

setting, the maximum stochastic delay is τmax The novel results have been
highlighted in blue. UCB1 does not have guarantees in the Delayed-MAB
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Setting: MAB
Lower bound
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∑
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i
+
(
1 + π2

3

)∑
i ∆i

TP-UCB-EW
∑
i Ci ln T +
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1 + π2

3

)∑
i ∆i

Table 4.1: Summary of the known theoretical results (in black) and original contributions
provided in this chapter (in blue) for the MAB setting.

Setting: Delayed MAB
Lower bound

∑
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∆i lnT

KL
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)
UCB1 N.a.

Delayed-UCB1
∑
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(
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i ∆i

TP-UCB-FR
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i
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2 ln T

(
1 +

√
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2∆i

Ri ln T
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+ 2τmax

∑
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i
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(
1 + π2

3

)∑
i ∆i

TP-UCB-EW
∑
i Ci ln T +

(
τmax + π2

3

)∑
i ∆i

Table 4.2: Summary of the known theoretical results (in black) and original contributions
provided in this chapter (in blue) for the Delayed MAB setting.

Setting: TP-MAB with α-smoothness
Lower bound

∑
i

∆i ln T

αKL

(
µi
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,
µ∗
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)
UCB1 N.a.

Delayed-UCB1
∑
i Ci ln T +

(
1 + π2

3 + τmax

)∑
i ∆i

TP-UCB-FR
∑
i
Ci
2α ln T

(
1 +

√
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α(α+1)∆i

2Ri ln T

)
+ (α+ 1)φ

∑
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i
+
(
1 + π2

3

)∑
i ∆i

TP-UCB-EW
∑
i Ci ln T + α

(
φ+ π2

3

)∑
i ∆i

Table 4.3: Summary of the known theoretical results (in black) and original contributions
provided in this chapter (in blue) for the TP-MAB setting with α-smoothness.

and TP-MAB settings since it has been developed for a more restrictive
scenario, i.e., τmax = 1.

The results related to the proposed algorithms, i.e., TP-UCB-FR and
TP-UCB-EW, for the MAB setting have been derived fixing τmax = 1 and
α = 1 in the corresponding theorems. The results of the Delayed-MAB
setting have been derived fixing α = 1. We remark that TP-UCB-FR in the
MAB setting has the same asymptotic order of upper bound of UCB1, while
the upper bound of TP-UCB-EW reduces exactly to the one of UCB1 in this
setting.
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Figure 4.2: Pseudo-regret over time for Experimental Setting #1.

4.4 Empirical Evaluation

We compare TP-UCB-FR and TP-UCB-EW algorithms with the UCB1 al-
gorithm by Auer et al. [2002a] and the Delayed-UCB1 algorithm by Joulani
et al. [2013] in α-smooth TP-MAB environments. We recall that the UCB1
algorithm cannot be run in a TP-MAB setting, unless we are in the degener-
ate case τmax = 1. Therefore, we assume to immediately get the cumulative
reward of a pull. In our setting, UCB1 represents a clairvoyant algorithm ob-
serving Ri

t at round t. Section 2.3.1 presents further details on the standard
UCB1 algorithm. Moreover, Delayed-UCB1 uses the realization of the
pulls only when they are complete, i.e., with a constant delay of τmax− 1. In
Appendix A we provide further details on the Delayed-UCB1 baseline.

In what follows, we compare the algorithms in three settings: two
synthetically-generated environments and a real-world playlist recommen-
dation scenario. More details on the description of the experimental settings
and some additional experiments are deferred to Appendix A.2.2.

Setting #1. At first, we evaluate the influence of the parameter α. We model
K = 10 arms, whose maximum reward is s.t. R

i
= 100i. The reward is

collected over τmax = 100 rounds, the smoothness parameter is α = 20, and
the aggregated rewards are s.t. Zi

t,k ∼ R
i

α
U([0, 1]), for each k ∈ [α]. We run

the algorithms over a time horizon of T = 105 and average the results over
50 independent runs. In the results, TP-UCB-FR(η) and TP-UCB-EW(η)
are s.t. the value of α taken as input is η, with η ∈ {5, 10, 20, 25, 50}.
Results. Figure 4.2 shows the pseudo-regret Rt(U) over the time hori-
zon and the vertical bars represent the 95% confidence intervals for the

99



Chapter 4. Multi-Armed Bandit Problem with Temporally-Partitioned
Rewards: When Partial Feedback Counts

mean value. Let us focus on TP-UCB-FR(20) and TP-UCB-EW(20), for
which η is equal to the α of the environment. TP-UCB-EW(20) provides
better results than Delayed-UCB1 over the entire time horizon, while
TP-UCB-FR(20) is better than Delayed-UCB1 for t > 104 and better
than TP-UCB-EW(20) for t > 2 · 104. This suggests that TP-UCB-FR(20)
is more suitable for longer time horizons, and this behavior is confirmed by
the asymptotic order of Theorem 4.3. Notice that UCB1 obtains the reward
as soon as an arm has been pulled, but it does not exploit the α-smoothness
property. Vice versa, our algorithms incorporates this information that, in
some specific situations, allows us to beat even the non-delayed baseline.

During rounds t ∈ [1, 7000], the Delayed-UCB1 algorithm outper-
forms TP-UCB-FR, since, during the initial rounds, incomplete samples
may be far different from the corresponding unseen realizations, and, there-
fore, TP-UCB-FR initially pulls the suboptimal arms more often than
Delayed-UCB1. Nonetheless, over longer time horizons, TP-UCB-FR
outperforms Delayed-UCB1, as expected given the result in Theorem 4.3.
TP-UCB-EW has a similar asymptotic behavior of those of UCB1 and
Delayed-UCB1, i.e., the regret curves becomes parallel after ≈ 4000
rounds. This is because the overall exploration term of the three algorithms
is of the same order in t and α, and therefore the advantages of TP-UCB-EW
are mainly experienced in the early stages of the learning process. Sum-
marily, for short-time horizons, TP-UCB-EW is preferable to TP-UCB-FR,
while TP-UCB-FR shows better performance over long periods.

Let us focus on the results obtained with TP-UCB-FR(η). Setting η < α,
i.e., underestimating the value of α, provides worse results in terms of
regret, while η > α seems to improve the performance of the algorithm
without compromising the convergence properties. This suggests that if the
α parameter is unknown, one should use an optimistic (large) value in the
algorithm. Notice that the regret varies of≈ 40% w.r.t. the different versions
of TP-UCB-FR changing the value of η, which suggests that TP-UCB-FR
is strongly influenced by a mis-specification of the parameter η. Focusing
on TP-UCB-EW(η), we have a behaviour similar to the one observed for
TP-UCB-FR(η), showing how larger values for η provide better results.
Conversely, the performance of TP-UCB-EW present a lower variability by
changing the parameter η, and the gap in terms of regret among the different
versions of TP-UCB-EW is of ≈ 3%.

Setting #2. We study the behavior of our algorithms in settings with dif-
ferent maximum delay τmax and smoothness α. The scenario is the same
presented in Setting #1 except that the maximum reward for the arm i is
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τmax α RT,(%)(UFR) RT,(%)(UEW)

100 10 68.06% (0.26%) 86.03% (0.59%)
200 20 95.42% (0.15%) 80.38% (0.34%)
100 50 50.84% (0.11%) 85.36% (0.33%)
200 100 81.55% (0.10%) 78.70% (0.24%)

Table 4.4: RT,(%)(U) for Experimental Setting #2.

R
i

= τmax · i.7 We evaluate the algorithms in terms of percentage of the
regret w.r.t. the one provided by Delayed-UCB1, whose policy is denoted
by UD, formally RT,(%)(U) := RT (U)/RT (UD) · 100. We average the results
over 50 independent experiments.

Results. Table 4.4 provides the values of RT,(%)(U) for our algorithms (95%
CI in brackets). In all the scenarios, the proposed algorithms outperform
the Delayed-UCB1 algorithm, providing a regret smaller than 95.5% of
the Delayed-UCB1 one. Comparing the results with the same maximum
delay τmax we notice that a larger value for α provides better performance.
This was expected since larger values for α imply that the TP-UCB-FR and
TP-UCB-EW algorithms can better exploit the reward structure. By com-
paring the settings with maximum delay τmax = 100 and τmax = 200, the
two algorithms behave in opposite ways: the performance of TP-UCB-EW
improves by more than 6%, while the regret of TP-UCB-FR increases of
more than 30%. This is due to the fact that, with larger τmax, TP-UCB-FR
shows its better behaviour for larger time horizons.

Spotify Setting. We apply the TP-MAB approach to solve the user recommen-
dation problem presented in Example 4.1, using a dataset by Spotify Brost
et al. (2019). We select the K = 6 most played playlist as the arms to
be recommended, and each time a playlist i is selected, the corresponding
reward realizations xit for the first N = 20 songs is sampled from the lis-
tening sessions of that playlist contained in the dataset. We recall that, in
this setting, the maximum delay is τmax = 4N = 80, and the smoothness
parameter is α = 20. More details on the setting and the distributions of the
reward for each playlist are provided in Appendix A.2.2. We average the
results over 50 independent runs.

7In Appendix A.2.2, we also report experiments in scenarios differing in how the aggregated rewards are
distributed over the φ elements composing Zit,k , which confirm what is shown in this section.
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RT (U)

Delayed-UCB1 56473 (805)
TP-UCB-FR 25367 (369)
TP-UCB-EW 55000 (951)

UCB1 47368 (1289)

Table 4.5: Pseudo-regret for the Spotify experimental setting.
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Figure 4.3: Pseudo-regret over time for the Spotify setting.

Results. Table 4.5 shows that the TP-UCB-FR algorithm provides the best
performance among the analysed algorithms, outperforming UCB1 thanks
to the exploitation of the α-smoothness property. The regret over time in
Figure 4.3 shows that the TP-UCB-FR provides worse performance than
TP-UCB-EW only for a limited amount of rounds (t < 4000). This suggests
that, in this specific scenario, the TP-UCB-FR algorithm represents a good
candidate to provide playlist recommendations.
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Expanding Algorithmic
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CHAPTER5
Efficiency of Ad Auctions with Price

Displaying

We study a novel ad auction framwork recently adopted by platforms, such
as Google Hotel Ads and Tripadvisor, where ads of similar products or
services are displayed together with their prices. As in classical ad auctions,
the ads are ranked depending on the advertisers’ bids, whereas, differently
from classical settings, ads are displayed together with their prices, so as to
provide a direct comparison among them. This dramatically affects users’
behavior, as well as the properties of ad auctions. Section 1.2 provides an
extended discussion which introduces the problem studied in this chapter.
Section 5.1 presents a formal model af the ad auction setting with price
displaying, a direct-revelation mechanism and two indirect-revelation mech-
anisms, characterized by GSP and VCG payments, respectively. Section 5.3
proves that, in our setting, the problem of allocating advertisers to slots can
be solved in polynomial time by both the direct- and the indirect-revelation
mechanisms. Section 5.4 analyzes the performance of the indirect-revelation
mechanisms in terms Price of Anarchy (PoA) and Price of Stability (PoS)
computed for the social welfare and the revenue. Section 5.5 shows that,
under some assumptions and by requiring the advertisers to report an addi-
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tional information, it is possible to improve the PoS for the revenue of the
indirect-revelation mechanism with VCG payments.

5.1 Model

There is a set N = {1, . . . , n} of n agents, who simultaneously play the
role of advertisers and sellers. Each agent sells a single good on her own
website (e.g., an online marketplace) and relies on an external ad publisher
that advertises the good through a single ad in which the price is displayed.
Since the goods being sold by the agents are similar, the price comparison
that users perform on the publisher’s website results in a high competition
level among the agents, as happening in classical comparator websites Jung
et al. (2014). In the following, for the ease of presentation, we use index
i ∈ N to refer to the agent, her good, and also her ad. Figure 5.1 provides
an overview of our scenario.

Figure 5.1: An example of ad auction with price displaying. A user visits a Web page with
three ads (ad 1, ad 2, and ad 3) together with their prices (p1, p2, and p3). The user
observes slot 3 with probability λ3. Once observed slot 3, the user clicks on the ad
displayed in slot 3, i.e., ad 3, with probability q3(p3, pmin) where pmin is the minimum
price among p1, p2, p3. The user visits the Web page of advertiser 3 (e.g., an online
marketplace), and, then, produces a conversion (e.g., purchase) with probability α3.
The value that advertiser 3 gets from the conversion is p3 − c3.

For every i, we denote with ci ∈ R≥0 and pi ∈ R≥0 the cost of supply
and the selling price of agent i’s good, respectively. Furthermore, we denote
with αi ∈ [0, 1] the probability with which a user buys agent i’s good when
visiting her website. Thus, agent i’s expected gain from a visit of a user on
her website is αi (pi − ci). Let us remark that the conversion probability
αi is constant w.r.t. the price pi, since we assume that the user is aware of
the price before visiting the website and, thus, she does not visit it if the
price is larger than her reserve value. As previously discussed, the user first
observes the ads on the publisher’s website, together with their prices, and,
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then, she clicks on an ad so as to visit the corresponding advertiser’s website.
Therefore, the motivation behind an uncompleted conversion following
the user’s visit to the advertiser’s Web page does not concern the price
(e.g., it may be due to the user acquiring more information on the seller, or
potential extra fees and/or ancillary services). The pair (αi, ci) is a private
information of agent i, and sometimes we will refer to it as her type θi. We
let Θ = [0, 1]× R≥0 be the space of types of every agent.

The ad publisher has a set M = {1, . . . ,m} of slots in which the ads
are displayed. An assignment of ads to slots (also called allocation) is
represented by a function f : N → M ∪ {⊥} such that there is at most
one ad per slot (i.e., there are no ads i, h ∈ N such that i 6= h and f(i) =
f(h) ∈ M ). All the ads that are not assigned to slots in M are assigned
to ⊥, meaning that these ads are not displayed. For every slot j ∈ M ,
we denote with λj ∈ [0, 1] the probability (called prominence) that a user
observes the ad displayed in that slot. As customary in the literature, we
assume that λ1 ≥ λ2 ≥ . . . ≥ λm. For the ease of notation, we define
λ⊥ = 0. Furthermore, for every agent i, we denote with qi ∈ [0, 1] the
probability (called quality) that a user clicks on ad i conditioned on its
observation. In our setting, qi depends on the prices, as they are displayed
with the ads. In particular, qi is a function of the prices p = {pi}i∈N of
agents whose ads are displayed, since the user can compare all the prices
shown on the Web page when deciding the website from which to buy a
good. This dependency introduces externalities among the ads. In this work,
we assume that qi : R≥0 × R≥0 → [0, 1], where qi(pi, pmin) denotes the
agent i’s quality when her price is pi and the minimum price among all
the displayed ads is pmin, with pmin = minh∈N :f(h)∈M{ph} (for the sake of
notation, we omit the dependency of pmin on f ). Moreover, given pmin, qi is
(non-strictly) monotonically decreasing in pi since, as previously discussed,
a user clicks on the ad if the price is non-larger than the user’s reserve value.
Finally, qi is (non-strictly) monotonically increasing in pmin, given pi. The
rationale behind this assumption is that, given pi, the probability that a user
clicks on ad i decreases as the gap between pi and the minimum price pmin

increases, capturing a potential reduction of the user’s interest for agent i’s
good. A simple example is when the users are only interested in the price
and, thus, qi is zero if pi > pmin. We also assume that there exists pi ∈ R≥0

maximizing qi(pi, pi)αi (pi − ci) and, thus, there exists pi <∞ that agent i
would use when displayed alone. Finally, we remark that, as it is customary
in the literature, parameters λ and q are estimated by the ad publisher.

Every mechanism receives some input (or bid) from every agent i,
chooses an allocation f , and charges every agent i of a payment πi. We
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say that the mechanism is direct-revelation if the input provided by agent i
belongs to Θ, i.e., it consists of a conversion probability and a cost, which
are not necessarily the real ones (her type). Otherwise we say that the
mechanism is indirect-revelation.

In our setting, a direct-revelation mechanism takes as input a reported
type θ′i = (α′i, c

′
i) ∈ Θ for each agent i, and chooses some prices p =

{pi}i∈N and an allocation function f . We let b = {bi}i∈N be the vector of
declared gains, where bi = α′i (pi− c′i) is agent i’s gain for the reported type
θ′i. On the other hand, an indirect-revelation mechanism takes as input a
price pi and a declared gain bi for each agent i, and chooses an allocation
function f . We say that agent i does not overbid if bi ≤ αi (pi − ci), where
pi is the price given as input and (αi, ci) = θi is the true agent i’s type.

Given an allocation f , prices p, and bi, we denote with v̂i(f,p, bi) =
λf(i) qi(pi, pmin) bi the expected (w.r.t. clicks and purchase) value of agent i
according to her declared gain. The true expected value that she receives
from allocation f is vi = λf(i) qi(pi, pmin)αi (pi − ci), while agent i’s
expected utility is ui = vi − πi since the environment is quasi-linear.1

The social welfare of an allocation with respect to the declared gains is
ŜW(f,p,b) =

∑
i v̂i(f,p, bi), where b = {bi}i∈N . The true social welfare

is SW =
∑

i vi. The revenue is instead Rev =
∑

i πi.
We informally introduce notable properties of mechanisms; see Mas-

Colell et al. (1995) for formal definitions. A mechanism, both direct- and
indirect-revelation, is individually rational, if for every agent i, the assigned
payment πi is non-larger than her value v̂i(f,p, bi) according the declared
gain. Furthermore, a mechanism is weakly budget-balanced if the sum
of payments is always non-negative. A direct-revelation mechanism is
truthful if for every agent i it is a dominant strategy to report the true type
θi = (αi, ci) to the mechanism, i.e., the utility that agent i achieves by
reporting θi is at least as large as with every alternative input, regardless
of other agents’ actions. For indirect-revelation mechanisms, we say that
a set of inputs is in equilibrium according to Nash (1951) if no agent may
increase her utility by submitting a different bid, whenever the inputs of
other agents remain unchanged.

5.2 Mechanisms

Next, we introduce our direct-revelation mechanism and two indirect-revelation
mechanisms.

1The dependency of vi, ui, πi on the arguments f,p, bi is omitted to avoid cumbersome notation.
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5.2.1 Direct-revelation Mechanism

We letMVCG
D be the direct-revelation mechanism defined as follows. Given

the agent i’s input θ′i = (α′i, c
′
i) ∈ Θ, the mechanism defines bi = α′i (pi−c′i)

for every price pi. Then, the mechanism computes an assignment f ∗ and
prices p∗ that maximize the social welfare with respect to the declared gains;
formally,

ŜW(f ∗,p∗,b) = max
f,p

ŜW(f,p,b).

Finally, the mechanism assigns to each advertiser i in the allocation (i.e.,
such that f(i) ∈M ) the VCG payment

πi = max
f,p : f(i)/∈M

∑
j 6=i

(
v̂j(f,p, bj)− v̂j(f ∗,p∗, bj)

)
= v̂i(f

∗,p∗, bi)−∆i,

where
∆i = ŜW(f ∗,p∗,b)− max

f,p:f(i)/∈M
ŜW(f,p,b) ≥ 0.

It is immediate to check that payments cannot be negative and they are
never larger than the value corresponding to the declared gain. Thus, the
mechanism is trivially individually-rational and weakly budget-balanced.
Moreover, it is not hard to verify that these payments allow the mechanism
to be truthful (essentially this is a VCG mechanism and there is no inter-
dependence among types). Truthfulness also implies that the mechanism
maximizes the true social welfare. These observations prove the following
theorem.

Theorem 5.1. MechanismMVCG
D is truthful, individually rational, weakly

budget-balanced, and maximizes SW.

5.2.2 Indirect-revelation Mechanisms

Next, we introduce two alternative mechanisms, namelyMVCG
I andMGSP

I .
These mechanisms share the same structure, but they differ in the way they
compute the payments. They work as follows. Agent i inputs (pi, bi), where
pi ∈ R≥0 is the price that agent i wants to be displayed for her ad and bi ∈ R
is the expected gain that i declares to achieve from a click on her ad for price
pi. The mechanism computes an assignment g∗ that maximizes the social
welfare with respect to the submitted prices and gains; formally

ŜW(g∗,p,b) = max
g

ŜW(g,p,b).
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Then, MVCG
I assigns to each advertiser i such that g∗(i) ∈ M the VCG

payment

πi = max
g : g(i)/∈M

∑
j 6=i

(
v̂j(g,p, bj)− v̂j(g∗,p, bj)

)
= v̂i(g

∗,p, bj)− δi,

where
δi = ŜW(g∗,p,b)− max

g:g(i)/∈M
ŜW(g,p,b) ≥ 0.

W.l.o.g., let the optimal allocation g∗ be such that only the first ` ≤ m
slots are assigned and no slot j > ` is assigned. MGSP

I assigns to each i
such that g∗(i) ∈M and g∗(i) < ` (i.e., i is assigned to a slot different from
`) the following payments:

$i = λg∗(i)qj(pj, pmin)bj, (5.1)

where j is such that g∗(j) = g∗(i) + 1. When g∗(i) = `, there are two
possible payments. If all the not assigned agents j (i.e., such that g∗(j) = ⊥)
have a price pj < pmin, then $i = 0. Otherwise, the payment is

$i = λg∗(i) max
j:pj≥pmin∧g∗(j)=⊥

{qj(pj, pmin)bj}. (5.2)

As done forMVCG
D , it is immediate to check that payments are at least

zero, and they are always less than the value corresponding to the declared
gain. Hence,MVCG

I is individually rational and weakly budget-balanced.
Moreover, one may hope that the inputs that agents select at any equilibrium
are such that the allocation selected by the mechanism maximize the social
welfare. Unfortunately, we will show in the next sections that this is not the
case.

The payments ofMGSP
I are at least zero, and, thus, the mechanism is

weakly budged-balanced. Let us also observe that, given agent i, ∀j s.t.
g∗(j) > g∗(i) or g∗(j) = ⊥ ∧ pj ≥ pmin, we have that qj(pj, pmin)bj ≤
qi(pi, pmin)bi. Otherwise, the allocation g achieved from g∗ by fixing g(j) =
g∗(i), g(i) = g∗(j), and g(k) = g∗(k) ∀k /∈ {i, j} would achieve a larger
social welfare (according to declared gains). Hence, we have that $i ≤
v̂i(g

∗,p, bi), and, thus, the mechanism is individually rational. We remark
that for this property to hold, it is fundamental that, in Equation 5.2, we
consider only the not assigned agents j who have a declared price pj ≥ pmin.
Indeed, an agent j with pj < pmin may have a large qj(pj, pj)bj so that,
if the j-th ad is displayed, the minimum price changes from pmin to pj ,
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qj(pj, pj)bj > qi(pi, pmin)bi, and $i > v̂i(g
∗,p, bi), where i is the agent

assigned to the slot `. Nevertheless, this agent may not be chosen by the
allocation g∗ because of the negative externalities that its low price would
put on other agents (by lowering their value and thus the social welfare).
As a result an optimal allocation may not assign all the available slots. We
finally observe that, as forMVCG

I , evenMGSP
I may fail to optimize the true

social welfare. The following sections will bound the extent of this failure.

5.3 Computational Complexity

In general, externalities make hard the problem of computing the allocation
maximizing the social welfare. In this section, we prove that in our setting
the problem of allocating advertisers to slots can be solved in polynomial
time by both the direct- and the indirect-revelation mechanisms.

Let us start with the problem of computing the allocation g∗ in the
indirect-revelation mechanisms. We show in the next theorem that g∗ can be
efficiently computed.

Theorem 5.2. There is an algorithm that computes the allocation g∗ in time
O(n2 log n).

Proof. Let b and p be the set of gains and prices submitted by agents. First
observe that, given a minimum displayed price pmin, the allocation that
maximizes the social welfare (with respect to gains and prices in input),
can be trivially computed by sorting agents in {i : pi ≥ pmin} in order of
qi(pi, pmin)bi and assigning slot 1 to the agent that maximizes this quantity,
slot 2 to the second such agent, and so on. Note that this operation requires
O(n log n) steps.

However, in order to provide the allocation g∗, we also need to decide
which is the best value for pmin. However, since pmin must belong to p, it
is sufficient to compute the best allocation by using as minimum displayed
price each of the at most n different prices in p, and choosing the allocation
that optimizes the social welfare.

Computing g∗ is an easier problem than the one faced by the direct-
revelation mechanism, since, for the former, prices are given and we optimize
only over the allocation function, while, for the latter, optimization occurs
both on the allocation function and prices. Nevertheless, the following
theorem shows that f ∗ and p∗ can also be computed efficiently, as long as
the set P of allowed prices is discrete and finite.
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Theorem 5.3. There is an algorithm that computes the allocation f ∗ and
prices p∗ in time O(n2|P |(|P |+ log n)).

Proof. Let bi(p) = α′i(p− c′i) be the expected gain of agent i according to
her input when ad i is displayed with price p, where (α′i, c

′
i) is the input

of agent i. For each agent i and every price p̂ ∈ P we compute p∗i (p̂) as
follows: if maxp∈P :p≥p̂ qi(p, p̂)bi(p) > 0, then

p∗i (p̂) = arg max
p∈P :p≥p̂

qi(p, p̂)bi(p),

otherwise we set p∗i (p̂) = ⊥. Roughly speaking, p∗i (p̂) is the best price
(according to her input) for agent i when the minimum displayed price is
p̂ and the i-th ad is displayed (and thus i’s price is at least p̂). Clearly, if
there is no price larger than or equal to p̂ guaranteeing to agent i a positive
utility, then she prefers to be not displayed. For this reason, in the latter case,
we do not assign any value to p∗i (p̂). Notice that p∗i (p̂) can be computed
by evaluating the function for every p ∈ P with p ≥ p̂, requiring at most
O(|P |) operations.

Then, if the minimum displayed price pmin was given, along with the
agent to which it is assigned, then we simply choose price p∗i (pmin) for
each remaining agent i (this can be done in O(nP ) steps), prune out agents
for which p∗i (pmin) = ⊥, and finally compute the corresponding optimal
assignment by sorting the remaining agents in order of bi(p∗i (pmin)), as
shown in Theorem 5.2 (in O(n log n) steps).

Unfortunately, selecting pmin is much harder than in the indirect case:
not only the value of pmin can assume every value in P (and not just one
among at most n alternatives), but we also need to decide which agent
should display this price. For this reason, we need to go through every
price p ∈ P and every agent i and compute the best solution that would
be achieved when i is the agent displaying the minimum price p. Since for
each of the nP possible choices, computing the best solution requires time
O(nP + n log n), we achieve the desired running time.

Observe that the dependence on |P | in Theorem 5.3 is in some way
necessary as long as we would like to keep quality function as general as
possible. It is not hard to see that we can avoid to check all prices by doing
opportune restriction on the quality functions.

We finally highlight that the discretization of the set of prices does not
affect the property of the mechanism. In particular, truthfulness continues to
hold, since the mechanism is maximal-in-the-range.
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5.4 Performance of the Indirect Mechanisms

For the sake of presentation, we provide the informal definitions of PoS
and PoA for social welfare and revenue; formal definitions can be found
in Nisan et al. (2007).

• PoS for the social welfare is the minimum—w.r.t. all the Nash equilibria—
ratio between the maximum achievable social welfare and the social
welfare of an allocation achievable in a Nash equilibrium of an indirect-
revelation mechanismMVCG

I orMGSP
I .

• PoA for the social welfare is the maximum—w.r.t. all the Nash equilibria—
ratio between the maximum achievable social welfare and the social
welfare of an allocation achievable in a Nash equilibrium of an indirect-
revelation mechanismMVCG

I orMGSP
I .

• PoS for the revenue is the minimum—w.r.t. all the Nash equilibria—
ratio between the maximum revenue achievable by an individually-
rational mechanism and the revenue achievable in a Nash equilibrium
of an indirect-revelation mechanismMVCG

I orMGSP
I .

• PoA for the revenue is the maximum—w.r.t. all the Nash equilibria—
ratio between the maximum revenue achievable by an individually-
rational mechanism and the revenue achievable in a Nash equilibrium
of an indirect-revelation mechanismMVCG

I orMGSP
I .

Table 5.1 summarizes the lower and upper bounds over the mechanisms’
inefficiency when agents do not overbid; the results when agents overbid
are omitted since the inefficiency can be arbitrary even with a single slot.
Interestingly, whileMVCG

I performs as well asMVCG
D with a single slot as

MVCG
I andMVCG

D are equivalent in this case since there is no externality;

1 slot m ≥ 2 slots

SW Rev SW Rev

PoS PoA PoS PoS PoA PoS

MVCG
I 1 1 1 (♠) 1 m ∞

MGSP
I 1 1 ∞ ≥ 2 ≥ m ∞

Table 5.1: Lower and upper bounds over PoS and PoA when agents do not overbid. ♠:
PoS here is taken w.r.t. the mechanismMVCG

D maximizing the social welfare (thus not
necessarily maximizing the revenue).
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with more than 2 slots the inefficiency can be large both for social welfare
and revenue even in the basic case in which slots are indistinguishable and
λ = 1. In particular, in our proofs of the upper-bound results, we use a
special class of quality functions that we denote as only-min functions, which
assign a value 0 to the quality of an agent when her price is not the minimum
among those displayed, and we prove that in many cases no worse instance
is possible. With multiple slots, the positive result is that, with MVCG

I ,
the optimal allocation is always achievable by some Nash equilibrium (i.e.,
PoS = 1). Nevertheless, there are auction instances in which some Nash
equilibria lead to allocations whose social welfare is 1/m of the optimal
allocation (i.e., PoA = m) or in which all the Nash equilibria lead to a
revenue of zero whereas the direct-revelation mechanismMVCG

D provides a
strictly positive revenue (i.e., PoS =∞).MGSP

I performs even worse than
MVCG

I , both with a single and multiple slots.
In the following, we formally provide the results on the lower and upper

bounds over the mechanisms’ inefficiency.

5.4.1 Price of Stability for the Social Welfare

Initially, we provide our main positive result in terms of indirect-revelation
mechanisms inefficiency.

Theorem 5.4. The PoS for the social welfare ofMVCG
I is 1.

Proof. Suppose that each agent i reports the pair (p̃i, b̃i) defined as follows:
if the mechanismMVCG

D displays the ad i when run on truthful bids, then p̃i
is the corresponding price, and b̃i = αi(p̃i− ci), i.e., the true gain associated
to this price; otherwise p̃i = b̃i = 0. It is immediate to check that with
these bids the allocation returned byMVCG

I is exactly the same as the one
returned byMVCG

D , and, thus, it maximizes social welfare.
Unfortunately, we cannot conclude that inputs (p̃i, b̃i) are in equilibrium

directly from the truthfulness ofMVCG
D . Indeed, the payments assigned by

the indirect mechanism are different from the ones assigned by the direct
mechanism. Moreover, in the former the agent may lie both about the price
and about the expected gain, while in the latter an agent may essentially lie
only on the expected gain. Still, in the following we prove that inputs (p̃i, b̃i)
are in equilibrium, and, thus, the theorem follows.

In particular, let p̃ = (p̃1, . . . , p̃n) and b̃ = (b̃1, . . . , b̃n). We prove that
the utility ũi of agent i when the mechanismMVCG

I is run on p̃ and b̃ is
at least the utility ui that she achieves if the mechanism would be run on
input p = (pi, p̃−i) and b = (bi, b̃−i), for every i, pi, and bi. Indeed if i is
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allocated by the mechanismMVCG
I when run on input p̃ and b̃, then, since,

by definition of b̃i, vi = v̂i(f
∗, p̃, b̃i),

ũi = vi − πi = v̂i(f
∗, p̃, b̃i)− πi

= ŜW (f ∗, p̃, b̃)− max
g:g(i)/∈M

ŜW (g, p̃, b̃) ≥ 0,

where f ∗ is the allocation returned byMVCG
D on truthful bids. If i is instead,

unallocated then

ũi = 0 = ŜW (f ∗, p̃, b̃)− max
g:g(i)/∈M

ŜW (g, p̃, b̃).

Thus, if the agent i is unallocated by the mechanismMVCG
I when run on

input p and b, then the equilibrium condition is trivially satisfied. Otherwise,
let b̌i = αi(pi − ci) and b̌ = (b̌i,b−i). We have:

ui = vi − πi = v̂i(g
∗,p, b̌i)− v̂i(g∗,p, bi)

+ ŜW (g∗,p,b)− max
g:g(i)/∈M

ŜW (g,p,b)

= ŜW (g∗,p, b̌)− max
g:g(i)/∈M

ŜW (g, p̃, b̃),

where the last equality follows since pj = p̃j and bj = b̃j for every agent
j 6= i.

Since ŜW (f ∗, p̃, b̃) ≥ ŜW (g∗,p, b̌), because f ∗ and p̃ are the alloca-
tion and the prices that maximize the social welfare, we have that ũi ≥ ui,
as desired.

The proof of the theorem above shows that, with VCG payments, there
is always a Nash equilibrium in which every agent i bids the truthful gain
bi and the price thatMVCG

D would use. Such a strategy profile leads to the
same allocation ofMVCG

D , thus guaranteeing a PoS for the social welfare
of 1, but, as we discuss in the following sections, the revenue of the two
mechanisms can be different. The same result does not hold in the case of
GSP payments, thus leading to a larger PoS for the social welfare.

Theorem 5.5. The PoS for the social welfare ofMGSP
I is at least 2 even if

agents do not overbid.

Proof. We will next show a setting for which it occurs that, with GSP
payments, all equilibrium bids make the mechanism to allocate agents with
very low prices, implying a corresponding low social welfare, where the
optimal allocation only allocates agents with high prices.

SETTING. For ε > 0, consider the following setting:
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• n = 3, m = 2, P = [p, p] with p > ε and p = 3
2
(p− ε);

• for every agent i we have

qi(pi, pmin) =

{
1 if pi = pmin,

0 otherwise;

• c1 = 0, c2 = c3 = p− ε;

• for every agent i ∈ N , αi = 1;

• for every slot j ∈M , λj = 1;

• ties are broken in favour of agent 1.

Observe that for every p ≤ p1 < p2 ≤ p, it holds that

p1 − c1 ≥ p− c1 = p > p− ε ≥ 2(p2 − c2), (5.3)

i.e. the social welfare achieved by displaying agents 1 at price p is larger
than what we achieve by displaying agents 2 and 3 at price p2. In other
words, the mechanism always chooses the price submitted by agent 1 as
minimum price.

BEST SOCIAL WELFARE WITHMGSP
I . Let (p1, p2, p3) and (b1, b2, b3)

be the price and gains given in input to the mechanism. Suppose that they
form a Nash equilibrium. We will next provide a characterization of these
values.

First observe that, in equilibrium, it must be the case that b1 is large
enough to allow ad 1 to be displayed. Indeed, if this is not the case, then
agent 1 would have an incentive to submit the true gain, and thus, by (5.3)
and the no overbidding assumption, to be displayed and to achieve a strictly
positive utility.

Suppose first that p1 = p > p. We next show that in this case there is at
least one agent i ∈ {2, 3} such that pi = p and bi = p− ci (a larger declared
gain would not be possible because of the no overbidding assumption).
Suppose indeed that this is not the case. If both agents have pi 6= p, then
they must have 0 utility (if pi > p, their value must be 0 because of the
quality function, and if pi < p they are not displayed since otherwise they
will zeroth the value of agent 1). However, if one of these agents submits
price p and the corresponding true gain, she would be displayed and achieve
strictly positive utility, regardless of b1 (if b1 ≥ p− c2, the payment assigned
to the deviating agent is 0, and if bi < p− c2, then the payment will be less
than the value for being displayed at that price.) Suppose then that there
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is agent i ∈ {2, 3} with pi = p but bi < p − ci and agent j = 5 − i with
either pj 6= p or bj < p − cj . Note that the ad of one of these agents, say,
wlog, j, is not displayed. Then j has an incentive to submit price p and
gain p− cj , since it would assure that her ad will displayed and she receives
strictly positive utility.

Next we prove that b1 ≥ p− c2, and thus agent 1 is assigned the first slot
(because of the tie-breaking rule). Suppose instead that b1 < p− c2, and let
i ∈ {2, 3} be the one agent with pi = p and bi = p− ci. Since, as observed
above, b1 must be large enough to have that ad 1 is displayed, this means
that either pj 6= p or bj ≤ b1, with j = 5− i. However, as showed above, j
has an incentive to deviate by submitting price p and gain bj ∈ (bi, b1).

Hence, if p1 = p > p, then agent 1 will be displayed in the first slot and
will be assigned a payment p− c2. Hence, her utility is c2 = p− ε. We will
next show that agent 1 has then an incentive to deviate from this equilibrium.
Specifically, let i ∈ {2, 3} be the agent submitting price p and gain p− ci.
We distinguish two cases based on pj and bj , where j = 5 − i: if pj > p
or bj < p− c2 = ε, then agent 1 has an incentive to submit price p and the
corresponding true gain, being allocated in the first slot and being assigned
a payment of at most bj , resulting in an utility p− bj > p− ε; if pj = p and
bj = ε (bj cannot be larger because of the no overbidding assumption), then
agent 1 has an incentive to submit price p and gain b1 < ε, being allocated in
the second slot and receiving a null payment, resulting in utility p > p− ε.

We can then conclude that in an equilibrium p1 = p and ad 1 must be
displayed, that implies that every equilibrium cannot have social welfare
larger than (p− c1) + (p− c2) = p+ ε.

SOCIAL WELFARE OF THE OPTIMAL ALLOCATION. The optimal
allocation will display agents 1 and 2 at price p. Hence, the optimal social
welfare is (p− c1) + (p− c2) = 3

2
(p− ε) + 3

2
(p− ε)− p + ε = 2(p− ε).

Hence, the price of Stability is 2(p−ε)
p+ε

that goes to 2 as ε goes to 0.

5.4.2 Price of Anarchy for the Social Welfare

We initially focus on the basic case with a single slot, showing that in this
caseMVCG

I andMGSP
I are efficient.

Theorem 5.6. The PoA for the social welfare ofMVCG
I andMGSP

I is 1 if
m = 1 when agents do not overbid.

Proof. When a single slot is available, the value of displayed agent i is
λ1qi(pi, pi)αi(pi − ci), where pi is the corresponding displayed price. That
is, this value does not depend on the prices submitted by other agents.
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Let ṽi = maxp λ1qi(p, p)αi(p − ci) and set p̃i to any price p such that
λ1qi(p, p)αi(p − ci) = ṽ}. Finally, sort agents in order of ṽi, so that ṽ1 ≥
ṽ2 ≥ · · · ≥ ṽn. Note that if these values are all equals, then, regardless of
the displayed agent, the mechanism always maximizes the social welfare.
Suppose instead that there are at least two different values. Let k be the first
index such that ṽk > ṽk+1. Then we claim that in any equilibrium one agent
i ≤ k must be displayed, otherwise she has the incentive to submit price
p̃i and the corresponding true gain. This indeed causes the mechanism to
display ad i, that provides this agent with a value ṽi, and to assign a payment
(both in case of VCG and GSP payments) that is at most ṽk+1 (because of the
non-overbidding assumption), resulting in this way in a positive utility.

Then, we study the case with multiple slots providing a lower bound on
PoA.

Theorem 5.7. The PoA for the social welfare ofMVCG
I andMGSP

I is at
least m if m ≥ 2 when agents do not overbid.

Proof. The proof is based on the following setting, in which the ratio be-
tween the social welfare of the optimal allocation and the social welfare of
the allocation achievable in the worst Nash equilibria inMVCG

I andMGSP
I

is exactly m.
SETTING. Consider the following setting:

• n = m+ 1;

• for every agent i ∈ N ,

qi(pi, pmin) =

{
1 if pi ≤ p and pi = pmin

0 otherwise
;

• for every agent i ∈ N , ci = 0;

• for every agent i ∈ N , αi = 1;

• for every slot j ∈M , λj = 1.

SOCIAL WELFARE OF THE OPTIMAL ALLOCATION. One of the al-
locations maximizing the social welfare is such that f(i) = i for every
i ∈ N, i 6= m + 1 and f(m + 1) = ⊥, while pi = p for every i ∈ N . The
optimal social welfare SW is mp.

SOCIAL WELFARE WITHMVCG
I . Define p = p/m. Consider the case in

which, for every i ∈ N , it holds pi = p and bi = p and therefore every agent
is declaring her true gain. For every i ∈ N , we have that qi = 1, pi = p, and
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ui = 0, as payment πi equals the expected value vi. This strategy profile
leads to a social welfare SW = mp = mp/m = p. In the following, we
show that such a strategy profile is a Nash equilibrium of the full-information
game in which the payments are VCG-like, thus proving the theorem.

Initially, we analyze possible deviations to values of bi different from p
when keeping pi = p, showing that no deviation allows agents to strictly
increase their utility. Since bi = p is the true gain of agent i from being
allocated and agents are assumed not to overbid, no agent i declares a gain
larger than p. Furthermore, declaring a gain strictly smaller than p is a
weakly dominated strategy. Indeed, agent i with f(i) ∈ M would be not
displayed by declaring a gain smaller than p, while agent i with f(i) = ⊥
keeps not be displayed when declaring a gain less than p.

Now, we analyze possible deviations to values of pi different from p.
We consider the restricted case in which, in the deviation, agent i changes
both bi and pi such that bi = pi, discussing below that no deviation with
bi < pi is useful for agent i. Notice that, by setting bi = pi, an agent is
declaring exactly her gain, and, therefore, any strictly larger declared gain
would correspond to overbidding. For every pi > p, we have that qi = 0
if ad i is displayed together other ads, as the other ads have a price strictly
smaller than pi. Thus, either ad i is displayed alone in the allocation, to
guarantee that pi is the minimum price of this new allocation and therefore
that qi > 0, or ad i is not displayed as we can allocate m ads each with
a strictly positive value. Under the assumption that ties are opportunely
broken, ad i is displayed alone only if her gain (i.e., pi) is strictly larger than
the cumulative gain of the other ads (i.e., mp). This never happens as, by
construction, pi ≤ mp = p, otherwise (i.e., for pi > p) the value of qi would
be 0, and therefore bi ≤ mp, not allowing ad i to be displayed. Notice that
the same happens when, in the deviation, agent i underbids making bi < pi.
Finally, by arguments similar to those used above, if pi < p, ad i is either
displayed alone or not displayed. As above, when bi ≤ pi < p, agent i
cannot be displayed as her gain cannot be larger than the cumulative gain of
the other agents.

SOCIAL WELFARE WITHMGSP
I . Consider the case in which, for every

i ∈ N , pi = p and bi = p. For the same arguments used above forMVCG
I ,

such a strategy profile is a Nash equilibrium, thus leading to a social welfare
that is 1/m of the optimal social welfare. This concludes the proof.

In the specific case ofMVCG
I , we show that a PoA larger than m is not

possible, and therefore there are no instances worse than those used in the
proof of Theorem 5.7. Most interestingly, this result holds even when qi is
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not monotonically decreasing in pi.

Theorem 5.8. The PoA for the social welfare of MVCG
I is at most m if

m ≥ 2 when agents do not overbid.

Proof. For the sake of presentation, we introduce the following notation:

• we denote the maximum value agent i can get with v∗i = λ1 maxpi{qi(pi, pi)αi (pi−
ci)};

• we denote the corresponding optimal price with p∗i ;

• we denote the corresponding true gain with bi = αi (p
∗
i − ci);

• we denote the allocation in a Nash equilibrium with fNE;

• we denote the declared gain used by agent i in the Nash equilibrium
with bNE

i ;

• we denote the price used by agent i in the Nash equilibrium with pNE
i ;

• we denote the minimum price among those of the displayed ads in the
Nash equilibrium with pNE

min;

• we denote the value agent i gets in the Nash equilibrium with vNE
i =

λfNE(i) qi(p
NE
i , pNE

min)αi (p
NE
i − ci);

• we denote the payment of agent i in the Nash equilibrium with πNE
i ;

• we denote the social welfare in a Nash equilibrium with SWNE =∑
i∈N v

NE
i ;

• we denote the optimal social welfare when agent i is discarded evalu-
ated by {bNE

i }i∈N with ŜW−i.

Initially, we prove that, for every Nash equilibrium and agent i ∈ N , it holds
v∗i ≤ SWNE. According to the definition of the VCG payments, the utility
of agent i in a Nash equilibrium can be written as:

λfNE(i) qi(p
NE
i , pNE

min)αi (p
NE
i − ci)︸ ︷︷ ︸

vNE
i

−

ŜW−i +
∑
h6=i

λfNE(h) qh(p
NE
h , pNE

min) bNE
h︸ ︷︷ ︸

πNE
i

=
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λfNE(i) qi(p

NE
i , pNE

min)αi (p
NE
i − ci)+

∑
h6=i

λfNE(h) qh(p
NE
h , pNE

min) bNE
h

)
−

(
ŜW−i

)
.

We call ŜW−i as negative-utility term and the remaining part as positive-
utility term. Since agents are not allowed to overbid, we have that the
positive-utility term is ≤ SWNE. Notice that negative-utility term ŜW−i
is a constant for every deviation of agent i from (bNE

i , pNE
i ), not depend-

ing on (bi, pi). This means that agents aim at maximizing the positive-
utility term. Therefore, there is no pair (bi, pi) that agent i can play lead-
ing to a different allocation f and/or minimum price pmin providing a
positive-utility term strictly larger than λfNE(i) qi(p

NE
i , pNE

min)αi (p
NE
i − ci) +∑

h6=i λfNE(h) qh(p
NE
h , pNE

min) bNE
h , otherwise agents would not play a Nash equi-

librium. Among all the possible deviations of agent i, we have that the
deviation towards (b∗i , p

∗
i ) would provide a positive-utility term ≥ v∗i . In-

deed, it is always possible to allocate ad i in slot 1 and not to display the
other ads, thus obtaining exactly v∗i , or allocating other ads in addition to
ad i, thus obtaining strictly more than v∗i . However, the positive-utility
term provided when agent i deviates towards (b∗i , p

∗
i ) is not larger than the

positive-utility term in the Nash equilibrium, otherwise we would not be in
a Nash equilibrium. Therefore, we have:

v∗i ≤ λfNE(i) qi(p
NE
i , pNE

min)αi (p
NE
i − ci)+∑

h6=i

λfNE(h) qh(p
NE
h , pNE

min) bNE
h ≤ SWNE.

Now, we show that the value of the optimal allocation, say OPT, is
smaller than or equal to m SWNE. Indeed, we have:

OPT ≤
∑

i∈top(m)

v∗i ≤ m SWNE,

where top(m) are the ads with the top m values v∗i . The first inequality
holds as OPT cannot be larger than the sum of the top m values v∗i . The
second inequality follows from what showed above. Thus, it follows OPT ≤
m SWNE.

Finally, we show that when agents overbid, the inefficiency can be arbi-
trarily large.
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Theorem 5.9. The PoA for the social welfare ofMVCG
I andMGSP

I is∞
even if m = 1 when agents can overbid.

Proof. The proof is based on the following setting.
SETTING. Consider the following setting:

• n = 2;

• m = 1;

• q1(p1, pmin) =

{
1 if p1 ≤ p and p1 = pmin;

0 otherwise;

• q2(p2, pmin) =

{
δ if p2 ≤ p and p2 = pmin;

0 otherwise;

where 0 < δ < 1;

• c1 = c2 = 0;

• α1 = α2 = 1;

• λ1 = 1.

SOCIAL WELFARE OF THE OPTIMAL ALLOCATION. The optimal alloca-
tion is f(1) = 1, f(2) = ⊥ with p1 = p2 = p.

SOCIAL WELFARE WITH MVCG
I AND MGSP

I . When overbidding is
allowed, the following strategy profile is a Nash equilibrium (b1 = 0, p1 =
p, b2 = 2 p/δ, p2 = p). Let us notice that indirect-revelation VCG and
GSP mechanisms are the same mechanism in this case. Indeed, agent 2
gets a utility of δ, as her payment is π2 = 0, and there is no other strategy
providing agent 2 a strictly larger utility. Agent 1 can get her ad allocated,
but, in doing that, she would be charged of a payment π1 = 2 p strictly larger
than her value. Thus, agent 1 will not do it. As a result, strategy profile
(b1 = 0, p1 = p, b2 = 2 p/δ, p2 = p) is a Nash equilibrium. Thus, the Price
of Anarchy is 1/δ, that is unbounded from above as δ → 0+.

5.4.3 Price of Stability for the Revenue

Initially, we provide our main result, showing thatMVCG
I andMGSP

I can
be arbitrarily inefficient even with 2 slots.

Theorem 5.10. The PoS for the revenue ofMVCG
I andMGSP

I is∞ even if
m = 2.
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Proof. The proof is based on the following setting, in whichMVCG
D provides

a strictly positive revenue, while bothMVCG
I andMGSP

I provide a revenue
of zero in every Nash equilibrium.

SETTING. Consider the following setting:

• n = m = 2;

• q1(p1, pmin) =

{
1 if p1 ≤ p and p1 = pmin

0 otherwise
;

• q2(p2, pmin) =


1 if p2 < p and p2 = pmin

ψ(p2) if p ≤ p2 ≤ p and p2 = pmin

0 otherwise
where 1 ≤

p < p/2;

• c1 = c2 = 0;

• α1 = α2 = 1;

• λ1 = λ2 = 1.

Furthermore, function ψ(p2) is defined as follows:

ψ(p2) =


1 if p2 = p;

(1 + δ)
(
p− p

)(
1− 1+δ

2

)
p2 + 1+δ

2
p− p

− 1 if p < p2 < p;

δ if p2 = p;

where 0 < δ < p/p < 1/2. In particular, function ψ(p2) is an hyperbola
such that ψ(p) = 1 and ψ(p) = δ and is continuous and monotonically
decreasing in [p, p].

REVENUE WITHMVCG
D . We notice that, by definition of q1, q2, if pi =

pmin < p−i, then q−i = 0. 2 Therefore, when pi < p−i, no more than
one ad with strictly positive value can be allocated. That is, in this case,
the allocation is composed of a single ad. In particular, the ad j with the
maximum qj(pj, pj) pj is the only ad to be allocated. However, it can be
trivially observed that, when pi < p−i ≤ p, the mechanism can always
increase the value of the allocation by changing the price of the ad that it
would not allocate. In particular, the mechanism can set that price equal
to the price of the ad that it would allocate. In this way, both ads will

2We denote with −i the advertiser j 6= i.
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be displayed, strictly increasing the value of the allocation. Thus, setting
p1 6= p2 is never optimal.

We restrict our attention to prices p, p for both advertisers, and we search
for the best allocation and prices. We show below that the agents can-
not increase their utility by using prices different from p, p. The possible
combinations of prices are the following:

• (p1 = p, p2 = p): one of best allocations is f(1) = 1, f(2) = 2, and
the social welfare of the allocation is 2 p;

• (p1 = p, p2 = p): the best allocation is f(1) = 1, f(2) = 2, and the
social welfare of the allocation is (1 + δ) p.

Thus, the best allocation is for (p1 = p, p2 = p) as, by construction,
2 p < p < (1 + δ) p.

Now, we show that no price different than p, p can lead to a better social
welfare. Notice that any price < p leads to a value strictly smaller than that
provided by p as q1 = q2 = 1, and for any price > p we have q1, q2 = 0 and
therefore the social welfare is zero. Thus, we can safely restrict our attention
to the set (p, p). By construction of ψ(p2), for every p < p2 < p we have:

(1 + ψ(p2)) p2 =

(
1 +

(1 + δ)
(
p− p

)(
1− 1+δ

2

)
p2 + 1+δ

2
p− p

− 1

)
p2 =

=
(1 + δ)

(
p− p

)(
1− 1+δ

2

)
p2 + 1+δ

2
p− p

p2,

which is an hyperbola whose supremum is for p2 → p. Thus, for every
p2 < p we have:

(1 + δ) p > (1 + ψ(p2)) p2,

and therefore the optimal allocation is for (p1 = p, p2 = p).
The payments are such that π1 = p− δ p > 0 (since the best allocation

without ad 1 is f(2) = 1 with p2 = p) and π2 = p1 − p1 = 0 (since ad 2
does not introduce any externality in the optimal allocation). Therefore, the
revenue of the mechanism is p− δ p > 0.

REVENUE WITH MVCG
I . Initially, we observe that when p1 = p2, the

payments are zero for every pair of declared gain b1, b2. Basically, this is
because the prices are set by the agents, and therefore the price used in the
optimal allocation with both ads and the price used by the VCG payments
for the optimal allocation when an ad is removed from the market are the
same. Since those prices are the same and λ1 = λ2, the values of an ad in
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the optimal allocation with both ads and in the allocation when the other
ad is discarded are the same. Therefore, a strictly positive revenue of the
mechanism is possible only when p1 6= p2. In the following, we show that
there is no Nash equilibrium with p1 6= p2.

Consider any input profile (b1, p1, b2, p2) in which p1 6= p2. As argued
above, when p1 6= p2, no more than one ad with strictly positive value can
be allocated due to the definition of functions q1, q2. Assume that ad i is
allocated, while ad −i is not. Focus on the case pi ≤ p. We have u−i = 0,
ad −i not being allocated. If agent −i inputs p−i = pi and any b−i > 0,
then she gets a utility u−i = q−i(pi, pi) pi > 0 as agent i’s payment is
π−i = pi − pi = 0. Therefore, agent −i would deviate to play p−i = pi and
any b−i > 0. Notice that inputting these values may be not the best response
of agent −i. However, it is always the case that, if pi 6= p−i and ad −i is not
allocated, then agent −i can increase her utility by playing p−i = pi. Focus
on the case pi > p. In this case, ad i gets no value from being allocated, and
therefore she will reduce the price such that pi ≤ p. Thus, in the setting
provided above, there is no Nash equilibrium in which p1 6= p2.

Finally, we show that the inputs (b1 = p, p1 = p, b2 = p, p2 = p) are in
equilibrium. We notice that for any b1, b2 > 0, both ads are displayed and
the value of the allocations keeps to be (1 + δ) p. Thus, we analyze possible
deviations to different values of p1 = p2 = p. Notice that such deviations
would lead the agents to have different values of prices and therefore only
one ad is displayed. Focus on agent 1. Any p1 > p would make ad 1 not
be allocated. Any p1 < p making ad 1 be the only allocated ad would give
agent 1 a value < p and would charge agent 1 of δ p, leading to a utility
u1 < p. Thus, agent 1 cannot improve her utility by deviating from p1 = p.
Focus on agent 2. Any p2 6= p would make ad 2 not be allocated. Thus,
agent 2 cannot improve her utility by deviating from p2 = p. This means that
there is always a pure-strategy Nash equilibrium in which p1 = p2. Notice
that we do not exclude the case in which there are other Nash equilibria
than (b1 = p, p1 = p, b2 = p, p2 = p). However, any other Nash equilibrium
is with p1 = p2, thus providing a revenue of zero to the mechanism. This
shows that the Price of Stability is unbounded inMVCG

I .
REVENUE WITHMGSP

I . The proof in this case follows arguments similar
to those used above for the case of MVCG

I . In order to guarantee the
existence of a Nash equilibrium, we need to assume that ad i is allocated
even if she declares a gain bi = 0. Initially, we observe that, when p1 = p2,
there is no Nash equilibrium in which both b1 and b2 are strictly larger than
0. Assume by contradiction that both b1 and b2 are strictly larger than 0
and p1 = p2. Assume, w.l.o.g., that f(i) = 1 and f(−i) = 2. Agent i’s
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payment is πi = b−i > 0, while agent −i’s payment is π−i = 0. Thus,
agent i can improve her utility by bidding bi = 0 such that ad i is displayed
in the second slot so as to be charged of a payment πi = 0. Therefore,
we have a contradiction and b1 and b2 cannot be both strictly larger than 0
in a Nash equilibrium when p1 = p2. Notice that, if ad i is not displayed
if bi = 0, every agent’s best response would be that of making a strictly
positive bid smaller than the opponent’s bid and therefore the best response
dynamics will never reach a fixed point, thus leading to the non-existence of
the equilibrium. Notice also that, if bi = 0, then f(i) = 2 and the sum of
the payments is such that πi + π−i = 0.

As discussed for the case of the indirect-revelation VCG mechanism,
if prices p1, p2 are different, the non-allocated ad i can improve her utility
by changing her price pi as pi = p−i. Furthermore, as above, setting just
pi = p−i may be not the best response of agent i, but there is no Nash
equilibrium when pi 6= p−i.

Finally, we prove that there is at last a Nash equilibrium when p1 = p2.
In particular, a Nash equilibrium is (b1 = p, p1 = p, b2 = 0, p2 = p). As
remarked above, both payments π1, π2 are zero as p1 = p2. Furthermore, as
in the case ofMVCG

I , deviating toward a price different from p would make
that only a single ad has a strictly positive value from being allocated. If
agent i deviates to pi < p and it is the ad that is displayed, then her value
is smaller than that she gets when p. Thus, agent i has no strictly positive
incentive to deviate. This shows that (b1 = p, p1 = p, b2 = 0, p2 = p) is a
Nash equilibrium and that the revenue of the mechanism is zero. As in the
case of the indirect-revelation VCG mechanism, there is no guarantee that
such a Nash equilibrium is unique. However, any other Nash equilibrium
is with p1 = p2 and bi = 0 for at least one agent i. Thus, every Nash
equilibrium provides a revenue of zero to the mechanism.

In the specific case ofMVCG
I and m = 1, we have a positive result for

PoS (PoA is trivially∞ as it is∞ even in second-price single-item auctions).

Theorem 5.11. The PoS for revenue ofMVCG
I with respect to the mechanism

MVCG
D is 1 if m = 1.

Proof. It follows from two considerations:

• with VCG payments, bidding the real bi and the price pi thatMVCG
D

would choose is a Nash equilibrium, and

• with m = 1 slot, the payments ofMVCG
D andMVCG

I are the same.
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This concludes the proof.

Instead, the above positive result does not hold withMGSP
I , as stated

below.

Theorem 5.12. The PoS for the revenue ofMGSP
I is∞ even if m = 1 when

agents do not overbid.

Proof. The proof is based on the following setting.
SETTING. Consider the following setting:

• n = 2;

• m = 1;

• q1(p1, pmin) =

{
1 if p1 ≤ p and p1 = pmin

0 otherwise
;

• q2(p2, pmin) =

{
1 if p2 ≤ p

0 otherwise
;

• c1 = c2 = 0;

• α1 = α2 = 1;

• λ1 = 1,

where 0 < p < 0.5 p.

REVENUE WITH MVCG
D . In The optimal allocation we have f(1) = 1

and f(2) = ⊥ with p1 = p and p2 = p. The revenue Rev is p > 0.
REVENUE WITHMGSP

I . Every Nash equilibrium prescribes that b1 >
p ≥ b2 and p1 = p as agent 1 can get the first slot, payment π1 is zero as p1 =
pmin > p2, and the expected value of agent 1 is maximized. Furthermore,
payment π2 = 0 since ad 2 is not allocated. Thus, revenue Rev is zero
leading to a PoS of∞.

In the proof of this Theorem 5.12 we strongly rely upon the definition of
GSP payments described above, which restricts payments to depend only
on agents submitting a price at least pmin. This payment format turns out
to be necessary in order to guarantee individual rationality. We leave open
the problem of understanding if a better Price of Stability for the revenue
of MGSP

I would be possible by considering alternative non-individually
rational GSP payments.
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5.5 A Better PoS for the Revenue with Indirect-revelation Mech-
anisms

As discussed in the previous section, indirect-revelation mechanisms present
major weaknesses in terms of efficiency. A natural question is whether we
can design indirect-revelation mechanisms with a better efficiency when
agents can choose their price. In particular, we focus onMVCG

I , as it always
guarantees PoS = 1 for the social welfare, and we show that a simple
modification of the mechanism leads to PoS = 1 for the revenue when some
assumptions hold. We call this new mechanismMVCG∗

I . The rationale is
to ask agents for more information. More precisely, the input provided by
every agent is a triple composed of (bi, pi, p

∗
i ) where (bi, pi) is the input to

MVCG
I and p∗i is the price that advertiser i would choose when her ad is the

only displayed ad. The property that PoS = 1 is guaranteed when function
qi(pi, pi) is differentiable in pi and non-zero in p∗i . MechanismMVCG∗

I is
defined as follows:

1. every agent i submits a bid (bi, pi, p
∗
i ), where bi, pi, and p∗i are defined

as above;

2. the mechanism infers the values of ci and αi for every agent i as
follows: ĉi = q(p∗i , p

∗
i ) /

dq(pi,pi)
dpi

∣∣
pi=p∗i

+ p∗i , and α̂i = bi
pi−ĉi if pi 6= ĉi

and α̂i = 0 otherwise;

3. the mechanism computes an auxiliary allocation, say f̄ , by using the
allocation function ofMVCG

I when the input is (bi, pi) for every agent i;
the corresponding social welfare (evaluated with the declared gain bi)
is ŜW;

4. for every agent i, the mechanism computes an auxiliary allocation, say
f̄−i, by using the allocation function ofMVCG

D when the values inferred
above for {α̂h}h∈N and {ĉh}h∈N are provided in input and agent i is
removed from the optimization problem. For every maximization, we
denote with SW

−i
the corresponding social welfare evaluated with the

inferred values {α̂h}h∈N and {ĉh}h∈N . Notice that, as it happens with
MVCG

D , the prices in output to these maximizations can be different
from those agents provide in input;

5. if ŜW ≥ maxi SW
−i

, then the mechanism chooses allocation f̄ and
charges every agent i of a payment πi = SW

−i−(ŜW−λf̄(i) qi(pi, pmin) bi),
else no ad is allocated and every agent is charged a payment of zero.
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Basically, mechanismMVCG∗
I exploits the additional information asked to

the agents to infer their types and then uses this information to compute the
same payments thatMVCG

D would charge. Step 5 is necessary to guarantee
individual rationality. More precisely, since the allocation f̄ is computed
as the indirect mechanism does (without optimizing over prices), while the
payments {πi}i∈N are computed as the direct mechanism does (optimizing
over prices), individual rationality may not be satisfied. We solve this
problem setting the payments to 0 (and allocating no ads) when the payments
{πi}i∈N are too large. As a side effect, we have that if the submitted prices
are different from the optimal one, it is possible that the mechanism does
not assign any slot. Thus, the PoA for the social welfare and revenue can be
unbounded.

Theorem 5.13. Mechanism MVCG∗
I is individually rational and weakly

budget-balanced. Moreover, the PoS for the revenue ofMVCG∗
I is 1.

Proof. First we show that the mechanism is individually rational. In particu-
lar, we show that πi ≤ λf̃(i) qi(pi, pmin) bi for every i ∈ N , where f̃ is the
allocation chosen by the mechanismMVCG∗

I . We distinguish two cases. If
ŜW ≥ maxj SW

−j
, then the allocation returned by the mechanism is f̄ and

the payment πi = SW
−i − ŜW + λf̄(i)qi(pi, pmin)bi ≤ λf̄(i)qi(pi, pmin)bi,

since ŜW ≥ SW
−i

. If ŜW ≥ maxj SW
−j

, than πi = 0 by construc-
tion. Therefore, ui is always non-negative. Moreover, the mechanism is
weakly budget-balanced since all payments are at least 0. In particular,
if ŜW ≥ maxi SW

−i
, the payment of agent i is πi = SW

−i − ŜW +

λf̄(i)qi(pi, pmin)bi ≥ 0 by the optimality of SW
−i

. Otherwise, all the pay-
ments are 0.

Finally, we show that bidding truthfully and with the prices thatMVCG
D

would charge is an equilibrium with the same revenue ofMVCG
D . Let αi and

ci be the private information of agent i. Moreover, for each agent i, let pi
be the price selected byMVCG

D with truthful bidding, bi = αi(pi − ci), and
p∗i = arg maxp αiq(p, p)(p−ci). Since p∗i maximizes αiq(p, p)(p−ci), then
its derivative is 0 in p∗i , i.e., dq(pi,pi)

dpi

∣∣
pi=p∗i

(p∗i − ci) + q(p∗i , p
∗
i ) = 0, implying

that ci = q(p∗i , p
∗
i )/

dq(pi,pi)
dpi

∣∣
pi=p∗i

+ p∗i . This requires that the derivative

of qi(p∗i , p
∗
i ) is strictly positive in p∗i . Hence, MVCG∗

I correctly computes
ĉi = ci. Moreover, since bi = αi(pi − ci), then αi = bi

pi−ci and α̂i = αi. 3

3Notice that we can assume that in the optimal allocation pi − ci 6= 0. Otherwise the utility of the agent is 0
and there exists an allocation with the same SW that does not assign any slot to the agent and increases the price
and the expected gain.
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Hence, since the agents submit the optimal prices, the mechanism computes
a ŜW that is equivalent to the social welfare of MVCG

D . Moreover, also
SW

−i
is the same of the direct mechanism for each i, since it optimizes over

the real bidders’ types. Hence, ŜW ≥ maxi SW
−i

and the mechanism has
the same payments and revenue of the direct mechanism. We conclude the
proof showing that this is an equilibrium. Similarly to the proof of Theorem
5.4, we have:

ui(f̄,p,π) = ŜW − SW
−i ≥ 0

Two cases are possible. If agent i changes the strategy keeping ŜW ≥ SW
−i

,
the claim follows by the optimality of ŜW. Otherwise, the utilities of all the
agents are 0. This concludes the proof.

We recall that the algorithm we provide to find the best allocation with
MVCG

I works when the values that pi can assume are discrete, and the
same holds withMVCG∗

I . We also notice thatMVCG∗
I requires that p∗i is

not restricted to a set of discrete values, the mechanism could not infer the
exact values of αi and ci otherwise. However, requiring price pi to belong
to a finite, discrete set of values and price p∗i to belong to R≥0 does not
modify the properties of the mechanism since p∗i is not used in the allocation
algorithm.
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CHAPTER6
The Power of Media Agencies in Ad
Auctions: Improving Utility through

Coordinated Bidding

When a group of competing advertisers is managed by a common agency,
many forms of collusion, can be implemented by coordinating bidding strate-
gies, dramatically increasing advertisers’ value. We study the computational
problem faced by a media agency that has to coordinate the bids of a group of
colluders, under GSP and VCG mechanisms. This problem was introduced
in Section 1.2, while a formal model is provided in Section 6.1. Section 1.2
presents the optimization problem faced by the media agency, focusing on
two settings that differ for the individual rationality constraints they require.
Such constraints ensure that colluders do not leave the agency, and they can
be enforced by implementing monetary transfers between the agency and the
advertisers. In particular, we study the arbitrary transfers setting, where any
kind of transfer to and from the advertisers is allowed, and the more realistic
limited liability setting, in which no advertiser can be paid by the agency.
Section 6.3 introduces an abstract bid optimization problem, called weighted
utility problem (WUP), which is useful in proving our results. We show
that the utilities of bidding strategies are related to the length of paths in a
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directed acyclic weighted graph, whose structure and weights depend on the
mechanism under study. This allows us to solve WUP in polynomial time
by finding a shortest path in the graph. Section 6.4 provides an approximate
solution to the media agency problem with arbitrary transfers constraints.
In particular,we cast the problem as a WUP instance and solve it by our
graph-based algorithm. Section 6.5 provides an approximate solution to the
media agency problem with limited liability. constraints. We formulate it as
a linear program with exponentially-many variables efficiently solvable by
applying the ellipsoid algorithm to its dual. This requires solving a suitable
separation problem in polynomial time, which can be done by reducing it to
a WUP instance.

6.1 Model

We study the problem of coordinated bidding faced by a media agency in
ad auctions, with both GSP and VCG payments. In this setting, the set
N := {1, . . . , n} of bidders (or agents) is partitioned as N := Nc ∪ Ne,
where: Nc is a set of advertisers whose advertising campaigns are managed
by a common media agency, while Ne is a set of advertisers that are not part
of the agency, but participate in the ad auction individually. In this work,
we refer to the former as colluders, while we call the latter external agents.
Moreover, we let nc := |Nc| and ne := |Ne| be the numbers of colluders and
external agents, respectively. The advertisers compete for displaying their
ads on a set M := {1, ...,m} of slots, with m ≤ n. Each agent i ∈ N has a
private valuation vi ∈ [0, 1] for an advertising slot, which reflects how much
they value a click on their ad. Furthermore, each slot j ∈M is associated
with a click through rate parameter λj ∈ [0, 1], encoding the probability with
which the slot is clicked by a user.1 Each agent i ∈ N participates in the ad
auction with a bid bi ∈ [0, 1], representing how much they are willing to pay
for a click on their ad. We denote by b = (bi)i∈N the bid profile made by all
the agents’ bids. We also let bc = (bi)i∈Nc be the profile of colluders’ bids
(also called bidding strategy), while be = (bi)i∈Ne is the profile of external
agents’ bids. For the ease of notation, we sometimes write b = (bc, be) to
denote the profile made by all the bids in bc and be.

The media agency knows the valuations vi of all the colluders i ∈ Nc,
and it decides the bid profile bc on their behalf. Additionally, the media
agency defines a monetary transfer qi ∈ [−1, 1] for each colluder i ∈ Nc.

1For the ease of presentation, we assume that the click through rate only depends on the slot and not on the ad
being displayed. This dependence can be easily captured by interpreting vi as an expected value w.r.t. clicks once
the user observed the slot.
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We adopt the convention that, if qi > 0, then the transfer is from the agent to
the agency, while, if qi < 0, then it is the other way around.2

W.l.o.g., we assume that the slots are ordered in decreasing value of click
through rate, so that λ1 ≥ . . . ≥ λm. Moreover, for the ease of presentation,
we let λm+1 = . . . = λn+1 = 0.

The auction goes on as follows. First, the media agency selects a bidding
strategy bc = (bi)i∈Nc and requires a transfer qi from each colluder i ∈ Nc.
Then, external agents individually report their bids to the auction mechanism,
resulting in a profile be = (bi)i∈Ne , while the media agency reports bids bc

on behalf of the colluders. Finally, given all the agents’ bids b = (bc, be),
the mechanism allocates an ad to each slot and defines an expected payment
πi(b) ∈ [0, 1] for each agent i ∈ N , where the expectation is with respect to
the clicks. The media agency is responsible of paying the auction mechanism
on behalf of the colluders.

Given a bid profile b = (bi)i∈N , assuming w.l.o.g. that each bidder
i ∈ [m] is assigned to slot i (by re-labeling bidders accordingly), we denote
bidder i’s expected revenue as ri(b) := λivi, while bidder i’s expected
utility is ui(b) := ri(b) − qi.3 Instead, the expected utility of the agency
is
∑

i∈Nc(qi − πi(b)). We also denote with U the cumulative expected
utility of all the colluders and the media agency. Formally, it holds U :=∑

i∈Nc(ri(b)− πi(b)).
Next, we review GSP and VCG mechanisms in ad auctions (see the paper

by (Nisan and Ronen, 2001) for their general description). Given a bid
profile b = (bi)i∈N , assuming w.l.o.g. that b1 ≥ . . . ≥ bn (by re-labeling
bidders accordingly), both mechanisms orderly assign the first m agents,
who are those with the highest bids, to the first m slots, which are those
with the highest click through rates. Moreover, the mechanisms assign the
following expected payments.

• GSP mechanism: πGSP
i (b) := λibi+1 for each agent i ∈ [m], and

πGSP
i (b) = 0 for all the other agents.

• VCG mechanism: πVCG
i (b) :=

∑m+1
j=i+1 bj(λj−1 − λj) for each agent

i ∈ [m], and πVCG
i (b) = 0 for the others.

The VCG payments are such that each agent is charged a payment that
is equal to the externalities that they impose on other agents. This makes
the VCG mechanism truthful, which means that it is a dominant strategy for

2Notice that there are some scenarios in which it is in the interest of the media agency to pay a colluder in
order to ensure that they stay in the agency; see Example 6.2.

3We denote with [m] the set {1, . . . ,m}.
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each agent to report their true valuation to the mechanism, namely bi = vi
for every i ∈ N . This is not the case for the GSP mechanism.

6.2 Problem Formulation

In this section, we introduce the optimization problem faced by the media
agency. In words, the goal of the media agency is to find a bidding strategy
bc = (bi)i∈Nc that coordinates colluders’ bids in a way that maximizes the
cumulative expected utility U , while at the same time guaranteeing that they
are incentivized to be part of the media agency. The rest of the section is
devoted to formally defining such a problem.

Before introducing the optimization problem, let us notice that knowing
the valuations of all the colluders allows the media agency to improve the
cumulative expected utility U with respect to the case in which all the bidders
act individually. This is formalized by the following proposition.

Proposition 6.1. The cumulative expected utility U may be arbitrarily larger
than the sum of the colluders’ expected utilities when they participate in the
ad auction individually.

Proof. There are two colluders, Nc = {1, 2}, with valuations v1 = v2 + ε
and v2 ∈ [0, 1] for ε > 0. There is one slot M = {1}, with click through
rate λ1 = 1. Notice that, in one-slot settings, VCG and GSP mechanisms
define the same payments and are both truthful mechanisms. We consider
the following cases:

• Without media-agency coordination: the colluders’ bid profile is bc =
(b1, b2) = (v1, v2) and agent 1 wins the slot paying v2 (since b1 > b2);
then, the cumulative expected utility of the colluders is Uw/o = u1(b) +
u2(b) = ε.

• With media-agency coordination: the colluders’ bid profile is bc =
(b1, b2) = (v1, 0) and agent 1 wins the slot paying 0; then, the cumula-
tive expected utility is Uw = u1(b) + u2(b) = v1 = v2 + ε.

Thus, by letting ε→ 0, we have that Uw
Uw/o
→ +∞.

In general, the media agency may adopt a randomized bidding strategy in
order to maximize U . By letting Bc be the set of all the possible colluders’
bid profiles bc = (bi)i∈Nc , we denote by γ ∈ Γ any randomized bidding
strategy, where Γ is the set of all the probability distributions over Bc.
Moreover, whenever γ ∈ Γ has a finite support, we denote with γbc the
probability of choosing a bidding strategy bc ∈ Bc.
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In this work, unless stated otherwise, we consider the case in which the
bid profile be = (bi)i∈Ne of the external agents is drawn from a probability
distribution γe. Then, we define the expected revenue of bidder i ∈ Nc

for any bidding strategy bc ∈ Bc as r̃i(bc) := Ebe∼γeri(bc, be), while their
expected payment is as π̃i(bc) := Ebe∼γeπi(bc, be). In the rest of the chapter,
we assume that all algorithms have access to an oracle that returns the value
of the expectations r̃i(bc) and π̃i(bc), for a bidding strategy bc ∈ Bc given as
input.4

The following Problem (6.1) encodes the maximization problem faced by
the media agency, where the meaning of IR and AIR constraints is described
in the following.

max
q,γ∈Γ

∑
i∈Nc

Ebc∼γ[r̃i(bc)− π̃i(bc)] s.t. (6.1a)

IR : Ebc∼γ[r̃i(bc)]− qi ≥ ti ∀i ∈ Nc (6.1b)

AIR :
∑
i∈Nc

qi ≥
∑
i∈Nc

Ebc∼γ[π̃i(bc)]. (6.1c)

The elements of Problem (6.1) are defined as follows.
Objective (6.1a) encodes the cumulative expected utility U of the col-

luders and the media agency, in expectation with respect to the randomized
bidding strategy γ.

Constraints (6.1b), which are called individual rationality (IR) con-
straints, ensure that the colluders are incentivized to be part of the media
agency, rather than leaving it and participating in the ad auction as external
agents. In particular, they guarantee that each colluder i ∈ Nc achieves at
least a minimum expected utility ti, where the values ti ∈ [0, 1] for i ∈ Nc

are given as input.5

Constraint (6.1c) is an agency individual rationality (AIR) constraint
which provides guarantees over the utility of the media agency. Since the
agency corresponds to the mechanism a payment

∑
i∈Nc Ebc∼γ[π̃i(b

c)] in
expectation over the clicks, the constraint requires that the sum of transfers∑

i∈Nc qi covers the payment, so that the expected utility attained by the
agency is non-negative.

4Our results can be easily extended—only incurring in a small additive loss in cumulative expected utility—to
the case in which the distribution γe is unknown, but the algorithms have access to a black-box oracle that returns
i.i.d. samples drawn according to γe (rather than returning expected values).

5To the best of our knowledge, in the literature there is only one work by Bachrach [2010] that formalizes IR
constraints for a setting that is similar to ours. Bachrach [2010] takes inspiration from the concept of core Peleg
and Sudhölter (2007) in cooperative games in order to define suitable IR constraints. However, this approach
has many downsides. The most relevant issue of such an approach is that it is not computationally viable, since
computing the core would require exponential time in the number of colluders.
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In the following, we sometimes relax IR constraints by using δ-IR con-
straints, for δ > 0, which are defined as follows:

δ-IR : Ebc∼γ[r̃i(bc)]− qi ≥ ti − δ ∀i ∈ Nc. (6.2)

In the following, we call the scenario described so far, in which transfers
qi could be negative, the arbitrary transfers setting. Monetary transfers from
the media agency to the agents are not always feasible in practice. Indeed, in
some real-world scenarios a media agency could potentially lose customers
by adopting a strategy for which some agents pay and some others are paid
for participating in the same auction. For these reasons, we introduce and
study a second scenario, which we call transfers with limited liability setting,
where no agent is paid by the agency. In such setting, Problem (6.1) is
augmented with the following additional limited liability (LL) constraints
on the monetary transfers qi:

LL : qi ≥ 0 ∀i ∈ Nc. (6.3)

As we show in Section 6.4, there always exists an optimal solution to
Problem (6.1) without LL constraints that is not randomized. The same does
not hold for the problem with LL constraints, in which an optimal bidding
strategy may be randomized, as in Example 6.2.

We conclude by introducing the following assumption on the values ti,
guaranteeing that Problem (6.1) is feasible.

Assumption 6.1. There always exists a bidding strategy bc ∈ Bc such that
r̃i(b

c)− π̃i(bc) ≥ ti for all i ∈ Nc.

Proposition 6.2. With Assumption 6.1, Problem (6.1) with LL constraints
admits a non-randomized feasible solution.

Proof. Suppose that there exists a bidding strategy bc ∈ Bc such that r̃i(bc)−
π̃i(b

c) ≥ ti for all i ∈ Nc. We prove the proposition by showing that
Problem (6.1) has a feasible solution composed by the non-randomized
bidding strategy bc and transfers qi = π̃i(b

c) for all i ∈ Nc. Constraints
(6.1b) are satisfied because of the condition r̃i(b

c) − π̃i(b
c) ≥ ti for all

i ∈ Nc. Then, by substituting qi = π̃i(b
c) in Constraint (6.1c), we show that

also the AIR constraint is satisfied. We conclude the proof observing that
under GSP and VCG mechanisms π̃i(bc) > 0 for all i ∈ Nc, therefore also
LL constraints are satisfied.

In the following example, we show how the set of feasible solutions
depends on parameters ti, with i ∈ Nc.
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Example 6.1. In the proof of Proposition 6.1 we consider a deterministic
bidding strategies bc = (v1, 0) played with probability γbc = 1. Agent 2
has the same utility u2 = 0 with or without the coordination of the agency.
Moreover, agent 2 is incentivized to stay under the agency when t2 = 0.
However, suppose that t2 = δ and t1 = ε. In this case, the optimal expected
utility U = v1, achieved by the strategy bc = (v1, 0), should be partitioned
between the agents s.t. u2(b) ≥ δ. A feasible solution is q1 = δ and
q2 = −δ (recall that π1(b) = π2(b) = 0). The corresponding utilities are
u1(b) = r1(b) − q1 = v1 − δ for agent 1 and u2(b) = r2(b) − q2 = δ for
agent 2. Under the hypothesis that v1 − δ ≥ ε, this is a feasible solution
maximizing the objective function (6.1a).

Then, we show a case in which a randomized bidding strategy can provide
a higher utility than the best non-randomized bidding strategy.

Example 6.2. We show a case in which the best non-randomized bidding
strategy provides a lower utility w.r.t. the best randomized bidding strategy.
Consider a set of two slots M = {1, 2} with click-through rates λ1 ≥ λ2, a
set of two colluders Nc = {1, 2} and a set of one external agent Ne = {3}.
It holds that v3 ≤ v2 ≤ v1. The ties are broken in favour of the colluders.
Suppose that v1 = v2 = 1, v3 = 2

3
, λ1 = λ2 = 1, t1 = δ1, and t2 = δ2, with

δ1 and δ2 arbitrarily small values such that δ1, δ2 <
1
3
. Consider the non-

randomized bidding strategy b1 = v1, b2 = b3. Consider the randomized
bidding strategy: play with probability γbc′ = 1

2
stategy (ε, 0) and play with

probability γbc′′ = 1
2

stategy (0, ε), with small ε. Under both VCG and GSP
mechanisms we have that:

• The non-randomized strategy provides cumulative utilityUNR = u1(bc)+
u2(bc) = 1

3
+ 1

3
= 2

3
. The IR and AIR constraints can be easily satisfied,

for instance, by setting q1 = q2 = 0.

• The randomized strategy provides a cumulative utility UR’ = 1 when
bidding bc

′
, and provides UR” = 1 when bidding bc

′′
. The expected

cumulative utility on the stochasticity of the bidding strategy is UR = 1.
The IR and AIR constraints can be satisfied by setting q1 ∈

[
δ1,

1
2

]
and

q2 ∈
[
δ2,

1
2

]
.

• UR > UNR

Now, we provide some examples of natural choices for the values ti,
which arise from allocation and payment rules of the considered auction
mechanisms and satisfy Assumption 6.1.
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Consider a VCG mechanism and fix ti as the utility of agent i, for
every i ∈ Nc, when all agents in N paritcipate to the auction without the
coordination of the agency. With such choice of parameters ti, a feasible
solution to the optimization problem (6.1) with LL always exists by fixing
the bidding strategy bc = (vi)i∈Nc .

As for the GSP mechanism, there are many possible choices of value ti
as there is no dominant strategy. For instace, consider the Balanced Bidding
strategy from Cary et al. [2007]. Parameter ti can be set as the expected
utility of agent i, when the colluders adopt such strategy considering the
external bids in expectation.

6.3 Weighted Utility Problem

In this section, we provide a polynomial-time algorithm for an abstract bid
optimization problem, called weighted utility problem (WUP). This will
be crucial in the following sections in order to solve Problem (6.1) with or
without LL constraints.

Let ∆ := {δ1, . . . , δd} be a discrete set of d different bid values, with
δ1 ≥ . . . ≥ δd. Moreover, given a bidding strategy bc = (bi)i∈Nc ∈ Bc such
that bi ∈ ∆ for all i ∈ Nc, we write bc ∈ Bc

∆ to denote that each bi belongs
to ∆.

Then, WUP reads as follows:

max
bc∈Bc∆

∑
i∈Nc

(ŷi r̃i(b
c)− x̂ π̃i(bc)), (6.4)

where ŷi ≥ 0 for i ∈ Nc and x̂ ≥ 0 are give problem parameters. A solution
to Problem (6.4) is a bidding strategy bc ∈ Bc

∆ that maximizes the sum of
suitable weighted utilities of the colluders, which are defined so that colluder
i’s expected revenue r̃i(b) is weighted by coefficient ŷi, while their expected
payment π̃i(b) is weighted by coefficient x̂. Notice that, when ŷi = 1 for all
i ∈ Nc and x̂ = 1, then the objective of Problem (6.4) coincides with the
cumulative expected utility U .

As a first step, we consider Problem (6.4) in which the profile of external
agents’ bids be is fixed, which reads as follows:

max
bc∈Bc∆

∑
i∈Nc

(ŷi ri(b
c, be)− x̂ πi(bc, be)). (6.5)

For the sake of presentation, we first provide our results for Problem (6.5),
and, then, we show how they can be extended to Problem (6.4), where the
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Figure 6.1: Example of graph for Nc = {1, 2, 3}, ∆ = {δ1, δ2, δ3}.

bids of external agents are stochastic. Thus, in the rest of the section, we
always assume that a profile of external agent’s bids be = (bi)i∈Ne is given.

The main idea underpinning our results is to map Problem (6.4) into
a shortest path problem Dijkstra (1959). Specifically, we show that the
weighted utilities of bidding strategies are related to the length of paths in
a particular directed acyclic weighted graph, whose structure and weights
derive from the considered auction mechanism. The following lemma is
crucial for the construction of the graph.

Lemma 6.1. Given any bidding strategy bc = (bi)i∈Nc ∈ Bc
∆ that is optimal

for Problem (6.5), it holds bi ≥ bj for every pair of colluders i, j ∈ Nc such
that ŷivi ≥ ŷjvj .

Proof. We prove the result for GSP auction mechanisms. Consider a set of
colluders, i.e. Nc in which colluders are ordered such that, if i, j ∈ Nc and
ŷivi > ŷjvj , then i < j. Consider two colluders h and k, having weighted
valuations defined as vw

h := ŷhvh and vw
k := ŷkvk such that vw

h ≥ vw
k .

Consider a set of external bidders Ne, their bid profile be and a set of slot
M = {1, . . . ,m} such that their click-through rates are λ1 > . . . > λm.
Suppose that ties are broken in favor of the colluders and fix a bidding
strategy bc, composed of bids in non-increasing order, i.e., if bi, bj ∈ bc and
bi > bj , then i < j. Consider GSP allocation function f such that f(i) = j
if agent i is allocated to slot j. The expected utility is:

U =
∑
i∈Nc

Ui

=Uh + Uk +
∑

i∈Nc\{h,k}

Ui =

=λf(h)

(
vw
h −max

{
max

`∈Nc:b`≤bh∧`>h
b`, max

j∈Ne:bj≤bh
bj

})
+

+ λf(k)

(
vw
k −max

{
max

`∈Nc:b`≤bk∧`>h
b`, max

j∈Ne:bj≤bk
bj

})
+
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+
∑

i∈Nc\{h,k}

λf(i)

(
vw
i −max

{
max

`∈Nc:b`≤bi∧`>h
b`, max

j∈Ne:bj≤bi
bj

})
≥

≥λf(h)

(
vw
k −max

{
max

`∈Nc:b`≤bh∧`>h
b`, max

j∈Ne:bj≤bh
bj

})
+

+ λf(k)

(
vw
h −max

{
max

`∈Nc:b`≤bk∧`>h
b`, max

j∈Ne:bj≤bk
bj

})
+

+
∑

i∈Nc\{h,k}

λf(i)

(
vw
i −max

{
max

`∈Nc:b`≤bi∧`>h
b`, max

j∈Ne:bj≤bi
bj

})
=

=Û,

where Û is the utility provided by bidding strategy bc in which bh and bk
are switched. Therefore, the maximum utility is reached through a bidding
strategy ordered in non-increasing values of bi, where i ∈ Nc.

The result can be analogously proved for VCG auction mechanism.

In the rest of this section, for the ease of notation and w.l.o.g. thanks
to Lemma 6.1, we re-label bidders in N so that Nc := {1, . . . , nc} and
ŷivi ≥ ŷjvj for any i, j ∈ Nc : i < j. Moreover, w.l.o.g., we also re-
label external agents so that Ne := {nc + 1, . . . , n} and bi ≥ bj for any
i, j ∈ Ne : i < j.

We build the graph as follows (see Figure 6.1).

• The set of vertices V contains dnc nodes, plus a source node s and a
sink node s′. In particular, there are d nodes for each colluder, one for
each possible bid value. For every i ∈ Nc and δj ∈ ∆, we let (i, δj)
be the node corresponding to colluder i and bid value δj . Intuitively,
selecting a path passing through such a node encodes the fact that the
bid bi of colluder i is set to value δj .

• The set of arcs A has cardinality O(d2nc). In particular, the source
node s is connected to all the nodes (1, δj) (for δj ∈ ∆), while all nodes
(nc, δj) (for δj ∈ ∆) are connected to the sink node s′. Moreover, for
every i ∈ Nc \ {nc} and δj ∈ ∆, node (i, δj) is connected to all nodes
(i + 1, δj′) such that δj′ ∈ ∆ and j′ ≥ j. Intuitively, each path in the
graph going from s to s′ defines a bidding strategy bc = (bi)i∈Nc ∈ Bc

∆

such that bi ≥ bj for every i, j ∈ Nc with ŷivi ≥ ŷjvj . Notice that
focusing on such bidding strategies is w.l.o.g. by Lemma 6.1. In the
following, we denote the arc going from (i, δj) to (i+ 1, δj′) with the
tuple (i, δj, δj′).
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• Each arc (i, δj, δj′) has a weightwi,j,j′ . For i ∈ Nc\{n} and δj, δj′ ∈ ∆,
the weight wi,j,j′ encodes the fraction of cumulative weighted utility
obtained by setting bi = δj and bi+1 = δj′ , once all the (higher) bids bi′
with i′ ∈ Nc : i′ < i are assigned to a value given the preceding nodes
in the selected path. The weights wnc,j,s′ on arcs going from nodes
(nc, δj) (for δj ∈ ∆) to the sink s′ are defined analogously, while those
on arcs exiting from the source s are denied as ws,j = 0 for all δj ∈ ∆.

A directed path σ ∈ Σ is a sequence of arcs connecting the source node
s to the sink node s′. The length Wσ of path σ is the sum of the weights of
the arcs in the path:

Wσ =
∑

(i,δj ,δj′ )∈σ

wi,j,j′ .

Then, the shortest path problem on the weighted graph is

min
σ∈Σ
−Wσ.

In conclusion, we define the weights of all arcs (i, δj, δj′), which depend
on the considered auction mechanism, either GSP or VCG. The weights
wnc,j,s′ of arcs entering the sink s′ are defined analogously, by letting δj′ = 0.
For the ease of notation, given δj ∈ ∆, we let τ(δj) :=

∑
i∈Ne 1{bi>δj} be

the number of external agents with a bid larger than δj .
For the GSP mechanism, the weight of arc (i, δj, δj′) is

wi,j,j′ := λi+τ(δj)

(
ŷivi − x̂max

{
δj′ , max

k∈Ne:bk<δj
bk

})
.

Intuitively, for the GSP mechanism, the weight wi,j,j′ is exactly equal to the
weighted utility of colluder i when they bid value δj and the colluder i+ 1
bids value δj′ .

For the VCG mechanism, the weight of arc (i, δj, δj′) is

wi,j,j′ := ŷi λi+τ(δj)vi − x̂
[
gi(δj) + `i(δj, δj′)

]
,

where we let

gi(δj) := (i− 1) δj
(
λi+τ(δj)−1 − λi+τ(δj)

)
,

`i(δj, δj′) :=
∑
k∈Ne:

bk∈(δj′ ,δj ]

i bk

(
λk−nc+i−1 − λk−nc+i

)
.
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For the VCG mechanism, wi,j,j′ has a less intuitive interpretation than
for the GSP mechanism. In particular, wi,j,j′ is composed of a revenue term,
which is agent i’s expected revenue λi+τ(δj)vi, weighted by ŷi, and two
payment terms, gi(δj) and `i(δj, δj′), weighted by x̂. The latter are two parts
of the cumulative payment from the agency to the mechanism, which are
related to the externalities of colluders i′ ∈ Nc with i′ < i, when colluders
i and i + 1 bid δj and δj′ , respectively. In particular, the fraction of the
expected payment related to some colluder i′ ∈ Nc with i′ < i, due to the
presence of colluder i bidding δj , is δj(λi+τ(δj)−1−λi+τ(δj)). The term gi(δj)
defines the summation of such payments over all agents i′ ∈ Nc : i′ < i.
Moreover, the fraction of expected payment related to i′, due to the presence
of an external agent k ∈ Ne bidding bk, is bk(λk−nc+i−1 − λk−nc+i). The
term `i(δj, δj′) is the summation of such expected payments due to external
agents with bids bk ∈ (δj′ , δj].

The following lemma establishes the relation between the length of the
paths in the weighted graph defined above and the objective of Problem (6.5).

Lemma 6.2. Given any path σ ∈ Σ composed by the sequence of nodes
{(1, δj1), . . . , (nc, δjnc )}, it holds

Wσ =
∑
i∈Nc

ŷiri(b
c, be)− x̂πi(bc, be), (6.6)

where bc = (δj1 , . . . , δjnc ). Moreover, for any bidding strategy bc =
(bi)i∈Nc ∈ Bc

∆, there exists a corresponding path composed by the sequence
of nodes {(1, b1), . . . , (nc, bnc)}.

Proof. We prove that every path in the graph corresponds to a specific
bidding strategy in the auction such that the sum of the weights Wσ of
the arcs in path σ is the weighted utility in the optimization Problem (6.5)
given the bidding strategy corresponding to that path, and viceversa. First,
we prove the existence of a bidding strategy given a path, then, we show
the existence of a path given a bidding strategy. The proof follows from
the construction of the graph. Recall that, in this section, for the ease of
notation and w.l.o.g. thanks to Lemma 6.1, we re-label bidders in N so that
Nc := {1, . . . , nc} and ŷivi ≥ ŷjvj for any i, j ∈ Nc : i < j. Moreover,
w.l.o.g., we also re-label external agents so that Ne := {nc + 1, . . . , n} and
bi ≥ bj for any i, j ∈ Ne : i < j.

• Given a path {(1, δj), . . . , (nc, δj′)}, the corresponding bidding strategy
is b1 = b̄cj, . . . , bnc = b̄cj′ .
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• Given a bidding strategy b1 = δj, . . . , bnc = δj′ , such that w.l.o.g. b1 ≥
. . . ≥ bnc by Lemma 6.1, the corresponding path is {(1, δj), . . . , (nc, δj′)},
which always exists by the way in which the graph is built.

Now, we prove Equation (6.6) under GSP and VCG mechanisms.
In GSP auction, the weight wi,j′,j is colluder i’s weighted utility under

GSP payments when i is assigned to the (i+ τ(δi))-th slot:

Wσ =
∑

(i,δj′ ,δj)∈σ

wi,j′,j =
∑
i∈Nc

ŷiri(b
c)− x̂πGSP

i (bc). (6.7)

The equivalence between the solutions of the shortest path problem and
Problem (6.5) follows from equality (6.7) and from the fact that the following
optimization problem is a shortest path problem:

max
σ∈Σ

Wσ. (6.8)

Now, we analyze the case of VCG mechanism.
We let ρ(bj) :=

∑
i∈Nc 1{bi≥bj} be the number of colluders with a bid

larger than or equal to the external bid bj , with j ∈ Ne. We define n(bej) =∑nc
k=1 11{bck≥bej} the number of colluders with a bid larger than or equal to

external bid bej . We have:

Wσ =
∑

(i,δj′ ,δj)∈σ

wi,j′,j =

=
∑
i∈Nc

(
ŷiri(b

c)− x̂

(
(i− 1)bi(λi+τ(bi)−1 − λi+τ(bi))−

−
∑

h∈Ne:bh∈(bi+1,bi]

i bh(λh+i−1 − λh+i)

))
=

=
∑
i∈Nc

(
ŷiri(b

c)− x̂

( ∑
i′∈Nc:i′>i

bi′(λi′+τ(bi′ )−1 − λi′+τ(bi′ ))−

−
∑

j∈Ne:bj≤bi

bej(λj+ρ(bj)−1 − λj+ρ(bj))

))
=

=
∑
i∈Nc

(
ŷiri(b

c)− x̂
m+1∑
j=i+1

b̄j(λj−1 − λj)

)
=

=
∑
i∈Nc

(
ŷiri(b

c)− x̂πVCG
i (bc)

)
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where, for the ease of notation, we let λm+1 = 0 and b̄ is a bid profile
including both colluders’ and external agents’ bids ordered in non-increasing
order, i.e., given bi and bj in b̄ they are such that i < j when b̄i > b̄j , and
i, j ∈ Nc ∪Ne.

The following theorem provides the polynomial-time algorithm for solv-
ing Problem (6.5), which works by simply finding a shortest path of the
graph defined above.

Theorem 6.1. Problem (6.5) can be solved in polynomial time.

Finally, by substituting the quantities involved in Problem (6.5) with their
expectations, thanks to the linearity of the objective, we get the following
result:

Theorem 6.2. Problem (6.4) can be solved in polynomial time.

Proof. It suffices to solve the shortest path problem by assigning to each
arc (i, δj′ , δj) the weight computed in expectetion w.r.t. the distribution of
be, which we denote by w̃i,j′,j := Ebe∼γe [wi,j′,j]. The result follows from the
linearity of the objective function of the Problem (6.5).∑

(i,δj′ ,δj)∈σ

w̃i,j′,j =
∑

(i,δj′ ,δj)∈σ

Ebe∼γebe [wi,j′,j] =

= Ebe∼γe

 ∑
(i,δj′ ,δj)∈σ

wi,j′,j

 =

= Ebe∼γe
[∑
i∈Nc

ŷiri(b
c)− x̂πi(bc)

]
=

=
∑
i∈Nc

ŷir̃i(b
c)− x̂π̃i(bc)

6.4 Arbitrary Transfers Setting

In this section, we provide an approximate solution to the media agency
problem with arbitrary transfers. In particular, we design a bi-criteria addi-
tive FPTAS that returns solutions providing an arbitrary small loss ε > 0
with respect to the optimal value of the problem, by relaxing the IR con-
straints by the additive factor ε. As a first step, we show that there always
exists a non-randomized solution to Problem (6.1).
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Algorithm 6.1 REC((α, β], p, η)

1: if P
be∼γe

{∃j ∈ Ne : bj ∈ (α, β]} ≤ p ∨ β − α ≤ η then return {(α, β]}
2: else
3: IL ← REC

((
α, α+β

2

]
, p, η

)
4: IR ← REC

((
α+β

2 , β
]
, p, η

)
return IL ∪ IR

5: end if

Lemma 6.3. In the arbitrary transfers setting, there always exists an optimal
non-randomized solution to Problem (6.1).

Proof. We provide an optimal solution (γ∗, q) to LP (6.1) such that γ∗bc,∗ = 1
for a bid profile bc,∗. Let bc,∗ ∈ argmaxbc∈Bc

∑
i∈Nc r̃i(b

c)− π̃i(bc). More-
over, let qi = r̃i(b

c,∗)−ti. By the optimality of bc,∗, the value of the objective
(6.1a) is optimal. Moreover, Constraints (6.1b) are satisfied by construc-
tion. To conclude the proof, we show that constraint (6.1c) is satisfied. In
particular

∑
i∈Nc [qi − π̃i(b

c,∗)] =
∑

i∈Nc(r̃i(b
c,∗) − π̃i(b

c,∗) − ti) ≥ 0 by
Assumption 6.1.

Then, we show how to reduce the problem to a new one working with
a finite (discretized) set of bids, in order to apply the results provided in
Section 6.3. As a first result, given a probability value p ∈ [0, 1] and a
minimum discretization step η ∈ [0, 1], we show how to split the space
of bids [0, 1] into a suitably-defined set of intervals using the recursive
algorithm whose pseudo-code is provided in Algorithm 6.1.

We prove the following:

Lemma 6.4. Given p ∈ [0, 1] and η ∈ [0, 1], REC((0, 1], p, η) returns a
set {(αj, βj]}j∈[k∗] composed of k∗ ≤ 2ne

p
log 1

η
intervals such that, for

every interval (αj, βj], it holds either Pbe∼γe {∃i ∈ Ne : bi ∈ (αj, βj]} ≤ p
or βj − αj ≤ η. Moreover, it holds that

⋃
j∈[k∗](αj, βj] = (0, 1] and the

procedure runs in time polynomial in ne, 1
p
, and log 1

η
.

Proof. It is easy to see that for each interval (αj, βj] returned by algo-
rithm REC((αj, βj], p, η) it holds Pbe∼γe(∃i ∈ Ne : bi ∈ (αj, βj]) ≤ p or
βj − αj ≤ η and that the union of the returned intervals is (0, 1]. Then, we

prove that k∗ ≤ 2ne
p

log
(

1
η

)
. Suppose by contradiction that Algorithm 6.1

returns k∗ > 2ne
p

log
(

1
η

)
intervals {(αj, βj]}j∈[k∗]. Each of these intervals

has been generated by the recursive call of algorithm REC((αj, βj], p, η)
from an interval Ih such that Pbe∼γe(∃i ∈ Ne : bi ∈ Ih) > p and (αj, βj] =
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(αh,
αh+βh

2
] or (αj, βj] = (αh+βh

2
, βh]. We call I = ∪h∈[k∗]{Ih} the set of all

such intervals Ih. If an interval does not respect the condition at Line 1, Al-
gorithm 6.1 performs two recursive calls and, therefore, that interval can be
seen as an internal node of a binary tree. Vice versa, each interval satisfying
such condition is a leaf node. In a binary tree the number of internal nodes
is at least half the number of leaf nodes, hence the cardinality of I is at least

C = k∗
2
> ne

p
log
(

1
η

)
. Moreover, at least C

log ( 1
η )
>

ne
p

log ( 1
η )

log ( 1
η )

= ne
p

intervals

Ih ∈ I are disjoint. We denote by Id the set of such disjoint intervals. This
results follows from the tree representation introduced above. Each interval,
corresponding to a node N , is disjoint from another interval, corresponding
to a node N ′, if N is neither a parent nor a child of N ′. We refer to N and
N ′ as disjoint nodes. Notice that all the nodes in the same level are disjoint.
The number of such nodes can be bounded by C

h
, where h is the depth of

the tree. In particular, the C internal nodes are partitioned over h− 1 levels
of the tree. Thus, there exists at least a level with C

h−1
nodes. The result

follows from the fact that the maximum depth is at most log 1
η
. This implies

that
∑

I∈Id Pbe∼γe(∃i ∈ Ne : bi ∈ I) > ne
p
p = ne. We reach a contradiction

since
∑

I∈I∗ Pbe∼γe(∃i ∈ Ne : bi ∈ I) ≤ ne for each set I∗ of disjoint
intervals.

We conclude the proof showing that the algorithm runs in polynomial
time in ne, 1/p, and log(1/η). Recall the tree representation described
above: the number of recursive calls of Algorithm 6.1 is equal to the number
of nodes which are at most twice the number of leaf nodes in a binary
tree. Therefore the recursive calls of the algorithm are at most 2k∗ ≤
4ne
p

log
(

1
η

)
.

Let Ip,η := {(αj, βj]}j∈[k∗] be the set of intervals returned by algorithm
REC((0, 1], p, η). The next step is to show that, for η small enough,

Pbe∼γe {∃i ∈ Ne : bi ∈ (αj, βj)} ≤ p,

for every interval (αj, βj]. This holds by definition for each interval (αj, βj]
with βj − αj > η. Thus, let us consider the intervals (αj, βj] such that
βj − αj ≤ η. Let M be the maximum number of bits needed to represent
the bids in the support of probability distribution γe. By setting η = 2−M ,
we have that all the bids bi in the interval (αj, βj] are equal to βj .6 Hence, it
holds Pbe∼γe {∃i ∈ Ne : bi ∈ (αj, βj)} = 0.

6Our algorithm runs in time logarithmic in 1
η

and hence polynomial in the size of the binary representation of
bids in be.
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Letting Bc
p :=

⋃
(α,β]∈Ip,η

⋃
i∈Nc{α + τi} be a suitable set of discretized

bidding strategies for τ > 0 and η = 2−M , we show that we can restrict the
attention to bid profiles in Bc

p with a small loss in utility and by relaxing IR
constraints.7

First, we provide the following auxiliary result.

Lemma 6.5. Given p ∈ [0, 1], for any bidding strategy bc ∈ Bc, there exists
a discretized bidding strategy b̂c ∈ Bc

p:

• π̃i(b̂c) ≤ π̃i(b
c) for all i ∈ Nc; and

• r̃i(b̂c) ≥ r̃i(b
c)− p for all i ∈ Nc.

Proof. Recall that Ip,η := {(αj, βj]}j∈[k∗] is the set of intervals returned by
REC((0, 1], p, η). Take a bid profile bc ∈ Bc. Consider the bid profile b̂c ∈
Bc,p such that, for each i ∈ Nc, b̂ci is the largest element in

⋃
(α,β]∈Ip,η{α}

such that b̂ci ≤ bi. Then, we increase each bid b̂ci by τ(nc− i), for all i ∈ [nc]

in order to have the same ordering of the colluders’ bids in bc and b̂c. This
step is equivalent to introducing a specific tie breaking rule. Now, we show
that the two conditions stated in the lemma hold for b̂c. First, it is easy to see
that since each colluder decreases his bid (ignoring the arbitrary small τ ), the
payment decreases both in VCG and GSP auctions. Then, we show that the
revenue of each colluder i ∈ Nc decreases by a small amount. In particular,
since with probability at least 1−p there is no external bid in interval (b̂c, bc)
and the partial ordering of the colluders’ bids does not change, then, with
probability at least 1 − p, colluder i is assigned to the same slot. Hence,
their utility is at least r̃i(bc)− p. This concludes the proof.

Then, by exploiting Lemma 6.5 we can prove the following Lemma 6.6.
Intuitively, the lemma shows that, given a probability p ∈ [0, 1] and an
optimal discretized bidding strategy, one can find an approximate solution
to Problem (6.1) in polynomial time.

Lemma 6.6. Given p ∈ [0, 1] and an optimal discretized bidding strategy
b̂c ∈ argmaxbc∈Bcp

∑
i∈Nc r̃i(b

c)− π̃i(bc), we can find in polynomial time a
p-IR (see Equation (6.2)) and AIR solution to Problem (6.1) with value at
least OPT − pnc, where OPT is the optimal value of Problem (6.1).

7In the following, we ignore the loss in cumulative expected utility that results from the introduction of τ > 0.
Notice that this parameter is only necessary to induce specific tie-breaking rules and our results can be easily
extended to consider the loss in utility due to τ . Moreover, τ can be taken to be exponentially small in the size of
the problem instance, and hence negligible.
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Proof. Let bc,∗ ∈ argmaxbc∈Bc
∑

i∈Nc r̃i(b
c)− π̃(bc). By Lemma 6.5, there

exists a discretized bid profile b̃c ∈ Bc,p such that:

• π̃i(b̃c) ≤ π̃i(b
c,∗) for all i ∈ Nc; and

• r̃i(b̃c) ≥ r̃i(b
c,∗)− p for all i ∈ Nc.

Hence,
∑

i∈Nc r̃i(b̂
c)− π̃i(b̂c) ≥

∑
i∈Nc r̃i(b̃

c)− π̃i(b̃c) ≥
∑

i∈Nc r̃i(b
c,∗)−

π̃i(b
c,∗) − ncp. We consider the solution to Problem (6.1) composed of

bidding strategy b̂c, with and qi = r̃i(b̂
c)− ti + p. The solution has objective

at leastOPT−ncp and satisfies p-IR by construction. To conclude the proof,
we show that the solution is AIR. In particular, it holds

∑
i∈Nc(qi− π̃i(b̂

c)) =∑
i∈Nc

(
r̃i(b̂

c)− π̃i(b̂c)− ti
)

+ pnc ≥
∑

i∈Nc(r̃i(b
c,∗)− π̃i(bc,∗)− ti) ≥ 0,

where the last inequality follows from Assumption 6.1.

By Theorem 6.2, for any p ∈ [0, 1], it is possible to find an optimal
discretized bidding strategy b̂c in time polynomial in the instance size and
in 1

p
, since, as it is easy to check, the number of possible discretized bids

in Bc
p is polynomial in 1

p
. Moreover, by employing Lemma 6.6, we can use

the bidding strategy b̂c to find an approximated solution to Problem (6.1) in
polynomial time. Hence, given any ε > 0, it is sufficient to choose p ∈ [0, 1]
so that 1

p
∈ poly(1

ε
, n) in order to obtain an ε-IR (see Equation (6.2)) and

AIR approximate solution to Problem (6.1), as stated by the following
theorem.

Theorem 6.3. Given ε > 0, there exists an algorithm that runs in time
polynomial in the instance size and 1

ε
, which returns an ε-IR and AIR

solution to Problem (6.1) with value at least OPT − ε, where OPT is the
optimal value of Problem (6.1).

6.5 Transfers with Limited Liability Setting

In this section, we provide an approximate solution to the media agency
problem with limited liability constraints. In particular, similarly to the
arbitrary transfers setting, we design a bi-criteria additive FPTAS that returns
solutions providing an arbitrary small loss ε > 0 with respect to the optimal
value of the problem, by relaxing the IR constraints by ε.

As a first step, we show that we can restrict Problem (6.1) with LL
constraints to work with the set Bc

p by only incurring in a small loss in
the objective function value and IR constraints satisfaction. Notice that,
Problem (6.1) with LL constraints restricted to discretized bids does not
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only have a smaller optimal value than Problem (6.1) with LL constraints,
but it can also result in an infeasible problem, since Assumption 6.1 is not
necessarily satisfied for a discretized bidding strategies. However, we can
prove that, given a probability p ∈ [0, 1], the following LP (6.9) that uses
only bids inBc

p and relaxes the IR constraints of quantity p is feasible and has
value at least OPT −pnc, where OPT is the optimal value of Problem (6.1)
with LL constraints.

max
q≥0,γ∈∆Bcp

∑
bc∈Bcp

γbc
∑
i∈Nc

r̃i(b
c)− π̃i(bc) s.t. (6.9a)

∑
bc∈Bcp

γbc r̃i(b
c)− qi ≥ ti − p ∀i ∈ Nc (6.9b)

∑
i∈Nc

qi ≥
∑
bc∈Bcp

γbc
∑
i∈Nc

π̃i(b
c). (6.9c)

Formally, we prove the following:

Lemma 6.7. LP (6.9) is feasible. Moreover, the optimal value of LP (6.9) is
at least OPT − pnc, where OPT is the optimal value of Problem (6.1) with
LL constraints.

Proof. We show how to construct a solution that satisfies the two constraints.
Take the optimal solution γ, q to LP (6.1) with LL. Let S : Bc → Bc,p be
the function that maps each bid profile b ∈ Bc to the bid profile b′ ∈ Bc,p

that satisfies Lemma 6.5. We build a solution γ̄, q̄ to LP (6.9) such that
γ̄bc := Pb̃c∼γ(bc = S(b̃c)) for each bc ∈ Bc,p. Moreover, we take q̄i = qi
for each i ∈ Nc. By lemma 6.5, we have that for each bc ∈ Bc and i ∈ Nc,
r̃i(S(bc)) ≥ ri(b

c)− p and π̃i(S(bc)) ≤ πi(b
c). Hence,∑

bc∈Bc,p
γ̄bc
∑
i∈Nc

π̃i(b
c) ≤ Ebc∼γ[

∑
i∈Nc

π̃i(b
c)]

and ∑
bc∈Bc,p

γ̄bc
∑
i∈Nc

r̃i(b
c) ≥ Ebc∼γ[

∑
i∈Nc

r̃i(b
c)]− p.

Thus, the objective decreases of at most pnc while
∑

bc∈Bc,p γ̄bc r̃i(b
c) −

q̄i ≥ Ebc∼γ[r̃i(b
c)] − p − qi ≥ ti − p for each i ∈ Nc and Constraints

(6.9b) are satisfied. Finally,
∑

i∈Nc q̄i =
∑

i∈Nc qi ≥ Ebc∼γ[
∑

i∈Nc π̃i(b
c)] ≥∑

bc∈Bc,p γ̄bc
∑

i∈Nc π̃i(b
c). This concludes the proof.

Next, we provide an algorithm to solve LP (6.9) by using the ellipsoid
method. To do that, we use the dual LP (6.10), in which variables y =
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{y1, . . . , ync}, x, and z are related to Constraints (6.9b), (6.9c), and γ ∈ ∆Bcp ,
respectively.

min
y≤0,x,z

∑
i∈Nc

(ti − p)yi + z s.t. (6.10a)∑
i∈Nc

yir̃i(b
c)− x

∑
i∈Nc

π̃i(b
c) + z ≥∑

i∈Nc

r̃i(b
c)− π̃i(bc) ∀bc ∈ Bc

p (6.10b)

− yi + x ≥ 0 ∀i ∈ Nc. (6.10c)

By Lemma 6.7, the primal LP (6.9) is feasible (and bounded), and, thus,
it holds strong duality. As a consequence, in order to provide a polynomial-
time algorithm to solve LP (6.9), it is enough to apply the ellipsoid method
to the dual LP (6.10), which can be done in polynomial time since the latter
has polynomially-many variables and exponentially-many constraints. This
is possible by providing a polynomial-time separation oracle that, given an
assignment of values to the variables as input, returns a violated constraint
(if any). Since there are only polynomially-many Constraints (6.10c), we
can check if one of them is violated in polynomial time. Moreover, in order
to find whether there exists a violated Constraint (6.10b), it is sufficient to
solve the weighted utility problem in Equation (6.4) by setting ŷi = (1− yi)
for each i ∈ Nc and x̂ = x − 1. By Theorem 6.2, this can be done in
polynomial time by computing a shortest path of a suitable graph. Hence,
we can prove the following theorem.

Theorem 6.4. Given ε > 0, there exists an algorithm that runs in time poly-
nomial in the instance size and 1

ε
and returns an ε-IR (see Equation (6.2))

and AIR solution to Problem (6.1) with LL constraints having value at
least OPT − ε, where OPT is the optimal value of Problem (6.1) with LL
constraints.

Proof. By Lemma 6.7, to provide the desired guarantees it is enough to
provide a solution to LP (6.9) with p = ε/nc. By strong duality, it is
sufficient to solve the dual LP (6.10). The algorithm employs the ellipsoid
method to solve the dual. To do so, it needs a polynomial-time separation
oracle that given an assignment (y, x, z) to the variables returns a violated
constraint (if any). Since there are only polynomially-many Constraints
(6.10c), we can check if one of these constraints is violated in polynomial
time. Moreover, we can find in polynomial time if the exists a violated
Constraint (6.10b) solving maxbc∈Bc,p

∑
i∈Nc [(1−yi)r̃i(b

c)+(x−1)π̃i(b
c)].
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This is an instance of the weighted utility problem in Equation (6.4) with
ŷi = 1− yi for each i ∈ Nc and x̂ = x− 1. If the value is higher than z, we
return the constraint relative to the solution of Equation (6.4). Otherwise,
all the constraints (6.10b) are satisfied. Finally, (6.4) can be solved in
polynomial time by Theorem 6.2. This concludes the proof.
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CHAPTER7
Algorithmic Advertising in the Metaverse:

Finding Effective Ads Allocations

Section 1.2 introduces the topic and main challenges we address in this
chapter. First, we provide an advertising model for the Metaverse setting in
Section 7.1. In our model, users traverse several scenes during which they
could be targeted with multiple ads of different formats, whose performance
depends on the specific scene in which they are displayed and the exter-
nalities they are subject to. In particular, displaying an ad in a scene may
raise negative forward externalities to other ads dis- played in future scenes.
Differently from classical advertising setting, a user moves through sequence
of scenes starting from the root of a tree of scenes. Furthermore, users could
observe the same ad multiple times during their experience. Sections 7.2-
7.3-7.4-7.5 analyze variations of this model. In particular, before studying
the general problem characterized by extenalities and scene-dependednt ads,
we study intermediate scenarios in which there are no externalities among
ads or their qualities do not depend on the scene. In these scenarios, we
assess the computational complexity of finding an optimal ad allocation and
provide approximation algorithms with tight theoretical guarantees. We also
discuss under which conditions our algorithms are monotone in the sense
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of Myerson, thus leading to truthful auction mechanisms. In Section 7.6,
we discuss the features of our user model. We compare our approximation
algorithms with algorithms disregarding such features and show that the
latters may be arbitrarily inefficient with respect to ours, for some instances.

7.1 Model

We introduce the following advertising model for the Metaverse.

Scenes Tree and User Transitions We assume that a user moves through a
sequence of possible scenes, starting from the root of a tree of scenes and
following one of the potential paths according to a probability distribution
over the successors of every scene. Formally, T = (S, ρ) is a tree of scenes,
where S is the set of scenes in which a user can be, s ∈ S is a scene, and
ρ : S → P(S) is the successor function taking as input a scene s ∈ S and
returning the subset ρ(s) of S composed of all the scenes that are immediate
successors of s in the tree; P(S) denotes the powerset of S. We say that
the scenes s such that ρ(s) = ∅ are terminal. We denote with πs,s′ ∈ [0, 1],
where s ∈ S, s′ ∈ ρ(s), the transition probability that a user in scene s
moves to immediate successor scene s′. Furthermore, for every non-terminal
scene s ∈ S, it holds

∑
s′∈ρ(s) πs,s′ = 1. Notice that, we can model that a

user leaves the metaverse with a non-null probability from scene s by using
a successor of s that is terminal (this corresponds to stopping to observe
the slots in the case of search advertising). We denote with σ a generic
ordered sequence of scenes such that σi is the i-th scene of σ. In particular,
we denote with σs the sequence of scenes from the root node to scene
s ∈ S, with |σs| the length of σs, and with σsi the i-th element of σs, where
i ∈ [ |σs| ].1 Hence, for every s ∈ S, the root scene corresponds to σs1 and

scene s to σ|σs|. The reach probability of s is Πs =
|σs|−1∏
i=1

πσsi ,σsi+1
, stating

the probability a user reaches s starting from the root σs1.

Ads, Qualities, and Externalities We denote with A the set of ads and with
a ∈ A an ad. For simplicity, we assume that at most one ad can be displayed
in every scene. In particular, we denote with x : S → A∪{a∅} the allocation
function taking as input scene s ∈ S and returning ad a ∈ A or a∅ allocated
to scene s, where ad a∅ is fictitious, meaning that no ad is allocated in that
scene. Every ad a ∈ A allocated in scene s ∈ S is characterized by a quality
qa,s ∈ [0, 1], that is the user’s conversion probability conditioned to the fact

1We denote with [n] the set {1, . . . , n}, where n ∈ N.
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that scene s has been reached by the user and the fact that no other ad has
been displayed before s. For the sake of presentation, whenever we focus
on settings in which the quality is scene-independent, we use qa in place
of qa,s. By convention, qa∅,s = 0 for every s ∈ S. Furthermore, ads are
subject to forward externalities, such that the display of ad a allocated in
scene s affects the quality of ad a′ allocated in scene s′ when s precedes s′

in the tree. Formally, we model such an externality with γa,a′ ∈ [0, 1], where
a, a′ ∈ A and a is allocated in a scene preceding (immediately or not) in
the tree the scene where a′ is allocated. We assume that γa,a′ ≤ 1 for every
a 6= a′ ∈ A, while γa,a = 1 for every a ∈ A. Notice that, when γa,a′ < 1,
the externality is negative, meaning that the display of a before a′ negatively
affects the quality of a′, while, when γa,a′ = 1, the externality is neutral,
meaning that the display of a before a′ does not affect the quality of a′. By
convention, leaving a scene without any ad allocated does not introduce any
externality and therefore γa∅,a′ = 1 for every a′ ∈ A. Whenever we refer
to no-externalities settings, we assume that γa,a′ = 1 for every a, a′ ∈ A.
Furthermore, we assume that the user may forget the ads seen in the past.
More precisely, we assume that the user’s behavior only depends on the ads
seen in the previous k ∈ N scenes (where k = 0 means that the user forgets
every ad previously seen). The total externality to which ad a in scene s is

subject to is given by Γ(x, s) =
|σs|−1∏

i=max{1,|σs|−k}
γx(σsi ),x(s) and is due to all the

ads displayed in the k scenes preceding s in the sequence σs (whose number
is min{k, |σs| − 1}). Notice that when k =∞, the user perfectly recalls all
the ads seen. Thus, the probability that a user converts on an ad a in scene s
conditioned to the reach of scene s is Γ(x, s) qs,a. This holds whenever ad a
is not displayed in scenes preceding s, while we treat separately the case in
which an ad is displayed multiple times along the same path.

Customarily in the literature on search and social advertising, an ad can
be displayed only once in an allocation, see, e.g., (Kempe and Mahdian,
2008). The rationale is that the users click on an ad only the first time this ad
is displayed. From our understanding, this model does not exactly capture
the actual behavior of the user, particularly in the metaverse. Indeed, in
practice, if users observe an ad and convert, then it is likely that they will
never convert again when observing the same ad in the future as the users
either will not repeat the conversion or exploit channels different from the
advertising to repeat it. Instead, if users observe an ad and do not convert to
it, they could convert in the future. This assumption is closer to the classical
advertising funnel, in which users observe multiple times the same ads
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Allocation problem Complexity Best Best monotone
apx. ratio apx. ratio

META-SI-NE Poly 1 1
META-SD-NE APX-Complete (1− 1/e) —
META-SI-E Poly-APX-Complete 1/(k + 1) 1/(k + 1)
META-SD-E Poly-APX-Complete (1− 1/e)/(k + 1) —

Table 7.1: Summary of the computational complexity results. ‘SI’ = ‘scene independent
quality’, ‘SD’ = ‘scene dependent quality’, ‘NE’ = ‘no externalities’, ‘E’ = ‘externali-
ties’. Monotonicity refers to Myerson’s weak monotonicity.

before converting. Formally, we assume that, if a user converts on ad a in
scene s, then she will never convert again on a when displayed in a scene s′

following s, while, if a user does not convert on ad a in scene s, then she can
convert on the same a in a scene s′ following s. This assumption requires
adjusting the quality of an ad when displayed multiple times along a single
path. In particular, we denote with H(x, s) ⊆ S the subset of scenes s′

along sequence σs in which ad a = x(s) = x(s′) is allocated, excluded
scene s. We define Ξ(x, s) =

∏
s′∈H(x,s)

(1−Γ(x, s′) qx(s′),s′) as the probability

that the user never converts on ad a = x(s) when allocated in scenes s′

strictly before scene s conditioned to the reach of s′. Finally, we denote with
q̃(x, s) = Γ(x, s) qx(s),s Ξ(x, s) the adjusted quality of the ad allocated in s
given the ads allocated in the preceding scenes. Thus, the conversion rate of
the ad a allocated in scene s is Πs q̃(x, s).

We denote with θa ∈ [0, 1] the value per conversion of ad a. Its expected
value (w.r.t. the reach of s and conversion of s) is Πs q̃(x, s) θx(s). Finally,
the allocation expected value of x is

∑
s∈S

(
Πs q̃(x, s) θx(s)

)
.

In our work, we also study the model under some simplifications. We
call META the allocation problem, and we use the suffixes SI and SD for
the cases in which the qualities are scene-independent and scene-dependent
respectively, and the suffixes NE and E for the cases in which there are no
externalities and there are externalities respectively. Table 7.1 summarizes
our results in these settings.

For the sake of clarity, we provide an explanatory example of our model.

Example 7.1. Figure 7.1 shows a setting described by a tree where the set
of scenes is S = {s1, . . . , s8} and the set of ads is A = {a1, a2, a3} ∪ a∅.
The quality of the ads is qa,s = 0.1 for all a ∈ A and s ∈ S, the ex-
ternalities are γa1,a2 = γa1,a3 = γa1,a3 = 0.8, and the values per con-
version are θa1 = 0.5, θa2 = 0.6 and θa3 = 0.7. The transition prob-
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a2
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a1

s7
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Figure 7.1: Example of our metaverse advertising model.

abilities are πs1,s2 = πs2,s6 = πs4,s7 = 0.7, πs1,s3 = 0.1, πs1,s4 = 0.2,
πs2,s5 = πs4,s8 = 0.3. Moreover, we set k ≥ 2. Consider, for instance,
scene s7: the total externality is Γ(x, s7) = γa1,a1 γa1,a2 = 0.8, the ad-
justed quality is q̃(x, s7) = Γ(x, s7) qa1,s7 Ξ(x, s7) = 0.072, the expected
value is Πs7 q̃(a1, s7) θa1 = 0.00504. The allocation expected value is∑
s∈S

(
Πs q̃(x, s) θx(s)

)
= 0.10776. Notice that if k = 1, the allocation ex-

pected value increases to 0.11714 as the negative effects of the externalities
are mitigated further.

Myerson’s Weakly Monotonicity When designing allocation algorithms in the
following sections, we investigate whether they satisfy Myerson’s weakly
monotonicity property. Indeed, since our metaverse advertising model is
a single-parameter (i.e., θa) linear environment, Myerson’s weakly mono-
tonicity is necessary and sufficient for the design of a truthful mechanism
in dominant strategies Myerson (1981). In our case, the property can be
defined as follows.

Definition 7.1. In the metaverse single-parameter environment, an alloca-
tion mechanismM that maps a type profile (θa)a∈A to an allocation x is
weakly monotone if for every ad â and types θa′ of the other ads a′ ∈ A\{â},
the allocation mechanismM is such that the term

∑
s∈S:xθâ (s)=â

(
Πs q̃(xθâ , s)

)
is non-decreasing in θâ, where xθ̂â =M((θa)a∈A) is the allocation returned
by the mechanism with type profile (θa)a∈A.

7.2 Poly-time Algorithm for META-SI-NE

We focus on the basic META-SI-NE case in which there are no externalities
and the quality of the ads does not depend on the scene. This case differs
from the allocation problem in classical ad auctions for two reasons: the
allocation may be on a tree instead of a line, and an ad can be displayed
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multiple times along a single path of the tree. Interestingly, we show that we
can design a polynomial-time greedy algorithm facing this setting and that
this algorithm plays a central role when solving the more general settings.
The pseudocode is reported in Algorithm 7.1. It works iteratively. We
denote with R the subset of scenes that at every iteration are not assigned
any ad. Furthermore, at every iteration, the algorithm chooses a scene-ad
pair (s∗, a∗) ∈ S × A which maximizes the expected value of allocating
an ad in an available scene. We define the following tie-breaking rule to
identify the unique pair chosen at each iteration (Line 3) among all the
possible value-maximizing pairs.

Definition 7.2 (Tie-Breaking Rule). Be P̄ the set of pairs (s̄, ā) returned
by argmaxs∈S,a∈A Πs q̃(x, s) θa. Whenever P̄ is not a singleton, break ties
assigning to (s∗, a∗) any pair (s̄′, ā′) such that |σs̄′ | is the minimum among
all |σs̄| where (s̄, ā) ∈ P̄ for some ā ∈ A.

Once the value-maximizing pair (s∗, a∗) has been found, Algorithm 7.1
allocates ad a∗ to scene s∗ (Line 4). Then, scene s is removed from the set
R which contains the available scenes (Line 5). The algorithm iterates until
every scene has been filled with one ad. Finally, it returns the allocation
function x(·).

Algorithm 7.1 GREEDY

Inputs: set of scenes S, set of ads A
1: Initialize R← S, x(s)← a∅ ∀s ∈ S
2: while R 6= ∅ do
3: (s∗, a∗)← argmaxs∈R,a∈A Πs q̃(x, s) θa

. Ties are broken according to Definition 7.2
4: x(s∗)← a∗

5: R← R\s∗
6: end while
7: return x(·)

The following theorem shows that Algorithm 7.1 returns an optimal
allocation.

Theorem 7.1. Algorithm 7.1 computes an optimal solution to the META-SI-NE
problem.

Proof. As a first step, we show that the expected value of an allocation x
can be decomposed into a component for each possible path. Formally, we
show that ∑

s∈S

(
Πs q̃(x, s) θx(s)

)
=

∑
s∈S:ρ(s)=∅

ΠsVs(x)
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where Vs(x) =
∑

s′∈σs q̃x,sθx(s). To see that it is sufficient to observe that
given an s, it holds

Πs q̃(x, s) θx(s) =

 ∑
s′:s∈σs′ ,ρ(s)=∅

Πs′

 q̃x,sθx(s)

=
∑

s′:s∈σs′ ,ρ(s)=∅

Πs′ q̃x,sθx(s)

and hence ∑
s∈S

(
Πs q̃(x, s) θx(s)

)
=
∑
s∈S

∑
s′:s∈σs′ ,ρ(s)=∅

Πs′ q̃x,sθx(s)

=
∑

s∈S:ρ(s)=∅

Πs
∑
s′∈σs

q̃x,sθx(s)

=
∑

s∈S:ρ(s)=∅

Vs

Then, we observe that thanks to the tie breaking rule in Definition 7.2,
the algorithm assigns ads to nodes from the top to the bottom of the tree.
Suppose by contradiction that Algorithm 7.1 assigns an ad a to a node
s1 such there exists a node s2 6= s1 in σs1 that is not assigned, i.e., with
x(s2) = a∅. Then, we have that Πs2 q̃(x, s2)θa ≥ Πs1 q̃(x, s1)θa and by the
tie breaking rule the ad is assigned to node s2. Let x∗ be the allocation
returned by Algorithm 7.1. Moreover, given a node s, let x′ be a different
allocation with x′(s′) = x∗(s′) for all s′ that are predecessors of s. Then,
the assignment rule in Line 3 of the algorithm implies that

q̃(x∗, s) θx∗(s) ≥ q̃(x′, s) θx′(s), (7.1)

where the inequalities follows since the value of assigning any ad to s does
not change from the partial allocation x considered by the algorithm and the
final allocation x∗ (and x′) since all the scenes that precede s have already
been assigned. Let x∗ be the allocation returned by Algorithm 7.1. We
show that this allocation is optimal for each possible path. Formally, given
a terminal node s̄, i.e., such that ρ(s̄) = ∅, and an optimal allocation x0

for the path that terminates in s̄, i.e., x0 ∈ argmaxx Vs̄(x), we show that
Vs̄(x

∗) ≥ Vs̄(x0). This is sufficient to prove the theorem since it implies∑
s∈S

(
Πs q̃(x∗, s) θx∗(s)

)
=

∑
s∈S:ρ(s)=∅

ΠsVs(x)
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≥
∑

s∈S:ρ(s)=∅

Πs max
x

Vs(x)

≥ max
x

∑
s∈S:ρ(s)=∅

ΠsVs(x)

= max
x

∑
s∈S

(
Πs q̃(x, s) θx(s)

)
Given a terminal node s̄, let x0 be the optimal allocation for the path

terminating in s̄. We show how to modify iteratively x0 into x∗ without
decreasing the value of the allocation. This directly implies that Vs̄(x∗) ≥
Vs̄(x0) and the optimality of x∗. We iterate over all the i ∈ {1, . . . , |σs̄|}
and for each i, we build an allocation xi such that the expected value of xi
is at least the expected value of xi−1. Moreover, the procedure guarantees
that for each i it holds xi(σs̄j ) = x∗(σs̄j ) for all j ≤ i, implying x|S| = x∗.
The procedure works as follows. We iterate over all the i and given an i
we consider three cases. Let Si be the set of scene s in σs̄ \ σsi such that
xi−1(s) = x∗(si).

Case 1. Suppose that x∗(σs̄i ) = xi−1(σs̄i ). Then, setting xi = xi−1 we
trivially satisfy the required conditions.

Case 2. Suppose x∗(σs̄i ) 6= xi−1(σs̄i ) and Si = ∅. Let xi(si) =
x∗(si) while the allocation xi is equivalent to xi−1 in all the other nodes.
Then, the difference between the values of the allocations xi and xi−1 is
q̃(xi, σ

s̄
i )θxi(σs̄i )− q̃(xi−1, s

′)θxi−1(s′), where s′ is the last node in the path σs̄

with xi−1(s′) = xi−1(σs̄i ) (it may be σs̄i ). Moreover,

q̃(xi, σ
s̄
i )θxi(σs̄i ) = q̃(x∗, σs̄i ) θx∗(σs̄i )

≥ q̃(xi−1, σ
s̄
i ) θxi−1(σs̄i )

≥ q̃(xi−1, s
′)θxi−1(s′),

where the equality comes from the equivalence between xi and x∗ for all the
scenes σs̄1, . . . , σ

s̄
i , the first inequality follows from Eq. (7.1) and the second

inequality from the fact that the quality decreases when an ad is displayed
more times. This proves that the expected value of the allocation xi is at
least the expected value of the allocation xi−1.

Case 3. Suppose x∗(σs̄i ) 6= xi−1(σs̄i ) and Si 6= ∅. Let xi(σs̄i ) = x∗(σs̄i )
and xi(s′) = x∗(σs̄i ), where s′ is an arbitrary scene in S1. Moreover, let xi
be equivalent to xi−1 in all the other scenes. Then, every ad appears the
same number of times in the path σs̄ in xi and xi−1 and hence the expected
value of the allocation does not change from xi−1 to xi. This concludes the
proof.
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Notice that since the above greedy algorithm returns an optimal allocation,
it can be used together with the Vickrey-Clarke-Groves mechanism Nisan
et al. (2007) to obtain a truthful mechanism in dominant strategies which
runs in polynomial time (trivially, Myerson’s weak monotonicity is satisfied).
Therefore, such a mechanism can scale up to real-world settings.

7.3 META-SD-NE: Dealing with Scene-dependent Qualities

In this section, we focus on the setting in which the ad qualities depend
on the scene and there are no externalities. Initially, we show that the
allocation problem in this setting is APX-Hard. Our reduction is based on
the satisfiability problem 3-SAT-5 which is defined as follows.

Definition 7.3. A 3-SAT-5 instance is a 3-SAT instance in which each
variable appears in exactly 5 clauses.

As shown by Feige (1998), the following theorem holds.

Theorem 7.2 (Feige (1998)). For some constant 0 < c < 1, it is NP-
Hard to distinguish whether a 3-SAT-5 instance is satisfiable or there is no
assignment satisfying a c fraction of the clauses.

Now, we can prove the following.2

Theorem 7.3. META-SD-NE is APX-Hard.

Most interestingly, we can show that META-SD-NE is APX-Complete
by designing a polynomial-time algorithm that works in a greedy fashion
providing a constant approximation factor. To provide the algorithm, we
need some preliminary steps that we introduce in the following.

Initially, we establish a relation between ad allocations and matroids. A
matroidM := (G, I) is defined by a finite ground setG and a collection I of
independent sets, i.e., subsets of G satisfying some characterizing properties
(see (Schrijver, 2003) for a detailed formal definition). We denote with
B(M) the set of the bases of M , which are the maximal sets in I. We show
that feasible allocations can be represented by the matroid M := (G, I)
such that:

• the ground set is G := {(a, s) | a ∈ A ∪ {a∅}, s ∈ S}, i.e, the set of
all the possible assignments of ads to scenes;

2Some of the proofs of the chapter are deferred to Appendix B
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• a subset I ⊆ G belongs to I if and only if I contains at most one pair in
{(a, s)}a∈A∪{a∅} for each scene s ∈ S, i.e., every scene is assigned to
no more than one ad (while an ad can be allocated to multiple scenes).

Intuitively, an element (a, s) of the ground set G belongs to the independent
set I if the ad a is allocated to scene s. However, sets I ∈ I do not
characterize allocations, as they may not specify an ad for each scene.
Indeed, allocations are captured by the basis set B(M) of the matroid M .
Let us recall that B(M) contains all the maximal sets in I, and, thus, a
subset I ⊆ I belongs to B(M) if and only if I contains exactly one pair
for each scene s ∈ S. Intuitively, a basis I ∈ B(M) defines an allocation
in which, for each scene s ∈ S it is allocated the ad a such that (a, s) ∈ I .
This ad is unique by construction as discussed above.

Then, we define the utility function f on the subset of G as follows.

Definition 7.4. Let f : 2G → R+ be the function such that, given a subset
D ∈ 2G, f(D) denotes the welfare of assigning to a scene s the ad such that
(a, s) ∈ G without externalities.3 Formally, we write:

f(D) =
∑
s∈S

∑
a∈A:(a,s)∈D

Πsqa,sθa
∏

s′∈σs\{s}:(a,s′)∈D

(1− qa,s′).

Function f satisfies a crucial property: it provides a decreasing marginal
return. In particular, in the following, we show that the utility function
f : 2G → R+ is monotone submodular. Formally, a function is monotone
if for every pair of subsets D1, D2 such that D1 ⊆ D2 ⊆ G, the property
f(D1) ≤ f(D2) holds. Moreover, we say that f is submodular if, for
every pair of subsets D1, D2 such that D1 ⊆ D2 ⊆ G and (a, s) ∈ G, the
following property holds:

f(D1 ∪ {(a, s)})− f(D1) ≥ f(D2 ∪ {(a, s)})− f(D2).

Now, we provide a characterization of the function f(·).

Lemma 7.1. Given a subset D ∈ 2G, f(D) can be written as:

f(D) =
∑

s∈S:ρ(s)=∅

Πs
∑
a∈A

θa fs,a(D),

where

fs,a(D) =
∑

s′∈σs:(a,s′)∈D

qa,s′
∏

s′′∈σs′\{s′}:(a,s′′)∈D

(1− qa,s′′).

3Notice that this defines a feasible allocation only if D ∈ I.
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Proof. We have that∑
s∈S:ρ(s)=∅

Πs
∑
a∈A

θafs,a(D) =

=
∑

s∈S:ρ(s)=∅

Πs
∑
a∈A

θa
∑

s′∈σs:(a,s′)∈D

qa,s′
∏

s′′∈σs′\{s′}:(a,s′′)∈D

(1− qa,s′′) =

=
∑
a∈A

θa
∑

s∈S:ρ(s)=∅

Πs
∑

s′∈σs:(a,s′)∈D

qa,s′
∏

s′′∈σs′\{s′}:(a,s′′)∈D

(1− qa,s′′) =

=
∑
a∈A

θa
∑

s′∈S:(a,s′)∈D

( ∑
s∈S:ρ(s)=∅∧s′∈σs

Πs

)
·

· qa,s′
∏

s′′∈σs′\{s′}:(a,s′′)∈D

(1− qa,s′′) =

=
∑
a∈A

θa
∑

s′∈S:(a,s′)∈D

Πs′qa,s′
∏

s′′∈σs′\{s′}:(a,s′′)∈D

(1− qa,s′′) =

=
∑
s∈S

∑
a∈A:(a,s)∈D

Πs qa,s θa
∏

s′∈σs\{s}:(a,s′)∈D

(1− qa,s′) =

= f(D)

This concludes the proof.

Exploiting the above characterization, we can show that function f(·) is
monotone submodular (see Appendix B).

Lemma 7.2. Function f(·) is monotone submodular.

Then, given the submodularity of function f(·), we can resort to the
standard tools of submodular maximization to provide a polynomial-time
algorithm to optimize f over I. In particular, we can exploit the continuous
greedy algorithm to provide a (1 − 1/e)-approximation (Calinescu et al.,
2011). Then, to provide an approximation to the optimal ad allocation, it is
sufficient to consider the equivalence between independent sets I ∈ I and
ad allocations x.

Theorem 7.4. META-SD-NE admits a polynomial-time algorithm that pro-
vides a (1− 1/e) approximation.

Proof. The optimization problem of maximizing the function f over the set
I is the maximization of a monotone submodular function over a matroid.
Notice that f is monotone submodular by Lemma 7.2. Hence, applying the

163



Chapter 7. Algorithmic Advertising in the Metaverse: Finding Effective
Ads Allocations

continuous greedy algorithm to the problem provides a 1− 1/e approxima-
tion in polynomial time (Calinescu et al., 2011). The proof is concluded
by considering the equivalence between maximizing f over I and the ad
allocation problem. In particular, an independent set I is equivalent to an ad
allocation in which to each scene s ∈ S is allocated the ad a ∈ A such that
(a, s) ∈ I (if any).

The impossibility of designing polynomial-time algorithms finding the
optimal allocation for the META-SD-NE problem (unless P = NP) rules out
the resort to the Vickrey-Clarke-Groves mechanism and poses the question
whether we can design a truthful mechanism in dominant strategies running
in polynomial time. Moreover, the analysis of the weak monotonicity of
the continuous greedy approach is elusive. An intriguing idea is to use
Algorithm 7.1. Indeed, to maximize monotone submodular functions we can
use the simpler greedy approach instead of the more complex continuous
greedy with a small loss in the approximation factor. In particular, the greedy
algorithm provides a 1

2
-approximation to monotone submodular maximiza-

tion on a matroid Nemhauser et al. (1978). Moreover, Algorithm 7.1 is
weakly monotone for the META-SI-NE problem. However, as we show in
the following proposition, such an algorithm is not weakly monotone, and
thus it cannot be used to design a truthful mechanism.

Proposition 7.1. Algorithm 7.1 is not weakly monotone (in the sense of
Myerson) for META-SD-NE.

Proof. To prove the statement, we provide an instance in which Algo-
rithm 7.1 is not weakly monotone. Consider an instance with two ads
a1 and a2 with value per conversion θa1 = 1

2
+ ε and θa2 = 1

2
, where ε > 0

is an arbitrary small value. There are three scenes s1, s2, and s3 arranged in
a line. In particular, s1 is the root of the tree and πs1,s2 = πs2,s3 = 1. The
qualities are qa,s1 = 2

3
, qa,s2 = 1

2
, and qa,s3 = 1

2
for each ad a ∈ {a1, a2}.

Consider the behavior of the greedy algorithm. As a first step, the greedy
algorithm will assign to scene s1 the ad a1. Then, the algorithm must choose
which ad to assign to scene s2. Assigning ad a1, the additional value is given
by qa1,s2θa1(1 − qa1,s1) = 1

2
(1

2
+ ε)(1 − 2

3
) = 1

12
+ 1

6
ε, while assigning ad

a2, the additional value of the allocation is qa2,s2θa2 = 1
4
. Hence, ad a2 is

assigned to scene s2. Finally, the greedy algorithm assigns scene s3 to ad
a2 since the additional value assigning ad a2 is qa2,s3θa2(1 − qa2,s2) = 1

8
,

while the additional value assigning ad a1 is qa1,s3θa1(1− qa1,s1) = 1
12

+ 1
6
ε.

Hence, the utility of advertiser a1 is qa1,s1θa1 = 2
6

+ 2
3
ε = 2

3
θa1 , while the

utility of advertiser a2 is qa2,s2θa2 + qa2,s3θa2(1 − qa2,s2) = 1
4

+ 1
8

= 3
8
. A
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similar argument shows that if θa1 = 1
2
− ε, ad a1 is assigned to scenes s2

and s3. Thus, the utility of advertiser a1 is qs2,a1θa1 + qs3,a1θa1(1− qs2,a1) =
3
4
(1

2
− ε) = 3

4
θa1 . Since 3

4
> 2

3
, this shows that the mechanism is not

monotone.

7.4 META-SI-E: Dealing with Externalities

In this section, we focus on the META-SI-E problem in which there are
externalities among the ads but the ad qualities are scene-independent. We
start our analysis by providing a strong negative result. We show that
the allocation problem is hard to approximate and that the hardness of
approximation depends on the memory length k. Our reduction is from
the following promise problem related to the problem of finding cliques in
graphs.

Theorem 7.5 (Håstad (1999), Zuckerman (2007)). For every ε > 0, it is
NP-Hard to distinguish whether a graph G = (V,E) with vertexes V and
edges E has a clique of size |V |1−ε or all the cliques have a size of at most
|V |ε.

We can show that it is NP-Hard to provide an approximation to META-SI-E
sublinear in the memory length k. Formally, we can state the following:

Theorem 7.6. For any ε > 0, it is NP-Hard to approximate META-SI-E
to within a factor |k + 1|1−ε, where k is the memory length.

Most interestingly, we can show that META-SI-E admits a polynomial-
time approximation algorithm that provides a 1

k+1
-approximation, thus

matching the lower bound stated above. The pseudocode is provided in
Algorithm 7.2. It extends the greedy algorithm described in Section 7.2 as
follows.

Algorithm 7.2 allocates ads only to scenes at depth {1+ i(k+1)}i∈N, i.e.,
it allocates ads only to the scenes s ∈ S such that |σs| ∈ {1 + i(k + 1)}i∈N.
In this way, the allocated ads are not subject to any externality. Moreover,
as we show in the following theorem, we allocate ads to a sufficient subset
of scenes to guarantee a 1/(k + 1)-approximation of the optimal utility.
Then, Algorithm 7.2 computes the optimal allocation resorting to the greedy
Algorithm 7.1. The following theorem formally states the guarantees of the
algorithm.

Theorem 7.7. Algorithm 7.2 provides a 1
k+1

-approximation to META-SI-E.
Moreover, it runs in polynomial time.
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Proof. It is easy to see that the algorithm runs in polynomial time. In
the following we prove the approximation guarantees of the algorithm.
Given a i ∈ {1, . . . , k + 1}, let Si = {s ∈ S : |σs| ∈ {1 + j(k +
1)}j∈N}. As a first step, we show that maxx(·)

∑
s∈S1

(
Πs q̃(x, s) θx(s)

)
≥

maxx(·)
∑
s∈Si

(
Πs q̃(x, s) θx(s)

)
for each i ∈ {2, . . . , k + 1}. To do so, we

show that given an i ∈ {2, . . . , k + 1} and an optimal allocation xi of ads to
scenes in Si, it is possible to design an assignment x1 to scenes in S1 with at
least the same utility. Notice that an allocation problem restricted to nodes
Si, is equivalent to a problem without externalities since no scene in the set
does provide externalities to other scenes in the set. Hence, Algorithm 7.1
provides an optimal solution to the problem. As shown in the proof of
Theorem 7.1, Algorithm 7.1 assigns ads from the top to the bottom of the
tree. Moreover, if the ties are broken always in the same way, it is easy to see
that an allocation returned by an Algorithm 7.1 is such that the same ad is
allocated to all the scenes at the same depth. Formally, given the allocation
xi returned by the algorithm we can define a function x̄i : N→ A such that
for each s ∈ Si it holds xi(s) = x̄i(|σs|). Let xi be an optimal allocation
for the set of scenes Si and let x̄i : N → A be the function that defines
the allocation. For each s ∈ S1, let ψ(s) be the set of nodes s′ such that
s ∈ σs′ and S1 ∩ (σs

′ \ σs) = ∅, i.e., s is the last node in S1 that precedes
s′. Notice that we have shown that given an s ∈ S1, for each s′, s′′ ∈ ψ(s),
it holds xi(s′) = x̄i(|σs

′|) = x̄i(|σs
′′ |) = xi(s

′′). Hence, we can define
a new allocation x1 on scenes in S1 such that for each s ∈ S1, it holds
x1(s) = xi(s

′) for each s′ ∈ ψ(s). Then, it holds

∑
s∈S1

(
Πs q̃(x1, s) θx1(s)

)
≥
∑
s∈S1

 ∑
s′∈ψ(s)

Πs′

 q̃(x1, s) θx1(s) =

=
∑
s∈S1

∑
s′∈ψ(s)

Πs′ q̃(xi, s
′) θxi(s′) =

=
∑
s∈Si

Πs q̃(xi, s) θxi(s).

This proves that

max
x(·)

∑
s∈S1

(
Πs q̃(x, s) θx(s)

)
≥ max

x(·)

∑
s∈Si

(
Πs q̃(x, s) θx(s)

)
for each i ∈ {2, . . . , k + 1}.
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Since there are no externalities among the scenes in S1, Algorithm 7.2
returns the optimal allocation x∗ to the scenes in S1 by Theorem 7.1 . Hence,
it holds ∑

s∈S1

(
Πs q̃(x∗, s) θx∗(s)

)
= max

x(·)

∑
s∈S1

(
Πs q̃(x, s) θx(s)

)
≥

≥ max
x(·)

∑
s∈Si

(
Πs q̃(x, s) θx(s)

)
for each i ∈ {1, . . . , k}. This implies that∑

s∈S1

(
Πs q̃(x∗, s) θx∗(s)

)
≥ 1

k + 1

∑
i∈{1,...,k+1}

max
x(·)

∑
s∈Si

(
Πs q̃(x, s) θx(s)

)
≥ 1

k + 1
max
x(·)

∑
i∈{1,...,k+1}

∑
s∈Si

(
Πs q̃(x, s) θx(s)

)
=

1

k + 1
max
x(·)

∑
s∈S

(
Πs q̃(x, s) θx(s)

)
where while the second comes from the fact that the externalities are only
negative. This concludes the proof.

Algorithm 7.2 GREEDY–SI–E

Inputs: set of scenes S, set of ads A, memory length k
1: S1 ← {s ∈ S : |σs| ∈ {1 + j(k + 1)}j∈N}
2: x∗ ← GREEDY(S1, A)
3: return x∗

Finally, we focus on Myerson’s weak monotonicity, and we show that
Algorithm 7.2 is weakly monotone.

Proposition 7.2. Algorithm 7.2 is weakly monotone (in the sense of Myer-
son).

Proof. To prove the statement, it is sufficient to notice that Algorithm 7.2
is equivalent to Algorithm 7.1 restricted to the subset of scenes S1. Then,
the monotonicity of the algorithm comes from the monotonicity of Algo-
rithm 7.1. In particular, Algorithm 7.1 is weakly monotone since it is an
utility maximizing mechanism.

Therefore, the resulting mechanism in which the allocation function is
given by Algorithm 7.2 and the payments are à la Myerson is truthful in
dominant strategies.
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7.5 META-SD-E: Approximating the General Problem

In this section, we deal with the general ad allocation problem in which
there are both externalities and scene-dependent qualities. As Theorems 7.3
and 7.6 show, META-SD-E is an Poly-APX-Hard problem. In particular,
Theorem 7.6 rules out the possibility of providing approximation sublinear
in k in polynomial time. In this section, we show that the problem ad-
mits a polynomial-time algorithm providing a (1−1/e

k+1
)-approximation, thus

matching the inapproximability lower bound provided by Theorem 7.6.
Let the matroid (G, I) and the function f be defined as in Section 7.3.

We show that we can apply Algorithm 7.3 to find a 1−1/e
k+1

-approximation
to the META-SD-E problem. In particular, the algorithm follows the ap-
proach of Section 7.4, except that it need to evaluates all the sets of scenes
{1+j(k+1)}j∈N, {2+j(k+1)}j∈N, . . . , {k+j(k+1)}j∈N as the qualities
depend on the scenes. Intuitively, the rationale is to enumerate these sets
of scenes and, for each one of them, to approximate the optimal allocation
that employs only those scenes with the continuous greedy algorithm used
for the META-SD-NE problem. This is needed since the qualities depend
on the scenes and hence we have to include each scene in at least one of
the considered allocations. We denote with CONTINUOUSGREEDY(S,A, f)
the continuous greedy algorithm that works with the matroid defined in Sec-
tion 7.3 that considers only scenes S and ads A, and optimize the monotone
submodular function f defined is Section 7.3. Finally, we take the best
allocation among those evaluated by the algorithm. The resulting approxi-
mation factor combines the approximation factors of both META-SD-NE
and META-SI-E problems. The pseudocode is provided in Algorithm 7.3.
Formally, we can prove the following result.

Algorithm 7.3 GREEDY–SD–E

Inputs: set of scenes S, set of ads A, memory length k
1: for i ∈ {1, . . . , k} do
2: Si ← {s ∈ S : |σs| ∈ {i+ j(k + 1)}j∈N}
3: xi ← CONTINUOUSGREEDY(Si, A, f)
4: end for
5: i∗ ← argmaxi∈{1,...,k}

∑
s∈S

(
Πs q̃(xi, s) θxi(s)

)
6: return xi∗

Theorem 7.8. Algorithm 7.3 provides a 1−1/e
k+1

-approximation to META-
SD-E. Moreover, it runs in polynomial time.

Proof. As a first step, we show that the given an i allocation xi provides a
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good approximation of the optimal allocation value considering only scenes
Si. Formally, we show that∑

s∈Si

(
Πs q̃(xi, s) θxi(s)

)
≥ (1− 1

e
) max

x(·)

∑
s∈Si

(
Πs q̃(x, s) θx(s)

)
.

To see that, it sufficient to apply Theorem 7.4 to the problem restricted to
scenes Si. The inequality holds since by considering only the scenes in
Si (that have distance larger than the memory k) the problem is equivalent
to a problem without externalities. Let x∗ be the allocation returned by
Algorithm 7.3. Then, it holds∑

s∈Si

(
Πs q̃(x∗, s) θx∗(s)

)
=

= argmax
i∈{1,...,k+1}

∑
s∈S

(
Πs q̃(xi, s) θxi(s)

)
≥

≥ 1

k + 1

∑
i∈{1,...,k+1}

∑
s∈S

(
Πs q̃(xi, s) θxi(s)

)
≥

≥ 1

k + 1

∑
i∈{1,...,k+1}

(1− 1

e
) max
x(·)

∑
s∈Si

(
Πs q̃(x, s) θx(s)

)
≥

≥ 1

k + 1
(1− 1

e
) max
x(·)

∑
i∈{1,...,k+1}

∑
s∈Si

(
Πs q̃(x, s) θx(s)

)
=

=
1

k + 1
(1− 1

e
) max
x(·)

∑
s∈S

(
Πs q̃(xi, s) θxi(s)

)
,

where the second inequality comes from the guarantees of the continuous
greedy algorithm (Theorem 7.4), while the third comes from the fact that
the externalities are only negative. This concludes the proof.

We conclude by showing that neither the greedy Algorithm 7.1 nor its ex-
tension Algorithm 7.2 are weakly monotone for the META-SD-E problem.
This result follows from the non-monotonicity of the greedy Algorithm 7.1
in the simpler setting with no externalities and scene-dependent ad qualities.

Proposition 7.3. Neither Algorithm 7.1 nor Algorithm 7.2 are weakly mono-
tone (in the sense of Myerson) for the META-SD-E problem.

Proof. Proposition 7.1 shows that Algorithm 7.1 is not monotone even in
the simpler setting with no externalities. We conclude the proof providing
a negative result also for Algorithm 7.2. To see that Algorithm 7.2 is not
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weakly monotone, it is sufficient to notice that when the memory is k = 0
Algorithm 7.2 is equivalent to Algorithm 7.1.

Remark 7.1. We can also derive an algorithm similar to Algorithm 7.3 in
which we replace the continuous greedy algorithm with the greedy Algo-
rithm 7.1 and obtain a 1/2

k+1
-approximation factor. However, symilarly to

the other greedy algorithms, this algorithm is not weakly monotone for the
META-SD-E problem.

7.6 The Importance of Algorithms Exploiting a User Model for
the Metaverse

In this section, we assess the importance of adopting our model in practice.
More precisely, under the assumption that the users behave as described by
our model, we compare the performance of algorithms disregarding basic
user features in the metaverse (i.e., scene-dependent qualities, externalities,
sequential traversal of scenes) with the performance of our approximation
algorithms. In particular, we show that those algorithms can be arbitrarily
inefficient w.r.t. our algorithms in instances that are not knife-edge.

Initially, we focus on the importance of scene-dependent qualities. The
following example shows that, when the user behavior depends on the
scene and there are no externalities, disregarding such dependence leads to
allocations whose value is arbitrarily smaller than the value returned by our
approximation algorithms.

Example 7.2. Consider a setting with two scenes s1, s2 where s2 ∈ ρ(s1)
and two ads a1, a2 with the following parameters:

qa1,s1 = 0 qa2,s1 = 1

qa1,s2 = 1 qa2,s2 = 0

θa1 = 1 + ε θa2 = 1

while γa,a′ = 1 for every pair a, a′, πs1,s2 = 1 − δ, and k = 0, where
δ, ε > 0 are arbitrarily small. This setting is common whenever the ads are
specialized, performing well only in a small number of scenes.

Focus on the case in which we use an algorithm based on our model. In
this case, we can resort to Algorithm 7.1 which guarantees at least 1/2 of
the optimal value and returns the allocation x(s1) = a2 and x(s2) = a1

with a value of 2 + ε− δ ≈ 2. This allocation is optimal.
Focus on the case in which we use an algorithm disregarding that the

ad qualities depend on the scenes. Such an algorithm necessarily works
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with scene-independent ad qualities that are average values of the scene-
dependent qualities (in practice, we can imagine that the algorithm estimates
these parameters by collecting the samples from all the scenes and then
making the empiric average). That is, qa1 = 1/2 = qa2 . In this case, the
greedy algorithm would return the allocation x(s1) = a1 and x(s2) = a2

with a value of 0. Therefore, such an algorithm has an approximation ratio
of 0.

Now, we focus on the importance of externalities. The following example
shows that, when the behavior of the user is affected by externalities among
the ads and the qualities are scene-independent, disregarding the externalities
can lead to an allocation whose value is arbitrarily smaller than the value
returned by our approximation algorithms.

Example 7.3. Consider a setting with 2n, with n ∈ N, scenes {s1, . . . , sn}
where si+1 ∈ ρ(si) and πsi,si+1

= 1 for every i < n. There are 2n ads with
qa = 1, θa = 1, and γa,a′ = 0 for every other a′. The memory length is
k = 1.

Our greedy Algorithm 7.2 guarantees at least 1/2 of the optimal value.
In this case, it allocates ads in the odd scenes, providing a value of n which
is the optimal allocation.

The greedy algorithm which does not consider the externalities allocates
one ad per scene, providing a value of 1 which corresponds to a 1/n-ratio
of the optimal value.

Finally, we focus on the importance of considering that a user traverses
several scenes according to some probability distribution. When disregarding
this feature, an algorithm would repeat an allocation problem for every scene
independently from the others (this is what happens on the Web). It can be
easily seen that Example 7.3 shows that those algorithms would be arbitrarily
inefficient when compared with our approximation algorithms as they would
always allocate ads to all the scenes and these ads can generate externalities
to the ads allocated in the following scenes. A similar result can be obtained
by using Example 7.2. To conclude, disregarding every single basic user
feature in the metaverse can lead to arbitrarily bad allocations.
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Guaranteeing Properties During
the Learning Process
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CHAPTER8
Safe Online Bid Optimization with

Return-On-Investment and Budget
Constraints subject to Uncertainty

Section 1.3 introduced the problem studied in this chapter, which is struc-
tured as follows. Section 8.1 formally states the problem. Section 8.2
introduces a meta-algorithm which will be investigated in the subsequent
sections. Section 8.3 studies the optimization problem without uncertainty,
whereas Section 8.4 investigates the online learning problem. Finally, Sec-
tion 8.5 experimentally evaluates of our algorithms in settings generated
from real-world data.

Other Related Works. Many works study Internet advertising, both from
the publisher perspective (e.g., Nisan et al. (2007) design auctions for ads
allocation and pricing) and from the advertiser perspective (e.g., Feldman
et al. (2007) study the budget optimization problem in search advertising).
Moreover, many recent works focus on the repeated interaction between the
advertisers and the publisher (Abeille et al., 2018; Croissant et al., 2020;
Nedelec et al., 2022). Few works deal with ROI constraints, and, to the best
of our knowledge, they only focus on the design of auction mechanisms.
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In particular, Szymanski and Lee (2006) and Borgs et al. (2007) show that
ROI-based bidding heuristics can lead to cyclic behavior and reduce the
allocation’s efficiency, while Golrezaei et al. (2021b) propose more efficient
auctions with ROI constraints. The learning algorithms for daily bid opti-
mization available in the literature address only budget constraints in the
restricted case in which the platform allows the advertisers to set a daily bud-
get limit (notice that some platforms such as, e.g., TripAdvisor and Trivago,
do not even allow the setting of the daily budget limit). For instance, Zhang
et al. (2012) provide an offline algorithm that exploits accurate models of
the campaigns’ performance based on low-level data rarely available to the
advertisers. Nuara et al. (2018) propose an online learning algorithm that
combines combinatorial multi-armed bandit techniques (Chen et al., 2013)
with regression by Gaussian Processes (Rasmussen and Williams, 2006).
This work provides no guarantees on ROI. More recent works also present
pseudo-regret bounds (Nuara et al., 2022) and study subcampaigns interde-
pendencies offline (Nuara et al., 2019). Thomaidou et al. (2014) provide a
genetic algorithm for budget optimization of advertising campaigns. Ding
et al. (2013) and Trovò et al. (2016) address the bid optimization problem
in a single subcampaign scenario when the budget constraint is cumulative
over time.

A research field strictly related to our work is learning with safe explo-
ration with constraints subject to uncertainty, and the goal is to guarantee
w.h.p. their satisfaction during the entire learning process. The only known
results on safe exploration in multi-armed bandits address the case with
continuous, convex arm spaces and convex constraints. The learner can
converge to the optimal solution in these settings without violating the con-
straints (Moradipari et al., 2020; Amani et al., 2020). Conversely, the case
with discrete and/or non-convex arm spaces or non-convex constraints, such
as ours, is unexplored in the literature so far. We remark that some bandit
algorithms address uncertain constraints where the goal is their satisfaction
on average (Mannor et al., 2009; Cao and Liu, 2018). However, the per-
round violation can be arbitrarily large (particularly in the early stages of the
learning process), not fitting with our setting as humans could be alarmed
and, thus, give up on adopting the algorithm. We also notice that several
other works in reinforcement learning (Hans et al., 2008; Pirotta et al., 2013;
Garcia and Fernández, 2012) and multi-armed bandit (Galichet et al., 2013;
Sui et al., 2015) investigate safe exploration, providing safety guarantees on
the revenue provided by the algorithm, but not on the satisfaction w.h.p. of
uncertain constraints.
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8.1 Problem Formulation

We are given an advertising campaign C = {C1, . . . , CN}, with N ∈ N and
where Cj is the j-th subcampaign, and a finite time horizon of T ∈ N rounds
(each corresponding to one day in our application). In this work, as common
in the literature on ad allocation optimization, we refer to a subcampaign as
a single ad or a group of homogeneous ads requiring to set the same bid. For
every round t ∈ {1, . . . , T} and every subcampaign Cj , an advertiser needs
to specify the bid xj,t ∈ Xj , where Xj ⊂ R+ is a finite set of values that can
be set for subcampaign Cj . For every round t ∈ {1, . . . , T}, the goal is to
find the values of bids maximizing the overall cumulative expected revenue
while keeping the overall ROI above a fixed value Λ ∈ R+ and the overall
budget below a daily value β ∈ R+. Formally, the resulting constrained
optimization problem at round t is as follows:

max
(x1,t,...,xN,t)∈X1×...×XN

N∑
j=1

vj nj(xj,t) (8.1a)

s.t.

∑N
j=1 vj nj(xj,t)∑N
j=1 cj(xj,t)

≥ Λ, (8.1b)

N∑
j=1

cj(xj,t) ≤ β, (8.1c)

where nj(xj,t) and cj(xj,t) are the expected number of clicks and the ex-
pected cost given the bid xj,t for subcampaign Cj , respectively, and vj is
the value per click for subcampaign Cj . Moreover, Constraint (8.1b) is the
ROI constraint, forcing the revenue to be at least Λ times the costs, and
Constraint (8.1c) keeps the daily spend under a predefined overall budget
β.1

We focus on the customary case in which nj(·) and cj(·) are unknown
functions whose values need to be estimated online. Our problem can be
naturally modeled as a multi-armed bandit where the available arms are the
different values of the bid xj,t ∈ Xj satisfying the combinatorial constraints
of the optimization problem.2 A super-arm is an arm profile specifying
one bid per subcampaign. A learning policy U solving such a problem is

1In economic literature, it is also used an alternative definition of ROI:
∑N
j=1[vj nj(xj,t)−cj(xj,t)]∑N

j=1 cj(xj,t)
. We can

capture this case by substituting the right hand side of Constraint (8.1b) with Λ + 1.
2Here, we assume that the value per click vj is known. In the case it is unknown, we point an interested reader

to Nuara et al. (2018) for details.
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an algorithm returning, for every round t, a set of bid {x̂j,t}Nj=1. Policy U
can only use estimates of the unknown number-of-click and cost functions
built during the learning process. Therefore, the solutions returned by policy
U may not be optimal and/or violate Constraints (8.1b) and (8.1c) when
evaluated with the true values. Notice that, even if this setting is closely
related to the one studied by Badanidiyuru et al. (2018), the specific non-
matroidal nature of the constraints does not allow to cast the bid allocation
problem above into the bandit-with-knapsack framework.

We are interested in evaluating learning policies U in terms of both
loss of revenue (a.k.a. pseudo-regret) and violation of the ROI and budget
constraints. The pseudo-regret and safety of a learning policy U are defined
as follows.

Definition 8.1 (Learning policy pseudo-regret). Given a learning policy U,
we define the pseudo-regret as:

RT (U) := T G∗ − E

[
T∑
t=1

N∑
j=1

vj nj(x̂j,t)

]
,

where G∗ :=
∑N

j=1 vj nj(x
∗
j) is the expected revenue provided by a clair-

voyant algorithm, the set of bids
{
x∗j
}N
j=1

is the optimal clairvoyant solution
to the problem in Equations (8.1a)–(8.1c), and the expectation E[ · ] is taken
w.r.t. the stochasticity of the learning policy U.

Our goal is the design of algorithms that minimize the pseudo-regret
RT (U). In particular, we are interested in no-regret algorithms guaranteeing
a regret that increases sublinearly in T . Now, we focus on the notion of
safety.

Definition 8.2 (η-safe learning policy). Given η ∈ (0, T ], a learning policy
U is η-safe if {x̂j,t}Nj=1, i.e., the expected number of times at least one of the
Constraints (8.1b) and (8.1c) is violated from t = 1 to T is less than η or,
formally:

T∑
t=1

P

(∑N
j=1 vj nj(x̂j,t)∑N
j=1 cj(x̂j,t)

< Λ ∨
N∑
j=1

cj(x̂j,t) > β

)
≤ η.

Our goal is the design of safe algorithms that minimize η. In particular,
we are interested in safe algorithms guaranteeing that η increases sublinearly
in (or is independent of) T .
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Algorithm 8.1 Meta-algorithm

Input: sets of bid values X1, . . . , XN , ROI threshold Λ, daily budget β
1: Initialize the GPs for the number of clicks and costs
2: for t ∈ {1, . . . , T} do
3: for j ∈ {1, . . . , N} do
4: for x ∈ Xj do
5: Call the estimation subroutine to estimate n̂j,t−1(x), σ̂nj,t−1(x) using the

GP on the number of clicks
6: Call the estimation subroutine to estimate ĉj,t−1(x), σ̂cj,t−1(x) using the

GP on the costs
7: end for
8: end for
9: Compute µ using the GPs estimates

10: Call the optimization subroutine Opt(µ,Λ) to get a solution {x̂j,t}Nj=1
11: Set the prescribed allocation during round t
12: Get revenue

∑N
j=1 vj ñj(x̂j,t)

13: Update the GPs using the new information ñj,t(x̂j,t) and c̃j,t(x̂j,t)
14: end for

8.2 Meta-algorithm

We provide the pseudo-code of our meta-algorithm in Algorithm 8.1, which
solves the problem in Equations (8.1a)–(8.1c) online. Algorithm 8.1 is
based on three components: Gaussian Processes (GPs) (Rasmussen and
Williams, 2006) to model the parameters whose values are unknown (details
are provided below), an estimation subroutine to generate estimates of
the parameters from the GPs, and an optimization subroutine to solve the
optimization problem once given the estimates.

In Algorithm 8.1, GPs are used to model functions nj(·) and cj(·), de-
scribing the expected number of clicks and the costs, respectively. The
employment of GPs to model these functions provides several advantages
w.r.t. other regression techniques, such as the provision of a probability dis-
tribution over the possible values of the functions for every bid value x ∈ Xj

relying on a finite set of samples. GPs use the noisy realization of the actual
number of clicks ñj,h(x̂j,h) collected from each subcampaign Cj for every
previous round h ∈ {1, . . . , t − 1} to generate, for every bid x ∈ Xj , the
estimates for the expected value n̂j,t−1(x) and the standard deviation of the
number of clicks σ̂nj,t−1(x). Analogously, using the noisy realizations of
the actual cost c̃j,h(x̂j,h), with h ∈ {1, . . . , t− 1}, GPs generate, for every
bid x ∈ Xj , the estimates for the expected value ĉj,t−1(x) and the standard
deviation of the cost σ̂cj,t−1(x). Formally, we compute the above values as
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follows:

n̂j,t−1(x) := kj,t−1(x)>(Kj,t−1 + σ2I)−1kj,t−1(x),

σ̂nj,t−1(x) := kj(x, x)− k>j,t−1(Kj,t−1 + σ2I)−1kj,t−1(x),

ĉj,t−1(x) := hj,t−1(x)>(Hj,t−1 + σ2I)−1hj,t−1(x),

σ̂cj,t−1(x) := hj(x, x)− h>j,t−1(Hj,t−1 + σ2I)−1hj,t−1(x),

where kj(·, ·) and hj(·, ·) are the kernels for the GPs over the number of
clicks and costs, respectively, Kj,t−1 and Hj,t−1 are the Gram matrix over
the training bids for the two GPs, σ2 is the variance of the noise of the
GPs, kj,t−1(x) and hj,t−1 are vectors built computing the kernel between
the training bids and the current bid x, and I is the identity matrix of order
t− 1. For further details on the use of GPs, we point an interested reader
to Rasmussen and Williams (2006). We recall that the asymptotic running
time of the GP estimation procedure is Θ(

∑N
j=1 |Xj| t2), where t is the

number of samples (corresponding to the rounds), and the asymptotic space
complexity is Θ(Nt2), i.e., the space required to store the Gram matrix.
A better, linear dependence on the number of days t can be obtained by
using the recursive formula for the GP mean and variance computation
(see Chowdhury and Gopalan (2017) for details).

The estimation subroutine returns the vector µ composed of the estimates
generated from the GPs. In the following sections, we investigate two
different procedures to compute µ. Then, the vector µ is given as input to
the optimization subroutine, namely Opt(µ,Λ), solving the problem stated
in Equations (8.1a)–(8.1c) and returns the bid strategy {x̂j,t}Nj=1 to play
the next round t. Finally, once the strategy has been applied, the revenue∑N

j=1 vj ñj(x̂j,t) is obtained, and the stochastic realization of the number
of clicks ñj,t(x̂j,t) and costs c̃j,t(x̂j,t) are observed and provided to the GPs
to update the models that will be used at round t + 1. For the sake of
presentation, we first describe the optimization subroutine Opt(µ,Λ) and,
then, some estimation subroutines together with the theoretical guarantees
provided by Algorithm 8.1 when these subroutines are adopted.

8.3 Optimization Subroutine

At first, we show that, even if all the values of the parameters of the opti-
mization problem are known, the optimal solution cannot be approximated
in polynomial time within any strictly positive factor (even depending on the
size of the instance), unless P = NP. We reduce from SUBSET-SUM that
is an NP-hard problem. Given a set S of integers ui ∈ N+ and an integer
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Algorithm 8.2 Opt(µ,Λ) subroutine

Input: sets of bid values X1, . . . , XN , set of cumulative cost values Y , set of revenue
values R, vector µ, ROI threshold Λ

1: Initialize M empty matrix with dimension |Y | × |R|
2: Initialize xy,r = xy,rnext = [ ], ∀y ∈ Y, r ∈ R
3: S(y, r) =

⋃
{x ∈ X1| c1(x) ≤ y ∧ w1(x) ≥ r} ∀y ∈ Y, r ∈ R

4: xy,r = arg maxx∈S w1(x) ∀y ∈ Y, r ∈ R
5: M(y, r) = maxx∈S w1(x) ∀y ∈ Y, r ∈ R
6: for j ∈ {2, . . . , N} do
7: for y ∈ Y do
8: for r ∈ R do
9: Update S(y, r) according to Equation (8.2)

10: xy,rnext = arg maxs∈S(y,r)

∑j
i=1 wi(si)

11: M(y, r) = maxs∈S(y,r)

∑j
i=1 wi(si)

12: end for
13: end for
14: xy,r = xy,rnext
15: end for
16: Choose (y∗, r∗) according to Equation (8.3)
17: Output: xy

∗,r∗

z ∈ N+, SUBSET-SUM requires to decide whether there is a set S∗ ⊆ S
with

∑
i∈S∗ ui = z.3

Theorem 8.1 (Inapproximability). For any ρ ∈ (0, 1], there is no polynomial-
time algorithm returning a ρ-approximation to the problem in Equations (8.1a)–
(8.1c), unless P = NP.

It is well known that SUBSET-SUM is a weakly NP-hard problem,
admitting an exact algorithm whose running time is polynomial in the size
of the problem and the magnitude of the data involved rather than the
base-two logarithm of their magnitude. The same can be showed for our
problem. Indeed, we can design a pseudo-polynomial-time algorithm to find
the optimal solution in polynomial time w.r.t. the number of possible values
of revenues and costs. In real-world settings, the values of revenue and cost
are in limited ranges and rounded to the nearest cent, allowing the problem
to be solved in a reasonable time. For simplicity, in the following we assume
the discretization of the ranges of the values of the daily cost Y and revenue
R be evenly spaced.

The pseudo-code of the Opt(µ,Λ) subroutine, solving the problem in
Equations (8.1a)–(8.1c) with a dynamic programming approach, is provided
in Algorithm 8.2. It takes as input the set of the possible bid values Xj

3Some of the proofs of this chapter are deferred to Appendix C
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for each subcampaign Cj , the set of the possible cumulative cost values
Y such that maxy∈Y y = β, the set of the possible revenue values R, a
ROI threshold Λ, and a vector µ of parameters characterizing the specific
instance of the optimization problem that is defined as follows:

µ :=
[
w1(x1), . . . , wN(x|XN |), w1(x1), . . .

. . . , wN(x|XN |),−c1(x1), . . . ,−cN(x|XN |)
]
,

where wj(xj) := vj nj(xj) denotes the revenue for a subcampaign Cj . We
use h and h to denote potentially different estimated values of a generic
function h used by the learning algorithms in the next sections. In particular,
if the functions are known beforehand, then it holds h = h = h for both
h = wj and h = cj . For the sake of clarity, wj(x) is used in the objective
function, while wj(x) and cj(x) are used in the constraints. At first, the
subroutine initializes a matrix M in which it stores the optimal solution for
each combination of values y ∈ Y and r ∈ R, and it initializes the vectors
xy,r = xy,rnext = [ ], ∀y ∈ Y, ∀r ∈ R (Lines 1 and 2, respectively). Then,
the subroutine generates the set S(y, r) of the bids for subcampaign C1

(Line 3). More precisely, the set S(y, r) contains only the bids x that induce
the overall costs to be lower than or equal to y and the overall revenue
to be higher than or equal to r. The bid in S(y, r) that maximizes the
revenue calculated with parameters wj is included in the vector xy,r, while
the corresponding revenue is stored in the matrix M (Lines 4–5). Then, the
subroutine iterates over each subcampaign Cj , with j ∈ {2, . . . , N}, all the
values y ∈ Y , and all the values r ∈ R (Lines 9–11). At each iteration,
for every pair (y, r), the subroutine stores in xy,r the optimal set of bids for
subcampaigns C1, . . . , Cj that maximizes the objective function and stores
the corresponding optimum value in M(y, r). At every j-th iteration, the
computation of the optimal bids is performed by evaluating a set of candidate
solutions S(y, r), computed as follows:

S(y, r) :=
⋃{

s = [xy′,r′ , x] s.t. y′ + cj(x) ≤ y ∧

r′ + wj(x) ≥ r ∧ x ∈ Xj ∧ y′ ∈ Y ∧ r′ ∈ R
}
. (8.2)

This set is built by combining the optimal bids xy′,r′ computed at the (j− 1)-
th iteration with one of the bids x ∈ Xj available for the j-th subcampaign,
such that these combinations satisfy the ROI and budget constraints. Then,
the subroutine assigns the element of S(y, r) that maximizes the revenue to
xy,rnext and the corresponding revenue to M(y, r). At the end, the subroutine
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computes the optimal pair (y∗, r∗) as follows:

(y∗, r∗) =
{
y ∈ Y, r ∈ R s.t.

r

y
≥ Λ ∧

M(y, r) ≥M(y′, r′), ∀y′ ∈ Y, ∀r′ ∈ R
}
, (8.3)

and the corresponding set of bids xy∗,r∗ , containing one bid for each subcam-
paign. We can state the following:

Theorem 8.2 (Optimality). The Opt(µ,Λ) subroutine returns the optimal
solution to the problem in Equations (8.1a)–(8.1c) when wj(x) = wj(x) =
vj nj(x) and cj(x) = cj(x) for each j ∈ {1, . . . , N} and the values of
revenues and costs are in R and Y , respectively.

Proof. Since all the possible values for the revenues and costs are taken into
account in the subroutine, the elements in S(y, r) satisfy the two inequalities
in Equation (8.2) with the equal sign. Therefore, all the elements in S(y, r)
would contribute to the computation of the final value of the ROI and budget
constraints, i.e., the ones after evaluating all the N subcampaigns, with the
same values for revenue and costs, being their overall revenue equal to r and
their overall cost equal to y. Notice that Constraint (8.1c) is satisfied as long
as it holds max(Y ) = β. The maximum operator in Line 11 excludes only
solutions with the same costs and a lower revenue, therefore, the subroutine
excludes only solutions that would never be optimal (and, for this reason,
said dominated). The same reasoning holds also for the subcampaign C1

analysed by the algorithm. Finally, after all the dominated allocations have
been discarded, the solution is selected by Equation (8.3), i.e., among all the
solutions satisfying the ROI constraints the one with the largest revenue is
selected.

The asymptotic running time of Opt is Θ
(∑N

j=1 |Xj| |Y |2 |R|2
)

, where
|Xj| is the cardinality of the set of bids Xj , since it cycles over all the
subcampaigns and, for each one of them, finds the maximum bids and
compute the values in the matrix S(y, r). Moreover, the asymptotic space
complexity of the Opt procedure is Θ

(
maxj={1,...,N} |Xj| |Y | |R|

)
since

it stores the values in the matrix S(y, r) and finds the maximum over the
possible bids x ∈ Xj .

8.4 Estimation Subroutine

Initially, we focus on the nature of our learning problem, and we show that
no online learning algorithm can provide a sublinear pseudo-regret while
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guaranteeing safety.

Theorem 8.3 (Pseudo-regret/safety tradeoff). For every ε > 0 and time
horizon T , there is no algorithm with pseudo-regret smaller than (1/2−ε)T
that violates (in expectation) the constraints less than (1/2− ε)T times.

Proof. In what follows, we provide an impossibility result for the optimiza-
tion problem in Equations (8.1a)–(8.1c). For the sake of simplicity, our proof
is based on the violation of (budget) Constraint (8.1c), but its extension to
the violation of (ROI) Constraint (8.1b) is direct.

Initially, we show that an algorithm satisfying the two conditions of the
theorem can be used to distinguish betweenN (1, 1) andN (1+δ, 1) with an
arbitrarily large probability using a number of samples independent from δ.
Consider two instances of the bid optimization problem defined as follows.
Both instances have a single subcampaign with x ∈ {0, 1}, c(0) = 0, r(0) =
0, r(1) = 1, β = 1, and Λ = 0. The first instance has cost c1(1) = N (1, 1),
while the second one has cost c2(1) = N (1 + δ, 1). With the first instance,
the algorithm must choose x = 1 at least T (1/2 + ε) times in expectation,
otherwise the pseudo-regret would be strictly greater than T (1/2− ε), while,
with the second instance, the algorithm must choose x = 1 at most than
T (1/2−ε) times in expectation, otherwise the constraint on the budget would
be violated strictly more than T (1/2 − ε) times. Standard concentration
inequalities imply that, for each γ > 0, there exists a n(ε, γ) such that, given
n(ε, γ) runs of the learning algorithm, with the first instance the algorithm
plays x = 1 strictly more than Tn(ε, γ)/2 times with probability at least
1−γ, while with the second instance it is played strictly less than Tn(ε, γ)/2
times with probability at least 1− γ. This entails that the learning algorithm
can distinguish with arbitrarily large success probability (independent of δ)
between the two instances using (at most) n(ε, γ)T samples from one of the
normal distributions.

However, the Kullback-Leibler divergence between the two normal dis-
tributions is KL(N (1, 1),N (1 + δ, 1)) = δ2/2 and each algorithm needs
at least Ω(1/δ2) samples to distinguish between the two distributions with
arbitrarily large probability. Since δ can be arbitrarily small, we have a
contradiction. Thus, such an algorithm cannot exist. This concludes the
proof.4

This impossibility result is crucial in practice, showing that no online
learning algorithm can theoretically guarantee both a sublinear regret and

4Notice that the theorem can be modified to hold even with instances that satisfy real-world assumptions, e.g.,
with costs much smaller than the budget. Indeed, we can apply the same reduction in which the costs are arbitrary,
e.g., c(0) = c(1) = q with an arbitrary small q and β = 1, while the utilities are r(0) = 0, r(1) = N (1, 1) or
r(1) = N (1− δ, 1), and the ROI limit is Λ = 1/q.
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a sublinear number of violations of the constraints. Therefore, in real-
world applications, advertisers have necessarily to accept a tradeoff between
the two requirements. The following sections describe three estimation
subroutines, each providing theoretical guarantees for a different, relaxed
version of the optimization problem. More precisely, in Section 8.4.1,
we relax the safety requirement and provide an algorithm, namely GCB,
guaranteeing a sublinear regret. In Section 8.4.2, we relax the no-regret
requirement and provide an algorithm, namely GCBsafe, guaranteeing safety.
In Section 8.4.3, we accept a fixed tolerance (ψ, φ) in the safety requirements
and provide an algorithm, namely GCBsafe(ψ, φ), guaranteeing both a
sublinear regret and a sublinear number of violations of the constraints.

8.4.1 Guaranteeing Sublinear Pseudo-regret: GCB

Accabi et al. (2018) propose the GCB algorithm to face general combina-
torial bandit problems where the arms are partitioned in subsets and the
payoffs of the arms belonging to the same subset are modeled with a GP.5 To
obtain theoretical sublinear guarantees on the regret for our online learning
problem, we use a specific definition of µ vector, making Algorithm 8.1
be an extension of GCB to the case in which the payoffs and constraints
are functions whose parameters are modeled by multiple independent GPs.
With a slight abuse of terminology, we refer to this extension as GCB.

The GCB algorithm relies on the idea to build the µ vector so that the
parameters corresponding to the reward are statistical upper bounds to the
expected values of the random variables, and those corresponding to the
costs are statistical lower bounds. The rationale is that this choice satisfies
the optimism vs. uncertainty principle. Formally, we have:

wj(x)=wj(x) := vj

[
n̂j,t−1(x) +

√
bt−1σ̂

n
j,t−1(x)

]
, (8.4)

cj(x) := ĉj,t−1(x)−
√
bt−1σ̂

c
j,t−1(x), (8.5)

where bt := 2 ln
(
π2NQTt2

3δ

)
is an uncertainty term used to guarantee the

confidence level required by GCB. 6

In what follows we bound the GCB pseudo-regret in terms of the max-
imum information gain γj,t of the GP modeling the number of clicks of

5GCB algorithm was presented at EWRL 2018 without any archival version of the paper.
6For the sake of simplicity, we assume that the values of the bounds correspond to values in R and Y ,

respectively. If the bound values for wj(x) are not in the set R, we need to round them up to the nearest value
belonging to R. Instead, if cj(x) are not in the set Y , a rounding down should be performed to the nearest value
in Y .
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subcampaign Cj at round t, formally defined as:

γj,t :=
1

2
max

(xj,1,...,xj,t),xj,h∈Xj

∣∣∣∣It +
Φ(xj,1, . . . , xj,t)

σ2

∣∣∣∣ ,
where It is the identity matrix of order t, Φ(xj,1, . . . , xj,t) is the Gram matrix
of the GP computed on the vector (xj,1, . . . , xj,t), and σ ∈ R+ is the noise
standard deviation. Thanks to this definition, we can state the following.

Theorem 8.4 (GCB pesudo-regret). Given δ ∈ (0, 1), GCB applied to the
problem in Equations (8.1a)–(8.1c), with probability at least 1− δ, suffers
from a pseudo-regret of:

RT (GCB ) ≤

√√√√8Tv2
maxN

3bT
ln(1 + σ2)

N∑
j=1

γj,T ,

where bt := 2 ln
(
π2NQTt2

3δ

)
is an uncertainty term used to guarantee the

confidence level required by GCB, vmax := maxj∈{1,...,N} vj is the maximum
value per click over all subcampaigns, and Q := maxj∈{1,...,N} |Xj| is the
maximum number of bids in a subcampaign.

We remark that the upper bound provided in the above theorem is ex-
pressed in terms of the maximum information gain γj,T of the GPs over
the number of clicks. The problem of bounding γj,T for a generic GP
has been already addressed by Srinivas et al. (2010), where the authors
present the bounds for the squared exponential kernel γj,T = O((lnT )2)
for 1-dimensional GPs. Notice that, thanks to the previous result, the GCB
algorithm using squared exponential kernels suffers from a sublinear pseudo-
regret since the terms γj,T is bounded by O((lnT )2), and the bound in
Theorems 8.4 is O(N3/2(lnT )5/2)

√
T ).

On the other hand, the GCB algorithm violates (in expectation) the
constraints a linear number of times in T as stated by the following theorem.

Theorem 8.5 (GCB safety). Given δ ∈ (0, 1), GCB applied to the problem
in Equations (8.1a)–(8.1c) is η-safe where η ≥ T − δ

2NQT
and, therefore,

the number of constraints violations is linear in T .

Proof. Let us focus on a specific day t. Consider the case in which Con-
straints (8.1b) and (8.1c) are active, and, therefore, the left side equals the
right side:

∑N
j=1wj(xj,t) − Λ

∑N
j=1 cj(xj,t) = 0 and

∑N
j=1 cj(xj,t) = β.
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For the sake of simplicity, we focus on the costs cj(xj,t), but similar argu-
ments also apply to the revenues wj(xj,t). A necessary condition for which
the two constraints are valid also for the actual (non-estimated) revenues and
costs is that for at least one of the costs it holds cj(xj,t) ≤ cj(xj,t). Indeed,
if the opposite holds, i.e., cj(xj,t) < cj(xj,t) for each j ∈ {1, . . . , N} and
xj,t ∈ Xj , the budget constraint would be violated by the allocation since∑N

j=1 cj(xj,t) >
∑N

j=1 cj(xj,t) = β. Since the event cj(xj,t) ≤ cj(xj,t)

occurs with probability at most 3δ
π2NQTt2

, over the t ∈ N, formally:

P

(∑N
j=1 vj nj(x̂j,t)∑N
j=1 cj(x̂j,t)

< Λ ∨
N∑
j=1

cj(x̂j,t) > β

)
≥ 1− 3δ

π2NQTt2
.

Finally, summing over the time horizon T the probability that the constraints
are not violated is at most δ

2NQT
, formally:

T∑
t=1

P

(∑N
j=1 vj nj(x̂j,t)∑N
j=1 cj(x̂j,t)

< Λ ∨
N∑
j=1

cj(x̂j,t) > β

)
≥ T − δ

2NQT
.

This concludes the proof.

8.4.2 Guaranteeing Safety: GCBsafe

We propose GCBsafe, a variant of GCB relying on different values to be
used in the vector µ. More specifically, we employ optimistic estimates for
the parameters used in the objective function and pessimistic estimates for
the parameters used in the constraints. Formally, in GCBsafe, we set:

wj(x) := vj

[
n̂j,t−1(x) +

√
bt−1σ̂

n
j,t−1(x)

]
,

wj(x) := vj

[
n̂j,t−1(x)−

√
bt−1σ̂

n
j,t−1(x)

]
,

cj(x) := ĉj,t−1(x) +
√
bt−1σ̂

c
j,t−1(x).

Furthermore, GCBsafe needs a default set of bids
{
xd
j,t

}N
j=1

, that is known
a priori to be feasible for the problem in Equations (8.1a)–(8.1c) with the
actual values of the parameters.7 The pseudo-code of GCBsafe is provided
in Algorithm 8.1 with the above definition of the parameters of vector µ,
except that it returns {x̂j,t}Nj=1 =

{
xd
j,t

}N
j=1

if the optimization problem does
not admit any feasible solution with the current estimates. We can show the
following.

7A trivial default feasible bid allocation is
{
xd
j,t = 0

}N
j=1

.
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Theorem 8.6 (GCBsafe safety). Given δ ∈ (0, 1), GCBsafe applied to the
problem in Equations (8.1a)–(8.1c) is δ-safe and, therefore, the number of
constraints violations is constant in T .

Proof. Let us focus on a specific day t. Constraints (8.1b) and (8.1c) are
satisfied by the solution of Opt(µ,Λ) for the properties of the optimization
procedure. Define nj(xj,t) := n̂j(xj,t) −

√
bt−1σ̂

n
j (xj,t). Thanks to the

specific construction of the upper bounds, we have that cj(xj,t) ≤ cj(xj,t)
and nj(xj,t) ≥ nj(xj,t), each holding with probability at least 1− 3δ

π2NQTt2
.

Therefore, we have:∑N
j=1 vj nj(xj,t)∑N
j=1 cj(xj,t)

>

∑N
j=1 vj nj(xj,t)∑N
j=1 cj(xj,t)

≥ Λ

and
N∑
j=1

cj(xj,t) <
N∑
j=1

cj(xj,t) ≤ β.

Using a union bound over:

• the two GPs (number of clicks and costs);

• the time horizon T ;

• the number of times each bid is chosen in a subcampaign (at most t);

• the number of arms present in each subcampaign (|Xj|);

• the number of subcampaigns (N );

we have:
T∑
t=1

P

(∑N
j=1 vj nj(x̂j,t)∑N
j=1 cj(x̂j,t)

< Λ ∨
N∑
j=1

cj(x̂j,t) > β

)
≤

≤ 2
N∑
j=1

|Xj |∑
k=1

T∑
h=1

t∑
l=1

3δ

π2NQTl2
≤

≤ 2
N∑
j=1

Q∑
k=1

T∑
h=1

+∞∑
l=1

3δ

π2NQTl2
= δ.

This concludes the proof.

The safety property comes at the cost that GCBsafe may suffer from a
much larger pseudo-regret than GCB as stated by the following theorem.
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Theorem 8.7 (GCBsafe pseudo-regret). Given δ ∈ (0, 1), GCBsafe ap-
plied to the problem in Equations (8.1a)–(8.1c) suffers from a pseudo-regret
RT (GCBsafe) = Θ(T ).

Proof. At the optimal solution, at least one of the constraints is active, i.e.,
it has the left-hand side equal to the right-hand side. Assume that the
optimal clairvoyant solution

{
x∗j
}N
j=1

to the optimization problem has a
value of the ROI Λopt equal to Λ. We showed in the proof of Theorem 8.6
that for any allocation, with probability at least 1 − 3δ

π2NQTt2
, it holds that∑N

j=1 vj nj(xj,t)∑N
j=1 cj(xj,t)

>
∑N
j=1 vj nj(xj,t)∑N
j=1 cj(xj,t)

. This is true also for the optimal clairvoyant

solution
{
x∗j
}N
j=1

, for which Λ =
∑N
j=1 vj nj(x

∗)∑N
j=1 cj(x∗)

>
∑N
j=1 vj nj(x

∗)∑N
j=1 cj(x∗)

, implying

that the values used in the ROI constraint make this allocation not feasible
for the Opt(µ,Λ) procedure. As shown before, this happens with probability
at least 1− 3δ

π2NQTt2
at day t, and 1−δ over the time horizon T . To conclude,

with probability 1 − δ, not depending on the time horizon T , we will not
choose the optimal arm during the time horizon and, therefore, the regret of
the algorithm cannot be sublinear. Notice that the same line of proof is also
holding in the case the budget constraint is active, therefore, the previous
result holds for each instance of the problem in Equations (8.1a)–(8.1c).

8.4.3 Guaranteeing Sublinear Pseudo-regret and Safety with Toler-
ance: GCBsafe(ψ, φ)

In what follows, we show that, when a tolerance in the violation of the
constraints is accepted, an adaptation of GCBsafe can be exploited to ob-
tain a sublinear pseudo-regret. Given an instance of the problem in Equa-
tions (8.1a)–(8.1c) that we call original problem, we build an auxiliary
problem in which we slightly relax the ROI and budget constraints. For-
mally, the GCBsafe(ψ, φ) is the GCBsafe applied to the auxiliary problem in
which the parameters Λ and β have been substituted with Λ− ψ and β + φ,
respectively. Thanks to the results provided in Section 8.4.2, GCBsafe(ψ, φ),
w.h.p., does not violate the ROI constraint of the original problem by more
than the tolerance ψ and the budget constraint of the original problem by
more than the tolerance φ. In the following, we distinguish three cases
depending on the a priori information available to the advertisers. Indeed,
the advertisers may know that a constrain is not active at the optimal solution
of the given instance thanks to the observation of old data. In these cases,
we just need a milder relaxation of the problem than in the general case in
which the advertisers has no a priori information. At first, we focus on the
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case in which we a priori know that the budget constraint is not active at the
optimal solution. We show the following:

Theorem 8.8 (GCBsafe(ψ, 0) pseudo-regret and safety with tolerance).
When:

ψ ≥ 2
βopt + nmax

β2
opt

N∑
j=1

vj

√
2 ln

(
π2NQT 3

3δ′

)
σ

and

βopt < β

∑N
j=1 vj

N βoptψ

βopt+nmax
+
∑N

j=1 vj
,

where δ′ ≤ δ, βopt is the spend at the optimal solution of the original
problem, and nmax := maxj,x nj(x) is the maximum over the sub-campaigns
and the admissible bids of the expected number of clicks, GCBsafe(ψ, 0)
provides a pseudo-regret w.r.t. the optimal solution to the original problem

of O
(√

T
∑N

j=1 γj,T

)
with probability at least 1 − δ − δ′

QT 2 , while being
δ-safe w.r.t. the constraints of the auxiliary problem.

The above result states that, if we allow a violation of at most ψ of the
ROI constraint, the result provided in Theorem 8.1 can be circumvented for
a class of instances of the optimization problem. In this case, GCBsafe(ψ, 0)
guarantees sublinear regret and a number of constraints violations that is
constant in T .

Notice that the magnitude of the violation ψ increases linearly in the
maximum number of clicks nmax and

∑N
j=1 vj , that, in its turn, increases

linearly in the number of sub-campaigns N . This suggests that in large
instances this value may be large. However, in practice, the maximum
number of clicks of a sub-campaign nmax is a sublinear function in the
optimal budget βopt, and usually it goes to a constant as the budget spent
goes to infinity. Moreover, the number of sub-campaigns N usually depends
on the budget, i.e., the budget planned by the business units is linear in the
number of sub-campaigns. As a result, βopt is of the same order of

∑N
j=1 vj ,

and therefore, since nmax is sublinear in βopt and
∑N

j=1 vj is of the order
of βopt, the final expression of ψ is sub-linear in βopt. This means that the
lower bound to ψ to satisfy the assumption needed by Theorem 8.8 goes to
zero as βopt increases.

We can derive a similar result in the case in which we a priori know that
the ROI constraint is not active at the optimal solution. In particular, we
state the following.
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Theorem 8.9 (GCBsafe(0, φ) pseudo-regret and safety with tolerance).
When

φ ≥ 2N

√
2 ln

(
π2NQT 3

3δ′

)
σ

and

Λopt > Λ +
(β + nmax)φ

∑N
j=1 vj

Nβ2
,

where δ′ ≤ δ, and nmax := maxj,x nj(x) is maximum expected number of
clicks, GCBsafe(0, φ) provides a pseudo-regret w.r.t. the optimal solution

to the original problem of O
(√

T
∑N

j=1 γj,T

)
with probability at least

1 − δ − 6δ′
π2QT 2 , while being δ-safe w.r.t. the constraints of the auxiliary

problem.

Proof. We show that at a specific day t since the optimal solution of the
original problem

{
x∗j
}N
j=1

is included in the set of feasible ones, we are in a
setting analogous to the one of GCB, in which the regret is sublinear. Let
us assume that the upper bounds to all the quantities (number of clicks and
costs) holds. This has been shown before to occur with overall probability δ
over the whole time horizon T .

First, let us evaluate the probability that the optimal solution is not
feasible. This occurs if its bounds are either violating the ROI or budget
constraints. From the fact that the ROI of the optimal solution satisfies

Λopt > Λ +
(β+nmax)φ

∑N
j=1 vj

Nβ2 , we have:

P

(∑N
j=1 vj nj(x

∗
j)∑N

j=1 cj(x
∗
j)

< Λ

)

≤ P

(∑N
j=1 vj nj(x

∗
j)∑N

j=1 cj(x
∗
j)

< Λopt −
(β + nmax)φ

∑N
j=1 vj

Nβ2

)

= P

(∑N
j=1 vj nj(x

∗
j)∑N

j=1 cj(x
∗
j)

<

<

∑N
j=1 vj nj(x

∗
j)∑N

j=1 cj(x
∗
j)
− 2

βopt + nmax

β2
opt

N∑
j=1

vj

√
ln
π2NQT 3

3δ′
σ

)

≤ 3δ′

π2QT 3
,
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where the derivation uses arguments similar to the ones applied in the proof
for the ROI constraint in Theorem 8.8. Summing over the time horizon T
ensures that the optimal solution of the original problem

{
x∗j
}N
j=1

is excluded

from the feasible solutions at most with probability 3δ′
π2QT 2 .

Second, let us evaluate the probability for which the optimal solution
of the original problem

{
x∗j
}N
j=1

is excluded due to the budget constraint,
formally:

P

(
N∑
j=1

cj(x
∗
j) > β + φ

)

≤ P

(
N∑
j=1

cj(x
∗
j) > β + 2N

√
2 ln

π2NQT 3

3δ′
σ

)

= P

(
N∑
j=1

cj(x
∗
j) >

N∑
j=1

cj(x
∗
j) + 2N

√
2 ln

π2NQT 3

3δ′
σ

)

≤
N∑
j=1

P

(
cj(x

∗
j) > cj(x

∗
j) + 2

√
ln

12NT 3

π2δ′
σ

)
(8.6)

=
N∑
j=1

P

(
ĉj,t−1(x∗j)− cj(x∗j) ≥ −

√
btσ̂

c
j,t−1(x∗j) + 2

√
2 ln

π2NQT 3

3δ′
σ

)

≤
N∑
j=1

P

(
ĉj,t−1(x∗j)− cj(x∗j) ≥

√
2 ln

π2NQT 3

3δ′
σ̂cj,t−1(x∗j)

)

≤
N∑
j=1

P

(
ĉj,t−1(x∗j)− cj(x∗j)

σ̂cj,t−1(x∗j)
≥
√

2 ln
π2NQT 3

3δ′

)

≤
N∑
j=1

3δ′

π2NQT 3
=

3δ′

π2QT 3
, (8.7)

where we use the fact that β = βopt, and the derivation uses arguments simi-
lar to the ones applied in the proof for the budget constraint in Theorem 8.8.
Summing over the time horizon T , we get that the optimal solution of the
original problem

{
x∗j
}N
j=1

is excluded from the set of the feasible ones with

probability at most π2δ′
6T 2 . Finally, using a union bound, we have that the

optimal solution can be chosen over the time horizon with probability at
least 1− 3δ′

π2QT 2 .
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Notice that here we want to compute the regret of the GCBsafe algo-
rithm w.r.t.

{
x∗j
}N
j=1

which is not optimal for the analysed relaxed problem.
Nonetheless, the proof on the pseudo-regret provided in Theorem 8.4 is valid
also for suboptimal solutions in the case it is feasible with high probability.
This can be trivially shown using the fact that the regret w.r.t. a generic solu-
tion cannot be larger than the one computed on the optimal one. Thanks to
that, using a union bound over the probability that the bounds hold and that{
x∗j
}N
j=1

is feasible, we conclude that with probability at least 1− δ− 6δ′
π2QT 2

the regret GCBsafe is of the order ofO
(√

T
∑N

j=1 γj,T

)
. Finally, thanks to

the property of the GCBsafe algorithm shown in Theorem 8.6, the learning
policy is δ-safe for the relaxed problem.

On the satisfaction of the assumption needed by the above theorem, we
can produce a consideration similar to that done before for the case in which
the budget constraint is not active at the optimal solution. As previously, the
lower bound to φ to satisfy the assumption needed by Theorem 8.9 goes to
zero as βopt increases.

Finally, we focus on the case in which the advertiser has no information
on which constrain is active. In this case, we can state the following which
generalizes the two results provided above.

Theorem 8.10 (GCBsafe(ψ, φ) pseudo-regret and safety with tolerance).
Setting

ψ = 2
βopt + nmax

β2
opt

N∑
j=1

vj

√
2 ln

(
π2NQT 3

3δ′

)
σ

and

φ = 2N

√
2 ln

(
π2NQT 3

3δ′

)
σ,

where δ′ ≤ δ, GCBsafe(ψ, φ) provides a pseudo-regret w.r.t. the optimal

solution to the original problem of O
(√

T
∑N

j=1 γj,T

)
with probability at

least 1− δ − δ′
QT 2 , while being δ-safe w.r.t. the constraints of the auxiliary

problem.

Proof. The proof follows from combining the arguments about the ROI
constraint used in Theorem 8.8 and those about the budget constraint used
in Theorem 8.9.
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8.5 Experimental Evaluation

We experimentally evaluate our algorithms in terms of pseudo-regret and
safety in synthetic settings generated from real-world data. The adoption
of synthetic settings allows us to evaluate our algorithms in many different
realistic scenarios and, for each of them, to find the optimal clairvoyant solu-
tion necessary to measure the algorithms’ regret and safety. The real-world
dataset is provided by AdsHotel (https://www.adshotel.com/), an
Italian media agency working in the hotel booking market.8

Our experimental activity is structured as follows. In Section 8.5.1, we
evaluate how GCB and GCBsafe violate the constraints. In Section 8.5.2,
we evaluate how the performances of GCBsafe(ψ, φ) vary as ψ varies when
the budget constraint is known to be active. In Section 8.5.3, we evaluate
the performances of all the algorithms when the ROI constraint is known
to be active. Finally, in Section 8.5.4, we run our algorithms with multiple,
heterogeneous settings and evaluate the average performances.

8.5.1 Experiment #1: evaluating constraint violation with GCB and
GCBsafe

In this experiment, we show that GCB suffers from significant violations
of both ROI and budget constraints even in simple settings, while GCBsafe

does not.

Setting We simulate N = 5 subcampaigns, with |Xj| = 201 bid values
evenly spaced in [0, 2], |Y | = 101 cost values evenly spaced in [0, 100],
and |R| = 151 revenue values evenly spaced in [0, 1200]. For a generic
subcampaignCj , at every t, the daily number of clicks is returned by function
ñj(x) := θj(1− e−x/δj) + ξnj and the daily cost by function c̃j(x) = αj(1−
e−x/γj)+ξcj , where θj ∈ R+ and αj ∈ R+ represent the maximum achievable
number of clicks and cost for subcampaign Cj in a single day, δj ∈ R+ and
γj ∈ R+ characterize how fast the two functions reach a saturation point, and
ξnj and ξcj are noise terms drawn from aN (0, 1) Gaussian distribution (these
functions are customarily used in the advertising literature, e.g., by Kong
et al. (2018)). We assume a unitary value for each click, i.e., vj = 1 for each
j ∈ {1, . . . , N}. The values of the parameters of cost and revenue functions
of the subcampaigns are specified in Table C.1 reported in C.1.2. We set
a daily budget β = 100, Λ = 10 in the ROI constraint, and a time horizon

8Additional details useful for the complete reproducibility of our results are provided in Appendix C.1.2, while
the code used is available at: https://github.com/oi-tech/safe_bid_opt.

194

https://www.adshotel.com/
https://github.com/oi-tech/safe_bid_opt


8.5. Experimental Evaluation

0 10 20 30 40 50

500

1,000

1,500

2,000

t

P
t
(U

)

GCB
GCBsafe

{x∗j}Nj=1

(a)

0 10 20 30 40 50
8

9

10

11

12

t

R
O
I t

(U
)

GCB
GCBsafe

λopt
λ

(b)

0 10 20 30 40 50

50

100

150

200

250

t

S
t
(U

)

GCB
GCBsafe

βopt = β

(c)

Figure 8.1: Results of Experiment #1: daily revenue (a), ROI (b), and spend (c) obtained by
GCB and GCBsafe. Dashed lines correspond to the optimal values for the revenue and
ROI, while dash-dotted lines correspond to the values of the ROI and budget constraints.

T = 60. The peculiarity of this setting is that, at the optimal solution, the
budget constraint is active, while the ROI constraint is not.

For both GCB and GCBsafe, the kernels for the number of clicks GPs
k(x, x′) and for the costs GPs hj(x, x′) are squared exponential kernels of

the form σ2
f exp

{
− (x−x′)2

l

}
for every x, x′ ∈ Xj , where the parameters

σf ∈ R+ and l ∈ R+ are estimated from data, as suggested by Rasmussen
and Williams (2006). The confidence for the algorithms is δ = 0.2.

Results We evaluate the algorithms in terms of:

• daily revenue: Pt(U) :=
∑N

j=1 vjnj(x̂j,t);
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• daily ROI: ROIt(U) :=
∑N
j=1 vj nj(x̂j,t)∑N
j=1 cj(x̂j,t)

;

• daily spend: St(U) :=
∑N

j=1 cj(x̂j,t).

We perform 100 independent runs for each algorithm.
In Figure 8.1, for the daily revenue, ROI, and spend achieved by GCB and

GCBsafe at every t, we show the 50th percentile (i.e., the median) with solid
lines and the 90th and 10th percentiles with dashed lines surrounding the
semi-transparent area. While GCB achieves a larger revenue than GCBsafe,
it violates the budget constraint over the entire time horizon and the ROI
constraint in the first 7 days in more than 50% of the runs. This happens
because, in the optimal solution, the ROI constraint is not active, while the
budget constraint is. Conversely, GCBsafe satisfies the budget and ROI
constraints over the time horizon for more than 90% of the runs, and has
a slower convergence to the optimal revenue. If we focus on the median
revenue, GCBsafe has a similar behaviour to that of GCB for t > 15. This
makes GCBsafe a good choice even in terms of overall revenue. However, it
is worth to notice that, in the 10% of the runs, GCBsafe does not converge
to the optimal solution before the end of the learning period. These results
confirm our theoretical analysis showing that limiting the exploration to
safe regions might lead the algorithm to get a large regret. Furthermore, let
us remark that the learning dynamics of GCBsafe are much smoother than
those of GCB, which present, instead, oscillations.

8.5.2 Experiment #2: evaluating GCBsafe(ψ, 0) when the budget con-
straint is active

In real-world scenarios, the business goals in terms of volumes-profitability
tradeoff are often blurred, and sometimes it can be desirable to slightly
violate the constraints (usually, the ROI constraint) in favor of a significant
volume increase. However, analyzing and acquiring information about these
tradeoff curves requires exploring volumes opportunities by relaxing the
constraints. In this experiment, we show how our approach can be adjusted
to address this problem in practice.

Setting We use the same setting of Experiment #1, except that we evaluate
GCBsafe and GCBsafe(ψ, φ) algorithms. More precisely, we relax the ROI
constraint by a tolerance ψ ∈ {0, 0.05, 0.1, 0.15} (while keeping φ = 0).
Notice that GCBsafe(0, 0) corresponds to the use of GCBsafe in the original
problem. As a result, except for the case φ = 0, we allow GCBsafe(ψ, φ)
to violate the ROI constraint, but, with high probability, the violation is
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bounded by at most 0.5%, 1%, 1.5% of Λ, respectively. Instead, we do not
introduce any tolerance for the daily budget constraint β.
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Figure 8.2: Results of Experiment #2: Median values of the daily revenue (a), ROI (b) and
spend (c) obtained by GCBsafe(ψ, 0) with different values of ψ.

Results In Figures 8.2, we show the median values, on 100 independent
runs, of the performance in terms of daily revenue, ROI, and spend of
GCBsafe(ψ, 0) for every value of ψ. The 10% and 90% quantiles are re-
ported in Figure C.2, C.3, C.4, and C.5 in C.1.2. The results show that
allowing a small tolerance in the ROI constraint violation, we can improve
the exploration and, therefore, lead to faster convergence. We note that if we
set a value of ψ ≥ 0.05, we achieve significantly better performance in the
first learning steps (t < 20) still maintaining a robust behavior in terms of
constraints violation. Most importantly, the ROI constraint is always satis-
fied by the median and also by the 10% and 90% quantiles. Furthermore, the
few violations are concentrated in the early stages of the learning process.
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Figure 8.3: Results of Experiment #3: Median values of the daily revenue (a), ROI (b) and
spend (c) of GCB, GCBsafe, and GCBsafe(0.05, 0).

8.5.3 Experiment #3: comparing GCB, GCBsafe, and GCBsafe(ψ, 0)
when the ROI constraint is active

We study a setting in which the ROI constraint is active at the optimal
solution, i.e., Λ = Λopt, while the budget constraint is not. This means that,
at the optimal solution, the advertiser would have an extra budget to spend.
However, such budget is not spent, the ROI constraint would be violated
otherwise.

Setting The experimental setting is the same of Experiment #1, except
that we set the budget constraint as β = 300. The optimal daily spend is
βopt = 161.

Results In Figure 8.3, we show the median values of the daily revenue, the
ROI, and the spend of GCB, GCBsafe, GCBsafe(0.05, 0) obtained with 100
independent runs. The 10% and 90% of the quantities provided by GCB,
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GCBsafe, and GCBsafe(0.05, 0) are reported in Figures C.6, C.7, and C.8
in C.1.2. We notice that, even in this setting, GCB violates the ROI con-
straint for the entire time horizon, and the budget constraint in t = 6 and
t = 7. However, it achieves a revenue larger than that of the optimal con-
strained solution. On the other side, GCBsafe and always satisfies both the
constraints, but it does not perform enough exploration to quickly converge
to the optimal solution. We observe that it is sufficient to allow a tolerance
in the ROI constraint violation by slightly perturbing the input value Λ
(ψ = 0.05, corresponding to a violation of the constraint by at most 0.5%)
to make GCBsafe(ψ, φ) capable of approaching the optimal solution while
satisfying both constraints for every t ∈ {0, . . . , T}. This suggests that, in
real-world applications, GCBsafe(ψ, φ) with a small tolerance represents an
effective solution, providing guarantees on the violation of the constraints
while returning high values of revenue.

8.5.4 Experiment #4: comparing GCB, GCBsafe, and GCBsafe(ψ, φ)
with multiple, heterogeneous settings

In this experiment we extend the experimental activity we conduct in Exper-
iments #1 and #3 to other multiple, heterogeneous settings.

Setting We simulate N = 5 subcampaigns with a daily budget β = 100,
with |Xj| = 201 bid values evenly spaced in [0, 2], |Y | = 101 cost values
evenly spaced in [0, 100], being the daily budget β = 100, and |R| evenly
spaced revenue values depending on the setting. We generate 10 scenarios
that differ in the parameters defining the cost and revenue functions, and
in the ROI parameter Λ. Recall that the number-of-click functions coin-
cide with the revenue functions since vj = 1 for each j ∈ {1, . . . , N}.
Parameters αj ∈ N+ and θj ∈ N+ are sampled from discrete uniform dis-
tributions U{50, 100} and U{400, 700}, respectively. Parameters γj and δj
are sampled from the continuous uniform distributions U [0.2, 1.1). Finally,
parameters Λ are chosen such that the ROI constraint is active at the optimal
solution. Table C.1 in C.1.2 specifies the values of such parameters.

Results We compare the algorithms GCB, GCBsafe, GCBsafe(0.05, 0), and
GCBsafe(0.10, 0) in terms of:

• Wt :=
∑t

h=1 Pt(U): average cumulative revenue at round t (and the
corresponding standard deviation σt);

• Mt: median of the cumulative revenue at round t;
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WT WT/2 σT σT/2 MT MT/2 UT UT/2 LT LT/2 VROI VB

Se
tti

ng
#

1 GCB 57481 30767 556 376 57497 30811 58081 31239 56758 30288 1.00 0.62
GCBsafe 44419 21549 4766 2474 45348 21972 46783 23163 42287 20324 0.02 0.00
GCBsafe(0.05, 0) 48028 23524 4902 2487 48626 23831 50388 24827 46307 22506 0.21 0.00
GCBsafe(0.10, 0) 52327 25859 829 611 52338 25887 53324 26605 51316 25104 0.94 0.00

Se
tti

ng
#

2 GCB 63664 35566 1049 679 63701 35573 64984 36524 62249 34675 1.00 0.14
GCBsafe 34675 16290 8541 4448 37028 17647 39594 19473 27748 11141 0.03 0.00
GCBsafe(0.05, 0) 40962 19564 6013 3122 41823 20152 44468 21698 38640 17645 0.04 0.00
GCBsafe(0.10, 0) 46694 22099 6382 3112 47749 22433 51564 24776 44099 19929 0.72 0.00

Se
tti

ng
#

3 GCB 54845 30213 757 478 54816 30177 55734 30885 54006 29638 1.00 0.25
GCBsafe 35726 16577 8239 4361 38302 18114 40746 19882 27279 8791 0.03 0.00
GCBsafe(0.05, 0) 38757 18370 8492 4594 41422 19808 43337 21092 30413 12678 0.07 0.00
GCBsafe(0.10, 0) 42184 19993 9652 5056 44820 21574 47659 23118 36570 14450 0.75 0.00

Se
tti

ng
#

4 GCB 71404 37383 351 262 71399 37387 71877 37732 70930 37021 0.98 0.98
GCBsafe 29101 13817 7052 3646 30992 14680 35602 17256 20509 9562 0.00 0.00
GCBsafe(0.05, 0) 39802 18270 10232 4955 38296 17994 53375 24962 25197 11341 0.01 0.00
GCBsafe(0.10, 0) 51515 24095 11094 5639 56621 24902 61992 30020 35642 16198 0.56 0.00

Se
tti

ng
#

5 GCB 74638 39523 642 392 74693 39529 75405 40049 73756 39063 0.98 0.31
GCBsafe 48956 23230 6715 3486 50021 23838 53644 26266 42946 19287 0.00 0.00
GCBsafe(0.05, 0) 56205 27003 2578 1742 56554 27211 58839 28802 53278 24987 0.00 0.00
GCBsafe(0.10, 0) 63411 30207 5636 2916 64364 30665 66764 32212 60519 28260 0.59 0.00

Se
tti

ng
#

6 GCB 67118 35775 327 260 67130 35795 67536 36111 66726 35424 0.98 0.98
GCBsafe 14448 7707 6006 3065 15019 8075 18581 9800 6781 3926 0.02 0.00
GCBsafe(0.05, 0) 14968 7710 6174 2974 15161 8157 20548 10351 7954 3860 0.02 0.00
GCBsafe(0.10, 0) 34716 15507 16133 7280 37409 16601 55236 25366 9895 5188 0.19 0.00

Se
tti

ng
#

7 GCB 63038 35330 873 401 63088 35367 64226 35793 61754 34823 1.00 0.41
GCBsafe 31662 14806 5651 3090 33009 15570 35004 16922 28296 11338 0.04 0.00
GCBsafe(0.05, 0) 37744 17606 4173 2619 38321 18161 41184 19805 33914 15276 0.03 0.00
GCBsafe(0.10, 0) 42528 20046 7497 3624 43765 20683 47187 22301 38988 18314 0.70 0.00

Se
tti

ng
#

8 GCB 79571 42322 476 375 79581 42317 80073 42743 78969 41913 1.00 0.98
GCBsafe 48046 22478 11779 6000 52094 24180 57321 28024 30655 13338 0.02 0.00
GCBsafe(0.05, 0) 58450 27477 10296 5605 61404 28845 66902 32883 41196 18222 0.02 0.00
GCBsafe(0.10, 0) 68252 33255 3436 2417 68886 33857 70758 35377 65394 30696 0.07 0.00

Se
tti

ng
#

9 GCB 70280 37363 672 347 70275 37352 71123 37811 69379 36942 1.00 0.34
GCBsafe 40116 18895 5522 3047 40673 19357 43850 21161 37310 17222 0.03 0.00
GCBsafe(0.05, 0) 51138 23683 3110 2036 50984 23375 54545 26174 47465 21385 0.03 0.00
GCBsafe(0.10, 0) 63574 29675 3810 3323 64011 30112 66658 32559 60970 27280 0.80 0.00

Se
tti

ng
#

10 GCB 80570 41973 435 344 80568 42019 81127 42388 80023 41496 1.00 0.98
GCBsafe 58965 28785 3097 1465 60033 28917 62353 30535 54590 26931 0.02 0.00
GCBsafe(0.05, 0) 63685 31004 3787 1876 65273 31550 67364 33105 57860 28349 0.02 0.00
GCBsafe(0.10, 0) 68480 33358 4224 2181 70388 33998 72730 35838 61971 30317 0.65 0.00

Table 8.1: Results of Experiment #4.
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• Ut: 90-th percentile of the cumulative revenue at round t;

• Lt: 10-th percentile of the cumulative revenue at round t;

• VROI : the fraction of days in which the ROI constraint is violated;

• VB: the fraction of days in which the budget constraint is violated;

where Wt, Mt, Ut and Lt are computed over 100 runs.
Table 8.1 reports the algorithms performances at dT/2e = 28 and at

the end of the learning process t = T = 57. As already observed in the
previous experiments, GCB violates the ROI constraint at every round, run,
and setting. More surprisingly, GCB violates the budget constraint most of
the time (60% on average) even if that constraint is not active at the optimal
solution. Interestingly, GCBsafe(ψ, 0) never violates the budget constraints
(for every ψ). As expected, the violation of the ROI constraint is close to
zero with GCBsafe, while it increases as ψ increases. In terms of average
cumulative revenue, at T , we observe that GCBsafe gets about 56% of the
revenue provided by GCB, while the ratio related to GCBsafe(0.05, 0) is
about 66% and that related to GCBsafe(0.10, 0) is about 78%. At T/2, we
the ratios are about 52% for GCB, 61% for GCBsafe(0.05, 0), and 73% for
GCBsafe(0.10, 0), showing that those ratios increase as T increases. The
rationale is that in the early stages of the learning process, safe algorithms
learn more slowly than non-safe algorithms. Similar performances can
be observed when focusing on the other indices. Summarily, the above
results show that our algorithms provide advertisers with a wide spectrum
of effective tools to address the revenue/safety tradeoff. A small value of ψ
(and φ) represents a good tradeoff. By the way, the choice of the specific
configuration to adopt in practice depends on the advertiser’s aversion to the
violation of the constraints.
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CHAPTER9
A Unifying Framework for Online

Optimization with Long-Term Constraints

In Section 1.3 we introduced the topic of this chapter. Motivated by the
impressive amount of related works in the online convex optimization litera-
ture, we provide a summary of the existing results in setting similar to ours.
In particular, we underline some of the common assumptions made in the
related literature, which we do not consider, hence studying a more general
framework. A similar discussion is conducted with respect to the baselines
used to measure the performance of the decision maker. In Section 9.2, we
present the first best-of-both-world type algorithm for this general class of
problems, with no-regret guarantees both in the case in which rewards and
constraints are selected according to an unknown, stochastic model, and
in the case in which they are selected at each round by an adversary. In
Sections 9.3, 9.4, 9.5, 9.6, we analyze the performance of our algorithm in
case of stochastic or adversarial constraints and stochastic or adversarial
rewards. Finally, in Section 9.7 we show how our framework can be applied
in the context of budget-management mechanisms for repeated auctions
in order to guarantee long-term constraints that are not packing (e.g., ROI
constraints).
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Constraints

Seminal Related Works. The online convex optimization (OCO) framework
was first proposed in the machine learning literature by Zinkevich (2003),
and since then it has significantly expanded becoming widely influential in
the learning community (see, e.g., Hazan (2006, 2019); Shalev-Shwartz et al.
(2012)). In what follows, we highlight the most relevant works with respect
to ours from the literature related to online convex optimization problems
with constraints. The analysis and the results are quite different depending
on the nature of the constraints, which may be static, i.e., time-invariant, or
stochastic/adversarial, i.e., time-variant.

Related Works - Static Constraints. By developing a projection-based online
gradient descent (OGD) algorithm, Zinkevich (2003) first addressed online
convex optimization problems with static constraints. This method guaran-
tees a regret upper bound of Õ(T 1/2) for an arbitrary sequence of convex
objective functions with bounded subgradients. Hazan et al. (2007) showed
that this is a tight bound up to constant factors. When the set defined by
the static constraints is complex, the conventional projection-based online
algorithms can be difficult to implement due to the potentially high com-
putational cost of carrying out the projection operation. To overcome this
difficulty, Mahdavi et al. (2012) propose an efficient algorithm which is an
adaptation of OGD achieving a cumulative regret of order Õ(T 1/2) and a cu-
mulative constraints violation of Õ(T 3/4). These bounds are generalized by
Jenatton et al. (2016) who propose an algorithm that achieves a cumulative
regret of Õ(Tmax{β,1−β}) and a cumulative violation of Õ(T 1−β/2), where
β ∈ (0, 1) is a user-defined parameter. Other works, such as, e.g, Yuan and
Lamperski (2018); Yu and Neely (2020), propose primal-dual algorithms
and achieve better bounds by making further assumptions. In particular, Yu
and Neely (2020) achieve bounds on the cumulative regret of Õ(T 1/2) and
on the cumulative violation of O(1) by assuming that the Slater’s condition
holds (i.e., the existence of a strictly feasible solution). Then, Yuan and
Lamperski (2018) achieve a cumulative regret of O(log T ) and a constraint
violation of Õ(T 1/2) under the assumption that the objective functions are
strongly convex. In all the the papers cited above, the regret is computed
with respect to the best fixed action in hindsight,that does not violate the
constraints at each round t. This metric is called static regret.

Related Works - Stochastic Constraints. Yu et al. (2017) consider an online con-
vex optimization framework with stochastic constraints, where the objective
functions are chosen by an adversary, and the constraint functions are inde-
pendent and identically distributed (i.i.d.) over time. Yu et al. (2017) provide
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a primal-dual proximal gradient algorithm achieving Õ(T 1/2) cumulative
regret and constraint violation by assuming Slater’s condition. Moreover,
Wei et al. (2020) provide bounds of the same order by assuming a less
stringent version of the Slater’s condition. As a performance metric, the
latter work use static regret, while Yu et al. (2017) employ the same baseline
as ours (see Table 9.1).

Related Works - Adversarial Constraints. Various works in the literature ad-
dress the online learning setting with adversarial reward and constraint
functions. This problem was first studied by Mannor et al. (2009) in a two-
player game setting. The regret is computed with respect to the best strategy
from the set of fixed strategies that satisfy the constraints on average. Man-
nor et al. (2009) show that in general it is impossible to compete against the
best decision in such a set. In particular, they construct a two-player game
where there exists a policy for the adversary such that, among the policies of
the player that violate sublinearly the constraints, there is no policy that can
achieve the no-regret property in terms of maximizing the player’s reward.
Sun et al. (2017) study a similar problem related to contextual bandits and
show that also in their setting the decision maker is unable to compete again
this baseline by adapting the result from Mannor et al. (2009) to their setting.
To circumvent this issue and provide some guarantees, they rely on a weaker
baseline to compute the regret. In particular, they assume that the decision
set is rich enough that, in hindsight, there exist a fixed action that satisfies the
constraints at each round: they are using the static regret as a performance
metric. Then, by employing static regret as a baseline, Sun et al. (2017)
show that the approaches of Mahdavi et al. (2012) and Jenatton et al. (2016)
can be extended to the online learning framework with adversarial sequential
constraints. Therefore, they provide an algorithm which is a generalization
of that from Mahdavi et al. (2012) achieving sublinear cumulative regret and
constraint violations.

Liakopoulos et al. (2019) define a new notion of regret, to overcome the
impossibility result from Mannor et al. (2009). They introduce a refined
regret metric which compares the agent’s incurred losses to those of a K-
benchmark, which is the best strategy in the hindsight such that, for each
time window of length K, the long-term constraints over that window are
satisfied. They provide parametric results that are useful to balance the
trade-off between regret minimization and long-term residual constraint
violation. Moreover, instead of the Slater’s condition they consider a less
stringent assumption related to the definition of their regret metric.

A recent line of works such as Chen et al. (2017); Chen and Giannakis
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(2018) and Cao and Liu (2018) provide some results related to the regret
against dynamic policies. As expected, comparing against a dynamic base-
line require very strong assumptions. Chen et al. (2017) compute a bound on
the cumulative dynamic regret which is sublinear in the time horizon T only
if the drift of the baseline sequence

(
i.e.,

∑T
t=1 ||x∗t+1 − x∗t ||

)
and that of

the constraints
(

i.e.,
∑T

t=1 maxx ||[gt+1(x)− gt(x)]+||
)

are o(T 2/3). Cao
and Liu (2018) consider a bandit feedback setting and, in order to provide
sublinear regret and constraint violations, they assume that all the loss func-
tions have uniformly bounded difference (i.e., for each t and x,x′ ∈ X ,
|ft(x)− ft(x′)| ≤ M for some positive constant M ), and that the drift of
the baseline sequence is sublinear. In other words, the underlying dynamic
optimization problems vary slowly over time. Both Chen et al. (2017) and
Cao and Liu (2018) need to assume the Slater’s condition. Yi et al. (2020)
provide similar results in a distributed online convex optimization setting
with adversarial constraints. They analyze both the case in which the Slater’s
condition holds, and the case without this assumption.

Others relevant related works, are those studying online learning prob-
lems in which the decision maker has to satisfy supply/budget constraints.
In this setting, the decision maker wants to maximize their expected reward
without violating a set of m resource constraints. The process stops at time
horizon T , or when the total consumption of some resource exceeds its
budget. Badanidiyuru et al. (2018) first introduce and solve the Bandits
with Knapsacks (BwK) framework, in which thay consider bandit feedback,
stochastic objective and constraint functions. Other optimal algorithms for
Stochastic BwK were proposed by Agrawal and Devanur (2014, 2019) and
by Immorlica et al. (2019). The Adversarial Bandits with Knapsacks setting
was first studied by Immorlica et al. (2019). The authors shows that an
appropriate baseline is the best fixed distribution over arms. Achieving no-
regret is no longer possible under this baseline and, therefore, they provide
no-α-regret guarantees for their algorithm.

We remark that we are able to handle more general constraints than Im-
morlica et al. (2019), which can deal only with budget constraints. Moreover,
we can compete with a baseline stronger than the static regret used by Sun
et al. (2017), without needing the strong assumptions required, for instance,
by Cao and Liu (2018).
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Algorithm Constr. Non-convex Bound — constant ρ Bound — arbitrary ρ
ft and gt Reward Violation Reward Violation

Yu et al. (2017) STOC 7 OPT− Õ(T 1/2) Õ(T 1/2) — —

Ours STOC 3 OPT− Õ(T 1/2) Õ(T 1/2) OPT− Õ(T 3/4) Õ(T 3/4)

ADV 3 ρ
1+ρ

OPT− Õ
(
T 1/2

)
Õ(T 1/2) — —

Table 9.1: Comparison between the performance of our algorithm and previous work using
the same baseline as ours. Bounds for settings that were not previously tractable are
highlighted in gray. OPT is the reward of the baseline.

9.1 Preliminaries

The decision maker has a non-empty set of available strategies X (this
set may be non-convex, integral, and even non-compact). In each round
t ∈ [T ],1 the decision maker first chooses xt ∈ X , and the environment
selects a reward function ft : X → [0, 1] and a constraint function gt : X →
[−1, 1]m conditioned on the past history of play up to time t − 1 (i.e., the
environment chooses ft and gt without knowledge of xt). Notice that both
ft and gt need not be convex. The latter specifies a set of m constraints
of the form gt(x) ≤ 0, with gt,i(x) ≤ 0 denoting the i-th constraint.2 In
the following, we denote as F , respectively G, the set of all the possible
ft, respectively gt, functions (e.g., F and G may contain all the Lipschitz-
continuous functions defined over X ). At each round t ∈ [T ], the decision
maker can condition their decision on prior feedbacks and on the sequence
of prior decisions x1, . . . ,xt−1, but no information about future rewards and
constraint functions is available.

9.1.1 Strong duality through strategy mixtures

Next, we define the optimization problem (Problem LPf,g) which is used
to define the baselines against which we compare the performances of the
decision maker. Such a problem involves probabilistic mixtures of strategies
in X , which are crucial in order to recover strong duality.3

First, we introduce the set of probability measures on the Borel sets
of X . We refer to such a set as the set of strategy mixtures, denoted as

1In this work, we denote by [x] the set {1, . . . , x} of the first x natural numbers.
2Focusing on the case gt(x) ≤ 0 is w.l.o.g. since any set of constraints can be represented in such a form.
3The optimal fixed strategy mixture provides an arguably stronger baseline than the optimal fixed strategy.

In stochastic settings, this baseline is related to the best dynamic policy. In particular, if we consider the case
in which the observed functions are defined as the average of functions ft and gt across the T rounds, then the
optimal mixture provides the same utility as the best dynamic policy (see Badanidiyuru et al. (2018) for a similar
result).
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Ξ. We endow X with the Lebesgue σ-algebra, and we assume that all
the functions in F and G are measurable with respect to every probability
measure ξ ∈ Ξ. This ensures that the various expectations taken are well-
defined, since the functions are assumed to be bounded above, and they
are therefore integrable. In the following, for the ease of presentation and
with a slight abuse of notation, whenever we write a ξ ∈ Ξ in place of an
x ∈ X , we mean that we are taking the expectation with respect to the
probability measure ξ. For instance, given f ∈ F and g ∈ G, we have that
f(ξ) = Ex∼ξf(x) and g(ξ) = Ex∼ξg(x).

Then, given two functions f ∈ F and g ∈ G, we define the following
optimization problem, which chooses the strategy mixture ξ ∈ Ξ that
maximizes the expected reward encoded by f , while guaranteeing that the
constraints encoded by g are satisfied in expectation.

OPTf,g :=

{
sup
ξ∈Ξ

f(ξ) s.t.

g(ξ) ≤ 0.
(LPf,g)

We denote by dg ∈ [−1, 1] the largest possible value for which there
exists a strategy mixture ξ ∈ Ξ satisfying the constraints g(ξ) ≤ 0 by a
margin of at least dg. Formally,

dg := sup
ξ∈Ξ

min
i∈[m]
−gi(ξ). (9.1)

In order to ensure that OPTf,g is always well defined, we assume that it is
always the case that dg ≥ 0. Notice that, if dg > 0, then Problem LPf,g
satisfies Slater’s condition.

In the following, we prove some auxiliary results relating to Prob-
lem LPf,g that will be useful in the rest of the chapter. First, we introduce a
Lagrangian relaxation of the problem.

Definition 9.1 (Lagrangian Function). Given two arbitrary functions f ∈ F
and g ∈ G, the Lagrangian function Lf,g : Ξ× Rm

≥0 → R of Problem LPf,g
is defined as

Lf,g(ξ,λ) := f(ξ)− 〈λ, g(ξ)〉.

If Problem LPf,g satisfies Slater’s condition, then Theorem 1 of Chap-
ter 8.3 in (Luenberger, 1997) readily gives us that strong duality holds even
if f and g are arbitrary non-convex functions. Formally:

Corollary 9.1. Given f ∈ F and g ∈ G such that dg > 0, it holds

sup
ξ∈Ξ

inf
λ∈Rm≥0

Lf,g(ξ,λ) = inf
λ∈Rm≥0

sup
ξ∈Ξ
Lf,g(ξ,λ) = OPTf,g.
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Next, we show that, if dg > 0, then strong duality holds even when we
restrict the admissible dual vectors λ ∈ Rm

≥0 to the set Ddg , where, for any
q ∈ R>0, we let Dq :=

{
λ ∈ Rm

≥0 : ‖λ‖1 ≤ 1/q
}

.

Theorem 9.1. Given f ∈ F and g ∈ G such that dg > 0, it holds

sup
ξ∈Ξ

inf
λ∈Ddg

Lf,g(ξ,λ) = inf
λ∈Ddg

sup
ξ∈Ξ
Lf,g(ξ,λ) = OPTf,g.

Proof. As a first step, we prove that

inf
λ∈Ddg

sup
ξ∈Ξ
L(ξ,λ) = inf

λ∈Rm+
sup
ξ∈Ξ
L(ξ,λ).

Notice that for each λ ∈ Rm
+ such that ‖λ‖1 > 1/dg, it holds

sup
ξ∈Ξ
L(ξ,λ) ≥ L(ξ◦,λ) ≥ −〈λ∗, g(ξ◦)〉 ≥ dg‖λ∗‖1 > 1,

where, with an abuse of notation, ξ◦ ∈ Ξ denotes a strictly feasible strategy
mixture for Problem LPf,g. That is a strategy mixture ξ ∈ Ξ which is
optimal for the problem defining dg in Equation (9.1), and, thus, it satisfies
all the constraints by at least dg (i.e., it holds gi(ξ◦) ≤ −dg for all i ∈ [m]).4

Thus, it holds that
inf

λ∈Rm+ \Ddg
sup
ξ∈Ξ
L(ξ,λ) > 1.

Moreover, since

inf
λ∈Ddg

sup
ξ∈Ξ
L(ξ,λ) ≤ sup

ξ∈Ξ
L(ξ,0) ≤ 1,

we can conclude that

inf
λ∈Rm+

sup
ξ∈Ξ
L(ξ,λ) = min

{
inf
λ∈Ddg

sup
ξ∈Ξ
L(ξ,λ); inf

λ∈Rm+ \Ddg
sup
ξ∈Ξ
L(ξ,λ)

}
= inf
λ∈Ddg

sup
ξ∈Ξ
L(ξ,λ). (9.2)

Then,

OPTf,g = sup
ξ∈Ξ

inf
λ∈Rm+

L(ξ,λ)

≤ sup
ξ∈Ξ

inf
λ∈Ddg

L(ξ,λ)

4Notice that ξ◦ may not be well defined when the problem in Equation 9.1 does not admit a maximum. In
such cases, we can take a ξ◦ that is arbitrarily “close” to a supremum, so that the result still holds.
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≤ inf
λ∈Ddg

sup
ξ∈Ξ
L(ξ,λ)

= inf
λ∈Rm+

sup
ξ∈Ξ
L(ξ,λ)

= OPTf,g,

where the first inequality holds since in the right-hand side the inf is taken
over the more restrictive set Ddg , the second one by the max–min inequality,
while the second-to-last equality holds by Equation (9.2). This concludes
the proof.

9.1.2 Stochastic vs. adversarial: baselines and feasibility

We consider several settings, differing in how functions ft and gt are selected,
either stochastically or adversarially. We say that functions ft (respectively
gt) are selected stochastically, when they are independently drawn according
to a given probability measure µF over F (respectively µG over G). Instead,
we say that functions ft (respectively gt) are selected adversarially if each
ft (respectively gt) is chosen by an adversary based on the sequence of prior
decisions, namely x1, . . . ,xt−1.

Consistently with previous work (see, e.g., (Mannor et al., 2009)), we
compare the performance of the decision maker (in terms of reward cu-
mulated over the T rounds) against the baseline T OPTf̄,ḡ (as defined by
Problem LPf̄,ḡ), where f̄ and ḡ are suitably-defined functions. In particular:

• When functions ft, respectively gt, are selected stochastically, then
we define function f̄ , respectively ḡ, so that f̄(x) := Ef∼µF [f(x)],
respectively ḡ(x) := Eg∼µG [g(x)].

• When functions ft, respectively gt, are selected adversarially, then
we define function f̄ , respectively ḡ, so that f̄(x) := 1

T

∑T
t=1 ft(x),

respectively ḡ(x) := 1
T

∑T
t=1 gt(x).

Intuitively, in the stochastic case, the baseline is instantiated with an ex-
pectation of functions taken with respect to the probability measure µF
(respectively µG). Instead, in the adversarial case, the baseline uses the
average of functions ft (respectively gt) observed over the T rounds.

Let us remark that, when the setX is compact convex and functions ft and
gt are convex, then Problem LPf̄,ḡ defining our baselines can be equivalently
re-written by using strategies x ∈ X rather than strategy mixtures ξ ∈ Ξ,
since there always exists an optimal solution to Problem LPf̄,ḡ that places
all the probability mass on a single strategy.
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Our goal is to design online algorithms for the decision maker that
output a sequence of decisions x1, . . . ,xT such that both the cumulative
regret with respect to the performance of the baseline, defined as RT :=
T OPTf̄,ḡ −

∑T
t=1 ft(xt), and the cumulative constraints violation, defined

as V T := maxi∈[m]

∑T
t=1 gt,i(xt), grow sublinearly in the number of rounds

T .
In conclusion, we introduce a problem-specific parameter that is strictly

related to the feasibility of Problem LPf̄,ḡ. We call it the feasibility parameter
ρ ∈ R, which is formally defined as follows:

• When functions gt are selected stochastically:
ρ := supξ∈Ξ mini∈[m]−ḡi(ξ).

• When functions gt are selected adversarially:
ρ := supξ∈Ξ mint∈[T ] mini∈[m]−gt,i(ξ).

Intuitively, in the stochastic case, ρ is equal to dḡ, while in the adversarial
case it is computed similarly, but considering the worst case with respect to
the functions gt observed at each round t. Notice that, when ρ > 0, Slater’s
condition is satisfied for Problem LPf̄,ḡ.

In the following, we denote by ξ∗ ∈ Ξ a strategy mixture that is optimal
for Problem LPf̄,ḡ. Moreover, we always assume that functions ft and gt
are such that Problem LPf̄,ḡ is feasible, and we let ξ◦ ∈ Ξ be the feasible
strategy mixture that is optimal for the problem defining ρ.5

9.1.3 Regret minimizers

A regret minimizer (RM) for a set W is an abstract model for a decision
maker that repeatedly interacts with a black-box environment. At each
t, a RM performs two operations: (i) NEXTELEMENT(), which outputs
an element wt ∈ W; and (ii) OBSERVEUTILITY(ut), which updates the
internal state of the RM using the feedback received from the environ-
ment. This is defined in terms of a utility function ut : W → [a, b]
having range [a, b] ⊆ R, with ut possibly depending adversarially on the
sequence of outputs w1, . . . ,wt−1. The objective of the RM is to output
a sequence w1, . . . ,wT of points in W so that its cumulative regret, de-
fined as supw∈W

∑T
t=1(ut(w)− ut(wt)), grows asymptotically sublinearly

in T . See (Cesa-Bianchi and Lugosi, 2006) for a review of the various RMs
available in the literature.

5Notice that ξ∗ and ξ◦ may not be well defined in all the cases in which the problem that defines them does
not admit a maximum. Nevertheless, in such cases, we assume that ξ∗ (or ξ◦) is a strategy mixture arbitrarily
“close” to the supremum, so that all of our results continue to hold up to negligible additive approximations that
are dominated by other approximation factors, and we can safely ignore them for the ease of exposition.
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For the ease of presentation, we introduce the concept of regret minimizer
constructor, which is a procedure, say INIT(W , [a, b], η), that builds a RM
on the basis of the three parameters given as input. In particular, the proce-
dure returns a RM instantiated for the setW , working with utility functions
having range [a, b], and such that its cumulative regret is guaranteed to grow
sublinearly in the time horizon T with probability at least 1− η.

9.2 A unifying meta-algorithm

In this section, we present our meta-algorithm. Its core idea is to instantiate
suitable pairs of RMs, where one is working in the domain X of primal vari-
ables and the other in a suitable subset of the domain Rm

+ of dual variables.
At each round t ∈ [T ], the algorithm makes the RMs “play” against each
other in a Lagrangian game, where the utility functions observed by them
are related to the Lagrangian function Lft,gt(x,λ) of Problem LPft,gt .6

Algorithm 9.1 provides the pseudo-code of the meta-algorithm, which
takes as input: the total number of rounds T , a failure probability δ ∈ (0, 1)
such that the guarantees provided by the algorithm hold with probability at
least 1−δ, and a lower bound ρ̂ ≥ 0 on the value of the feasibility parameter
ρ.

Algorithm description. The algorithm works in two phases. In the first one,
called play phase, the algorithm builds a primal RM, called RP

I , work-
ing in the primal domain X and a dual RM, called RD

I , operating on
the subset Dρ̃ of the dual domain Rm

+ , where ρ̃ is set in Line 1. The
algorithm makes the two RMs playing against each other (see the call
LAGRANGIANGAME(RP

I ,RD
I , 1)) until either the cumulative violation V t

incurred by the algorithm exceeds a given threshold (see Line 4, where
Mρ̃ is defined in Equation (9.3)) or round T is reached. Then, in the sec-
ond phase, called recovery phase, the algorithm constructs a new pair of
primal, dual RMs, with the latter working on the (m − 1)-dimensional
simplex ∆m. The recovery phase uses the remaining rounds to make these
new RMs play against each other, with the primal RM observing mod-
ified utility functions that do not account for functions ft (see the call
LAGRANGIANGAME(RP

II,RD
II, 0)). Intuitively, this is needed in order to

ensure that the algorithm plays strategies xt that satisfy the constraints, thus
balancing out the cumulative constraint violation accumulated in the first
phase. The pseudo-code describing one “play” between two RMs, calledRP

6The idea of having pairs of primal, dual RMs playing a Lagrangian game was originally introduced by Im-
morlica et al. (2019), restricted to the case of knapsack constraints.
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and RD, is defined by the sub-procedure LAGRANGIANGAME(RP,RD, v)
in Algorithm 9.2. The additional parameter v ∈ {0, 1} is used to control
the feedback fed into the primal RM RP; specifically, if v = 1, then RP

observes a utility function that also accounts for ft (play phase), otherwise,
if v = 0, the observed utility function only accounts for the term depending
on gt (recovery phase).

Algorithm 9.1 META-ALGORITHM(T, δ, ρ̂)

1: ρ̃← max
{
ρ̂/2, T−1/4

}
, η ← δ/3, t← 1

. Phase I: Play
2: RP

I ← INITP
(
X ,
[
− 1/ρ̃, 1 + 1/ρ̃

]
, η
)

3: RD
I ← INITD

(
Dρ̃,

[
− 1/ρ̃, 1/ρ̃

]
, 0
)

4: while V t ≤ (T − t)ρ̃+Mρ̃ − 1 ∧ t ≤ T do
5: xt ← LAGRANGIANGAME(RP

I ,RD
I , 1)

6: t← t+ 1
7: end while
8: T1 ← t− 1
. Phase II: Recovery

9: RP
II ← INITP (X , [−1, 1], η)

10: RD
II ← INITD (∆m, [−1, 1], 0)

11: while t ≤ T do
12: xt ← LAGRANGIANGAME(RP

II,RD
II, 0)

13: t← t+ 1
14: end while

Algorithm 9.2 LAGRANGIANGAME(RP,RD, v)

1: xt ← RP.NEXTELEMENT()
2: λt ← RD.NEXTELEMENT()

3:
Play xt and get ft and gt . Full f.
Play xt and get ft(xt) and gt(xt) . Bandit f.
. Primal RM update

4:
Let uPt : x 7→ vft(x)− 〈λt, gt(x)〉 . Full f.
uPt (xt)← vft(xt)− 〈λt, gt(xt)〉 . Bandit f.

5:
RP.OBSERVEUTILITY(uPt ) . Full f.
RP.OBSERVEUTILITY(uPt (xt)) . Bandit f.
. Dual RM update

6: Let uDt : λ 7→ −〈λ, gt(x)〉
7: RD.OBSERVEUTILITY(uDt )

Regret minimizer constructors. Algorithm 9.1 also needs access to two suitably-
defined regret minimizer constructors, denoted by INITP(W , [a, b], η) and
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INITD(W , [a, b], η), where the former is used to build RMs working in the
primal domain and the latter for those operating on the dual one. Their actual
implementation depends on the specific problem at hand. In the following,
we let EPt,η be the regret upper bound (on t ∈ [T ] rounds) for primal RMs
RP dealing with utility functions having range [0, 1], as returned by the call
INITP(X , [0, 1], η). Notice that, when the range is [a, b], the same RM can
be adopted by first normalizing utility values, so that the resulting regret
upper bound is (b − a)EPt,η. As for dual RMs RD, we let EDt be the regret
upper bound (on round t ∈ [T ]) provided by the RM defined for the set
∆m, while EDt /ρ̃ is the upper bound for the dual RM instantiated on the set
Dρ̃. Notice that, since dual RMs always have full feedback, we can safely
assume that the regret bounds EDt hold deterministically. We also assume
that RMs provide bounds that increase with the number of rounds, i.e., such
that EPt,η ≤ EPt′,η and EDt ≤ EDt′ for all t ≤ t′.

How to construct RMs. INITD can be implemented by using online mirror
descent (OMD) with domain ∆m (or D1) and a negative entropy regularizer.
Since the utility function uDt is linear in λ, we get a regret bound for the
primal RM of EDT = O(

√
T log(m)) (see, e.g., Beck and Teboulle (2003);

Nemirovskij and Yudin (1983)). The design of INITP depends on the struc-
ture of X and functions ft and gt. For instance, in convex settings with full
feedback we can employ OMD (Hazan, 2019), while with bandit feedback
we can use (Bubeck et al., 2017). Finally, for non-convex functions we can
employ, e.g., the RMs in (Suggala and Netrapalli, 2020). All these RMs
guarantee Õ(

√
T ) regret.

How to get away with no knowledge of ρ. In Section 9.6, we show that a lower
bound ρ̂ is not necessary when functions gt are selected stochastically.
Indeed, it is sufficient to add a preliminary phase to Algorithm 9.1, which is
used to infer a suitable lower bound on ρ from experience. In order to do
this, only

√
T rounds are needed, so that the bounds of Algorithm 9.1 are not

compromised. When functions gt are chosen adversarially, it is easy to see
that it is impossible to compute a lower bound on the feasibility parameter ρ
by only using the first rounds. For instance, think of a setting in which ρ is
very large when only considering the first rounds, while it becomes small
during later rounds.

Remark 9.1 (Dependence on the lower bound ρ̂). Algorithm 9.1 can take
as input any ρ̂ ≥ 0. However, since our regret bounds include a factor
1/ρ̃, by choosing the trivial lower bound ρ̂ = 0 we incur in a regret of
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Õ(
√
T/ρ̃) = Õ(T 3/4). In order to obtain optimal bounds, we would like to

have ρ̃ = Ω(ρ).

Remark 9.2 (Dependence on the feasibility parameter ρ). We choose to
include the dependence on the feasibility parameter ρ in the order of conver-
gence of the algorithm. As customary, the goal is devising bounds in the form
poly(instance) · h(T ), where the first term is a polynomial function of the
parameters defining the problem instance, and h(T ) = o(T ). Therefore, we
cannot include a factor 1/ρ in the regret bounds if ρ can be arbitrarily small.
Even from a practical standpoint, when ρ is too small a 1/ρ regret bound
is too large to be significant. For those reasons, we set ρ̃ in Algorithm 9.1
to be the maximum between the feasibility parameter lower bound ρ̂ and
T−1/4. The value T−1/4 has been chosen so as to minimize the maximum
between the cumulative regret and the cumulative constraint violation when
the lower bound on the feasibility parameter ρ̂ is too small.

9.3 Analysis with stochastic constraints and adversarial re-
wards

We start by analyzing the performance of our meta-algorithm (Algorithm 9.1)
when the reward and constraint functions are selected stochastically and
adversarially, respectively.

Given t ∈ [T ] and η ∈ (0, 1), we let Et,η :=
√

8t log(18mt2/η) be the
value bounding differences between expectations and empirical means of
constraint functions, obtained by applying the Azuma-Hoeffding inequality,
and holding with probability at least 1− η. Given γ ∈ (0, 1), we also let

Mγ :=
2

γ

√
T +

(
2 +

3

γ

)
Et,η +

(
1 +

2

γ

)
EPt,η +

1

γ
EDt , (9.3)

which is a recurring term related to the maximum violation that Algo-
rithm 9.1 accepts in play phase.

First, we introduce a useful event E that encompasses all the cases in
which Algorithm 9.1 successfully terminates. Then, Lemma 9.1 shows
that such an event holds with probability at least 1 − δ. In particular,
E holds when the regret bounds of RP

I and RP
II hold, and, additionally,

the differences between expectations and empirical means of constraint
functions are bounded as desired.

Definition 9.2. We denote with E the event in which Algorithm 9.1 satisfies
the following conditions (recall that η = δ/3): (i) the regret incurred byRP

I
after T1 rounds is upper bounded by EPT1,η

; (ii) the regret cumulated byRP
II

215



Chapter 9. A Unifying Framework for Online Optimization with Long-Term
Constraints

after the remaining T − T1 rounds is upper bounded by EPT−T1,η
; and (iii)

for every pair of rounds t, t′ ∈ [T ] : t ≤ t′ and resource i ∈ [m] it holds:
•
∣∣∣∑t′

τ=t gτ,i(xτ )−
∑t′

τ=t ḡi(xτ )
∣∣∣ ≤ Et′−t,η,

•
∣∣∣∑t′

τ=t λτgτ,i(xτ)−
∑t′

τ=t λτ ḡi(xτ)
∣∣∣ ≤ Et′−t,η maxτ∈[T ]:t≤τ≤t′ ||λτ ||1,

•
∣∣∣∑t′

τ=t gτ,i(ξ)−
∑t′

τ=t ḡi(ξ)
∣∣∣ ≤ Et′−t,η, for ξ ∈ {ξ∗, ξ◦},

•
∣∣∣∑t′

τ=t λτgτ,i(ξ)−
∑t′

τ=t λτ ḡi(ξ)
∣∣∣ ≤ Et′−t,η maxτ∈[T ]:t≤τ≤t′ ||λτ ||1,

for ξ ∈ {ξ∗, ξ◦}.

Lemma 9.1. After running Algorithm 9.1, the event E holds with probability
at least 1− δ.

Proof. Given a desired failure probability δ ∈ (0, 1), recall that η = δ/3
and set ε = η/18mT 2. Consider the following inequalities in which the dif-
ferences between expectations and empirical means of constraint functions
are bounded:∣∣∣∣∣

t′∑
τ=t

gτ,i(xτ )−
t′∑
τ=t

ḡi(xτ )

∣∣∣∣∣ > 2

√
2(t′ − t) ln

1

ε
, (9.4)∣∣∣∣∣

t′∑
τ=t

gτ,i(ξ
◦)−

t′∑
τ=t

ḡi(ξ
◦)

∣∣∣∣∣ > 2

√
2(t′ − t) ln

1

ε
, (9.5)∣∣∣∣∣

t′∑
τ=t

gτ,i(ξ
∗)−

t′∑
τ=t

ḡi(ξ
∗)

∣∣∣∣∣ > 2

√
2(t′ − t) ln

1

ε
, (9.6)∣∣∣∣∣

t′∑
τ=t

λτgτ,i(xτ )−
t′∑
τ=t

λτ ḡi(xτ )

∣∣∣∣∣ > 2 max
τ∈[T ]:t≤τ≤t′

||λτ ||1

√
2(t′ − t) ln

1

ε
,

(9.7)∣∣∣∣∣
t′∑
τ=t

λτ gτ,i(ξ
∗)−

t′∑
τ=t

λτ ḡi(ξ
∗)

∣∣∣∣∣ > 2 max
τ∈[T ]:t≤τ≤t′

||λτ ||1

√
2(t′ − t) ln

1

ε
,∣∣∣∣∣

t′∑
τ=t

λτ gτ,i(ξ
◦)−

t′∑
τ=t

λτ ḡi(ξ
◦)

∣∣∣∣∣ ≤ 2 max
τ∈[T ]:t≤τ≤t′

||λτ ||1

√
2(t′ − t) ln

1

ε
.

By applying Azuma-Hoeffding inequality to each martingale difference
sequence, we get that each inequality holds with probability at most 2ε. We
denote by Eη the event in which Equations (9.4), (9.5), (9.6), and (9.7) are
satisfied for all t, t′ ∈ [T ] with t < t′, and for all i ∈ [m]. By a union bound
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that takes into account the six events above, the m constraints, and all the
possible time intervals from t to t′, which are at most T 2, we get:

P(Eη) ≥ 1− 6mT 2(2ε) = 1− 12mT 2ε = 1− 2

3
η ≥ 1− η.

Therefore, event Eη holds with probability at least 1− η. Moreover, let us
recall that:

Et′−t,η =

√
8(t′ − t) ln

18mT 2

η
= 2

√
2(t′ − t) ln

1

ε
.

Now, consider event E in which Algorithms 9.1 satisfies the following
conditions: (i) the regret incurred byRP

I after T1 rounds is upper bounded
by EPT1,η

; (ii) the regret cumulated byRP
II after the remaining T − T1 rounds

is upper bounded by EPT−T1,η
; and (iii) event Eη holds. Recall that each one

of the conditions (i), (ii) and (iii) holds with probability at least 1− η; hence,
by a union bound we get:

P(E) ≥ 1− 3η = 1− δ.

This concludes the proof.

Next, we lower bound the cumulative reward obtained by Algorithm 9.1
during the play phase. Intuitively, we show that, if the cumulative constraints
violation is large, then the decisions xt in the first T1 rounds provide a per-
round reward much higher than that achievable by ξ∗. This allows us
to employ the following recovery phase to decrease constraints violation
cumulated in the play phase, while also ensuring that the cumulative regret
stays low at the end of the algorithm. Formally:

Lemma 9.2. If event E holds, then after round T1 of Algorithm 9.1 the
following inequality holds:

∑T1

t=1 ft(xt) ≥
∑T1

t=1 ft(ξ
∗) + (T − T1) −

1
ρ̃
ET1,η −

(
1 + 2

ρ̃

)
EPT1,η

− 1
ρ̃
EDT1

.

Proof. By the no-regret property of the primal regret minimizer, we have
that:

T1∑
t=1

(
ft(xt)− 〈λt, gt(xt)〉

)
≥

≥
T1∑
t=1

(
ft(ξ

∗)− 〈λt, gt(ξ∗)〉
)
−
(

1 +
2

ρ̃

)
EPT1,η

. (9.8)
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Let i? ∈ argmaxi∈[m]

∑T1

t=1 gt,i(xt) be one of the “most violated” constraints.
We prove that:

T1∑
t=1

〈λt, gt(xt)〉 ≥ (T − T1)− 1

ρ̃
EDT1

. (9.9)

To do that, we consider the following two cases.

Case T1 = T . We get:

T1∑
t=1

〈λt, gt(xt)〉 ≥
T1∑
t=1

〈0, gt(xt)〉 −
1

ρ̃
EDT1

= (T − T1)− 1

ρ̃
EDT1

.

Case T1 < T . By the condition in Line 4 of Algorithm 9.1, we have that∑T1

t=1 gt,i?(xt) ≥ (T − T1)ρ̃. Thus, we have that:

T1∑
t=1

〈λt, gt(xt)〉 ≥
T1∑
t=1

1

ρ̃
gt,i?(xt)−

1

ρ̃
EDT1
≥ (T − T1)− 1

ρ̃
EDT1

,

where the first inequality follows from the no-regret property of the dual
regret minimizer and the second one from the fact that

∑T1

t=1 gt,i?(xt) ≥
(T − T1)ρ̃ when T1 < T .

Now, by using Equation (9.9), we can provide a lower bound on the
cumulative reward obtained by Algorithm 9.1 during the play phase. We
have that:

T1∑
t=1

ft(xt) ≥
T1∑
t=1

(
ft(ξ

∗)− 〈λt, gt(ξ∗)〉+ 〈λt, gt(xt)〉
)
−
(

1 +
2

ρ̃

)
EPT1,η

,

≥
T1∑
t=1

(
ft(ξ

∗)− 〈λt, gt(ξ∗)〉
)

+ (T − T1)−
(

1 +
2

ρ̃

)
EPT1,η

− 1

ρ̃
EDT1
≥

≥
T1∑
t=1

(
ft(ξ

∗)− 〈λt, ḡ(ξ∗)〉
)

+ (T − T1)−
(

1 +
2

ρ̃

)
EPT1,η
−

− 1

ρ̃
EDT1
− 1

ρ̃
ET1,η ≥

≥
T1∑
t=1

ft(ξ
∗) + (T − T1)−

(
1 +

2

ρ̃

)
EPT1,η

− 1

ρ̃
EDT1
− 1

ρ̃
ET1,η,
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where the first inequality holds by Equation (9.8), the second one by Equa-
tion (9.9), the third one follows from the fact that the event E holds, while
the last one from the fact that ḡ(ξ∗) ≤ 0 by definition.

In the recovery phase, the only goal of Algorithm 9.1 is to decrease con-
straints violation. In the following Lemma 9.3, we show that, at each round
of the recovery phase, the algorithm is “close” to satisfying (in expectation)
all the constraints by at least ρ. Formally:

Lemma 9.3. If event E holds, then after Algorithm 9.1 halts, the following
holds for every i ∈ [m]:

∑T
t=T1+1 gt,i(xt) ≤ −(T − T1)ρ + 2EPT−T1,η

+
EDT−T1

+ ET−T1,η.

Proof. Let i? ∈ argmaxi∈[m]

∑T
t=T1+1 gt,i(xt) be one of the “most violated”

constraints. Then,

(T − T1)ρ ≤ −
T∑

t=T1+1

〈λt, ḡ(ξ◦)〉

≤ −
T∑

t=T1+1

〈λtgt(ξ◦)〉+ ET−T1,η

≤ −
T∑

t=T1+1

〈λtgt(xt)〉+ 2EPT−T1,η
+ ET−T1,η

≤ −
T∑

t=T1+1

gt,i?(xt) + EDT−T1
+ 2EPT−T1,η

+ ET−T1,η,

where the first inequality comes from the definition of ρ, the second one
from the fact that event E holds, the third one from the no-regret property of
the primal regret minimizer, and the last one from the no-regret property of
the dual regret minimizer. Hence,

T∑
t=T1+1

gt,i?(xt) ≤ −(T − T1)ρ− EDT−T1
+ 2EPT−T1,η

+ ET−T1,η. (9.10)

It follows from the definition of i? that, if Equation (9.10) holds for i?, then,
it holds for every i ∈ [m]. This concludes the proof.

Now, we are ready to present the two main results of this section. First,
we provide a bound on the cumulative regret and constraints violation when
the lower bound ρ̂ is sufficiently large.
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Condition 9.1. It holds that ρ̂ ≥ 2T−1/4.

Notice that, under Condition 9.1, ρ̃ = ρ̂/2. This gives us the following
result:

Theorem 9.2. Suppose that functions ft and gt are selected adversarially
and stochastically, respectively. If Condition 9.1 is satisfied, then, with prob-
ability at least 1− δ, Algorithm 9.1 provides RT ≤ 1

ρ̃
ET,η +

(
1 + 2

ρ̃

)
EPT,η +

1
ρ̃
EDT and V T ≤Mρ̃ + 2EPT,η + EDT + ET,η.

Proof. By Lemma 9.1, event E holds with probability at least 1− δ. In the
rest of the proof, we assume the event E holds, providing a bound that holds
with probability at least 1− δ.

We first provide an upper bound on the cumulative regret. By Lemma
9.2, we have:
T1∑
t=1

ft(xt) ≥
T1∑
t=1

ft(ξ
∗) + (T − T1)− 1

ρ̃
ET1,η −

(
1 +

2

ρ̃

)
EPT1,η

− 1

ρ̃
EDT1

.

(9.11)

Hence, it holds:
T∑
t=1

ft(xt) ≥
T1∑
t=1

ft(xt)

≥
T1∑
t=1

ft(ξ
∗) + (T − T1)− 1

ρ̃
ET1,η −

(
1 +

2

ρ̃

)
EPT1,η

− 1

ρ̃
EDT1

≥
T∑
t=1

ft(ξ
∗)− 1

ρ̃
ET1,η −

(
1 +

2

ρ̃

)
EPT1,η

− 1

ρ̃
EDT1

≥
T∑
t=1

ft(ξ
∗)− 1

ρ̃
ET,η −

(
1 +

2

ρ̃

)
EPT,η −

1

ρ̃
EDT ,

where the second inequality holds by Equation (9.11) and the third one by∑T
t=T1+1 ft(ξ

∗) ≤ T − T1, which follows from the fact that the range of ft
is [0, 1].

By recalling that ξ∗ ∈ Ξ is defined as an optimal solution to Prob-
lem LPf̄,ḡ and RT = T OPTf̄,ḡ −

∑T
t=1 ft(xt), the following bound on the

cumulative regret holds:

RT =
T∑
t=1

ft(ξ
∗)−

T∑
t=1

ft(xt) ≤
1

ρ̃
ET,η +

(
1 +

2

ρ̃

)
EPT,η +

1

ρ̃
EDT .
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Next, we provide an upper bound on the cumulative constraints violation.
By Lemma 9.3, for every i ∈ [m], we have that:

T∑
t=T1+1

gt,i(xt) ≤ −(T − T1)ρ+ 2EPT−T1,η
+ EDT−T1

+ ET−T1,η. (9.12)

Hence, for every i ∈ [m], it holds

T∑
t=1

gt,i(xt) =

T1∑
t=1

gt,i(xt) +
T∑

t=T1+1

gt,i(xt) ≤

≤ (T − T1)ρ̃+Mρ̃ − (T − T1)ρ+ 2EPT−T1,η
+ EDT−T1

+ ET−T1,η ≤
≤Mρ̃ + 2EPT−T1,η

+ EDT−T1
+ ET−T1,η ≤

≤Mρ̃ + 2EPT,η + EDT + ET,η.

The first inequality follows from Equation (9.12) and by the condition in
Line 4 of Algorithm 9.1, which ensures

∑T1

t=1 gt,i(xt) ≤ (T − T1)ρ̃ + Mρ̃

for every i ∈ [m]. Moreover, the second inequality follows from ρ̃ ≤ ρ,
since Condition 9.1 holds. Let i? ∈ argmaxi∈[m]

∑T
t=1 gt,i(xt) be one of the

most violated constraints. By recalling that V T = maxi∈[m]

∑T
t=1 gt,i(xt),

the following bound on the cumulative constraints violation holds:

V T =
T∑
t=1

gt,i?(xt) ≤Mρ̃ + 2EPT,η + EDT + ET,η.

This concludes the proof.

Finally, we also prove that even if Condition 9.1 is not satisfied, i.e., the
lower bound ρ̂ is not sufficiently large, the following holds:

Theorem 9.3. Suppose that functions ft and gt are selected adversari-
ally and stochastically, respectively. Algorithm 9.1 guarantees that the
following bounds hold with probability at least 1 − δ: RT ≤ T 1/4ET,η +(
1 + 2T 1/4

)
EPT,η + T 1/4EDT and VT ≤ T 3/4 +MT−1/4 + 2EPT,η + EDT + ET,η.

Proof. If ρ̂ ≥ 2T−1/4, the claim follows by Theorem 9.2. Thus, we prove
the statement for the case ρ̃ = T−1/4. First, we provide an upper bound on
the cumulative regret. By Lemma 9.1, we have that event the E holds with
probability at least 1− δ. In the rest of the proof, we assume that the event
E holds, and provide a bound that holds with probability at least 1− δ. We
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have:

T∑
t=1

ft(xt) ≥
T1∑
t=1

ft(xt)

≥
T1∑
t=1

ft(ξ
∗) + (T − T1)− 1

ρ̃
ET1,η −

(
1 +

2

ρ̃

)
EPT1,η

− 1

ρ̃
EDT1

≥
T∑
t=1

ft(ξ
∗)− 1

ρ̃
ET1,η −

(
1 +

2

ρ̃

)
EPT1,η

− 1

ρ̃
EDT1

≥
T∑
t=1

ft(ξ
∗)− 1

ρ̃
ET,η −

(
1 +

2

ρ̃

)
EPT,η −

1

ρ̃
EDT

≥
T∑
t=1

ft(ξ
∗)− T 1/4ET,η −

(
1 + 2T 1/4

)
EPT,η − T 1/4EDT .

These steps are similar to those used to prove the regret bound in Theo-
rem 9.2 (see the proof of Theorem 9.2 for further details). By recalling
that ξ∗ is an optimal solution to Problem LPf̄,ḡ and RT = T OPTf̄,ḡ −∑T

t=1 ft(xt), the following bound on the cumulative regret holds:

RT =
T∑
t=1

ft(ξ
∗)−

T∑
t=1

ft(xt) ≤ T 1/4ET,η +
(
1 + 2T 1/4

)
EPT,η + T 1/4EDT .

Next, we provide an upper bound on the cumulative constraints violation.
For every i ∈ [m], the following holds

T∑
t=T1+1

gt,i(xt) ≤ −(T − T1)ρ+ 2EPT−T1,η
+ EDT−T1

+ ET−T1,η

≤ 2EPT−T1,η
+ EDT−T1

+ ET−T1,η, (9.13)

where the first inequality follows from Lemma 9.3, while the second one
from ρ ≥ 0. Hence, for every i ∈ [m], it holds

T∑
t=1

gt,i(xt) =

T1∑
t=1

gt,i(xt) +
T∑

t=T1+1

gt,i(xt)

≤ (T − T1)ρ̃+Mρ̃ + 2EPT−T1,η
+ EDT−T1

+ ET−T1,η

≤ (T − T1)T−1/4 +MT−1/4 + 2EPT−T1,η
+ EDT−T1

+ ET−T1,η
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≤ T 3/4 +MT−1/4 + 2EPT−T1,η
+ EDT−T1

+ ET−T1,η

≤ T 3/4 +MT−1/4 + 2EPT,η + EDT + ET,η.

The first inequality follows from Equation (9.13) and from the condition in
Line 4 of Algorithm 9.1, which ensures that

∑T1

t=1 gt,i(xt) ≤ (T−T1)ρ̃+Mρ̃

for every i ∈ [m]. Moreover, the second inequality follows from ρ̃ = T−1/4.
Thus, by letting i? ∈ argmaxi∈[m]

∑T
t=1 gt,i(xt), and by recalling that V T =

maxi∈[m]

∑T
t=1 gt,i(xt), the following bound on the cumulative constraints

violation holds:

V T =
T∑
t=1

gt,i?(xt) ≤ T 3/4 +MT−1/4 + 2EPT,η + EDT + ET,η.

This concludes the proof.

Remark 9.3. Notice that, by using primal and dual RMs whose regret
bounds are of the order of Õ(

√
T ), Theorem 9.2 allows us to recover

Õ(
√
T/ρ̂) regret and Õ(

√
T/ρ̂) constraints violation for the case in which

Condition 9.1 holds. Theorem 9.3 still provides Õ(T 3/4) regret and con-
straints violation when the condition is not met, which is necessary the case
when ρ = 0.

9.4 Analysis with stochastic constraints and stochastic re-
wards

In this section, we focus on the case in which both reward and constraint
functions are selected stochastically. In this setting, we are able to show that
Algorithm 9.1 never enters the recovery phase. As we argue in Section 9.7,
this is an important property for budget-management applications, since it is
related to the round in which the budget is fully depleted.

In order to prove our result, we extend the event E to capture also the
Azuma-Hoeffding bounds for the reward functions, which are stochastic in
this setting.7 The core idea that we exploit to prove our result is that we can
think of the two RMs as if they are playing a stochastic repeated zero-sum
game, which is the repeated Lagrangian game whose functions are sampled
according to the probability measures µF and µG . By Theorem 9.1, strong
duality holds, and the game has an equilibrium. Hence, it is possible to
show that the per-round utility of the primal RM is close to the value of the
game, which is OPTf̄,ḡ. At the same time, it is possible to show that, if the

7Accounting for the martingale difference sequences ft(xt)− f̄(xt) and ft(ξ∗)− f̄(ξ∗).
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cumulative constraints violation becomes large during the play phase (and,
thus, T1 < T ), then the per-round utility of the primal RM is below OPTf̄,ḡ,
reaching a contradiction that proves the following Theorem 9.4.

First, we provide a preliminary result on the value of the Lagrangian game
when primal and dual players are constrained to specific sets of strategies.

Lemma 9.4. Let f ∈ F and g ∈ G be such that dg > 0. Moreover, given
any ε > 0, let Ξε,g :=

{
ξ ∈ Ξ : maxi∈[m] gi(ξ) ≥ ε

}
. The following holds:

sup
ξ∈Ξε

inf
λ∈Ddg/2

Lf,g(ξ,λ) ≤ OPTf,g −
ε

dg
.

Proof. Let ξ ∈ Ξε,g and i? ∈ argmaxi∈[m] gi(ξ). Then,

inf
λ∈Ddg/2

{
f(ξ)− 〈λ, g(ξ)〉

}
= f(ξ)− 2

dg
gi?(ξ)

= inf
λ∈Ddg

{
f(ξ)− 〈λ, g(ξ)〉

}
− 1

dg
gi?(ξ)

≤ sup
ξ∈Ξ

inf
λ∈Ddg

Lf,g(ξ,λ)− 1

dg
gi?(ξ)

≤ OPTf,g −
1

dg
gi?(ξ)

≤ OPTf,g −
ε

dg
,

where the second inequality follows from Theorem 9.1, while the last one
holds by the definition of Ξε,g and i?.

Next, we introduce a new event that extends E by considering also the
(stochastic) sequence of reward functions ft. Formally, the event is defined
as follows.

Definition 9.3. We denote with Ē the event in which Algorithm 9.1 satisfies
the following conditions (recall that η = δ/3): (i) event E holds; (ii) for
every pair of rounds t, t′ ∈ [T ] : t ≤ t′ it holds:

• |
∑t′

τ=t fτ (xτ )−
∑t′

τ=t f̄(xτ )| ≤ Et′−t,η,

• |
∑t′

τ=t fτ (ξ
∗)−

∑t′

τ=t f̄(ξ∗)| ≤ Et′−t,η.

Lemma 9.5. After running Algorithm 9.1, the event Ē holds with probability
at least 1− δ.
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Proof. Given a desired failure probability δ ∈ (0, 1), recall that η = δ/3
and set ε = η/12mT 2. Consider the following inequalities in which the
differences between expectations and empirical means of reward functions
are bounded: ∣∣∣∣∣

t′∑
τ=t

fτ (xτ )−
t′∑
τ=t

f̄(xτ )

∣∣∣∣∣ > 2

√
2(t′ − t) ln

1

ε
, (9.14)∣∣∣∣∣

t′∑
τ=t

fτ (ξ
∗)−

t′∑
τ=t

f̄(ξ∗)

∣∣∣∣∣ > 2

√
2(t′ − t) ln

1

ε
. (9.15)

By applying the Azuma-Hoeffding inequality to each martingale difference
sequence, we get that each inequality holds with probability at most 2ε. We
denote by Ēη the event in which Equations (9.14) and (9.15) hold for every
t ≤ t′ ∈ [T ] : t < t′ and event Eη holds (see the proof of Lemma 9.1 for the
definition of event Eη). By a union bound, we have that:

P
(
Ēη

)
≥ 1− 2ε(4mT 2 + 2T 2) ≥ 1− η.

Therefore, event Ēη holds with probability at least 1− η. Moreover, let us
recall that:

Et′−t,η =

√
8(t′ − t) ln

12mT 2

η
= 2

√
2(t′ − t) ln

1

ε
.

Now, consider the event Ē in which Algorithm 9.1 satisfies the following
conditions: (i) the regret incurred byRP

I after T1 rounds is upper bounded
by EPT1,η

; (ii) the regret cumulated byRP
II after the remaining T − T1 rounds

is upper bounded by EPT−T1,η
; and (iii) event Ēη holds. Recall that each one

of the conditions (i), (ii) and (iii) holds with probability at least 1− η; hence,
by a union bound we get:

P
(
Ē
)
≥ 1− 3η = 1− δ.

This concludes the proof.

As a first step, we prove that the primal regret minimizer gets a per-round
utility that is close to the value OPTf̄,ḡ. Formally:

Lemma 9.6. If the event Ē holds, then, for every round τ ∈ [T1] the
following inequality holds:

τ∑
t=1

Lft,gt(xt,λt) ≥ τ OPTLPf̄,ḡ −
(

1 +
2

ρ̃

)
EPτ,η −

(
1 +

1

ρ̃

)
Eτ,η.
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Proof. Let ξ? be an optimal solution to Problem LPf̄,ḡ, and let λ̄ = 1
τ

∑τ
t=1 λt.

Then, it holds
τ∑
t=1

Lft,gt(xt,λt) ≥
τ∑
t=1

Lft,gt(ξ∗,λt)−
(

1 +
2

ρ̃

)
EPτ,η

≥
τ∑
t=1

Lf̄,ḡ(ξ∗,λt)−
(

1 +
2

ρ̃

)
EPτ,η −

(
1 +

1

ρ̃

)
Eτ,η

=
τ∑
t=1

Lf̄,ḡ(ξ∗, λ̄)−
(

1 +
2

ρ̃

)
EPτ,η −

(
1 +

1

ρ̃

)
Eτ,η

≥ τ inf
λ∈Dρ̃

Lf̄,ḡ(ξ∗,λ)−
(

1 +
2

ρ̃

)
EPτ,η −

(
1 +

1

ρ̃

)
Eτ,η

= τ sup
ξ∈Ξ

inf
λ∈Dρ̃

Lf̄,ḡ(ξ,λ)−
(

1 +
2

ρ̃

)
EPτ,η −

(
1 +

1

ρ̃

)
Eτ,η

= τOPTLPf̄,ḡ −
(

1 +
2

ρ̃

)
EPτ,η −

(
1 +

1

ρ̃

)
Eτ,η,

where the first inequality follows from the no-regret property of the primal
regret minimizer, the second one from the definition of the event Ē, and the
third one from the definition of ξ∗. Moreover, the first equality follows from
the fact that ḡ is independent from t. This concludes the proof.

Now, we show that the dual regret minimizer gets a per-round utility that
is close to the value OPTf̄,ḡ. Moreover, the attained utility increases by an
additive factor proportional to the primal violation. This can be proved only
in the setting with stochastic reward functions. Indeed, in this setting the
primal and dual regret minimizers are playing a stochastic repeated zero-sum
game that converges to an equilibrium. Notice that this is not true when the
reward functions are adversarial.

Lemma 9.7. If event Ē holds and Condition 9.1 is satisfied, then for each
τ ∈ [T1] and each i ∈ [m]

τ∑
t=1

Lft,gt(ξt,λt) ≤ τOPTLPf̄,ḡ +
1

ρ̃
EDτ +

(
1 +

2

ρ̃

)
Eτ,η −

τ∑
t=1

gt,i(xt).

Proof. In the following, let λ∗ ∈ arg minλ∈Dρ̃
∑τ

t=1 Lf̄,ḡ(ξt,λ), let ε :=
maxi∈[m]

∑τ
t=1 gt,i(xt)−Eτ,η
τ

, and ξ̄ := 1
τ

∑τ
t=1 ξt, where ξt ∈ Ξ denotes the

strategy mixture that plays deterministically xt. Moreover, let us define the
set Ξε,ḡ := {ξ ∈ Ξ : maxi∈[m] ḡi(ξ) ≥ ε}.
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As a first step, we prove that ξ̄ ∈ Ξε,ḡ. In particular, since the event Ē
holds, we have that

max
i∈[m]

ḡi(ξ̄) ≥
∑τ

t=1 maxi∈[m] gi(ξ̄)− Eτ,η

τ
= ε

For every τ ∈ [T1], we have:

τ∑
t=1

Lft,gt(xt,λt) ≤
τ∑
t=1

Lft,gt(xt,λ∗) +
1

ρ̃
EDτ (9.16a)

≤
τ∑
t=1

Lf̄,ḡ(xt,λ∗) +
1

ρ̃
EDτ +

(
1 +

1

ρ̃

)
Eτ,η (9.16b)

≤ inf
λ∈Dρ̃

τ∑
t=1

Lf̄,ḡ(xt,λ) +
1

ρ̃
EDτ +

(
1 +

1

ρ̃

)
Eτ,η (9.16c)

= τ inf
λ∈Dρ̃

Lf̄,ḡ(ξ̄,λ) +
1

ρ̃
EDτ +

(
1 +

1

ρ̃

)
Eτ,η (9.16d)

= τ inf
λ∈Dρ/2

Lf̄,ḡ(ξ̄,λ) +
1

ρ̃
EDτ +

(
1 +

1

ρ̃

)
Eτ,η (9.16e)

≤ τ sup
ξ∈Ξε,ḡ

inf
λ∈Dρ/2

Lf̄,ḡ(ξ,λ) +
1

ρ̃
EDτ +

(
1 +

1

ρ̃

)
Eτ,η (9.16f)

≤ τ sup
ξ∈Ξ

inf
λ∈Dρ

(
Lf̄,ḡ(ξ,λ)− ε

ρ

)
+

1

ρ̃
EDτ +

(
1 +

1

ρ̃

)
Eτ,η

(9.16g)

= τ

(
OPTf̄,ḡ −

ε

ρ

)
+

1

ρ̃
EDτ +

(
1 +

1

ρ̃

)
Eτ,η (9.16h)

= τOPTf̄,ḡ − τ
maxi′∈[m]

∑τ
t=1 gt,i′(xt)− Eτ,η

τρ
+

+
1

ρ̃
EDτ +

(
1 +

1

ρ̃

)
Eτ,η (9.16i)

≤ τOPTf̄,ḡ +
1

ρ̃
EDτ +

(
1 +

2

ρ̃

)
Eτ,η − max

i′∈[m]

∑τ
t=1 gt,i′(2xt)

ρ
(9.16j)

≤ τOPTf̄,ḡ +
1

ρ̃
EDτ +

(
1 +

2

ρ̃

)
Eτ,η − max

i′∈[m]

τ∑
t=1

gt,i′(xt)

(9.16k)
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≤ τOPTf̄,ḡ +
1

ρ̃
EDτ +

(
1 +

2

ρ̃

)
Eτ,η −

τ∑
t=1

gt,i(xt)∀i ∈ [m],

(9.16l)

where Equation (9.16a) is given by the no-regret property of the dual regret
minimizer, and Equation (9.16b) by the definition of the event Ē, which
holds by assumption. Moreover, Equation (9.16d) follows from the fact that
f̄ and ḡ are independent from t, Equation (9.16e) follows from ρ̃ = ρ̂/2 ≤
ρ/2, and Equation (9.16f) from ξ̄ ∈ Ξε,ḡ. Finally, Equation (9.16g) follows
from Lemma 9.4, Equation (9.16i) by definition of ε, and Equation (9.16j)
by ρ̃ ≤ ρ.

Now, we are ready to prove the main result of this section.

Theorem 9.4. Suppose that functions ft and gt are selected stochastically.
With probability at least 1−δ, Algorithm 9.1 never enters the recovery phase,
namely T1 = T .

Proof. We prove the statement of the theorem by considering two cases.

Case “Condition 9.1 holds”. By Lemma 9.1, event E holds with probability
at least 1 − δ. In the rest of the proof, we assume that the event E holds,
and we provide a bound that holds with probability at least 1− δ. For every
τ ∈ [T1], we have:

τ∑
t=1

gt(xt) ≤ τOPTf̄,ḡ −
τ∑
t=1

Lft,gt(xt,λt) +
1

ρ̃
EDτ +

(
1 +

2

ρ̃

)
Eτ,η

≤
(

1 +
2

ρ̃

)
EPτ,η +

(
1 +

1

ρ̃

)
Eτ,η +

1

ρ̃
EDτ +

(
1 +

2

ρ̃

)
Eτ,η

=

(
2 +

3

ρ̃

)
Eτ,η +

(
1 +

2

ρ̃

)
EPτ,η +

1

ρ̃
EDτ

≤ 2

ρ̃

√
T − 1 +

(
2 +

3

ρ̃

)
Eτ,η +

(
1 +

2

ρ̃

)
EPτ,η +

1

ρ̃
EDτ

= Mρ̃ − 1,

where the first inequality follows from Lemma 9.6, the second one from
Lemma 9.7, the third one from the fact that 2

ρ̃

√
T − 1 ≥ 0, being ρ̃ ≤ 1, and

the last equation follows from the definition of Mρ̃. This implies that the
algorithm never enters the recovery phase when Condition 9.1 holds.
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Case “Condition 9.1 does not hold”. By Lemma 9.1, event E holds with prob-
ability at least 1 − δ. In the rest of the proof, we assume that the event E
holds, and we provide a bound that holds with probability at least 1 − δ.
Suppose by contradiction that T1 < T . This implies that a constraint i ∈ [m]

is violated by at least MT−1/4 − 1. Let i? ∈ argmaxi∈[m]

∑T1

t=1 gt,i(xt) be
one of the most violated constraints during the play phase. Then, we have:

T1∑
t=1

Lft,gt(xt,λt) =

T1∑
t=1

(
f(xt)− 〈λt, gt(xt)〉

)
≤ T1 −

T1∑
t=1

〈λt, gt(xt)〉

≤ T1 −
T1∑
t=1

1

T−1/4
gt,i?(xt) + T 1/4EDT1

≤ T1 − T 1/4(MT−1/4 − 1) + T 1/4EDτ1

< −
(

1 +
2

T−1/4

)
EPτ,η −

1

T−1/4
Eτ,η,

where the second inequality follows from the no-regret property of the
dual regret minimizer and the fact that, when Condition 9.1 does not hold,
ρ̃ = T−1/4. The last inequality follows from the definition of MT−1/4 . Then,
the result above allows us to reach the desired contradiction when compared
with the following one. In particular, for every τ ∈ [T1], we have:

τ∑
t=1

Lft,gt(xt,λt) ≥
τ∑
t=1

Lft,gt(ξ◦,λt)−
(

1 +
2

T−1/4

)
EPτ,η

≥
τ∑
t=1

Lft,ḡ(ξ◦,λt)−
1

T−1/4
Eτ,η −

(
1 +

2

T−1/4

)
EPτ,η

≥ − 1

T−1/4
Eτ,η −

(
1 +

2

T−1/4

)
EPτ,η,

where the first inequality follows from the no-regret property of the primal
regret minimizer, the second one follows from the fact that event E holds,
and the third one from the feasibility of ξ◦.

Notice that regret bounds analogous to the one in Theorems 9.2 and 9.3
also hold in the case in which both reward and constraint functions are
selected stochastically.
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9.5 Analysis with adversarial constraints

In this section, we study settings in which the constraint functions gt are
selected adversarially. As shown by Mannor et al. (2009), it is impossible to
obtain sublinear cumulative regret and constraints violation when using our
baseline, i.e., the best fixed strategy mixture ξ∗ satisfying (in expectation)
the long-tern constraints. However, we show that it is possible to achieve
a ρ/(1 + ρ) fraction of the cumulative reward obtained by always playing
ξ∗, while guaranteeing sublinear constraints violation. The dependence
of the approximation factor on the feasibility parameter ρ is similar to the
dependence on the per-round budget in problems with budget constraints
(see the related works in Chapter 9 for more details). Moreover, as we
discuss later in Section 9.7, when restricted to the case of budget constraints
and adversarial reward/cost functions, our approximation factor matches the
state-of-the-art bounds provided by Castiglioni et al. (2022a).

As a first step to prove our result, we provide a lower bound on the
cumulative reward of the primal RM during the play phase. In particular, we
show that it achieves at least a ρ/(1 + ρ) fraction of the value obtained by
the optimal solution in the first T1 rounds.

Lemma 9.8. If Condition 9.1 is satisfied, then, with probability at least
1− η, at round T1 of Algorithm 9.1 it holds that:

T1∑
t=1

ft(xt) ≥
ρ

1 + ρ

T1∑
t=1

ft(ξ
∗) + (T − T1)−

(
1 +

2

ρ̃

)
EPT1,η

− 1

ρ̃
EDτ1 .

Proof. Let ξ̄ ∈ Ξ be a strategy mixture obtained by playing with probability
1/(1 + ρ) the mixture ξ◦ and with the remaining probability ρ/(1 + ρ) an
optimal mixture ξ∗. Notice that the probabilities are well defined, since
ρ ≥ 0. Then, for every t ∈ [T ] and i ∈ [m], it holds:

1

1 + ρ
gt,i(ξ

◦) +
ρ

1 + ρ
gt,i(ξ

∗) ≤ − ρ

1 + ρ
+

ρ

1 + ρ
= 0

where the inequality follows from the fact that gt,i(ξ◦) ≤ −ρ and gt,i(ξ∗) ≤
1. Therefore, for every t ∈ [T ] and i ∈ [m], it holds that gt(ξ̄) ≤ 0. Assume
that the regret bounds of the regret minimizers hold. Notice that this happens
with probability at least 1− η. Then, by the no-regret property of the primal
regret minimizer, we have that

T1∑
t=1

Lft,gt(xt,λt) ≥
T1∑
t=1

Lft,gt(ξ̄,λt)−
(

1 +
2

ρ̃

)
EPT1,η

. (9.17)
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Let i? ∈ argmaxi∈[m]

∑T1

t=1 gt,i(xt) be one of the most violated con-
straints during the play phase. Next, we prove that

T1∑
t=1

〈λt, gt(xt)〉 ≥ (T − T1)− 1

ρ̃
EDT1

.

We consider two cases. If T1 = T , then

T1∑
t=1

〈λt, gt(xt)〉 ≥
T1∑
t=1

〈0, gt(ξ̄)〉 − 1

ρ̃
EDT1

= −1

ρ̃
EDτ2 = (T − T1)− 1

ρ̃
EDT1

.

Otherwise, we have that
∑T1

t=1 gt,i?(xt) ≥ ρ̃(T − T1) and

T1∑
t=1

〈λt, gt(xt)〉 ≥

(
T1∑
t=1

1

ρ̃
gt,i?(xt)

)
− 1

ρ̃
EDT1
≥ (T − T1)− 1

ρ̃
EDT1

.

(9.18)

Thus,

T1∑
t=1

ft(xt) ≥
T1∑
t=1

(
ft(ξ̄)− 〈λt, gt(ξ̄)〉+ 〈λt, gt(xt)〉

)
−
(

1 +
2

ρ̃

)
EPT1,η

≥
T1∑
t=1

(
ft(ξ̄)− 〈λt, gt(ξ̄)〉

)
+ (T − T1)−

(
1 +

2

ρ̃

)
EPT1,η

− 1

ρ̃
EDτ2

≥
T1∑
t=1

ft(ξ̄) + (T − T1)−
(

1 +
2

ρ̃

)
EPT1,η

− 1

ρ̃
EDτ2

≥
T1∑
t=1

(
1

1 + ρ
ft(ξ

◦) +
ρ

1 + ρ
ft(ξ

∗)

)
+ (T − T1)−

(
1 +

2

ρ̃

)
EPT1,η
−

− 1

ρ̃
EDτ2

≥ ρ

1 + ρ

T1∑
t=1

ft(ξ
∗) + (T − T1)−

(
1 +

2

ρ̃

)
EPT1,η

− 1

ρ̃
EDT1

,

where the first inequality follows from Equation (9.17), the second one from
Equation 9.18, the third one from the fact that for each t ∈ [T ] it holds
gt(ξ̄) ≤ 0, while the fourth inequality follows from the definition of ξ̄. This
concludes the proof.
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Notice that, for a small T1, we have a large lower bound on the cumulative
reward. Intuitively, this means that when the play phase is short, the primal
regret minimizer accumulated so much regret in the play phase that the
recovery phase can be addressed without worrying about the reward.

As a second step, we provide an upper bound on the cumulative con-
straints violation during the recovery phase. In particular, we show that the
constraints are satisfied by at least ρ at each round up to a term related to the
regret ofRP

II andRD
II.

Lemma 9.9. With probability at least 1 − η, when Algorithm 9.1 halts it
holds that for each i ∈ [m]:

T∑
t=T1+1

gt,i(xt) ≤ −(T − T1)ρ+ EDT−T1
+ 2EPT−T1,η

.

Proof. Let i? be one of the most violated constraints:

i? ∈ argmax
i∈[m]

T∑
t=T1+1

gt,i(xt).

Then, we have that:

(T − τ)ρ ≤ −
T∑

t=T1+1

〈λt, gt(ξ◦)〉

≤ −
T∑

t=T1+1

〈λt, gt(xt)〉+ 2EPT−T1,η

≤ −
T∑

t=T1+1

gt,i?(xt) + EDT−T1
+ 2EPT−T1,η

,

where the first inequality follows from the definition of ξ◦ and the fact that it
is always feasible of at least ρ, the second one follows from the assumption
that the primal regret minimizer satisfies the regret bound, and the last
inequality from the guarantee on the regret of the dual regret minimizer. We
conclude the proof by noticing that the regret bound of the primal regret
minimizer holds with probability at least 1− η.

Now, we can provide our bounds for adversarial constraints.

Theorem 9.5. Suppose that functions ft and gt are selected adversarially.
If Condition 9.1 is satisfied, then, with probability at least 1− 2

3
δ, Algorithm
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9.1 guarantees that the following holds:
∑T

t=1 ft(xt) ≥
ρ

1+ρ

∑T
t=1 OPTf̄,ḡ−(

1 + 2
ρ̃

)
EPT,η − 1

ρ̃
EDT and V T ≤Mρ̃ + 2EPT,η + EDT .

Proof. In the following, we assume that both Lemma 9.8 and Lemma 9.9.
By an union bound, this holds with probability 1− 2η = 1− 2

3
δ. Then, it

holds

T∑
t=1

ft(xt) ≥
T1∑
t=1

ft(xt)

≥
T1∑
t=1

ρ

1 + ρ
ft(ξ

?) + (T − T1)−
(

1 +
2

ρ̃

)
EPT1,η

− 1

ρ̃
EDT1

≥ ρ

1 + ρ

T∑
t=1

ft(ξ
?)−

(
1 +

2

ρ̃

)
EPT1,η

− 1

ρ̃
EDT1

≥ ρ

1 + ρ

T∑
t=1

ft(ξ
?)−

(
1 +

2

ρ̃

)
EPT,η −

1

ρ̃
EDT ,

where the second inequality comes from Lemma 9.8. This proves the bound
on the regret.

By Lemma 9.9, for each i ∈ [m],

T∑
t=1

gt,i(xt) =

T1∑
t=1

gt,i(xt) +
T∑

t=T1+1

gt,i(xt)

≤ (T − T1)ρ̃+Mρ̃ − (T − T1)ρ+ EDT−T1
+ 2EPT−T1,η

≤Mρ̃ + EDT−T1
+ 2EPT−T1,η

≤Mρ̃ + EDT + 2EPT,η,

where the second inequality comes from ρ̃ ≤ ρ.

A similar result can be also derived for the case of stochastic rewards and
adversarial constraints.

Corollary 9.2. Suppose functions ft and gt are selected stochastically and
adversarially, respectively. If Condition 9.1 is satisfied, then, with probabil-
ity at least 1−δ, Algorithm 9.1 provides

∑T
t=1 ft(xt) ≥

ρ
1+ρ

∑T
t=1 OPTf̄,ḡ−(

1 + 2
ρ̃

)
EPT,η − 1

ρ̃
EDT − 2ET,η and V T ≤Mρ̃ + 2EPT,η + EDT + ET,η.
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Proof. It is easy to see that Theorem 9.5 can be extended to consider the
definition of ξ? for stochastic rewards. formally, it holds

∑T
t=1 ft(xt) ≥

ρ
1+ρ

∑T
t=1 ft(ξ

?)−
(

1 + 2
ρ̃

)
EPT,η − 1

ρ̃
EDT . Consider the two martingale differ-

ence sequences
∑T

t=1 ft(xt)− f̄(xt) and
∑

t ft(ξ
?)− f̄(ξ?). We can apply

Azuma-Hoeffding inequality to prove that, with probability at least 1− η, it
holds

∑
t |ft(xt)− f̄(xt)| ≤ ET,η and

∑
t |ft(ξ?)− f̄(ξ?)| ≤ ET,η. Then,

T∑
t=1

f̄(xt) ≥
T∑
t=1

ft(xt)− ET,η

≥ ρ

1 + ρ

T∑
t=1

ft(ξ
?)−

(
1 +

2

ρ̃

)
EPT,η −

1

ρ̃
EDT − ET,η

≥ ρ

1 + ρ

T∑
t=1

f̄(ξ?)−
(

1 +
2

ρ̃

)
EPT,η −

1

ρ̃
EDT − 2ET,η,

proving the statement.

Remark 9.4. By using primal and dual RMs whose regret bounds are of
the order of Õ(

√
T ), Theorem 9.5 and Corollary 9.2 allows us to recover∑T

t=1 ft(xt) ≥
ρ

1+ρ

∑T
t=1 OPTf̄,ḡ − Õ(

√
T/ρ̂), and Õ(

√
T/ρ̂) constraints

violation for the case in which Condition 9.1 holds.

9.6 How to get away with no knowledge about the feasibility
parameter

We show how to extend Algorithm 9.1 in order to deal with settings in
which a lower bound on the feasibility parameter ρ is not known. Indeed,
we propose an algorithm (Algorithm 9.3) that directly runs Algorithm 9.1,
by first devoting a given number T0 < T of rounds to inferring a suitable
lower bound ρ̂ on the feasibility parameter ρ. Ideally, we would like to have
ρ̂ = Ω(ρ), so that, we recover bounds of the order Õ(

√
T/ρ). In particular,

we show that we can run Algorithm 9.3 with T0 = T 1/2 in order to recover
an approximation of ρ that has an additive approximation error of the order
T 1/4. This is sufficient to get ρ̂ = Ω(ρ), since a good approximation of ρ is
only needed when ρ ≥ T 1/4.8

Let us remark that our approach only works when constraints functions
gt are selected stochastically. When these are chosen adversarially, it is

8Notice that Algorithm 9.3 is not an explore and exploit algorithm. Indeed, it uses the exploration rounds only
to have a rough estimate of ρ.
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easy to see that it is impossible to compute a lower bound on the feasibility
parameter ρ by only using the first rounds. For instance, think of a setting in
which ρ is very large by only considering the first rounds, while it becomes
small during later rounds.

Algorithm 9.3 META-ALGORITHM(T, T0, δ)

1: RP ← INITP
(
X ,
[
− 1, 1

]
, δ
)

2: RD ← INITD (∆m, [−1, 1], 0)
3: t← 1
4: while t ≤ T0: do
5: xt ← LAGRANGIANGAME(RP,RD, 0)
6: t← t+ 1
7: end while
8: ρ̂← − 1

T0

(
maxi∈[m]

∑T0

t=1 gt,i(xt) + ET0,δ

)
9: Run Algorithm 9.1 with T − T0, δ, and ρ̂ as inputs

In order to exploit the guarantees of Algorithm 9.1 presented in the
previous sections, it is enough to show that, after the first T0 rounds of
Algorithm 9.3, ρ̂ ≤ ρ holds with high probability.

Lemma 9.10. By setting T0 =
√
T , after T0 rounds of Algorithm 9.3 we

have that ρ̂ ≤ ρ with probability at least 1− δ.

Proof. By Azuma-Hoeffding inequality, we have that with probability at
least 1− δ, for each i ∈ [m] it holds

∣∣∑T0

t=1 gt,i(xt)− ḡi(xt)
∣∣. Hence,

−max
i∈[m]

T0∑
t=1

gt(xt) ≤ −max
i∈[m]

T0∑
t=1

ḡ(xt) + ET0,δ

≤ T0ḡ(ξ◦) + ET0,δ

= T0ρ+ ET0,δ,

where the second and third inequality follow from the definition of ξ◦. Then,

ρ̂ = − 1

T0

(
max
i∈[m]

T0∑
t=1

gt,i(xt) + ET0,δ

)
≤ 1

T0

(T0ρ+ ET0,δ − ET0,δ)

= ρ.

This concludes the proof.
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To recover a good estimate of ρ, we need the value of ρ to be sufficiently
large. Formally, we consider the following condition.9

Condition 9.2. It holds that ρ ≥ 2
T0

(
2ET0,δ + 2EPT0,δ

+ EDT0

)
.

Remark 9.5. Notice that, by using primal and dual RMs whose regret
bounds are of the order Õ(

√
T ), and setting T0 =

√
T Condition 9.2 is

satisfied when ρ = ω(T−1/4).

Next, we show that ρ̂ = Ω(ρ), which allows us to exploit the guar-
antees proved for Algorithm 9.1 in order to provide analogous ones for
Algorithm 9.3. Formally:

Lemma 9.11. By setting T0 =
√
T , and assuming that Condition 9.2 is

satisfied, after T0 rounds of Algorithm 9.3 we have that ρ̂ ≥ ρ/2 with
probability at least 1− 2δ.

Proof. First, notice that with probability 1− δ, the primal regret minimizer
has regret bounded by EPT0,δ

. Moreover, by the Azuma-Hoeffding inequality,

it holds
∣∣∣∑T0

t=1 λtgt(ξ
◦)− λtḡ(ξ◦)

∣∣∣ ≤ ET0,δ with probability 1−δ. Consider
the case in which both the conditions hold. This happens with probability at
least 1− 2δ by a union bound.

Then,

−max
i∈[m]

T0∑
t=1

gt(xt) ≥ −
T0∑
t=1

〈λt, gt(xt)〉 − EDT0

≥ −
T0∑
t=1

〈λt, gt(ξ◦)〉 − EDT0
− 2EPT0,δ

≥ −
T0∑
t=1

〈λt, ḡ(ξ◦)〉 − EDT0
− 2EPT0,δ

− ET0,δ

≥ T0ρ− EDT0
− 2EPT0,δ

− ET0,δ.

Hence,

ρ̂ = − 1

T0

(
max
i∈[m]

T0∑
t=1

gt,i(xt) + ET0,δ

)
≥ 1

T0

(
T0ρ− EDT0

− 2EPT0,δ
− ET0,δ − ET0,δ

)
9Notice that even if ρ does not satisfy the condition, ρ̂ is a lower bound on ρ. This is sufficient to guarantee

that the results in Theorem 9.3 and Theorem 9.4 hold.
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≥ ρ/2 +
1

T0

(
T0ρ/2− EDT0

− 2EPT0,δ
− 2ET0,δ

)
≥ ρ/2,

where the last inequality comes from Condition 9.2. This concludes the
proof.

By applying the results of the previous sections on the guarantees of
Algorithm 9.1, and by using primal and dual RMs whose regret bounds are
of the order Õ(

√
T ), we get Õ(

√
T/ρ) and Õ(

√
T/ρ) regret and violation

bounds, respectively, when the functions gt are selected stochastically.

9.7 Applications to repeated auctions settings

Internet advertising platforms usually operationalize large auction markets
by using proxy bidders that place bids in repeated auctions on the advertisers’
behalf. A proxy-bidder selects bids according to a budget-pacing mechanism,
which manages the usage of the advertisers’ budget over time Agarwal
et al. (2014); Conitzer et al. (2021); Balseiro et al. (2021a). In this section,
we discuss the application of our framework to budget-management in
auctions, arguing that it can deal with more general constraints on ad slots
allocation with respect to what is currently achievable with multiplicative
pacing algorithms, which manage only knapsack constraints.

We consider the problem faced by a bidder who takes part in a sequence
of repeated auctions. We focus on the case of second-price and first-price
auctions, since they are the de facto standard in large Internet advertising
platforms. At each round t ∈ [T ], the bidder observes their valuation vt
from a finite set of nv possible valuations V ⊂ [0, 1]. Such valuation models
targeting preferences of the advertiser. Then, the bidder chooses a bid bt ∈ B,
where B ⊂ [0, 1] is a finite set of nb possible bids such that 0 ∈ B (i.e., the
bidder is allowed to skip items without incurring in any cost). The utility
of the bidder depends on the largest among competing bids, denoted by
βt. In particular, the utility is computed as ft(bt) = (vt − ct(bt))1{bt≥βt},
where the cost ct is such that ct(bt) = 1{bt≥βt} in second-price auctions,
and ct(bt) = bt1{bt≥βt} for first-price ones. Finally, the bidder has a target
per-round budget of ρ > 0, which yields an overall budget B := ρT that
limits the total spending over the T rounds. In the case of budget-constrained
bidding, a strictly feasible solution can be easily achieved by always bidding
0. Using the target per-round budget ρ = B/T we can write the budget
constraint as

∑
t∈[T ] gt(bt) ≤ 0, with gt(b) = ct(b)−ρ for any b ∈ B. Notice
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that, in this setting, we have the same feasibility parameter ρ for both the
stochastic and the adversarial case.

As a benchmark to evaluate the algorithm, we consider the best feasible
static policy π : V → B. The set of static policies can be represented
by X := Bnv , where a vector b ∈ Bnv encodes the policy’s bids for each
possible valuation. To apply our framework to this problem, it is sufficient to
design a primal regret minimizer constructor (recall that, in order to design
dual RMs, we can employ OMD). This can be implemented by instantiating
a regret minimizer EXP3.P (Auer et al., 2002b) for each possible valuation in
V . Given a failure probability ν ∈ (0, 1), each RM guarantees a regret bound
O(
√
Tnb log(nb/ν)) with probability at least 1− ν. Thus, given a desired

failure probability η ∈ (0, 1), by setting ν = η/nv we get that, with probabil-
ity at least 1− η, the bounds of all the RMs hold. Hence, by a union bound,
we get that the regret of a primal RM is EPT,η = O(nv

√
Tnb log(nbnv/η)).

Guaranteed budget completion in the stochastic case. The crux of budget-pacing
mechanisms is ensuring that the advertisers’ budget is not depleted too
early (thereby missing potentially valuable future advertising opportunities),
while being fully depleted within the planned duration of the campaign.
Theorem 9.4 shows that, when inputs are generated according to some
stochastic model, Algorithm 9.1 never enters the recovery phase. This is
crucial in the context of budget-pacing mechanisms, because whenever the
algorithm enters the recovery phase it will converge to always bid 0 in
order to mitigate constraints violation. Therefore, the bidder could miss
out on potentially valuable items. Moreover, if the platform wanted to
guarantee that the bidder does not spend more than the budget B, it would
be enough to set a virtual budget of B − Õ(T 1/2) to compensate for the
potential constraints violation. Finally, we argue that, in large-scale markets,
an individual bidder has almost no impact on prices, and, thus, stochastic
behavior of costs is a reasonable assumption.

Adversarial case. Theorem 6.1 of Castiglioni et al. (2022a) shows how to
construct an algorithm that provides a ρ fraction of the optimal utility for
problems with budget constraints and adversarial inputs. The ratio ρ/(1 + ρ)
obtained in Theorem 9.5 matches such result. The latter assumes that rewards
and costs are in [0, 1], and, thus, gt ∈ [−ρ, 1− ρ] (as they only model budget
constraints). However, in our case we have gt ∈ [−1, 1]. By normalizing the
former range to match with ours, we get gt ∈ [−ρ/(1−ρ), 1]. Therefore, the
feasibility parameter would be ρ′ = ρ/(1− ρ). By rewriting our guarantees
as a function of ρ, we get ρ′/(1 + ρ′) = ρ, which is the same guarantee
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of Castiglioni et al. (2022a).

Handling ROI constraints. Traditional budget-pacing mechanisms (see, e.g.,
Balseiro and Gur (2019); Balseiro et al. (2020)) are based on primal-dual al-
gorithms that are near optimal in settings with knapsack constraints only, and
they cannot be generalized to deal with other types of long-term constraints.
However, there are many real-world situations in which guaranteeing other
types of constraints is crucial for practical applications (see, e.g., Golrezaei
et al. (2021b,a)).

One example is the case of return on investment (ROI) constraints Auer-
bach et al. (2008); Golrezaei et al. (2021b); Li et al. (2020). 10 The recent
work by Golrezaei et al. (2021a) presents a threshold-based algorithms for
repeated second-price auctions under budget and ROI constraints. Our
framework allows advertisers to reach a target ROI while keeping budget
expenditures under control also in the setting of repeated first-price auc-
tions, which is a frequent setting in practice.11 In particular, given a target
ROI ω ≥ 0 and the largest among competing bids βt, we define the ROI
constraints as

gt(bt) =

(
ω − vt

bt

)
1{bt≥βt}le0.

Then, it is enough to instantiate the framework with the same setup of
Section 9.7, that is, EXP3.P (Auer et al., 2002b) for each of the possible
valuations in V , and OMD equipped with negative-entropy regularizer for
the dual RM. Therefore, we immediately get that the cumulative violations
of the budget and ROI constraints are upper bounded by Õ(T 1/2). This
holds both in the fully stochastic and in the fully adversarial setting under
the assumption of having a strictly feasible solution, which is reasonable
since it is enough to have a sufficiently small bid in the set of available bids
B. We observe that always bidding such a small bid is sufficient to satisfy
the ROI constraints but will penalize the cumulative rewards obtained by the
advertiser.

Future research direction: fairness constraints. Consider the setting in which
each item appearing at time t is characterized by one or more of nc categories
according to the vector et ∈ [0, 1]nc . A bidder may have distributional
preferences over such categories, such as ensuring that at least a certain

10This is a frequent advertising objective in large Internet advertising platform. See, e.g., https://tinyurl.
com/c86rezhd and https://tinyurl.com/mr49vz8a.

11For example, in 2019 Google announced a shift to first-price auctions for its AdManager exchange. See
https://tinyurl.com/chv5nxys.
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fraction of impressions is allocated to each category. This is the case, for
example, of advertisers who need to perform online outreach to a population
of users while achieving a distribution over different demographics close to
that of the real underlying population. For example, Gelauff et al. (2020)
provide an interesting field study about running advertising campaigns for
Participatory Budgeting elections. In Participatory Budgeting elections,
community members are asked to vote between various public projects in
order to allocate a total budget. The election organizer may use online
advertising to try to promote the initiative, and in doing so the goal is to
reach a “demographic mix” comparable to that of the local population.
Surprisingly, Gelauff et al. (2020) show that advertisers currently have to
resort to complex segmentation strategies through subcampaigns in order to
achieve that goal.

Two recent works propose to achieve such distributional preferences
within budget-pacing mechanisms by embedding them into a concave reg-
ularization term in the advertiser’s objective Balseiro et al. (2021b); Celli
et al. (2022). Such frameworks specifically consider the case of repeated
second-price auctions, and can directly handle only packing constraints.
Encoding distributional preferences via a regularization term in the objective
implies that they cannot provide any formal guarantee w.r.t. how close
the realized distribution of impressions is to the target, despite showing
promising performance in practice.

Differently from previous work, our framework can explicitly handle
distributional constraints within second- and first-price auction frameworks.
Let vector ê ∈ [0, 1]nc be such that êj is the fraction of impressions that we
want to be allocated to users of category j. Then, for each category j ∈ [nc],
we could enforce the following type of constraints

gt,j(bt) := êj − et,j1{bt≥βt} ≤ 0.

Assuming the existence of a strictly feasible bidding strategy, our frame-
work guarantees that, for each category j,

êj −
1

T

T∑
t=1

et,j1{bt≥βt} ≤ Õ(T−1/2),

êj −
1

T

T∑
t=1

et,j1{bt≥βt} ≤ Õ(T−1/2),

which guarantees that, in the limit, the difference between the average
distribution of impressions and the target thresholds is vanishing.
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The main question which still needs to be answered in order to apply our
framework in the case of fairness constraints is whether we can motivate the
existence of a strictly feasible solution. One reasonable requirement is to
constrain the target vector ê to be a point in the full-dimensional simplex
with dimension nc. On top of that, the advertiser would need a way to
“buy what’s necessary” in order to match the distributional constraints. This
desideratum could be achieved, for example, by introducing buyout options
for advertisers, in the spirit of Gallien and Gupta (2007) (i.e., when the
advertiser needs impression from a certain category, they always have the
option of bidding the buyout value to be sure to win the relevant items).
Therefore, assuming the population of users is large enough, an advertiser
could achieve a strictly feasible solution by bidding according to the fixed
strategy mixture recommending to bid the buyout option for each category j
with a probability greater than or equal to êj .

The model we described is clearly a simplification of real budget-pacing
systems. Moreover, the practical implications of introducing buyout options
should be further investigated, in order to understand if they constitute a
viable solution both for the platform and advertisers. Finally, we leave as
interesting future research directions the problem of studying the general
setting (with arbitrary sets V and B), and that of providing an empirical
evaluation of the above techniques on real-world data.
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CHAPTER10
Conclusions

Research on digital markets has considerably expanded in recent years,
and these progresses have increased the impact of Web platforms on the
performance of sellers and advertisers. New AI tools have been introduced in
e-commerce platforms to boost sales while providing meaningful guarantees
to sellers. The existing literature on mechanism design and online learning
provides efficient solutions in theory and practice for standard pricing and
advertising settings. However, such techniques cannot be applied in a direct
way to novel and complex scenarios such as the ones we consider in this
thesis. We show that it is often possible to exploit the structure of these new
scenarios to find efficient solutions and recover good approximations of the
results obtained in standard settings.

First, we provide efficient mechanisms and algorithms for the general
problem of selling items. In this part of the thesis, the main challenges
we address are finding pricing strategies for perishable items and dealing
with possible delays of the seller’s reward. As a future research direction, it
would be interesting to relax some of the assumptions made in our analysis,
in order to study more general scenarios which could be closer to real-world
settings. For instance, in Chapter 3 we provide distribution-free posted-price
mechanisms in order to sell a unique item within a finite time period. We
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evaluate our mechanisms in terms of competitive ratio, measuring the worst-
case ratio between their revenue and that of an optimal mechanism that
knows the distribution of valuations. In particular, we prove that both mech-
anisms achieve a competitive ratio that is constant with respect to the actual
valuation when the distribution of the valuations has a monotone hazard rate.
This shows that our mechanisms are robust even in non-stationary markets
subject to arbitrary distribution changes preserving the same support. In
future, we will investigate hybrid settings in which our robust mechanisms
can be combined with machine learning tools. For instance, data could be
used to learn a class of distributions, and we could design a mechanism
robust with respect to all the distributions of that class. Another interesting
direction could be considering the general problem of selling multiple units
of multiple items in a sequential way when valuations may be discounted.
Chapter 4 introduces the novel TP-MAB setting, which generalizes the
delayed-feedback bandit setting with bounded delay. It could be worth
studying how to deal with general and possibly unbounded delays in the
time in which seller’s rewards appear. The TP-MAB setting with unbounded
delay could model recommendation problem in online advertising setting.
Suppose that an advertiser at each time instant has to choose which ad to
display on a Web page. Each ad impression could produce a number of
conversions, which correspond to a reward distributed over time. However,
some conversions could be indefinitely delayed over time. Another possible
research direction, could be extending the analysis of how arms’ cumula-
tive rewards are distributed across multiple rounds. For instance, in some
scenarios, there might be additional information available about how the
cumulative reward is partitioned over the rounds. It may be reasonable to
assume that a significant portion of the cumulative reward is observed during
the initial rounds, and that subsequent rounds exhibit a diminishing exponen-
tial decline in observed partial reward. In these more general scenarios, it
is worth investigating how the α-smoothness property could be generalized
and then exploited to develop no-regret algorithms.

In the second part of the thesis, we provide new mechanisms for cutting-
edge advertising scenarios originated by recent innovations in advertising
platforms. We design new types of ad auctions, and measure their per-
formance in new scenarios such as the one in which an additional price
parameter is displayed in the ads, and the metaverse. During the analysis of
the first scenario, the externalities introduce by the display of prices with ads
are modeled through a metric called quality. We design the quality of an ad
as a function depending on the price displayed with that ad and the minimum
price among all displayed ads. An interesting research direction concerns
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the analysis of PoA and PoS and the design of allocation algorithms when
the quality functions satisfy specific properties, such as, e.g., smoothness.
An alternative approach to design the quality function is to consider the
scenario where the quality functions depend on the prices associated with all
the displayed ads. Subsequently, in the second part of the chapter, we pro-
vide bidding strategies for a group of colluding advertisers coordinated by a
common media agency, who participate in the same ad auction. Colluders
aim at maximizing their cumulative utility by coordinating their bids while
playing against some external bidders. In the future, it would be interesting
to further increase the complexity of this scenario by considering adversarial
external agents. In this scenario, the colluders would face the problem of
learning a bidding strategy which would have to be robust with respect to an
adversarial environment. Then, it would be interesting to evaluate both theo-
retically and empirically the outcomes to which this system converges from
a global perspective. A further extension could be considering coalitions of
different size, and the presence of more than one coalition.

Finally, the third part of this thesis studies the problem faced by a con-
strained agent that has to learn effective bidding strategies. In Chapter 9, we
provide a general framework and a best-of both-world algorithm to address
this problem. In the future, it would be interesting to apply our framework
to real-world problems in which constraints represent, for instance, fairness
requirements that the platform needs to implement. It would be interesting
to study if, in such specific settings, better guarantees can be provided with
respect to those of the general framework. Moreover, it would be valuable to
explore an intermediate framework between the stochastic and adversarial
settings, and see which type of guarantees could be achieved. Such setting
could be modeled, for instance, by fixing an underlying distribution and
assuming that, at each round, the adversary chooses the constraints distri-
butions which are not too distant from the underlying one. This could be
expressed,for instance, by setting a bound on the total variation between
the two distributions. An alternative approach for implementing this in-
termediate setting might involve using a smoothed adversary who chooses
constraints distributions that are not excessively spiky. Furthermore, a
broader area of research that could be explored involves investigating the
interaction among multiple constrained agents. To tackle this issue, the first
step would be establishing an appropriate definition of equilibrium, followed
by analyzing the convergence towards it. Finally, it is worth mentioning
some recent works from the literature related to the problem presented in
Chapter 9. Castiglioni et al. (2023) investigate further the problem in the
scenario where the feasibility parameter ρ is unknown beforehand and relax
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the assumption of having one strictly feasible solution for each round in
the adversarial setting. Fikioris and Tardos (2023) study a scenario that
is not exactly stochastic but is also not worst-case. They call the problem
Approximately Stationary Bandit with Knapsack and introduce a condition
that parameterizes how close to stochastic or adversarial an instance is. The
direction of their work is towards bridging the gap between the no-regret
guarantees achievable in the stochastic setting and the competitive ratio guar-
antees attainable in the adversarial setting. While their work only focuses
on resource constraints, it would be intriguing to explore the extension of
these ideas to general constraints.
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APPENDIXA
Part I

A.1 Chapter 3

A.1.1 An Analytical Expression of FYλT for the RV Setting with Linear
Discount

We study the cumulative distribution function of the random variable YλT so as to unveil its depen-
dence on F . We perform our analysis for the specific case of a linear discount function; thus:

YλT = max
i∈{1,...,NT }

Vi

(
1− Wi

T

)
.

The results presented in the following crucially rely on some properties of Poisson processes.
First, we introduce some auxiliary definitions and results.

Proposition A.1 (Ross et al. (1996)). The random variable Wi representing the arrival time of agent
i has a Gamma distribution Γ(i, λ), with shape parameter i > 0 and rate parameter λ > 0, whose
probability density function is defined as follows:

fWi(w) :=
λiwi−1

(i− 1)!
e−λw, for every w ∈ [0, T ].

Theorem A.1 (Pinsky and Karlin (2010)). Let W1,W2, . . . be random variables representing the
arrival times in a Poisson process with rate parameter λ > 0. Conditioned on the event NT = n, the
variables W1, . . . ,Wn have a joint probability density function defined as follows:

fW1,...,Wn|NT=n(w1, . . . , wn) = n!T−n, for 0 < w1 < . . . < wn ≤ T.
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Appendix A. Part I

Intuitively, as discussed in (Ross et al., 1996), a consequence of Theorem A.1 is that, conditioned
on the event NT = n, the times W1, . . . ,Wn at which the n arrivals occur, considered as unordered
random variables, are distributed uniformly and independently in the interval [0, T ]. This is the
crucial observation that allows to derive the following theorem.

Theorem A.2. The random variable representing the maximum discounted valuation of agents
arriving in the overall time period [0, T ] conditioned on the event that NT = n is defined as follows:

YλT |NT=n := max
i∈{1,...,n}

Vi Ui, where Ui ∼ U(0, 1). 1

Proof. Given the symmetry of the functional maxi∈{1,...,NT } Vi
(
1− Wi

T

)
and Theorem A.1, we

can write the following:

P {YλT = y | NT = n} = P
{

max
i∈{1,...,Nτ}

Vi

(
1− Wi

T

)
= y | Nτ = n

}
= P

{
max

i∈{1,...,n}
Vi

(
1− Ũi

T

)
= y

}
where Ũi is a random variable distributed according to U(0, T ), which is a continuous uniform

distribution with support [0, T ]. Letting Ui :=
(

1− Ũi
T

)
, it is easy to show that Ui ∼ U(0, 1).

Formally, for every x ∈ [0, 1], the cumulative distribution function FUi of Ui is defined as follows:

FUi(x) := P {Ui ≤ x} = P
{(

1− Ũi
T

)
≤ x

}
= P

{
T (1− x) ≤ Ũi

}
= 1− P

{
Ũi ≤ T (1− x)

}
= 1− T (1− x)

T
= x

Moreover, for x < 0 it holds FUi(x) = 0, while for x > 1 it holds FUi(x) = 1. Thus, FUi is the
cumulative distribution function of a random variable drawn from a uniform with support [0, 1].

In the following, we denote by Z a product variable V U , where V and U are random variables
distributed according to F and U(0, 1), respectively. Moreover, we let Zi := Vi Ui be the variable Z
referred to a specific agent i. Theorem A.2 allows us to express FYλT |NT=j

as follows:

FYλT |NT=j
(x) = Fmaxi∈{1,...,j} Zi(x) = P

{
j⋂
i=1

Zi ≤ x

}
=

j∏
i=1

P {Zi ≤ x} = [FZ(x)]j .

Hence, we can write FYλT as:

FYλT (x) =

∞∑
j=1

(λT )je−λT

j!
[FZ(x)]j ,

where

FZ(x) =

{
x
∫ h

1
1
v
f(v)dv if x ∈ [0, 1)

F (x) + x
∫ h
x

1
v
f(v)dv if x ∈ [1, h]

. (A.1)

Thus, it is easy to see that FYλT depends on F and f , which are the cumulative distribution function
and the probability density function of agents’ initial valuations, respectively.

It remains to show how to derive the expression of FZ in Equation (A.1). Notice that, since
U ∼ U(0, 1), the probability density function of U is defined as fU (u) = 1[0,1](u), while its

1We denote by U(a, b) a continuous uniform distribution over the interval [a, b].
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A.2. Chapter 4

cumulative distribution function is FU (u) = u1[0,1](u). The support of Z is [0, h], being V defined
on [1, h].

FZ(z) =P {V U ≤ z} = P
{
U ≤ z

V

}
=

=1[0,1)(z)

∫∫
D′
f(v)fU (u)dvdu+ 1[1,h](z)

∫∫
D′′

f(v)fU (u)dvdu =

=1[0,1)(z)

∫ h

1

f(v)

∫ z/v

0

fU (u)dudv+

+ 1[1,h](z)

(∫ z

1

f(v)dv
∫ 1

0

fU (u)du+

∫ h

z

f(v)

∫ z/v

0

fU (u)dudv

)

=1[0,1)(z)

(
z

∫ h

1

1

v
f(v)dv

)
+ 1[1,h](z)

(
F (z) + z

∫ h

z

1

v
f(v)dv

)
,

where the domains of integration D′ and D′′ are defined as:

D′ :=
{

(u, v) : 0 ≤ u ≤ z

v
, 1 ≤ v ≤ h

}
D′′ := D′′1 ∪ D′′2 := {(u, v) : 0 ≤ u ≤ 1, 1 ≤ v ≤ z} ∪

{
(u, v) : 0 ≤ u ≤ z

v
, z < v ≤ h

}
See also Figure A.1 for a graphical representation of the domains.
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(b) D′′ for z ∈ [1, h].

Figure A.1: Graphical representation of the domain of integration D′ and D′′.

A.2 Chapter 4

A.2.1 Delayed-UCB1 Baseline
We show how to apply the Delayed-UCB1 algorithm, provided by Joulani et al. [2013] and
originally designed for the Delayed-MAB setting, to the TP-MAB setting. In the TP-MAB problem,
the realization of the cumulative reward rit is observed after τmax − 1 rounds from the pull of the
arm. As a consequence, one always waits for τmax − 1 rounds before collecting the reward from a
pull. This approach, corresponds to a delayed-feedback MAB setting in which the delay is known
and deterministic. After such a delay, the learner updates the policy UD-UCB1 of Delayed-UCB1
with the value of the cumulative reward.
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Algorithm A.1 Delayed-UCB1
1: for t ∈ {1, . . . , τmax} do . init phase
2: Pull arm it = ((t− 1) mod K) + 1
3: end for
4: for t ∈ {τmax + 1, . . . , T} do . loop phase
5: for i ∈ {1, . . . ,K} do
6: R̂it−1 ← 1

sit−1

∑t−τmax

h=1 rih1{ih=i}

7: cit−1 ← R
i
√

2 ln(t−1)
sit−1

8: uit−1 ← R̂it−1 + cit−1

9: end for
10: Pull arm it = argmaxi∈[K] u

i
t−1

11: Observe reward rit−τmax+1

t−τmax+1 of the arms pulled at round t− τmax + 1
12: end for

The pseudo-code of the Delayed-UCB1 algorithm applied to a generic TP-MAB setting is
reported in Algorithm A.1. During the initialization phase, all arms are pulled in a round robin
fashion until at least one reward is collected (Line 2). Subsequently, at each round t, the learner
computes the empirical mean R̂it−1 of the cumulative rewards collected up to round t− 1 (Line 6),
where sit−1 :=

∑t−τmax
h=1 1{ih=i} is the number of complete reward observed so far for arm i,

and the confidence interval cit−1 (Line 7). Finally, the learner pulls the arm with the largest upper
confidence bound uit−1 (Line 10), and observes the reward corresponding to the pull occurred at
round t− τmax + 1 (Line 11). When no sample is available for an arm i its upper bound is set to +∞.
We provide the following upper bound on the regret of the Delayed-UCB1 algorithm (see Joulani
et al. [2013]).

Theorem A.3. The pseudo-regret of Delayed-UCB1 after T ∈ N∗ rounds in the TP-MAB setting
is:

RT (UD-UCB1) ≤
∑

i:µi<µ∗

8(R
i
)2 lnT

∆i
+

(
1 +

π2

3
+ τmax

) ∑
i:µi<µ∗

∆i. (A.2)

Proof. The theorem follows from Theorem 7 by Joulani et al. (2013), where the expected value of
the maximum number of missing feedback of arm i during the first t time steps is E[G∗i,t] < τmax,
where G∗i,t is the maximum number of missing feedbacks during the first t rounds for arm i.

A.2.2 Additional Experiments
In what follows, we provide a detailed description of those setting which have been presented in
Section 4.4 and further experiments confirming what has been showed in the chapter.

Setting #2 (main scenario). In this setting, each arm is described by a maximum reward R
i

and
two vectors ai :=

(
ai1, . . . , a

i
α

)
and bi :=

(
bi1, . . . , b

i
α

)
of length α. The aggregated reward Zit,k

are distributed as Dik = R
i

α
Beta(aik, b

i
k), ∀k ∈ [α]. The results presented in the chapter are those

corresponding to ai := 1α and bi := 1α, where 1α is a vector of length α whose elements are all 1.
This setting corresponds to a uniform distribution over R

i

α
for each variable Zit,k. The corresponding

results are presented in Section 4.4. The regret over the entire time horizon is presented in Figure A.2.
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Figure A.2: Experiments for Setting #2 and uniform reward distribution: (a) τmax = 100,
α = 10, (b) τmax = 200, α = 20.

Spotify Setting. The original Spotify dataset Brost et al. (2019) consists of listening sessions with
levels of appreciation for each song associated to a user on the Spotify service. Each listening session
is truncated to 20 tracks (songs). Each row corresponds to the playback of one track pertaining to a
specific listening session. The dataset describes how users sequentially interact with the streamed
content they are presented with. More precisely, it contains information about when a user skips the
playback of a track.

We preprocessed the available data as follows. At first, for computational reasons we analysed
only a fraction of the Spotify dataset. Since we are interested in the listening sessions linked to a
playlist, from that initial dataset we drop all the data associated with a context_type field context
which is different from editorial playlist. Moreover, we discarded all the listening sessions with less
than 20 songs and/or the user changed playlist during a single listening session (context_switch
= true). This way, each listening sessions is composed of 20 song coming from a single playlist.
We selected the 6 most listened playlists having no overlapping songs, and extracted from the dataset
the listening sessions corresponding to them.

The process of recommending the playlists is modeled as follows.

Example A.1 (Playlist Recommendation Problem - Reprise). When a new user accesses the system,
a playlist is proposed. This action corresponds to the selection of an arm i by the recommendation
algorithm. The user will start the reproduction of the playlist, composed of exactly N = 20 songs.
For each song, at any time, the agent could decide to skip to the next song until the end of the playlist.
We aim at finding the playlist that maximizes the overall listening time. Each song has a reward equal
to skip_1, skip_2, skip_3, and not_skipped, representing increasing level of interest from
the user. These levels corresponds to the the realization of instantaneous reward Xi

t,j of Bernoulli
r.v. that takes the value of 1 if the user has reached at least the corresponding level and 0 otherwise;
The vectorXi

t has size equal to the number of songs of a playlist (i.e., aggregated rewards) times
the number instant rewards returned by a song (i.e., φ), and in this case τmax = 20 × 4 = 80. A
summary of the expected rewards of the different playlists is provided in Table A.1. Figure A.3 shows
an example of the reproduction of part of 5 songs of a playlist. Songs 1 and 3 were listened completely,
while Song 2 was listened up to level the skip_2. Song 4 and Song 5 were entirely skipped.

In what follows we provide additional experiments.
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1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0
Song 1 Song 2 Song 3 Song 4 Song 5

Figure A.3: Example of a realization of an a subset of a playlist in the Spotify Setting.

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6
µi 38.59 52.35 38.44 43.89 23.48 36.20
σi 21.83 20.11 23.09 23.14 23.48 23.8

Table A.1: Description of the arms in the Spotify Setting.

Setting #2.1 In this experiment, the setting is the same as the one in Setting #2, except that we
designed the rewards s.t. the first aggregated rewards after the pull are smaller than the last ones.
Specifically, the distribution are defined by the following vectors:

• τmax = 100, α = 10:

ai = (2, 4, 6, 8, 10, 10, 10, 10, 10, 10);

bi = (10, 10, 10, 10, 10, 10, 8, 6, 4, 2);

• τmax = 200, α = 20:

ai = (2, 4, . . . , 18, 20, . . . , 20);

bi = (20, . . . , 20, 18, . . . , 4, 2);

• τmax = 100, α = 50:

ai = (2, 4, . . . , 48, 50, . . . , 50);

bi = (50, . . . , 50, 48, . . . , 4, 2);

• τmax = 200, α = 100:

ai = (2, 4, . . . , 98, 100, . . . , 100);

bi = (100, . . . , 100, 98, . . . , 4, 2).

The corresponding results are provided in Figure A.4. They are in line with the ones of Setting
#2.

Setting #2.2 In this experiment, the setting is the same as the one in Setting #2, except that we
designed the rewards s.t. the first aggregated rewards after the pull are larger than the last ones.

Specifically, the distribution are defined by the following vectors:

• τmax = 100, α = 10:

ai = (10, 10, 10, 10, 10, 10, 8, 6, 4, 2);

bi = (2, 4, 6, 8, 10, 10, 10, 10, 10, 10);

• τmax = 200, α = 20:

ai = (20, . . . , 20, 18, . . . , 4, 2);

bi = (2, 4, . . . , 18, 20, . . . , 20);
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Figure A.4: Experiments for Setting #2.1: (a) τmax = 100, α = 10, (b) τmax = 200,
α = 20.
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Figure A.5: Experiments for Setting #2.2: (a) τmax = 100, α = 10, (b) τmax = 200,
α = 20.

• τmax = 100, α = 50:

ai = (50, . . . , 50, 48, . . . , 4, 2);

bi = (2, 4, . . . , 48, 50, . . . , 50);

• τmax = 200, α = 100:

bi = (100, . . . , 100, 98, . . . , 4, 2);

ai = (2, 4, . . . , 98, 100, . . . , 100).

The corresponding results are provided in Figure A.5. They are in line with the ones of Setting
#2.
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Setting #2.3 Finally, in this experiment, the setting is the same as the one in Setting #2, except
that the reward distributions are randomly chosen.

Specifically, the distribution sampled used in the experiments are:

• τmax = 100, α = 10:

ai = (7, 7, 1, 5, 9, 8, 7, 5, 8, 6);

bi = (10, 4, 9, 3, 5, 3, 2, 10, 5, 9);

• τmax = 200, α = 20:

ai = (10, 3, 5, 2, 2, 6, 8, 9, 2, 6, 7, 6, 10, 4, 9, 8, 8, 9, 5, 1);

bi = (9, 1, 2, 7, 1, 10, 8, 6, 4, 6, 2, 4, 10, 4, 4, 3, 9, 8, 2, 2);

• τmax = 100, α = 50:

ai = (6, 9, 8, 2, 5, 9, 5, 2, 9, 6, 9, 4, 10, 9, 10, 5, 8, 2, 10, 7, 6, 10, 4, 5, 3, 4, 3, 1, 10, 5, 8, 2, 2, 3, 3,

1, 2, 9, 7, 9, 5, 9, 4, 4, 10, 7, 10, 5, 8, 8);

bi = (6, 2, 6, 10, 2, 8, 10, 6, 4, 4, 1, 5, 2, 4, 6, 3, 6, 7, 1, 2, 3, 4, 1, 10, 9, 10, 2, 1, 2, 4, 10, 10, 2, 7, 2,

6, 2, 1, 10, 1, 4, 3, 2, 8, 4, 1, 1, 9, 7, 10);

• τmax = 200, α = 100:

ai = (2, 5, 2, 4, 2, 5, 6, 7, 3, 1, 9, 8, 1, 10, 2, 7, 4, 5, 6, 8, 10, 3, 4, 1, 3, 3, 6, 9, 5, 2, 10, 8, 3, 1, 8, 7,

10, 9, 5, 6, 7, 5, 3, 9, 1, 8, 2, 6, 1, 9, 5, 3, 4, 8, 6, 10, 5, 6, 10, 10, 3, 5, 7, 7, 2, 1, 10, 4, 6, 3, 4,

4, 8, 7, 10, 7, 1, 7, 10, 7, 1, 3, 8, 2, 5, 3, 8, 9, 8, 9, 10, 1, 1, 8, 6, 5, 8, 1, 7, 4);

bi = (9, 2, 3, 1, 7, 7, 6, 1, 4, 1, 1, 9, 10, 2, 4, 2, 10, 4, 5, 5, 3, 2, 8, 7, 2, 1, 5, 8, 2, 5, 3, 9, 6, 2, 3, 5, 1,

1, 1, 4, 5, 9, 6, 6, 10, 1, 10, 8, 8, 7, 6, 9, 3, 4, 7, 10, 5, 1, 3, 3, 5, 6, 6, 6, 2, 6, 10, 1, 1, 5, 3, 3,

10, 5, 6, 7, 9, 3, 5, 2, 8, 4, 1, 5, 3, 9, 2, 5, 7, 6, 5, 7, 2, 2, 9, 8, 8, 6, 6, 2).

The corresponding results are provided in Figure A.6. They are in line with the ones of Setting
#2.

Summary for Setting #2 The overall results for the previous setting #2, #2.1, #2.2, and #2.3 are
reported in Table A.2, A.3, A.4, A.5.
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Figure A.6: Experiments for Setting #2.3: (a) τmax = 100, α = 10, (b) τmax = 200,
α = 20.

τmax α Scenario Learner Regret Confidence Interval
100 10 1 TP-UCB-FR 379407.7536 641.3890868
100 10 1 TP-UCB-EW 476211.7734 1379.593546
100 10 1 Delayed-UCB1 550020.3093 3383.218936
100 10 1 UCB1 461295.3133 1198.377002
100 10 2 TP-UCB-FR 378590.4996 1444.810301
100 10 2 TP-UCB-EW 478543.3454 3282.169025
100 10 2 Delayed-UCB1 556264.2577 4563.491842
100 10 2 UCB1 464045.2915 3127.506071
100 10 3 TP-UCB-FR 377928.2537 550.2470147
100 10 3 TP-UCB-EW 477050.7314 1370.65113
100 10 3 Delayed-UCB1 552254.3013 2871.253395
100 10 3 UCB1 462051.9847 1022.873814
100 10 4 TP-UCB-FR 376004.9497 713.1333679
100 10 4 TP-UCB-EW 461523.0728 1159.826331
100 10 4 Delayed-UCB1 546401.0207 3116.186928
100 10 4 UCB1 445761.5334 1160.681727

Table A.2: Summary of result for setting #2, τmax = 100, α = 10.
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τmax α Scenario Learner Regret Confidence Interval
200 20 1 TP-UCB-FR 1161392.507 653.9898656
200 20 1 TP-UCB-EW 969119.3579 2376.133933
200 20 1 Delayed-UCB1 1215396.1 11238.84718
200 20 1 UCB1 921857.7185 1262.074342
200 20 2 TP-UCB-FR 1159038.888 1855.393219
200 20 2 TP-UCB-EW 976387.8607 4103.793005
200 20 2 Delayed-UCB1 1214717.526 12958.26024
200 20 2 UCB1 922123.0453 3911.196296
200 20 3 TP-UCB-FR 1158406.886 719.1511692
200 20 3 TP-UCB-EW 971023.1429 2128.831649
200 20 3 Delayed-UCB1 1225998.654 12586.53841
200 20 3 UCB1 922097.5566 1084.342302
200 20 4 TP-UCB-FR 1150596.776 1373.38433
200 20 4 TP-UCB-EW 919231.1795 2971.38115
200 20 4 Delayed-UCB1 1224143.761 6816.6797
200 20 4 UCB1 863043.4276 2568.233259

Table A.3: Summary of result for setting #2, τmax = 200, α = 20.

τmax α Scenario Learner Regret Confidence Interval
100 50 1 TP-UCB-FR 280850.7628 200.0363298
100 50 1 TP-UCB-EW 470206.8356 610.8394845
100 50 1 Delayed-UCB1 555004.3727 3611.482174
100 50 1 UCB1 461125.7678 433.1909748
100 50 2 TP-UCB-FR 280469.8885 600.1158378
100 50 2 TP-UCB-EW 470948.6985 1810.491059
100 50 2 Delayed-UCB1 551713.5918 3167.855141
100 50 2 UCB1 460454.4842 1535.465475
100 50 3 TP-UCB-FR 280432.6875 194.6246275
100 50 3 TP-UCB-EW 470851.5341 678.1378134
100 50 3 Delayed-UCB1 552354.8852 2784.797814
100 50 3 UCB1 461262.8902 406.9041603
100 50 4 TP-UCB-FR 277350.6683 357.2049513
100 50 4 TP-UCB-EW 431428.2109 845.9105653
100 50 4 Delayed-UCB1 533550.167 6134.964191
100 50 4 UCB1 419308.3464 840.25097

Table A.4: Summary of result for setting #2, τmax = 100, α = 50.
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τmax α Scenario Learner Regret Confidence Interval
200 100 1 TP-UCB-FR 998723.9102 348.3923308
200 100 1 TP-UCB-EW 962166.9976 1574.53646
200 100 1 Delayed-UCB1 1217054.205 13791.12121
200 100 1 UCB1 922801.461 681.1463488
200 100 2 TP-UCB-FR 997866.0232 1163.306506
200 100 2 TP-UCB-EW 962888.2947 2886.588981
200 100 2 Delayed-UCB1 1223555.271 13076.51935
200 100 2 UCB1 924666.3352 1936.282782
200 100 3 TP-UCB-FR 995734.719 386.1528975
200 100 3 TP-UCB-EW 962419.0355 1671.591765
200 100 3 Delayed-UCB1 1224181.588 14560.25523
200 100 3 UCB1 923018.9128 593.7216922
200 100 4 TP-UCB-FR 996058.5901 681.2301995
200 100 4 TP-UCB-EW 937032.8774 1815.90584
200 100 4 Delayed-UCB1 1214671.825 12459.63383
200 100 4 UCB1 893569.8466 1098.403796

Table A.5: Summary of result for setting #2, τmax = 200, α = 100.
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ai bi

Scenario 1 [8, 2, 8, 7, 1, 5, 6, 3, 3, 10] [7, 2, 2, 2, 4, 4, 1, 7, 1, 2]
Scenario 2 [7, 9, 9, 5, 8, 8, 10, 4, 7, 2] [6, 4, 5, 10, 3, 7, 4, 6, 2, 2]
Scenario 3 [1, 9, 8, 4, 2, 8, 7, 5, 4, 1] [4, 10, 3, 2, 4, 8, 7, 6, 9, 3]
Scenario 4 [2, 10, 8, 3, 10, 7, 7, 9, 8, 6] [8, 8, 4, 9, 10, 4, 1, 6, 6, 6]
Scenario 5 [1, 9, 3, 5, 10, 3, 7, 10, 5, 8] [2, 2, 9, 1, 2, 4, 3, 1, 5, 1]
Scenario 6 [8, 6, 3, 3, 8, 6, 9, 7, 9, 9] [1, 10, 2, 9, 10, 2, 7, 4, 5, 9]
Scenario 7 [10, 7, 8, 7, 10, 10, 4, 1, 1, 3] [5, 9, 10, 5, 6, 2, 8, 5, 5, 7]
Scenario 8 [7, 7, 1, 3, 3, 4, 5, 6, 1, 1] [8, 7, 3, 8, 10, 2, 3, 6, 7, 1]
Scenario 9 [10, 8, 7, 8, 1, 2, 8, 3, 1, 1] [10, 10, 3, 6, 2, 9, 6, 4, 7, 8]
Scenario 10 [2, 1, 10, 8, 10, 6, 2, 10, 5, 3] [7, 5, 2, 9, 4, 1, 7, 8, 6, 4]

Table A.6: Parameters used in Setting #4.
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Figure A.7: Experiments for Setting # 4: τmax = 100, α = 10

Setting #4 In this setting, each arm is described by a maximum reward R
i

= τmax · i, and
two vectors ai =

(
ai1, . . . , a

i
α

)
and bi =

(
bi1, . . . , b

i
α

)
of length α. The aggregated rewards Zit,k

are distributed as Dik = R
i

α
Beta(aik, b

i
k), ∀k ∈ [α]. In this experiment, we fix τmax = 100,

α = 10, T = 105, and we design ten scenarios differing in the vectors ai and bi. The parameters
characterizing such randomly generated scenarios are reported in Table A.6. The results for each
scenario are averaged over 50 independent runs. In Figure A.7, we provide the average result over the
10 scenarios, with whiskers corresponding to 95% confidence intervals.

Figure A.7 shows an aggregated result on the pseudo-regret Rt(U) for the analysed algorithms.
Even over randomly generated scenarios we see that the proposed method are able to provide a signif-
icant improvement over the Delayed-UCB1 algorithm. Moreover, consistently the TP-UCB-FR
algorithm result to be the best one at the end of the analysed time horizon T = 105. Conversely,
for shorter time horizon (T ≤ 0.35 · 105) the algorithm performing the best among the ones for the
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Figure A.8: Experiments for Setting # 5: τmax = 100, α = 20

TP-MAB setting is the TP-UCB-EW, which strengthen the idea that this algorithm is better suited for
shorter time horizons.

Setting #5 Finally, we provide an experiment over a longer time horizon of T = 106 in the
same configuration depicted by Setting #1. The pseudo-regret over time for this experiment is
provided in Figure A.8. Let us focus on the regret of TP-UCB-FR(20), i.e., the TP-UCB-FR
algorithm where parameter α corresponds to the one of the environment, and compare it with
the regret of Delayed-UCB1. The regret of TP-UCB-FR(20) (red line) has a slower growth
w.r.t. Delayed-UCB1 (purple line), and, consequently, the difference in terms of regret increases
(logarithmically) over time. The parameter influencing the regret of TP-UCB-FR is α, which
characterizes the specific setting we are tackling. More specifically, if we fix the other parameters
(e.g., τmax) and increase the value of alpha, we have a proportional improvement in the upper bound
of the regret of TP-UCB-FR. Therefore, we expect to have an even larger improvement of our
algorithm when the value of α is large.

A.2.3 Additional Real-World Examples
In this section, we report some additional real-world examples which can be modeled through the
TP-MAB setting. The following scenarios are characterized by the α-smoothness property with
different values of the α parameters.

Example A.2 (E-commerce). An agent periodically receives a batch of identical items to sell on an
e-commerce platform. Every time a slot of N items arrives, the agent decides a price pi to post on a
website, which corresponds to the arm it chosen for the round t. The selected time horizon to sell the
items, which are perishable, is one month. Each day, the seller checks how many items have been
ordered and collects the payments (i.e., rewards). In this example, the maximum delay is τmax = 30

days, and one round is equal to 1 day. The upper bound on the cumulative reward is R
i

= piN .
Notice that the partial reward of each round is also upper bounded by piN . This implies that the
reward has no structure, and consequently the α-smoothness in this setting holds with α = 1.
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Example A.3 (Lottery Ticket). There areK different lotteries to choose from. Lottery i ∈ [K] hasN
winning scratch cards, each with a prize of M . The probability to extract a winning ticket in lottery i
is pi. The player has to choose a lottery at each time step. At each round, the player buys n tickets
and sequentially scratches them and observes the reward. If N = 1 the total amount the player can
win is M and the reward is 1-smooth. Indeed, suppose that the first n− 1 tickets are not winning.
This does not precludes the possibility of still gaining the maximum cumulative reward with the last
ticket. Conversely, if N = n the total amount the player can win is R

i
= NM , and the reward is

n-smooth. More specifically, by scratching the first ticket, the player can get useful information on
the cumulative reward if the reward is either zero or M . If the player observed a zero reward so far,
the maximum achievable cumulative reward becomes (N − 1)M . Conversely if the player observed
a positive reward, the overall reward is in the interval [M,NM ].
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Theorem 7.3. META-SD-NE is APX-Hard.

Proof. let η = max{c, (1 − 1
5

5
)}, where c is the constant factor approximation in Theorem 7.2.

Notice that Theorem 7.2 holds even if we replace the approximation factor c with the weaker constant
η ≥ c.

Given an instance of 3-SAT-5 with clauses C and variables V , we build an instance of the
META-SD-NE problem with the following structure. The tree of scene is composed by a line with a
scene sv for each v ∈ V in an arbitrary order. Then, it follows a line that includes a scene sc for each
clause c ∈ C in an arbitrary order. All the transition probabilities πs,s′ are set to 1. The set of ads A
includes two ads av and a∼v for each variable v ∈ V . Let ε = 1− η1/5, and let l denote a literal, i.e.,
l is a variable or its negation. The qualities of the ads are defined as follows: qav,sv = qa∼v,sv = 1
for each v ∈ V , and for each clause c ∈ C the quality is qal,sc = ε if the literal l belongs to the
clause. Every other quality is 0. Finally, let θa = 1 for each a ∈ A.

In the following, we show that if there exists an assignment that satisfies all the clauses the utility
is at least |V |+ |C|η4/5(1− η1/5), while if no assignment satisfies a η fraction of the clauses the
utility is at most |V |+ (1− η1/5)η|C|. To conclude the proof notice that |C| = 3

5
|V |. Hence,

|V |+ (1− η1/5)η|C|
|V |+ η4/5(1− η1/5)|C|

=
|V |+ 3

5
(1− η1/5)η|V |

|V |+ 3
5
η4/5(1− η1/5)|V |

=
1 + 3

5
(1− η1/5)η

1 + 3
5
η4/5(1− η1/5)

,

which is a constant strictly smaller than 1.
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soundness. Consider an assignment L, i.e., a set of literals including v or ∼ v for each variable
v ∈ V , that satisfies all the clauses. We build an assignment x of ads to scenes as follows. For
each variable v, let x assigns the ad al to the scene sv , where l ∈ {v,∼ v} is the literal not in the
assignment L, i.e., such that l ∈ {v,∼ v} \ L. Finally, let assign to each scene sc, c ∈ C, an ad al
such that the literal l ∈ L satisfies the clause and belongs to L. Notice that this clause exists since the
assignment satisfies all the clauses. Then, for each scene sv , v ∈ V , we have that the expected value
from the scene is 1. Moreover, for each scene sc, c ∈ C, we have that the quality qsc,x(sc) = ε, while
Ξ(x, sc) is at least (1− ε)4 since each literal appears in at most five clauses. Hence, the expected
value of the allocation is at least

|V |+ |C|(1− ε)4ε = |V |+ |C|η4/5(1− η1/5).

completeness. Consider an assignment of ads to nodes x. Let V ∗ ⊆ V be the set of variables
v ∈ V such that q̃(x, sv) = 1. Then, notice that the expected value of each scene sv , v ∈ V \ V ∗
is 0. Let C∗ ⊆ C be the set of clauses c such that an ad is assigned to sc and qx(sc),sc = ε. Then,
notice that the expected value of each scene sc, c ∈ C \C∗ is 0. We can split C∗ in two subsets. The
set C2 = {c ∈ C∗ : x(sc) ∈ {av, a∼v}v∈V ∗}, while the set C1 = C∗ \ C2. Then, we show that
there exists a feasible assignment L that satisfies at least C2 clauses, implying that |C2| ≤ η|V |. To
see that, consider the assignment L = {l : al ∈ {x(sc)}c∈C2}. As a first step, we show that the
partial assignment is feasible. Suppose by contradiction that there exist two literals v,∼ v belonging
to L. Since av ∈ L, then there exists a clause c ∈ C2 such that x(sc) = av . Moreover, since c ∈ C∗,
the scene sc has positive quality and x(sv) 6= av . Then, since v ∈ V ∗, we have that x(sv) = a∼v .
By the definition of C∗, C2 does not include any clause c such that x(sc) = a∼v since they have 0
utility (the ad has been converted in scene sv and Ξ(x, sc) = 0). Moreover, it is easy to see that the
assignment satisfies all the clauses in C2 by the definition of C∗ and the qualities of the scenes.

Now, we bound the cardinality of C1. Notice that since each variable v ∈ V appears in 5 clauses
(considering v and its negation ∼ v), for each variable v /∈ V ∗ there exist at most 5 clauses c ∈ C
such that qx(sc),sc = ε and x(sc) ∈ {av, a∼v}. Then, for each c ∈ C1 there exists a literal v such
x(sc) = av or x(sc) = a∼v , x(sv) 6= av , and x(sv) 6= a∼v . Recall that V \ V ∗ is the set of
variable v such that x(sv) 6= av and x(sv) 6= a∼v . Since each variable appears in at most 5 clauses,
we have that |C1| ≤ 5(|V | − |V ∗|). Moreover, by the definition of η it holds 5ε = 5(1− η1/5) = 1.
Hence, the total utility is at most

|V ∗|+ ε
[
|C2|+ |C1|

]
≤ |V ∗|+ ε[|C2|+ 5(|V | − |V ∗|)]
= |V |∗ + (|V | − |V ∗|) + ε|C2|
= |V |+ ε|C2|
≤ |V |+ εη|C|

= |V |+ (1− η1/5)η|C|

This concludes the proof.

Lemma 7.2. Function f(·) is monotone submodular.

Proof. It is easy to see that the function is monotone since adding an ad a ∈ A to a scene s ∈ S we
increase the expected probability that ad a is converted. Moreover, since this ad a has no externalities
on other ads, the convertion probability of the other ads does not decreases.

In the following, we show that the function f is submodular. Consider two sets D, D′ such that
D ⊆ D′. Then, for each (a∗, s∗) ∈ G \D′ we need to show show that

f(D ∪ {(a∗, s∗)})− f(D) ≥ f(D′ ∪ {(a∗, s∗)})− f(D′).
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To do so, it is sufficient to prove this for all the functions fs̄,ā(·), a ∈ A, s̄ ∈ S : ρ(s̄) = ∅. If ā 6= a∗

or s∗ /∈ σs̄ it trivially holds since the value of the function fs̄,ā(·) does not depend on the element
(a∗, s∗). Otherwise, notice that a∗ = ā and

fs̄,a∗(D) =
∑

s∈σs̄:(a∗,s)∈D
qa∗,s

∏
s′∈σs\{s}:(a∗,s′)∈D

(1− qa∗,s′).

Then,

fs̄,a∗(D ∪ (a∗, s∗))− fs̄,a∗(D)

=
∑

s∈σs̄:(a∗,s)∈D∪{(a∗,s∗)}
qs,a∗

∏
s′∈σs\{s}:(s′,a∗)∈D∪{(a∗,s∗)}

(1− qa∗,s′)−

−
∑

s∈σs̄:(a∗,s)∈D
qa∗,s

∏
s′∈σs\{s}:(a∗,s′)∈D

(1− qa∗,s′) =

=
∑

s∈σs∗\{s∗}:(a∗,s)∈D∪{(a∗,s∗)}

qa∗,s
∏

s′∈σs\{s}:(a∗,s′)∈D
(1− qa∗,s′)+

+ qa∗,s∗
∏

s∈σs∗\{s∗}:(a∗,s)∈D

(1− qa∗,s)+

+
∑

s∈σs̄\σs∗ :(a∗,s)∈D∪{(a∗,s∗)}

qa∗,s(1− qa∗,s∗)
∏

s′∈σs\{s}:(a∗,s′)∈D
(1− qa∗,s′)−

−
∑

s∈σs∗\{s∗}:(a∗,s)∈D

qa∗,s
∏

s′∈σs\{s}:(a∗,s′)∈D
(1− qa∗,s′)−

−
∑

s∈σs̄\σs∗ :(a∗,s)∈D

qa∗,s
∏

s′∈σs\{s}:(a∗,s′)∈D
(1− qa∗,s′)

= qa∗,s∗
∏

s∈σs∗\{s∗}:(a∗,s)∈D

(1− qa∗,s)+

+
∑

s∈σs̄\σs∗ :(a∗,s)∈D∪{(a∗,s∗)}

qa∗,s(1− qa∗,s∗)
∏

s′∈σs\{s}:(a∗,s′)∈D
(1− qa∗,s′)−

−
∑

s∈σs̄\σs∗ :(a∗,s)∈D

qa∗,s
∏

s′∈σs\{s}:(a∗,s′)∈D
(1− qa∗,s′) =

= qa∗,s∗
∏

s∈σs∗\{s∗}:(a∗,s)∈D

(1− qa∗,s)−

− qa∗,s∗
∑

s∈σs̄\σs∗ :(a∗,s)∈D

qa∗,s
∏

s′∈σs\{s}:(a∗,s′)∈D
(1− qa∗,s′) =

= qa∗,s∗

[ ∏
s∈σs∗\{s∗}:(a∗,s)∈D

(1− qa∗,s)

]
·

·

[
1−

∑
s∈σs̄\σs∗ :(a∗,s)∈D

qa∗,s
∏

s′∈σs\σs∗ :(a∗,s′)∈D

(1− qa∗,s′)

]
≥

≥ qa∗,s∗
[ ∏
s∈σs∗\{s∗}:(a∗,s)∈D′

(1− qa∗,s)

]
·

·

[
1−

∑
s∈σs̄\σs∗ :(a∗,s)∈D

qa∗,s
∏

s′∈σs\σs∗ :(a∗,s′)∈D

(1− qa∗,s′)

]
≥
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≥ qa∗,s∗
[ ∏
s∈σs∗\{s∗}:(a∗,s)∈D′

(1− qa∗,s)

]
·

·

[
1−

∑
s∈σs̄\σs∗ :(a∗,s)∈D′

qa∗,s
∏

s′∈σs\σs∗ :(a∗,s′)∈D′
(1− qa∗,s′)] =

=
∑

s∈σs̄:(a∗,s)∈D′∪{(a∗,s∗)}
qs,a∗

∏
s′∈σs\{s}:(s′,a∗)∈D′∪{(a∗,s∗)}

(1− qa∗,s′)−

−
∑

s∈σs̄:(a∗,s)∈D′
qa∗,s

∏
s′∈σs\{s}:(a∗,s′)∈D′

(1− qa∗,s′) =

= fs̄,a∗(D
′ ∪ (a∗, s∗))− fs̄,a∗(D′)

where the first inequality holds since we are adding elements smaller than 1 to the product. The
second inequality comes from the following probabilistic analysis:∑

s∈σs̄\σs∗ :(a∗,s)∈D

qa∗,s
∏

s′∈σs\σs∗ :(a∗,s′)∈D

(1− qa∗,s′)

is the probability that at least one element of the set {s ∈ σs̄ \ σs
∗

: (a∗, s) ∈ D} is converted
when each scene s converts with probability qa∗,s. Hence, adding more scenes in which a∗ can be
converted, i.e. replacing D with D′, increases the probability of conversion. Finally, the second-to-
last equality comes from steps similar to the one in the second, third, fourth, and fifth equalities in
reverse order. This concludes the proof.

Theorem 7.6. For any ε > 0, it is NP-Hard to approximate META-SI-E to within a factor |k+1|1−ε,
where k is the memory length.

Proof. Given a graph G = (V,E), we build an instance of META-SI-E such that there exists an ad
av for each v ∈ V . The tree of scenes is composed by a line with a scene sv for each v ∈ V in an
arbitrary order. All the transition probabilities πs,s′ are set to 1, all the qualities qa,s are set to 1, and
all the values per conversion are θa are set to 1. Finally, the externalities γav,av′ = 1 if (v, v′) ∈ E
and 0 otherwise, while the memory length k = |V | − 1. We show that if there exists a clique of size
|V |1−ε, then there exists an ad allocation with value at least |k + 1|1−ε, while if all the cliques have
size at most |V |ε, then all the allocations have value at most |k + 1|ε. Since ε can be arbitrary small,
this concludes the proof.

soundness. Suppose that there exists a clique V ∗ of size |V |1−ε. Consider the allocation x∗ in
which each ad in V ∗ is allocated to one of the scene (in an arbitrary order), while the other ads are not
allocated. It is easy to see that since there are |V |1−ε different ads allocated and there are no there
are no externalities among the allocated ads, i.e., γav,av′ = 1 for all v, v′ ∈ V ∗, then the allocation
expected value is |V ∗| ≥ |V |1−ε = |k + 1|1−ε.

completeness. Suppose by contradiction that all the cliques have size at most |V |ε and that there
exists an allocation x with value strictly larger than |k + 1|ε. First, notice that the expected value
provided by an ad a ∈ A is at most 1. This holds since θa = 1 and an ad can be converted ad most
one time. Let Ā be the set of allocated ads that do not suffer negative externalities and hence provide
a positive utility, i.e., the set of ads a assigned to a scene s such that γx(s′),a = 1 for each s′ ∈ σs.
Recall that externalities strictly smaller than 1 set the probability of conversion to 0 by construction.
Hence all the ads not in Ā provide 0 utility. Then, the set Ā does not include two ads av , av′ such
that (v, v′) /∈ E. Otherwise, we have that the first visualized ad has negative externalities on the
second, contradiction the definition of Ā. Let V̄ be the node of the graph relative to the ad in Ā, i.e.,
v ∈ V̄ if and only if av ∈ Ā. V̄ is such that (v, v′) ∈ E for each v, v′ ∈ V̄ and hence V̄ is a clique.
Since the expected value of the allocation is |Ā| = |V̄ | ≤ |V |ε = |k + 1|ε we reach a contradiction,
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C.1 Chapter 8

C.1.1 Omitted Proofs

Theorem 8.1 (Inapproximability). For any ρ ∈ (0, 1], there is no polynomial-time algorithm
returning a ρ-approximation to the problem in Equations (8.1a)–(8.1c), unless P = NP.

Proof. We restrict to the instances of SUBSET-SUM such that z ≤
∑
i∈S ui. Solving these instances

is trivially NP-hard, as any instance with z >
∑
i∈S ui is not satisfiable, and we can decide it in

polynomial time. Given an instance of SUBSET-SUM, let ` =
∑
i∈S ui+1

ρ
. Let us notice that, the

lower the degree of approximation we aim, the larger the value of `. For instance, when study the
problem of computing an exact solution, we set ρ = 1 and therefore ` =

∑
i∈S ui + 1, whereas,

when we require a 1/2-approximation, we set ρ = 1/2 and therefore ` = 2(
∑
i∈S ui + 1). We have

|S| + 1 subcampaigns, each denoted with Cj . The available bid values belong to {0, 1} for every
subcampaign Cj . The parameters of the subcampaigns are set as follows.

• Subcampaign C0: we set v0 = 1, and

c0(x) =

2`+ z if x = 1

0 otherwise
, n0(x) =

` if x = 1

0 otherwise
.
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• Subcampaign Cj for every j ∈ S: we set vj = 1, and

cj(x) =

ui`+ z if x = 1

0 otherwise
, nj(x) =

ui if x = 1

0 otherwise
.

We set the daily budget β = 2(z + `) and the ROI limit Λ = 1
2

.1

We show that, if a SUBSET-SUM instance is satisfiable, then the corresponding instance of our
problem admits a solution with a revenue larger than `, while, if a SUBSET-SUM instance is not
satisfiable, the maximum revenue in the corresponding instance of our problem is at most ρ `− 1.
Thus, the application of any polynomial-time ρ-approximation algorithm to instances of our problem
generated from instances of SUBSET-SUM as described above would return a solution whose value
is not smaller than ρ ` when the SUBSET-SUM instance is satisfiable, and it is not larger than ρ `− 1
when the SUBSET-SUM instance is not satisfiable. As a result, whenever such an algorithm returns a
solution with a value that is not smaller than ρ `, we can decide that the corresponding SUBSET-SUM
instance is satisfiable. Analogously, whenever such an algorithm returns a solution with a value that is
in the range [ρ(ρ `− 1), ρ `− 1], we can decide that the corresponding SUBSET-SUM instance is not
satisfiable. Let us notice that the range [ρ(ρ `− 1), ρ `− 1] is well defined for every ρ ∈ (0, 1], as, by
construction, ρ ` =

∑
i∈S ui + 1 ≥ 1 and therefore ρ `− 1 ≥ ρ(ρ `− 1). Hence, such an algorithm

would decide in polynomial time whether or not a SUBSET-SUM instance is satisfiable, but this is
not possible unless P = NP. Since this holds for every ρ ∈ (0, 1], then no ρ-approximation to our
problem is allowed in polynomial time unless P = NP.

If. Suppose that SUBSET-SUM is satisfied by the set S∗ ⊆ S and that itss solution assigns
xi = 1 if i ∈ S∗ and xi = 0 otherwise, and it assigns x0 = 1. The total revenue is `+ z ≥ ` and
the constraints are satisfied. In particular, the sum of the costs is 2` + z + z = 2(` + z), while
ROI = `+z

2`+2z
= 1

2
.

Only if. Assume by contradiction that the instance of our problem admits a solution with a
revenue strictly larger than ρ `−1 and that SUBSET-SUM is not satisfiable. Then, it is easy to see that
we need x0 = 1 for campaign C0 as the maximum achievable revenue is

∑
i∈S ui = ρ `− 1 when

x0 = 0. Thus, since x0 = 1, the budget constraint forces
∑
i∈S:xi=1 ci(xi) ≤ z, thus implying∑

i∈S:xi=1 ui ≤ z. By the satisfaction of the ROI constraint, i.e.,
∑
i∈S:xi=1 ui+l∑

i∈S:xi=1 ui+2l+z
≥ 1

2
, it must

hold
∑
i∈S:xi=1 ui ≥ z. Therefore, the set S∗ = {i ∈ S : xi = 1} is a solution to SUBSET-SUM,

thus reaching a contradiction. This concludes the proof.

Theorem 8.4 (GCB pesudo-regret). Given δ ∈ (0, 1), GCB applied to the problem in Equa-
tions (8.1a)–(8.1c), with probability at least 1− δ, suffers from a pseudo-regret of:

RT (GCB ) ≤

√√√√8Tv2
maxN3bT

ln(1 + σ2)

N∑
j=1

γj,T ,

where bt := 2 ln
(
π2NQTt2

3δ

)
is an uncertainty term used to guarantee the confidence level required

by GCB, vmax := maxj∈{1,...,N} vj is the maximum value per click over all subcampaigns, and
Q := maxj∈{1,...,N} |Xj | is the maximum number of bids in a subcampaign.

1For the sake of clarity, the proof uses simple instances. The adoption of these instances is crucial to identify
the most basic settings in which the problem is hard, and it is customarily done in the literature. Let us notice
that it is possible to prove the theorem using more realistic instances. For example, we can build a reduction in
which the costs are smaller than the values, i.e., ci(x) < ni(x)vi. In particular, the reduction holds even if we set
c0(1) = ε(2l + z), cj(1) = εui, β = 2ε(z + l), and Λ = 1/(2ε) for an arbitrary small ε.
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Proof. This proof extends the proof provided by Accabi et al. (2018) to the case in which multiple
independent GPs are present in the optimization problem.

Let us define rµ(x) as the expected reward provided by a specific allocation x = (x1, . . . , xN )
under the assumption that the parameter vector of the optimization problem is µ. Moreover, let

η :=
[
w1(x1), . . . , wN (x|XN |), w1(x1), . . . , wN (x|XN |),−c1(x1), . . . ,−cN (x|XN |)

]
,

be the vector characterizing the optimization problem in Equations (8.1a)-(8.1c), xt be the allocation
chosen by the GCB algorithm at round t, x∗η the optimal allocation—i.e., the one solving the discrete
version of the optimization problem in Equations (8.1a)-(8.1c) with parameter η—, and r∗η the
corresponding expected reward.

To guarantee that GCB provides a sublinear pseudo-regret, we need that a few assumptions are
satisfied. More specifically, we need a monotonicity property, stating that the value of the objective
function increases as the values of the elements in µ increase and a Lipschitz continuity assumption
between the parameter vector µ and the value returned by the objective function in Equation (8.1a).
Formally:

Assumption C.1 (Monotonicity). The expected reward rµ(S) :=
∑N
j=1 vj nj(xj,t), where S is the

bid allocation, is monotonically non decreasing in µ, i.e., given µ, η s.t. µi ≤ ηi for each i, we have
rµ(S) ≤ rη(S) for each S.

Assumption C.2 (Lipschitz continuity). The expected reward rµ(S) is Lipschitz continuous in the
infinite norm w.r.t. the expected payoff vector µ, with Lipschitz constant L > 0. Formally, for
each µ,η we have |rµ(S)− rη(S)| ≤ L||µ− η||∞, where the infinite norm of a payoff vector is
||µ||∞ := maxi |µi|.

Trivially, we have that the Lipschitz continuity holds with constant L = N (number of subcam-
paigns). Instead, the monotonicity property holds by definition of µ, as the increase of a value of
wj(x) would increase the value of the objective function, and the increase of the values of wj(x) or
cj(x) would enlarge the feasibility region of the problem, thus not excluding optimal solutions.

Let us now focus on the per-step expected regret, defined as:

regt := r∗η − rη(xt).

Let us recall a property of the Gaussian distribution which will be useful in what follows. Be
r ∼ N (0, 1) and c ∈ R+, we have:

P[r > c] =
1√
2π
e−

c2

2

∫ ∞
c

e−
(r−c)2

2
−c(r−c) dr

≤ e−
c2

2 P[r > 0] =
1

2
e−

c2

2 ,

since e−c(r−c) ≤ 1 for r ≥ c. For the symmetry of the Gaussian distribution, we have:

P[|r| > c] ≤ e−
c2

2 . (C.1)

Let us focus on the GP modeling the number of clicks. Given a generic sequence of ele-
ments (xj,1, . . . , xj,1), with xj,h ∈ Xj , and the corresponding sequence of number of clicks
(ñj,1(xj,1), . . . , ñj,t(xj,t)), we have that:

nj,t(x) ∼ N (n̂j,t(x), (σ̂nj,t(x))2),

for all x ∈ Xj . Thus, substituting r =
n̂j,t(x)−nj,t(x)

σ̂nj,t(x)
and c =

√
bt in Equation (C.1), we obtain:

P
[
|n̂j,t(x)− nj,t(x)| >

√
btσ̂

n
j,t(x)

]
≤ e−

bt
2 . (C.2)
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Recall that, after n rounds, each arm can be chosen a number of times from 1 to n. Applying the
union bound over the rounds (h ∈ {1, . . . , T}), the sub-campaigns Cj (Cj with j ∈ {1, . . . , N}),
the number of times the arms in Cj are chosen (t ∈ {1, . . . , n}), and the available arms in Cj
(x ∈ Xj), and exploiting Equation (C.2), we obtain:

P

 ⋃
h,j,t,x

(
|n̂j,t(x)− nj,t(x)| >

√
btσ̂

n
j,t(x)

) (C.3)

≤
T∑
h=1

N∑
j=1

n∑
t=1

|Xj |e−
bt
2 . (C.4)

Thus, choosing bt = 2 ln
(
π2NQTt2

3δ

)
, we obtain:

T∑
h=1

N∑
j=1

n∑
t=1

|Xj |e−
bt
2 ≤

T∑
h=1

N∑
j=1

n∑
t=1

Q
3δ

π2NQTt2

∞∑
n=1

2δ

π2t2
=
δ

2
,

where we used the fact that Q ≥ |Xj | for each j ∈ {1, . . . N}.
Using the same proof on the GP defined over the costs leads to:

P

 ⋃
h,j,t,x

(
|ĉj,t(x)− ĉj,t(x)| >

√
btσ̂

c
j,t(x)

) ≤ δ

2
.

The above proof implies that the union of the event that all the bounds used in the GCB algorithm
holds with probability at least 1− δ. Formally, for each t ≥ 1, we know that with probability at least
1− δ the following holds for all xj ∈ Xj , j ∈ {1, . . . N}, and number of times the the arm xj has
been pulled over t rounds:

|n̂j(xj)− nj(xj)| ≤
√
btσ̂

n
j,t(xj), (C.5)

|ĉj(xj)− cj(xj)| ≤
√
btσ̂

c
j,t(xj). (C.6)

From now on, let us assume we are in the clean event that the previous bounds hold.
Let us focus on the term rµ(xt). The following holds:

rµ(xt) ≥ r∗µ ≥ rµ(x∗µ) ≥ rη(x∗µ) = r∗η, (C.7)

where we use the definition of r∗µ, and the monotonicity property of the expected reward (Assump-
tion C.1), being (µ)i ≥ (η)i , ∀i. Using Equation (C.7), the instantaneous expected pseudo-regret
regt at round t satisfies the following inequality:

regt = r∗η − rη(xt) ≤ rµ(xt)− rη(xt) = (C.8)

≤ rµ(xt)− rµ̂(xt)︸ ︷︷ ︸
ra

+ rµ̂(xt)− rη(xt)︸ ︷︷ ︸
rb

, (C.9)

where

µ̂ :=
[
ŵ1,t−1(x1), . . . , ŵN,t−1(x|XN |),ŵ1,t−1(x1), . . . , ŵN,t−1(x|XN |), (C.10)

− ĉ1,t−1(x1), . . . ,−ĉN,t−1(x|XN |)
]
,
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is the vector composed of the estimated average payoffs for each arm x ∈ Xj and each campaign Cj ,
where ŵj,t−1(x) := vj n̂j,t−1(x).

We use the Lipschitz property of the expected reward function (see Assumption C.2) to bound
the terms in Equation (C.9) as follows:

ra ≤ L||µ− µ̂||∞ = L max
j∈{1,...,N}

(
vmax

√
bt max
x∈Xj

σ̂nj,t(x)

)
(C.11)

≤ Nvmax

√
bt max
j∈{1,...,N}

(
max
x∈Xj

σ̂nj,t(x)

)
(C.12)

≤ Nvmax

√
bt

N∑
j=1

(
max
x∈Xj

σ̂nj,t(x)

)
, (C.13)

rb ≤ L||µ̂− η||∞

≤ Nvmax

√
bt

N∑
j=1

(
max
x∈Xj

σ̂nj,t(x)

)
, (C.14)

where Equation (C.11) holds by the definition of µ, Equation (C.13) holds since the maximum
over a set is not greater than the sum of the elements of the set, if they are all non-negative, and
Equation (C.14) directly follows from Equation (C.5). Plugging Equations (C.13) and (C.14) into
Equation (C.9), we obtain:

regt ≤ 2Nvmax

√
bt

N∑
j=1

(
max
x∈Xj

σ̂nj,t(x)

)
. (C.15)

We need now to upper bound σ̂nj,t(x). Consider a realization nj(·) of a GP over Xj and recall that,
thanks to Lemma 5.3 in (Srinivas et al., 2010), under the Gaussian assumption we can express the
information gain IGj,t provided by (ñj(x̂j,1), . . . , ñj(x̂j,|Xj |)) corresponding to the sequence of
arms (x̂j,1, . . . , x̂j,|Xj |) as:

IGj,t =
1

2

t∑
h=1

log
(
1 + σ−2 (σ̂nj,t(x̂j,h))2) . (C.16)

We have that:

(σ̂nj,t(x̂j,h))2 = σ2 [σ−2(σ̂nj,t(x̂j,h))2] ≤ log
[
1 + σ−2(σ̂nj,t(x̂j,h))2

]
log (1 + σ−2)

, (C.17)

since s2 ≤ σ−2 log (1+s2)

log(1+σ−2)
for all s ∈ [0, σ−1], and σ−2(σ̂nj,t(x̂j,h))2 ≤ σ−2 k(x̂j,h, x̂j,h) ≤ σ−2,

where k(·, ·) is the kernel of the GP. Since Equation (C.17) holds for any x ∈ Xj and for any
j ∈ {1, . . . N}, then it also holds for the arm x̂max maximizing the variance (σ̂nj,t(x̂j,h))2 over Xj .
Thus, setting c̄ = 8N2

log(1+σ−2)
and exploiting the Cauchy-Schwarz inequality, we obtain:

(
RT
)2

(GCB) ≤ T
T∑
t=1

reg2
t

≤ T
T∑
t=1

4N2v2
maxbt

[
N∑
j=1

(
max
x∈Xj

σ̂nj,t(x)

)]2

≤ 4N2v2
maxTbT

T∑
t=1

[
N

N∑
j=1

max
x∈Xj

(σ̂nj,t(x))2

]
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≤ c̄Nv2
maxTbT

N∑
j=1

1

2

T∑
t=1

max
x∈Xj

log
(
1 + σ−2 (σ̂nj,t(x̂j,h))2)

≤ c̄Nv2
maxTbT

N∑
j=1

γj,T .

We conclude the proof by taking the square root on both the r.h.s. and the l.h.s. of the last inequality.

Theorem 8.8 (GCBsafe(ψ, 0) pseudo-regret and safety with tolerance). When:

ψ ≥ 2
βopt + nmax

β2
opt

N∑
j=1

vj

√
2 ln

(
π2NQT 3

3δ′

)
σ

and

βopt < β

∑N
j=1 vj

N βoptψ

βopt+nmax
+
∑N
j=1 vj

,

where δ′ ≤ δ, βopt is the spend at the optimal solution of the original problem, and nmax :=
maxj,x nj(x) is the maximum over the sub-campaigns and the admissible bids of the expected
number of clicks, GCBsafe(ψ, 0) provides a pseudo-regret w.r.t. the optimal solution to the original

problem of O
(√

T
∑N
j=1 γj,T

)
with probability at least 1− δ − δ′

QT2 , while being δ-safe w.r.t. the
constraints of the auxiliary problem.

Proof. In what follows, we show that, at a specific day t, since the optimal solution of the original
problem

{
x∗j
}N
j=1

is included in the set of feasible ones, we are in a setting analogous to the one
of GCB, in which the regret is sublinear. Let us assume that the upper bounds on all the quantities
(number of clicks and costs) holds. This has been shown before to occur with overall probability δ over
the whole time horizon T . Moreover, notice that combining the properties of the budget of the optimal

solution of the original problem βopt and using ψ = 2
βopt+nmax

β2
opt

∑N
j=1 vj

√
2 ln

(
π2NQT3

3δ′

)
σ, we

have:

βopt < β

∑N
j=1 vj

N βoptψ

βopt+nmax
+
∑N
j=1 vj

(C.18)

(
N βoptψ

βopt + nmax
+

N∑
j=1

vj

)
βopt < β

N∑
j=1

vj (C.19)

2N

N∑
j=1

vj

√
2 ln

(
π2NQT 3

3δ′

)
σ +

N∑
j=1

vjβopt < β
N∑
j=1

vj (C.20)

β > βopt + 2N

√
2 ln

(
π2NQT 3

3δ′

)
σ. (C.21)

First, let us evaluate the probability that the optimal solution is not feasible. This occurs if its
bounds are either violating the ROI or budget constraints. First, we show that analysing the budget
constraint, the optimal solution of the original problem is feasible with high probability. Formally, it
is not feasible with probability:

P
(

N∑
j=1

cj(x
∗
j ) > β

)
≤ P

(
N∑
j=1

cj(x
∗
j ) > βopt + 2N

√
2 ln

(
π2NQT 3

3δ′

)
σ

)
(C.22)
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= P
(

N∑
j=1

cj(x
∗
j ) >

N∑
j=1

cj(x
∗
j ) + 2N

√
2 ln

π2NQT 3

3δ′
σ

)
(C.23)

≤
N∑
j=1

P
(
cj(x

∗
j ) > cj(x

∗
j ) + 2

√
2 ln

π2NQT 3

3δ′
σ

)
(C.24)

=

N∑
j=1

P
(
ĉj,t−1(x∗j )− cj(x∗j ) > −

√
btσ̂

c
j,t−1(x∗j ) + 2

√
2 ln

π2NQT 3

3δ′
σ

)
(C.25)

≤
N∑
j=1

P
(
ĉj,t−1(x∗j )− cj(x∗j ) >

√
2 ln

π2NQT 3

3δ′
σ̂cj,t−1(x∗j )

)
(C.26)

≤
N∑
j=1

P
(
ĉj,t−1(x∗j )− cj(x∗j )

σ̂cj,t−1(x∗j )
>

√
2 ln

π2NQT 3

3δ′

)
(C.27)

≤
N∑
j=1

3δ′

π2NQT 3
=

3δ′

π2QT 3
, (C.28)

where, in the inequality in Equation (C.22) we used Equation (C.21), in Equation (C.27) we used the
fact that π

2NQt2T
3δ

≤ π2NQT3

3δ′ for each t ∈ {1, . . . , T}, σ̂cj,t−1(x∗j ) ≤ σ for each j and t, and the
inequality in Equation (C.28) is from Srinivas et al. (2010). Summing over the time horizon T , we
get that the optimal solution of the original problem

{
x∗j
}N
j=1

is excluded from the set of the feasible

ones with probability at most 3δ′
π2QT2 .

Second, we derive a bound over the probability that the optimal solution of the original problem
is feasible due to the newly defined ROI constraint. Let us notice that since the ROI constraint is
active we have Λ = Λopt. The probability that

{
x∗j
}N
j=1

is not feasible due to the ROI constraint is:

P
(∑N

j=1 vj nj(x
∗
j )∑N

j=1 cj(x
∗
j )

< Λ− ψ

)
(C.29)

≤ P
(∑N

j=1 vj nj(x
∗
j )∑N

j=1 cj(x
∗
j )

< Λopt − 2
βopt + nmax

β2
opt

N∑
j=1

vj

√
2 ln

π2NQT 3

3δ′
σ

)
(C.30)

= P
(∑N

j=1 vj nj(x
∗
j )∑N

j=1 cj(x
∗
j )

<

∑N
j=1 vj nj(x

∗
j )∑N

j=1 cj(x
∗
j )
− 2

βopt + nmax

β2
opt

N∑
j=1

vj

√
2 ln

π2NQT 3

3δ′
σ

)
(C.31)

= P
(

N∑
j=1

cj(x
∗
j )

N∑
j=1

vj nj(x
∗
j ) <

N∑
j=1

cj(x
∗
j )

N∑
j=1

vj nj(x
∗
j )

−2
βopt + nmax

β2
opt

N∑
j=1

cj(x
∗
j )

N∑
j=1

cj(x
∗
j )

N∑
j=1

vj

√
2 ln

π2NQT 3

3δ′
σ

)
(C.32)

= P
(

N∑
j=1

cj(x
∗
j )

N∑
j=1

vj nj(x
∗
j )−

N∑
j=1

cj(x
∗
j )

N∑
j=1

vj nj(x
∗
j )+

2

βopt

N∑
j=1

cj(x
∗
j )

N∑
j=1

cj(x
∗
j )

N∑
j=1

vj

√
2 ln

π2NQT 3

3δ′
σ
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+

N∑
j=1

cj(x
∗
j )

N∑
j=1

vj nj(x
∗
j )−

N∑
j=1

cj(x
∗
j )

N∑
j=1

vj nj(x
∗
j )+

2nmax

β2
opt

N∑
j=1

cj(x
∗
j )

N∑
j=1

cj(x
∗
j )

N∑
j=1

vj

√
2 ln

π2NQT 3

3δ′
σ < 0

)
(C.33)

≤ P


N∑
j=1

vj nj(x
∗
j )−

N∑
j=1

vj nj(x
∗
j ) + 2

∑N
j=1 cj(x

∗
j )

βopt︸ ︷︷ ︸
≥1

N∑
j=1

vj

√
2 ln

π2NQT 3

3δ′
σ < 0


+ P

(
N∑
j=1

cj(x
∗
j )

N∑
j=1

vj nj(x
∗
j )−

N∑
j=1

cj(x
∗
j )

N∑
j=1

vj nj(x
∗
j )

+2

∑N
j=1 cj(x

∗
j )
∑N
j=1 cj(x

∗
j )

β2
opt︸ ︷︷ ︸
≥1

N∑
j=1

vj nmax︸ ︷︷ ︸
≥nj(x∗j )

√
2 ln

π2NQT 3

3δ′
σ < 0

 (C.34)

≤
N∑
j=1

P
(
nj(x

∗
j )− nj(x∗j ) + 2

√
2 ln

π2NQT 3

3δ′
σ ≤ 0

)

+

N∑
j=1

P
(
cj(x

∗
j )− cj(x∗j ) + 2

√
2 ln

π2NQT 3

3δ′
σ < 0

)
(C.35)

≤
N∑
j=1

P

n̂j,t−1(x∗j )−
√
btσ̂

n
j,t−1(x∗j )− nj(x∗j ) + 2

√
2 ln

π2NQT 3

3δ′
σ︸ ︷︷ ︸

≥√btσ̂nj,t−1(x∗j )

< 0



+

N∑
j=1

P

cj(x∗j )− ĉj,t−1(x∗j )−
√
btσ̂

c
j,t−1(x∗j ) + 2

√
2 ln

π2NQT 3

3δ′
σ︸ ︷︷ ︸

≥√btσ̂cj,t−1(x∗j )

< 0

 (C.36)

≤
N∑
j=1

P
(
nj(x

∗
j ) < n̂j,t−1(x∗j ) +

√
2 ln

π2NQT 3

3δ′
σ̂nj,t−1(x∗j )

)

+

N∑
j=1

P
(
cj(x

∗
j ) < ĉj,t−1(x∗j )−

√
2 ln

π2NQT 3

3δ′
σ̂cj,t−1(x∗j )

)
(C.37)

=

N∑
j=1

P
(
nj(x

∗
j )− n̂j,t−1(x∗j )

σ̂nj,t−1(x∗j )
>

√
2 ln

π2NQT 3

3δ′

)

+

N∑
j=1

P
(
ĉj,t−1(x∗j )− cj(x∗j )

σ̂cj,t−1(x∗j )
>

√
2 ln

π2NQT 3

3δ′

)
(C.38)

≤ 2

N∑
j=1

3δ′

π2NQT 3
=

6δ′

π2QT 3
, (C.39)

where in Equation (C.37) we used the fact that π2NQt2T
3δ

≤ π2NQT3

3δ′ for each t ∈ {1, . . . , T},
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Figure C.1: Parameters of the synthetic settings used in Experiment #1.

σ̂nj,t−1(x∗j ) ≤ σ for each j and t, and the inequality in Equation (C.39) is from Srinivas et al. (2010).
Summing over the time horizon T ensures that the optimal solution of the original problem

{
x∗j
}N
j=1

is excluded from the feasible solutions at most with probability 6δ′
π2QT2 . Finally, using a union bound,

we have that the optimal solution can be chosen over the time horizon with probability at least
1− 3δ′

π2QT2 − 6δ′
π2QT2 ≤ 1− δ′

QT2 .

Notice that here we want to compute the regret of the GCBsafe algorithm w.r.t.
{
x∗j
}N
j=1

which
is not optimal for the analysed relaxed problem. Nonetheless, the proof on the pseudo-regret provided
in Theorem 8.4 is valid also for suboptimal solutions in the case it is feasible with high probability.
This can be trivially shown using the fact that the regret w.r.t. a generic solution cannot be larger than
the one computed w.r.t. the optimal one. Thanks to that, using a union bound over the probability that
the bounds hold and that

{
x∗j
}N
j=1

is feasible, we conclude that with probability at least 1− δ− δ′
QT2

the regret GCBsafe is of the order of O
(√

T
∑N
j=1 γj,T

)
. Finally, thanks to the property of the

GCBsafe algorithm shown in Theorem 8.6, the learning policy is δ-safe for the relaxed problem.

C.1.2 Additional Details on the Experiments

Parameters and Setting of Experiment #1

Table C.1 specifies the values of the parameters of cost and number-of-click functions of the subcam-
paigns used in Experiment #1.
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Additional Results of Experiment #2

In Figures C.2, C.3, C.4, and C.5 we report the 90% and 10% of the quantities related to Experiment #2
provided by the GCBsafe, GCBsafe(0, 0.05), GCBsafe(0, 0.10), and GCBsafe(0, 0.15), respectively.
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Figure C.2: Results of Experiment #2: daily revenue (a), ROI (b), and spend (c) obtained by
GCBsafe. The dash-dotted lines correspond to the optimum values for the revenue and
ROI, while the dashed lines correspond to the values of the ROI and budget constraints.
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Figure C.3: Results of Experiment #2: daily revenue (a), ROI (b), and spend (c) obtained
by and GCBsafe(0, 0.05). The dash-dotted lines correspond to the optimum values for
the revenue and ROI, while the dashed lines correspond to the values of the ROI and
budget constraints.
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Figure C.4: Results of Experiment #2: daily revenue (a), ROI (b), and spend (c) obtained
by and GCBsafe(0, 0.10). The dash-dotted lines correspond to the optimum values for
the revenue and ROI, while the dashed lines correspond to the values of the ROI and
budget constraints.
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Figure C.5: Results of Experiment #2: daily revenue (a), ROI (b), and spend (c) obtained
by and GCBsafe(0, 0.15). The dash-dotted lines correspond to the optimum values for
the revenue and ROI, while the dashed lines correspond to the values of the ROI and
budget constraints.
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Additional Results of Experiment #3

In Figures C.6, C.7, and C.8 we report the 90% and 10% of the quantities analysed in the experimental
section for Experiment #3 provided by the GCB, GCBsafe, and GCBsafe(0.05, 0), respectively.
These results show that the constraints are satisfied by GCBsafe, and GCBsafe(0.05, 0) also with
high probability. While for GCBsafe this is expected due to the theoretical results we provided, the
fact that also GCBsafe(0.05, 0) guarantees safety w.r.t. the original optimization problem suggests
that in some specific setting GCBsafe is too conservative. This is reflected in a lower cumulative
revenue, which might be negative from a business point of view.
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Figure C.6: Results of Experiment #3: daily revenue (a), ROI (b), and spend (c) obtained
by GCB. The dash-dotted lines correspond to the optimum values for the revenue and
ROI, while the dashed lines correspond to the values of the ROI and budget constraints.
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Figure C.7: Results of Experiment #3: daily revenue (a), ROI (b), and spend (c) obtained by
GCBsafe. The dash-dotted lines correspond to the optimum values for the revenue and
ROI, while the dashed lines correspond to the values of the ROI and budget constraints.
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Figure C.8: Results of Experiment #3: daily revenue (a), ROI (b), and spend (c) obtained
by GCBsafe(0.05, 0). The dash-dotted lines correspond to the optimum values for the
revenue and ROI, while the dashed lines correspond to the values of the ROI and budget
constraints.
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C1 C2 C3 C4 C5 Λ

Setting 1 θj 530 417 548 571 550 10.0
δj 0.356 0.689 0.299 0.570 0.245
αj 83 97 72 100 96
γj 0.939 0.856 0.484 0.661 0.246

Setting 2 θj 597 682 698 456 444 14.0
δj 0.202 0.520 0.367 0.393 0.689
αj 83 98 56 60 51
γj 0.224 0.849 0.726 0.559 0.783

Setting 3 θj 570 514 426 469 548 10.5
δj 0.217 0.638 0.694 0.391 0.345
αj 97 78 53 80 82
γj 0.225 0.680 1.051 0.412 0.918

Setting 4 θj 487 494 467 684 494 12.0
δj 0.348 0.424 0.326 0.722 0.265
αj 62 79 76 69 99
γj 0.460 1.021 0.515 0.894 1.056

Setting 5 θj 525 643 455 440 600 14.0
δj 0.258 0.607 0.390 0.740 0.388
αj 52 87 68 99 94
γj 0.723 0.834 1.054 1.071 0.943

Setting 6 θj 617 518 547 567 576 11.0
δj 0.844 0.677 0.866 0.252 0.247
αj 71 53 87 98 59
γj 0.875 0.841 1.070 0.631 0.288

Setting 7 θj 409 592 628 613 513 11.5
δj 0.507 0.230 0.571 0.359 0.307
αj 77 78 91 50 71
γj 0.810 0.246 0.774 0.516 0.379

Setting 8 θj 602 605 618 505 588 13.0
δj 0.326 0.265 0.201 0.219 0.291
αj 67 80 99 77 99
γj 0.671 0.775 0.440 0.310 0.405

Setting 9 θj 486 684 547 419 453 13.0
δj 0.418 0.330 0.529 0.729 0.679
αj 53 82 58 96 100
γj 0.618 0.863 0.669 0.866 0.831

Setting 10 θj 617 520 422 559 457 14.0
δj 0.205 0.539 0.217 0.490 0.224
αj 51 86 93 61 84
γj 1.0493 0.779 0.233 0.578 0.562

Table C.1: Values of the parameters used in the 10 different settings of Experiment #4.

Parameters of Settings of Experiment #4

We report in Table C.1 the values of the parameters of cost and number-of-click functions of the
subcampaigns used in Experiment #4.
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