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Abstract

This thesis introduces a novel strategy targeted at tackling the problem of
reading complexity by presenting an approach based on the analysis of Lexicon
and Semantic. Contrary to the state of the art methods, that proposes a general
classification of the reading complexity, this approach generates its strength by the
independent analysis of the two mentioned domains. Thanks to this approach, it is
possible to provide to a content creator, interested in evaluating the complexity
of his work, a more specific analysis of the document by clearly distinguishing
the complexity of different areas. This will prove out to be of great benefit for
the author, since he will be able to properly adjust the complexity of his work,
according to the results provided by the software.

The peculiarity of this approach and the intrinsic innovation introduced is
correlated with the modality used to compute the two mentioned complexity.

Lexical Complexity has been implemented using a technique borrowed by a
similar task of Natural Language Processing: content selection. The two activities
present similar needs, within the content selection task, we need to recognize the
concept that best distinguishes a document, meanwhile, in the assessment of lexical
complexity, we want to identify which words better discriminate specific levels of
complexity.

Syntactic Complexity, instead, has been implemented using a deep learning-
based approach. In this case, the difficulty of the task mandated such a choice.
While it can be “simple” to associate a word to a specific level of complexity, it is not
so easy with grammatical features, unless specific linguistic researches are applied.
Given these premises, the choice of using a system that can automatically infer the
set of features that characterize each level of complexity is almost mandatory.

The system has been implemented for English, however, it can be easily adapted
to other languages, by simply changing the cores corpora. The entire process is, in
fact, language independent and can be easily transposed to any other language, for
which feasible corpora do exist. This implies that the approach can also be applied
in the context of a Second Language Learning (L2 Learning).
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Sommario

Questa tesi presenta una nuova strategia mirata ad affrontare il problema della
complessità di lettura, presentando un approccio basato sull’analisi del Lessico e
della Semantica. Contrariamente ai metodi comuni oggigiorno, che propongono
una classificazione generale della complessità di lettura, quest’approccio genera
la sua forza dall’analisi indipendente dei due domini menzionati in precedenza.
Grazie a quest’approccio, è possibile fornire al creatore di contenuti, interessato nel
valutare la complessità del suo lavoro, un’analisi più specifica dell’opera distinguendo
chiaramente tra le varie tipologie di complessità. Questo si rivelerà essere un grande
beneficio per l’autore, il quale sarà in grado di sistemare la complessità del suo
lavoro conformemente al risultato fornito dall’applicativo.

La peculiarità di questo approccio, e di conseguenza la sua innovatività, è
associata alla modalità in cui le due complessità sono calcolate.

La Complessità Lessicale è stata implementata usando una tecnica presa in
prestito da un compito simile tipico dell’Elaborazione del Linguaggio Naturale (ELN
o NLP in inglese): selezione del contenuto. Le due attività presentano dei bisogni
simili; nel caso sella selezione di contenuto, vogliamo riconoscere il concetto che
meglio distingue un certo documento, mentre, nell’individuazione della complessità
lessicale, l’obiettivo è individuare quali parole meglio rappresentano un certo livello
di complessità.

La Complessità Sintattica, invece, è stata implementata usando un approccio
basato sull’Apprendimento Profondo (o Deep Learning in inglese). La difficoltà
del compito ha reso questa scelta quasi obbligatoria. Infatti, mentre può essere
“semplice” assegnare una parola ad un certo livello di complessità, non è così semplice
con le caratteristiche grammaticali, a meno che non vengano eseguite delle ricerche
linguistiche mirate. Data questa premessa, la scelta di usare un sistema in grado
di inferire automaticamente l’insieme di elementi che caratterizzano ogni livello di
complessità, è quasi obbligatoria.

La procedura è stata implementata per la lingua inglese, tuttavia, può essere
facilmente adottata anche ad altri linguaggi, semplicemente cambiando il dataset
usato. L’intero processo è infatti indipendente dal linguaggio e può essere facilmente
trasposto ad ogni altro linguaggio per cui sono disponibili dei corpora. Questo
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implica che l’approccio può essere usato anche in un contesto di apprendimento di
una seconda lingua (L2 Learning).
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Chapter 1

Introduction

1.1 Motivations

In our current society content creator face a complex struggle when they try
to create a text for a specific level of understanding of a language and is not so
uncommon to have reader complaining about the effective complexity of a passage
or content either because it is too simple compared to their level of knowledge or
because it is too complex, leading in both ways to a frustration of the final user.

To access this need, various companies and researchers worked to create classifi-
cation indexes that can define the proper level of a text compared to a standardized
scale. This lead to the definition of common specification such as the Common
Score Standard in the US, the Common European Framework of Reference for
Languages (CEFR) in Europe and Hanyu Shuiping Kaoshi (HSK) for China, either
used for assessing the proficiency of second language learners or for defining the
level of knowledge that an individual must possess at a specific scholastic level.

In all these classification systems, however, almost no distinction is poised
among the nature of the features considered. The values retrieved, provide a general
Reading Complexity level, without specifying if it has to be associated with the
lexicon, syntactic, or the semantic used and eventually with which relevance to
each of them.

Some researchers tried to assess this deficit by implementing systems with
pre-engineered features, each one representing a specific aspect of a document.
Unfortunately, due to the intrinsic nature of this approach, the systems turn out to
be not transferable to languages different from the one for which they are developed.
Furthermore, the high amount of specialist features used will generate confusion in
the content creator.

For these reasons, in this thesis, we are going to propose BASILISCo (Bivariate
Advanced Syntax Index and Lexical Index for Subsuming Complexity), a system
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2 Introduction

that tries to satisfy this need, albeit only partially, by providing a diverse and
independent complexity classification for both lexicon and syntactic.

1.2 Aims

This research tries to assess the mentioned need by creating a mixed approach
that can produce as the result two values: one representing the Syntactic Complexity
and the other, the Lexical Complexity of the text. This decision is motivated by
the belief that when giving feedback to the content creator is important to provide
enough information, allowing him to understand which part is not reflecting the
desired difficulty both in term of grammatical structure and words used.

The choice for these two metrics is mainly based on the assumption that Reading
Complexity can be sub-categorized in Lexical, Syntactic, and Semantic Complexity,
following the main classification of the features used in the recent researches. Among
such features, Semantic is strictly dependent by the reader, considering our objective
to present a standardized analysis, we are going to ignore it while focusing only on
the former two.

In particular, Lexical Complexity associates with the idea that each individual
learns words by starting with the simplest ones and subsequently use such terms
as building blocks to increase the depth of his vocabulary. Syntactic Complexity,
instead, derives from the belief that more complex grammatical structures reflex
a deeper knowledge and master of the language. Both notions are intuitive and
perfectly reflect the system used to teach a language in the school environment.

1.3 Outline

The present document is subdivided into chapters, each devoted to a fundamental
topic required for the comprehension of the thesis.

Chapter 2 briefly presents the story of reading complexity up to the most recent
development, posing particular attention to the analysis of Lexical and Syntactic
Features. This chapter will also provide background knowledge, so to support the
reader in understanding the content of this thesis.

Chapter 3 presents the rationale behind the work, highlighting that even if the
thesis evolves in two different paths, a common ideal connects them. This chapter
also introduces the datasets that will be used in the research, together with a series
of analyses on their nature.

Chapter 4 is responsible for the lexical component of the research, and as
such, constitutes one of the two core chapters of this thesis. This chapter, in
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particular, will present the method used to compute the Lexical Complexity and
the experimental results obtained by implementing such an algorithm. The model
will then test the results against low-level metrics identified in previous researches
through correlation analysis. Lastly, we will propose a possible scaling system to
give semantics to the score obtained from new documents.

Chapter 5 is responsible for the syntactic component of the research, and
together with the previous chapter, it is one of the two core chapters of this work.
Given the common rationale of the work, this chapter will be structured in a similar
way to the previous one, the only difference being that two different models will be
proposed and analyzed.

Chapter 6 draws the main conclusions about the thesis work and suggests further
developments in this direction.





Chapter 2

Background

2.1 Introduction

One of the most relevant questions in reading research in the past years has
been to estimate the difficulty level of a document. This need was born from the
will to help students that are practicing to achieving the mastery of a language,
either as a step block needed to communicate within the society or as a personal
desire.

It is common knowledge that when learning a language, the most useful tools
are entertainment contents, mainly including books, tv-series, movies, music, and
videogames. For the scope of this research, we will focus only on literature’s works.

It is not uncommon for a language teacher to assign books to their students as
training material, however, not all books are alike, and some present a complexity
higher than others. The teacher needs to be able to correctly estimate the complexity
of the book and associate it with the level of the learner.

This task is the responsibility of the teacher since he follows the students during
every phase of the learning process and has a better understanding of the level of
the individual. Unfortunately, given the high volume of literature works present
in the market and the huge difference in the literary inclination of the students, a
means to automatically estimate the complexity of publications on a defined scale
is needed.

The first studies executed on the matter focused only on superficial characteristics
of the text (such as word or sentence length), giving birth to a series of language-
dependent formulas labeled as readability formulas. Most of these formulas, in an
upgraded version, are still used today by companies even if many researchers raised
objections against them through the years [7, 8].

Further studies, achieved through the use of Machine Learning approaches
revealed that more complex features covering all linguistic aspects of the text can

5



6 Background

provide a better result.
In this chapter, we are firstly going to describe the most relevant features in

text analysis and the approaches in which they are used. Then we will discuss the
more recent and innovative strategies based on machine learning and deep learning,
including the required knowledge to understand them.

2.2 Features
When thinking about the complexity of a text and trying to find out which

are the most evident linguistic features associated with it, usually, the first one
that comes to mind is either the difficulty of the words used or the complexity of
the grammatical structures of the sentence. However, these are just the tip of the
immense amount of linguistic features that can be taken into consideration when
verifying the complexity of literature work. There are so many that it would take
the entire thesis to describe and propose examples for each one.

Luckily that is not the objective of this thesis, so for the sake of simplicity,
we will present just the main categories in which these features can be grouped:
Lexical, Syntactic, and Semantic.

2.2.1 Lexical Features

The Lexical feature is the first that comes to mind when thinking about the
complexity of literature work. The reason is the vocabulary of the work; everyone
can imagine that a concept introduced using simple terms turns out to be easier
than the same concept presented with an archaic or polished terminology.

Let us consider for example the two following passages about Mourning Dove:

Mourning doves are light grey and brown, and males and females look
similar. The species mostly have one partner at a time. Both parents
incubate and care for their chicks. Adult mourning doves usually eat
only seeds. The parents feed crop milk to the young. (simple Wikipedia)

Mourning doves are light grey and brown and generally muted in color.
Males and females are similar in appearance. The species is generally
monogamous. Both parents incubate and care for the young. Mourning
doves eat almost exclusively seeds, but the young are fed crop milk by
their parents. (standard Wikipedia)

It is evident that the two passages manifest the same content but differ in
terminology, with the passage from simple wiki containing less complex terms
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compared to the regular version. Obvious is, for example, the use of “monogamous”
in the standard variant versus “one partner at a time” in the simplified sentence.
Or the use of “eat almost exclusively” compared to a simpler “usually eat only”.

2.2.2 Syntactic Features

Parallel to the lexicon used, the other element that jumps to mind, is the
grammatical structure of the sentence, or more in general, the Syntactic Features of
the document. While with lexical features we mainly focus on the nature of words,
with syntactic features, we have to consider the role that every word plays in the
sentence.

Broadly speaking, when considering Syntactic Features, we are referring to
information that can be captured using either Part Of Speech tagging, Morphology,
Chunking, Parse Tree, Dependency Analysis, or Analysis of Clauses.

Part Of Speech tagging is an activity that assigns to every lexical item a specific
category, called, part of speech (POS). This tagging activity can be executed at
two levels: Universal Part Of Speech (UPOS) and language-specific part of speech
(XPOS) where the former is a coarse classification, language-independent, that
assigns to every word one of the tags presented in table 2.1, while the second is
a fine-grained classification, with a notation dependent by the treebank in use.
Independently by the granularity of choice, the objective of this classification is to
group all the words that play a similar role in the grammatical structure of the
sentence. An example of POS tagging can be seen in Table 2.2 and 2.3, respectively
for UPOS and XPOS.

Morphology, instead, is an association of a set of features representing lexical
and grammatical property to a specific word form. Such features are additional
information that goes in support to a POS tag by specifying either lexical information
or the inflection of the considered word. Given their nature are usually divided
into two big categories: Lexical Features and Inflectional Features. The former
defines all the attributes associated with lexemes or lemmas, the latter, instead,
describe all the information that depends on the form of the word. Every feature
is usually presented in form Name: Value and every word can present multiple
features; furthermore, features are language and treebank dependent. Table 2.4
displays an example of morphological tagging.

Chunking also referred to as “Shallow Parsing” is a technique to analyze sentences,
that groups part of the sentence in higher-order units with a specific meaning, as it
could be with noun phrases or verb phrases. This technique can either be applied by
simply implementing classical research patterns, or using more advanced machine
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Table 2.1: Table presenting the list in alphabetical order of the Universal POS tags

Tag Meaning
ADJ Adjective
ADP Adposition
ADV Adverb
AUX Auxiliary

CCONJ Coordinating Conjunction
DET Determiner
INTJ Interjection
NOUN Noun
NUM Numeral
PART Particle
PRON Pronoun
PRONP Proper Noun
PUNCT Punctuation
SCONJ Subordinating Conjunction
SYM Symbol
VERB Verb

X Other

Table 2.2: UPOS tagging of the phrase “Mary likes dogs and cats”

Mary likes dogs and cats
PROPN VERB NOUN CCONJ NOUN

proper noun verb noun coordinating conjunction noun

Table 2.3: XPOS tagging of the phrase “Mary likes dogs and cats”

Mary likes dogs and cats
NNP VBZ NNS CC NNS

proper noun verb noun coordinating conjunction noun
singular 3rd person plural complementary plural

singular
present
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Table 2.4: Morphological analysis of the phrase “Mary likes dogs and cats”

Mary likes dogs
Noun Type: Proper Verb Form: Finite Noun Type: Normal
Number: Singular Tense: Present Number: Plural

Person: Third
Number: Singular

and cats
Conjunction Type: Complementary Noun Type: Normal

Number: Plural

learning-based methodologies.
The strong point of this technique, in particular the variant based on machine

learning, is that it can grasp also contextual information while composing the
chunks, allowing for better classification, and solving the problem that combination
of base elements might have different high-level meaning.

Parse Tree is an ordered rooted tree used to represent the syntactic structure of
text input, according to some specific context-free grammar. in NLP, such grammar
is a set of rules associated with a specific language, and leveraging such rules,
the parse tree decomposes the structure of the sentence up to the single syntactic
element.

Dependency Analysis is a powerful tool usually used to analyze documents
written in languages in which the order of the words is not fixed based on their role
in the sentence. Using the dependencies is possible to determine the connection
among sections of the sentence without knowing the role of the words between
them. Usually, the dependency is presented using a tree representation in which
every node represents a word, and every branch or arrow is a link highlighting the
relationship between the head (starting point) and the modifier (ending point).
Dependency Models is the name the researchers use to describe this design, and
Figure 2.1 exposes an example of such a model.

The strong point of this design is the simplicity with which is possible to
recognize which words are governing over the others and which words instead act
as simple modifiers. Relevant is also the lack of intersections among the branches;
this is not a choice of design, but a property of the tree itself. This property holds
if all the words are presented in a straight line and in the same order in which they
appear in the sentence.
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Figure 2.1: Dependency Tree structure of the phrase “Mary likes dogs and cats”

Analysis of Clauses, lastly, is used to refer to all the studies of the features of the
clauses in a text, such as frequency of appearance or ratio. In this context, a clause
is essentially a part of the sentence that contains a verb, usually, the “standard
clause” is either made of a subject and a predicate or a verb with objects and
modifiers. Generally speaking, a simple sentence indicates a single finite clause,
while more complex sentences can include multiple clauses. It is, however, important
to notice that sentence does not imply clause since the definition of the two concepts
is not related.

When analyzing clause, two major distinctions are applied: main clauses versus
subordinate clauses and finite clauses versus non-finite clauses. The main difference
between the first two alternatives is the capability of the clause to constitute a
complete sentence by itself or not; in this sense, a subordinate clause will always
be dependent on the main clause. For what concerns the second pair, instead, the
difference residing in the verb being either finite or non-finite.

Apart from these general classes, clauses can be sub-classified according to a
specific trait that is dominant in the syntactic form, such as the position of the
verb or the appearance of specific words (e.g. wh-word).

2.2.3 Semantic Features

After considering the nature of the words and the structure of the sentences, only
one aspect remains when considering the complexity of a document: the Semantic
of the document. Broadly speaking, it is possible to divide semantic features into
two main categories: semantic concepts and coherence.

Semantic concepts cover the relationship between a component of the text,
(either it be words, phrases, signs, or symbols) and the meaning or denotation
associated. The main and most intuitive examples of this relationship are figures of
speech, word plays, or even irony. In all these techniques is evident how through
an alteration of the normal order of the terms in a sentence or the matching among
words usually uncorrelated or opposite, the author can let the words carry a different



2.2. Features 11

Table 2.5: Examples of Semantic concepts and relative explanation

Example Type Explanation

Economical with the truth. Euphemism
Mild term used to substitute the
more offensive “liar”

The Titanic was said to be un-
sinkable but sank on its first
voyage.

Situational
Irony

Contrast between the ideal and
reality of facts

Heart of stone Metaphor
Use of “stone” to describe a be-
havior and not the material

Parting is such sweet sorrow Oxymoron
Parting can hurt people, yet it
can also intensifies their feelings

Spilling that glue made a real
sticky situation!

Pun

Uses glue’s main property (stick-
iness) to make a joke out of
the common phrase “sticky sit-
uation”, which means a difficult
situation.

meaning compared to the ordinary one. Some examples are presented in Table 2.5.
In this sense, it is immediately evident that the higher is the number and

complexity of the “alteration of meaning” proposed in the text by the author, the
higher will be the complexity of the work.

The second big family of Semantic Features is associated with the concept of
coherence and cohesion and is analyzed using a technique called Discourse Analysis.
Discourse Analysis (DA) is the field of linguistic that studies the coherence and
cohesion of the text beyond the limit of the simple sentence, hence by considering
the document in its entirety or examining only the portions associated with a
specific character of the work. DA can be mainly implemented in two variants:
locally or globally. The difference resides in the dimension of the scope of analysis,
with the local study limited to linked or connected sentences, while the global
analysis is applied to the entirety of the work. Out of all the features, only coherence
and cohesion can verify the “meaningfulness” of the document analyzed, while all
the other elements test the “correctness” of the sentence.

To better comprehend the relevance of coherence and cohesion in assessing the
complexity of a document, let us consider these two passages about dogs:

Dogs are canines that people domesticated a long time ago. Wolves
are predecessors of dogs and they help people in a variety of ways.
There are various reasons for owning a dog, and the most important is
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companionship. (Enago Academy)

Dogs are canines that people domesticated a long time ago, primarily
for practical reasons. Even though dogs descended from wolves, they
are tame and can be kept in households. Since they are tame, people
have various reasons for owning a dog, such as companionship. (Enago
Academy)

The two passages offer the same amount of information; however, the second
segment appears smoother and simpler to understand compared to the first. It is
specifically this difference that causes an increase in complexity. A passage with
a lower coherence or cohesion, force the reader to make up for the missing parts
of the information, generating an increment in the mental burden. Meanwhile, a
passage with high cohesion and coherence will display all the information logically
and continuously.

2.3 Traditional Approaches

The first relevant study on Lexical Complexity appeared in 1948, by the hand of
Flesch Rudolph in [9] who developed one of the most famous formulae for automatic
readability assessment of documents. The formula was quite simple and based
on superficial features of the text, such as the total number of syllables, the total
number of words, and the total number of sentences. The formula was computed
as follow:

score = 206.835− 1.015
(

total words
total sentences

)
− 84.6

(
total syllables
total words

)
(2.1)

Where the resulting score is a position on a scale that goes from 0 (difficult)
to 100 (easy), it is due notice however that the extreme values retrieved using
this scale are −515.1 and 121.22 were the former is assigned to a sentence at the
beginning of [10] and the latter achieved only if every sentence consists of only one
one-syllable word.

Equation 2.1 got so much notoriety up to the point of being used still today in
many systems such as Microsoft Office Word1 or Grammarly2.

This initial formula proposed in [9] has been further revised in [11] where an
alternative version, tailored for the US school system was proposed, making it easier
for teachers to properly assess the complexity levels of the literary works. The new

1https://www.microsoft.com/en-us/microsoft-365/word
2https://app.grammarly.com/
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variant was computed as follow:

score = 0.39
(

total words
total sentences

)
+ 11.8

(
total syllables
total words

)
− 15.59 (2.2)

Where score, in this case, is a number corresponding to a U.S grade level. It
should be noted that given the different nature of the used weights, the two versions
of the formula are not compatible.

Parallel to Equation 2.1, another famous approach was the one presented in [12]
where the author proposed a formula for the computation of the grade level of a
certain document. The formula was presented as follow:

score = 0.1579PDW + 0.0496ASL + 3.6365 (2.3)

Where score has to be intended as the reading-grade score of a pupil at 3rd
grade or below, PDW as Percentage of Difficult Words (Words outside the list of
3000 common English words, defined by Dale) and ASL as the average sentence
length.

These formulas represented the standard for various years. More recent studies,
however, highlighted the inaccuracy of such metrics for computing reading complex-
ity [7, 8]. For instance, a problem is represented by the concept associated with the
analyzed words, for example, as mentioned in [13], the word “quark” is simple to
read but the associated meaning is very complex.

2.3.1 Approaches Based on Lexical Features

The first attempts to compute complexity based on lexical features were in-
troduced by [14] that presented a statistical language model vocabulary-based
approach. A statistical language model use information concerning pattern word
usage, frequency, and order, returning a probability distribution of predictions.

Citing [15] “A statistical language model can be thought of as a word histogram
giving the relative probability of seeing any given vocabulary word in a text.” In
particular, [14] presented a model able to capture specific information concerning
word usage in different complexity levels. This allows the algorithm to process more
data on the relative difficulty of words, compared to the previous approaches.

An improved approach appeared in the work of [16] and [17], in which the
researchers proposed alternative statistical models. These models were also the first
ones to be associated with the analysis of syntactical features of a text.

A similar approach, proposed by [18] and [19], is Word Maturity. Word Maturity
Usage analyzes the handling of single words and phrases during the learning phase.
Specifically, the system can consider both word usage and its context-dependent
meaning.
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All these approaches were directly or indirectly employing the frequency of the
words as the core feature. However, before [20], no deeper analysis has been done on
the frequency itself. They introduced a series of experiments aimed at determining
the relevance of Lexical Complexity in the computation of readability. These
experiments were based on frequency lists generated from subtitles for TV channels
and cross-validated on the WeeBit and Appendix B of Common Core Standard
corpus (AppBCCS). The results proved that normalized forms of the frequency,
such as the Zipf measure, can provide a more stable outcome. Furthermore, the
analysis demonstrated that the source of the sentences used for computing the
frequency list deeply affects the results. For example, it was noticed how a frequency
list derived from a channel for children was better suited to reflect the different
cognitive burden from vocabulary retrieval typical of a school environment.

Effectiveness of the frequency as an estimator of text complexity has also been
proved in [21], supported by the idea that the more frequent is the word, the lesser
is the burden in retrieving it from the memory of the individual. An example of
this behavior can be observed in [22], where, by substituting a third of the words
with similar uncommon definitions, the Readability Score drastically decreases.

Parallel to these approaches based on frequency, in [23], a study centered on
low-level lexical metrics was proposed. In the research, a total of 25 metrics were
considered covering multiple aspects of Lexical Complexity, including Lexical Den-
sity, Lexical Sophistication, and Lexical Variation. These metrics were introduced
in the literature between the ’50s and ’90s and acted as comparison data in the
following researches.

These approaches are quite powerful because they allow us to obtain results
with a high level of correlation with the Reading Complexity of a text; without
requiring nor excessive analysis of the grammatical aspect of the language, neither
high computational power.

Unfortunately, it is not easy to identify a feature able to describe the Lexical
Complexity in every aspect, and even if one is defined, it is hard to represent
the real vocabulary knowledge of the individual. For example, the features of the
vocabulary of a person working in the medical sector will differ from an individual
specialized in the economy field; in fact, every person presents a different knowledge
about a language according to his living experience and environment.

Furthermore, the lexical features of a language tend to change with time, and
in the current and multi-connected society, this happens even often, limiting the
lifetime of the corpora used as a reference.
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2.3.2 Approaches Based on Syntactic Features

The first analysis of Syntactic features as a means to compute Lexical Complexity
was born following researches that highlighted the longer processing time associated
with a longer and more complex structure of the text [24]. These researches initially
focused on the structure of the sentence by highlighting the causal organization of
the document. For this reason, works based on the usage of parse trees to categorize
the clauses and analyze the ratio of appearance or the subordinate relationship
made their appearance [25]. This evolution appeared parallel to the implementation
of statistical models for the analysis of lexical features, and in [17] is possible to see
the first attempt to match this two kind of features by including a POS tagging
representation of words.

Further studies revealed, however, how it was not clear to which extent the
syntactic information produced was helping in the computation of the complexity,
the need to improve the quality of the information provided was so significant that
a new technique called shallow parsing was introduced. This innovation allowed
the researchers to comprehend the differences between the various clauses and to
perform deeper investigations. An example of this evolution can be seen in [16],
where the researchers evolved the approach proposed in [17] by completely distin-
guishing between the analysis of lexical and grammatical features. In particular,
the researchers proposed a method, for the syntactic part, based on the study of
the verbs, according to the results of a shallow parsing technique using a KNN
algorithm.

Worth of notice is also the work presented in [26], where an important study
involving different genres and features, namely lexical, syntactic, and language
model-based, was able to obtain the highest level of correlation by merging all the
traits.

Lastly, a quite interesting approach is also proposed in [27], in which 14 low-
level metrics to measure Syntactic Complexity were presented. Such metrics can
be grouped in five different categories: Length of the production unit, Sentence
Complexity, Subordination, Coordination, and Particular structure. These metrics
are a subset of large-scale research offered in [28] and further explored in [29].

Independently by the huge amount of research done on the topic, unfortunately,
up to today, it is still considerably hard to identify which aspect of the syntactic
peculiarities can better expose the difference between the levels of complexity.
Often the results reported by studies contradict the ones presented before. The
main reason for this discrepancy is probably associated with the intrinsic syntactic
difference that distinguishes different genres of text, and the influence that the
background of the individual can have on his writing style. Regarding this aspect,
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various studies highlight the huge difference between the writing habit of native
speaker and second language learners, with the second manifesting a structure with
a heavy correlation to their native language. [30, 31]

Lastly, it is of interest that not always Syntactic Complexity can be treated as
a perfect indicator of Text Quality. Various studies concerning learning material
for specific languages, and passages composed by students, highlighted that not
always a higher complexity implies a better quality of the text, as exposed in [30].

2.3.3 Approaches Based on Semantic Features

When considering approaches based on Semantic Features, we need to distinguish
between the will of the researcher to focus either on semantic concepts or discourse
analysis.

When talking about semantic concepts, there is only one framework that is
relevant and immediately comes to mind: Coh-Metrix. Coh-Metrix is a linguistic
tool presented in [32, 33] that had a relevant role in automatic readability assessment.
This system, in particular, was able to provide a multi-dimensional set of 108 features
(called indices) for text representation.

This system is both able to cover the analysis of the semantic concepts, by con-
sidering the concreteness, imageability and ambiguity of words against a database,
and discourse analysis by capturing high-level features as:

• degree of referential cohesion (e.g. noun overlap of adjacent senteces)

• deep cohesion (links between cause-effect sentences)

• degree of narrativity (cohesion associated with story telling)

• temporality (degree of cohesion among tenses and temporal features)

If for semantic concepts the main point of reference is Coh-Metrix, for discourse
analysis is possible to choose among multiple approaches.

The will to focus solely on discourse analysis, and in particular, coherence, started
to make its appearance in early 2000, when experiments with real individuals tried
to identify if it was possible to distinguish lexical cohesive patterns among the texts
[34]. This experiment proved to be fruitful giving the start to a great interest in
the topic.

One of the most relevant approaches was presented in [35], which introduce the
Entity-Grid (EG), a statistical model based on Centering Theory [36]. The EG
paradigm is based on the simple idea of continuously testing entities in sentences
assigning them to a syntactic role. In this way, the algorithm can estimate the
probability that an entity is the subject of the sentence given the previous elements
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and roles. Needless to say, the software is simply evaluating the presence and extent
of local coherence.

Even though this model was quite innovative, it was also basic and naive in
some aspects, for this reason, researchers re-implemented the technique by adding
further features to the model. An example of this idea can be seen in [37] where
discourse prominence, named entity categorization and individuation of relevant
entities were implemented in the pre-existing EG model.

More recent approaches, as natural as it would be, are instead more focused on
neural systems that either decided to maintain the usage of EG models, such as [38]
that fed the EG representation to a Convolutional Neural Network or strayed away
from it, like in [39]. This last approach is based on the implementation of a local
coherence model by encoding patters of changes in the semantic relationship between
sentences. The main relevance of this approach is double founded, firstly, the ability
to overcome the need of using external dependencies, such as the coreference
resolution system, typical of an ED-based model, and secondly, the capacity to
encodes the words based on their sentence context.

These new approaches proved to be effective in their task, even if perplexity is
still present on the active correlation of Semantic Features and Complexity of a
text, in particular, compared to the high level of correlation produced by Lexical
and Syntactic Features towards Complexity.

2.3.4 Approaches Based on Multiple Features

In more recent works, researchers are moving toward a merging strategy, by
creating systems based on all the previously mentioned type of features.

The first work in which this approach was implemented is [40], in which the
scientist implemented an analysis based on readability factors such as vocabulary,
syntax, cohesion, entity coherence, and discourse. They executed a study using a
specialized news corpus created with texts from the Wall Street Journal intended
for an educated adult audience. The various experiments concluded that the
introduction of all traits greatly increased the accuracy and performance of the
final model.

Relevant is also the work of [41], in which the researcher presented a deep
analysis and comparison of various features to compute Lexical Complexity. In
particular, after comparing the behavior of discourse, language modeling, parsed
syntactic, POS-based, and shallow features, the authors found out that selecting
the best trait for every group obtained the best result, scoring slightly better than
the simple naive usage of all features.

The last work that we want to cover in this section is the enormous study
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Figure 2.2: Pie charts representing the importance added to the various feature groups
by the expert assessors based on their comments for both the English (left)
and Dutch (right) dataset. Image was taken by [1]

executed in [1], in which the researchers tested the relevance of 87 features in
computing text readability for English and Dutch. The particularity of this work
resides in the way these features were selected, a pool of experts reviewed every
document and highlighted the elements that generated the difference in complexity.
The authors also describe the annotation taken by the experts and divided them into
four categories: Vocabulary, Structure, Coherence, Other, where “Other” represent
comments like “I had to read the passage multiple times”. The classification,
presented in Figure 2.2, shows the relevance of comments concerning vocabulary
compared to structure and coherence.

In this research, the results obtained were impressive; however, the researchers
based the work on engineered features tuned for the two languages of choice.
Given the wide variety of languages available, this approach is limited in terms
of scalability and adaptability. Nevertheless, the experiment is useful because the
outcomes denoted the features that characterize a specific language.

2.4 Background Knowledge for Deep Learning
Approaches

In this section, we are going to present some background knowledge needed
to understand the most relevant and recent approaches in computing reading
complexity using deep learning. When considering these innovative approaches,
there are three main concepts that one must know of: Embedding, RNN (in
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Figure 2.3: Example of 2D Embedding of some words

particular LSTM), and Attention.

2.4.1 Embedding

Generally speaking, an embedding is a relatively low-dimensional space into
which translates high-dimensional vectors. Embeddings were born to ease the
handle of large inputs of data, in particular sparse vectors, when applying machine
learning procedures. Ideally, an embedding mechanism can maintain only relevant
traits of the input. This action will lower the dimensionality, meanwhile granting
that semantically similar inputs will be close in the embedding space.

Embedding is a technique with application in multiple fields; the one used
in NLP is called Word Embedding. Word embedding is a procedure in which
words or phrases are mapped to vectors of real numbers. Conceptually speaking,
it is a mathematical embedding from space with many dimensions per word to a
continuous vector space with a significantly lower dimension.

Embeddings can be generated using a multitude of methods, the main used
ones are neural network feature extraction, dimensionality reduction based on word
co-occurrence matrix, and probabilistic models.

This technique demonstrated to be very efficient, if applied to the input of a
neural network model, by greatly boosting the performance in Natural Language
Processing tasks.

Figure 2.3 displays an example of 2-Dimentiosnal embedding representation,
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Figure 2.4: Example of unrolled RNN

where it is evident the ability of the mechanism to maintain a relationship among
the input data.

2.4.2 Recurrent Neural Network

Recurrent Neural Networks (or RNN) are an approach theorized during the
’80s to solve the inability of neural networks to parse a sequence of data retaining
information trough time. This approach was inspired by the human mind; imagine,
for example, to buy a new book and to open it at a random page in the middle
of the work and to start reading. It is highly probable that you will not be able
to understand who are the characters, which is the location, which is the course
of events, and multiple other information. This is happening because you have no
knowledge about the events before the current moment of the story. If instead, you
reach that instant of the story, starting from the beginning of the book, it is highly
probable that you will be able to grasp all the information previously unavailable.

Following exactly this line of thought, RNNs were created to retain information
by introducing a looping system that allows the data to persist in the network.
Figure 2.4 displays a representation of this model with the core structure both in
the real and the unrolled version. Looking at the unrolled version is possible to
notice the strong relationship between this network and sequence like data.

As we highlighted, the main feature of RNNs is to maintain information through
time, allowing that knowledge to influence the current decision, but is it always
true? Well, the answer is it depends.

If the information that we are trying to retrieve is recent then RNNs are perfectly
able to use it, unfortunately, the same is not true if the information is way back
in the text, in fact, the larger is the gap between the instant in which the useful
information was proposed and the moment in which is required, the more difficult
is for the network to maintain it. This problem is referred to as “Long-Term
Dependencies Problem” and was deeply covered in [42], in which the researcher
proposed the assonance between the mentioned problem and the more famous
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“Vanishing Gradient Problem” that appears in neural networks.
To solve this problem, Long Short Term Memory networks (or LSTMs) were

proposed in [43] and further evolved by other authors. This new kind of network
made the ability to retain long term information their forte, by changing the inner
structure of the repeating module, passing from one simple layer to four interacting
layers.

Figure 2.5 portraits this evolution. In the image, every line carries an entire
vector that can either be concatenated with other vectors or being duplicated. The
pink circles indicate a point-wise operation (multiplication, addition, and hyperbolic
tangent), while the yellow boxed a neural activation layer (sigma activation function
and hyperbolic tangent).

Considering the image, we can notice that firstly, the cell state (represented
by the upper horizontal line) runs through the entire chain system with minimum
interaction, granting that information are retained unvaried. Secondly, the network
can alter the cell state using gates to regulate the necessary changes. Figure 2.6
displays a representation of an LSTM cell with the associated formula.

Some variants of LSTMs have been proposed in the recent years, out of all the
introduced ones, the most relevant is Gated Recurrent Unit (GRU) presented in
[44], that merges the forget gate and input gates into an update gate, while cell state
and hidden state into a unique state. The resulting model is simpler and faster to
train compared to LSTM but theoretically can maintain information for less time.
Figure 2.7 illustrates a cell of a GRU network.

2.4.3 Attention Mechanism

The attention mechanism is an attempt to implement the equivalent of human
focusing ability on a few relevant aspects while ignoring others when analyzing
content. Imagine, for example, to look at your school class photos and someone
asks: “how many people are there?”. Instinctively you are going to look for some
peculiarities that allow you to count the number of people in the image; most of
the people will count by looking at how many human heads they can see. This
decision is the result of a selection made by the brain to remove redundant or useless
information for the task at hand, so to focus only on the minimum information
needed. In the same way, the objective of attention in a neural network is to select
what is more relevant for the completion of the task.

The attention mechanism appeared for the first time in [2], where the researchers
proposed an innovative encoder-decoder based neural machine translation system.
An encoder-decoder translation system can be basically considered as two RNNs,
the first, called an encoder, reads the input and tries to make sense out of it, then
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(a) Structure of a simple RNN

(b) Structure of a classic LSTM

Figure 2.5: Comparison between a simple RNN cell structure and an LSTM one

Figure 2.6: Cell structure of an LSTM network
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Figure 2.7: Cell structure of a GRU network

pass the generated summary to the second network, called decoder, that applies
the information for the translation of a new sentence.

Given this structure, it is evident that the quality of the translation will be
dependent on the quality of the information retrieved by the first network, and
due to the Long-Term Dependencies Problem (see Section 2.4.1), the result with
long sentences is inadequate. A possible solution to this problem is to reduce the
amount of information maintained at every step and a system able to identify the
most relevant data, perfectly satisfies this requirement.

Figure 2.8 displays the first attention mechanism, in which, to every hidden
layer of the Bidirectional LSTM (See 2.5.1) is applied a multiplication by a factor
αij and then summed to retrieved the final context vector ci or in formula:

ci =
Tx∑
j=1

αijhj (2.4)

where αij are the weights computed as softmax of the output score of a feedforward
neural network that attempts to compare the alignment between input at j and
output at i:

αij = exp (scoreij)∑Tx
k=1 exp (scoreik)

(2.5)

scoreij = ff-net(si−1, hj) (2.6)

The researchers defined this kind of attention as “Additive” and it represents
only one of the various versions that appeared on the research panorama in recent
years. Attention can be classified according to their nature, unfortunately, given the
huge amount of different variants proposed and the intrinsic differences depending
on the type of task, it will be of poor interest for the current thesis to go in excessive
details.

For this reason, we are simply going to propose the general and broad categories
in which attention mechanisms can be organized.
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Figure 2.8: The encoder-decoder model with additive attention mechanism in [2].

Self-Attention Self-attention or intra-attention, is a mechanism that compares
different sections of a single sequence input. It proved to be effective in tasks
such as machine reading, abstractive summarization, or image description
generation. Figure 2.9, extracted from [3], provides an example of an ap-
plication. In this research, the attention mechanism was used to learn the
correlation between the current words and the previous part of the sentence.

Global/Soft Attention Global or Soft Attention is a system in which the align-
ment weights are learned and placed over the entire input sequence. The
notation was first proposed in [45, 46] and also the mechanism proposed in
[2], fall in this category.

Hard Attention Hard Attention was proposed in [45] as the opposite of Soft
Attention, and the main difference relays in the scope of application, with
the former being focused only on part of the input sequence.

Local Attention Local Attention was proposed in [46] as the opposite of Global
Attention, and can be taught of as a blending between Soft and Hard Attention,
with the improvements being: the initial prediction of a single aligned position
for the current target word, and then use a window centered in the source
position to compute the context vector.
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Figure 2.9: Example of Self-Attention taken from [3], in which the current word is in
red and the size of the blue shade indicates the activation level.

2.5 Approaches Based on Deep Learning

In the most recent years, the advent of machine learning and deep learning
was also felt in NLP tasks, with a great increase of methodologies based on these
innovative techniques.

In the course of this section, we are going to analyze mainly two papers, both
published this year. The first summarizes the state of the art for supervised learning
approaches for text classification, the second, proposes an interesting approach,
that will be used as inspiration and base for part of the thesis work.

2.5.1 Paper #1: Supervised and unsupervised neural ap-
proaches to text readability

The first paper, being [47], executes an analysis implementing three different
algorithms, that are considered as the most innovative in recent years, namely:
Bidirectional Long Short Term Memory Networks (BiLSTM), Hierarchical Attention
Neural Network (HAN) and Transfer Learning using BERT.
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Models

BiLSTM is an approach introduced in [48] where a new variant of LSTM is
proposed, by implementing a concatenation of forward and backward LSTM layers
to read the documents in two different directions, the resulting feature matrix of
the LSTM is then processed by applying max and mean pooling. The obtained
maximum and average values vectors are then concatenated and fed to a linear
layer that generates the final result.

HAN is a technique introduced in [6] based on the idea that words make sentences
and sentences make documents, however not all words are equally important in a
sentence, for this reason, to some of them must be provided a specific weight that
is higher than others. For both word and sentence level, the executed procedure is
the same, the input is processed using stacked recurrent neural networks, followed
by attention model to highlight the most relevant data that is lastly, congregated to
generate a vector. The generated vector will either be the input for the sentence level,
if it is coming from the word level, or it will be used in defining the final classification
if generated at the sentence level. The double level attention mechanism is a direct
implementation of what proposed in [2, 45].

Transfer Learning, lastly, is a technique based on the use of a model developed
for a different task, as the starting point for the task at hand. This approach
has gained popularity in NLP and Computer Vision tasks thanks to the initial
advantage that they provide; in particular, taking into consideration the enormous
amount of computational power needed to train these models. One such example is
Bidirectional Encoder Representations from Transformers (BERT), developed by
Google in 2018 [4].

BERT’s key innovation consists of the application of bidirectional training of
transformers to language modeling, in particular, the researchers implemented
a new technique called Masked LM (MLM), that is applied before feeding the
word sequence to the model. When applying MLM, 15% of the words in each
sequence, are replaced by the token “MASK”, the model will then try to predict
the original value of the tokens; BERT’s loss function will then consider only the
prediction generated by said tokens, ignoring the others. Furthermore, during
training, the BERT model, will receive pairs of sentences and will try to learn if
the second sentence is the real subsequent sentence of the first one, executing what
the researches defined: Next Sentence Prediction (NSP).

Figure 2.10 displays the overall pre-training and fine-tuning procedures for
BERT, as described in [4].
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Figure 2.10: Overall pre-training and fine-tuning procedures for BERT [4]

Corpora

The structure used in the paper is composed of 12 layers of size 768 with 12
self-attention heads.

All three models were tested using three English corpora for text classification
purposes:

WeeBit a corpus made of articles form WeeklyReader and BBC-Bitesize, classified
in 5 groups according to the age of the target audience for a total of 3000 documents,
600 per class.

OneStopEnglish a corpus organized in 3 levels containing articles written specifi-
cally for English as Second Language (ESL) learners for a total of 189 texts provided
in three versions, one per level.

Newsela a corpus corresponding to the age and classification proposed in the
American school system from grade 2 to 12 for a total of 1911 original English
articles with up to 6 versions for a total of 9565 English documents organized
unequally in 11 classes.

Approach

These datasets were used after applying a classical subdivision, 80% training
set, 10% validation, and 10% testing for Newsela and a five-fold approach with the
same ratio for OneStopEnglish and WeeBit. The last two datasets are considerably
smaller then Newsela, and similar data division would be invalidating.

BiLSTM and HAN were trained for a maximum of 100 epoch, then the best
performing model on the validation set was used to predict the result on the test
set. BERT, instead, was tuned to the job at hand for 3 epochs, after being trained
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on a text understanding task.
From the experimental results, the researchers noticed that the performances of

the various classifier were strongly varying according to the dataset used. In partic-
ular, BERT demonstrates the highest amount of variations, probably influenced by
the typology of the task on which it was pre-trained, making it more sensible to
semantic information.

HAN and BiLSTM demonstrated instead a more stable outcome with the former
outperforming the latter in OneStopEnglish and Newsela while lagging a little
behind on WeeBit. Given the nature of the corpora in which HAN performs
better, it can be hypothesized that it can better identify syntactic and structural
information then semantic ones.

2.5.2 Paper #2: Multiattentive Recurrent Neural Network
Architecture for Multilingual Readability Assessment

The other work we wanted to present is [5], in which an innovative and interesting
way to process text complexity is applied: multi-attentive recurrent neural network.
While the internal core structure can be defined as classical, since it is attention-
based BiLSTM, the innovative part reside in the decision to process each variety of
input in a separate way.

Contrary to the standard approach, instead of providing the network with simple
text, the input is enriched by associating also UPOS and morphological information.
These three inputs are fed to the network parallel and independently. After passing
the first network, to every type of data is applied an attention mechanism that
consists of two layers neural network; describes as follow:

atta1,ij = σ(w1 · ωa,ij + b1) (2.7)
atta2,ij = σ(w2 · atta1,ij + b2) (2.8)

where w and b are respectively the weights and bias of the layers, ωa,ij represent the
input to the network, with a ∈ {text, upos, morph} = At indicating the attention
type and ij referring to word j of sentence i, and lastly, σ represent a sigmoid
activation function. Every attention is then multiplied by weighted value za,norm
automatically estimated during the training phase, such that ∑a∈At

za,norm = 1.
This condition is forced by applying a softmax to the value of z:

za,norm = exp (za)∑
a∈At

exp (za)
(2.9)

Figure 2.11 displays a graphic representation of the process.
The decision to implement this methodology, by using a multi-attentive system,

is based on the belief that not all syntactic features are equally important in
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Figure 2.11: Example of the multi-attentive attention mechanism for word j in sentence
i, image form [5]

computing the complexity, hence also the attention mechanism has to consider their
relevance.

The same approach is then executed for the attention at the sentence level, using
as input (ω) the last hidden state of independent BiLSTM, and the final prediction
will be the result of the output of the RNN on the embedded text, multiplied by
the two computed attentions.

This network was tested with a total of 5 corpora spanning multiple languages,
however, for most of the corpus, the system proved to be inefficient and inferior
compared to the ones presented in the first paper [47]. Nevertheless, we considered
the approach interesting because it allows the creation of a network specialized in
analyzing only specific traits of the document.





Chapter 3

Rationale behind the Work and
Datasets

3.1 Rationale
Chapter 2 presented the most relevant and recent approaches developed for com-

puting Reading Complexity, however, independently by the features or techniques
used, the final objective was always to compute a single value able to assess the
general complexity of a text. We can further improve the approach by presenting
distinct classification systems that will take into account the real nature of the
analyzed features. While, in general, it can be considered a good approximation
to define a general Reading Complexity, in some cases, the contribution provided
by the different sub-types of complexity can be very different and variegate. (See
Section 1.2)

It is possible to observe a clear example of this behavior in passages that
accentuate one aspect of complexity while oversimplifying another; For example, a
simple sentence with difficult words in it, such as:

He will abjure his allegiance to the king.

will be normally classified either at medium or high complexity, while this is correct
for the difficulty of the lexicon used, it is misleading from a pure syntactic point of
view; syntactically speaking, the sentence is simple with a low complexity level.

Our research tries to assess exactly this problem by introducing BASILISCo, an
approach that can compute both Lexical and Syntactic Complexity, independently
by the level of the reader. The two complexities will be uncorrelated but will possess
a strong implementation coherence granted that they will be estimated similarly,
following the same rationale and workflow.

The workflow is presented in Figure 3.1 and can be summed up into 6 phases:

31
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Feature Identification
or Selection Score ComputationModel Generation

Score Distributions
AnalysisScale Generation

Documents

Scale
System Score Validation

Figure 3.1: General workflow of the process

Features Identification or Selection: This phase is very important and, as the
name suggests, consists of the identification and selection of the features that the
next step will manipulate.

Model Generation: As the name implies, this section is responsible for defining
a model that will be used as a reference system to compute the score.

Score Computation: In this part the complexity score is computed, using the
model generated in the previous phase.

Score Validation: In this phase, the score is validated trough correlation analysis
with low levels metrics presented in previous approaches, to determine either lexical
or Syntactic Complexity.

Score Distributions Analysis: Once computed the complexity scores, for every
text sample, the results are divided by complexity level and examined to identify
the continuous function that better represents the distribution of the data.

Scale Generation: Lastly, this phase is responsible to provide a semantic to the
generated score, by defining a scale divided in groups.

These steps represent the general workflow that will be followed, in a slightly
adapted version, during the computation for both Lexical and Syntactic Complexity.

Since we aim to present a decomposition of the Reading Complexity into some
of the underlying categories, a need to grant a coherent classification system is
required. To achieve this, we believe that the best strategy is to maintain consistency
throughout the entire generation process, from the first to the last step.

An obvious side and adverse effect of devising a process in this way is the
standardization of the approach itself; this constraint might limit the possibility of
creating a specialized scaling system. However, we concluded that it is necessary
to grant a strong cohesion in the created scale; in this sense, the positive aspects
greatly overcome the negative ones.
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3.2 Datasets

Considering the nature and aims of our thesis, we wanted to test our system using
a series of datasets that reflect a general knowledge context with a standardized
metric system, possibly spanning multiple levels.

Considering these requirements, we opted for datasets organized according to
the Common Core Standard system, introduced in the USA to regulate and identify
the knowledge level that each individual must possess at different school grades.

The US school system is organized in a total of 14 grades, in which each grade
roughly translates to one year of life, between 3 and 17 years. This period covers the
instruction time that goes from nursery school to the last year of high school. The
first two grades are PK and K, (Previous Kindergarten and Kindergarten), while
the following ones span from 1 to 12. Seldom an additional category is established
(CCR - College or Career Ready) and is employed to describe all the individuals
with a level higher than 12.

A visual representation of this organization can be seen in Figure 3.2.
This system covers various aspects of the knowledge that a student can achieve

in his school life; among them, one of the key metrics represents the capability of
comprehending written text.

Figure 3.2: Schema of the US school system
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We implemented three datasets that propose a classification organized according
to the common core standard system: Newsela, “Appendix B of Common Core
Standard” (AppBCCS) corpus, and a Mixed corpus, made by the union of the two.

Parallel to these three corpora, we implemented also two other datasets not
based on the Common Core Standard, namely WeeBit and OneStopEnglish; these
datasets will be used as a comparison to verify the correctness of the approach with
diverse classification systems.

In the following sections, we are going to cover each corpus individually.

3.2.1 Newsela

Newsela is a corpus provided by Newsela Inc.1, an Instructional Content Platform
that provides content with integrated assessment, insights, and quizzes for students
practicing reading capability according to the Common Core Standard.

The Corpus consists of 9564 English text samples, composed by 1910 English
articles spanning various fields, and up to six simplified versions for each piece. The
articles are classified in 11 levels corresponding to grades of the American school
system (from “02” to “12”); however. for consistency with the other datasets, we
grouped them into the following levels: “02-03”, “04-05”, “06-07-08”, “09-10” and
“11-12”.

The composition of the Dataset provides an insight into the nature of the text
contained; hence, we can expect convergence on the variety of topics and words used.
Considering the possible relevant amount of lemmas that the text samples shares,
it might prove out to be problematic to compute the Lexical Complexity. For this
reason, we executed a comparison to understand the relevance of the overlapping
of lemmas and the number of unique lemmas per level. The results can be seen in
Table 3.1 and Table 3.2, calculated without considering all stop words and proper
names.

1https://newsela.com

Table 3.1: Table showing the number of lemma and unique lemma in the various
complexity levels of Newsela corpus

Comp. Level Type Token Unique Type Unique Token Text Samples
02-03 4923 113629 44 47 724
04-05 12290 777968 259 339 2911

06-07-08 18037 1158677 343 424 3305
09-10 13476 288858 100 106 770
11-12 22155 818505 3814 5757 1854
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Table 3.1, shows information concerning lemmas, unique lemmas, and text
samples. In particular, lemmas are classified in two distinctive ways: the number of
types and number of tokens. The “type” takes into account only the presence of a
certain lemma, while the “token” considers the total occurrences of lemmas.

For example the sentence:

Mary likes cats, Mike instead hates all animals, including cats.

has the following lemmas (after removing proper names and stop words):

[like, cat, instead, hate, animal, include, cat]

for a total of 7 lemmas. For this sentence, “type” is 6, while “token” is 7, the reason
being that the lemma “cat” appears two times, so it is counted only once while
considering the number of types.

Looking more in details at Table 3.1, we can notice multiple elements:

• The variety of lemma per class (column “Type”), increases at the increment
of the complexity level; except for the class “09-10” (Probably associated with
a lower amount of data; see column “text samples”).

• The increment in the variety of lemma is not strictly dependent by the total
number of occurrences of the lemmas (column “Token”) or the number of text
samples (column “text samples”); in fact, class “09-10” present more “Type”
than class “04-05”, despite having lower values for both“Token” and “text
samples”.

• Simpler complexity levels present more shared lemmas with a higher complex-
ity level and not vice-versa, suggesting that higher complexity levels use a
wide range of lemmas that also incorporate the lower levels ones. (see column
“Unique Type”).

• The unique lemmas (column “Unique Type”) do not represent the majority
of lemma variety if we compare the values of “Unique Type” and “Type”,
the unique lemmas count in average for less then 10% of the total variety,
however just a small increase in the variety seems to imply an increase in the
complexity.

• Lastly, unique lemmas (column “Unique Type”) are not very frequent, in fact
by comparing “Unique Type” and “Unique Token”, it is evident that every
lemma is counted in average less than two times. This behavior suggests that
the increment of complexity is not strictly dependent on the frequency of
usage of the new lemmas, but only by the variety introduced.
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Table 3.2: Triangular table showing the lemmas (type) that are common to two com-
plexity levels in Newsela corpus

Complexity Level 02-03 04-05 06-07-08 09-10 11-12
02-03 4923 - - - -
04-05 4835 12290 - - -

06-07-08 4841 11921 18037 - -
09-10 4389 9434 12402 13476 -
11-12 4811 11708 17312 13197 22155

While in Table 3.1 the focus was posed on the number of lemmas and the unique
lemmas associated with every class, in Table 3.2 it is highlighted the overlapping of
lemmas among the various levels.

Table 3.2 is a triangular matrix, for this reason, it is proposed only in its lower
triangle form. If needed, it can be easily read as a normal table, by examining first
the row until the value on the main diagonal and then considering the column.

Looking at the table, as hypothesized while analyzing Table 3.1, is evident that
the highest correlation in term of used lemmas is present with the levels representing
a higher complexity compared to the current one. If we examine each value on
the main diagonal (the values highlighted in bold), all the values that are on the
associated row, will be lower compared to all the ones in the associated column.

3.2.2 Appendix B of Common Core Standard

Appendix B of Common Core Standard corpus (AppBCCS) consists of 168 texts
given as sample texts to help the teachers define the level of knowledge required at
each grade of the American school system. In particular, texts are grouped into
the following levels: “02-03”, “04-05”, “06-07-08”, “09-10” and “11-12”.

It was presented in Appendix B of the “English Language Arts Standards of
the Common Core State Standards”. [49]

Only a subset of the original 168 documents was available in digital format; thus,
to improve the corpus, we tried to locate new books belonging to series from authors
we found into the corpus. The dataset was then composed of 165 documents and
further divided into chapters, treated separately, for a total of 2349 text samples.

AppBCCS, contrary to Newsela, presents a high variety of genre; all the text
samples can be grouped in 5 main categories: Informational Texts (IT), Stories
(S), Informational Texts: History and Social Studies (ITHSS), Informational Texts:
Science, Mathematics, and Technical Subjects (ITSMT), Informational Texts:
English Language Arts (ITELA), and Drama (D). To understand the relevance of
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each genre, we can take a look at Figure 3.3.
In Figure 3.3a, where the number of chapters (equivalent to the number of

single text samples) is organized in the various complexity levels and genre, it is
immediately evident that the distribution of data is not equal. For example, the
percentage of “Stories” tends to decrease at the increase of the complexity level.

Looking in more detail is possible to see that the diversification of chapters
tends to grow by the increase of the level of complexity. For example, the first two
classes present only general “Informational Text” and “Story”; while, the higher
complexity ones, introduce major genre diversification.

This phenomenon is probably caused by the limited amount of works available
for the younger audience compared to the greater market for teenagers and young
adults. Prove of this event is also the appearance of“Drama” only in the two most
complex levels.

After identifying the imbalance that characterizes the dataset based on genre
and number of text samples, we need to execute a deeper analysis to verify if the
inequality is also associated with the structure and content of the chapters. For
this reason, we propose Figure 3.3b, an analogous representation of the previous
figure, but focused on the number of tokens.

By looking at the picture and confronting the proportions with the previous
image, it is evident that the inequality is translated also at the token level, however,
the discrepancy on the number of text samples does not necessarily imply the
token’s one, as we can see, for example, in class “06-07-08”, and “09-10”.

For more detail about the composition of AppBCCS, it is possible to check
Appendix 6.2, in which we present a description of the relevance of every author in

(a) Chapters (b) Tokens

Figure 3.3: Chapters and tokens distribution in AppBCCS corpus



38 Rationale behind the Work and Datasets

Table 3.3: Table showing the number of lemma and unique lemma in the various
complexity levels in AppBCCS corpus

Comp. Level Type Token Unique Type Unique Token Text Samples
02-03 4032 53177 70 174 185
04-05 14446 636209 1535 3984 669

06-07-08 25189 391740 10378 12713 343
09-10 24956 811073 5706 11498 494
11-12 26293 965600 6805 13490 658

Table 3.4: Triangular table showing the lemmas (type) that are common to two com-
plexity levels in AppBCCS corpus

Complexity Level 02-03 04-05 06-07-08 09-10 11-12
02-03 4032 - - - -
04-05 3654 14446 - - -

06-07-08 3704 10254 25189 - -
09-10 3846 11676 13135 24956 -
11-12 3821 11632 13363 17504 26293

our version of the dataset, considering chapters, unique lemmas, and words.

Lastly, for coherence with the analysis proposed for the Newsela corpus, we are
going to present the same results concerning the diversification of lemmas, among
the complexity levels, in Table 3.3 and Table 3.4.

Doing a comparison to what was discovered while considering Newsela, it is
visible that some properties are maintained. Examples are, the non-dependency
between the variety of lemmas (column “Type”) and the total number of lemmas
(column “Token” or text samples (column “text samples”) and the contributions
provided by the unique lemmas in the count of all occurrences.

It is, instead, violated the first mentioned property, in fact, for class “09-10”,
even if the number of text samples (column “text samples”) is higher then the
one for level “06-07-08”, the quantity of lemmas (column “Type”) is lower; this
phenomenon is probably the consequence of an anomalous high diversification of
lemmas in class “06-07-08”. Consequence and probably proof of the existence of this
effect is also the irregularity in the variety of unique lemmas for class “06-07-08”.

Considering Table 3.4, instead, it is easily seen that the previously identified
property remains valid.
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(a) Chapters (b) Tokens

Figure 3.4: Chapters and tokens distribution in Mixed corpus

3.2.3 Mixed

Mixed is the third dataset we implemented and is the union of Newsela and
AppBCCS corpora.

Being the union of the two datasets, Mixed also carries the problems mentioned
in the two previous sections; we are going to verify and analyze these problems
using a similar approach.

Firstly, we can look at the pie charts that illustrate the proportion of chapters and
tokens by dividing them according to complexity levels and genres (Figure 3.4). The
graphs prove the hereditaries of the problems identified while analyzing AppBCCS.
In this case, such problems are worsened due to the difference in size between
Newsela and AppBCCS, with Newsela article(A), begin the dominant section in
every complexity level.

Diverse and interesting, is instead the condition for the tokens. It is possible
to notice that the relationship among Articles and AppBCCS writings change

Table 3.5: Table showing the number of lemma and unique lemma in the various
complexity levels in Mixed corpus

Comp. Level Type Token Unique Type Unique Token Text Samples
02-03 6733 166806 85 125 909
04-05 19138 1414177 1402 3084 3580

06-07-08 32922 1550417 10228 12366 3648
09-10 27955 1099931 4523 8530 1264
11-12 33662 1784105 7406 13544 2512
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Table 3.6: Triangular table showing the lemmas (type) that are common to two com-
plexity levels in Mixed corpus

Complexity Level 02-03 04-05 06-07-08 09-10 11-12
02-03 6733 - - - -
04-05 6422 19138 - - -

06-07-08 6496 16160 32922 - -
09-10 6359 15522 18989 27955 -
11-12 6533 16865 21632 22372 33662

drastically in favor of the second, probably suggesting that even if AppBCCS has
fewer text samples then Newsela, the latter has shorter and less diversified texts
compared to the former.

Secondly, to present a complete analysis of the corpus, Tables 3.5 and 3.6,
display the results of a simple study on the diversification of lemmas.

Studying Table 3.5 it is obvious that the same problems introduced by AppBCCS
are directly inherited by Mixed corpus, with class “06-07-08” re-proposing an
anomaly behavior compared to the supposed standard one.

Lastly, looking at Table 3.6, we can discern that the correlation level is coherent
to what was noticed for the two previous datasets, where the higher correlation on
shared lemmas is with higher complexity levels then the current one, and not with
lowers one.

3.2.4 WeeBit

WeeBit is a corpus composed of five complexity levels, the former three belonging
to the Weekly Reader Magazine for children, and the latter two associated with
the BiteSize learning platform of BBC. The dataset consists of 9709 text samples,
with most of them (around 70% of the total) belonging to the last complexity level.

WeeBit is also the first dataset that we implemented that uses a different

Table 3.7: Conversion table from WeeBit class system to Common Core Standard one

WeeBit levels Age of reference CCS Levels
WRLevel2 7-8 02-03
WRLevel3 8-9 03-04
WRLevel4 9-10 04-05
BitKS3 11-14 06-07-08
BitGCSE 14-16 09-11
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Table 3.8: Table showing the number of lemma and unique lemma in the various
complexity levels in WeeBit corpus

Comp. Level Type Token Unique Type Unique Token Text Samples
WRLevel2 3252 40860 301 542 599
WRLevel3 4708 63471 592 885 779
WRLevel4 6669 101442 1076 1683 802
BitKS3 4340 71172 409 733 646
BitGCSE 15237 1044269 8686 72743 6883

Table 3.9: Triangular table showing the lemmas (type) that are common to two com-
plexity levels in WeeBit corpus

Complexity Level WRLevel2 WRLevel3 WRLevel4 BitKS3 BitGCSE
WRLevel2 3252 - - - -
WRLevel3 2440 4708 - - -
WRLevel4 2616 3653 6669 - -
BitKS3 1783 2239 2748 4340 -
BitGCSE 2593 3573 5030 3839 15237

classification system compared to the grade division proposed by the Common Core
Standard. However, given the division in years of the target reader, we can create
a sort of conversion from the used classification system to the common core one.
Such translation is proposed in Table 3.7.

Since a translation exists, it would be possible to treat every level as the
corresponding CCS one. Unfortunately, considering the overlapping introduced
by the class “WRLevel3” and the different categorization for level “BitGCSE”, it
would only cause noise during the analysis. For this reason, we decided to maintain
the originally proposed division.

Following the line of analysis proposed for the previous dataset, also with this
corpus, we are going to show the relationship, in terms of lemmas, among the
complexity levels. Such analysis is reported using Tables 3.8 and 3.9.

Looking at Table 3.8, it is evident that a discrepancy is present among the
levels. For example, considering level “WRLevel4” and “BitKS3”, every metric
gives smaller results, with the higher complexity level showing less variety and
quantity of lemmas. The problem persists in the following level “BitGCSE”, in
which the numbers are indeed better, but only because the last level has a number
of text samples of one magnitude higher than the other classes. It is highly probable
that, if the number of text samples was similar to the other classes, the returned
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value would be inferior to “WRLevel4”.
We believe that this phenomenon might be the result of the different nature of

the two magazines from which the articles are taken.
Since the levels belong to different magazines, we can expect that the classifica-

tion methodology implemented by the two companies is not uniform. Furthermore,
Weekly reader is an American company that creates content for children in Ameri-
can English, while BBC is an English company, that creates content for children in
UK English.

The effects of the previous phenomenon are also reflected in the results obtained
in Table 3.9, in which the problem of the two different variants of English is further
highlighted from the lower number of shared lemmas between the levels belonging
to Weekly Reader and BiteSize.

From the highlighted problems, we can expect that WeeBit will not perform
well with our approach, at least for the part concerning the Lexical Complexity,
given the intrinsic difference between the two variants of English.

3.2.5 OneStopEnglish

OneStopEnglish is the last dataset we are going to use. In this case, as for
WeeBit, the classification system is different compared to the Common Core
Standard. However, differently from WeeBit, the dataset is created similarly to
Newsela, with 189 articles that are proposed in 3 different levels of complexity:
Elementary, Intermediate, and Advanced.

Table 3.10: Table showing the number of lemma and unique lemma in the various
complexity levels in OneStopEnglish corpus

Comp. Level Type Token Unique Type Unique Token Text Samples
Elementary 4435 42855 81 93 189
Intermediate 6486 56582 219 1181 189
Advanced 8548 68777 2272 3031 189

Table 3.11: Triangular table showing the lemmas (type) that are common to two
complexity levels in OneStopEnglish corpus

Complexity Level Elementary Intermediate Advanced
Elementary 4435 - -
Intermediate 4296 6486 -
Advanced 4305 6218 8548
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Unfortunately, no information concerning the target age of such articles is pro-
vided. Hence it is not possible to create a direct translation with CCS classification
rules, as we did for WeeBit.

Following a similar approach with the previous datasets, we proposed an analysis
of the nature of the lemmas included in the corpus. We expect to see results in line
with what we noticed in Newsela, given the similar constitution of the two corpora.

Table 3.10 shows that the dataset was built in a very accurate way. In fact, as
a consequence of the equilibrate distribution of text samples in the corpora, the
number of types and tokens grows almost equivalently among the levels.

In line with the expectation are also the results reported in Table 3.11, in which,
although in a limited way, given the low number of levels, it is possible to notice a
similar behavior with the previous datasets.

3.2.6 Remarks

In this chapter, we presented the five corpora that will be used in this thesis,
together with some simple analysis about their nature.

The five corpora will be used both while computing Lexical Complexity and
while computing Syntactic Complexity.

To be more precise, during the Lexical Complexity section, we will utilize Mixed
as a base to build the vocabulary and then use all the other corpora as quality
metrics when studying the correlation with the identified low-level metrics. Lastly,
after describing how to generate the scale that assigns semantic to the score, we
will produce an example based on Newsela.

During the Syntactic Complexity section, instead, we will use both Mixed and
Newsela to train the networks, obtaining a total of 4 different models. Then each
model will be tested using all the available datasets. Lastly, after describing the
process to generate the scaling system, we will display an example based on Newsela.





Chapter 4

Lexical Approach

4.1 Model
In this section, we present our approach based on the log-likelihood ratio test,

for associating Lexical Complexity scores to documents. Then, we will introduce
our algorithm and explain its core functions.

4.1.1 Log-likelihood Ratio Test

The log-likelihood ratio test is a centroid-based, unsupervised content selection
technique introduced by [50]. This technique aims to find the words that characterize
a document and, if these words appear in a sentence, assign a weight to them.

The log-likelihood ratio is computed as D = −2 log(λ(wi)) and define the
importance of a word type wi in the current document compared to the rest of the
collection. D is referred to as discrepancy. This measure reflects the differences of
the observed word frequencies in the current document, compared to the values
that we would expect to see if the frequencies of the words were the same in the
current document and the rest of the collection.

This implies that larger discrepancies reflect a higher difference between the
word frequencies in the current document and the one in the others. To be more
specific, D is defined as

D = 2
[
Cdoc(wi) · log

(
Cdoc(wi)
Edoc(wi)

)
+ Coth(wi) · log

(
Coth(wi)
Eoth(wi)

)]
(4.1)

where Edoc[wi] is the expected value of Cdoc(wi) calculated as

Edoc[wi] = Ndoc

Ndoc +Noth

· (Cdoc(wi) + Coth(wi)) (4.2)

and Eoth[wi] is the expected value of Coth(wi) calculated as

Eoth[wi] = Noth

Ndoc +Noth

· (Cdoc(wi) + Coth(wi)) (4.3)

45
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in which, every variable can be defined as follow:

• Cdoc(wi): number of occurrences of the word wi in the current document

• Coth(wi): number of occurrences of the word wi in all the documents but the
current one

• Ndoc: number of tokens in the current document

• Noth: number of tokens in all the documents but the current one

For huge corpora, D ∼ χ2(df = 1). Hence it is possible to consider the relevance
of D according to a specific percentile. For example, if D > 10.83, wi is significant
for the current document, with at least 0.999 of significance level (99.9th percentile;
p < 0.001).

To make this approach meaningful in the context of our goal, the variables are
redefined as:

• Cdoc(wi): number of occurrences of the word wi in the current complexity
level

• Coth(wi): number of occurrences of the word wi in all the complexity levels
but the current one

• Ndoc: number of tokens in the current complexity level

• Noth: number of tokens in all the complexity levels but the current one

The retrieved discrepancy is then processed as follow:

1. Test the discrepancy against a 99.9th percentile

2. If the test fails for every complexity level, lower the threshold to 99th and try
again.

3. If the test fails again for every complexity level, lower the threshold to 95th
and try again.

4. If the test fails again for every complexity level, simply ignore the word.

5. If the test succeed assign the word to the lowest complexity level that passed
the test.

By applying these simple steps, we can use D to associate every word to a specific
complexity level, for which the word will be relevant.
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4.1.2 Algorithm

In this section, we propose our algorithm, constituted of two main functions:
Vocabulary Generation (Algorithm 1) and Score Computation (Algorithm 2).

Algorithm 1 describes the application of the log-likelihood ratio test and the
assignment of a complexity level to every retrieved lemma; then, Algorithm 2 shows
how to generate a score for a specific document. A complete explanation of the two
algorithms is presented, respectively, in Section 4.1.2 and 4.1.2.

Algorithm 1: Vocabulary Generation

Algorithm 1: Vocabulary Generation
Data: Dataset documents, divided into complexity levels
Result: lemmaScores, a list of lemmas, each one associated with a

complexity levels
begin

lv ← [“02-03”, “04-05”, “06-07-08”, “09-10”, “11-12”];
data← PreProcessDataset(documents);
for lemma in data do

countInLevels[lemma, ∗]← CountInLevels(lemma, lv);
test[lemma]← LogLikelihood(countInLevels[lemma, ∗], data);
cmplLevel[lemma]← AssignComplexityLevel(test[lemma]);
lemmaScores[lemma]← AssignScore(cmplLevel[lemma]);

end
end

Algorithm 1 is composed of five core functions: PreProcessDataset, CountIn-
Levels, LogLikelihood, AssignComplexityLevel, and AssignScore.

In the PreProcessDataset function, every text sample is parsed using spaCy, a
free, open-source library for advanced NLP tasks in Python. Every text sample
is hence represented in functions of the words that compose it, in particular, the
function will consider only words that are not preemptively marked as stop words
or proper nouns, and transform them in lemmas.

The standard stop-words list provided by spaCy was not fit for our task, for this
reason, it has been customized, retaining only words that satisfy the log-likelihood
ratio test (Section 4.1.1) for every complexity level. In other words, from our point
of view, a stop-word is a word that is common to all the complexity levels and thus
does not carry useful information. Finally, proper nouns are not considered because
they do not carry intrinsic complexity (as they are just names) and, at run time,
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Table 4.1: Table representing complexity levels and associated values

Complexity Level “02-03” “04-05” “06-07-08” “09-10” “11-12”
Associated Value 0 0.25 0.50 0.75 1

they are likely to be outside of the vocabulary.
After the pre-processing phase, the algorithm calculates the number of instances

of each lemma into each complexity level. (CountInLevels).
Then, LogLikelihood, as the name implies, is responsible for applying the log-

likelihood ratio test as described in Section 4.1.1. This function represents the core
of Algorithm 1, because it allows us to identify which word is characteristic of a
certain complexity level. Once every lemma has been tested, the algorithm assigns
a complexity level to each of them, if a lemma has not satisfied the test for any
of the complexity levels then it is marked as not relevant (see Section 4.1.3 for
details) and if a lemma satisfies the test for multiple levels, then the lowest one is
considered (AssignComplexityLevel.)

Lastly, before returning the vocabulary, every complexity level is converted
into a score, according to Table 4.1, which defines a normalized 0-1 scale, with
equidistant values (AssignScore.)

Algorithm 2: Score Computation

Algorithm 2: Score Computation
Data: a vocabulary of lemmas with the associated complexity levels; a

document to process
Result: Score s associated to the document
begin

for sentence in document do
data← PreProcessSentence(sentence);
for lemma in data do

cmplLevel[sentence, lemma]←
AssignComplexityLevelS(lemma, vocabulary);

end
end
s← ComputeScore(cmplLevel);

end

Algorithm 2 is simpler than Algorithm 1 and it can be described by three
functions: PreProcessSentence, AssignComplexityLevelS and ComputeScore.
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Similarly to Algorithm 1, the first function (PreProcessSentence) is responsible
of the pre-processing stage; the analysis, however, is executed sentence-wise and
not document-wise. This means that the occurrences of lemmas are considered only
in terms of a single sentence. The pre-processing is then followed by AssignCom-
plexityLevelS, the function responsible for assigning to every lemma of the sentence
its complexity level according to the provided vocabulary.

Finally, the function ComputeScore gives a score s to the document based on a
weighted mean of the maximum complexity level assigned to a word in a sentence i,
multiplied by the sentence length, as

s =
∑n
i max(Vi) · li∑n

i li
(4.4)

where n is the number of sentences in the document, li is the original length of
sentence i, including stop words, proper names, and numbers; Vi represents the
list of associated values to the processed words in the sentence i (assigned by
AssignComplexityLevelS), excluding stop words, proper names, numbers, and Out
Of Vocabulary (OOV) words. Vi can be defined as follow:

Vi = [v1,i, . . . , vj,i, . . . , vmi,i]; j ∈ [1,mi]; vj,i ∈ {0, 0.25, 0.50, 0.75, 1} (4.5)

where mi ≤ li is the number of considered words in the i-th sentence and vj,i is the
complexity value assigned to the j-th parsed word of the i-th sentence; according
to the scale presented in Table 4.1.

4.1.3 Handling OOV and non-relevant words

During the execution of both algorithms, it is possible to identify lemmas that
are either not able to satisfy the Log-Likelihood Ratio Test (i.e., non-relevant words)
or are not present in the vocabulary (i.e., OOV words). In these cases the possible
approaches are four:

• Ignore these lemmas (Do not apply any automatic assignment)

• Assign the lemmas only at Score Computation step (OOV words)

• Assign the lemmas only at Vocabulary Generation step (non-relevant words)

• Assign the lemmas both at Vocabulary Generation and Score Computations
steps (both non-relevant and OOV words)

The results of the application of these alternatives, in computing the score
for the Mixed corpus (see Section 3.2), are shown in Figure 4.1, where a box
represents the amount of data belonging to the Inter-Quartile Range (IQR: between
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Figure 4.1: Score distribution in documents belonging to the five complexity levels
(Mixed corpus); the graph highlights the differences among the four ap-
proaches for handling non-relevant and OOV words

the 25th quantile and the 75th quantile) while the line inside a box displays the
median or 50th quantile; moreover, upper and lower whiskers represent, respectively,
25th−1.5 ·IQR times and 75th+1.5 ·IQR; finally, the black dots represent samples
outside the whiskers (outliers).

After testing the four alternatives, we noticed that assigning the complexity level
to non-relevant words during the Vocabulary Generation step greatly increment
the intra-level variance. If the assignment is, instead, done during the Score
Computation phase, the increase is less relevant. However, the smallest variance is
obtained just ignoring them, and so is our choice.

4.2 Experimental Results
In this section, we are going to explain how we implemented the algorithm

described in Section 4.1.2, and the results that we obtained. Lastly, we will test the
validity of the method by executing a comparison with a series of low-level indexes
that identify variegate features of Lexical Complexity.

4.2.1 Vocabulary Generation

The first step in implementing the provided algorithm is to generate a vocabulary
on which base the score computation, or in other terms, implement Algorithm 1.
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When considering the best dataset for this scope, the decision must be driven by
two factors: diversification of the lemmas and amount of documents. The reason for
these constraints is quite simple; since we are going to use such dataset, as the base
for the computation of the score, we want to minimize the number of lemmas that
falls in the category of non-relevant words and out of vocabulary words (mentioned
in Section 4.1.3).

Given these specifications, and using as support the data reported in Section 3.2
when presenting the datasets, it is evident that the most suited corpus is Mixed
since it has the highest number of documents and the highest variety in term of
genres (See Table 3.5 and Figure 3.4).

It is relevant to notice that during the execution of Algorithm 1, the preprocessing
phase is responsible for identifying the lemmas associated with every document. As
mentioned in Section 1, while performing this operation, stop words and proper
nouns are discarded. In particular, the list of stop words used is not the one
automatically imported by spaCy, but a customized version. This new list is
obtained by executing a variant of Algorithm 1, here presented as Algorithm 3, in
which no stop words are removed at the beginning if not for the basic pronouns
and the auxiliary verbs “to be” and “to have”.

Algorithm 3: Vocabulary Generation
Data: Dataset documents, divided into complexity levels, and original

stopWordsList from spaCy
Result: stopWords, a list of lemmas identifying the new stop words list

that will be used in Algorithm 1
begin

lv ← [“02-03”, “04-05”, “06-07-08”, “09-10”, “11-12”];
data← PreProcessDataset(documents);
for lemma in data do

countInLevels[lemma, ∗]← CountInLevels(lemma, lv);
test[lemma]← LogLikelihood(countInLevels[lemma, ∗], data);

end
lemmas← FindAllComplexity(test);
stopWords← MaintainOnly(lemmas, stopWordsList);

end

The first part of the algorithm is equivalent to the original Algorithm 1, however,
instead of AssignComplexityLevel, a new function is introduced to return all
the lemmas that satisfy the log-likelihood ratio test for every level of complexity
(FindAllComplexity). The output is then provided to MaintainOnly, which from
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all the retrieved lists, maintain only the lemmas that are also included in the original
stop words list provided by spaCy. If this last condition was not implemented, then
it might happen that the already low number of lemmas in the lowest level would
be even smaller, since most of the lemmas are common to all the levels.

4.2.2 Score Generation

Once, we defined the core dataset and generated the vocabulary, we can move
to the second part of the process: Algorithm 2. The implementation is quite
straightforward and the final result, computed for every dataset is presented in
Figures 4.2 - 4.6.

For every dataset, we present the results both in the form of boxplot (top), and
distribution (bottom); These plots provide information concerning variance, density,
and overlapping present between each class. It is relevant to notice, however, that
due to the presence of the lower margin in 0, the representations of the lower levels
of the distributions are misleading. Some of the curves are represented below 0,
but clearly, this is just a consequence of the nature of the graph itself. Figure 4.7
will provides a more precise representation (for Newsela),

By looking at the mentioned figures, it is evident how some datasets behave
properly, showing an increase of the complexity with the increment of the marked
level in the dataset, and distributions close to a Normal, while some perform
very poorly. We will then present an analysis for each image, also motivating the
anomalies that might be present.

Newsela

The first analyzed dataset is Newsela (Figure 4.2), this dataset is characterized
by a good level of response from the algorithm, in fact:

• The distributions are overlapping but allowing every complexity level to be
dominant in a particular range.

• The distributions have a median that increases at the increment of the
complexity levels.

• The right tail has a softer slope compared to the left one, possibly suggesting
that the data density is higher in the last quartile compared to the first one.

• The variance among the different complexity levels appears to be relatively
stable, suggesting a good distribution of the data.
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Figure 4.2: Box plot and distribution for the Newsela corpus
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It is relevant to remember that since the dataset used for the vocabulary is a
super-set of this corpus, we should expect that the algorithm encounter few if not
none OOV words during the scoring phase.

AppBCCS

The second proposed dataset is AppBCCS (Figure 4.3), this corpus, in contrast
with the previous one, presents a behavior extremely unstable, in particular:

• The curves display a high degree of overlapping, specifically the two central
complexity levels (“06-07-08” and “09-10”).

• The median seems to be in general increasing but an anomaly is present with
the two levels mentioned above, with the levels showing an inverted position
in the ranking.

• Except for the lower levels, the right tail is steeper than the left one, suggesting
that all the document scores tend to converge on a central value, instead of
showing a net distinction among classes.

• The variance is highly unstable, with the highest complexity level (“11-12”)
having a variance almost 3 times the smallest one.

This behavior is indeed strange since also AppBCCS is a sub-set of the corpus
used while generating the vocabulary; in our opinion, the problem with AppBCCS
is two-fold. Firstly, most of the dataset is constituted by books; unfortunately,
assigning a complexity level to a whole book does not take into account that
complexity can vary in different chapters. Secondly, most of the documents are
novels, in which the complexity is strongly dependent on the writing style of the
author. Both these factors negatively affect the algorithm, that treats every chapter
independently and in which only the Lexical Complexity is computed.

Mixed

Now moving to the third dataset, we can observe the resulting score on Mixed
corpus (Figure 4.4); as expected from this dataset, since it is the same dataset on
used to generate the vocabulary, the outcome is considerably good. In particular,
we can recognize behavior similar to the one manifested in Newsela, with the
only difference being that the variance among the complexity levels is higher. For
example, the level “06-07-08” contains text samples with a score of 0, while this
was not happening within Newsela.

The increase in the variance, in particular, compared to Newsela, is probably a
consequence of the addiction of the AppBCCS corpus.
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WeeBit

The fourth dataset, WeeBit (Figure 4.5) is the first corpus to be proposed that
is non related in any way to the corpora used while generating the vocabulary;
furthermore, it is also the first corpus to be characterized by a different classification
system.

The outcome is terrible, with the scoring result being very unstable, generating
peeks of complexity and strong overlapping on some levels.

This problem manifest within the couple “WRLevel2”, “WRLevel3”, and
“BitKS3”, “BitGCSE”. In the former case, we have almost a complete overlap
of the distributions, suggesting that our algorithm identifies the text samples in-
cluded in these two classes as identical; while in the latter, the level “BitKS3” shows
a complexity higher compared to “BitGCSE”.

We believe that the problem is intrinsic to the text samples that compose the
dataset; such texts are the result of a scraping activity from magazines for children,
containing in most cases images and exercises for the young learner. These exercises
often consist of “filling the gap” and question answering activities. Such “noisy”
documents negatively affect the performances of Algorithms 1 and 2, implemented
for pure text.

Furthermore, the corpus is composed of text samples written in both British
English and American English. While this condition might seem irrelevant, in a
context in which only the lemmas are analyzed it becomes predominant. The two
variants of English manifest enough discrepancies in the glossary to confuse our
algorithm based on an American English vocabulary.

OneStopEnglish

The last presented dataset is OneStopEnglish (Figure 4.6), also this dataset, as
WeeBit is completely uncorrelated to the corpora used to generate the vocabulary,
and it is organized in a different classification system.

However, contrary to WeeBit, the result is in line with what was identified
for Newsela and Mixed corpora, suggesting that the algorithm is indeed working
and that is applicable also on corpus different from the one used in generating the
vocabulary.

Comparing these results with the previous, we can see a similarity with the
features identified for Mixed and Newsela, with slightly more overlapping among
the complexity levels, in particular with the two highest ones. This phenomenon
probably suggests that the text samples of the “Intermediate” and “Advanced”
complexity level, share a great number of lemmas.

Lastly, it is interesting to notice, how both OneStopEnglish and Newsela present
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a similar higher and lower bound of the score, probably suggesting that using the
Mixed corpus was a good choice in terms of generalization of the problem.

4.2.3 Score Validation

In the previous section, we described and analyzed the results obtained in
applying the algorithm for all the proposed dataset, however, how can we be sure
about the real quality of such scores?

Unfortunately, none of the above corpora classify texts considering only the
Lexical Complexity; in fact, their classifications are based on the “generic complexity”
of documents, mixing lexical, syntactic, and semantic aspects. Thus, we can not
test out the effective validity of our approach in a classical style.

What we can do, instead, is to verify the correctness of our method by compar-
ing its score with similar measures of Lexical Complexity. For this purpose, we
implemented the strategy proposed by [23], an algorithm that calculates 25 distinct
metrics covering several features of the Lexical Complexity.

Such metrics are arranged in 3 groups: Lexical Density (a metric that computes
the ratio of the number of lexical words versus the total number of words in a
text), Lexical Sophistication (5 metrics that analyze the proportion of advanced or
unusual words in a document), and Lexical Variation (19 metrics that investigate
the variety of words used in the document).

In particular, we evaluated the Pearson correlation coefficient and Spearman
rank correlation between our score and such metrics. Table 4.2 displays the complete
results, divided in category.

The meaning of such 25 metrics is briefly presented in the following list, together
with the paper in which they were first introduced:

LD: Lexical Density [51]

CVS1: Corrected Verb Sophistication 1 [28]

LS1: Lexical Sophistication 1 [52, 53]

LS2: Lexical Sophistication 2 [54]

VS1: Verb Sophistication 1 [55]

VS2: Verb Sophistication 2 [56]

NDW: Number Different Words [57, 58]

NDWERZ: Number Different Words (Expected Random Z words) [59]

NDWESZ: Number Different Words (Expected Sequence Z words) [59]
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Table 4.2: Pearson correlation coefficient (ρ) and Spearman rank correlation (ρs) be-
tween our score and standard lexical metrics, per dataset
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NDWZ: Number Different Words (first Z words) [60]

CTTR: Corrected Type Token Ratio [61]

LogTTR: Bilogarithmic Type Token Ratio [62]

MSTTR: Mean Segmental Type Token Ratio [63]

RTTR: Root Type Token Ratio [64]

TTR: Type Token Ratio [65]

UBER: UBER Index [66]

CVV1: Corrected Verb Variation 1 [28]

SVV1: Squared Verb Variation 1 [28]

VV1: Verb Variation 1 [55]

AdjV: Adjective Variation [67]

AdvV: Adverb Variation [67]

LV: Lexical Word Variation [68, 51, 53, 52]

ModV: Modifier Variation [67]

NV: Noun Variation [67]

VV2: Verb Variation 2 [67]

To understand if the obtained results are relevant we evaluated the correlation
strength adopting Cohen’s interpretation. Specifically, if it is lower then 0.10, then
there is no association of any kind; a correlation between 0.10 and 0.30 depicts a
small association; a correlation within 0.30 and 0.50 represents a medium association;
correlation higher than 0.50 signifies a large association.

Tables 4.3 and 4.4 displays the results of this interpretation, in a more convenient
and easy to read representation.

Table 4.3 exposes the summed results for all the presented metrics, highlighting
for every corpus, both Pearson correlation coefficient and Spearman rank correlation,
the number of metrics with a correlation level Large, Medium, Small, or None
according to the methodology presented before.

By looking at the table, it is evident that the best performing dataset is Newsela,
immediately followed by OneStopEnglish, and Mixed with most metrics showing
either a large or medium degree of correlation. In the fourth position, we find
AppBCCS in which most of the metrics have a medium association with our score; in
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Table 4.3: Correlation strength total

Strength
AppBCCS Newsela Mixed WeeBit OneStopEnglish
ρ ρs ρ ρs ρ ρs ρ ρs ρ ρs

Large 2 7 11 11 8 10 0 0 9 9
Medium 16 10 7 7 5 4 1 1 8 8
Small 2 3 4 4 7 6 5 7 5 5
None 5 5 3 3 5 5 19 17 3 3

the last position, we have WeeBit with the highest number of metrics not correlated
to the computed score.

These results are in line with what was visible from the boxplot and distribution
graphs, suggesting that the algorithm is indeed correct and applicable to multiple
datasets. Also, the slightly worse behavior of AppBCCS and the terrible of WeeBit
were in line with the expectation and the problems highlighted before while analyzing
Figures 4.3 and 4.5.

After seeing the general result for every dataset, it easy to notice that some
metrics do not correlate at all for multiple datasets. For this reason, and also to
analyze in deeper detail the differences among the datasets, we present Table 4.4,
in which the metrics are regrouped in categories.

As mentioned before the 25 metrics cover multiple aspects of Lexical Complexity,
mainly grouped in Lexical Density (1 metric), Lexical Sophistication (5 metrics)
and Lexical Variation (19 metrics), such organization is proposed also in the table,
but instead of providing a general result for Lexical Variation, we decided to divide
the 19 metrics into 4 subcategories, namely Number of Different Words (4 metrics),
Type/Token Ratio (6 metrics), Verb Density (3 metrics), and Lexical Word Diversity
(6 metrics).

The first group is Lexical Density, a metric that computes the ratio of the
number of lexical words versus the total number of words in a text. This metric
has been reported as not strictly relevant when considering the complexity of a text
[52, 51], conclusions that are further supported by our results, with both Mixed
and Newsela not correlating with the score value.

The second group consists of Lexical Sophistication (or Lexical Rareness), as
the name suggests, these metrics analyze the proportion of advanced or unusual
words in a document. These metrics are based on a similar conception to the core
idea of our approach, as a consequence, they perform well, with almost all the
metrics presenting a large level of correlation.

From the third group on, the metrics belong to Lexical Variation (or Lexical
Diversity), such measures reflect the variety of words used in the document. The
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Table 4.4: Correlation strength divided per category

Strength
AppBCCS Newsela Mixed WeeBit OneStopEnglish
ρ ρs ρ ρs ρ ρs ρ ρs ρ ρs

Lexical Density (1 Metric)
Large 0 0 0 0 0 0 0 0 0 0

Medium 1 0 0 0 0 0 0 0 1 1
Small 0 1 1 1 0 0 0 0 0 0
None 0 0 0 0 1 1 1 1 0 0

Lexical Sophistication (5 Metrics)
Large 1 4 4 4 3 4 0 0 4 4

Medium 3 0 0 0 1 0 0 0 0 0
Small 0 0 1 1 1 1 2 2 1 1
None 1 1 0 0 0 0 3 3 0 0

Number of Different Words (4 Metrics)
Large 0 0 1 1 0 1 0 0 0 0

Medium 2 2 3 3 2 1 0 0 4 4
Small 1 1 0 0 2 2 1 1 0 0
None 1 1 0 0 0 0 0 0 0 0

Type/Token Ratio (6 Metrics)
Large 1 3 4 4 3 3 0 0 3 3

Medium 4 2 1 1 0 1 0 0 2 2
Small 1 1 1 1 2 1 0 2 1 1
None 0 0 0 0 1 1 6 4 0 0

Verb Density (3 Metrics)
Large 0 0 2 2 2 2 0 0 2 2

Medium 3 3 1 1 0 0 0 0 1 1
Small 0 0 0 0 1 1 0 0 0 0
None 0 0 0 0 0 0 3 3 0 0

Lexical Word Diversity (6 Metrics)
Large 0 0 0 0 0 0 0 0 0 0

Medium 3 3 2 2 2 2 1 1 0 0
Small 0 0 1 1 1 1 2 2 3 3
None 3 3 3 3 3 3 3 3 3 3
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wider is the vocabulary used, the higher will be the score presented by these metrics,
with each of the subcategories being self-explanatory.

The third group, Number of Different Words, presents an average behavior, with
the metrics mainly showing a medium correlation with our score, except for Mixed
corpus. The reason probably resides in the influence generated by AppBCCS on
the corpus.

The fourth group, Type/Token Ratio, shows a better behavior than the previous
section, with most of the datasets exhibiting a large degree of correlation.

Immediately after we have Verb Density, also in this case the performance is
excellent, with most of the datasets returning a high association with our score.

Lastly, the final group is Lexical Word Diversity, this is the worst-performing
group, with half of the metrics showing zero correlation with the returned score. It
is interesting to notice, that the metrics scoring lower are the same for almost all
the datasets, being “AdvV”, “ModV”, and “VV2”, and that these metrics consists
also in the majority of the non-correlation results returned in Table 4.3.

Summing up, our score seems to correlate with most of the low-level metrics,
being able to “concentrate” in just one value the semantics carried by multiple
measures.

4.3 Scale Generation

Any scoring system, to be usable, needs some semantics; in other words, we need
a scale. In this section, we are going to propose a possible approach to generate it.

The first step in defining a scale is to select which dataset to use as a base.
Among the best-performing ones (Newsela, Mixed, and OneStopEnglish), we decided
to use Newsela, since it has a higher amount of levels compared to OneStopEnglish,
and a lower intra-level variance compared to Mixed. Thus, in the rest of the section,
data are referring to the Newsela corpus.

The second phase consists of the analysis of the distributions of scores. To make
this process more robust, we removed outliers. Outliers were identified using an
approach based on the IQR factor; however, to take into account the skewness of
data that Figure 4.2 (bottom) displayed, we adopted the approach proposed in [69]
based on the medcouple [70]; so, for a given level c, our system retains all the scores
for which

s ∈


[Q1 − 1.5IQR · e3MC , Q3 + 1.5IQR · e−4MC ]; MC ≥ 0

[Q1 − 1.5IQR · e4MC , Q3 + 1.5IQR · e−3MC ]; MC < 0
(4.6)

where Q1 is the 25th quantile, Q3 is the 75th quantile, IQR = Q3 −Q1 and MC
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Table 4.5: Table showing the distributions that best fit data

Comp. level c Distribution fc(s) Notes
“02-03” Normal(µ = 0, σ = 0.06557143) Prob. mass is 50%
“04-05” Normal(µ = 0.09644720, σ = 0.05115680) Prob. mass is 97%

“06-07-08” Normal(µ = 0.20037248, σ = 0.05115680)
“09-10” Normal(µ = 0.25586938, σ = 0.05568770)
“11-12” Normal(µ = 0.32078588, σ = 0.07019838)

is the medcouple of data belonging to level c. Scores not falling in these intervals
are discarded as outliers. After removing the outliers, we can now study the score
distributions.

Let’s define fc(x) as the density function (DF) of a probability distribution
approximating the distribution of the score s for the complexity level c, in the
“cleaned” corpus. To find fc(s), we used the Kolmogorov-Smirnov test that pointed
out the most promising functions. Then, we selected the best fitting function by
comparing the behavior of a candidate fc(s) and its Cumulative Density Function
(CDF), against the DF and CDF reconstructed from the corpus data.

Figure 4.7 illustrates the results of this procedure, where DF of the corpus data
is represented as a histogram, while its CDF is drawn as a curve; notice that the
CDF reconstructed from the corpus data and the candidate distribution CDF are
nearly indistinguishable. Table 4.5 displays the parameters of the identified fc(s).

For level “02-03”, we realized that data actually depicted half of a Normal
distribution centered in zero (see Figure 4.7a). So, we “mirrored” data around zero
and found, as expected, that the best fitting distribution was a Normal. Notice,
however, that, considering only s > 0, the DF area only accounts for 50% of the
probability mass. This affects how Equation 4.7 will be defined (i.e., we double the
probability mass associated to “02-03”).

For class “04-05”, the Normal DF accounts for 97% of the probability mass (as
part of the mass is distributed to s < 0). This is a small error, however, and we
chose to ignore it.

Then, being fc(s) a continuous distribution, the likelihood that an interval
centered in s, with radius δ, belongs to the complexity level c is

L(s− δ < x < s+ δ|c) =
(
1 + 1{“02-03”}(c)

)
·
∫ s+δ

s−δ
fc(x)dx

∀c ∈ Sc = {“02-03”, “04-05”, “06-07-08”, “09-10”, “11-12”}
(4.7)

where Sc is a totally ordered set (and the order relation is obviously defined) and
1{“02-03”}(c) is the indicator function. We can then define K(s), a function that
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Figure 4.7: For every complexity level (Newsela corpus): histogram of the data DF;
distribution fc(s); CDF for both data and distribution.
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Figure 4.7: For every complexity level (Newsela corpus): histogram of the data DF;
distribution fc(s); CDF for both data and distribution.
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associates a given score s to a complexity level, K(s) : [0, 1] ⊂ R→ Sc; then, the
probability of s belonging to a complexity level c is

Pδ(K(s) = c) = L(s− δ < x < s+ δ|c)∑
c′∈Sc

L(s− δ < x < s+ δ|c′) (4.8)

and, if authors are required to produce texts with complexity level no higher than
c̃, the probability that the complexity level associate to a given score is not higher
than c̃, is

Pδ(K(s) ≤ c̃) =
∑

c′≤c̃ ∈Sc

Pδ(k(s) = c′). (4.9)

Figure 4.8, on top, shows graphs of Pδ(K(s) = c); then, we can define our scale
calculating the most likely complexity level of score s, as

ĉ = arg max
c∈Sc

P (K(s) = c) = arg max
c∈Sc

L(s− δ < x < s+ δ|c). (4.10)

Given the thresholds [s0 = 0, . . . , s5 = 1] for s, we can calculate s′ taking values
in a scale with equidistant thresholds [s′0 = 0, s′1 = 0.2, s′2 = 0.4, s′3 = 0.6, s′4 =
0.8, s′5 = 1], maybe more convenient (although the complexity “density” changes in
each level of the scale). Given s and s′, and being (si−1, si), (s′i−1, s

′
i) the borders

of the complexity level they belong to (of course, s and s′ belong to the same
complexity level), the relationship between the two scales is

si − si−1

s′i − s′i−1
= s− si−1

s′ − s′i−1
. (4.11)
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Figure 4.8: Probability that the score s belongs to a complexity level (δ = 10−6); scales
for s and s′
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A visual representation of the two scales, for s and s′, is provided on the lower
part of Figure 4.8.

A precision on the current approach has to be done, as mentioned Equation 4.7,
it is the results of an approximation made on the behavior of distribution “04-05”,
however, if such approximation is considered unacceptable then the equation can
be proposed in a generalized fashion as:

L(s− δ < x < s+ δ|c) =
(

1 +
∑
c′

ec′

1− ec′
1{c’}(c)

)
·
∫ s+δ

s−δ
fc(x)dx (4.12)

where, for each complexity level c′, ec′ is the fraction of the fc′(s) probability mass
that does not belong to the [0, 1] ⊂ R range.

It is easy to show that Equation 4.12 is still a CDF in [0, 1] ⊂ R:
(

1 +
∑
c′

ec′

1− ec′
1{c’}(c)

)
·
∫ 1

0
fc(x)dx = 1 (4.13)

We can solve the equation for every c′

(
1 +

∑
c′

ec′

1− ec′
1{c’}(c)

)
·
∫ 1

0
fc(x)dx =

=
(

1 + ec′

1− ec′

)
· (1− ec′)

= 1− ec′ + ec′

= 1

In particular, considering c′ ∈ {“02-03”, “04-05”} and ec′ ∈ {0.5, 0.03} we can
improve the approximation provided by Equation 4.7 and thus the probability
provided by Equation 4.8.



Chapter 5

Syntactic Approach

In this section we will present our approach to compute Syntactic Complexity,
firstly, we will identify the features that better approximate the complexity by
mean of classification task performance analysis. Secondly, the best set of features
is selected, and used in a regression mechanism to obtain the Syntactic Complexity
for every text sample. Lastly, the obtained score will be analyzed and the best
performing model will be selected.

The steps will be implemented using two different models: Multi-Attentive
model and Multi-Hierarchical model. These models were selected because their
nature is prone to focus more on the syntactic aspects of a document. Both models
will be presented in the next two sections.

5.1 Multi-Attentive model

The Multi-Attentive model was first introduced in [5], where it was presented
as an automatic multilingual readability assessment technique.

This model, like many others introduced for the task, considers words as its
base input; however, internally, the network is supplied with additional information,
such as Morphology and POS tag, that will help it performs a better choice when
applying the attention mechanism. The innovation introduced by this model is the
attention mechanism itself; for the first time, a Multi-Attentive model is proposed,
allowing the network to better discern and focus on specific features of the text
sample while executing its learning task. (See Section 2.5.2 for more details)

The model has been re-adapted to the current objective by completely removing
the lexical information as input, increasing the diversification of tested inputs, its
modularity, and generally improving the performance of the network.

From here on, when referring to the model, we will describe our variant of the
proposed mechanism.

71
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Table 5.1: Example of relationship between sentences and sequences

Sentence Mary likes dogs and cats
Sequence (UPOS) PROPN VERB NOUN CCONJ NOUN

5.1.1 High Level Architecture Overview

The model can be ideally divided in four layers: Input, RNN, Attention, and
Output.

Input: As the name suggests, this layer is responsible for handling and parsing
the input that will then be fed to the network. Every input will be parsed and
translated into its corresponding dense representation, also defined as Embedding
(see Section 2.4.1)

We provided the network with up to 4 possible types of input (Morphology,
UPOS, XPOS, and Dependency Path), all explained in Section 2.2.2. We will
refer to the representation of this type of input as Element, a series of elements
will define a Sequence. This definition is analogous to the concept of Word and
Sentence; while a word is the base unit of a sentence, an element is the base unit of
a sequence. To better understand the relationship between words - sentences, and
elements - sequence we can look at Table 5.1

While generating the embedding for UPOS and XPOS, is standard practice,
since it is a simple translation to a different representation system, it is not so
common to apply the embedding also at the morphological and dependency level.
These kinds of data are represented by a list of attributes; for this reason, they
are converted beforehand in a single string and then translated to the Embedding
representation.

RNN: Recurrent Neural Networks constitute the second layer, and they are re-
sponsible for creating a representation of the inputs that will be used later on by
part of the attention mechanism. In particular, as discussed in Section 2.4.2, to
overcome the problem of the vanishing gradients, Bidirectional LSTMs (BiLSTM)
are used.

Every input is parsed independently, this means that the BiLSTMs do not share
information, allowing the networks to focus only on a specific type of data.

Attention: Attention Layer is the most important component of the entire mode.
As widely described in Section 2.4.3, attention is a mechanism used to simulate the
ability of humans to focus on specific information.

In this model, the attention mechanism works both at the sequence and element
level or, in other terms, it can identify both the most relevant elements and sequences
in a document.
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Figure 5.1: General architecture of the Multi-Attentive model
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Continuing the diversification introduced in the RNN layer, also in the attention
layer, multiple attention systems exist, each handling a specific kind of input.

Output: This is the last layer and is the result of the application of element and
sequence attention on the output of the UPOS BiLSTM. The final output will
either be a series of the probability of belonging to a certain class (if a discrete
prediction is done), or value (if the task requires a continuous prediction).

Figure 5.1 displays a high level representation of the model.

5.1.2 Deep Level Architecture Overview

Here, we are going to present all the four layers mentioned in the previous
section, in deeper detail, by also providing mathematical representation of the
operations used.

Let’s define a document d as the input for the model, d is in reality composed
by the four varieties of input introduced into the network: d =< du, dx, dm, dd >,
where u, x,m, d stands for UPOS, XPOS, morphology, and dependency path. For
the sake of simplicity from now on we are going to refer to a general dT without
specifying, unless relevant, the subtype considered. It is, however, important to
remember that the model parses every input independently.

For Every input we can reach the sequence level by using dT,i, identifying the
ith sequence in document d, and dT,ij when referring to the jth element of the ith
sequence in document d.

The first step in parsing the input dT , consists in translating the document from
the standard representation to the dense version, this translation can be imagined
as the equivalent of a look up table ΩT ∈ Rv×d in which each row is an embedding
for a specific element in the vocabulary of size v, represented by d features. Needless
to say, every variety of input is associated to a different look up table, for this
reason v and d might differ among subtypes. We can define the resulting dense
representation as ωT .

After pre-processing the input data, the representation of the document is feed
to the RNN model. The output of the BiLSTM, obtained by concatenating the
final states of the network, can be defined as hT,i if we are considering a sequence,
or as hT,ij if we are considering a specific element.

Parallel to this activity, it is also computed the attention, as mentioned before
both at element and sequence level.

The element-level attention is composed of multiple attention mechanisms
aggregated, with each block following the same structure, differing only for the size
of the input and the number of hidden units. Each attention block is a two-layers
fully connected neural network and can be represented by the following formulas:
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Figure 5.2: ReLU and Leaky ReLU activation functions

attT1,ij = ReLU(w1 · ωT,ij + b1) (5.1)
attT2.ij = ReLU(w2 · attT1,ij + b2) (5.2)

where w and b represents the weights and biases of a linear layer, ωT,ij is the
dense vector representation of the jth element in the ith sequence of the input to
the network, and “ReLU” represents the Rectified Linear Unit activation func-
tion. Mathematically, the ReLU is equivalent to y = max(x, 0), and a visual
representation is available in Figure 5.2.

Lastly, after applying a mask to the attention, in order to ignore the padding
introduced by the RNN, every attention is multiplied by a weighted value zT,norm,
automatically estimated during the training phase, such that ∑t∈T zt,norm = 1. This
condition is forced by applying a softmax to the value of z:

zT,norm = exp(zT )∑
t∈T exp(zt)

(5.3)

The final attention aij, associated to the element dij is then computed as:

aij =
∑
t∈T

zt,norm · attt2,ij (5.4)

In a similar way it is possible to generate the sequence level attention (ai), by
simply using the hidden representation retrieved by the BiLSTM (hT,i) instead of
the dense representation ωT,ij. Figure 5.3 displays a schematic representation of
the attention mechanism.

In conclusion, the two attentions are multiplied to the output of the BiLSTM
responsible for the UPOS representation, and a final hout is obtained. This output
will be mapped in the output layer either by applying a softmax activation function,
if it is required a discrete prediction or, by implementing a “Leaky ReLU” activation
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Figure 5.4: Detail schematic representation of the Multi-Attentive model

function if the objective is to execute a continuous prediction. “Leaky ReLU” is a
variant of ReLU, with a small slope for negative values, instead of altogether zero
(See Figure 5.2).

Figure 5.4 presents the detailed structure of the model

5.2 Multi-Hierarchical model

The Hierarchical Attention Network (HAN) was first presented in [6], in which
it was introduced as an innovative approach. The researchers, following the idea
that “words form sentences and sentences form documents”, built a network model
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that resembles the structure of the documents. This is achieved by generating first
a sentence representation, and then, leveraging such representation to generate the
document representation.

Also in this model, the implementation of an attention mechanism is at two
different levels aiming to handle the unequal importance of sentences and words in
a different part of the document.

Figure 5.5 displays the original architecture. It can be ideally divided into four
layers, responsible for encoding and attention operations for both word and sentence
level. Both word encoder and sentence encoder are based on GRU, introduced in
[2], that can comprehend the states of sentences without using additional memory
cells (see Section 2.4.2).

The only difference between the two encoders is the type of input, in one case
being the dense representation of the text sample and the other the results of the
application of the word attention level. The attention mechanisms instead are
based on the analysis of the similarity between the representation of the word and
a vector representing the context (defined as uw and us, respectively for word level
and sentence level attention).

The model was initially presented for sentiment estimation and topic classifica-
tion tasks. We re-adapted it to the current job and converted to integrate also the
innovation proposed by the Multi-Attentive model. From here on, when referring
to the model, we will describe our implementation of the proposed mechanism.

5.2.1 High Level Architecture Overview

The model can be ideally divided into six layers: Input, Element Encoding,
Element Attention, Sequence Encoding, Sequence Attention, and Output.

Input: This layer, similarly to the one presented for the previous model, is
responsible for handling and parsing the input that will be fed to the network.
Every input will be translated to the respective dense representation (Embedding,
see Section 2.4.1.)

As in the previous model, we provide up to four possible varieties of input
(Morphology, UPOS, XPOS, and Dependency Path), see Section 2.2.2 for details.
These inputs will be processed in an analogous way to the Multi-Attentive model.
We will also maintain the same notation presented before, using Element and
Sequence, to describe the network representation of Word and Sentence.

Element Encoding: Element Encoding represents the second layer and is respon-
sible for generating a representation of the input. Such representation will be used
by the next layer to compute the attention at the element level. This layer is usually
composed of RNN networks and, as a consequence of the discussion in Section 2.4.2,
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Figure 5.5: Hierarchical Attention Network as proposed in [6]
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to overcome the problem associated with the vanishing gradient, BiLSTMs are
used.

Again, every type of input is parsed independently, this means that the BiLSTMs
do not interact with each other, granting a diversification of the learning process.

Element Attention: Element Attention layer consists of the attention mechanism
applied at the element level, the input to this step is the output of the previous
layer and, as mentioned in Section 2.4.3, tries to emulate the innate capacity of
humans to focus only on part of the information while solving a problem.

Following the approach started in the previous layers, also, in this case, the
attention mechanisms for different input types are completely independent.

Sequence Encoding: Sequence Encoding layer presents the same structure as
the Element Encoding layer, with the only difference being the format of the input.
Instead of using the dense representation of the input to the network as input for
the layer, it uses the result of the application of the Element Attention layer over
the Element Encoding layer.

Since the structure is the same, also in this layer persists the diversification
among the various types of input.

Sequence Attention: Sequence Attention, as can be imagined, follows the same
structure of the Element Attention layer, with the only difference being, also in this
case, the type of input to the layer. Sequence Attention uses as input the output of
the Sequence Encoding layer.

This is the last layer in which the diversification among the input is maintained.
In the next layer, the different processes will be merged to provide a single output.

Output: This is the last layer of the model, it is also the layer in which the
diversification in handling the inputs is terminated. After applying to every Sequence
Encoding the computed Sequence Attention, the results will be merged providing
a single final result. The final output can be either a series of the probability
of belonging to a certain class if the intended task is a classification (discrete
prediction), or a single value if a regression is the objective of the model (continuous
prediction).

Figure 5.6 displays a visual high level representation of the model.

5.2.2 Deep Level Architecture Overview

In this section, we are going to cover all the previously mentioned layers, by
presenting each one in deeper details supported by a mathematical representation
of the steps.
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The first layer, is the same as the Multi-Attentive model, for this reason, we
can maintain the same definition and conclusions, here reported for convenience.

Let’s define a document d as the input for the model, d is in reality composed
by the four varieties of input introduced into the network: d =< du, dx, dm, dd >,
where u, x,m, d stands for UPOS, XPOS, morphology, and dependency path. For
the sake of simplicity, from now on we are going to refer to a general dT without
specifying, unless relevant, the subtypes considered. It is, however, important to
remember that every input is parsed independently.

For Every input we can reach the sequence level by using dT,i, identifying the ith
sequence in document d and dT,ij when referring to the jth word of the ith sequence
in document d.

The first step in parsing the input dT , consists in translating the document,
from the standard representation to the dense version. This translation, can be
imagined as the equivalent of a look up table ΩT ∈ Rv×d, in which each row is an
embedding for a specific word in the vocabulary of size v, represented by d features.
Needless to say, every variety of input is associated to a different look up table, for
this reason v and d might differ. We can define the resulting dense representation
as ωT .

After pre-processing the input, the dense representation is fed to the element
encoding layer. The output of the BiLSTM (defined as hT,ij) is then given as input
to the element attention layer.

In a similar fashion to the previous model, the element attention layer is
composed of multiple independent and almost identical structures. Every block
can be imagined as an independent network system, and, as such, can be simply
expressed in the mathematical formula as:

attTw1,ij = tanh(w1 · hT,ij + b1) (5.5)
mattTw1,ij = mask(attTw1,ij) (5.6)

attTw2,ij = σ(w2 ·mattTw1,ij + b2) (5.7)

where w and b are the weights and biases of a linear layer, hT,ij is the output of the
BiLSTM of the previous level and it is the input to the attention. “tanh” represent
the hyperbolic tangent activation function, “mask” perform a simple masking of
the data removing references to the padding added by the element encoding layer,
and σ indicates a softmax normalization applied to the output of the attention
block before returning the result.

The hyperbolic tangent (tanh) is a continuous function that produces an output
between -1 and 1 for every given x as input, mathematically it is defined as:
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tanh(x) = exp(x)− exp(−x)
exp(x) + exp(−x) (5.8)

Softmax, instead, is a function that takes as input a vector z of K real numbers,
and normalizes it into a probability distribution consisting of K probabilities
proportional to the exponential of the input number. In other words, starting from
a series of values that can be either positive and negative, it returns for each value,
an equivalent representation between 0 and 1, with the constraint that all returned
values must sum up to 1. Mathematically is defined as:

σ(x)i = exp(xi)∑K
j=1 exp(xj)

for i ∈ [1, . . . , K], x = (xi, . . . , xK) ∈ RK (5.9)

After computing the element level attention (attTw2,ij), the result is multiplied
by the representation provided by the element encoding layer (haTw,ij) and summed
to generate the input for the sequence encoding layer (haTw,i).

The sequence encoding layer act in the same way as the element encoding layer,
with the only difference being the form of the input, passing from the simple dense
representation of the input data to haTw,i. The output of the BiLSTM, defined as
hTs,i is then given to the sequence attention layer. Again the procedure is identical
to the previously mentioned one for the element attention level, with the only
difference being the input.

The output of the sequence attention layer (attTs2,i) is then multiplied by the
output of the sequence encoding layer (hTs,i), and summed to obtain the result for
the entire document (haTs).

Lastly, after obtaining the result for every type of input T, such results are
multiplied by a weighted value zT,norm. This value is automatically estimated during
the training phase, and it is defined as:

zT,norm = exp(zT )∑
t∈T exp(zt)

(5.10)

This definition ensures that ∑t∈T zt = 1.
The final output for a document d, is then computed as:

hout =
∑
t∈T

zt,norm · haTs (5.11)

This output will be mapped in the output layer either by applying a softmax
activation function, if the desire is to compute a discrete prediction, or by im-
plementing a “Leaky ReLU” activation function, if the objective is to execute a
continuos prediction.

Figure 5.7 presents the detail structure of the model.
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5.3 Experimental Results

In this section, we are going to explain how we implemented the models described
in the previous sections and the obtained results. Following an approach similar to
the lexical component, after analyzing the outcomes, we will verify the validity of
the approach by using low-level indexes that capture multiple aspects of Syntactic
Complexity.

5.3.1 Features Selection

The implementation of the two models is quite straightforward; however, before
executing the two approaches, a preliminary step has to be taken: select the best
set of features to use as input for each model.

To identify the highest performing input variety, we decided to implement the
two models and perform a classification task. This task can give information
about the type of features that better grant an effective diversification among the

Table 5.2: Results of classification tasks for Multi-Attentive model

Input type Accuracy Weighted Loss Balanced Accuracy Kappa
UPOS

Morphology
0.6065 1.0041 0.5837 0.5430

UPOS
XPOS

0.6178 0.9987 0.5920 0.5555

UPOS
Dependency

0.6116 1.0253 0.5935 0.5491

UPOS
Morphology

XPOS
0.6229 1.0168 0.6027 0.5620

UPOS
Morphology
Dependency

0.6309 0.9977 0.6086 0.5711

UPOS
XPOS

Dependency
0.6084 1.0419 0.5811 0.5445

UPOS
XPOS

Morphology
Dependency

0.6301 1.0160 0.6131 0.5706
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Table 5.3: Results of classification tasks for Multi-Hierarchical model

Input type Accuracy Weighted Loss Balanced Accuracy Kappa
UPOS

Morphology
0.7141 1.5969 0.6869 0.6671

UPOS
XPOS

0.7033 1.6033 0.6748 0.6548

UPOS
Dependency

0.6449 1.6374 0.6311 0.5880

UPOS
Morphology

XPOS
0.6309 1.6613 0.6063 0.5708

UPOS
Morphology
Dependency

0.6666 1.6213 0.6545 0.6131

UPOS
XPOS

Dependency
0.6931 1.6126 0.6639 0.6423

UPOS
XPOS

Morphology
Dependency

0.6894 1.6029 0.6741 0.6394

complexity levels.
To further stress this aspect we used the original version of Newsela corpus,

consisting of documents divided into 11 classes, from 02 to 12 of the Common Core
Standard System. This dataset possesses the highest number of documents and the
highest diversification on complexity levels, among the implemented corpora.

Tables 5.2 and 5.3 presents the results of this experiment, respectively for the
Multi-Attentive model and the Multi-Hierarchical one.

The tables provide results considering: Accuracy (fraction of predictions our
model got right), a widely used measure for the classification tasks, and three
other metrics that take into consideration the uneven distribution of data among
the classes. These three measures were introduced to diminish the interference
produced by the strong diversity in the number of text samples that characterize
every level of complexity. Such metrics are here briefly explained:

Weighted Loss : Weighted version of the classical loss metric (the prediction
error of a network), this variant was introduced to tackle the problem of
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imbalanced data, by assigning different weights when verifying the accuracy
of a prediction for a certain class (the lower the better).

Balanced Accuracy : Balanced version of the classical accuracy, implemented
as the average of the recall computed on each class, it has range between 0
and 1, where 1 is the best value and 0 is the worst.

Kappa : also called Cohen’s kappa, expresses the level of agreement between two
annotators on a classification problem, it is computed using the following
formula k = (po − pe)/(1− pe), where po is the observed agreement ratio, and
pe is the expected agreement when both annotators assign labels randomly.
[71, 72]

Both models are tested against all possible variants of input, with UPOS
maintained for every implementation. While this condition is mandatory for
the Multi-Attentive model, given its definition, it is not necessary for the Multi-
Hierarchical model; however, to grant coherence between the tests we decided to
maintain such constraint.

Considering both tables, we can notice that for the Multi-Attentive model, the
best performing input type is the triplet: UPOS, Morphology, and Dependency.
For the Multi-Hierarchical model, instead, the best performing input variety is
the couple: UPOS and Morphology. These combinations will be used in the
implementation of the model during the execution of the regression task.

5.3.2 Model implementation

Once defined the set of features that will be used with every model, the first step
in implementing the algorithm is to select on which dataset train the two different
models. This decision is very important because it will influence the quality of the
returned result.

Ideally, this task must be driven by the need to find a corpus that has a high
amount of syntactic diversification among the levels, or in other words, a corpus
that has multiple documents of different genres. Given these premises, the obvious
decision is to use Mixed corpus. It must be taken into consideration, however, that
this corpus, is under the influence of the AppBCCS corpus, characterized by the
huge presence of narrative documents, that might introduce graphical gimmicks
which will negatively affect the model.

A second point that raises worries is associated with the strong different nature
of documents in AppBCCS, compared to the other corpora that, instead, are mainly
composed of articles. While this condition is considered optimal for the task at
hand, it must be considered that text samples, belonging to AppBCCS, represent
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only a small portion of the Mixed corpus. This disparity in the variety of text
samples might generate noise in the form of a large number of outliers in the training
process.

To ensure our model is not affected by the mentioned problems, we are going to
implement both models using Mixed and Newsela corpus, generating four possible
models: Multi-Attentive model trained on Mixed, Multi-Attentive model trained
on Newsela, Multi-Hierarchical model trained on Mixed, and Multi-Hierarchical
model trained on Newsela.

Each model, will then be tested against each of the five corpora previously
presented. Figures 5.8 - 5.12 displays the result of this activity. In particular, every
figure reports the results obtained by a specific corpus on the four different models
listed above; for example, Figure 5.8 displays the results obtained by the Newsela
corpus, while being used for validation on:

• The Multi-Attentive model trained on Mixed (Figure 5.8a)

• The Multi-Attentive model trained on Newsela (Figure 5.8b)

• The Multi-Hierarchical model trained on Mixed (Figure 5.8c)

• The Multi-Hierarchical model trained on Newsela (Figure 5.8d)

To avoid overlapping of data between the training and validation phase, when
needed, we applied a 5-fold approach. The basic idea is to divide the dataset into
five parts, selects four parts, merge them, and use them for training. The remaining
share will be used for validation. This procedure is applied five times, selecting
every time a different set of sections, until every section has been used for validation.

This approach is applied to Newsela, AppBCCS, and Mixed when the training
is executed on Mixed. If the training is, instead, executed on Newsela, the approach
is applied only for Newsela, and Mixed.

Similar to what has been done during the lexical section, every result is proposed
in two forms, boxplot, and distributions, since from these two representations is
possible to identify information concerning variance, density, and overlapping among
the different complexity levels.

Lastly, it is relevant to notice that, given the nature of the networks models and
the execution of the regression task, the returned values might be outside of the
standard set [0,1], to avoid this, we applied a normalization of the retrieved score,
with every corpus being normalized independently by the others.

Newsela

The first results presented, are generated by processing the Newsela corpus
with both models and using both Mixed and Newsela corpora as a base for the
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(a) Box plot and distribution using Multi-Attentive model with Mixed for training
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Figure 5.8: Box plot representation, and data distributions of the Newsela corpus
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training; given the special nature of Mixed and Newsela corpora, in both cases, the
results are retrieved applying a 5-fold approach, so to grant that there will never
be overlapping between the training and validation dataset.

Independently by the model, it is evident the difference in the quality of the
result between the approaches trained on Mixed and the ones based on Newsela,
with the latter outperforming the former. The most probable source of this problem
is the influence generated by the AppBCCS corpus in Mixed, confirming that the
worries about the correctness of using Mixed as a training base might be grounded.

By going more in detail, in the approaches based on Mixed, the different
complexity levels are subjected to a high level of overlap, in particular, the two
highest ones. This phenomenon points out the inability of the model to properly
discern among the most complex documents of the corpus. Furthermore, most of
the levels present a double peak behavior, highlighting the difficulties of the model.

Contrary to the behavior showed in the approaches based on Mixed, the ones
that use Newsela, display well distinct curves with no major anomalies, with the
results provided by the Multi-Attentive model exhibiting a lower variance compared
to the Multi-Hierarchical counterpart. The high variance is probably also the cause
of the “steps” that appear in the lower levels of the Multi-Hierarchical approach.

AppBCCS

The second datasets we tested is AppBCCS; in this case, the results are obtained
using a 5-fold approach only when Mixed is used as a training base, otherwise, a
standard approach is applied. Similar to what we noticed with Newsela, the models
based on Mixed, generate worse results compared to the ones based on Newsela.

In particular, the models based on Mixed corpus, independently by the structure
of the model, show a high degree of overlapping, with the curves being almost
identical, and with the median almost stuck at the same value, independently by
the complexity level.

A similar phenomenon also appears in the approaches based on Newsela, with
the curves showing a high level of overlapping compared to the results obtained on
Newsela (validation), however, in these cases, the medians of different complexity
levels show a growing trend at the increasing of levels.

Given this information, even if the results obtained are generally worse compared
to the one obtained while validating with Newsela; the models trained on Newsela
outperform the results obtained using Mixed, with the Multi-Attentive models
showing a slightly better behavior compared to the Multi-Hierarchical ones.
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(a) Box plot and distribution using Multi-Attentive model with Mixed for training
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(b) Box plot and distribution using Multi-Attentive model with Newsela for training

02-03 04-05 06-07-08 09-10 11-12
Complexity level

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Sc
or

e 
No

rm
al

ize
d

0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.9
1.0
1.1
1.2

Sc
or

e

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Score Normalized

0

1

2

3

4

5

6
Complexity level

02-03
04-05
06-07-08
09-10
11-12

0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.9 1.0 1.1 1.2
Score

(c) Box plot and distribution using Multi-Hierarchical model with Mixed for training
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(d) Box plot and distribution using Multi-Hierarchical model with Newsela for training

Figure 5.9: Box plot representation, and data distributions of the AppBCCS corpus
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(a) Box plot and distribution using Multi-Attentive model with Mixed for training
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(b) Box plot and distribution using Multi-Attentive model with Newsela for training
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(c) Box plot and distribution using Multi-Hierarchical model with Mixed for training
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(d) Box plot and distribution using Multi-Hierarchical model with Newsela for training

Figure 5.10: Box plot representation, and data distributions of the Mixed corpus
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Mixed

The third results are generated by implementing the Mixed corpus, again, given
the peculiar nature of this corpus, all the results are obtained as a consequence of a
5-fold approach, granting the absence of shared documents between the training
and validation phase.

From these experiments, we expected to obtain an optimal behavior in the
approaches based on Mixed and less accurate for the one based on Newsela. While
this is respected in the Multi-Hierarchical approach, it is not valid for the Multi-
Attentive one, in which the Newsela based approach outperforms the Mixed one.

In particular, the best results are generated by the Multi-Attentive model based
on Newsela and the Multi-Hierarchical model based on Mixed, considering these
two experiments we can notice that the former is characterized by a smaller variance
among levels than the latter.

WeeBit

WeeBit is the fourth dataset considered, and also the first to not be associated
with any of the corpus used during the training phase. For this reason, it can be
considered as a test of the ability of both models to generalize; however, given the
consideration presented while considering the Lexical Complexity, we do not expect
particularly good results out of it.

Aligned with the expectation is the results produced by the methods based
on the Mixed corpus, characterized by high overlapping and obstruction of some
complexity levels, that are not represented in for any score, such as “WRLevel3”
and “WRLevel4”.

Surprisingly, instead, the results returned by the approaches based on the
Newsela corpus are quite promising, presenting a lower degree of overlapping and
allowing every level to be represented in some specific score intervals. Among
these two, the most promising result is provided by the Multi-Attentive model that
exhibits a lower variance compared to the Multi-Hierarchical one.

OneStopEnglish

OneStopEnglish is the last dataset analyzed, also with this corpora, as for
WeeBit, no relationship is present between the corpora used for the training activity
and this one. This corpus can hence act as a second test concerning the capability
of our models to generalize.

Considering the results, as it happened for the rest of the experiments, it is
evident that the approaches based on Newsela perform better than the one based
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(a) Box plot and distribution using Multi-Attentive model with Mixed for training
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(b) Box plot and distribution using Multi-Attentive model with Newsela for training
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(c) Box plot and distribution using Multi-Hierarchical model with Mixed for training
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(d) Box plot and distribution using Multi-Hierarchical model with Newsela for training

Figure 5.11: Box plot representation, and data distributions of the WeeBit corpus
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(a) Box plot and distribution using Multi-Attentive model with Mixed for training
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(b) Box plot and distribution using Multi-Attentive model with Newsela for training
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(c) Box plot and distribution using Multi-Hierarchical model with Mixed for training

Elementary Intermediate Advanced
Complexity level

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Sc
or

e 
No

rm
al

ize
d

0.7
0.7
0.8
0.8
0.9
0.9
0.9
1.0
1.0
1.1
1.1

Sc
or

e

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Score Normalized

0

1

2

3

4
Complexity level

Elementary
Intermediate
Advanced

0.7 0.7 0.8 0.8 0.9 0.9 0.9 1.0 1.0 1.1 1.1
Score

(d) Box plot and distribution using Multi-Hierarchical model with Newsela for training

Figure 5.12: Box plot representation, and data distributions of the OneStopEnglish
corpus



5.3. Experimental Results 95

on Mixed; in particular, the degree of overlapping is inferior and no complexity level
is hidden by others, as instead happen for level “Intermediate” in Figure 5.12a.

Lastly, among the two models using Newsela as a training dataset, both are
performing quite well. Surprisingly, however, the Multi-Hierarchical model is slightly
better, by showing less inter-class variance compared to the other.

5.3.3 Score Validation

In the previous section, we presented the outcome of the score computation step
for every corpus and briefly analyzed the various results. Unfortunately, similar to
what happened when computing the Lexical Complexity, since these datasets are not
classified considering only Syntactic Complexity but a more “general complexity”,
we can not use the classical validation systems.

What we decided to do, instead, is in line with the approach proposed for
the Lexical Complexity, we tested our results by considering the correlation level
between our score and a series of low levels metrics introduced in [27].

In this paper, the researchers presented a total of 14 metrics that cover various
aspects of Syntactic Complexity and can be grouped in the following categories:
Length of Production Unit (3 metrics, that analyze the length of production at the
clausal, sentential, or T-unit level), Sentence Complexity (1 metric), Subordination
(4 metrics that reflect the amount of subordination), Coordination (3 metrics
that measure the amount of coordination), and Particular Structures (3 metrics
that consider the relationship between particular syntactic structures and larger
production units).

These metrics are the most relevant out of the huge collection of measures
initially proposed in [28].

In particular, we evaluated the Pearson correlation coefficient and Spearman
rank correlation between our score and such 14 metrics. Tables 5.4 - 5.7 display
the complete results, divided in categories.

The meaning of such 14 metrics is briefly presented in the following list:

MLC: Mean Length of Clause

MLS: Mean Length of Sentence

MLT: Mean Length of T-unit

C/S: Sentence Complexity Ratio

C/T: T-unit Complexity Ratio

CT/T: Complex T-uni Ratio
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tween our score and standard syntactic metrics, per dataset for the Multi-
Attentive model based on Mixed corpus
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Table 5.5: Pearson correlation coefficient (ρ) and Spearman rank correlation (ρs) be-
tween our score and standard syntactic metrics, per dataset for the Multi-
Attentive model based on Newsela corpus
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Table 5.6: Pearson correlation coefficient (ρ) and Spearman rank correlation (ρs) be-
tween our score and standard syntactic metrics, per dataset for the Multi-
Hierarchical model based on Mixed corpus
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Table 5.7: Pearson correlation coefficient (ρ) and Spearman rank correlation (ρs) be-
tween our score and standard syntactic metrics, per dataset for the Multi-
Hierarchical model based on Newsela corpus
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DC/C: Dependent Clause Ratio

DC/T: Dependent Clauses per T-unit

CP/C: Coordinate Phrases per Clause

CP/T: Coordinate Phrases per T-unit

T/S: Sentence Coordination Ratio

CN/C: Complex Nominals per Clause

CN/T: Complex Nominals per T-unit

VP/T: Verb Phrases per T-unit

Similar to the approach implemented while evaluating the quality of the predicted
Lexical Complexity, we evaluated the correlation strength by implementing Cohen’s
interpretation. In particular, if the correlation is lower then 0.10 there is no
association in any form; a correlation between 0.10 and 0.30 indicates a small
association; a correlation between 0.30 and 0.50 represents a medium association,
and lastly, a correlation higher than 0.50 implies a large association. Table 5.8
presents the result of this correlation.

If our assumptions presented in the previous section are correct, from this results,
we expect a better performance by the two structure that features Newsela as the
training dataset, with the Multi-Attentive model coming out as the winner among
all the implemented variants.

Looking at the table, this is exactly what happens, with the Multi-Attentive
model based on Newsela outperforming the methods based on Mixed and begin
slightly better than the Multi-Hierarchical model based on Newsela.

It is relevant to notice that the best model is also the only one that for every
corpus and every metrics shows a medium or large correlation for 13 metrics out of
14; besides the metric with a null or small association in WeeBit and OneStopEnglish
is the Sentence Coordination Ratio (T/S) that shows poor compatibility with the
two corpora in every experiment.

Lastly, the only other metric showing a small association is Coordinate Phrases
per Clause (CP/C), which generally perform badly with AppBCCS for all ap-
proaches.

Interesting to notice is that both metrics belong to the Coordination Group,
proving that out of all the five groups, these metrics are the one less compatible
with our score.

Summing up, our score seems to correlate with almost all the low-level metrics,
being able to “concentrate” in just one value the semantics carried by multiple
measures.
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Table 5.8: Total correlation strength of the various approaches

Strength
AppBCCS Newsela Mixed WeeBit OneStopEnglish
ρ ρs ρ ρs ρ ρs ρ ρs ρ ρs

Multi-Attentive - Mixed
Large 0 0 5 5 5 4 0 0 1 0

Medium 9 9 8 9 9 10 0 1 6 7
Small 5 5 1 0 0 0 10 9 0 1
None 0 0 0 0 0 0 4 4 7 6

Multi-Attentive - Newsela
Large 11 11 14 14 13 14 3 5 7 7

Medium 2 3 0 0 1 0 10 8 6 6
Small 1 0 0 0 0 0 1 1 0 0
None 0 0 0 0 0 0 0 0 1 1

Multi-Hierarchical - Mixed
Large 0 3 0 0 10 13 0 0 3 4

Medium 10 10 12 12 4 1 0 4 9 8
Small 4 1 2 2 0 0 12 10 1 1
None 0 0 0 0 0 0 2 0 1 1

Multi-Hierarchical - Newsela
Large 3 7 14 14 8 13 3 4 5 6

Medium 4 1 0 0 6 1 9 9 6 6
Small 2 2 0 0 0 0 2 1 2 1
None 5 4 0 0 0 0 0 0 1 1

5.3.4 Scale Generation

The last step to complete a full twin procedure with the Lexical Complexity
analysis is to introduce a scale system that gives a semantic to the values returned
by our model; in particular, in this section, we are going to propose the methodology
and a possible application of it.

The first step to generate a scale system is to select one of the approaches and
a specific corpus to use as a base. Considering the results reported by the methods,
we can rank them, from first to last as:

• Multi-Attentive model trained on Newsela

• Multi-Hierarchical model trained on Newsela

• Multi-Hierarchical model trained on Mixed
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• Multi-Attentive model trained on Mixed

This ranking is a direct consequence of the better behavior introduced by the
usage of Newsela compared to Mixed as base corpus during the training. We believe
that the origin of this phenomenon is intrinsic to the corpora themselves. Mixed is,
in fact, the result of the union of Newsela and AppBCCS corpora, allowing for a
broader range of genres compared to the simple articles proposed in Newsela. Such
diversity, however, is in place only by name.

If we consider the results presented in Section 3.2.3, it is evident that the text
samples belonging to Newsela dominate the corpus, and the influence of AppBCCS
is limited to only a small portion. Such a share, being too small, generate the
opposite effects by strongly increasing the variance in the dataset, hence increasing
also the number of text samples perceived as outliers by the network, and as
consequence, worsening the learning capability of the network.

The approaches based on Newsela, on the other side, feature a lower diversity
in the text samples allowing the network models to learn better the features that
characterize every complexity level.

Among the two best performing approaches, the Multi-Attentive model comes
out as the winner, considering both the results of the correlation analysis and the
distribution of the scores (see Section 5.3).

After selecting the model, we need to decide which corpus use. Among the
five datasets tested using the Multi-Attentive model, the two best performing are
Newsela and Mixed.

In this step, we are looking for a corpus that provides the highest complexity level
diversification while maintaining a lower intra-level variance. The first condition is
easily satisfied since both corpus are divided in the same number of levels while for
the second we can look at the boxplot presented in Section 5.3.2, here reported in
Figure 5.13 for convenience.

Considering the figure, Mixed appears to be the corpus with the lowest intra-
variance on the complexity level; however, if we pay closer attention, the lower
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Figure 5.13: Comparison between the box plot representation of score for Newsela (left)
and Mixed (right)
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Table 5.9: Table showing the distributions that best fit data

Comp. level c Distribution fc(s) Notes
“02-03” Normal(µ = 0, σ = 0.02023581) Prob. mass is 50%
“04-05” Normal(µ = 0.17018700, σ = 0.07747836) Prob. mass is 98.5%

“06-07-08” Normal(µ = 0.38106293, σ = 0.09353859)
“09-10” Normal(µ = 0.49465190, σ = 0.06711004)
“11-12” Normal(µ = 0.57584023, σ = 0.10797352)

variance is the result of the huge increment in the number of outliers.
This phenomenon, as mentioned above, is the consequence of the structure of

Mixed, which has more data then Newsela but more sparse. While this aspect
might seem irrelevant at first impact, it becomes a major hindrance during the
definition of a scale, because all the outliers are going to be removed during the
process.

The best outcome would be to have a dataset with a variety of content similar
to Mixed, but with a higher amount of text samples, that assert the relevance of
every genre.

Given this premise, we believe that Newsela can produce results with a higher
level of reliability compared to Mixed, hence we will use the former. We expect,
however, to encounter some problems while proceeding with the scale generation,
in particular, within the levels with fewer data.

Once the dataset is selected, we can proceed with the next steps of the procedure:
the analysis of the distributions of scores. This phase is very similar if not identical
to the one executed for the Lexical Complexity, hence we are going to cover it
briefly remanding to Section 4.3 for any specific detail.

After removing the outliers applying the medcouple rules, we can define fc(x)
as the density function (DF) of a probability distribution approximating the distri-
bution of the score s for the complexity level c, in the “cleaned” corpus. To find
fc(s), we used the Kolmogorov-Smirnov test that pointed out the most promising
functions. Then, we selected the best fitting function by comparing the behavior of
a candidate fc(s) and its Cumulative Density Function (CDF), against the DF and
CDF reconstructed from the corpus data.

Figure 5.14 illustrates the results of this procedure, where DF of the corpus data
is represented as a histogram, while its CDF is drawn as a curve; notice that the
CDF reconstructed from the corpus data and the candidate distribution CDF are
nearly indistinguishable. Table 5.9 displays the parameters of the identified fc(s).

For level “02-03”, we suspected a similar behavior to what happened in the
definition of a scale for Lexical Complexity, with the data depicting half of the
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(a) True histogram, DF and CDF of level “02-03”
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(c) DF and CDF of level “06-07-08”

Figure 5.14: For every complexity level (Newsela corpus): histogram of the data DF;
distribution fc(s); CDF for both data and distribution.
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Figure 5.14: For every complexity level (Newsela corpus): histogram of the data DF;
distribution fc(s); CDF for both data and distribution.
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Figure 5.15: Comparison between CDF representation of level “02-03” for Newsela (left)
and Mixed (right)

Normal distribution. However, when we implemented the same approach and
mirrored the data around zero, we noticed that some misalignment was present
between the identified CDF and the one generated by the data. (see Figure 5.14a)

Such error is in line with what we expected and is, in our opinion, a direct
influence of the low amount of data that characterize such level. To understand if
the decision of using a normal as identification function was correct, we analyzed
the effect on level “02-03” for the Mixed corpus.

Figure 5.15 displays this comparison and highlight how increasing the number
of data available defines a distribution similar to a Normal. For this reason, even if
the approximation we presented has a certain degree of error, such approximation is
probably correct since increasing the amount of data will lead to the identification
of a Normal distribution.

Similarly to what happened in class “04-05” while considering the Lexical
Complexity, the Normal DF accounts for 98.5% of the probability mass (as part of
the mass is distributed to s < 0), given the small nature of the error, we decided to
ignore it.

Then, being fc(s) a continuous distribution, the likelihood that an interval
centered in s, with radius δ, belongs to the complexity level c is

L(s− δ < x < s+ δ|c) =
(
1 + 1{“02-03”}(c)

)
·
∫ s+δ

s−δ
fc(x)dx

∀c ∈ Sc = {“02-03”, “04-05”, “06-07-08”, “09-10”, “11-12”}
(5.12)

where Sc is a totally ordered set (and the order relation is obviously defined) and
1{“02-03”}(c) is the indicator function. We can then define K(s), a function that
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associates a given score s to a complexity level, K(s) : [0, 1] ⊂ R→ Sc; then, the
probability of s belonging to a complexity level c is

Pδ(K(s) = c) = L(s− δ < x < s+ δ|c)∑
c′∈Sc

L(s− δ < x < s+ δ|c′) (5.13)

and, if authors are required to produce texts with complexity level no higher than
c̃, the probability that the complexity level associate to a given score is not higher
than c̃, is

Pδ(K(s) ≤ c̃) =
∑

c′≤c̃ ∈Sc

Pδ(k(s) = c′). (5.14)

Figure 5.16, on top, shows graphs of Pδ(K(s) = c); then, we can define our scale
calculating the most likely complexity level of score s, as

ĉ = arg max
c∈Sc

P (K(s) = c) = arg max
c∈Sc

L(s− δ < x < s+ δ|c). (5.15)

Given the thresholds [s0 = 0, . . . , s5 = 1] for s, we can calculate s′ taking values
in a scale with equidistant thresholds [s′0 = 0, s′1 = 0.2, s′2 = 0.4, s′3 = 0.6, s′4 =
0.8, s′5 = 1], maybe more convenient (although the complexity “density” changes in
each level of the scale). Given s and s′, and being (si−1, si), (s′i−1, s

′
i) the borders

of the complexity level they belong to (of course, s and s′ belong to the same
complexity level), the relationship between the two scales is

si − si−1

s′i − s′i−1
= s− si−1

s′ − s′i−1
. (5.16)
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Figure 5.16: Probability that the score s belongs to a complexity level (δ = 10−6);
scales for s and s′
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A visual representation of the two scales, for s and s′, is provided on the lower
part of Figure 5.16.

Also in this case, as for the Lexical Complexity, the approach presented here is
based on the approximation made on the behavior of distribution “04-05”, however,
if such approximation is considered unacceptable then the equation can be proposed
in a generalized fashion as:

L(s− δ < x < s+ δ|c) =
(

1 +
∑
c′

ec′

1− ec′
1{c’}(c)

)
·
∫ s+δ

s−δ
fc(x)dx (5.17)

where, for each complexity level c′, ec′ is the fraction of the fc′(s) probability mass
that does not belong to the [0, 1] ⊂ R range.

It is easy to show that Equation 5.17 is still a CDF in [0, 1] ⊂ R:
(

1 +
∑
c′

ec′

1− ec′
1{c’}(c)

)
·
∫ 1

0
fc(x)dx = 1 (5.18)

In particular, considering c′ ∈ {“02-03”, “04-05”} and ec′ ∈ {0.5, 0.015} we can
improve the approximation provided by Equation 5.12 and thus the probability
provided by Equation 5.13.



Chapter 6

Conclusion

6.1 Conclusions

In this thesis, we proposed BASILISCo, a novel approach to compute the com-
plexity of a document. More specifically, a system based on the distinct computation
of lexical and reading complexity was designed, tested, and implemented so to
better assess the problem, compared to the current state of the art solutions.

Literature research demonstrated that the problem of identifying specifics aspects
of the complexity of documents underwent lower attention. In the recent works,
characterized by a congregation of information, the point of focus has always been
a general reading complexity, depriving the user of a better understanding of the
features associated with such complexity.

To avoid such limitations, starting from the current state of the art, we identified
and reinvented multiple designs to address our specific task.

This leads to the definition of BASILISCo to study multiple aspects of complex-
ity, in particular, we analyzed the complexity deriving from lexical and syntactic
features. Both approaches are completely independent, however, both are imple-
mented following the same workflow that can be summed up in the following six
steps: feature identification or selection, model generation, score computation,
score validation, score distribution analysis, and scale generation. Using this work-
flow allowed us to produce results that are characterized by a strong consistency,
independently by the nature of the lower process effectively implemented.

Lexical Complexity was implemented reinventing the log-likelihood ratio test,
an approach originally proposed for unsupervised content selection. Syntactic
Complexity was instead computed using state of the art techniques and innovative
models of deep learning generated by redesigning models normally used in natural
language processing tasks.

Given the innovative nature of the obtained results, a comparison via classical
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metrics with predefined datasets was not possible since corpora that measure only
specific aspects of the complexity do not exist. Hence, we evaluated the correctness
of the approach by mean of correlation analysis with specific low levels metrics
responsible to grasp different aspects of lexical and Syntactic Complexity. These
tests, of which results are reported in their summed up version in Tables 4.3
and 5.8, proved that our models strongly correlates with the majority of the
features, implying the quality of the returned score, and their validity in defining
the complexity of documents.

Lastly, we proposed a methodology for defining a scale able to provide meaning
to our score by associating it to specific complexity levels, for which we presented
also examples of implementation. Such examples are based on assumptions and
ultimately limited by the low amount of data available through the corpora; however,
they proved to be valid and acceptable in the current context.

Finally, a clarification is due: BASILISCo is based on the assumption that
the reader possesses a general knowledge of the topics covered by the analyzed
documents. That assumption holds for the datasets we relied upon, as they are
typical of a school environment, which represents the general knowledge required
in daily life and thus can be defined as “common knowledge”. Some adjustments
should be done if documents treat arguments belonging to specific fields, like the
medical one. A solution would be either to use a tuned corpus to define the scale
or to provide a separate score considering independently, people with or without
knowledge about that argument.

6.2 Future works

The implemented approaches represent a first step in the necessity of providing
the user with complete and detailed information concerning the complexity of text
documents; however, multiple improvements can be done, either increasing the
level of precision of the reported information or proving the validity of the returned
score.

For example, a possible improvement would be to extend the current scope of
analysis by introducing an investigation on semantic, not covered by the current
research, but that contributes to the reading complexity of a document. The
implementation will feature different low-level processes to produce the results, but
thanks to the definition of a general workflow, the newly generated results will
correlate with ours.

A different improvement direction would instead be to increase the robustness to
different aspects of lexical and Syntactic Complexity that might be not covered in
this research or that are dependent by the reader itself, and as such not considered.
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Finally, given the nature and aim of the task, to completely prove the validity
of the approach, an experiment involving human readers is needed. In this way, it
will be possible to verify if the returned complexity and the one identified by the
readers correlate.





Appendix A

Composition of the custom version of Appendix-B
Common Core Standard corpus (AppBCCS)

In this appendix we present the composition of our version of the AppBCCS
corpus. The table is grouped firstly by complexity level, then by genre and lastly by
author. For every author we highlight the number of lemmas, tokens and chapters.
This representation aims at showing the relevance of every author and genre for a
specific complexity level.

Table 6.1: Composition of our version of the AppBCCS corpus

Gold Genre Author N. Lemma N. Words N. Chapters

“02-03”

Informational Texts

AA 114 329 1
AB 76 279 1
AC 107 294 1
AD 74 276 1
AE 66 208 1
AF 99 269 1

Stories

AG 90 567 1
AH 1826 23845 48
AI 810 7545 10
AJ 36 106 1
AK 91 291 1
AL 2386 42985 60
AM 1777 51850 58
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Table 6.1: Composition of our version of the AppBCCS corpus

Gold Genre Author N. Lemma N. Words N. Chapters

“04-05”

Informational Texts

AN 47 115 1
AO 43 183 1
AP 89 251 1
AQ 163 602 1
AR 92 227 1
AS 60 194 1
AT 85 282 1
AU 59 237 1
AV 124 380 1
AW 76 273 1
AX 99 373 2

Stories

AY 1465 16865 27
AZ 3213 80539 27
BA 1708 26527 12
BB 3620 99564 40
BC 89 298 1
BD 2585 42663 48
BE 2425 27643 27
BF 471 2120 1
BG 3653 54413 17
BH 4728 99492 43
BI 3202 68648 14
BJ 11334 1050456 400
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Table 6.1: Composition of our version of the AppBCCS corpus

Gold Genre Author N. Lemma N. Words N. Chapters

“06-07-08”

Informational Texts:
English Language Arts

BK 71 255 1
BL 4040 31912 11
BM 5795 75072 4
BN 3449 53329 22

Informational Texts:
History and Social Studies

BO 41 98 1
BP 3745 52178 10

Informational Texts:
Science, Mathematics,
and Technical Subjects

BQ 123 481 1
BR 67 187 1
BS 3347 34897 86
BT 1900 28826 13
BU 133 363 1
BV 111 268 1

Stories

BW 12083 174130 47
BX 3217 49160 12
BY 3719 46221 22
BZ 8393 343447 75
CA 6756 66190 35
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Table 6.1: Composition of our version of the AppBCCS corpus

Gold Genre Author N. Lemma N. Words N. Chapters

“09-10”

Drama
CB 1680 26205 3
CC 2221 17462 28
CD 3372 37123 1

Informational Texts:
English Language Arts

CE 6018 81760 37
CF 1308 8727 1
CG 222 725 1
CH 110 1646 1
CI 741 3338 1
CJ 364 1567 1
CK 1316 6157 1

Informational Texts:
History and Social Studies

CL 9007 137719 11
CM 9262 194802 26
CN 5309 151384 20
CO 4767 61002 17

Informational Texts:
Science, Mathematics,
and Technical Subjects

CP 3628 51661 8
CQ 5282 97624 4
CR 85 318 1

Stories

CS 4966 95082 21
CT 2988 51228 25
CU 3009 32683 30
CV 1857 22006 3
CW 618 2743 2
CX 5301 99251 31
CY 511 2070 1
CZ 5184 108487 24
DA 5548 179220 30
DB 4465 106733 23
DC 7563 250596 111
DD 3466 46038 3
DE 5626 79297 28
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Table 6.1: Composition of our version of the AppBCCS corpus

Gold Genre Author N. Lemma N. Words N. Chapters

“11-12”

Drama
DF 2184 17544 5
DG 1791 20472 3
DH 3217 31284 5

Informational Texts:
English Language Arts

DI 4540 59602 35
DJ 3412 28313 6
DK 6882 106697 18
DL 744 2912 1
DM 1767 13819 9
DN 2392 21110 5

Informational Texts:
History and Social Studies

DO 7262 307742 119
DP 303 999 1
DQ 1914 10478 1

Informational Texts:
Science, Mathematics,
and Technical Subjects

DR 547 3719 1
DS 3924 43345 5
DT 4794 72589 9
DU 79 201 1
DV 666 2840 1
DW 534 3202 1
DX 853 3994 1

Stories

DY 922 4898 3
DZ 8533 185365 38
EA 595 2314 1
EB 3284 88862 41
EC 4096 48379 9
ED 6505 203832 41
EE 4319 30620 30
EF 4277 120916 61
EG 6256 103536 12
EH 949 4249 1
EI 8940 400671 116
EJ 5258 68135 24
EK 844 4263 2
EL 10749 249809 26
EM 4365 52248 5
EN 2740 57246 1
EO 3436 59854 20
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Analyzing the table we can notice some characteristics. Firstly, Stories represents
the genre with the highest influence in the dataset, being the one with the highest
number of authors and highest values in terms of lemmas, words and chapters.
Secondly, Stories accounts for the highest diversification in terms of chapters (and,
consequently, weight in the distributions) compared to any other genre. Finally,
the influence of some authors is much higher than others; this can be easily seen by
looking at the amount of chapters and unique lemmas in their works.



Bibliography

[1] O. De Clercq and V. Hoste, “All mixed up? finding the optimal feature
set for general readability prediction and its application to english and
dutch,” COMPUTATIONAL LINGUISTICS, vol. 42, no. 3, pp. 457–490, 2016.
[Online]. Available: http://dx.doi.org/10.1162/COLI_a_00255

[2] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly
learning to align and translate,” ArXiv, vol. 1409, 09 2014.

[3] J. Cheng, L. Dong, and M. Lapata, “Long short-term memory-networks
for machine reading,” CoRR, vol. abs/1601.06733, 2016. [Online]. Available:
http://arxiv.org/abs/1601.06733

[4] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of
deep bidirectional transformers for language understanding,” CoRR, vol.
abs/1810.04805, 2018. [Online]. Available: http://arxiv.org/abs/1810.04805

[5] I. M. Azpiazu and M. S. Pera, “Multiattentive recurrent neural network archi-
tecture for multilingual readability assessment,” Transactions of the Association
for Computational Linguistics, vol. 7, pp. 421–436, 2019.

[6] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy, “Hierarchical
attention networks for document classification,” in Proceedings of the 2016
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, 01 2016, pp. 1480–1489.

[7] W. Dubay, “Unlocking language: The classic readability studies,” Professional
Communication, IEEE Transactions on, vol. 51, pp. 416 – 417, 01 2009.

[8] M. Heilman, K. Collins-Thompson, and M. Eskenazi, “An analysis
of statistical models and features for reading difficulty prediction,” in
Proceedings of the Third Workshop on Innovative Use of NLP for
Building Educational Applications, ser. EANL ’08. Stroudsburg, PA, USA:
Association for Computational Linguistics, 2008, pp. 71–79. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1631836.1631845

119

http://dx.doi.org/10.1162/COLI_a_00255
http://arxiv.org/abs/1601.06733
http://arxiv.org/abs/1810.04805
http://dl.acm.org/citation.cfm?id=1631836.1631845


120 BIBLIOGRAPHY

[9] F. Rudolph, “A new readability yardstick,” Journal of Applied Psychology, vol.
32(3), 221-233, 1948. [Online]. Available: http://dx.doi.org/10.1037/h0057532

[10] M. Proust, Swann’s Way. Simon & Brown, 2018.

[11] K. J. Peter, R. P. Fishburne, R. L. Rogers, and B. S. Chissom, “Derivation of
new readability formulas (automated readability index, fog count and flesch
reading ease formula) for navy enlisted personnel,” Institute for Simulation and
Training, 1975. [Online]. Available: https://stars.library.ucf.edu/istlibrary/56

[12] J. S. J. S. Chall and E. Dale, Readability revisited : the new Dale-Chall
readability formula. Cambridge, Mass. : Brookline Books, 1995, includes
bibliographical references (p. [151]-155) and index.

[13] L. Si and J. Callan, “A statistical model for scientific readability,” in Proceedings
of the 10th International Conference on Information Knowledge Management
(ICKM-2001), 2001.

[14] K. Collins-Thompson and J. P. Callan, “A language modeling approach
to predicting reading difficulty,” in Proceedings of the Human Language
Technology Conference of the North American Chapter of the Association for
Computational Linguistics: HLT-NAACL 2004. Boston, Massachusetts, USA:
Association for Computational Linguistics, May 2 - May 7 2004, pp. 193–200.
[Online]. Available: https://www.aclweb.org/anthology/N04-1025

[15] K. Collins-Thompson, “Computational assessment of text readability: A sur-
vey of current and future research,” ITL - International Journal of Applied
Linguistics, vol. 165, pp. 97–135, 01 2014.

[16] M. Heilman, K. Collins-Thompson, J. Callan, and M. Eskenazi, “Combining
lexical and grammatical features to improve readability measures for first and
second language texts.” in Proceedings of the Human Language Technology Con-
ference and the North American Chapter of the Association for Computational
Linguistics Annual Meeting (HLT-NAACL 2007), 01 2007, pp. 460–467.

[17] S. E. Schwarm and M. Ostendorf, “Reading level assessment using support
vector machines and statistical language models,” in Proceedings of the Annual
Meeting of the Association for Computational Linguistics, 2005, pp. 523–530.

[18] T. Landauer, K. Kireyev, and C. Panaccione, “Word maturity: A new metric
for word knowledge,” Scientific Studies of Reading, vol. 15, pp. 92–108, 01
2011.

http://dx.doi.org/10.1037/h0057532
https://stars.library.ucf.edu/istlibrary/56
https://www.aclweb.org/anthology/N04-1025


BIBLIOGRAPHY 121

[19] K. Kireyev and T. Landauer, “Word maturity: Computational modeling of word
knowledge,” in The 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, 01 2011, pp. 299–308.

[20] X. Chen and D. Meurers, “Word frequency and readability: Predicting the
text-level readability with a lexical-level attribute,” Journal of Research
in Reading, vol. 41, no. 3, pp. 486–510, 2018. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-9817.12121

[21] N. Nouri and B. Zerhouni, “Lexical frequency effect on reading comprehension
and recall,” Arab World English Journal, vol. 9, pp. 234–250, 06 2018.

[22] F. P. Anderson, R. C., “Vocabulary knowledge,” In J. T. Guthrie (Ed.),
Comprehension and Teaching: Research Reviews (pp. 77-117). Newark, DE:
International Reading Association, 1981.

[23] X. Lu, “The relationship of lexical richness to the quality of esl learners’
oral narratives,” The Modern Language Journal, vol. 96, no. 2, pp. 190–208,
2012. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.
1540-4781.2011.01232_1.x

[24] E. Gibson, “Linguistic complexity: Locality of syntactic dependencies,” Cogni-
tion, vol. 68, pp. 1–76, 09 1998.

[25] D. BIBER, B. Gray, and K. Poonpon, “Should we use characteristics of
conversation to measure grammatical complexity in l2 writing development?”
TESOL Quarterly, vol. 45, 03 2011.

[26] R. Kate, X. Luo, S. Patwardhan, M. Franz, R. Florian, R. Mooney,
S. Roukos, and C. Welty, “Learning to predict readability using diverse
linguistic features,” in Proceedings of the 23rd International Conference
on Computational Linguistics (Coling 2010). Beijing, China: Coling
2010 Organizing Committee, Aug. 2010, pp. 546–554. [Online]. Available:
https://www.aclweb.org/anthology/C10-1062

[27] X. Lu, “Automatic analysis of syntactic complexity in second language
writing,” International Journal of Corpus Linguistics, vol. 15, no. 4, pp.
474–496, 2010. [Online]. Available: https://www.jbe-platform.com/content/
journals/10.1075/ijcl.15.4.02lu

[28] I. S. . K. H.-Y. Wolfe-Quintero, K., Second language development in writing:
Measures of fluency, accuracy, & complexity. Honolulu: Second Language
Teaching & Curriculum Center, University of Hawaii at Manoa, 1998.

https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-9817.12121
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1540-4781.2011.01232_1.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1540-4781.2011.01232_1.x
https://www.aclweb.org/anthology/C10-1062
https://www.jbe-platform.com/content/journals/10.1075/ijcl.15.4.02lu
https://www.jbe-platform.com/content/journals/10.1075/ijcl.15.4.02lu


122 BIBLIOGRAPHY

[29] L. Ortega, “Syntactic Complexity Measures and their Relationship to L2
Proficiency: A Research Synthesis of College-level L2 Writing,” Applied
Linguistics, vol. 24, no. 4, pp. 492–518, 12 2003. [Online]. Available:
https://doi.org/10.1093/applin/24.4.492

[30] F. Shadloo, H. Shahriari, and B. Ghonsooly, “Exploring syntactic complexity
and its relationship with writing quality in efl argumentative essays,” Topics
in Linguistics, vol. 20, pp. 68–81, 06 2019.

[31] F. Kuiken, I. Vedder, A. Housen, and B. Clercq, “Variation in syntactic
complexity: Introduction,” International Journal of Applied Linguistics, 04
2019.

[32] A. C. Graesser, D. S. McNamara, M. M. Louwerse, and Z. Cai, “Coh-metrix:
Analysis of text on cohesion and language,” Behavior Research Methods,
Instruments, and Computers, vol. 36, pp. 193–202, 2004.

[33] D. McNamara, M. Louwerse, P. McCarthy, and A. Graesser, “Coh-metrix:
Capturing linguistic features of cohesion,” Discourse Processes, vol. 47, no. 4,
pp. 292–330, 5 2010.

[34] B. Klebanov and E. Shamir, “Reader-based exploration of lexical cohesion,”
Language Resources and Evaluation, vol. 41, pp. 27–44, 10 2007.

[35] R. Barzilay and M. Lapata, “Modeling local coherence: An entity-based
approach.” Computational Linguistics, vol. 34, pp. 1–34, 01 2008.

[36] B. J. Grosz, A. K. Joshi, and S. Weinstein, “Centering: A framework
for modeling the local coherence of discourse,” Computational Linguistics,
vol. 21, no. 2, pp. 203–225, 1995. [Online]. Available: https://www.aclweb.org/
anthology/J95-2003

[37] M. Elsner and E. Charniak, “Extending the entity grid with entity-specific
features.” in The 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, Proceedings of the Conference,
19-24 June, 2011, Portland, Oregon, USA - Short Papers, 01 2011, pp. 125–129.

[38] D. Nguyen and S. Joty, “A neural local coherence model,” in Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers). Association for Computational Linguistics, 2017, pp.
1320–1330. [Online]. Available: http://www.aclweb.org/anthology/P17-1121

[39] M. Mesgar and M. Strube, “A neural local coherence model for text quality
assessment,” in Proceedings of the 2018 Conference on Empirical Methods in

https://doi.org/10.1093/applin/24.4.492
https://www.aclweb.org/anthology/J95-2003
https://www.aclweb.org/anthology/J95-2003
http://www.aclweb.org/anthology/P17-1121


BIBLIOGRAPHY 123

Natural Language Processing. Brussels, Belgium: Association for Computa-
tional Linguistics, Oct.-Nov. 2018, pp. 4328–4339.

[40] E. Pitler and A. Nenkova, “Revisiting readability: A unified framework for
predicting text quality,” in Proceedings of the 2008 Conference on Empirical
Methods in Natural Language Processing. Honolulu, Hawaii: Association for
Computational Linguistics, Oct. 2008, pp. 186–195.

[41] L. Feng, M. Jansche, M. Huenerfauth, and N. Elhadad, “A comparison of
features for automatic readability assessment,” in Proceedings of the 23rd
International Conference on Computational Linguistics: Posters, ser. COLING
’10. Stroudsburg, PA, USA: Association for Computational Linguistics, 2010,
pp. 276–284. [Online]. Available: http://dl.acm.org/citation.cfm?id=1944566.
1944598

[42] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult,” IEEE transactions on neural networks / a
publication of the IEEE Neural Networks Council, vol. 5, pp. 157–66, 02 1994.

[43] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural compu-
tation, vol. 9, pp. 1735–80, 12 1997.

[44] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using RNN
encoder–decoder for statistical machine translation,” in Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing (EMNLP).
Doha, Qatar: Association for Computational Linguistics, Oct. 2014, pp.
1724–1734. [Online]. Available: https://www.aclweb.org/anthology/D14-1179

[45] K. Xu, J. L. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. S. Zemel,
and Y. Bengio, “Show, attend and tell: Neural image caption generation
with visual attention,” in Proceedings of the 32nd International Conference
on International Conference on Machine Learning - Volume 37, ser. ICML’15.
JMLR.org, 2015, p. 2048–2057.

[46] M. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” CoRR, vol. abs/1508.04025, 2015.
[Online]. Available: http://arxiv.org/abs/1508.04025

[47] M. Martinc, S. Pollak, and M. Robnik-Sikonja, “Supervised and unsupervised
neural approaches to text readability,” CoRR, vol. abs/1907.11779, 2019.
[Online]. Available: http://arxiv.org/abs/1907.11779

http://dl.acm.org/citation.cfm?id=1944566.1944598
http://dl.acm.org/citation.cfm?id=1944566.1944598
https://www.aclweb.org/anthology/D14-1179
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1907.11779


124 BIBLIOGRAPHY

[48] A. Conneau, D. Kiela, H. Schwenk, L. Barrault, and A. Bordes, “Supervised
learning of universal sentence representations from natural language inference
data,” in Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, 09 2017, pp. 670–680.

[49] C. o. C. S. S. O. National Governors Association Center for Best Practices,
Common Core State Standards Appendix B. National Governors Association
Center for Best Practices, Council of Chief State School Officers, Washington
D.C., 2010.

[50] C.-Y. Lin and E. Hovy, “The automated acquisition of topic signatures
for text summarization,” in COLING 2000 Volume 1: The 18th
International Conference on Computational Linguistics, 2000. [Online].
Available: https://www.aclweb.org/anthology/C00-1072

[51] C. A. Engber, “The relationship of lexical proficiency to the quality of esl
compositions,” Journal of Second Language Writing, vol. 4, no. 2, pp. 139 –
155, 1995. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/1060374395900047

[52] M. Linnarud, Lexis in composition : a performance analysis of Swedish learners’
written English. Lund : Gleerup, 1986.

[53] K. Hyltenstam, “Lexical characteristics of near-native second-language learners
of swedish,” Journal of Multilingual and Multicultural Development, vol. 9, no.
1-2, pp. 67–84, 1988. [Online]. Available: https://doi.org/10.1080/01434632.
1988.9994320

[54] B. Laufer, “The lexical profile of second language writing: Does it change over
time?” RELC Journal, vol. 25, no. 2, pp. 21–33, 1994. [Online]. Available:
https://doi.org/10.1177/003368829402500202

[55] B. Harley and M. L. King, “Verb lexis in the written compositions of young l2
learners,” Studies in Second Language Acquisition, vol. 11, no. 4, p. 415–439,
1989.

[56] C. Chaudron and K. Parker, “Discourse markedness and structural marked-
ness: The acquisition of english noun phrases,” Studies in Second Language
Acquisition, vol. 12, no. 1, p. 43–64, 1990.

[57] T. Klee, “Developmental and diagnostic characteristics of quantitative measures
of children’s language production.” Topics in Language Disorders, vol. 12, no. 12,
p. 28–41, 1992.

https://www.aclweb.org/anthology/C00-1072
http://www.sciencedirect.com/science/article/pii/1060374395900047
http://www.sciencedirect.com/science/article/pii/1060374395900047
https://doi.org/10.1080/01434632.1988.9994320
https://doi.org/10.1080/01434632.1988.9994320
https://doi.org/10.1177/003368829402500202


BIBLIOGRAPHY 125

[58] J. F. Miller, “Quantifying productive language disorders.” In J. F. Miller (Ed.),
Research in child language disorders: A decade of progress, p. 211–220, 1991.

[59] D. Malvern, B. Richards, N. Chipere, and P. Duran, Lexical diversity and lan-
guage development: Quantification and assessment. Basingstoke, Hampshire:
Palgrave Macmillan, 05 2004.

[60] E. Thordardottir and S. Ellis Weismer, “High-frequency verbs and verb diver-
sity in the spontaneous speech of school-age children with specific language
impairment,” International journal of language & communication disorders /
Royal College of Speech & Language Therapists, vol. 36, pp. 221–44, 04 2001.

[61] J. B. .-. Carroll, Language and thought. Englewood Cliffs, N.J.
: Prentice-Hall, 1964, bibliography: p. 112-113. [Online]. Avail-
able: http://digitool.hbz-nrw.de:1801/webclient/DeliveryManager?pid=
2540963&custom_att_2=simple_viewer

[62] G. Herdan, Quantitative linguistics. London: Butterworths., 1964.

[63] W. Johnson, “Studies in language behavior: I. a program of research,” Psycho-
logical Monographs, vol. 56, no. 2, pp. 1–15, 1944.

[64] P. Guiraud, Problèmes et méthodes de la statistique linguistique [Problems and
methods of statistical linguistics]. Dordrecht, The Netherlands: D. Reidel.,
1960.

[65] M. C. Templin, Certain Language Skills in Children: Their Development and
Interrelationships. University of Minnesota Press, 1957, vol. 26. [Online].
Available: http://www.jstor.org/stable/10.5749/j.ctttv2st

[66] D. Dugast, Vocabulaire et stylistique. I Théâtre et dialogue [Vocabulary and
style. Vol. 1 Theatre and dialogue]. Geneva, Switzerland: Slatkine-Champion.,
1979.

[67] E. McClure, “A comparison of lexical strategies in l1 and l2 written english
narratives.” Pragmatics and Language Learning, vol. 2, no. 2, p. 141–154, 1991.

[68] C. P. Casanave, “Language development in students’ journals,” Journal of
Second Language Writing, vol. 3, no. 3, pp. 179 – 201, 1994. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/1060374394900167

[69] M. Hubert and E. Vandervieren, “An adjusted boxplot for skewed
distributions,” Computational Statistics & Data Analysis, vol. 52, no. 12, pp.
5186 – 5201, 2008. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0167947307004434

http://digitool.hbz-nrw.de:1801/webclient/DeliveryManager?pid=2540963&custom_att_2=simple_viewer
http://digitool.hbz-nrw.de:1801/webclient/DeliveryManager?pid=2540963&custom_att_2=simple_viewer
http://www.jstor.org/stable/10.5749/j.ctttv2st
http://www.sciencedirect.com/science/article/pii/1060374394900167
http://www.sciencedirect.com/science/article/pii/S0167947307004434
http://www.sciencedirect.com/science/article/pii/S0167947307004434


126 BIBLIOGRAPHY

[70] G. Brys, M. Hubert, and A. Struyf, “A robust measure of skewness,” Journal
of Computational and Graphical Statistics, vol. 13, no. 4, pp. 996–1017, 2004.

[71] J. Cohen, “A coefficient of agreement for nominal scales,” Educational and
Psychological Measurement, vol. 20, no. 1, pp. 37–46, 1960. [Online]. Available:
https://doi.org/10.1177/001316446002000104

[72] R. Artstein and M. Poesio, “Inter-coder agreement for computational
linguistics,” Comput. Linguist., vol. 34, no. 4, p. 555–596, Dec. 2008. [Online].
Available: https://doi.org/10.1162/coli.07-034-R2

https://doi.org/10.1177/001316446002000104
https://doi.org/10.1162/coli.07-034-R2

	Colophon
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivations
	Aims
	Outline

	Background
	Introduction
	Features
	Lexical Features
	Syntactic Features
	Semantic Features

	Traditional Approaches
	Approaches Based on Lexical Features
	Approaches Based on Syntactic Features
	Approaches Based on Semantic Features
	Approaches Based on Multiple Features

	Background Knowledge for Deep Learning Approaches
	Embedding
	Recurrent Neural Network
	Attention Mechanism

	Approaches Based on Deep Learning
	Paper #1: Supervised and unsupervised neural approaches to text readability
	Paper #2: Multiattentive Recurrent Neural Network Architecture for Multilingual Readability Assessment


	Rationale behind the Work and Datasets
	Rationale
	Datasets
	Newsela
	Appendix B of Common Core Standard
	Mixed
	WeeBit
	OneStopEnglish
	Remarks


	Lexical Approach
	Model
	Log-likelihood Ratio Test
	Algorithm
	Handling OOV and non-relevant words

	Experimental Results
	Vocabulary Generation
	Score Generation
	Score Validation

	Scale Generation

	Syntactic Approach
	Multi-Attentive model
	High Level Architecture Overview
	Deep Level Architecture Overview

	Multi-Hierarchical model
	High Level Architecture Overview
	Deep Level Architecture Overview

	Experimental Results
	Features Selection
	Model implementation
	Score Validation
	Scale Generation


	Conclusion
	Conclusions
	Future works


