
Executive Summary of the Thesis

Deep Learning-based Reduced Order Models for PDEs:
Multi-fidelity Strategies for Transfer Learning

Laurea Magistrale in Mathematical Engineering - Ingegneria Matematica

Author: Daniel Fraulin

Advisor: Prof. Andrea Manzoni

Co-advisor: Dott. Nicola Rares Franco

Academic year: 2020-2021

Introduction
Parametrized Partial Differential Equations
(PDEs) are fundamental tools for modeling the
behaviour of physical, biological and mechan-
ical systems. Supposing the problem is well-
posed for any value of the input parameters
within a suitable parameter space, PDEs are
generally solved by means of high-fidelity Full-
Order Models (FOMs), such as the Galerkin-
Finite Element Method (FEM). FOMs guaran-
tee an accurate numerical solution but might en-
tail a non-negligible computational cost. The
latter may become easily unbearable when deal-
ing with many-queries applications, such as opti-
mal control problems, Bayesian inversion or un-
certainty quantification. In these contexts we
are interested in exploring a possibly wide por-
tion of the discrete solution manifold, by solv-
ing the PDE for a potentially large ensemble of
parameter instances. One possible strategy con-
sists in replacing the FOMs with Reduced Order
Models (ROMs) that approximate in a highly ef-
ficient way the parameter-to-solution map, while
maintaining adequate levels of accuracy.
In this thesis, we focus on a particular class
of ROMs, namely Deep Learning-based Re-
duced Order Models (DL-ROMs), recently in-

troduced in [1, 3]. DL-ROMs are a Machine
Learning (ML) framework that exploits exten-
sively Artificial Neural Network (NN) to learn
the parameter-to-solution map starting from a
dataset of solution snapshots. These latter are
generated using FOMs in an expensive off-line
stage that also includes the NN model train-
ing. The high popularity of this kind of sur-
rogates is due to the completely effortless eval-
uation of PDE queries for new input parame-
ters during the following on-line stage. Indeed,
DL-ROMs are non-intrusive methods, which do
not involve the assembling and the resolution
of any linear system associated to a reduced
order differential problem. What distinguishes
DL-ROM from others ML-based approximation
algorithms (e.g. [4, 5]) is that, first, a low di-
mensional representation of the solution mani-
fold is determined through a deep auto-encoder
(AE). This allows to compress the information
associated to the solution manifold in a so-called
latent space. Afterward, the learning problem is
rephrased into the much more manageable ap-
proximation of the low dimensional relation be-
tween parameter instances and the latent rep-
resentation of the PDE solution. Furthermore,
DL-ROMs were developed on a deep theoretical
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basis that plays an essential role in designing
the NN architecture. In particular, recent re-
sults [1] prescribe, depending on properties of
the parameter-to-solution map, the minimal di-
mension of the latent space to ensure that the
error entailed by compressing the solution man-
ifold can be made arbitrarily small. This infor-
mation is in turn used to fix the width of the
deep auto-encoder bottleneck, with a huge im-
pact on the number of degrees of freedom (dofs)
of the NN and, as a consequence, on the compu-
tational time required by its training.
Starting from this background, the work follows
two main paths. The first one is theoretical and
consists in the extension of the aforementioned
approximation results to the case of stochastic
PDEs, which are parametrized by random fields,
and thus by infinite dimensional objects. The
provided error estimate is then confirmed by nu-
merical experiments. The second path is instead
related to more practical issues. Indeed, we de-
sign several strategies to alleviate the burden of
the expensive DL-ROM offline stage, all based
on the concept of Transfer Learning. In particu-
lar, a multi-level training algorithm, suitable for
any kind of parametrized PDE, has been pro-
posed taking advantage of snapshots at lower
resolution to reduce the dataset generation time.
Moreover, coming back to the case of stochas-
tic PDEs, a class of Hybrid AEs has been de-
signed. The latter allow to reduce the training
time, thanks to their ability of inheriting, from
simpler AEs, an internal representation of the
solution manifold and enhance it with further
details through a suitable re-training procedure.

1. DL-ROMs implementation
We take advantage of this first section to in-
troduce the adopted notation before briefly re-
porting some technical details regarding the DL-
ROMs implementation. We denote by Θ ⊂ Rp

the set of the parameter configurations, by µ
the parameters vector and by uhµ the associated
high-fidelity FOM solution, that we assume be-
longing to some Hilbert space Vh, || · ||). Con-
cerning the NN, the auto-encoder is made by
the composition of an encoder Ψ

′
: Vh → Rn,

which receives as an input an instance of the so-
lution and maps it into the latent space, and of a
decoder Ψ : Rn → Vh, operating the reconstruc-
tion. Finally, we denote by ϕ : Θ → Rn the NN

mapping the parameters vector into the latent
space. In this context, n is called latent dimen-
sion and the aforementioned theoretical results
allows to chose n = p or n = 2p+ 1, depending
on the hypotheses satisfied by uhµ, introducing
an arbitrarily small compression error. Conse-
quently, as desired when dealing with reduced
order models, n ≪ dim(Vh), as long as p is small.
Coming to the actual implementation, the ar-
chitectures are determined through a semi-
empirical approach, using both dense and con-
volutional layers. The dataset {(µi, u

h
µi
)}Ni=1,

which is later divided into training and test set,
is generated synthetically by sampling from the
parameter space and exploiting the FOM. The
DL-ROM is then trained according to the steps
in Figure 1: in phase 1a the auto-encoder is
fed with the instances of the discretized solution
manifold until an accurate internal representa-
tion of the reduced solution manifold is formed.
This is achieved by minimizing the Loss Func-
tion below

LF (AE) =
1

Ntr

Ntr∑
i=1

||uhµi
−Ψ ◦Ψ′

(uhµi
)||

||uhµi
||

.

The encoder and the decoder are then separated
in phase 1b and the former is used to gener-
ate the reduced order version of the dataset,
{(µi,Ψ

′
(uhµi

))}Ni=1. The third network, ϕ, is
then trained over this dataset by minimizing ob-
jective function below

LF (ϕ) =
1

Ntr

Ntr∑
i=1

||Ψ′
(uhµi

)− ϕ(µi)|| .

Finally, the decoder is connected to ϕ in phase
1c, so that the resulting networks maps a vec-
tor of parameters into the corresponding PDE
solution and the DL-ROM is fully operative.

2. Multi-fidelity training
A multilevel strategy has been considered in or-
der to reduce the off-line cost entailed by the
generation of the training set. Indeed, a large
amount of snapshots is required to obtain DL-
ROMs that can generalize well, but the compu-
tational cost of solving the PDE using the FOM
becomes particularly high when working on re-
fined meshes.
However, we can take advantage of the fact that
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(a)

(b)

(c)

Figure 1: DL-ROM implementation process.

the minimal latent dimension does not depend
on the discretization: as a consequence, the low
dimensional representation of the solution man-
ifold shall be compatible with any choice of the
mesh size. This means that the auto-encoding
process can be run once and for all on data set
on a coarser mesh (and using a smaller archi-
tecture). The same kind of reasoning applies
also to the NN ϕ, mapping the values of the pa-
rameters to the latent space: the choice of its
architecture should not be affected by the mesh
resolution, therefore, once trained on the coarser
mesh, it can be used also for the finer one.
We exploited this idea to propose the following
framework for a multi-level training:

1. generate the dataset for a coarse mesh;
2. implement and train the DL-ROM following

Figure 1;
3. freeze the NN ϕ ◦ Ψ and connect a further

network χ that maps the solution of the
coarser mesh to a more refined one;

4. re-train the model ϕ ◦ Ψ ◦ χ on a few in-
stances of the solution on the refined mesh.

Here, by freezing, we denote the operation of
fixing the values of the NN dofs, preventing fur-
ther modifications during subsequent training
sessions and reducing the computational cost of
these latter.
Concerning the design of χ, both dense and

convolutional layers, namely the two principal
blocks of DL-ROMs, revealed to be unsuitable
for this task. Dense layers contain too many
weights, making the resulting NN hardly train-
able, whereas convolutional layers have the ex-
act opposite problem, since they are character-
ized by a very limited number of dofs. Good re-
sults have been achieved instead by using Mesh
Informed layers, recently introduced in [2]. In
these layers, neurons are represented as nodes
in the mesh: then, when passing from a layer to
another one, only nearby nodes are allowed to
communicate.
The success of the whole strategy depends any-
way on the way the generalization properties of
the coarser model are inherited from the multi-
fidelity one. This has been tested on the follow-
ing PDE, on the domain D = (0, 1)2 and, as
parameter space, Θ = [0, 1]4 :{

−∇(σµ∇u) +∇u · βµ = xy − y2 in D

u = 0.01 on ∂D ,

where βµ = 10−1(cos(2πµ4), sin(2πµ4))
T and

σµ depends on 3 parameters that determine the
shape of a "discontinuity" line in the diffusion
field (see Figure 2).

Figure 2

During the experiment, we compared the per-
formances of a standard DL-ROM, working on
a 100 × 100 elements mesh, with a 2-levels
DL-ROM that exploits a coarse mesh made by
50 × 50 elements. The results reported in Ta-
ble 1 show test error and off-line computational
time for three different combinations of coarse
and high-fidelity samples, respectively denoted
by (C) and (H). The proposed method allows to
reduce both the total training time, due to the
splitting of the dofs to be simultaneously opti-
mized, and, drastically, the time implied by the
dataset generation, implying only a slight de-
crease in the accuracy levels.
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Model Test err Samples N° Tot. training T. Data Gen. T.

High-F. 6.19% C:0/H:600 5m 56s 1m 52s

Multi-F. 6.41% C:600/H:75 5m 50s (-1.7%) 46s (-59%)

High-F. 4.51% C:0/H:1200 7m 50s 3m 46s

Multi-F. 4.76% C:1200/H:75 6m 23s (-18%) 1m 18s (-64%)

High-F. 3.65% C:0/H:2400 11m 38s 7m 32s

Multi-F. 3.90% C:2400/H:150 7m 35s (-35%) 2m 36s (-65%)

Table 1: Multi-level training vs standard one on varying the cardinality of the training sets.

3. DL-ROMs for stochastic
PDEs

The use of DL-ROMs has to be extended to
stochastic PDEs, in which the parametrization
involves a countable number of random inputs
that generate a stochastic field. A classical ex-
ample in this context is the Darcy problem, in
which the ground permeability is modeled by
means of a random field with a certain level
of regularity, prescribed through the choice of
a suitable covariance kernel. The original the-
oretical contribution is developed in two steps.
Th first Theorem deals with the case of a fi-
nite number of real random input parameters.
The second one follows immediately by using a
dimensionality reduction technique, based on a
Karhunen-Loeve (KL) expansion of the field.
Theorem 3.1. Let µ ∼ Pµ be a random vari-
able which takes values in Θ ⊂ Rp and such that
E
[
|µ|2

]
is finite. Moreover, let u : Θ → V be a

Lipschitz-continuous map, with (V, || · ||) Hilbert
space, and let S ⊂ V be the manifold obtained by
mapping Θ through u. Then, if either n ≥ 2p+1,
or n ≥ p but u is injective, it holds that

inf
Ψ

′∈ C(S,Rn)
Ψ∈ C(Rn,V)

E||uµ −Ψ ◦Ψ′
(uµ)|| = 0 .

Theorem 3.2. Let µ : D × Ω → R be a mean
square integrable random field, where D is a
compact subset of Rd and Ω is the sample space.
Let Covµ : D × D → R be its symmetric, non-
negative definite and continuous covariance ker-
nel. Moreover, let {λi}∞i=1 be the countable non
increasing sequence of eigenvalues associated to
the KL expansion of µ and let µ(p) be the ran-
dom field obtained by truncating the expansion

at order p. Let Θ be the space of the random
field realizations. Finally let u, V and S defined
as in the previous theorem. Then, if n ≥ 2p+ 1
or n ≥ p but u is injective, it holds

inf
Ψ

′∈ C(S,Rn)
Ψ∈ C(Rn,V)

E||uµ −Ψ ◦Ψ′
(uµ(p))|| ≲

∞∑
i=p+1

√
λi.

This last result is highly effective when the co-
variance kernel smoothness lets the eigenvalues
decay in a very fast way: for instance, in the
case of a Gaussian kernel the decay is known
to be exponential. We confirmed the expected
estimate by running a numerical experiment to
learn the parameter-to-solution map associated
to the following PDE:{

−∇ · (eµ∇u) = 1 in D

∇u = u on ∂D
(1)

where D = (0, 1)2 and µ denotes a centered
Gaussian random field. To show the predicted
trends, we used five orders of truncation: p =
5, 10, 20, 40, 100. The last one approximates the
whole, not truncated, field playing the role of
the benchmark. An instance of the benchmark
field and the correspondent solution is reported
in Figure 3.

Figure 3
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Despite the fact that Theorem 3.1, combined
with classical NN approximation theorems, en-
sures the existence of an AE that can learn the
solution manifold at any level of accuracy, when
dealing with the model training we must con-
sider the presence of the test error. We recall
that the latter is due to the high dimensional-
ity and non-convexity of the loss surface and to
the finite amount of exploitable training data.
Consequently, in order to make the results of
the analysis robust to this source of error, we
considered three groups of AEs, with different
levels of accuracy. The latter was increased by
augmenting the value of the parameter m, that
determines the AE expressiveness by fixing the
number of channels of the convolutional layers.
The AE bottleneck width was instead chosen de-
pending on the truncation order to satisfy the
hypothesis of Theorem 3.2, which is n = 2p+1.
As a consequence, in each group there are four
AEs with latent dimension n = 11, 21, 41, 81.
From Figure 4, we can see that the error decay
rate increases with the parameter m, finally ob-
taining for m = 16 an almost perfect match with
the theoretical estimate.

Figure 4: Predicted decay vs experimental ones.

4. Transfer learning
Then, we have considered Transfer Learning
(TL) strategy for the case of PDEs parametrized
by random fields. The goal consists in design-
ing an AE able to inherit the information con-
tained in another one, already trained for for a
simpler problem admitting a smaller latent di-
mension (as when considering fewer modes in
the random field truncation). Besides the spec-
ulative interest in understanding whether it is
possible to enhance with further details the AE
internal representation of the solution manifold,

by starting from a fixed simpler structure, there
are also practical reasons to explore this path.
Indeed, splitting the training of a very large AE
in more steps allows not only to lower the mem-
ory resources needed, but may also reduce the
computational time implied by the training.
The proposed method consists in copying the
value of weights and biases of an already trained
AE, that we call Base AE, in another one, the
Hybrid AE, with a greater latent dimension and
a few more degrees of freedom also in the other
layers. These parameters are then frozen, with
a decisive impact on the cost of each training
epoch. The remaining part of the NN is then ini-
tialized and re-trained. The starting point was
the implementation from scratch of an efficient
hybrid dense layer, that can be partially frozen.
Then we run some numerical experiments to op-
timize the design. In particular, we clarify how
to grow the Base, how to initialize the addi-
tional dofs and what the effect of changing the
dataset after the hybridization process is. Fi-
nally, we compared the errors committed by the
AEs built and trained normally with the Hybrid
ones, keeping Problem 1 as benchmark.
Since it is useful to look at a performance in-
dicator that is independent of the specific order
of truncation for the DL-ROM construction, we
define the true error as

Etrue =
1

Ntrue

Ntrue∑
i=1

||uhµi
−Ψ ◦Ψ′

(uhµi
)||

so that it measures the accuracy in the recon-
struction of the benchmark solution manifold.
In order to guarantee the experiment fairness,
the compared DL-ROMs share the same number
of dofs and also the same training set. Figure 5
(in which we denote by Base/Hybrid-p, an AE
working on a p-dimensional parameter space)
shows that: i) the Transfer Learning strategy
not only allows to reach an arbitrary accuracy,
but can even outperform the standard training;
ii) the Transfer Learning strategy can be used
more than once, using an Hybrid in turn as a
Base.
Finally, we analysed the advantages of the pre-
sented strategy in terms of computational cost:
as reported in Table 2, splitting the training in
two parts allows to save approximately 30% of
time and simultaneously increases the accuracy.
The use of further intermediate Hybrid auto-
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Figure 5: Mean error paths obtained through
standard training and the TL strategy.

encoders guarantees even higher improvements,
keeping constant the time per epoch, only im-
plying a slight worsening in the performances.

5. Conclusions
This work concerned Deep Learning-based Re-
duced Order Models, their theoretical properties
and the development of strategies to improve
their performances. In particular, we accom-
plished the extension of a theoretical result that
bounds the error committed by an AE, with a
prescribed latent dimension, when the parame-
ter is a random field. We then confirmed the
estimate validity by numerical experiments. We
furthermore proposed two different strategies for
the reduction of the off-line stage cost. The
multi-level training algorithm allowed to reduce
the cost of the dataset generation up to 65%,
without compromising the accuracy and lower-
ing also the training cost. This was proved on
a highly nonlinear (in the parameters) elliptic
PDE. The introduction of Hybrid AEs allowed
instead to cut down by 30% the computational
time needed for the training. This happened
for the case of random field parametrization, for
which we also demonstrated that an AE inher-
iting a fixed internal representation of the solu-
tion manifold, can enhance it with further de-

AE type Test err Time Gain

B5:H10 0.75% 3m 15s 30%

B10 0.91% 4m 39s

B10:H20 0.88% 6m 29s 29%

B5:B10:H20 1.06% 5m 5s 45%

B20 0.98% 9m 12s

B20:H40 0.80% 10m 2s 34%

B5:H10:H20:H40 1.19% 7m 2s 56%

B40 0.87% 15m 45s

Table 2: TL computational cost report.

tails during a re-train, reaching higher level of
accuracy than with a standard training proce-
dure.
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