
POLITECNICO DI MILANO

Scuola di Ingegneria Industriale e dell’Informazione

Master of Science in Computer Science and Engineering

REAL-TIME ANOMALY DETECTION ON

FINANCIAL DATA

Supervisor: Prof. Emanuele Della Valle

Co-Supervisors: Paris Carbone

Mehrdad Mamaghani

Master Graduation Thesis

Anna Martignano, 913123

Academic Year 2019-2020

Author

Anna Martignano

martigna@kth.se | anna.martignano@mail.polimi.it

Department of Software and Computer Systems

KTH Royal Institute of Technology

Department of Electronics, Informatics and Bionengineering

Polytechnic University of Milan

Place for Project

Swedbank AB

Stockholm - Sweden

RISE Research Institute of Sweden

Kista, Stockholm - Sweden

i

mailto:martigna@kth.se
mailto:anna.martignano@mail.polimi.it

Abstract

This work presents an investigation of tailoring Network Representation Learning

(NRL) for an application in the Financial Industry. NRL approaches are data-driven

models that learn how to encode graph structures into low-dimensional vector spaces,

which can be further exploited by downstream Machine Learning applications. They

can potentially bring a lot of benefits in the Financial Industry since they extract in an

automatic way features that can provide useful input regarding graph structures, called

embeddings. Financial transactions can be represented as a network, and through

NRL, it is possible to extract embeddings that reflect the intrinsic inter-connected

nature of economic relationships. Such embeddings can be used for several purposes,

among which Anomaly Detection to fight financial crime.

This work provides a qualitative analysis over state-of-the-art NRL models, which

identifies Graph Convolutional Network (ConvGNN) as the most suitable category of

approaches for Financial Industry but with a certain need for further improvement.

Financial Industry poses additional challenges when modelling a NRL solution.

Despite the need of having a scalable solution to handle real-world graph

with considerable dimensions, it is necessary to take into consideration several

characteristics: transactions graphs are inherently dynamic since every day new

transactions are executed and nodes can be heterogeneous. Besides, everything is

further complicated by the need to have updated information in (near) real-time due

to the sensitivity of the application domain. For these reasons, GraphSAGE has been

considered as a base for the experiments, which is an inductive ConvGNN model.

Two variants of GraphSAGE are presented: a dynamic variant whose weights evolve

accordingly with the input sequence of graph snapshots, and a variant specifically

meant to handle bipartite graphs. These variants have been evaluated by applying

them to real-world data and leveraging the generated embeddings to performAnomaly

Detection. The experiments demonstrate that leveraging these variants leads to

ii

comparable results with other state-of-the-art approaches, but having the advantage

of being suitable to handle real-world financial data sets.

Keywords

Network Representation Learning, Anomaly Detection, Financial Industry, Graph

Neural Networks, Dynamic Graphs, Heterogeneous Graphs

iii

Abstract

Il presente lavoro consiste in uno studio condotto al fine di poter adattare le

tecniche di Network Representation Learning (NRL) alla applicazioni nel Settore

Finanziario. Gli approcciNRL si contraddistinguonoper la loro capacità di trasformare

strutture a grafi in spazi vettoriali di dimensioni limitate, che li rendono utilizzabili

da applicazioni di Machine Learning. Queste rappresentazioni compatte - graph

embedding - consentono l’estrazione di proprietà - feature - in automatico e si

rivelanopotenzialmentemolto interessanti in ambito finanziario. Di fatti le transazioni

finanziarie, modellate mediante una rete, anche se codificate in una rappresentazione

compatta, conservano la loro connetività intrinseca. Queste rappresentazioni

compatte si possono utilizzare per applicazioni di vario tipo, come per esempio il

rilevamento di anomalie per facilitare la lotta al crimine finanziario.

In particolare viene presentata un’analisi qualitativa circa lo stato dell’arte dei modelli

di NRL; l’analisi ha identificato le Graph Convolutional Network (ConvGNN) come

la categoria di modelli più adatta al Settore Finanziario nonostante sia opportuno

apportare delle migliorie come descritto qui di seguito. L’ambito finanziario pone

ulteriori sfide nella modellazione di approcci NRL; infatti, oltre al bisogno di avere

una soluzione scalabile in grado di processare grafi realistici dalle considerevoli

dimensioni, è necessario tener conto del fatto che i grafi sono inerentemente dinamici

e che i nodi di tali grafi possono essere eterogenei. Il tutto è complicato dall’esigenza

di avere informazioni aggiornata in quasi real-time data la criticità del dominio

applicativo. Per queste ragioni si è preso GraphSAGE, che è un modello ConvGNN

induttivo, come punto di partenza della ricerca. Si sono prese in considerazione due

varianti di GraphSAGE: una variante dinamica in cui i pesi evolvono in accordo con

le sequenze di input prese in determinati istanti ed una variante specificatamente

progettata per gestire i grafi bipartiti. Queste varianti sono state confrontate

applicandole a dati reali e verificandone la validità in termine di rilevamento delle

iv

anomalie; in più entrambe le varianti sono state confrontate con altri approcci

innovativi ed hanno prodotto risultati comparabili, col vantaggio di essere più flessibili

e scalabili, e per tanto più facilmente applicabili a data sets reali.

Parole Chiave

Network Representation Learning, Rilevamento di Anomalie, Settore Finanziario,

Graph Neural Network, Grafi Dinamici, Grafi Eterogenei

v

Acknowledgements

I would like to thank all the people who made it possible to develop this project for the

support they gaveme. First of all, the Analytics and Artificial Intelligence (A&AI) team

at Swedbank AB, in particular Mehrdad Mamaghani, who provided and guided me

through this challenging project in collaboration with the Continuous Deep Analytics

(CDA) at RISE, under the professional supervision of Paris Carbone. I am grateful for

all the support and precious guidelines provided by Prof. Amir H. Payberah and Prof.

Emanuele Della Valle; it has been particularly motivating and enriching to involve two

excellent universities in the development of the project.

Also, I would like to thank EIT Digital for this enriching study programme, which gave

me the opportunity not only to deepen my studies but also to be introduced into a

vibrant community all across Europe full of inspiring people and initiatives.

Last but not least, I would like to thank my family, my friends, and Simone for all the

support, affection, and patience.

vi

Acronyms

AA Adamic-Adar

AML Anti-Money Laundering

BiNE Bipartite Network Embedding

BP Belief Propagation

CART Classification And Regression Tree

CMD Compact Matrix Decomposition

CN Common Neighbours

CPU Central Processing Unit

DANE Dynamic Attributed Network Embedding

DBMM Dynamic Behavioral Mixed-Membership

CNN Convolutional Neural Network

CNNs Convolutional Neural Networks

ConvGNN Graph Convolutional Network

ConvGNNs Graph Convolutional Networks

Evolve-GCN Evolve-Graph Convolutional Network

GAE Graph Autoencoder

GAE* Graph Autoencoder [1]

GAEs Graph Autoencoders

GCN Graph Convolutional Network

GNN Graph Neural Network

GNNs Graph Neural Networks

GPU Graphical Processing Unit

GraphSAGE Graph SAmple and aggreGatE

GRU Gated Recurrent Unit

HITS Hyperlink-Induced Topic Search

HOPE Higher Order Proximity preserved Embedding

vii

ID Iterative Dichotomiser 3

KL Kullback-Leibler

LINE Large-scale Information Network Embedding

LSTM Long-Short-Term-Memory

NRL Network Representation Learning

PCA Principal Component Analysis

RecGNNs Recurrent Graph Neural Networks

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

RNNs Recurrent Neural Networks

RPR Rooted Page Rank

RMSE Root Mean Squared Error

SDNE Structural Deep Network Embedding

Skip-GCN Skip-Graph Convolutional Network

STGNN Spatial-temporal Graph Neural Network

STGNNs Spatial-temporal Graph Neural Networks

SVD Singular Value Decomposition

UTXO Unspent Transaction Output

VGAE Variational Graph Autoencoder

viii

Contents

1 Introduction 1

1.1 Background . 2

1.2 Problem definition . 3

1.3 Research Questions . 4

1.4 Contributions . 5

1.5 Research Methodology . 6

1.6 Delimitations . 7

1.7 Benefits, Ethics and Sustainability . 7

1.8 Stakeholders . 8

1.9 Outline . 8

2 Network Representation Learning 10

2.1 Factorization-based approaches . 12

2.2 Random walk-based approaches . 16

2.3 Graph Neural Networks . 22

2.3.1 Convolutional Graph Neural Networks 24

2.3.2 Graph Autoencoders . 29

2.3.3 Spatial-Temporal Graph Neural Networks 31

2.4 Qualitative Analysis of Network Representation Learning Models 32

3 Graph-based Anomaly Detection 36

3.1 Graph-Based Anomaly Detection . 36

3.1.1 Anomaly Detection in Static Graphs 37

3.1.2 Anomaly Detection in Dynamic Graphs 39

3.2 Auxiliary Anomaly Detection Models . 40

3.2.1 Ensemble Methods . 40

3.2.2 RNNs and CNNs for Analysing Sequence Data 43

ix

CONTENTS

4 Use Cases 47

4.1 Elliptic Use Case: Anti-Money Laundering in the Bitcoin Network 48

4.1.1 Graph Description . 48

4.1.2 Types of Anomalies . 50

4.1.3 Anomaly Detection . 50

4.1.4 Limitations . 51

4.2 Swedbank AB Use Case: detect stranded customers due to COVID-19

travel restrictions . 51

4.2.1 Graph Description . 52

4.2.2 Types of Anomalies . 53

4.2.3 Anomaly detection . 54

5 Methods 56

5.1 Experiment on the Synthetic Data Set 56

5.2 Experimental Methodology for Elliptic Data Set 61

5.2.1 Pre-Processing . 62

5.2.2 Models Architecture . 62

5.2.3 Metrics . 66

5.3 Experimental Methodology for Swedbank 68

5.3.1 Pre-Processing . 68

5.3.2 Models Architecture . 73

5.3.3 Metrics . 75

6 Results 76

6.1 Results on the Elliptic Data Set . 76

6.1.1 GraphSAGE . 76

6.1.2 EvolveGraphSAGE-O . 78

6.2 Results on the Bank Data Set . 80

6.2.1 Results on the Training Sub-Graph 81

6.2.2 Results on the Entire Graph . 83

7 Conclusions 87

7.1 Discussion . 87

7.2 Future Work . 89

References 92

x

Chapter 1

Introduction

Discovering unexpected observations in data, namely anomaly detection, is a

fundamental machine learning and data mining task, which is widely applied in many

industrial practices [2]. In the financial industry, anomaly detection can be utilised to

fight criminal events such as frauds aimed at customers. Such applications of anomaly

detection depend heavily on the usage of financial transaction data.

A fraudulent transaction is defined as an unauthorised, deceptive or manipulated

transaction intended to provide the fraudster with an unlawful financial gain by

depriving a victim of a transaction amount. For example, an unlawful entity who gets

hold of the bank account credentials of a victim and transfers the money from the

victim’s account to another account. In money laundering, specific transactions are

conducted in suchmanner to enable the transfer of funds from or to criminal activities.

As easily noticeable, fraudulent transactions and money laundering transactions can

be strictly connected, e.g. a criminal can commit fraud to finance criminal activities

further. From now on, the term illicit transaction is used to generalise both of the

anomalous types of transactions just described.

In the financial industry, illicit transactions cannot easily be detected by only looking

at the features of single transactions in isolation, such as the exchange of an amount

of money. It is crucial to analyse every single transaction together within its context,

for example, taking into account the sender and the receiver or other transactions with

similar characteristics. In other words, suspicious transaction patterns can only be

detected by applying a broader perspective and therefore, by looking at transactions

together with their contexts. For these reasons, some of the state-of-the-art methods

1

CHAPTER 1. INTRODUCTION

for anomaly detection process the financial data represented as graphs [3] [4]. Graphs

constitute an enriched data representation schema able to capture the interdependent

nature of money transactions and their contexts by incorporating both structural and

topological information [5]. For instance, by using graph representation, it would be

possible tomodel a transaction as a directed edge establishing a connection among two

nodes: the sender and the receiver nodes.

1.1 Background

Leveraging graph structure information using traditional approaches in anomaly

detection is not a straightforward task. Currently, most of the machine learning

algorithms available in the literature leverage features represented in vector spaces.

They are not able to directly digest data represented as graphs since graph

representation, such as the graph adjacency matrix or similar representation, are non-

Euclidean, sparse and high-dimensional data structures [6].

In order to overcome this problem, it is possible to extract graph statistics, such

as triangle counts or node degrees, or extract ad-hoc features to accomplish the

considered machine learning task. However, the drawbacks of such hand-crafted

feature extractions are the computationally intensive pre-processing steps, especially

considering real-world graphs and the absence of generalizability of such methods for

other different graphs due to the data-specific execution of the pre-processing step.

For these reasons, a valid alternative to the feature extraction step is employment of

network representation learning (NRL) approaches which can learn how to encode

graphs into low-dimensional vector spaces, i.e. graph embeddings [7].

The network representation learning literature is flourishing; the research is driven by

the intent of improving the quality of embeddings and their ability to encode structural

information of graphs to solve downstream machine learning applications better. In

particular, to demonstrate the validity of a model, graph-specific machine learning

applications are used as a benchmark considering the prediction performance. The

most common are:

• Node Classification - predict the type of networks’ nodes

• Link Prediction - predict the probability of observing a link among two nodes

2

CHAPTER 1. INTRODUCTION

• Community Detection - find densely connected groups of nodes

• Network Similarity - measure the similarity among (sub)networks

The most traditional techniques use Graph Factorization [8][9][10][11] or Random

Walks [6][12][13] to achieve these goals, but a newer study area is emerging that

leverages neural networks with satisfactory results in real-world applications. The

work herein concentrates mostly on this latest area [14].

1.2 Problem definition

Although network representation learning represents a thriving research area, the

current approaches available in the literature are not able to satisfy all the requirements

needed to generate graph embeddings that can be used as input to real-world anomaly

detection application in the financial industry.

Indeed, anomaly detection, when applied to financial data, poses several challenges

due to the characteristics of the input graph data set, which are further complicated

due to the regulatory sensitivity of the application domain.

Themost challenging aspect whichmust be taken into account is the fact that financial

transaction graphs are inherently dynamic. Every day new transactions are executed

meaning that there is a continuous edge addition as well as new users leading to

corresponding new nodes in the graph. In the literature, however, the assumption

made bymany approaches is to have a single fixed graph as input. This dynamic nature

requires the NRL model to be able to generate embeddings which can represent new

incoming graph entities [15], meaning that the model should be inductive to be able

to generalize as adequately on unseen data. Along with the assumption that the graph

is continuously increasing in order and size, it is also reasonable to assume that the

system evolution is driven by certain dynamics, even if such dynamics are not explicit.

Therefore, another aspect to address is how to train models to incorporate the system

dynamics better; for instance, the prediction performance of a fixed model that does

not take into account the system evolution can decrease over time.

Another characteristic of real-world networks is the heterogeneity of the nodes. It is

not always the case that nodes can be considered as standard entities which share

similar properties. Instead, it is more likely to have different types of nodes with

3

CHAPTER 1. INTRODUCTION

specific properties. For example, from a bank perspective, customers can be modelled

as standard entities, but modelling nodes representing accounts held by other banks

is not easily possible in the same way since the information for these latter node types

is incomplete and out of the bank’s reach. In other words, the bank will only be aware

of transactions of external accounts which involve the bank’s customers, but will not

have a complete overview of the entirety of the transaction graph.

Due to the significance of the application domain, the desired property of the NRL

model is the ability to generate embeddings in real-time, or at least in near real-time,

which can be exploited to perform anomaly detection to detect deviating patterns as

soon as possible and prevent many consequences of malicious behaviours. The trade-

off among prediction performance and computational complexity is crucial.

The last but not least aspect to consider regards the dimensionality of data. When

dealing with real-world data, it is also necessary to consider that the implemented

solution should be scalable and efficient to process entire data volumes and correctly

allocate resources.

1.3 Research Questions

The main objective of this thesis is to further investigate network representation

learning approaches in order to design a model suitable for generating embeddings

for real-world financial transaction graphs that can be utilized within an anomaly

detection framework. To accomplish this objective, the thesis addresses the following

questions:

• Among the existing network representation learning approaches available in the

literature, which solutions are best suited for financial transaction data?

• Can graph embeddings improve the prediction performance in anomaly

detection over the traditional statistical methods used in finance?

• Is it possible to leverage network representation learning to reflect the evolving

nature of financial data?

4

CHAPTER 1. INTRODUCTION

1.4 Contributions

This thesis project illustrates the research performed in order to tailor a network

representation learning model suitable to generate graph embeddings for real-world

financial transaction graphs that can be further leveraged by downstream anomaly

detection applications. The contributions can be summarized as follows:

• A qualitative analysis of the main techniques available in the literature to

generate network embeddings.

First of all, an overview of state-of-the-art NRL approaches is provided. Each

framework in the overview is described in details, and its characteristics are

summarised in the qualitative analysis. The qualitative analysis compares the

frameworks according to the following criteria: the typology of input graph

required, the inductive capacity of the model, the properties of the generated

embeddings and the ability of the model to deal with dynamic graphs. These

criteria reflect the requirements to handle financial transactions graphs. The

qualitative analysis is used to identify the most suitable category of approaches

for financial applications, which turns out to be ConvGNN [14], in particular

GraphSAGE model [15]. To better understand the properties of the different

NRL models, we have generated a synthetic bipartite graph with known

characteristics, and it has been encoded into graph embeddings using some of

the approaches described. Then, the different embeddings generated have been

plotted in 2D space to visualize better how the different approaches reflect the

characteristics of the synthetic input data.

• The design and implementation of a GraphSAGE variant meant to evolve

accordingly together with the dynamic sequence of graph snapshots, which we

call EvolveGraphSAGE-O.

To evaluate this variant, we made use of the Elliptic Data Set, which includes

the transaction data of the Bitcoin Network. This data set is a perfect example

of a real-world data set that includes malicious nodes representing the minority

class. Our results first demonstrate that via the use of GraphSAGE, it is possible

to achieve comparable results with other NRL models presented in this work

in terms of the prediction accuracy of the anomalous class. But, GraphSAGE

has the advantage of being a more scalable algorithm that does not require to

have an input graph with a fixed order. Then, it is also demonstrated that

5

CHAPTER 1. INTRODUCTION

EvolveGraphSAGE-O, can be trained to leverage recurrent neural networks with

the intent of capturing the system dynamics and let the network representation

learning model evolve within the input graph. In this case, the accuracy of the

predictions decreases compared to the static version, but this dynamic version is

more stable in case of concept drift.

• TheDesign and implementation of a secondGraphSAGE variantmeant to handle

bipartite graphs such as the data provided by Swedbank AB, which includes

the transactions of a subset of bank customers collected from January to April

2020. From this perspective, the aim is to detect customers whomight have been

forced to remain abroad for a long period due to lockdown measures applied

to face the COVID-19 pandemic. It is finally demonstrated that the usage of

embeddings could facilitate the real-time detection of these customers rather

than using only node features. Still, the solution needs further improvement to

obtain a satisfactory accuracy.

1.5 Research Methodology

The detailed description of research methods and methodologies presented by

Håkansson [16] has been used as a guideline to better structure the degree project’s

research.

The research methodology of this thesis work consists of a Case Study, in fact, the

aim is to further investigate if leveraging graph structure information is beneficial to

perform anomaly detection in the financial industry.

In the first part of the thesis, an Analytical Research method is applied to perform a

qualitative analysis of the existing network representation learning approaches in the

literature and understand if they meet the requirements in the application domain.

The result of this first research section is used to guide the decision-making process in

identifying themost suitable NRLmodel and understand, where needed, the necessary

modifications needed to satisfy the requirements.

For the second part of the research, an Empirical Research Method is applied. In fact,

in this part, the prediction performance of the proposed solutions are quantitatively

assessed with a particular focus the accuracy of prediction of the anomalous class, and,

where possible, the performances are compared with baseline methods.

6

CHAPTER 1. INTRODUCTION

1.6 Delimitations

The main delimitation in this work is the fact that the research focuses on the

investigation of how graph embeddings can be used for anomaly detection. Hence

embeddings are evaluated only on the basis on how they impact the performance of

the anomaly detection applications.

Another aspect is that anomalous labels are assigned to nodes, which means that

anomaly detection takes place on the node level rather than among edges. Hence,

this work concentrates in encoding nodes into low-dimensional vectors, which are

specifically called node embeddings, and further analysing them to perform node

classification. As a consequence, the proposed models are going to be evaluated

consideringnode classification tasks rather than other graph-specificmachine learning

tasks, such as link prediction or edge classification, among others.

Furthermore, this research addresses real-world anomaly detection data. This means

that the considered data volumes are unbalanced, i.e. the presence of anomalous class

is limited compared to the non-anomalous class, and the quality of the labels is no

entirely perfect since the labels are assigned using a heuristics approach.

1.7 Benefits, Ethics and Sustainability

The aim of this degree project is to further investigate if network representation

learning can be used to improve the accuracy of anomaly detection applications in the

financial industry by leveraging graph structural information.

Even if this degree project represents a preliminary investigation, the potential impact

and implications of this work are illustrated to raise the awareness.

This work could potentially bring a lot of benefits since improving the performance

of anomaly detection in the financial industry could contribute positively to the fight

against financial crime. In fact, financial fraud andmoney-laundering represent severe

harm for the whole society, and they have a substantial impact also on the stability and

the reputation of the financial sector.

In addition, there have been further ethical issues to consider. Most importantly, the

action of labelling a sample as anomalous in practice means suspecting an account

holder of performing illicit actions. Moreover, financial records constitute very

7

CHAPTER 1. INTRODUCTION

sensitive data for analysis. Hence, it is imperative to guarantee the total anonymity

of financial records. In particular, there is no information, personal or non-personal,

that could in any way be used to reveal identities.

Sustainability represents an important criterion to consider when

designing and implementing a model. In particular, when using approaches based on

computationally expensive techniques, the training costs must be taken into account

and wisely planned.

1.8 Stakeholders

This thesis project has been proposed and supervised by Swedbank AB in collaboration

with the Research Institute of Sweden AB (RISE). Swedbank AB is one of the leading

banks in Sweden and the Baltic countries, with about 7.3 million private customers

and about 615,000 corporate customers. Its mission is to help people and businesses

achieve solid financial sustainability. RISE is a public research institute, which plays

a key role in driving sustainable development and growth at an international scale

which works closely with universities, industry and public sector. The thesis work

can be positioned within the Continuous Deep Analytics project conducted by the

Research Institute of Sweden and the daily work of the Swedbank Analytics and

Artificial Intelligence (A&AI) team.

1.9 Outline

The whole document is organized in the following chapters as listed below:

• Chapter 2 - A comprehensive overview of Network Representation Learning is

provided, starting from factorization-based and random-walk based methods to

the most recent Graph Neural Networks. Then, the approaches described in the

overview are compared in a qualitative analysis.

• Chapter 3 - It is presented the taxonomy of graph-based Anomaly Detection

methods, and for each category are provided with some examples. Then, are

presented auxiliary models which are going to be used to perform Anomaly

Detection in the Experiments.

• Chapter 4 - Description of the two Use Case considered: Anti-Money Laundering

8

CHAPTER 1. INTRODUCTION

in the Bitcoin Network and detection of bank customers in distress during

COVID-19 pandemic situation.

• Chapter 5 - The Experiment conducted on the synthetic data set is illustrated.

Then, the graph embeddings generator model selected for this work is presented

in details; in particular, it is explained how it has been implemented and adapted

to fit the two Use Cases.

• Chapter 6 - Presentation of the results achieved for the two Use Cases in terms of

prediction performance and fulfilment of requirements, and when possible, the

results are compared to previous works available in the literature.

• Chapter 7 - Conclusions of the project summarising the thesis contributions and

leading the way for future work and possible improvements.

9

Chapter 2

Network Representation Learning

Graphs are very commonly used data structures able to model several real-world

systems, such us economic networks, the Internet, social networks, and biomedical

networks. They provide a level of abstraction suitable for describing complex data

belonging to different fields, and to capture intrinsic relationships present within the

data. Any real-world network can be modelled as a graph G defined as a tuple of two

sets: the first set V consists of vertices (nodes), and the second set E consists of pairs

of vertices called edges (links), representing the connection among two vertices.

G = (V,E) (2.1)

Graph structures represent valuable information as they incorporate existing

relationships among vertices. Unfortunately, this type of information cannot be easily

exploited by traditional Machine learning techniques, which are mostly designed to

analyse feature vectors while graphs data structures are non-Euclidean, sparse and

typically with a high number of dimensions [7]. To overcome this problem, traditional

approaches perform a feature engineering step and extract graph statistics from the

network, e.g. node degrees and counts of triangle participation, among others. A valid

alternative to extraction of graph statistics is currently offered by NRL approaches

since they are meant to learn how to automatically encode graph structures into low-

dimensional representations, namely graph embeddings. A Network Representation

Learning model consists of a mapping function Φ that projects the input graph into a

low d-dimensional space Rd.

10

CHAPTER 2. NETWORK REPRESENTATION LEARNING

It is possible to discriminate among different embeddings according to the input given

to themapping functionΦ, where themodel learns how to generate a graph embedding,

a node embedding and a link embedding by encoding the entire graph, a particular

node and a particular edge, respectively.

graph embedding Φ : G→ Rd

node embedding Φ : v ∈ V → Rd

link embedding Φ : e(u, v)→ Rd

(2.2)

This thesis work focuses on the investigation of Network Representation Learning

models able to generate node embeddings since the aim is to detect suspicious

nodes by analyzing their embeddings. In the following, a detailed overview of

Network Representation Learning techniques available in the literature is provided,

from shallow dimensionality reduction approaches to Deep Learning ones. These

techniques will be further discussed in Section 2.4 in order to understandwhether they

meet the requirements of financial transactions graphs.

Before presenting state-of-the-art Network Representation Learning models available

in the literature, it is necessary to clearly state which are the requirements that the

model has to satisfy for this particular application domain. First of all, the typology of

input graph given to the Network Representation Learning model must be considered

since real-world networks can not always be modelled as a graph of homogeneous

nodes. For example, the transactional data provided by Swedbank AB can be

modelled as a bipartite graph, see Section 4.2. In fact, nodes can be divided into two

heterogeneous node sets, and they do not have any direct connection with other nodes

in the same node set. For this reason, this work focuses as well onmodels that can also

handle heterogeneous nodes. In specific, in this work, we are interested inmodels able

to generalize on bipartite graphs. Secondly, the studied graphs are attributed, which

means that nodes have features. For example, for each customer, some demographic

information is available and it is also possible to extract some additional information

regarding past transactions. Another fundamental characteristic to consider is the

fact that the graph is inherently dynamic, hence inductive frameworks are more

appropriate since they can generalize on unseen data. As well, the dimensions of the

graph play a fundamental role in driving the selection of the approach to be applied.

11

CHAPTER 2. NETWORK REPRESENTATION LEARNING

The number of customers is of the order of millions and the number of transaction

points is even larger, in the order of billions. Therefore, generation of the embeddings

should be as fast and scalable as possible. In particular, due to the sensitive application

domain of the industry, the inference should be online. The model should be able

to generate embeddings for some target nodes as soon as new information has been

made available. The last prerequisites are in regards to the intent of the generation

of such embeddings. From the stakeholder perspective, the main interest concerns

node embeddings since the aim is to generate additional features which incorporate

the graph structure to augment theirmodel and increase predictive performances. This

means that the embeddings generated should be suitable to feed downstreamMachine

Learning applications.

To recap, the requirements have been summarized in the following Table 2.1, which is

going to be used as a reference when comparing the models.

Table 2.1: Use Case Requirements

Requirements Explanation

Bipartite Graph The model should be able to take into
account the specific characteristics of
bipartite graphs when performing the
encoding

Attributed Graph The model should be able to exploit
available node features

Dynamic Graph The model should be inductive, i.e. able
to generalize on unseen data, since the
graph is dynamic and may evolve over
time, e.g. via node addition

Online Inference Fast and scalable generation of node
embeddings as soon as information on
new transactions arrive in the stream

Embeddings as features The nodes embeddings should
be suitable to be fed into downstream
Machine Learning applications

2.1 Factorization-based approaches

This family of approaches relays onmatrix factorization techniques, also calledmatrix

decomposition, which are used in several Machine Learning applications to reduce the

12

CHAPTER 2. NETWORK REPRESENTATION LEARNING

input volume and high-dimensional matrices into constituent parts. The underlying

idea of such methodologies is to decompose a matrix to simplify further processing

by considering only the smallest constituent parts of the original matrix. The input

matrix should represent the graph and the desired graph properties which need to be

encoded. For example, by using the graph Laplacian eigenmaps, it is possible to extract

embeddingswhich represent the pairwise node similarity, alternatively, it is possible to

define a node similarity matrix that better reflects the application domain needs.

Singular Value Decomposition

An example of a well-known matrix decomposition technique is called Singular Value

Decomposition (SVD) [8], which decomposes the original input matrix A(m× n) into

the three following matrices:

• U Left Singular Vectors

• Σ Singular Values

• V Right Singular Vectors

SVD is closely related to Eigen decomposition, indeed the columns of U are the

orthonormal eigenvectors of AAT while the columns of V are the orthonormal

eigenvectors of ATA. Likewise, Σ is a diagonal matrix containing the square roots of

eigenvalues from U or V in descending order. Dimension reduction can be achieved

by considering the truncated SVD, taking only the first k columns of U and V ,

and the sub-matrix Σk. One of the most appreciable properties of this low-rank

approximation is that SVD is optimal with respect to rank k, i.e. among all rank k

matrices, the reconstructed matrix Ak formed by considering only the top k singular

values in Σ has the smallest distance to the original input matrix A measured in any

unitary invariant norm ||·||M . This means that if we want to reduce dimensionality
to k dimensions, Ak is the best solution (with associated basis vectors from the

corresponding decomposition), which minimizes the reconstruction error. The main

drawbacks of such methods are the time complexity, which is O(mnmin(m,n)) in the

worst case and the fact that the entirematrix is required to compute the decomposition.

As a result, these techniques work well in static and transductive scenarios.

HOPE

The paper on Higher Order Proximity preserved Embedding (HOPE) [9] illustrates

13

CHAPTER 2. NETWORK REPRESENTATION LEARNING

the comparative study done by the authors in order to identify which higher-

order similarity measures are optimal to generate embeddings which preserve the

asymmetric transitivity in directed graphs. They have conducted their experiments by

generating different similarity matrices with different high-order proximity measures,

see Table 2.1.1, and then they have applied a generalized version of SVD to generate

embeddings.

Table 2.1.1: HOPE: Higher-order Proximity Measures

Proximity Measures Similarity Matrix Description

Katz SKatz = (I − βA)−1βA the Katz similarity
between two vertices
corresponds to the
weighted sum of the paths
which connect these two
vertices, the path weight
decays exponentially with
its length with a decay
parameter β

RPR SRPR = (1− α)(I − αP)−1 the RPR similarity
between
two vertices corresponds
to the probability that a
random walk
starting from one vertex
will reach the other in the
steady state

CN SCN = A2 the CN similarity between
two vertices corresponds
to the counts of vertices
connected to both these
two vertices

AA SAA = ADA the AA similarity between
two vertices is very similar
to the CC similarity with
the only difference being
that the count of vertices is
weighted according to the
vertices’ degrees

The quality of embeddings has been evaluated in terms of minimization of the

reconstruction error using the RootMean Squared Error (RMSE) and the precision@k

for link prediction.

14

CHAPTER 2. NETWORK REPRESENTATION LEARNING

RolX

RolX [10] is an unsupervised learning framework able to generate node embeddings

which represent structural roles of the input graph. As a framework, RolX presents

a strategy to extract embeddings using matrix decomposition but it is not bound to a

particular matrix decomposition technique. Furthermore, it is different since it does

not directly require a matrix representation of the graph as input but instead performs

feature extraction. This framework is structured in three main components:

• Feature Extraction: the first step consists of extracting relevant features from

the graph. The authors propose to use a recursive structural feature discovery

algorithm [17] which extracts for each node its local and egonet features. The

output of this feature engineering step is a node-featurematrix V (n×f) since we

have n vertices and f features.

• Feature Grouping: The successive step is to reduce the dimensionality of the

previous output V using a rank r approximation GF ≈ V in order to obtain the

matrix G(n × r), in which each cell represents nth node memberships in the rth

role, and the matrix F (r × f), in which each cell represents how membership in

the rth role contributes to estimating the fth feature value. Feature grouping can

for example be performed using Singular Value Decomposition, but the authors

used Non-Negative Matrix Factorization [18] in their implementation.

• Model Selection: This last step is used to learn in an automatic way which is

the best value for the r parameter in order to preserve as much information

as possible within the compressed features but at the same time reduce the

necessary memory to store such information. Therefore, the authors decided

to apply the Minimum Description Length criterion [19] to automate the model

selection which defines the best model as the one which is able to minimize the

number of bits required to represent the model and the reconstruction loss.

DANE

The previous techniques demonstrate how it is possible to enrich the information

included within the embeddings by defining a similarity matrix at will or by generating

a features matrix. Anyhow, it will be interesting to exploit both similarity matrices

and node features to encode attributed network. The Dynamic Attributed Network

Embedding (DANE) framework [11] is a representative example which aims to

15

CHAPTER 2. NETWORK REPRESENTATION LEARNING

capture evolving patterns of attributed networks. The framework generates a low-

dimensional representation that encodes the correlation among node features and the

underlying network structure, which can be updated in online manner. Therefore, the

framework comprises an offline and online model. The offline model encodes both the

graph adjacency matrix and the node features matrix using the Laplacian eigenmaps

technique. These generated latent representations are then merged to obtain the final

embeddings. The onlinemodel incorporates the perturbation in network structure and

node attributes which happens in two consecutive time steps. Under the assumption

that the graph evolves smoothly within consecutive time steps, the framework DANE

exploits first-order matrix perturbation theory [20] to generate in near real time an

approximation of the embeddings which reflects the updated graph.

2.2 Random walk-based approaches

The algorithms belonging to this category get inspiration from a technique used in the

Natural Language Processing domain, namely word embeddings. These techniques

are used to map words in a vector space maintaining the correlation of words within

their semantic context. The term ”semantic context” is simply defined as the other

surrounding words which are farthest from the target word as specified by a window

size parameter. The underlying assumption of this approach is that words which do

belong to the same context are likely to be encoded into similar embeddings.

Skip-grammodel

The core component of the following techniques is represented by the Skip-gram

model [21]. It consists of a neural network with a single hidden layer and multiple

output layers that adopt softmax activation functions. There is exactly one output

layer for each word in the context; for example in figure 2.2.1 we can see that the

model architecture considers a window size equal to two, hence the input word w(t)

is surrounded by four words: two for both context sides.

The task used to train the network consists of the prediction of the word context given

an input word. This can be considered as an auxiliary task since we are not going to use

the trained network to predict the context. Instead, this auxiliary task is used to learn

the hidden layer weights that are actually the word embeddingsW . For this reason, the

training happens in an unsupervised fashion, and the input consists of the text corpus

16

CHAPTER 2. NETWORK REPRESENTATION LEARNING

Figure 2.2.1: Skip-gram model architecture as presented by the authors [21]

from which the training samples are extracted.

In addition to the window size, the parameters which need to be defined are the

embedding size N and the vocabulary size V , i.e. the number of words considered.

These two parameters define the dimension of the neural network weights: the hidden

weight matrix W with size V × N and the shared output weight matrix W ’ with size

N × V .

Of course, words need to be pre-processed before being fed into the neural network,

so one-hot encoding is used. Each word is transformed in its one-hot encoded

representation, i.e. a binary vector of size V × 1 that has all zeros other except for

one value in the ith position, which is also the position of the considered word in the

vocabulary. So starting from the one-hot representation of the input word xi, it is

possible to compute its hidden representation hi applying this formula:

hi = xT
i W (2.3)

which is exactly the ith row of the hidden weight matrix W . And from the hidden

representation it will be possible to compute the final vector u:

ui = W ’Thi. (2.4)

17

CHAPTER 2. NETWORK REPRESENTATION LEARNING

Consequently, the softmax activation function is applied to each jth element of such

final vector ui:

ui,j =
eui,j∑

j′∈V eui,j′
(2.5)

Each jth element ui,j of the final vector ui represents the probability of having the j
th

word in the context of the ith word.

The model is trained in order to maximize the probability of words which are in the

context. The usage of cross entropy as loss function makes the optimization problem

very demanding from a computational perspective since there is a need to iterate all

over the vocabulary set at each stochastic gradient descent step.

lossfunction =
∑
i∈V

∑
j∈context(i)

−log

(
eui,j∑

j′∈V eui,j′

)
(2.6)

To alleviate the training burden, a technique called negative sampling [22] has been

adopted. Instead of computing all the probabilities of having a word in a particular

context, the objective is to train the network for distinguishing the input word from

other k words drawn from a random distribution over all nodes PV ; these sampled

words are called negative samples, hence the name.

log

(
eui,j∑

j′∈V eui,j′

)
≈ log(σ(ui,j))−

k∑
l=1

log(σ(ui,nl
)), nl ∼ PV (2.7)

The Skip-gram model can also be applied to graphs by generalizing the concepts of

word and its context. In fact, words can be considered as the entities to be encoded

into a low-dimensional space, and their context is formed by entities associated with

or similar to the target entity. In the graph domain, such entities are representative of

nodes and their contexts can be extracted by performing a random walk, for example.

The resulting node embeddings are structured and compact latent representations able

to capture network topology. This family of approaches is particularly suitable for

encoding homophily networks since the model is trained to encode nodes within the

same context similarly. In other words the network connections should represent a

similarity among the nodes which are connected.

DeepWalk

The application of the Skip-grammodel in the graph domain was first presented in the

18

CHAPTER 2. NETWORK REPRESENTATION LEARNING

DeepWalk algorithm [6]. The main components of DeepWalk consist of the random

walk generator and the Skip-gram neural network. The random walk generator takes

as input the entire graph G, and it generates γ random walks of fixed length t for each

node by recursively sampling a neighbour of the latest visited node in the walk until the

length t is reached. Once the truncated random walks, also known as vertices corpus,

are generated, they are used to train the Skip-grammodel to maximize the probability

of having the context of vertex vi given its encoded representation Φ(vi) as defined in

the following formula 2.8 which is very similar to the loss function 2.6.

min
Φ
− logPr({vi−w, ..., vi+w} \ vi|Φ(vi)) (2.8)

Indeed, the mapping function Φ : c ∈ V → R|V |×d, as defined by the paper authors,

represents the encoded structural information for each vertex ∈ V and it consists

exactly in the weight matrix learned by the neural network W as described in the

previous paragraph.

node2vec

Random walk-based approaches are very flexible since they can learn how to encode

different structural properties from graphs by simply changing the vertices of the

corpus given as input. Indeed, the literature regarding randomwalk-based approaches

explores how to extract different structural properties by biasing the random walk to

obtain novel and informative node contexts. Thenode2vec [12] algorithm, for example,

illustrates how to bias the random walks using two parameters p and q that can trade-

off between a breadth-first and depth-first neighbourhood exploration.

• The return parametThe application of the Skip-grammodel in the graph domain

was first presented in the DeepWalk algorithm [6]. The main components

of DeepWalk consist of the random walk generator and the Skip-gram neural

network. The random walk generator takes as input the entire graph G, and it

generates γ randomwalks of fixed length t for each node by recursively sampling

a neighbour of the latest visited node in the walk until the length t is reached.

Once the truncated random walks, also known as vertices corpus, are generated,

they are used to train the Skip-grammodel to maximize the probability of having

the context of vertex vi given its encoded representation Φ(vi) as defined in the

following formula 2.8 which is very similar to the loss function 2.6.er p influences

19

CHAPTER 2. NETWORK REPRESENTATION LEARNING

the probability of revisiting a node in the walk, the lower its value the higher

the probability of re-sampling immediately an already-visited node leading to a

breadth-first exploration.

• The in-out parameter q influences the probability of visiting nodes which are

further from the first-hop neighbourhood of the already-visited node, the lower

its value the higher the probability to explore in-depth the neighbourhood.

According to the case study performed by the authors [12] on the character network

of Les Misérables novel, the algorithm can extract node embeddings based on both

structural equivalence and homophily. The authors performed clustering on the node

embeddings computed with two different parameter combinations learned, and they

visualized the 2D network assigning colours to nodes based on the clusters.

In Figure 2.2.2a it is possible to notice how node embeddings extracted with a depth-

first sampling strategy are representative of the structural equivalence of nodes. For

instance, the characters which act as bridges among other characters have been clearly

identified in the blue cluster. In Figure 2.2.2b instead, it is possible to notice how node

embeddings extracted with a depth-first sampling strategy are better able to discover

clusters of characters which are closely connected among each other that reflects more

the homophily.

(a) p = 1, q = 2
(b) p = 1, q = 0.5

Figure 2.2.2: node2vec node classification results using different parameters as
presented by the authors [12]

BiNE

The Bipartite Network Embedding (BiNE) algorithm is a particular example of skip-

gram based models specifically meant for bipartite graphs [13]. The previous methods

can still be applied to bipartite graphs by modelling them as a normal graph, but this

20

CHAPTER 2. NETWORK REPRESENTATION LEARNING

generalization leads to a loss of information. In fact, those methods fail in leveraging

the distinguishing structures of bipartite graphs: they do not consider that the nodes of

the two sets are heterogeneous, and consequently, the corpus generated by a random

walk is not representative of the specific relationships among the nodes of these two

sets. In bipartite graphs, there is no direct connection among nodes of the same

category. Anyhow, nodes within the same sets are related even if indirectly, and it

would be better to exploit even these implicit relations. To address this problem, the

authors proposed a joint optimization framework to model the explicit relationships,

which connect the two disjoint sets, and the implicit relationships, which connect the

nodes within the same set. Themodelling of the explicit relationships is inspired by the

preservation of first-order proximity defined in the Large-scale Information Network

Embedding (LINE) paper [23].

First-order Proximity: The first-order proximity in a network is the local pairwise

proximity between two vertices. For each pair of vertices linked by an edge (u, v), the

weight on that edge, wuv, indicates the first-order proximity between u and v. If no

edge is observed between u and v, their first-order proximity is 0. [23]

To preserve the first-order proximity, the difference between the empirical distribution

of vertex co-occurring probability and the reconstructed distribution by the vertex

embeddings is minimised, defined in the following formulas:

P (i, j) =
wij∑

est∈E
wst

P̂ (i, j) =
1

1 + exp(−~uT
i ~vj)

The KL-divergence is used as a metric to compare the two distributions.

DeepWalk [6] has inspired the modelling of implicit relationships. However, unlike

DeepWalk, BiNE performs random walks on an induced homogeneous graph, which

models the second-order proximity among nodes. In this way, there are no periodicity

issues and the node sequence generated corpus contains only nodes of the same

homogeneous set. The induced homogeneous graphs can be defined as:

WU = [wU
ij] W V = [wV

ij]

21

CHAPTER 2. NETWORK REPRESENTATION LEARNING

where wU
ij and wV

ij represents the second order proximity among two nodes.

wU
ij =

∑
k∈V

[wikwjk] wV
ij =

∑
k∈U

[wkiwkj]

Moreover, random walks are neither of a fixed-length nor of the same number for

each node in order to better represent the underlying vertex distribution in bipartite

networks. The number of randomwalks generated for each node is proportional to the

importance of the node itself, which can be computed with a centrality metric such as

Hyperlink-Induced Topic Search (HITS). The higher the centrality score, the higher

the number of random walks generated starting from that particular node. To avoid

having fixed size-length corpus, the random walk generator considers a probability p

to stop the sampling.

2.3 Graph Neural Networks

The previous section illustrated how it is possible to extract corpora of vertices from

graphs, which can be fed into a particular type of neural network, the skip-gram

model. Instead, the techniques presented in this section belong to a new research field

that aims to adapt neural networks to directly apply deep learning models on graphs,

namely Graph Neural Networks (GNNs). The GNNs research is strictly related to

NRL, sincemany GNNs extract hidden representations from graphs to perform graph-

specific Machine Learning tasks, and such embeddings can, as a result, be extracted.

An extensive survey [14] in this area proposes a taxonomy to distinguish among the

current Graph Neural Networks available in the literature.

• Recurrent Graph Neural Networks (RecGNNs)

Most of themodels within this category represent pioneer work which has led the

way for applying other neural network frameworks to graphs. They are based

on the assumption of messages passing among graph vertices, the underlying

idea is that vertices are in constant communication with their neighbours until

an equilibrium is reached.

• Graph Convolutional Networks (ConvGNNs)

Convolutional Neural Networks (CNNs) have been successfully applied in the

computer vision domain since they are particularly suitable to extract compact

22

CHAPTER 2. NETWORK REPRESENTATION LEARNING

representation from images which are grid-like data structure, i.e. matrices of

pixels. In order to apply convolutional layers to non-grid like data structures such

as graphs, the convolutional operation 2.3.1 has been generalized by relaxing the

assumptions that the neighbourhood of a particular node is not of a fixed size

and not even ordered, differently fromwhat happens with a pixelmatrix in which

every pixel has a regular neighbourhood determined by the filter size.

Figure 2.3.1: 2D Convolution compared to Graph Convolution [14]

• Graph Autoencoders (GAEs)

Graph autoencoders are unsupervised frameworks able to encode graphs into

low-dimensional representations. Like traditional autoencoders, the graph

autoencoders architecture comprise an encoder and a decoder network. The

encoder network encodes the input graph into a latent representation, while the

decoder reconstructs the graph data. In order to learn graph embeddings, the

autoencoders can be trained to reconstruct the graph structural information, e.g.

the adjacency matrix A. Alternatively, they can be trained to learn the graph

generative distributions making them particularly suitable for applications that

require data augmentation.

• Spatial-temporal Graph Neural Networks (STGNNs)

This last category of Graph Neural Networks aims to learn patterns by modelling

both spatial and temporal dependencies in dynamic graphs. Most of them rely

on ConvGNNs to capture the spatial dependency among nodes, while the time

correlation is modelled using Recurrent Neural Networks (RNNs) and CNNs.

For the scope of this degree project, the most interesting Graph Neural Networks are

ConvGNNs and GAEs. These two types are explained in details in the rest of this

section. In addition, an example of Spatial-temporal Graph Neural Network (STGNN)

is illustrated which leverages a ConvGNNmodel.

23

CHAPTER 2. NETWORK REPRESENTATION LEARNING

2.3.1 Convolutional Graph Neural Networks

This category of Graph Neural Networks is called convolutional since they are based

on convolutional layers. These layers comprise filters that are generally applied

over all the locations in the graph, or over particular graph subsets [24], similarly

to traditional CNNs. Among this category, it is possible to distinguish among two

different approaches: spectral-based and spatial-based ConvGNNs. The former

approaches are based on graph signal processing, and the convolutional operation

applied is meant to remove noise from the graph input. They are called spectral

convolution since they perform Eigen decomposition of the Laplacian matrix formula

2.9 in order to capture the underlying graph structure, and identify clusters of nodes

of the graphs in the Fourier space.

Laplacian Matrix L = In −D− 1
2AD− 1

2

withDii =
∑
j

(Aij)
(2.9)

In other words, the input graph signals are projected in the orthonormal space whose

bases are defined by the eigenvectors of the Laplacian matrix and then the graph

convolution is applied.

The latter approaches, instead, are inspired by RecGNNs and the convolutional

operation is based on the concept of message diffusion also called message

propagation. Indeed, the convolutional operation aggregates the information of the

nodes’ local neighbourhoods and encodes it in a latent space. Unlike computationally

expensive spectral convolution, spatial convolutions are efficient and flexible, and

nonetheless, they have achieved state-of-the-art results on several graph-specific

machine learning tasks. [14]

GCN

Among Spectral Convolutional Networks, the Graph Convolutional Network (GCN)

algorithm proposed in this paper [25] is particularly relevant since it bridges the gap

among spatial and spectral based approaches. Indeed, GCN has paved the way to

spatial based graph convolution, and its architecture is a common standard of themost

recent Graph Convolutional Networks available in the literature.

24

CHAPTER 2. NETWORK REPRESENTATION LEARNING

This common architecture consists of the necessary steps to learn a mapping

function which produces a node-level output, i.e. node embeddings, starting from a

representative description of the graph structure in matrix A.

The graph neural network layer can be generalized as the following non-linear

function:

H(l + 1) = f(H(l), A) (2.10)

in particular, the input layer H(0) = X consists in the input features/signals matrix

N × F , in which N is the number of nodes and F is the number of input features

dimension, and the output layer H(L) = Z of a ConvGNN having L layers consists

in the output matrixN ×D in whichD is the number of output features per node. The

specific ConvGNNmodel can differ in how f(,) is defined.

The specific propagation rule introduced in [25] is the following:

f(H(l), A) = σ(ÂH(l)W (l))

with Ã = A+ In, D̃ii =
∑
j

(Ãij), Â = D̃− 1
2 ÃD̃− 1

2
(2.11)

where W (l) is the weight matrix of the lth and σ() is a non-linear activation function,

e.g. Rectified Linear Unit (ReLU). In the formula, they are using Â rather than the

adjacency matrix to guarantee that the convolution operation is applied to all the

features vector of the node neighbours and of the node itself. Furthermore, Â is

symmetrically normalized to avoid that the multiplication with Â completely changes

the scale of the feature vectors.

Skip-GCN

Skip-Graph Convolutional Network (Skip-GCN) [26] is a GCN variant, indeed its

convolution operation is very similar to Equation 2.11 but it is introduced a skip

connection [27] among the input features X and the hidden representations H(l)

described in the following equation:

f(H(l), A,X) = σ(ÂH(l)W1(l) +XW2(l))

with Â = D̃− 1
2 ÃD̃− 1

2 , Ã = A+ In, D̃ii =
∑
j

(Ãij)
(2.12)

This variant leverages skip connections to consider at every convolution the input node

25

CHAPTER 2. NETWORK REPRESENTATION LEARNING

features, which brakes the linear dependence among subsequent convolutional layers.

Generally, this change leads to better prediction performances as explained in this

work [27].

GraphSAGE

The Graph SAmple and aggreGatE (GraphSAGE) algorithm [15], namely GraphSAGE,

is considered one of the state-of-art ConvGNNand it is insipired by theGCN [25] neural

network framework. Similar ConvGNNs available in the literature have two main

limitations: they require the entire graph as input for generating embeddings, e.g. the

propagation rule 2.11 takes Â as input, and they are not really capable of generalizing

on unseen data, i.e. they are meant for transductive scenarios. Instead, GraphSAGE

stands out for its ability to better suits many real-world applications. In particular, it

can be used to create embeddings for very large graph since the forward propagation

algorithm can be generalized to work in mini-batch settings without using the entire

graph as input [28]. As well, GraphSAGE can generate embeddings for newly observed

(sub)graphs since it is trained to learn how to aggregate input features fromnodes’ local

neighbourhoods, rather than directly learn a low-dimensional representation for each

node.

In order to better understand how GraphSAGE can work in inductive settings, here

it is presented the forward propagation algorithm 1, which generates embeddings

given a trained GraphSAGE model. Besides to graph and nodes features, as input are

also required the depth L of the neural network, the neighbourhood function and the

trained weights. The depth L defines the search depth in the neighbourhood, which

corresponds to the number of hops done starting from the target node to aggregate

the neighbourhood information, see Figure 2.3.2. The neighbourhood function is used

to select the neighbours of the target node at each layer. By setting a limit Sl in the

number of nodes which can be sampled by the neighbourhood function at each lth layer

it is possible to maintain time and space complexity of the algorithm constant.

The trained the parameters of the model are aggregator functions parameter denoted

as AGGREGATEl and the matricesW (l) used to propagate information.

26

CHAPTER 2. NETWORK REPRESENTATION LEARNING

Figure 2.3.2: Computation graph for generating node embedding for a target nodewith
a 2-layer GraphSAGE Network [29]

Algorithm 1 GraphSAGE forward propagation

Input: Graph G = (V,E), input features xv,∀v ∈ V , depth L, weight matrices W (l)

∀l ∈ {1, ..., L}, non-linearity σ, differentiable aggregation function AGGREGATEl

∀l ∈ {1, ..., L}, neighborhood function N : v → 2V

Output: Vector representations zv ∀ v ∈ V

1: h0
v ← xv,∀v ∈ V

2: for l = 1...L do

3: for v ∈ V do

4: hl
N(v) ← AGGREGATEl

(
{hl−1

u ,∀u ∈ N(v)}
)

5: hl
v ← σ

(
W (l) · CONCAT

(
hl−1
v , hl

N(v)

))
6: end for

7: hl
v ←

hl
v

‖hl
v‖2

,∀v ∈ V

8: end for

To initialize the algorithm the node features are considered as initial node

representations (algorithm 1: step 1). Then, for each layer l in the outer loop, the

operations executed for each node are the following:

• aggregation of the node’s neighbours representations into a single vector

(algorithm 1: step 4)

• concatenation of the node’s current representation with its aggregated

neighbourhood vector obtained in the previous step and feeding it into a fully

connected layer with nonlinear activation function σ (algorithm 1: step 5)

• normalization of the fully-connected layer output (algorithm 1: step 7)

27

CHAPTER 2. NETWORK REPRESENTATION LEARNING

The GraphSAGE aggregator function can be customized at will. Anyhow, the authors

proposed three different functions: mean aggregator, LSTM aggregator and pooling

aggregator. The simplest architecture consists in the mean operator which aggregates

the neighbours’ vectors by computing their element-wise mean as illustrated in the

following formula which can replace the 4th algorithm 1 line:

hl
N(v) ←MEAN

(
{hl−1

u ,∀u ∈ N(v)}
)

(2.13)

The pooling aggregator, instead, uses the neighbours’ vectors as input to a fully

connected layer before performing the concatenation, and then it applies an element-

wise max-pooling operation. The 4th line can be replaced with the following:

hl
N(v) ← max

(
{σWpoolh

l
ui
+ b, ∀ui ∈ N(v)}

)
(2.14)

The last aggregator described is based on a Long-Short-Term-Memory (LSTM)

architecture, which can create more complex representations. The only disadvantage

of this aggregator is the fact it is not permutation invariant, i.e. it is possible to obtain

different embeddings according to the neighbours’ vectors order in which they are fed

into the LSTM architecture.

The forward propagation algorithm assumes that the parameters are already given, but

of course, the network needs to be trained. It is possible to train GraphSAGE both in a

supervised and unsupervised manner using stochastic gradient descent.

For the unsupervised training, the graph-based loss function to be optimized is

inspired by Random-walk based approaches with negative sampling. Indeed, the loss

function 2.15 encourages the embedding of a node zu to be similar to the embedding of

node zv when they co-occur in random walk corpus and t be dissimilar to Q negative

samples embeddings extracted from a negative sampling distribution Pn.

JG(zu) = −log(σ(zTu zv))−Q · Evn ∼ Pn(v)log(σ(−zTu zvn)) (2.15)

It is also possible to opt for supervised training in case the embeddings are meant to be

used for a specific downstreamMachine Learning task, such as network classification,

and the labels are available. In this case, it is sufficient to add the necessary layers to the

28

CHAPTER 2. NETWORK REPRESENTATION LEARNING

GrapSAGE! (GrapSAGE!) neural network architecture and optimize a task-specific

loss function, for example, cross-entropy for classification, to improve the embeddings

expressiveness for further processing.

2.3.2 Graph Autoencoders

This category of GNNs is particularly suitable to learn graphs latent representations.

The network comprises two complementary parts: the encoder and the decoder.

These two parts are jointly trained to generate a low-dimensional representation that

preserves as much as possible the information of the underlying data structures. The

encoder generates the latent representation mapping the input graph in the low-

dimensional space, i.e. it acts like the mapping function Φ. Instead, the decoder

reconstructs the graph data representation starting from the latent representation.

Graph autoencoders differ in the selection of the encoder network to handle different

input graphs, and in the selection of the decoder network to consider different

reconstruction errors.

SDNE

Structural Deep Network Embedding (SDNE) [30] consists of a stacked autoencoder

architecture for learning embeddings which preserve structural information of the

input graph by considering both first-order and second-order proximity. To preserve

first-order proximity is applied a loss function on the embeddings, i.e. the encoder

output, which encourages nodes within the same neighbourhood to have similar latent

representations. On the other hand, the second-order proximity is preserved by

learning how to reconstruct nodes neighbourhoods from the embeddings.

The previous approach uses simple multi-layer perceptrons as encoder and decoder

networks, but it is also possible to generate embeddings which do not only consider

topological information using different encoder/decoder architectures. In particular,

using ConvGNNs as an encoder, it is possible to exploit as well as node features in case

of attributed graphs.

GAE* - VGAE

Graph Autoencoder [1] (GAE*) is an example of graph autoencoder architecture which

exploits ConvGNNs, in particular GCN [25], to generate embeddings of attributed

graphs.

29

CHAPTER 2. NETWORK REPRESENTATION LEARNING

The GAE* network consists of: a 2-layer graph convolutional network as encoder

Z = GCN(X,A) that takes as an input the graph adjacency matrix A and the node

featuresmatrixX(N×F), which produces the node embeddingsmatrixZ, and a simple

inner product as decoder Â = σ(ZZT). The GAE* decoder objective is to reconstruct

a graph adjacency matrix Â faithful to the original by minimizing the negative cross-

entropy among the input object and the reconstructed one.

The task of reconstructing the adjacency matrix could be too simplistic for

autoencoders that have great reproduction capacity, this must be taken carefully into

account because it could lead to overfitting. [14] The paper authors [1] proposed a

solution to this problem by presenting a variational variant of the previously described

architecture called Variational Graph Autoencoder (VGAE) inspired by variational

autoencoders architecture. The underlying idea of this variational approach is to learn

the data distribution parameters matrices µ and σ using a 2-layer GCN as defined in

the following formula:

µ = GCNµ(X,A)

σ = GCNσ(X,A)

with GCN(X,A) = ÃReLU(ÃXW0)W1and Ã = D− 1
2AD− 1

2

(2.16)

Given

the trained parameters matrices, the encoder can infer the hidden representation zv

for each node v applying the following formula:

q(zv|X,A) = N(zv|µv, diag(σ
2
v)) (2.17)

and the decoder can reconstruct the adjacency matrix Â using the generative model

which consists in the inner product:

p(A|Z) =
∏
u∈V

∏
v∈V

p(Au,v|zuzv)

with p(Au,v = 1|zuzv) = σ(zTu zv)

(2.18)

The loss function optimized to learn the network weights is the variational lower

bound L, which consists of two parts: the reconstruction error, and the latent variable

restriction loss. The reconstruction loss is used to verify if the reconstructed adjacency

30

CHAPTER 2. NETWORK REPRESENTATION LEARNING

matrix is similar to the original one, while the restriction loss applies Kullback-Leibler

(KL) divergence function to measure how similar are the distribution of the latent

variables, and the learned normal distribution.

L = Eq(Z|X,A)[logp(A|Z)]−KL[q(Z|X,A)||p(Z)] (2.19)

2.3.3 Spatial-Temporal Graph Neural Networks

This last category ofGraphNeuralNetworks is particularly indicated to capture spatial-

temporal dependencies in dynamic graphs. In particular to perform a predictive

task such us forecasting nodes labels it is necessary to consider not only existing

relationships among graph entities but also how such graph entities have evolved over

time.

Evolve-GCN

The GCN ConvGNN model has been used as a base in this paper [26] to create a

dynamic version of it called Evolve-Graph Convolutional Network (Evolve-GCN) [26],

to capture both spatial and temporal patterns in dynamic graphs. Evolve-GCN can be

considered as a STGNN since the underlying idea is to exploit RNNs and their ability to

model the temporal dynamics to learn GCN weights. In this way, rather than training

directly a single GCN model, the Recurrent Neural Network (RNN) architecture is

used to perform a time-dependent model adaption of GCN by regulating its network

parameters accordingly with the considered timestep.

The authors proposed two different techniques to learn how to evolve the weights of

the network. The first evolution strategy leverages a Gated Recurrent Unit (GRU) [31],

a particular type of RNN architecture, to learn how to update the GCN weights. This

version is called Evolve-GCN-H, where H stands for hidden, since the GCNweights are

treated as the hidden state of the GRU, and the node embeddings as the input of the

GRU.

W
(l)
t = GRU(H

(l)
t ,W

(l)
t−1) (2.20)

Instead, the second evolution strategy leverages a LSTM [32] to learn how to update

31

CHAPTER 2. NETWORK REPRESENTATION LEARNING

the GCN weights. This version is called Evolve-GCN-O, where O stands for output,

since the GCN weights are modelled as the output of this particular RNN, and it takes

as input the weights at the previous timestep. It should be noted that in this version

nodes embeddings are not considered.

W
(l)
t = LSTM(W

(l)
t−1) (2.21)

2.4 Qualitative Analysis of Network Representation

Learning Models

The models presented in the Factorization-based Category have the main drawback

of not being able to generalize over unseen data. For instance, the encoding of a

node which was not present during the training phase requires to perform again

optimization steps considering the entire matrix. Therefore, node additions are

too computationally intensive to handle, in particular when the considered graph

is considerably large. The algorithm which satisfies more requirements within this

Category is DANE [11] since it relays on matrix perturbation theory to update node

embeddings as soon as the graph evolves over time, so it is able to deal with edge

addition/deletion under the assumption that such graph variations are not sudden.

This means it is possible to retrieve the embeddings of specific nodes through an

embedding look up at any time.

Skip-gram-basedmodels partially solve the problem of dealing with node addition

since the optimization steps can be computed more efficiently. To generate new

embeddings, it is not necessary to consider the entire graph, but it is sufficient

to focus on a limited portion of the graph that includes the new nodes and their

neighbourhoods. Besides, such optimizations steps can be performed in parallel.

However, these approaches have the main drawback of not being suitable to be fed

into downstream Machine Learning applications. Indeed, embeddings are learned

by optimizing a stochastic node similarity measure that depends on random walks,

i.e. the same graph entity can be encoded differently considering a different random

walk. And, most importantly, the optimization function is not affected by any arbitrary

space embedding orthogonal rotation. Thismeans that the space embeddings obtained

32

CHAPTER 2. NETWORK REPRESENTATION LEARNING

by training separately two distinct graphs can be arbitrarily rotated respect to each

other, and worse, given a trained graph and partially retrain it in order to include new

graph entities could lead to having space embeddings of the new graph entities rotated.

These arbitrary rotations prevent a downstream Machine Learning application, such

as a classifier, trained on a particular space embedding orientation to generalize on the

newer graph entities if they are rotated. [7]

ConvGNNs and STGNNs are the most relevant categories for the scope of this

project since they satisfy most of the established requirements, see Table 2.1. In

particular, ConvGNNs present the main advantage of relying on parameters sharing,

which means that the encoding functions do not need to learn a unique embedding for

each node as in Skip-gram models. Instead, the mapping function learns the weights

of each neural networks’ layer, and they are shared among all the nodes of the network.

These models are inherently suited to leverage node features of attributed graphs

since they learn how to encode graph entities in the embedding space by learning

a mapping function that takes as input the node features. Accordingly, the quality

of the embeddings is strictly related to such features, the more the input features

are informative the better low-dimensional representation can be extracted from the

attributed graph. GCN [25] is less capable of dealing with dynamic graphs stream.

Even if this model can perform prediction on unseen data by updating the Adjacency

Matrix A and/or the Features MatrixX, the major constraint that must be guaranteed

is to have a fixed order graph as input. If the number of vertices exceeds the one on

which the GCN was trained with, it is necessary to retrain the GCN network extending

the number of parameters. Moreover, GCN is not suited to perform online inference

since is not able to encode only a limited number of target nodes, but it encodes the

entire graph. As a result, whenever new information arrives in the graph stream,

it is necessary to update all the nodes embeddings, even of those nodes which have

not changed. For these reasons, even the dynamic version of GCN, Evolve-GCN,

suffers from the same limitations. Instead GraphSAGE does not have the same GCN

limitations since it can generate been updated the node embedding of a target node

by sampling a limited subgraph constituted by a fixed-size section of the target node

neighbourhood.

Graph Autoencoders have the same advantage of parameter sharing as Graph

Neural Network (GNN) and also, they inherit the capability of capturing hidden

and non-linear pattern in the input data from Autoencoders. However, the GAEs

33

CHAPTER 2. NETWORK REPRESENTATION LEARNING

Table 2.4.1: Network Representation Learning Models Comparison

Model Cate-
gory

Bipar-
tite
Graph

At-
tributed
Graph

Dy-
namic
Graph

Online
Infer-
ence

Embed-
dings as
features

SVD

Factorization based

3 7 7 7 3

HOPE 7 7 7 7 3

RolX 7 3 7 7 3

DANE 7 3 7 3 3

Deep-
walk Skip-gram based

7 7 3 7 7

node2vec 7 7 3 7 7

BiNE 3 7 3 7 7

GCN
ConvGNN

7 3 3 7 3

GraphSAGE 3 3 3 3 3

SDNE
GAE

7 7 7 7 3

GAE* 7 3 7 7 3

VGAE 7 3 7 7 3

Evolve-GCN-
H

STGNN
7 3 3 3 3

Evolve-GCN-
O

7 3 3 3 3

approaches presented are sub-optimal due to the fact they take as an input the entire

graph adjacency matrix, hence not only the neural network weights dimension are

dependent to the graph order, i.e. the number of nodes n in the graph, but as well

they require to retrain the entire network to handle node additions. Indeed, GAEs

inherit their ability of handling graph stream from the encoder architecture employed.

Both GAE* and VGAE [1] use a GCN encoder, therefore they have the same limitations

discussed in the previous paragraph. SDNE [30] relies on a Multi-Layer Perceptron

encoder which has not been designed to leverage node features. Besides, it presents

the same limitation due to the fact it takes as an input the entire graph adjacency

matrix.

To summarise Table 2.4.1 presents a graphical overview of the satisfied properties by

each NRL model discussed.

Based on this NRL models comparison, the choice falls on GraphSAGE since it is

the most suitable model to handle the dynamic graph stream among the discussed

methods. However, for the sake of providing a comprehensive overview, it is worth

34

CHAPTER 2. NETWORK REPRESENTATION LEARNING

to consider as well other NRL models for the early stage of this research to better

comprehend the rationale behind these methods, and visualize how the generated

embeddings look like using as a reference the same data set. This overview is better

discussed in Section 5.1.

Among the proposed methods, the most appropriate are those able to model Bipartite

Graphs. The first model is SVD since it is very commonly used in Recommender

Systems to perform dimensionality reduction on the so-called user-item matrix [33],

which can be considered as a (un)weighted adjacency matrix. Specifically, the two

heterogeneous vertices sets consist of the users set and the items set, and the existing

edges are the ratings provided by users for specific items. However, it can be

generalized to any undirected bipartite graph. As well, BiNE is inherently meant to

capture the characteristics of bipartite graphs. The last model considered is RolX

even if it has not been specifically designed to deal with bipartite graphs. Anyhow,

it is worth to go into it since, among the models presented, it is the only one whose

embeddings can be classified as role-based, while the others are all community-based.

The embeddings taxonomy to which reference is made has been explained in details

in this survey [34], which affirms that it is possible to distinguish among these two

approaches to generate embeddings, namely community-based and role-based. The

underlying idea behind the former technique is to model the information regarding

the community to generate these embeddings. In other words, nodes belonging to the

same community are likely to have similar low dimensional representations. Instead,

the latter approach aim is to preserve structural similarity among nodes. As a result,

nodes with similar topology will have similar representation even if they belong to

different communities.

35

Chapter 3

Graph-based Anomaly Detection

The aim of this Chapter is to further investigate how to leverage Network

Representation Learning to perform Anomaly Detection on graphs. First, the main

approaches available in the Literature to perform graph-based Anomaly Detection are

presented to get inspired and better position the contribution of our work compared

to the approaches available in the literature. We will see that our work, see Chapter

5, can be positioned within two categories of Anomaly Detection in dynamic graphs:

window-based Anomaly Detection and feature-based Anomaly Detection.

Along with graph-based Anomaly Detection, there is the need to consider as well

traditional Anomaly Detection algorithms to analyse the embeddings generated, this

is particularly necessary for feature-based Anomaly Detection. For these reasons, in

this Chapter are as well presented the auxiliary Anomaly Detection algorithms used to

detect anomalies by analysing the embeddings generatedwithNetworkRepresentation

Learning models. In particular, since financial transactions graphs are dynamic,

the focus is on those models which are able to better model temporal pattern, i.e.

RNNs.

3.1 Graph-Based Anomaly Detection

At a high-level, Anomaly Detection can be defined as the retrieval of outlying points

in the (high-dimensional) feature space of data points. It must be considered, when

dealing with graph representation, that graph-based Anomaly Detection has its own

specific challenges which further complicates the detection:

36

CHAPTER 3. GRAPH-BASED ANOMALY DETECTION

• Inter-dependent objects

Graph objects can not be considered as independent and identically distributed

data points, but they are intrinsically interconnected. Hence, when looking for

anomalies, it must be also taken into account the existing correlation among data

objects.

• Variety of Definitions

Since graphs can abstract complex systems, it is possible to define several

different types of anomalies such us graph substructures.

• Size of Search Space

Adirect consequence of the previous points is that given a large variety of possible

anomalies, aswell the search space is huge. And it is evenmore complicatedwhen

dealing with attributed graphs.

In this project, the aim is to generate themost informative node embeddings, which can

be further analyzed to perform Anomaly Detection on graphs. In the following section,

an overview of graph-based Anomaly Detection techniques is provided not only to

better understand the rationale behind these approaches available in the literature,

but also to motivate the usage of node embeddings for Anomaly Detection in this

project and to position the presented solution respect to the literature. Such techniques

are grouped in different categories as proposed by the framework described in this

comprehensive survey [5].

The first criterion to distinguish among different graph-based Anomaly Detection

algorithms regards the input graph type, i.e. whether if it is dynamic or static.

Of course, the thesis focuses mainly on dynamics graphs, but both categories are

presented to have a clear picture.

3.1.1 Anomaly Detection in Static Graphs

The main problem addressed in the analysis of Static-Graph Anomaly detection

consists in identifying anomalous network entities given a static snapshot of a

graph.

• Structure-based methods

The underlying idea behind those methods resides in the extraction and analysis

of structural properties from graphs. Within this category, it is possible to

37

CHAPTER 3. GRAPH-BASED ANOMALY DETECTION

distinguish among two approaches according to the typology of properties

considered. The feature-based approach extracts feature from graphs such

as degree, centrality measures, egonet features and then it applies traditional

Anomaly Detectionmethods on such features. On the other hand, the proximity-

based approach focuses on capturing the closeness among graph entities to

classify such entities according to their correlation. OddBall [35] is an example

of a feature-based approach. It takes into consideration nodes egonet features to

identify thenormal patterns followedbymost of the nodes and to detect the nodes

with peculiar patterns. Instead, all the algorithms meant to learn the closeness

or the centrality of nodes fall in the proximity-based category. One of the most

well known is PageRank [36].

• Community-based methods

The underlying idea of these approaches is to group nodes in communities, also

known as clusters. In this case, the suspicious nodes are isolated or do not

belong exactly to a single community. These latter nodes are called bridges

since they establish a connection among different communities. For example,

the approach described in thiswork [37] leveragesNon-NegativeResidualMatrix

Factorization to detect anomalies. This particular factorization-based approach

formulates the decomposition of the originalmatrix asA = X×Y +R, whereX,Y

are the low-rankmatrices andR is the residual matrix. In particular, the authors

demonstrate that X,Y can be used to analyse communities, while the residual

matrix can provide useful insights regarding anomalies within the considered

graph.

• Relational-learning methods

These approaches are similar to proximity-based ones since they consider as

well the existing relationship among network objects. However, relational

classification is different since focuses on inferring the class labels of objects

using the correlation among objects and, if available, leveraging further

information such as the class labels of neighbours and nodes features, instead

of only quantifying the correlation among graph objects. Within this category

are included all the approaches based on Belief Propagation (BP), which is a

message-passing algorithm for performing inference on graphical models by

leveraging the existing relationships. In particular, reference is made to FaBP

[38], a linearized approximation of BP with convergence guarantees.

38

CHAPTER 3. GRAPH-BASED ANOMALY DETECTION

3.1.2 Anomaly Detection in Dynamic Graphs

Anomaly Detection in dynamic graphs consists in identifying anomalous network

entities causing themost significant changes in the dynamic graph and/or establishing

at which timestamp such significant changes occurred.

• Feature-based methods

These approaches are based on the assumption that the properties of network

entities, or of the network itself, are unlikely to change abruptly over time. A

sudden change of such properties is considered suspicious. The framework

shared by these approaches consists in extracting features for graph entities that

represent the current graph snapshot and monitoring how the similarities of

these features evolve over time as the graph evolves. This paper [39] illustrates

a pertinent example, which extracts and analyses role-based embeddings,

i.e. embeddings that encode nodes structural information, to monitor how

the structural dynamics evolve over time. These role-based embeddings are

particularly suitable to perform Anomaly Detection when some prior knowledge

regarding anomalous behaviours/patterns is available. The embeddings are

generated to map accurately the suspicious patterns, which facilitates their

detection. The anomalous embeddings represent a sort of signature of their

corresponding suspicious behaviour. For this reason, role-based embeddings

can generalize over unseen graphs that present similar anomalies.

• Decomposition-based methods

These approaches share the same framework of feature-based ones, they only

differ in the type of graph summary they are monitoring. Instead of using

feature extraction, they rely on matrix decomposition techniques, e.g. SVD,

to generate and analyze the evolution of eigenvectors, eigenvalues or singular

values. Compact Matrix Decomposition (CMD) [40] is a factorization-based

approach similar to SVD but more efficient, which has been used by its authors

to perform Anomaly Detection on dynamic graphs. The reconstruction error

obtained by applying CMD is monitored, and in case of anomalous values, the

corresponding graph snapshot is marked as suspicious.

• Community-based methods

These approaches focus on the detection of anomalies by monitoring the

evolution of individual clusters over time rather than analysing the overall

39

CHAPTER 3. GRAPH-BASED ANOMALY DETECTION

network. A representative approach of this category is ECOutlier [41], which

can detect anomalies at the node level. In particular, it identifies nodes whose

behaviours change over time compared to the other community members,

defined as evolutionary community outliers. This method consists of two major

steps: as soon as is available a new graph snapshot, the communities arematched

with the communities identified in the previous graph snapshot to understand

the evolutionary trends of communities, and then, the algorithms detect those

nodes that have evolved differently from the rest of the community they belong

to.

• Window-based methods

This last category of Anomaly Detection methods aims to detect anomalous

patterns in the input graph sequence, hence the anomalies reside in temporal

patterns rather than in specific features. These methods are based on the

assumption that it is possible to model normal temporal patterns. The incoming

input sequence patterns are compared to themodelled ones to distinguish among

normal and anomalous behaviours. Within this category, there is the Dynamic

Behavioral Mixed-Membership (DBMM) [42] algorithm that falls in the role-

based embeddings category [39] previously described. The difference resides

in the fact that the DBMM algorithm not only encodes nodes roles within

embeddings, but it also takes into consideration the temporal dimension by

encoding the nodes roles transitions observed in the previous snapshots.

3.2 Auxiliary Anomaly Detection Models

3.2.1 Ensemble Methods

The first category of Anomaly Detection models considered consists of ensemble

methods. Thesemethods leverage the concept ofwisdomof the crowd. In otherwords,

the final prediction is nothing but the aggregation of all the predictions of an ensemble

of estimators, which generally outperforms the predictions of a single estimator.

Despite its simplicity, Ensemble Learning has been selected amongpossible alternative

Anomaly Detection methods since it is very robust, i.e. it maintains good prediction

performances even with high-dimensional features spaces, uninformative features,

and limited or lacking anomalies in the training set. The following approaches fall

40

CHAPTER 3. GRAPH-BASED ANOMALY DETECTION

in this category of ensemble methods since they leverage multiple decision trees.

Random Forest

Random Forest [43] is an effective supervised classifier method that exploits the

divide-et-impera concept to classify samples. It works in a top-down recursive

manner, starting from all the training samples, it uses a features selection method

to identify a splitting feature and divide the data set in partitions according to the

splitting criterion. The algorithm continues to split the data partitions until all the

samples in the partition belong to the same class, there are no remaining features

that can be used as a splitting feature, or the resulting partition is empty. One of the

most important aspects of the algorithm is the feature selection method. It measures

how each feature can split the data set in purer partitions as possible, i.e. partitions

containing samples of the same class. For example, two well-known feature selection

methods are Iterative Dichotomiser 3 (ID) and Classification And Regression Tree

(CART). The former assigns each feature ameasure called Information Gain, Equation

3.3, which is proportional to the decrease in entropy after the data set is split according

to that feature. The feature with the highest information gain is selected.

Entropy(D) = −
m∑
i=1

pi log (pi) (3.1)

Where m is the total number of classes, pi is the probability that a sample in the data

set D is belonging to class i.

Entropy(A,D) =
v∑

j=1

Dj

D
Entropy(Dj) (3.2)

Where v is the total number of data partitions obtained using A as splitting feature

Gain(A,D) = Entropy(D)− Entropy(A,D) (3.3)

The latter, instead, assigns to each features a measure called Gini Index, Equation

3.5, which quantifies the impurity of the data partitions which is proportional to the

misclassification. The feature with the highest reduction in impurity, Equation ?? is

41

CHAPTER 3. GRAPH-BASED ANOMALY DETECTION

selected.

Gini(D) = 1−
m∑
i=1

p2i (3.4)

Where m is the total number of classes, pi is the probability that a sample in the data

set D is belonging to class i.

Gini(A,D) =
v∑

j=1

Dj

D
Gini(Dj) (3.5)

Where v is the total number of data partitions obtained using A as splitting feature.

∆Gini(A) = Gini(D)−Gini(A,D) (3.6)

The ensemble of decision tree classifiers is trained on different random sub sets of the

training set. This particular approach of Ensemble Learning is called Bagging.

Isolation Forest

Isolation Forest [44] is a pertinent approach for this work since its underlying working

mechanism is based on the simple but effective concept of isolation. This approach

measures samples susceptibility to being separated from the other samples and marks

as suspicious samples those with higher susceptibility values. To isolate samples, this

approach leverages binary trees to recursively partition the training samples based on

their features in an unsupervised way. The anomalies detection mechanism is based

on the assumption that the trained trees are likely to produce shorter paths for data

samples that differ a lot from themajority of the other training samples. This algorithm

works in two stages: the first step, called the training stage, serves to create and train

the isolation trees processing sub-samples of the training set. The second, the so-called

evaluation stage, serves to generate the isolation susceptibility of samples in the test

set. Themain advantage of thismethod is the fact it is not necessary to define a distance

or density measures to detect outliers, but it only analyses the input features and how

they are distributed within the entire data set.

42

CHAPTER 3. GRAPH-BASED ANOMALY DETECTION

3.2.2 RNNs and CNNs for Analysing Sequence Data

Recurrent Neural Networks represent a category of Deep Learning approaches meant

to analyse sequences of data and model temporal patterns. The basic concept which

characterizes these approaches lies in the augmentation of the networks by giving

themmemory of the information computed so far and by adding connections pointing

backwards. In fact, a recurrent neuron retains in its hidden state the memory of what

it has seen so far and it has three weights: the weight u for the input x(t), the weight

w for the hidden state at the previous time step h(t−1) which is the output vector of the

previous time step, and the weight v for the hidden state at the current time step h(t).

The output vector y(t) is computed with the following equations:

h(t) = tanh(uTx(t) + wTh(t−1))

y(t) = sigmoid(vTh(t))
(3.7)

Of course, it is possible to stackmultiple recurrent neurons in sequence forming a layer,

and in turn stack multiple layers to have deeper architecture as needed. Specifically,

it is possible to take into consideration the RNN design patterns when modelling the

network:

• Sequence-to-Vector: a RNN architecture as long as the input sequence in which

only the last output is considered

• Vector-to-Sequence: a RNN architecture as long as the output sequence which

takes only one input at the beginning

• Sequence-to-Sequence: a RNN architecture that takes as input a sequence and

predicts a sequence of outputs, the two sequences can be of the same length but it

is notmandatory and the network length depends on the lengths of the sequences

and if they are shifted among each other

• Encode-Decoder Network: a RNN architecture composed by a Sequence-to-

Vector network stacked to a Vector-to-Sequence network

RNN may be subjected to the Vanishing Gradient Problem since the number of layers

of the network is dependent on the length of the output/input sequences. In Deep

Learning, this phenomenon occurs when a network is made of multiple layers and

43

CHAPTER 3. GRAPH-BASED ANOMALY DETECTION

their activation function is always outputting a value < 1. Hence, whenever multiplied

on every layer, the gradient vanishes becoming very small. In this thesis, it has been

selected a particular type of RNN designed to avoid this problem, namely LSTM,

and its simplified version GRU. Along with, it is considered WaveNet, which is a

Convolutional Neural Network (CNN)-based architecture. In fact, RNNs are not the

only networks which can analyse sequence data, but it is also possible to use CNNs as

demonstrated in this comparative study [45].

LSTM

LSTM [32] is an architecture, see Figure 3.2.1, specifically designed to overcome the

Vanishing Gradient Problem. As can be guessed from the name, LSTM has two states

which represent its memory: long-term state ct and short-term state ht−1.

LSTM operating principle stands in the processing of the neuron long term state at a

given time step t (ct) by re-weighting it through three gates here described:

• Forget Gate: establishes which information has to be forgotten f (t) by applying

a sigmoid over the previous hidden state h(t−1) and input x(t).

• Input Gate: decideswhat new information should be stored in the cell state c(t) by

applying a sigmoid over the previous hidden state h(t−1) and input x(t) to decide

which values to update i(t), and by applying a tanh over the previous hidden state

h(t−1) and input xt to generate a vector of new candidate values c(t).

• Cell State update: this is not a proper gate but it is the long-term state update

operation which is done by combining the previous state c(t−1) multiplied by

the output of the forget gate f (t), and the output of the input gates i(t) and c(t)

multiplied together.

• Output Gate: decides the final output ht by applying again a sigmoid over the

previous hidden stateh(t−1) and inputx(t), and bymultiplying the obtained output

by the updated long-term state ct.

44

CHAPTER 3. GRAPH-BASED ANOMALY DETECTION

Figure 3.2.1: LSTM Architecture [46]

GRU

GRU [31] is a simplified version of LSTM, it simplifies the two operations of the input

gate and forget gate by jointly establishing which information to forget and which

to add in the so-called Update Gate. As a result, the model forgets about previous

information by including newer information in its place, see Equation 3.8.

c(t) = f (t) ⊗ c(t−1) + (1− f (t))⊗ c(t) (3.8)

Figure 3.2.2: GRU Architecture [46]

WaveNet

A representative example of CNN applied to temporal sequence is presented by

DeepMind researchers, namely WaveNet [47]. The WaveNet architecture comprises

stacked 1-dimensional convolutional layers, and at each layer, the dilation rate is

doubled as shown in Figure 3.2.3.

This means that the first convolutional layer considers two-time steps of the input

sequence, the next layer considers four-time steps since its receptive field is doubled

45

CHAPTER 3. GRAPH-BASED ANOMALY DETECTION

Figure 3.2.3: WaveNet Architecture [47]

compared to the previous one, the layer after that considers eight-time steps, and so

on.

This particular architecture allows us to examine both short-term and long-term

patterns. The lower layers of the network aggregate the information of subsequent

time steps, and as we get to the upper layers, the convolution aggregates information

on a wider temporal range until the maximum receptive field capacity is reached.

In addition to the ability to learn both short-term and long-term patterns, this

architecture is very efficient thanks to the doubling factor. In the original

implementation of WaveNet, the authors stacked 10 convolutional layers with dilation

rates of 1, 2, 4, 8, ..., 256, 512 and demonstrated that the resulting architecture has the

same capability of a convolutional layer with a kernel of size 1024, but with the great

advantages of having fewer parameters and consequentially being faster.

46

Chapter 4

Use Cases

Fromahigh-level perspective, this thesis work aims to design a network representation

learning model able to generate high-quality embeddings to feed downstream

Anomaly Detection applications. These embeddings are meant to enrich the features

analyzed by downstream Machine Learning applications to improve the prediction

performances.

The adoption of network representation learning models can be beneficial for many

industrial practices which want to leverage graph data representation by using an

automatic and data-driven approach to encode graph structural properties in a low-

dimensional representation which can be further analyzed and exploited for specific

Machine Learning tasks. The main advantage of network representation learning is

that it represents a flexible and generalized alternative to hand-engineered feature

extraction from graph.

In particular, this thesis work aims to demonstrate how node embeddings can be

generated and utilized in the financial sector for Anomaly Detection.

In the following chapter a detailed description of the use cases addressed in this thesis

project is provided.

47

CHAPTER 4. USE CASES

4.1 Elliptic Use Case: Anti-Money Laundering in the

Bitcoin Network

The first use case addresses the detection of illicit transactions in the Bitcoin Network

[48]. The paper [3] introduced this use case, which is the result of a collaborative

effort among MIT-IBM Watson AI Lab and Elliptic. The MIT-IBM Watson Lab is a

partnership between the Massachusetts Institute of Technology and IBM Research.

Elliptic is a company specialised in cryptocurrency intelligence whose aim is to fight

criminal activities in cryptocurrency networks. The data set analysed for this use case is

the Elliptic Data Set, named after the company that has made it publicly available, and

it consists of about twoweeks of transactions extracted from theBitcoinNetwork.

Even though Bitcoin transactions have their own characteristics and they differ from

traditional bank transactions, the data is representative of transactions in the financial

industry for several reasons.

First of all, even the Bitcoin network is subject to financial crime. The data set has been

specifically provided to investigate further how to accomplish Anti-Money Laundering

(AML) in the Bitcoin network, which can be considered as a special case of Anomaly

Detection because the positive class, i.e. the class representing deceitful nodes in the

network, is the minority class. The labelling process used to mark transactions as licit

or illicit is heuristics, which means that labels are assigned according to assumptions

that are not guaranteed to be optimal. In the absence of ground truth, heuristics-

based labelling is very commonly adopted to process real-world data sets. From this

perspective, the Elliptic labels’ quality realistically resembles the quality of labels of

most of the real-world financial data sets. Another important property of this data set

is the fact that it is dynamic. Instead of a unique fixed-size graph, the data includes

a time series of consecutive graph snapshots. This allows us to reason about financial

systems dynamics. Besides, to the best of our knowledge, this data set is the largest

publicly available transaction data set in any cryptocurrency network.

4.1.1 Graph Description

TheElliptic data consists of 49 different graph snapshots. Each snapshot is a connected

component, which is nothing but the graphobtainedby grouping transactions executed

at the same time instant.

48

CHAPTER 4. USE CASES

Before presenting how the paper’s authors have modelled the Bitcoin transactions as

a graph, it is essential to provide at a high-level an overview of how transactions work

in the Bitcoin network. Bitcoin transactions are specifically designed to guarantee

money traceability. In fact, when user A wants to make a payment to user B, A must

refer to the previous transaction from which the user A itself has received the money.

The reference to the previous transaction is called transaction input, while the actual

transfer of money to user B is called transaction output. In turn, the output of a

transaction can become the input of a new transaction. For this reason, the transaction

operation mechanism is called Unspent Transaction Output (UTXO) model [49]. It

should also be specified that multiple inputs and outputs can be included within a

single transaction.

The paper’s authors decided to model transactions as graph vertices and the reference

towards the previous transaction as edges, which actually determine the payments’

flows within the Bitcoin network.

The overall dimensions of the graph entities are described here:

• |E| = 234355 edge payments flows

• |V | = 203 769 transactions

Specifically, the number of illicit transactions is 4545, which corresponds to 2% of the

overall number of nodes, and 21% of the overall transactions are licit. Instead, the

remaining 77% of the transactions are not labelled. In Figure 4.1.1 it is possible to

visualize the distribution of illicit, licit, and unclassified transactions over the different

graph snapshots.

The graph is attributed since the paper’s authors performed feature engineering

and the available features can be divided into two categories: local features (94),

which consist of the specific information of transactions such as transaction amount,

timestamp, number of inputs and outputs included in the transaction, etc., and

aggregated features (72), which represent similar information extracted in the local

features but it is referred to transactions one step backwards and forwards to the

current target transaction.

49

CHAPTER 4. USE CASES

Figure 4.1.1: Typologies of Nodes in the different Graph Snapshots [3]

4.1.2 Types of Anomalies

In this use case, the anomalous class represents harmful financial activities within

illicit industries such as black markets, narcotics cartels, human trafficking, terrorism,

etc. In the absence of ground truth, the authors have labelled the transactions using

a heuristics-based approach. The heuristics considered are based on the assumption

that malicious transactions are likely to present similar patterns. For example, it has

been demonstrated that it is easier to trace users who execute transactions with a high

number of inputs [50] which means that malicious user may prefer executing with a

limited inputs number to better preserve their anonymity.

4.1.3 Anomaly Detection

One of the possible approach to address the Anomaly Detection task within this data

set consists of leveraging the temporal dimension by training the Anomaly Detection

application on the first graph snapshots to predict the labels of the most recent ones.

This approach is the most suited since resembles real-world scenario when you rely on

past data to detect new incoming information and it is also relevant froman academical

perspective since it allows to consider possible strategies to leverage the dynamics of

the data set and evaluate how the prediction performance vary along with the period

considered for testing. In particular, this data set is peculiar due to the presence of

a significant event which consists of a shutdown of a big black market in the Bitcoin

Network. From an analytical perspective, this event can be considered as concept drift,

50

CHAPTER 4. USE CASES

since after it occurred there are no more illicit transactions related with that particular

black market. Hence, it is very interesting to evaluate if the model can maintain good

prediction performance even in the presence of concept drift.

4.1.4 Limitations

The only limitation of the Elliptic Data Set consists of modelling transactions as graph

vertices. Transactions are volatile entities, i.e. present in the Bitcoin Network only at

the timestamp when they are processed, and it is not possible to evaluate how a single

vertex evolve over time. Instead, it is possible to have a better temporal overview of

vertices behaviour evolution which is encoded in the node embeddings by modelling

transactions as edges and accounts which represent legal entities or private individuals

as vertices. Indeed, such accounts can be present in financial transactions in several

time instances. For these reasons, in the following section, it is also described the

second Use Case which considers a real-world data set which has been provided by

Swedbank AB.

4.2 Swedbank

AB Use Case: detect stranded customers due to

COVID-19 travel restrictions

The second use case addresses the problem of identifying bank customers who might

have been forced to remain abroad for a long period due to lockdownmeasures applied

to face the COVID-19 pandemic. This Use Case has been provided by Swedbank AB

who has also provided transaction data for a subset of bank customers.

The considered time-period of these transactions is from 20th of January 2020 to 26th

of April 2020. This period has been selected since it reflects how the pandemic has

affected most of the Swedish population. It is possible to divide this period into two

parts: until the 1st of March and after. The first period represents customers’ normal

behaviourwhile the second part represents a periodmarked by the onset of restrictions

due to the virus’ spread. This latter period also reflects many difficulties experienced

by customers who due to travel restrictions had a challenging time to get back to

Sweden.

51

CHAPTER 4. USE CASES

The aim of the use case is not to identify financial crime, but is nevertheless relevant

because it permits to assess if leveraging node embeddings can be beneficial to perform

Anomaly Detection on financial transactions data. In addition, the most interesting

aspect resides in the possibility of observing the evolution of customers’ behaviour

over a time span of four months and to evaluate whether it is possible to model such

evolution through the analysis of node embeddings.

4.2.1 Graph Description

In this case, the graph needs to be built from scratch. Hence, it is essential to clarify:

the most suitable graph representation, and the most informative features that are

associated with the graph entities that can be extracted from the transactions data.

These considerations are extremely important since it is possible to extract meaningful

embeddings only if the graph has been designed properly.

The input data consists of financial transaction logs of a subset of bank

customers.

In particular, the transaction logs’ columns are described in the following Table

4.2.1.

The most informative columns are CUSTOMER ID and POINT OF TRANSACTION

(POT) ID, which represent the bank’s customers and the sender/receiver IDs of the

considered transactions, respectively. The CUSTOMER ID entities are homogeneous

since they are all bank customers, their information and activity log are kept by the

bank in a structured manner, while the POT ID entities are heterogeneous: they

could be for example bank accounts (internal or external), tax agencies, or any other

imaginable entity. It is worth noting that all personal identifiers have been anonymised

in line with Swedbank’s operating model and to guarantee adherence to the European

Union’s privacy regulations.

To generalize the problem we can model it with a bipartite graph G = (U, V,E), see

Figure 4.2.1, distinguishing among two sets: the customers set U and the points of

transaction setV . These two sets are connected throughweighted edgesE representing

transactions which are weighted with their amount. This distinction is necessary due

to the heterogeneity of the two classes.

The dimension of graph entities are described here:

52

CHAPTER 4. USE CASES

Table 4.2.1: Transaction Dataset

Table Column Description

1 DATE Timestamp

2 EXECUTION TIME Time in which the transaction has been
processed by the system (expressed in
seconds)

3 CUSTOMER ID Customer unique identifier
(anonymised IDs)

4 POINT OF TRANSACTION ID Point of transaction unique identifier

5 AMOUNT Transaction amount,
negative value when the transaction is
sent by a customer and positive when it
is received by a customer

6 CURRENCY Currency used for the transaction

7 CHANNEL Channel used to perform the
transaction

8 AGE Customer age group

9 MUNICIPALITY Municipality code the customer is
registered in

• |E| = 16.5M transactions

• |U | = 100K customers

• |V | = 2.5M points of transaction

Specifically, the number of ”anomalous” customers which are the ones thatmight have

been stranded abroad is 689 and they represent roughly 0.7% of the considered total

number of customers.

4.2.2 Types of Anomalies

In this use case, the anomalous class represents customers who exhibit a higher

than usual number of transaction in foreign currencies in the second time period,

corresponding to the period in which the impact of the pandemic had started to be

noticeable in Europe and many other parts of the world. Similarly, as in the previous

case, it is not possible to rely on a ground truth since the labels have been assignedusing

a heuristics approach. The heuristics considered are based on the assumption that it

is reasonable to expect that the number of transactions in foreign currencies decreases

53

CHAPTER 4. USE CASES

Figure 4.2.1: Bipartite Transactions Graph

in the latter time period, 1st of March onwards. Therefore, customers who exhibit

higher numbers of daily average transactions in foreign currencies in the second period

compared to the first period are labelled as ”anomalous”. Of course, such heuristics are

sub-optimal since paying in foreign currencies does not always automatically translate

to being abroad. For this purpose, some of the more international and web retail-

related currencies have been filtered out to improve the heuristic labelling.

4.2.3 Anomaly detection

In order to detect customers who might have been forced to remain abroad during the

pandemic, it is necessary to generate node embeddings from the financial transactions

network and analyse them in order to establish how customers’ spending behaviour,

in particular in foreign currencies, have been affected.

Even if the focus is on the embeddings of customers, it is worthy to also consider

points of transaction embeddings within the network representation learning model

to leverage the information of both of the two heterogeneous nodes types. For

instance, transactions create relationships among nodes of these two different sets

and to generate meaningful customers embeddings it is important to include the

information regarding who they having financial transactions with. For Anomaly

Detection, however, only customers embeddings can be considered.

To assess the evolution of customers’ behaviour over time, a viable option could be

54

CHAPTER 4. USE CASES

to generate graph snapshots by aggregating the information collected within a time-

window and generate the corresponding embeddings. In this way, it is possible to

obtain time-series of embeddings which represent the customers’ behaviour sampled

in different time instances within the considered time window, and further analyse

the time series of embeddings where models would be able to detect temporal

patterns.

55

Chapter 5

Methods

5.1 Experiment on the Synthetic Data Set

To better comprehend the properties encoded by different embedding approaches, it

has been generated a synthetic data set that resembles the one provided by the bank,

but its nodes have known characteristics and it has been simplified. The synthetic data

set consists of only three columns: CUSTOMER ID, POINTOFTRANSACTION ID and

AMOUNT. The edges are not directed since we consider only outgoing transactions,

i. e. customers’ spending. In particular, this synthetic data set comprehends

four customer categories. Each category is characterized by an average transaction

spending since the transaction amount have been established by sampling from

Gaussian distributions as described in the following Table 5.1.1.

Table 5.1.1: Synthetic Transaction Data Set Characteristics

Customer Category Number of Customer within
the Category

Transaction Spending
amount (SEK) ∼ N (µ, σ2)

Category 0 2000 µ = 150 σ = 20

Category 1 1000 µ = 250 σ = 30

Category 2 800 µ = 500 σ = 50

Category 3 200 µ = 1000 σ = 150

As well, the points of transaction, 3000 in total, are divided into three categories. Each

category is characterized by its average degree to resemble the power-law distribution

of the degree of the real data set.

56

CHAPTER 5. METHODS

Figure 5.1.1: Degree Distribution of Synthetic Data Set

The pairing of points of transaction with customers is based on the assumption that

rich customers, i.e. customers within Category 3, mainly spend their money on points

of transaction belonging to a niche community, i.e. points of transaction with a limited

degree. Instead, common points of transaction are more or less paired evenly with all

the customer categories.

In particular, the aim of using this synthetic and domain-specific data set is to compare

the embeddings generated by a selection of Network Representation Learning model

described in the background chapter and select the most appropriate.

SVD

The firstmodel selected is SVD [8]. From the input row-based transactions, it has been

generated a matrix U ×V that has as many rows as customers U and as many columns

as points of transaction V . The inputmatrix consists in the weighted adjacencymatrix:

each matrix cell Mi,j contains the transaction amount spent by the ith customer at

the jth point of transaction. Then, this matrix is decomposed using Singular Value

Decomposition to obtain the Left Singular Vectors which correspond to customers

node embeddings. The only parameter selected in this case is the number of singular

values which determines the node embeddings dimension. To make a fair comparison

of the models, all the node embeddings generated have a fixed size d = 64.

In Figure 5.1.2, it is possible to notice that this model is extremely sensitive to

transactions amount. Indeed, the representation of customer of Category 3 is much

57

CHAPTER 5. METHODS

Figure 5.1.2: 2D Visualization of SVD embeddings after applying Principal Component
Analysis (PCA)

diverse than the ones of other customers since their amount mean and variation are

larger. On the other hand, customers embeddings principal components of the other

categories are very close to zero.

RolX

The secondmodel considered is RolX [10], this approach is an improvement compared

to SVD since it does not directly decompose the input adjacency matrix, but it first

extracts in a recursive manner structural features from the input graph and then

applies Non-Negative Matrix Factorization. The only parameters here is again the

embedding dimension d = 64.

In Figure 5.1.3, it is possible to notice that nodes embeddings generatedwith thismodel

are more diverse even if it is not possible to identify different clusters of customers

categories. The embeddings generated by this approach are meant to encode similarly

nodes which have similar structural properties rather than nodes which belongs to the

same community. In fact, according to this article [34] RolX falls under the category

of role-based embeddings.

BiNE

58

CHAPTER 5. METHODS

Figure 5.1.3: 2D Visualization of RolX embeddings after applying PCA

The third model BiNE [13] consists in a Skip-gram based approach meant for bipartite

graphs. The parameters used for this experiment are listed:

• Embeddings dimension d = 64

• Window size 5

• Number of negative samples 4

• Maximum number of random walks per vertex 32

• Minimum number of random walks per vertex 1

• Walk stopping probability 15%

• Centrality MeasureHITS

In Figure 5.1.4, it is possible to notice that the model can generate nodes embeddings

resembling customer categories even if such communities partially overlap. Moreover,

the disposition of such customer categories is not casual but it is ordered according to

the average transaction amounts. These positive results are expected since BiNE takes

into account that the input graph is bipartite and better capture the bipartite-specific

properties.

59

CHAPTER 5. METHODS

Figure 5.1.4: 2D Visualization of BiNE embeddings after applying PCA

GraphSAGE

The last model considered is GraphSAGE [15], it has been trained in an unsupervised

manner, but without using random walks as suggested by its authors. Instead, it has

been added a regression layer on top of the GraphSAGE architecture, which aim is

to predict transaction amount given as input the concatenated embeddings of both

customer and point of transaction involved in that transaction. Since GraphSAGE

needs input nodes features, it has been generated a feature vector for each customer

representing customers’ spending behaviour and a feature vector for each point

of transaction representing incomes. Such feature vectors consist of a discrete

representation of transactions by defining amount ranges 5.1 and counting the number

of transaction in each range for each customer and for each point of transaction.

Transaction ranges (SEK)

[0, 20, 50, 100, 150, 200, 250, 300, 500, 750, 1000, 1250, 1500, 2000, 2500, 5000,∞]
(5.1)

The parameters used for this experiment are listed:

• Embeddings dimension d = 64

• Number of layers L = 2

• Number of Samples S1 = 8, S2 = 4

• Epochs 20

• Embeddings dimensions at each layer d1 = 64, d2 = 64

• Train-test split 70-30%

60

CHAPTER 5. METHODS

Figure 5.1.5: 2D Visualization of GraphSAGE embeddings after applying PCA

The embeddings generated by GraphSAGE exhibit the clearest distinction among the

different customer categories. Moreover, it is possible to notice that the disposition

of customers categories follows certain criteria as in BiNE embeddings. For instance,

customers of Category 3 are much more distant from the other customers, which are

aligned and ordered from top-left to bottom-right according to decreasing average

spending.

5.2 Experimental Methodology for Elliptic Data Set

The characteristics of the Elliptic Data set consent to investigate how to train a NRL

model in a supervised manner, i. e. leveraging the available node labels. In this case

ConvGNNs represent an interesting choice since it is possible to augment the neural

network architecture by adding on top of the last layer which generates the embedding

a network which learns how to classify the nodes based on their embeddings. In

this manner, the NRL model and the Anomaly Detection downstream model are

jointly trained, and the node embeddings generated are optimized to perform node

classification.

61

CHAPTER 5. METHODS

Another aspect considered within these experiments consists of evaluating how to

train the model to better capture the system dynamics. For this reason, are both

implemented a static and a dynamic variant of GraphSAGE.

A better overview of the models’ implementations and the discussion about the

achieved results are described in Section 6.1.

5.2.1 Pre-Processing

Most of the pre-processing steps have already been performed by the Elliptic company.

These steps are necessary to make the graph snapshots adequate inputs for the model.

In particular, the most important task is feature extraction, which requires proper

domain expertise to extract relevant information from the Bitcoin Network.

What remains to be done is the data set partitioning among train, validation, and test.

For both the GraphSAGE variants has been applied a temporal split. In particular, the

first 30 graph snapshots, which corresponds to the 60% of the considered temporal

window, are used for training. The subsequent 5 graph snapshots, from 31th to 35th

time-steps, are used for validation purposes, e.g. selecting the best weights of the

neural network. The last 14 remaining graph snapshots are used to evaluate the

prediction performance of the model. The main difference lies in the way in which

the training set is passed to the GraphSAGE variants. In the case of the static model,

the training snapshots are grouped and passed to the model in batches. Instead, for

the dynamic version, the snapshots are passed maintaining the distinction among the

several snapshots.

Another aspect to consider is how to leverage the information regarding unlabelled

transactions. Even if such nodes are not classified, their features contain important

information regarding the graph topology. To retain the information of such data, we

also consider unlabelled transactions. In this way, the model learns how to aggregate

the information for the entire graph, but a mask is used for the node classification to

evaluate the prediction performance only on the labelled nodes.

5.2.2 Models Architecture

The two GraphSAGE variants share the same underlying structure, but the strategy

used for learning the weights is completely different. First, the static version is

62

CHAPTER 5. METHODS

Algorithm 2 GraphSAGE batch forward propagation

Input: Graph G = (V,E), input features xv,∀v ∈ Batch B, depth L, weight
matrices W (l) ∀l ∈ {1, ..., L}, non-linearity σ, differentiable aggregation function
AGGREGATEl ∀l ∈ {1, ..., L}, neighborhood sampling functions Nl : v → 2V ,∀l ∈
{1, ..., L}
Output: Vector representations zv ∀ v ∈ B

1: BL ← B
2: for l = L...1 do
3: Bl−1 ← Bl

4: for v ∈ Bl do
5: Bl−1 ← Bl−1 ∪Nl(v)
6: end for
7: end for
8: h0

v ← xv,∀v ∈ B0

9: for l = 1...L do
10: for v ∈ Bl do
11: hl

N(v) ← AGGREGATEl

(
{hl−1

u ,∀u ∈ N(v)}
)

12: hl
v ← σ

(
W (l) · CONCAT

(
hl−1
v , hl

N(v)

))
13: hl

v ←
hl
v

‖hl
v‖2

14: end for
15: end for
16: zv ← hL

v ∀v ∈ B

described to facilitate the comprehension of the changes made to implement the

dynamic variant.

GraphSAGE Static Version

The network architecture reflects the underlying working mechanism of GraphSAGE

as presented in the Forward Propagation Algorithm 1 in the Background Section. Of

course, the algorithm needs to be slightly modified to be able to process nodes batches

instead of the entire nodes set. Here is described the Forward Propagation Algorithm

adapted to batch settings.

The main modification in the algorithm consists of sampling all the nodes needed

for the batch computation. In addition, respect to Algorithm 1, there are as many

neighbourhood sampling functions as layers to highlight the fact it is possible to

limit the number of sampled neighbours at each layer. It is important to notice

that the sampling process in the first part of the algorithm is reversed compared to

the forward propagation step because it causes some counter-intuitive implications.

Let us consider as an example a 2-layered GraphSAGE with S1, S2 parameters which

63

CHAPTER 5. METHODS

limit the sampling size at each layer. The first implication is that the model starts

aggregating the node features from the remotest neighbours, i. e. 2-hop neighbours,

and secondly the resulting sampling size will count S2 1-hop neighbours and S1 · S2

2-hop neighbours.

To better comprehend the network architecture, Figure 5.2.1 shows the schema of a

2-layered GraphSAGE model. GraphSAGE takes as input the node features specified

in the batchB1 and the corresponding node features of the sampled 2-hop neighbours.

The neighbours’ features are then aggregated to obtain a unique vector and such

operation depends on the selected aggregator. In our case, we usemean aggregator and

pool aggregator among the aggregators proposed in the original implementation [15].

The LSTM aggregator is excluded since it is not permutation invariant, which means

that the same neighbours’ nodes processed in a different order can lead to different

hidden representations. The node features and the aggregated neighbours’ vectors are

concatenated and fed into a fully-connected layer, which generates the embeddings

for the target nodes in the batch B1. These hidden representations are used as an

input for the second layer that takes the embeddings of the target nodes in the batch

B2 and the embeddings of the sampled 1-hop neighbours. As before the neighbours’

embeddings are first aggregated, and then concatenated to form the corresponding

node embedding. The last fully-connected layer outputs the predicted labels for the

target nodes in the batch B2.

The model weights are learned by minimizing the binary cross-entropy of the node

labels where y are the true labels and ŷ are the predicted labels:

cross-entropy = −(y)log(ŷ) + (1− y)log(1− ŷ) (5.2)

GraphSAGE Dynamic Version: EvolveGraphSAGE-O

To capture the system dynamics in the embeddings generation, the EvolveGCN-O

model has been modified using GraphSAGE as Network Representation Learning

model instead of GCN to generate the embeddings in a more scalable manner. This

new version is called EvolveGraphSAGE-O, in which the O specifies the type of

recurrent neural network architecture used to learn the weights dynamically. The

underlying GraphSAGE architecture remains almost unchanged, despite the fact there

is a decoupling among the part of the network which learns how to generate the

embeddings and the part of the networkwhich learns how tomap the node embeddings

64

CHAPTER 5. METHODS

Figure 5.2.1: GraphSAGE Architecture

to their predicted labels. Furthermore, there is the necessity to specify an additional

parameter: the number of graph snapshots to consider simultaneously to appraise

the graph dynamics. Let us clarify these modifications with an example and the

corresponding visual representation. The aim is to generate the embeddings for the

tth graph snapshot. Hence, it is needed that specific graph snapshot and n previous

65

CHAPTER 5. METHODS

graph snapshots, in our case n is equal to 5. The forward step of the algorithm

consists in generating the embeddings for each graph snapshot from t-n until t,

letting GraphSAGEweights evolve at each temporal iteration over the graph snapshots

window using a GRU as shown in the Figure 5.2.2. Only the embeddings generated

for the tth are then used to evaluate the prediction performance and fed into a Multi-

Layer Perceptron with two layers. This particular architecture which takes as an

input a sequence of input data and ignores all the outputs except for the last one is

called Sequence-to-Vector and it is one of the possible Design Patterns used to model

RNNs.

Figure 5.2.2: EvolveGraphSAGE-O - Sequence-to-Vector Design Pattern

As in the previous version, the model weights are updated by minimizing the binary

cross-entropy of the node labels.

5.2.3 Metrics

The models considered learn how to classify each transaction as licit or illicit, this can

be generalized as a binary classification problem in which the positive class generalizes

the illicit class and the negative class generalizes the licit class. To assess the predictive

performance of a classifier it is important to consider the values computed in the

confusion matrix:

• True Positive - number of samples of the positive class which themodel recognize

as positive

• True Negative - number of samples of the negative class which the model

66

CHAPTER 5. METHODS

recognizes as negative

• False Positive - number of samples of the negative class which the model

recognizes as positive

• False Negative - number of samples of the positive class which the model

recognized as negative

By analysing the values in the confusion matrix it is possible to obtain the following

metrics: Accuracy Accuracy represents the ratio of correct predictions over all the

samples. This metrics is not suitable in case of unbalanced data set since even with low

prediction performance on the minority class the accuracy value remains high.

Accuracy =
TP + TN

TP + TN + FP + FN
(5.3)

Precision Precision represents the ratio of correct positive prediction over all the

number of positive predictions. Precision is indicative of the number of false positives.

Precision =
TP

TP + FP
(5.4)

Recall Recall represents the ratio of correct prediction prediction over all the number

of positive samples. Recall is indicative of the number of false negatives.

Recall =
TP

TP + FN
(5.5)

F1-Score The F1-Score is the harmonic mean of Precision and Recall, this score is

widely exploited since it is a trade-off among the previous metrics and consent to have

a better understanding of the predictive performance of the model.

F1-Score =
2 · Precision ·Recall

Precision+Recall
(5.6)

The main metric considered is the micro average F-1 score which is used to evaluate

the accuracy of the model in predicting the node labels for both the classes.

Micro-avg-F1-Score =
TPclass0 + TPclass1

TPclass0 + TPclass1 + FPclass0 + FPclass1

(5.7)

In particular, since this is an example of Anomaly Detection, the minority class is the

most interesting one. Therefore, as well the Precision, the Recall and the F-1 score of

67

CHAPTER 5. METHODS

the illicit class as considered since the aim is to correctly detect such anomalies. Due

to the sensitivity of the application domain, in Financial Industry is more important

to have a high Recall to spot as much as anomalies as possible even if it could mean to

slightly increase the false positive rate. It is common to further analysed the samples

predicted as suspicious by more sophisticated model and/or to submit them to human

inspection.

5.3 Experimental Methodology for Swedbank

The characteristics of the Swedbank data allow for an investigation on how to train a

NRL model in a unsupervised manner and evaluate whether it is possible to observe

the evolution of customers’ behaviour by encoding node features and graph structure

into node embeddings.

Another aspect considered within these experiments consists of modifying the

GraphSAGE architecture in order to handle heterogeneous nodes, since the graph is

bipartite and the nodes in the two different sets have different features.

A better overview over the model implementation and achieved results is discussed in

Section 6.2.

5.3.1 Pre-Processing

Features Extraction

WhendealingwithGraphConvolutionalNetworks, it is extremely important to provide

the ConvGNN models with high-quality input node features in order to exploit the

representational capacity of this particular type of neural networks asmuch as possible.

Therefore, the pre-processing steps are crucial and they are further complicated due

to the necessity to aggregate the transactions and extract graph snapshots in several

time instants in order to appreciate how the customers’ behaviour changes over the

time period. For these reasons, it is important to consider a trade-off among features’

quality and computational complexity of extracting such features. Along with node

features, it is also necessary tomaintain the graph structure since ConvGNNs also need

such information to generate embeddings.

A possible solution which allows for extracting graph snapshots, aggregates

68

CHAPTER 5. METHODS

transactions which occur in the same time window using a stateful streaming

application, see Figure 5.3.1. The main reason to opt for this approach is to deal

with concept drift [51], since the financial transaction graphs evolve over time and the

normal behaviour is expected to change, and aggregating transactions distant in time

could lead to misleading and noisy graph embeddings.

Figure 5.3.1: Features Creation within the Streaming Application

For the scope of this experiment, the development of a streaming application to ingest

the input data and generate the snapshots is not necessary, since the experiment has

been conducted offline. But in order to asses if this solution could be suitable to really

perform real-time Anomaly Detection it is necessary to consider the need to collect

graph snapshots from the incoming transaction streams.

In fact, for this experiment two approaches have been simulated to generate graph

snapshots, see Figure 5.3.2. Both of these approaches consider a time window of one

week, but the first approach consists of a tumbling window strategy which aggregates

information week by week. Instead, the second approach consists of a time sliding

window strategy which still aggregates transactions within a one-week but the time

window slides across the transaction stream according to a specified interval, set to

two days, i. e. every two days a graph snapshot is generated which contains the most

recent transactions executed in the last seven days.

The input features extracted within the graph snapshot should be representative of

customers’ spending behaviour and points of transaction amounts, thus the node

features are extracted by aggregating themost significant attributes of the transactions

considered in the snapshot. The extracted input features for the two heterogeneous

classes are shown in Figure 5.3.3. Customers are characterized by static features

which consists of selected demographic information, i.e. customer age which has

69

CHAPTER 5. METHODS

Figure 5.3.2: Time Window Strategies to Generate Graph Snapshots

been subdivided in age groups and the one-hot encoding of customers’ municipality

belonging. These demographic features are static, since they are unlikely to change in a

short period and can be updated onlywhen required. The remaining features represent

the spending behaviour of customers in terms of currency and channels used for the

payments aggregated by time-window and grouped by categorical values. Points of

transaction do not contain the same type of information, but they do have features

which represent their income structure similar to customers’ aggregated features.

Figure 5.3.3: Extracted Node Features

70

CHAPTER 5. METHODS

Data Cleaning and Preparation

Once the most important features needed and their extraction has been established,

it is necessary to consider the data cleaning and preparation steps needed to remove

noisy and/or unnecessary information and make the input digestible by the models.

The data cleaning and preparation operations applied to the input data set are

listed:

• Removal of incoming transactions from the customer perspective.

For this particular use case, the most interesting aspect is to investigate patterns

of customers’ spending. Therefore, only a particular type of transaction direction

is considered, from customers to points of transaction, which represents the

majority of the edges in the given data.

• Removal of infrequent categorical values and one-hot Encoding.

The transaction data contains categorical attributes which need to be processed.

These attributes are currency, transaction channel and municipality, and for

each of them, a limited number of distinct values has been considered. For

example, there are over a hundred different currencies in the data but almost

half of them are very infrequent, i.e. occur less than the 0.05% of the time, so all

these infrequent currencies have been assigned a unique code. This adjustment

is useful because it allows to limit the node features’ dimensionality and at the

same time keep such dimension fixed over time. For municipality, one-Hot

Encoding is used and the resulting one-hot encoded vectors are utilized as part of

the customer static demographic features. For currency and transaction channel,

two fixed-size vectors are allocated with the vectors being as long as the number

of distinct values within the respective category. Each ith vector element contains

the count of the ith value present in the transactions in which a particular node

is involved during a time window. The currency and transaction channel counts

are kept for both customers and node embeddings. Municipality however, is an

attribute applicable only for customers.

• Removal of Points of Transaction with with frequencies.

This last step is performed for improving the quality of the embeddings. The

distribution of degrees of points of transaction exhibits a power law pattern,

which is very typical for real-world graphs. [52] This particular degree

distribution could negatively impact the NRL model performance since very

71

CHAPTER 5. METHODS

frequent points of transaction significantly increase the number of two-hop

neighbours within the network. In particular, when applying a ConvGNN-

based solution, this means that among the neighbours of a target customer it

is possible to find other customers that are not very similar from a topological

perspective and the only connection among them is due to the very frequent

points of transaction. For example, two customers that frequently visit the same

popular supermarket chain do not necessarily share the same overall spending

pattern. Pruning overly frequent points of transaction and their corresponding

transactions is also a best practice from an Anomaly Detection perspective since

very frequent transactions are not as meaningful; anomalous behaviours tend to

resides in the long tail of distribution.

After these pre-processing steps, the dimensions of the graph entities are the

following:

• |E| = 9.1M transactions

• |U | = 93K customers

• |V | = 1.5M points of transaction

Train-Test Split

Due to the considerable size of the Swedbank financial transactions graph, theNetwork

Representation Learning model has been trained using 20% of the customers and

all of their corresponding transactions. This 20% has been selected by including all

customers who exhibit at least one transaction in an uncommon foreign currency, e.g.

excluding the foreign currencies of neighbouring countries which are very frequent.

The the remaining customers have been selected randomly. In particular, for the

selected customers the first four graph snapshots have been considered; obtained

using a tumblingwindow strategy for the trainingwhich includes the transactions from

January 20th to February 16th.

For Anomaly Detection, both the entire graph with all the customers and a sampled

graph have been considered. The aim is to understand whether the Network

Representation Learningmodel trained over a subset of nodes is still able to generalize

over the entire data by generating the embeddings even for unseen graph entities. For

the supervised Anomaly Detection models considered, a 70-30% train-test split at the

customer level has been selected. In the unsupervised case, all customers are provided

72

CHAPTER 5. METHODS

to the models.

5.3.2 Models Architecture

Network Representation Learning Model

This section presents the GraphSAGE architecture modified in order to handle a

bipartite graph G = (V, U,E). Figure 5.3.4 represents a 2-layered architecture as

an example, it is possible to notice that the architecture presents two GraphSAGE

networks which combined together are complementary.

The left-handed GraphSAGE network generates the embeddings for the nodes in

the V set and the right-handed one for the nodes in the U set. As intermediate

embeddings each GraphSAGE network generates the embeddings for the opposite

target set, and these intermediate embeddings need to be exchanged among the

GraphSAGE networks in order to retrieve the embeddings of the target nodes set.

The two GraphSAGE networks do not directly generate the predictions but instead

they generate the embeddings by aggregating the information of two-hop neighbours.

In this manner the resulting embeddings encode both of the nodes sets into low-

dimensional vectors, and in this manner it is possible to also have the compact

representation of an edge by combining the two embeddings of the nodes which are

related through that edge, namely link embedding. Having the link embeddings, it is

possible to generate a prediction according to the unsupervised task which has been

assigned to the architecture.

In these experiments we have considered two unsupervised tasks. The first is the

traditional unsupervised learning task which leverages negative sampling, also used

by the Skip-Gram model, to assign positive labels to links which actually are present

in the graph and sampled through random walks and a negative labels to links which

do not exists and connect nodes which are distant from each other. In this case, the

networkweights are learned by optimizing a binary cross-entropy loss simplified to the

below expression:

Negative Sampling Loss = −log(σ(zTu zv))− log(σ(−zTu zvn))

where (u, v) and (u, vn) are positive and negative pairs respectively
(5.8)

73

CHAPTER 5. METHODS

Figure 5.3.4: GraphSAGE Architecture for Bipartite Graphs

The second unsupervised learning task has been specifically designed for this use case.

Since the aim is to detect whether customers change spending behaviour in foreign

currencies, it is assigned a positive label to a transaction in foreign currency instead

74

CHAPTER 5. METHODS

if the transaction is in local currency, i. e. Swedish Crowns SEK, it is considered a

negative label. The loss optimized is simplified in the below expression:

Link Classification Loss = −log(σ(concat(zu, zv)))− log(σ(−concat(zu, zvn)))

where (u, v) and (u, vn) are transaction in foreign currencies and SEK respectively

(5.9)

Anomaly Detection Models

Once the node embeddings have been generated, they are used as input for

downstream Anomaly Detection applications. The models used, namely Isolation

Forest, LSTM and WaveNet, have been implemented as presented by their authors

without making any particular adjustments. Their implementation is briefly

described.

For Isolation Forest, the implementation provided within the Scikit-learn [53] Python

package has been used. As an unsupervised method it takes all the customers in the

data as input without dividing them in training and test sets.

LSTM andWaveNet have been implemented using TensorFlow [54] and following the

guidelines provided in [55]. They have been trained using 70% of the customers, the

remaining part is used for testing.

5.3.3 Metrics

As in the previous use case, the minority class is the most interesting one. Therefore,

precision, recall and the F-1 score of theminority class which represent customers who

might be stranded are considered.

75

Chapter 6

Results

6.1 Results on the Elliptic Data Set

6.1.1 GraphSAGE

In order to detect the illicit transactions in the Elliptic Data Set [3], a 2-layered

GraphSAGE version has been implemented in Pytorch [56] which aggregates the

information of the nodes local neighbourhood up to 2-hops neighbours. Both themean

aggregator and the pool aggregator are considered in the experiment to appreciate if

they differently contribute to the prediction performance. The parameters used for this

experiment and the specification regarding the computational platform and software

libraries used are listed in Appendix A.1.1 and Appendix A.2.1 respectively.

The baseline models selected to compare the prediction performances of Graphsage

with are the ConvGNN framework used by the authors, namely GCN and Skip-

GCN.

The first results show the prediction performances of the considered models, in

particular focusing on the minority class which represents the illicit transactions,

on the overall test set which consists of the graph snapshots from 36th until 49th

timestamp. It is possible to notice from the results presented in Table 6.1.1 that

GraphSAGE can achieve comparable results with the other considered ConvGNNs, and

the F-1 score indicates that the GraphSAGE version with pool aggregator is preferable.

Skip-GCN is themodel with the highest F1-score, this is because it has been designed to

consider along with the hidden representation as well the input node features at every

76

CHAPTER 6. RESULTS

convolutional layer. Hence it considers more information than the others. However,

the best performing model among the ones considered is Random Forest, as also

highlighted by the paper’s authors [43]. RandomForest is an ensemble learningmodel,

which is better suited for this fine-grained Anomaly Detection.

Table 6.1.1: Graph Convolutional Network Prediction Performance

Model Precision Recall F1-score

GCN 0.5158 0.5616 0.5377

Skip-GCN 0.6116 0.5749 0.5927

GraphSAGE mean 0.4738 0.5627 0.5145

GraphSAGE pool 0.6339 0.4650 0.5365

Random Forest (AF) 0.6767 0.6759 0.6763

Random Forest (AF + NEgcn) 0.8280 0.6360 0.7194

Random Forest (AF + NEskip−gcn) 0.9171 0.6626 0.7693

Random Forest (AF + NEgsage−mean) 0.8650 0.6615 0.7497

Random Forest (AF + NEgsage−pool) 0.8947 0.6693 0.7657

Anyhow, the usage of Network Representation Learning model can be justified by the

fact they are able to generate embeddings that can be used as features for further

Anomaly Detection models. For instance, in Table 6.1.1, it is possible to notice that

RandomForest achieves good performances leveraging only the input features, i. e. All

Features (AF). But, its predictive performances increase considerablywhen it is trained

considering the features in combination with Node Embeddings (NE) generated with

the ConvGNNs models.

Besides, it is of interest to evaluate how the prediction performances vary over

the test time window since the data set comprises a sequence of graph snapshots.

Furthermore, the peculiarity of this data set is that it contains a very interesting

example of concept drift which can be located at the 43th timestep. From this precise

timestep forward, all the considered models are not robust enough to maintain good

prediction performances, see Figure 6.1.1. The only exception regards the 46th, by

analysing the prediction for this graph snapshot, it is possible to appreciate different

prediction results. In this case, the best model is Random Forest that leverages the

embeddings generated with GraphSAGE pool aggregator.

From the results of this experiment, it is possible to draw some conclusions. First of

77

CHAPTER 6. RESULTS

36 37 38 39 40 41 42 43 44 45 46 47 48 49
Timestep

0.0

0.2

0.4

0.6

0.8

1.0
Ill

ici
t F

1

gcn
skipgcn
gsage-mean
gsage-pool
ran-forest-af
ran-forest-af+ne_gcn
ran-forest-af+ne_skipgcn
ran-forest-af+ne_gsage-mean
ran-forest-af+ne_gsage-pool

Figure 6.1.1: Illicit class F1-score over test timesteps span

all, leveraging Network Representation Learning can lead to better predictions. Still, it

is necessary to use the generated embeddings in combination with input node features,

since embeddings and features are not mutually exclusive but complementary. To

perform Anomaly Detection it is better to use both these two representations to

include as many different aspects as possible. The usage of GraphSAGE does not

lead to significantly better prediction results than GCN-based models, but they are

comparable. In fact, GraphSAGE embeddings can lead to better results when exploited

by the Random Forest model rather than GCN, but considering the ConvGNNs model

individually, GCN F-1 score is better. The most significant advantages of using

GraphSAGE lie in themodel design: GraphSAGE allows to relaxed assumptions on the

input order, i.e. a fixed number of nodes, and its weights are dependent on the input

features and hidden representation dimensions rather than the graph order.

6.1.2 EvolveGraphSAGE-O

Another principal aim of this experiment is to investigate if it is meaningful to train

the selected Network Representation Learning model dynamically to capture the

intrinsic dynamic nature of financial transactions graph. For this purpose, it has been

implemented a 2-layered GraphSAGE dynamic version, namely EvolveGraphSAGE-O,

in Pytorch [56] whose weights evolve at each timestamp accordingly with the sequence

of graph snapshots given as input. Both the mean aggregator and the pool aggregator

are considered in the experiment to appreciate if they have a different impact on the

78

CHAPTER 6. RESULTS

prediction performances. The specif parameters used for this experiment are listed in

Appendix A.1.2.

The baseline models selected to compare the prediction performances of the

GraphSAGE dynamic variant with are EvolveGCN-O and EvolveGCN-H. These two

models are ConvGNN dynamic frameworks proposed by the authors [26], previously

described in Section 2.3.3.

The first results show the prediction performances of the considered models, on the

overall test set consisting of the graph snapshots from 36th until 49th timestamp. In

particular, the focus is on the minority class that represents illicit transactions. Even

in these dynamic settings, it is possible to notice from the results in Table 6.1.2 that the

EvolveGraphSAGE-O variant, which leverages the pool aggregator, can achieve better

performances than the mean variant. The EvolveGraphSAGE-O models, compared to

their static versions, exhibit a similar recall but with a worse precision. For this reason,

the F1-scores of EvolveGraphSAGE-O variants are lower, anyhow all the ConvGNNs

and STGNNs considered can identify a similar amount of illicit transactions but in

general STGNNs exhibit higher false-positive rates. Considering the accuracy obtained

with the baseline STGNNs models, namely EvolveGCN-H and EvolveGCN-O, it is

evident that the EvolveGCN-H variant is significantly worse. For this reason, to

implement the dynamic version of GraphSAGE we have focused on the EvolveGCN-O

architecture, which leverages only the GCN weights at the previous timestep to update

the GCN weights instead of considering as well the generated node embeddings. If we

compare, EvolveGraphSAGE-O-pool with the EvolveGCN-O considered, we can notice

that EvolveGraphSAGE-O accuracy is slightly worse but still able to detect anomalies

with comparable results.

Another essential aspect to consider is how the prediction performances change at each

timestep, see Figure 6.1.2. In general, we can observe that the concept drift penalizes

even the dynamic models. Anyhow, we can observe some slight improvements by

leveraging the STGNNs models. The accuracy of both EvolveGraphSAGE-O-pool and

EvolveGCN-H does not drop to zero at the 43th timestep. Instead, their F-1 scores

are around 5% when the concept drift happened. With EvolveGraphSAGE-O-mean

and Evolve-GCN-H, it is possible to observe a significant improvement in the accuracy

at the 48th timestep. In conclusion, we can say that the main advantage of using

STGNNs is that they retain only the information of the most recent snapshots to make

79

CHAPTER 6. RESULTS

Table 6.1.2: Graph Convolutional Network Prediction Performance

Model Precision Recall F1-score

GCN 0.5158 0.5616 0.5377

GraphSAGE mean 0.4738 0.5627 0.5145

GraphSAGE pool 0.6339 0.4650 0.5365

EvolveGCN-H 0.3099 0.5438 0.3948

EvolveGCN-O 0.4910 0.5749 0.5297

EvolveGSAGE-O mean 0.3388 0.5272 0.4125

EvolveGSAGE-O pool 0.3944 0.5516 0.4600

predictions. This can be beneficial in the presence of concept drift since it is necessary

to forget previous anomalous patterns that are not anymore present.

36 37 38 39 40 41 42 43 44 45 46 47 48 49
Timestep

0.0

0.2

0.4

0.6

0.8

1.0

Ill
ici

t F
1

gcn
gsage-mean
gsage-pool
egcn-h
egcn-o
esage-mean
esage-pool

Figure 6.1.2: Illicit class F1-score over test timesteps span

6.2 Results on the Bank Data Set

This section presents the results obtained by using the GraphSAGE version specifically

designed to handle bipartite graphs implemented in TensorFlow [54]. This

architecture is trained by optimizing an auxiliary unsupervised task to encode node

features and graph topology information. The parameters used for this experiment and

the specification regarding the computational platform and software libraries used are

80

CHAPTER 6. RESULTS

listed in Appendix A.1.3 and Appendix A.2.2 respectively.

The GraphSAGE model is used to generate the embeddings which are later fed to

Anomaly Detection models, specifically the models considered are Isolation Forest,

LSTMandWavenet. Isolation forest has been usedwith the intent to performAnomaly

Detection in near real-time. In fact, as soon as new transactions from March onwards

are processed, predicting anomalous patterns turns out to be rather straightforward.

On the other hand, the recurrent neural network models are used to perform a more

accurate evaluation considering the entire period offline.

6.2.1 Results on the Training Sub-Graph

The first results reported consider the prediction performance over the sub-graph

which has been selected to train the NRL model. Even if the most interesting results

regards the entire graph, they have been considered in order to understand if the NRL

model is able to generalize over unseen graph entities.

For the sake of providing a comprehensive overview, the anomaly Detection models

are provided different inputs:

• Node Features - these are the features extracted in the pre-processing which

are also fed in the NRL model

• Node Embeddings Link Classification (LC) - these are the embeddings

generated using the GraphSAGE version which optimize the link classification

task, i.e. predict whether if a transaction is in foreign currency or not

• Node Features and Node Embeddings Link Classification (LC) - these

are the combination of node features and node embeddings for link classification

• Node Embeddings Random Walks (RW)- these are the embeddings

generated using the GraphSAGE version which optimize the unsupervised task,

i.e. predict whether a transaction really exists among two nodes which have been

sampled through random walk or not

• Node Features and Node Embeddings Random Walks (RW) - these

are the combination of node features and node embeddings for unsupervised

training

The isolation forest algorithm has been trained in two different ways. The first training

81

CHAPTER 6. RESULTS

uses as input data features and/or embeddings extracted in the first half of the time

period representing normal behaviour of customers prior to the pandemic’s onset

in Europe. The second version, does not take into account previous behaviours,

rather, the model is continuously updated by training it on the same features and/or

embeddings obtained in the time window for which it provides a prediction.

Table 6.2.1: Classification Performance on the Anomalous Class - Small Graph

Input Model Precision Recall F1-score

Node
Features

Isolation
Forest

0 0 0

Isolation
Forest (weekly
training)

0.0417 0.0015 0.0028

LSTM 0.7207 0.6548 0.6862
WaveNet 0.8333 0.6853 0.7521

Node
Embeddings
LC

Isolation
Forest

0.0424 0.7155 0.0800

Isolation
Forest (weekly
training)

0.0433 0.8200 0.0822

LSTM 0.4176 0.3604 0.3869
WaveNet 0.4331 0.3454 0.3842

Node
Features and
Embeddings
LC

Isolation
Forest

0.0576 0.0900 0.0702

Isolation
Forest (weekly
training)

0.0802 0.2322 0.1192

LSTM 0.7524 0.6798 0.7143
WaveNet 0.7709 0.7005 0.7340

Node
Embeddings
RW

Isolation
Forest

0.0620 0.8070 0.1152

Isolation
Forest (weekly
training)

0.0526 0.8984 0.0994

LSTM 0.5135 0.4822 0.4975
WaveNet 0.5480 0.4924 0.5187

Node
Features and
Embeddings
RW

Isolation
Forest

0.2230 0.3599 0.2754

Isolation
Forest (weekly
training)

0.1111 0.4906 0.1812

LSTM 0.7196 0.6904 0.7047
WaveNet 0.7874 0.6954 0.7385

82

CHAPTER 6. RESULTS

When analysing the results in Table 6.2.1, it is necessary to distinguish between near

real-time prediction and offline prediction. The near real-time predictionmodel which

leverages the Isolation Forest model is able to display that the best results are achieved

by using node embeddings and features in combination. In particular, the best strategy

consists of using the embeddings generated to optimize the unsupervised task, with an

overall F-1 score of 27.54%. Regarding the offline setting, the best performing model

is WaveNet trained using only the node features as input. It is worth mentioning that

the combination of node features and embeddings using WaveNet are able to achieve

comparable results but do not bring a significant gain in prediction performance, just

a slight increase in the recall, which means that leveraging embeddings allows to

detect a larger number of anomalies, true positives, but with a higher false positive

rate. Concerning the LSTMmodel, the usage of embeddings in combination with node

features is beneficial in all cases, but the F-1 scores remain lower compared with the

ones achieved with WaveNet.

6.2.2 Results on the Entire Graph

The second part of the experiment on the entire graph has been conducted similar

to the previous one, the models have been trained in the exact same way. The only

difference is the fact that the entire customer base has been taken into account.

As it is observable from the results reported in Table 6.2.2, the best prediction in

near real-time is achieved by using node embeddings and features together, as in

the training of sub-graphs. In particular, the best strategy resides in using the

embeddings generated to optimize the link classification task, with an overall F-1

score of 15.45%. Regarding the offline evaluation, the best performing model is again

WaveNet trained using only the node features as input. The combination of node

features and embeddings using WaveNet are able to achieve comparable results but

do not bring a significant gain in the prediction performance, only a slight increase

in precision, which means that leveraging embeddings allows for decreasing the false

positive rate.

Another aspect which must be considered is plausible changes in the quality of

embeddings when generating them on the overall graph, and not only on the sub-

graphs used for training. Overall, it is possible to notice a decrease in the prediction

performance which is particularly evident when considering the nodes embeddings as

83

CHAPTER 6. RESULTS

Table 6.2.2: Classification Performance on the Anomalous Class - Entire Graph

Input Model Precision Recall F1-score

Node
Features

Isolation
Forest

0.0323 0.0029 0.0053

Isolation
Forest (weekly
training)

0.0157 0.0044 0.0068

LSTM 0.7287 0.6954 0.7117
WaveNet 0.6636 0.7310 0.6957

Node
Embeddings
LC

Isolation
Forest

0.0114 0.7562 0.0225

Isolation
Forest (weekly
training)

0.103 0.8302 0.0204

LSTM 0.2168 0.1574 0.1824
WaveNet 0.2500 0.1878 0.2145

Node
Features and
Embeddings
LC

Isolation
Forest

0.1012 0.3266 0.1545

Isolation
Forest (weekly
training)

0.0310 0.3628 0.0571

LSTM 0.6620 0.7157 0.6878
WaveNet 0.7053 0.6802 0.6925

Node
Embeddings
RW

Isolation
Forest

0.0145 0.8578 0.0286

Isolation
Forest (weekly
training)

0.0120 0.8940 0.0237

LSTM 0.3846 0.3807 0.3827
WaveNet 0.4000 0.4162 0.4080

Node
Features and
Embeddings
RW

Isolation
Forest

0.0493 0.4253 0.0884

Isolation
Forest (weekly
training)

0.0282 0.5965 0.0539

LSTM 0.7182 0.6599 0.6878
WaveNet 0.6789 0.6548 0.6667

the only input. In fact, the node embeddings computed for the link classification tasks

allow to achieve a F-1 score around 20% using LSTM and WaveNet, which is half as

large as the results achieved considering the sub-graph. When considering the nodes

embeddings in combination with features, nodes embeddings for link classification

84

CHAPTER 6. RESULTS

lead to the best performances when using Isolation Forest.

It is evident from the results reported in Table 6.2.3 that using embeddings for

link classification leads to a lower false positive rate using both the windowing

strategies.

Table 6.2.3: Classification Performance on the Anomalous Class - Entire Graph

Input Model Window Precision Recall F1-score

Node
Features and
Embeddings
LC

Isolation
Forest

Tumbling 0.1012 0.3266 0.1545

Isolation
Forest

Sliding 0.1403 0.1263 0.1329

Node
Features and
Embeddings
RW

Isolation
Forest

Tumbling 0.0493 0.4253 0.0884

Isolation
Forest

Sliding 0.0554 0.6328 0.1019

To summarise, the experiment results are encouraging but they do not conclusively

state that leveraging node embeddings for this particular use case yields better

accuracy. The following conclusions can be drawn:

• Regarding the offline evaluation, i.e. when using RNN models to analyse the

customer behaviour over the entire period, it is sufficient to consider the node

features as input. Leveraging embeddings in combination with node features

does not lead to better accuracy. This can be due to the fact that topological

information encoded into embeddings can be a bit noisy for this particular task.

In fact, making transactions in foreign currencies does not necessarily mean that

a person is abroad, and vice versa: it is possible tomake transactions in your own

currency while staying abroad. In addition, the characteristics of the bipartite

graph further complicate the underlying graph topology.

• Regarding the online evaluation, i.e. when considering customers’ spending

behaviours week by week, it is not possible to detect almost any anomaly by

analysing only the node features. In this case, combining features with node

embeddings allows for increasing the predictions but the F-1 score does not

perform optimally, around 15%. Nevertheless, a lower accuracy can be justified

considering that node labels have been assigned by assessing changes in number

of transactions in foreign currencies. On the other hand, in the real-time setting,

spending behaviours are considered over a time window of one week.

85

CHAPTER 6. RESULTS

• In general, it is possible to notice that using the unsupervised task, which encodes

nodes which belong to the same context obtained with random walks similarly,

allows for extracting more meaningful node embeddings. We also observe that

although embeddings generated for link classification are not very informative

when considered alone, they still yield comparable accuracywith the embeddings

generated to optimize the other unsupervised task when used in combination

with node features.

86

Chapter 7

Conclusions

7.1 Discussion

In this section are presented the drawn conclusions answering the research questions

presented in the Introduction.

Among the existing network representation learning approaches available in the

literature, which solutions are best suited for financial transaction data?

The qualitative analysis indicates ConvGNNs as the most suitable category of Network

Representation Learning approaches able to satisfy most of the requirements needed

for this particular application domain.

ConvGNNs are meant to leverage nodes features, which in this case include relevant

information regarding the financial behaviour of individual and legal entities that use

financial system. Some of the approaches within this category, such as GraphSAGE,

are inductive that consent them to generalize even on unseen data, and the number of

parameters is not linearly dependent with the graph order; instead it is only dependant

on the dimensionality of the input nodes features. Also, ConvGNNs inherit by Deep

Neural Networks, in general, the flexibility to adjust the architecture according to

the specific requirements of use cases. For example, they can be modified to handle

heterogeneous graphs, and additional layers can be stacked to directly learn how to

classify the generated embeddings and jointly optimize the entire network.

Even if the other Network Representation Learning approaches have not been studied

in-depth in this thesis, they are essential to understand the rationale behind NRL.

87

CHAPTER 7. CONCLUSIONS

For example, the analysis of the Skip-gram model with negative sampling allows us

to understand better how to train ConvGNNs in an unsupervised manner. In fact,

unsupervised ConvGNNs as well leverages random walk to extract samples, and they

consider the same loss function.

Can graph embeddings improve the prediction performance in anomaly detection

over the traditional statistical methods used in finance?

Of course, there is no silver bullet, and leveraging graph embeddings can not always

lead to better prediction performances. The answer profoundly depends on the data

set considered and the types of anomalies. It is possible to answer with confidence

only regarding the two different real-world data sets considered in this project. In

the case of AML on the Bitcoin Network, it is demonstrated that leveraging node

embeddings permits to improve the prediction performances. It must be noticed

that the best results can be achieved using an auxiliary Anomaly Detection algorithm,

namely Random Forest, which takes an input both the input node features and the

embeddings. This means that nodes embeddings are not substitutes of input node

features, but they are complementary and able to capture different aspects of the data

set. In the case of detecting customers in distress, the generated embeddings do not

provide a significant improvement when analysing the customers’ behaviour offline

over the entire period taken into consideration. Instead, analysing week by week the

customer behaviours included in the node features and embeddings, it is possible to

notice that the combination of the two allows to detect some of the anomalies, but the

false positive rate is high. Still, it is an improvement because only considering features

was not possible to detect almost anything. The solution needs to be further improved

before having results aligned with industry standards.

As a rule of a thumb, we can infer that when the anomalies are dependant as well to the

graph structure, graph embeddings are likely to providemeaningful insights which can

be exploited for Anomaly Detection. In particular, it must be considered, which are the

properties encoded within the embeddings and if they can provide useful insights. In

our case, ConvGNNs aggregate the information of nearby nodes in the neighbourhood,

and the information coming from this nearby could lead to misleading results if nodes

context it is not informative for the anomalies.

Is it possible to leverage network representation learning to reflect the evolving

nature of financial data?

88

CHAPTER 7. CONCLUSIONS

Even in these dynamic settings, it is possible to turn financial data mining

into a network representation learning problem. For instance, Spatial-Temporal

Convolutional Networks represent a valid category of approaches that canmodel graph

topological information and how it evolves.

This type of Graph Neural Networks can be easily modified to model adequately the

underlying evolving graphs; indeed, in the literature there exist a variety of different

approaches. For these reasons, it is crucial to understand the characteristics of the

graph we want to model and have clear in mind, or at least an idea, of how it will

evolve.

In this work, the experiment is conducted on the Elliptic data set. This data set has the

main limitation of having a new nodes set for each new graph snapshot, i.e. the nodes

set is always changing completely. Because of that, the research focused on STGNNs

that do not resort to node embeddings for learning the system dynamics. Instead,

we focused on learning how to evolve the weights of a Graph Convolutional Network

through a RNN architecture. Specifically, we have used GraphSAGE as ConvGNN

to model the spatial information, and its weights are adapted accordingly with the

input sequence of graph snapshots using a GRU architecture modelled in Sequence-

to-Vector manner.

The prediction results in terms of F-1 Score are not as good as the results achieved

using ConvGNN trained statically. Anyhow, the evolving models have the advantage

of being more robust in the presence of concept drift. The higher F-1 Scores on some

timesteps after the concept drift are achieved with the proposed method.

7.2 Future Work

Deep Learning represents a fast-growing Machine Learning area, leveraging deep

models consent to achieve human-level prediction performances, but their main

limitation is due to the fact they work like in a black-box fashion [57].

Before deploying a Deep Learning model for critical applications such as raising the

suspect against an individual for illicit behaviour, it is not sufficient to assess the

predictive performances of amodel quantitatively. Before usingDeep Learningmodels

in critical decision-making processes, you should make sure to be able to positively

reply to the following questions: Canyou justify the predictions of yourDeepLearning

89

CHAPTER 7. CONCLUSIONS

model? If so, are your justifications legally and ethically defensible?

Answering to the previous questions was out of the scope for this degree project, but

in this section, it is made reference to relevant works, which can be used as a starting

point for future work to comprehend better how ConvGNNs make predictions.

In this paper [58], it is presented a theoretical framework to analyze the discriminative

power of ConvGNNs, i.e. their ability to distinguish among different graph

structures.

The insights are generalized from a mathematical perspective by proceeding from

the assumption that each node has a multi-set comprising the feature vectors of the

node’s neighbours. Such multi-sets are then aggregating according to the aggregation

function specified by the considered ConvGNN framework. The aggregation function

is the core component of ConvGNN, which is used to incorporate the information

regarding the graph structure, i.e. each node representation is updated iteratively by

aggregating neighbours’ representations.

The authors state that this category of GNNs exhibits a strong representational

power when the model is able to aggregate different multi-sets into different

representations. In other words, GNNs are as powerful as their aggregation functions

are discriminative.

In particular, the drawn conclusions regarding the discriminative power of max and

pool aggregators, which are of extreme interests for this research. Themean aggregator

is suitable when there is the need to encode distributional and statistical information in

the embeddings rather than encode the exact graph structure. Its discriminative power

is limited since is not able to distinguish among two multi-sets with same elements in

the sets but in different numbers, i.e. if the first multi-set contains n times the same

elements of the second multi-set. Anyhow, exploiting the mean aggregator can lead to

satisfactory results to perform node classification if there are high-quality input node

features aligned with the classification task.

Similarly, the pool aggregator it is not able to identify the exact graph structures.

Anyhow, it is particularly suitable to identify particular elements in the multi-set that

consents to have at least an idea of the graph structure backbone. This aggregator is

preferable when embeddings robust to noise are required.

A further step towards explainability for GNNs has beenmadewith the work presented

90

CHAPTER 7. CONCLUSIONS

in this paper [59]. The authors presented an approach that can shed the lights over

the predictions made by GNNs called GNNExplainer. This framework leverages the

concept of mutual independence to trace the subgraph, and the node features subset

which contributes the most for the predictions given a trained GNN model and the

input data set. Indeed, the mutual independence has been specifically defined to

quantify how the probability of obtaining a particular prediction for a node v, e.g. the

class predicted if the network has been trained for classifying nodes, varies accordingly

with the considered subgraph and node features subset. This becomes an optimization

problem, and the objective is to maximize the mutual independence. Even if it is

not possible to provide a convexity assumption to this optimization problem, the

authors were able to produce good explantations for their experiments, and often the

optimization reached a local minimum.

91

Bibliography

[1] Kipf, Thomas andWelling, Max. “Variational Graph Auto-Encoders”. In: ArXiv

abs/1611.07308 (2016).

[2] Chandola, Varun, Banerjee, Arindam, andKumar, Vipin. “AnomalyDetection: A

Survey”. In: ACM Comput. Surv. 41.3 (July 2009). ISSN: 0360-0300. DOI: 10.

1145/1541880.1541882. URL: https://doi.org/10.1145/1541880.1541882.

[3] Weber, Mark et al. “Anti-money laundering in bitcoin: Experimenting with

graph convolutional networks for financial forensics”. In: arXiv preprint

arXiv:1908.02591 (2019).

[4] Jiang, J. et al. “Anomaly Detection with Graph Convolutional Networks for

Insider Threat and Fraud Detection”. In:MILCOM 2019 - 2019 IEEE Military

Communications Conference (MILCOM). 2019, pp. 109–114.

[5] Akoglu, Leman, Tong, Hanghang, and Koutra, Danai. “Graph-based Anomaly

Detection and Description: A Survey”. In: CoRR abs/1404.4679 (2014). arXiv:

1404.4679. URL: http://arxiv.org/abs/1404.4679.

[6] Perozzi, Bryan, Al-Rfou, Rami, andSkiena, Steven. “DeepWalk:Online Learning

of Social Representations”. In: Proceedings of the 20th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining. KDD

’14. New York, New York, USA: Association for Computing Machinery, 2014,

pp. 701–710. ISBN: 9781450329569. DOI: 10.1145/2623330.2623732. URL:

https://doi.org/10.1145/2623330.2623732.

[7] Hamilton, William L., Ying, Rex, and Leskovec, Jure. Representation Learning

on Graphs: Methods and Applications. 2017. arXiv: 1709.05584 [cs.SI].

92

https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://arxiv.org/abs/1404.4679
http://arxiv.org/abs/1404.4679
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2623330.2623732
https://arxiv.org/abs/1709.05584

BIBLIOGRAPHY

[8] Menon, Aditya Krishna andElkan, Charles. “Fast Algorithms for Approximating

the Singular Value Decomposition”. In: ACM Trans. Knowl. Discov. Data 5.2

(Feb. 2011). ISSN: 1556-4681. DOI: 10.1145/1921632.1921639. URL: https:

//doi.org/10.1145/1921632.1921639.

[9] Ou, Mingdong et al. “Asymmetric Transitivity Preserving Graph Embedding”.

In: Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. KDD ’16. San Francisco, California,

USA: Association for Computing Machinery, 2016, pp. 1105–1114. ISBN:

9781450342322. DOI: 10.1145/2939672.2939751. URL: https://doi.org/

10.1145/2939672.2939751.

[10] Henderson, Keith et al. “RolX: Structural Role Extraction & Mining in

Large Graphs”. In: Proceedings of the 18th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. KDD ’12. Beijing,

China: Association for Computing Machinery, 2012, pp. 1231–1239. ISBN:

9781450314626. DOI: 10.1145/2339530.2339723. URL: https://doi.org/

10.1145/2339530.2339723.

[11] Li, Jundong et al. “Attributed Network Embedding for Learning in a Dynamic

Environment”. In: Proceedings of the 2017 ACM on Conference on Information

and Knowledge Management. CIKM ’17. Singapore, Singapore: Association for

Computing Machinery, 2017, pp. 387–396. ISBN: 9781450349185. DOI: 10 .

1145/3132847.3132919. URL: https://doi.org/10.1145/3132847.3132919.

[12] Grover, Aditya and Leskovec, Jure. “Node2vec: Scalable Feature Learning

for Networks”. In: Proceedings of the 22nd ACM SIGKDD International

Conference onKnowledgeDiscovery andDataMining. KDD ’16. SanFrancisco,

California, USA: Association for Computing Machinery, 2016, pp. 855–864.

ISBN: 9781450342322. DOI: 10.1145/2939672.2939754. URL: https://doi.

org/10.1145/2939672.2939754.

[13] Gao, M. et al. “Learning Vertex Representations for Bipartite Networks”. In:

IEEE Transactions on Knowledge and Data Engineering (2020), pp. 1–1.

[14] Wu, Z. et al. “A Comprehensive Survey on Graph Neural Networks”. In: IEEE

Transactions on Neural Networks and Learning Systems (2020), pp. 1–21.

93

https://doi.org/10.1145/1921632.1921639
https://doi.org/10.1145/1921632.1921639
https://doi.org/10.1145/1921632.1921639
https://doi.org/10.1145/2939672.2939751
https://doi.org/10.1145/2939672.2939751
https://doi.org/10.1145/2939672.2939751
https://doi.org/10.1145/2339530.2339723
https://doi.org/10.1145/2339530.2339723
https://doi.org/10.1145/2339530.2339723
https://doi.org/10.1145/3132847.3132919
https://doi.org/10.1145/3132847.3132919
https://doi.org/10.1145/3132847.3132919
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754

BIBLIOGRAPHY

[15] Hamilton,WilliamL., Ying, Rex, and Leskovec, Jure. “Inductive Representation

Learning on Large Graphs”. In: Proceedings of the 31st International

Conference on Neural Information Processing Systems. NIPS’17. Long

Beach, California, USA: Curran Associates Inc., 2017, pp. 1025–1035. ISBN:

9781510860964.

[16] Håkansson, Anne. “Portal of research methods and methodologies for research

projects and degree projects”. In: The 2013 World Congress in Computer

Science, Computer Engineering, and Applied ComputingWORLDCOMP 2013;

Las Vegas, Nevada, USA, 22-25 July. CSREA Press USA. 2013, pp. 67–73.

[17] Henderson, Keith et al. “It’s Who You Know: Graph Mining Using Recursive

Structural Features”. In: Proceedings of the 17th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. KDD ’11. San Diego,

California, USA: Association for Computing Machinery, 2011, pp. 663–671.

ISBN: 9781450308137. DOI: 10.1145/2020408.2020512. URL: https://doi.

org/10.1145/2020408.2020512.

[18] Lee, Daniel D. and Seung, H. Sebastian. “Algorithms for Non-Negative Matrix

Factorization”. In: Proceedings of the 13th International Conference on Neural

Information Processing Systems. NIPS’00. Denver, CO: MIT Press, 2000,

pp. 535–541.

[19] Rissanen, J. “Paper: Modeling by Shortest Data Description”. In: Automatica

14.5 (Sept. 1978), pp. 465–471. ISSN: 0005-1098. DOI: 10 . 1016 / 0005 -

1098(78)90005-5. URL: https://doi.org/10.1016/0005-1098(78)90005-5.

[20] Stewart, G. W.Matrix Perturbation Theory. 1990.

[21] Mikolov, Tomas et al. “Efficient estimation of word representations in vector

space”. In: arXiv preprint arXiv:1301.3781 (2013).

[22] Mikolov, Tomas et al. “Distributed Representations of Words and Phrases and

Their Compositionality”. In: Proceedings of the 26th International Conference

on Neural Information Processing Systems - Volume 2. NIPS’13. Lake Tahoe,

Nevada: Curran Associates Inc., 2013, pp. 3111–3119.

[23] Tang, Jian et al. “LINE: Large-Scale Information Network Embedding”. In:

Proceedings of the 24th International Conference on World Wide Web. WWW

’15. Florence, Italy: International World Wide Web Conferences Steering

94

https://doi.org/10.1145/2020408.2020512
https://doi.org/10.1145/2020408.2020512
https://doi.org/10.1145/2020408.2020512
https://doi.org/10.1016/0005-1098(78)90005-5
https://doi.org/10.1016/0005-1098(78)90005-5
https://doi.org/10.1016/0005-1098(78)90005-5

BIBLIOGRAPHY

Committee, 2015, pp. 1067–1077. ISBN: 9781450334693. DOI: 10 . 1145 /

2736277.2741093. URL: https://doi.org/10.1145/2736277.2741093.

[24] Duvenaud, David et al. “Convolutional Networks on Graphs for Learning

Molecular Fingerprints”. In: Proceedings of the 28th International Conference

on Neural Information Processing Systems - Volume 2. NIPS’15. Montreal,

Canada: MIT Press, 2015, pp. 2224–2232.

[25] Kipf, Thomas N andWelling, Max. “Semi-Supervised Classification with Graph

Convolutional Networks”. In: arXiv preprint arXiv:1609.02907 (2016).

[26] Pareja, Aldo et al. “Evolvegcn: Evolving graph convolutional networks for

dynamic graphs”. In: arXiv preprint arXiv:1902.10191 (2019).

[27] Orhan, A. Emin. “Skip Connections as Effective Symmetry-Breaking”. In:ArXiv

abs/1701.09175 (2017).

[28] Ying, Rex et al. “Graph Convolutional Neural Networks for Web-Scale

Recommender Systems”. In: CoRR abs/1806.01973 (2018). arXiv: 1806.01973.

URL: http://arxiv.org/abs/1806.01973.

[29] Hamilton, William L. et al. WWW-18 Tutorial - Representation Learning on

Networks. TheWebConference, 2018 (WWW). Lyon, France, 2018.URL: http:

//snap.stanford.edu/proj/embeddings-www/index.html#bio.

[30] Wang, Daixin, Cui, Peng, and Zhu, Wenwu. “Structural Deep Network

Embedding”. In: Proceedings of the 22nd ACM SIGKDD International

Conference onKnowledgeDiscovery andDataMining. KDD ’16. SanFrancisco,

California, USA: Association for Computing Machinery, 2016, pp. 1225–1234.

ISBN: 9781450342322. DOI: 10.1145/2939672.2939753. URL: https://doi.

org/10.1145/2939672.2939753.

[31] Cho, Kyunghyun et al. “Learning phrase representations using

RNN encoder-decoder for statistical machine translation”. In: arXiv preprint

arXiv:1406.1078 (2014).

[32] Hochreiter, Sepp and Schmidhuber, Jürgen. “Long Short-Term Memory”. In:

Neural Comput. 9.8 (Nov. 1997), pp. 1735–1780. ISSN: 0899-7667. DOI: 10.

1162/neco.1997.9.8.1735. URL: https://doi.org/10.1162/neco.1997.9.8.

1735.

95

https://doi.org/10.1145/2736277.2741093
https://doi.org/10.1145/2736277.2741093
https://doi.org/10.1145/2736277.2741093
https://arxiv.org/abs/1806.01973
http://arxiv.org/abs/1806.01973
http://snap.stanford.edu/proj/embeddings-www/index.html#bio
http://snap.stanford.edu/proj/embeddings-www/index.html#bio
https://doi.org/10.1145/2939672.2939753
https://doi.org/10.1145/2939672.2939753
https://doi.org/10.1145/2939672.2939753
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735

BIBLIOGRAPHY

[33] Aggarwal, Charu C. Recommender Systems: The Textbook. 1st. Springer

Publishing Company, Incorporated, 2016. ISBN: 3319296574.

[34] Rossi, Ryan A. et al. “From Community to Role-based Graph Embeddings”. In:

ACM Transactions on Knowledge Discovery from Data (TKDD) (2019).

[35] Akoglu, Leman, McGlohon, Mary, and Faloutsos, Christos. “oddball: Spotting

Anomalies in Weighted Graphs”. In: PAKDD. 2010.

[36] Brin, Sergey and Page, Lawrence. “The Anatomy of a Large-Scale Hypertextual

Web Search Engine”. In: Proceedings of the Seventh International Conference

onWorldWideWeb 7. WWW7. Brisbane, Australia: Elsevier Science Publishers

B. V., 1998, pp. 107–117.

[37] Tong, Hanghang and Lin, Ching-Yung. “Non-Negative Residual Matrix

Factorization with Application to Graph Anomaly Detection”. In: Proceedings

of the 2011 SIAM International Conference on DataMining, pp. 143–153. DOI:

10.1137/1.9781611972818.13. eprint: https://epubs.siam.org/doi/pdf/

10.1137/1.9781611972818.13. URL: https://epubs.siam.org/doi/abs/10.

1137/1.9781611972818.13.

[38] Koutra, Danai et al. “Unifying Guilt-by-Association Approaches: Theorems

and Fast Algorithms”. In: Proceedings of the 2011th European Conference on

Machine Learning and Knowledge Discovery in Databases - Volume Part II.

ECMLPKDD’11. Athens, Greece: Springer-Verlag, 2011, pp. 245–260. ISBN:

9783642237829. DOI: 10 . 1007 / 978 - 3 - 642 - 23783 - 6 _ 16. URL: https : / /

doi.org/10.1007/978-3-642-23783-6_16.

[39] Rossi, Ryan et al. “Role-Dynamics: Fast Mining of Large Dynamic Networks”.

In: Proceedings of the 21st International Conference on World Wide Web.

WWW ’12 Companion. Lyon, France: Association for Computing Machinery,

2012, pp. 997–1006. ISBN: 9781450312301. DOI: 10.1145/2187980.2188234.

URL: https://doi.org/10.1145/2187980.2188234.

[40] Sun, Jimeng et al. “Less is More: Sparse Graph Mining with Compact Matrix

Decomposition”. In: Stat. Anal. Data Min. 1.1 (Feb. 2008), pp. 6–22. ISSN:

1932-1864.

96

https://doi.org/10.1137/1.9781611972818.13
https://epubs.siam.org/doi/pdf/10.1137/1.9781611972818.13
https://epubs.siam.org/doi/pdf/10.1137/1.9781611972818.13
https://epubs.siam.org/doi/abs/10.1137/1.9781611972818.13
https://epubs.siam.org/doi/abs/10.1137/1.9781611972818.13
https://doi.org/10.1007/978-3-642-23783-6_16
https://doi.org/10.1007/978-3-642-23783-6_16
https://doi.org/10.1007/978-3-642-23783-6_16
https://doi.org/10.1145/2187980.2188234
https://doi.org/10.1145/2187980.2188234

BIBLIOGRAPHY

[41] Gupta, Manish et al. “Integrating Community Matching and Outlier Detection

forMining Evolutionary Community Outliers”. In: Proceedings of the 18th ACM

SIGKDD International Conference on Knowledge Discovery and DataMining.

KDD ’12. Beijing, China: Association for Computing Machinery, 2012, pp. 859–

867. ISBN: 9781450314626. DOI: 10.1145/2339530.2339667. URL: https:

//doi.org/10.1145/2339530.2339667.

[42] Rossi, Ryan A. et al. “Modeling Dynamic Behavior in Large Evolving Graphs”.

In: Proceedings of the Sixth ACM International Conference onWeb Search and

Data Mining. WSDM ’13. Rome, Italy: Association for Computing Machinery,

2013, pp. 667–676. ISBN: 9781450318693. DOI: 10.1145/2433396.2433479.

URL: https://doi.org/10.1145/2433396.2433479.

[43] Liaw, Andy, Wiener, Matthew, et al. “Classification and regression by

randomForest”. In: R news 2.3 (2002), pp. 18–22.

[44] Liu, Fei Tony, Ting, Kai Ming, and Zhou, Zhi-Hua. “Isolation-Based Anomaly

Detection”. In: ACM Trans. Knowl. Discov. Data 6.1 (Mar. 2012). ISSN: 1556-

4681. DOI: 10.1145/2133360.2133363. URL: https://doi.org/10.1145/

2133360.2133363.

[45] Yin, Wenpeng et al. “Comparative study of cnn and rnn for natural language

processing”. In: arXiv preprint arXiv:1702.01923 (2017).

[46] Olah, Christopher. Understanding LSTM Network. URL: http : / / colah .

github.io/posts/2015-08-Understanding-LSTMs/.

[47] Oord, Aäron van den et al. “WaveNet: A Generative Model for Raw Audio”. In:

Arxiv. 2016. URL: https://arxiv.org/abs/1609.03499.

[48] Nakamoto, Satoshi. “Bitcoin: A Peer-to-Peer Electronic Cash System”. In:

Cryptography Mailing list at https://metzdowd.com (Mar. 2009).

[49] LTD, R3. Description of the Unspent Transaction Output used in Distributed

Ledger. 2020. URL: https://docs.corda.net/docs/corda-os/4.4/key-

concepts-transactions.html (visited on 06/02/2020).

[50] Harrigan, M. and Fretter, C. “The Unreasonable Effectiveness of Address

Clustering”. In: 2016 Intl IEEE Conferences on Ubiquitous Intelligence

Computing, Advanced and Trusted Computing, Scalable Computing and

Communications, Cloud and Big Data Computing, Internet of People,

97

https://doi.org/10.1145/2339530.2339667
https://doi.org/10.1145/2339530.2339667
https://doi.org/10.1145/2339530.2339667
https://doi.org/10.1145/2433396.2433479
https://doi.org/10.1145/2433396.2433479
https://doi.org/10.1145/2133360.2133363
https://doi.org/10.1145/2133360.2133363
https://doi.org/10.1145/2133360.2133363
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://arxiv.org/abs/1609.03499
https://docs.corda.net/docs/corda-os/4.4/key-concepts-transactions.html
https://docs.corda.net/docs/corda-os/4.4/key-concepts-transactions.html

BIBLIOGRAPHY

and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld).

2016, pp. 368–373.

[51] Gama, João et al. “A Survey on Concept Drift Adaptation”. In: ACM Comput.

Surv. 46.4 (Mar. 2014). ISSN: 0360-0300. DOI: 10 . 1145 / 2523813. URL:

https://doi.org/10.1145/2523813.

[52] Leskovec, Jure et al. “Kronecker Graphs: An Approach to Modeling Networks”.

In: J. Mach. Learn. Res. 11 (Mar. 2010), pp. 985–1042. ISSN: 1532-4435.

[53] Pedregosa, F. et al. “Scikit-learn: Machine Learning in Python”. In: Journal of

Machine Learning Research 12 (2011), pp. 2825–2830.

[54] Martín Abadi et al. TensorFlow: Large-

Scale Machine Learning on Heterogeneous Systems. Software available from

tensorflow.org. 2015. URL: https://www.tensorflow.org/.

[55] Gron, Aurlien. Hands-On Machine Learning with Scikit-

Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent

Systems. 1st. O’Reilly Media, Inc., 2017. ISBN: 1491962291.

[56] Paszke, Adam et al. “PyTorch: An Imperative Style, High-Performance Deep

Learning Library”. In:Advances in Neural Information Processing Systems 32.

Ed. by H. Wallach et al. Curran Associates, Inc., 2019, pp. 8024–8035. URL:

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-

high-performance-deep-learning-library.pdf.

[57] Xie, Ning et al. “Explainable deep learning: A field guide for the uninitiated”. In:

arXiv preprint arXiv:2004.14545 (2020).

[58] Xu, Keyulu et al. “How powerful are graph neural networks?” In: arXiv preprint

arXiv:1810.00826 (2018).

[59] Ying, Zhitao et al. “Gnnexplainer: Generating explanations for graph neural

networks”. In: Advances in neural information processing systems. 2019,

pp. 9244–9255.

[60] LLC, Google. Colaboratory. URL: https : / / colab . research . google . com /

notebooks/intro.ipynb.

[61] Wang, Minjie et al. “Deep Graph Library: Towards Efficient and Scalable Deep

Learning on Graphs”. In: ICLR Workshop on Representation Learning on

Graphs and Manifolds (2019). URL: https://arxiv.org/abs/1909.01315.

98

https://doi.org/10.1145/2523813
https://doi.org/10.1145/2523813
https://www.tensorflow.org/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://colab.research.google.com/notebooks/intro.ipynb
https://colab.research.google.com/notebooks/intro.ipynb
https://arxiv.org/abs/1909.01315

BIBLIOGRAPHY

[62] Data61, CSIRO’s. StellarGraph Machine Learning Library. https://github.

com/stellargraph/stellargraph. 2018.

[63] Chollet, Francois et al. Keras. 2015. URL: https://github.com/fchollet/

keras.

99

https://github.com/stellargraph/stellargraph
https://github.com/stellargraph/stellargraph
https://github.com/fchollet/keras
https://github.com/fchollet/keras

Appendix - Contents

A Appendix 101

A.1 Models’ Parameters . 101

A.1.1 GraphSAGE - Elliptic Data Set 101

A.1.2 EvolveGraphSAGE-O - Elliptic Data Set 101

A.1.3 GraphSAGE for Bipartite Graph - Swedbank AB Data Set . . . 102

A.2 Hardware and Tools . 102

A.2.1 Hardware and Tools - Elliptic Use Case 102

A.2.2 Hardware and Tools - Swedbank AB Use Case 103

100

Appendix A

Appendix

A.1 Models’ Parameters

A.1.1 GraphSAGE - Elliptic Data Set

The specific parameters used for trainingGraphSAGEon the Elliptic Data Set are listed

in the following Table A.1.1.

Table A.1.1: GraphSAGE parameters: Elliptic Data Set

Parameter Value

Embeddings dimension d = 256
Number of layers L = 2
Number of Samples at each layer S1 = 10, S2 = 25
Loss Function Crossentropy
Optimizer Adam
Learning Rate 0.001
Batch size 32
Epochs 1000
Class weights Illicit Class = 0.7 and Licit Class = 0.3
Train-Validation-Test split 60− 10− 30%

A.1.2 EvolveGraphSAGE-O - Elliptic Data Set

The specific parameters used for training EvolveGraphSAGE-O on the Elliptic Data Set

are listed in the following Table A.1.2.

101

APPENDIX A. APPENDIX

Table A.1.2: EvolveGraphSAGE-O parameters: Elliptic Data Set

Parameter Value

Embeddings dimension at each layer d1 = d2 = 256
Number of layers L = 2
Loss Function Crossentropy
Optimizer Adam
Learning Rate 0.001
Epochs 1000
Class weights Illicit Class = 0.7 and Licit Class = 0.3
Train-Validation-Test split 60− 10− 30%
Number of previous graph snapshots
taken as input

5

A.1.3 GraphSAGE for Bipartite Graph - Swedbank AB Data

Set

The specific parameters used for training the GraphSAGE variant meant for Bipartite

Graph on the Swedbank AB Data Set are listed in the following Table A.1.3.

Table A.1.3: GraphSAGE for Bipartite Graph parameters: SwedBank Data Set

Parameter Value

Embedding dimension at each layer d1 = d2 = 64
Number of layers L = 2
Number of samples at each layer S1 = 10, S2 = 5
Loss function Cross entropy
Optimizer Adam
Learning rate 0.001
Epochs 10
Class weights Illicit class = 0.7 and Others = 0.3
Train-Test split 70− 30%

A.2 Hardware and Tools

A.2.1 Hardware and Tools - Elliptic Use Case

Google Colaboratory [60] is the computational platform used to run the experiments

for the Elliptic Use Case. It provides a pre-configured Python virtual environment and

computational resources.

The experiments have been implemented using Python 3. The main software libraries

102

APPENDIX A. APPENDIX

used to implement the models are PyTorch [56] and Deep Graph Library [61]. The

former is an optimized tensor library specifically meant to develop deep learning

models using Graphical Processing Unit (GPU)s and Central Processing Unit (CPU)s.

The latter is a graph-specif library that facilitates the usage of deep learning on graph-

structured data. As well, the well-known numpy, scipy, sklearn, andmatplotlib Python

libraries have been used.

The hardware and software tools specification are summarised in the following

box.

Development environment for the Experiment on the Elliptic Data Set

Platform: Google Colab

GPU specification: NVIDIA Tesla K80 - CUDA version 10.1

RAM specification: 25 GB

HDD specification: 68 GB

Main Software Libraries

PyTorch: version 1.5.1 - CUDA version 10.1

Deep Graph Library: version 0.4.3

A.2.2 Hardware and Tools - Swedbank AB Use Case

The computational platform used to run the experiments for the Swedbank AB Use

Case is the bank on-premises platform due to local regulations.

The experiments have been implemented using Python 3, in particular the most

important software libraries used to implement the models are TensorFlow [54] and

Stellargraph [62]. The former is a library specifically meant to develop Machine

Learning models which provide high-level APIs, e.g. Keras [63], with eager execution.

The latter is a graph-specific library which facilitates usage of deep learning on graph-

structured data. Additionally, the well-known numpy, scipy, sklearn, and matplotlib

Python libraries have been used.

The hardware and software tools specification are summarised in the following

box.

103

APPENDIX A. APPENDIX

Development environment for the Experiment on the Swedbank Data Set

Platform: Swedbank Cluster

GPU specification: Tesla V100-SXM2

RAM specification: 32 GB

HDD specification: 1 TB

Main Software Libraries

TensorFlow: version 1.14.0

StellarGraph: version 1.0.0

104

	Introduction
	Background
	Problem definition
	Research Questions
	Contributions
	Research Methodology
	Delimitations
	Benefits, Ethics and Sustainability
	Stakeholders
	Outline

	Network Representation Learning
	Factorization-based approaches
	Random walk-based approaches
	Graph Neural Networks
	Convolutional Graph Neural Networks
	Graph Autoencoders
	Spatial-Temporal Graph Neural Networks

	Qualitative Analysis of Network Representation Learning Models

	Graph-based Anomaly Detection
	Graph-Based Anomaly Detection
	Anomaly Detection in Static Graphs
	Anomaly Detection in Dynamic Graphs

	Auxiliary Anomaly Detection Models
	Ensemble Methods
	RNNs and CNNs for Analysing Sequence Data

	Use Cases
	Elliptic Use Case: Anti-Money Laundering in the Bitcoin Network
	Graph Description
	Types of Anomalies
	Anomaly Detection
	Limitations

	Swedbank AB Use Case: detect stranded customers due to COVID-19 travel restrictions
	Graph Description
	Types of Anomalies
	Anomaly detection

	Methods
	Experiment on the Synthetic Data Set
	Experimental Methodology for Elliptic Data Set
	Pre-Processing
	Models Architecture
	Metrics

	Experimental Methodology for Swedbank
	Pre-Processing
	Models Architecture
	Metrics

	Results
	Results on the Elliptic Data Set
	GraphSAGE
	EvolveGraphSAGE-O

	Results on the Bank Data Set
	Results on the Training Sub-Graph
	Results on the Entire Graph

	Conclusions
	Discussion
	Future Work

	References
	Appendix
	Models' Parameters
	GraphSAGE - Elliptic Data Set
	EvolveGraphSAGE-O - Elliptic Data Set
	GraphSAGE for Bipartite Graph - Swedbank AB Data Set

	Hardware and Tools
	Hardware and Tools - Elliptic Use Case
	Hardware and Tools - Swedbank AB Use Case

