
Politecnico di Milano
SCHOOL OF INDUSTRIAL AND INFORMATION ENGINEERING

Master of Science – Aeronautical Engineering

Development of a multi-GPU
Navier-Stokes solver

Supervisor
Prof. Maurizio Quadrio

Candidate
Jimmy Vianello – 919832

Academic Year 2019 – 2020

Ringraziamenti

Il ringraziamento più grande va alla mia famiglia, fonte di supporto inesauribile. Le
gioie e le delusioni di chi lavora ad un codice sono così altalenanti, ogni giorno un
nuovo problema che ieri non c’era va risolto. La vostra pazienza deve essere stata
immensa per sopportare tutti i miei cambi improvvisi d’umore, e per questo motivo
vi ringrazio. Sorrido mentre ripenso a tutte le volte che avrete sentito ripetere GPU o
CPU in questi mesi. Alla fine noi ci raccontiamo proprio tutto, a volte anche troppo.
Questo è il nostro modo di fare le cose in famiglia ed è la nostra forza, spero che
andremo sempre avanti così. Un grazie anche per avermi fatto passare tanti momenti
importanti di spensieratezza in questo anno di convivenza forzata difficile un po’ per
tutti.
Ringrazio il Prof. Maurizio Quadrio per aver creduto in me da subito e per avermi
affidato un argomento che si è rivelato adatto a me e che mi ha appassionato. Ringrazio
anche per la grande disponibilità ad aiutarmi in altri progetti, al di fuori della tesi,
che altrimenti non sarei riuscito a fare. Un ringraziamento va anche al Dr. Alessandro
Chiarini e al Prof. Franco Auteri, che hanno condiviso il loro lavoro con me e hanno
reso possibile questa tesi.
Infine ringrazio tutti i miei amici, quelli di università e quelli dell’isola. I 5 anni al
Politecnico sono stati veramente impegnativi e senza amici non penso ci sia possibilità
di successo. Ammetto che ci sono state tante occasioni limitate per colpa dello studio,
ma posso assicurarvi che ho comunque tantissimi ricordi incredibili che mi hanno
aiutato quando meno ve l’immaginate.

iii

Sommario

Un nuovo solutore alle differenze finite collocate per le equazioni di Navier-Stokes
incomprimibili, che sfrutta il metodo del direction-splitting proposto da Guermond e
Minev nel 2010, sviluppato da Chiarini A., Quadrio M. e Auteri F., è stato portato su
GPU clusters per poter sfruttare la potenza computazionale dei più recenti supercom-
puters. Lo sviluppo del codice è stato eseguito utilizzando CUDA Fortran e prendendo
come target il nuovo cluster Marconi100, accelerato dalle NVIDIA Tesla V100 GPUs,
presente al CINECA. La caratteristica principale del solutore è quella di effettuare
l’intero time-loop esclusivamente sulle GPUs utilizzando kernels implementati ad
hoc per ottenere il massimo rendimento possibile nelle parti computazionalmente
intensive dell’algoritmo. La comunicazione è stata gestita attraverso l’utilizzo della
libreria NCCL, ottimizzata da NVIDIA per aumentare la portabilità e scalabilità delle
applicazioni multi-GPU. I risultati ottenuti sono stati confrontati con la versione CPU
e sono identici a precisione macchina, ciò indica che le due versioni del codice sono
consistenti. Infine è stato eseguito uno studio di scalabilità utilizzando una soluzione
"costruita" delle equazioni di Navier-Stokes, i cui risultati sono stati integrati con
quelli precedentemente ottenuti al CPU cluster Galileo (CINECA).

Parole Chiave: GPU; CUDA; computazione parallela; calcolo ad alte prestazioni;
Navier-Stokes; Differenze finite; metodo a passi frazionari; Complemento di Schur;

v

Abstract

A new co-located finite-difference solver for the incompressible Navier-Stokes equations,
which exploits the direction-splitting method proposed by Guermond and Minev in
2010, developed by Chiarini A., Quadrio M. and Auteri F., has been ported to GPU
clusters in order to harness the computational power of the most recent supercomputers.
The development of the code was performed using CUDA Fortran and targeting the new
Marconi100 cluster, accelerated by NVIDIA Tesla V100 GPUs, present at CINECA.
The main feature of the solver is to perform the entire time-loop exclusively on the
GPUs using kernels implemented ad hoc to obtain the maximum possible performance
in the computational-intensive parts of the algorithm. Communication was managed
through the NCCL library, optimized by NVIDIA to increase the portability and
scalability of multi-GPU applications. The results obtained were compared with the
CPU version and are identical to machine precision, which indicates that the two
versions of the code are consistent. Finally, a scalability study was performed using a
manufactured solution of the Navier-Stokes equations, integrating the results with
those previously obtained on the CPU cluster Galileo (CINECA).

Key Words: GPU; CUDA; Parallel Computation; High Performance Computing
(HPC); Navier-Stokes; Finite-Differences; Fractional-step method; Schur-Complement;

vii

Contents

Sommario v

Abstract vii

Contents ix

List of Figures xi

List of Tables xii

Introduction 1

1 Parallel Computing 3
1.1 Architecture of a modern GPU . 4

1.1.1 Volta GPU architecture . 5
1.2 Heterogeneous Computing . 5
1.3 CUDA . 6

1.3.1 CUDA Thread Organization . 7
1.3.2 CUDA Memory Organization . 8

2 Numerical Methods 11
2.1 Pressure-Correction methods . 11

2.1.1 Chorin-Themam method . 12
2.1.2 Standard Incremental Pressure-Correction 12
2.1.3 Pressure-Correction, Rotational Form 13
2.1.4 Direction-splitting, fractional step method 14

2.2 Algorithm . 15
2.2.1 Non-linear Term . 16

2.3 Schur Complement Method . 17
2.3.1 Parallel Implementation . 19

3 Software Code 21
3.1 Program Overview . 21

3.1.1 Program Organization . 22
3.1.2 CUF kernel . 23
3.1.3 Data Transposition . 24
3.1.4 Assign Device . 26

3.2 Kernels . 27
3.2.1 Tridiagonal Solvers . 27

viii

Contents

3.2.2 Laplacian Kernel . 27
3.2.3 Gradient Kernel . 32

3.3 Multi-GPU communication . 34

4 Results and Performances 37
4.1 3D Cavity Flow . 37
4.2 Performance comparison . 39

4.2.1 Problem Definition . 39
4.2.2 Scalability Results . 40

Conclusions 43

ix

List of Figures

Figure 1.1 Architecture of a CUDA-capable GPU. [4] 4
Figure 1.2 CPUs and GPUs different architectures. [4] 6
Figure 1.3 Threads hierarchy; 2D and 3D blocks grid. [4] 7
Figure 1.4 CUDA schematic memory view. 9

Figure 2.1 (a) Domain partitioning for parallel implementation (b) 2 blocks
decomposition in z direction (x− z plane view); blue diamonds and red
star denote grid points; grey circle denote shared interface grid points. 19

Figure 3.1 Matrix Transposition. A shared memory tile (TileDimX,TileDimY)
is used to achieve full coalescing of global memory reads and writes.
A warp of threads reads contiguous data from a portion of idata and
loads it into a shared memory row. The same warp reads a column
from shared memory tile and writes it to a partial row of odata 24

Figure 3.2 (a) Abstract subdivision of the domain into "internal" points,
"external" faces and intersection boundary points. (b) Laplacian compu-
tation at x = 1. Blu square represent points that compute X derivative
with Neumann condition; Violet : "base" Y derivative; Green: "base"
Z derivative; Grey : stencil computed later in ComputeLap_FaceY or
ComputeLap_FaceZ. 28

Figure 3.3 Execution time for different Laplacian implementation strategies
performed on V100 as the grid increases 32

Figure 3.4 Abstract domain decomposition for the computation of Grad
components. Gray parts represent points that have a modified stencil.
Dotted lines indicate boundary faces characterized by a mixed stencil.
There are no clear subdivision between internal points and boundary
faces. 33

Figure 3.5 Execution time for different Gradient implementation strategies
performed on V100 as the grid increases 33

Figure 3.6 Example of sub-communicators between CUDA devices on a
domain decomposed by 3 blocks in each dimension 35

Figure 4.1 3D driven cavity computed with Tesla V100 GPUs: velocity
magnitude at z = 0, time t = 8, Re = 1000. 38

Figure 4.2 (a) First component of the velocity vector along the segment
{x = 0.5, y ∈ [0,1]} in the z = 0 plane. (b)(d) Velocity errors between
GPU and CPU computations along the same segments. (c) Second
component of the velocity vector along the segment {y = 0.5, x ∈ [0, 1]}
in the z = 0 plane. 38

x

List of Figures

Figure 4.3 Wallclock Time per time-step for different fixed grids, measured
for both CPU and GPU versions of the code. 40

Figure 4.4 Weak Scalability: time spent for computing 106 points, plotted
against the number of Cores/GPUs used. 42

xi

List of Tables

Table 3.1 Data collected with Nsight-Compute for different Laplacian
strategy tested on V100 . 30

Table 3.2 Data collected with Nsight-Compute for different Laplacian
strategy tested on V100 . 31

Table 3.3 Stall Long Scoreboard metrics collected by Nsight-Compute for
different Gradient implementation tested on V100 34

Table 4.1 Wall-clock time per time step on various grid and hardware. . . 41

xii

Introduction

The scientific and engineering necessity to model increasingly complex systems and
phenomena requires a continuous increase in the computational power available. This
is particularly true in the case of fluid dynamics simulations. When it comes to
extensive computational demands in fluid dynamics, the typical application that is
taken as an example is the direct numerical simulation (DNS) of turbulence. It
consists in solving the Navier-Stokes equations, resolving all the scales of motion
without using a model of turbulence. It has been shown that the cost of this simulation
increases with the Reynolds number, according to the estimate Re3. It is clear that for
real flows with high Re numbers such a stringent demand for hardware computational
capacity is still out of reach for many researchers and industries. This stringent
demand for hardware computational capacity makes the study of many real-world
flows at high Re still out of reach even for powerful supercomputers.
Before the start of 2000, computer software was primarily written for serial computing,
as a serial stream of execution of one or more algorithms that had to be executed
on a central processing unit CPU. Moore’s observation stated that every 18 months
the number of transistors in a microprocessor would double, providing a speedup for
the application developed in that time without further implementation effort. This
increase in computational power has been at the heart of many advances in different
fields. Since 2003, the industry has reached a limit in improving the processor as a
single processing unit due to power consumption and heat dissipation issues. It was no
longer possible to continue on the path of merely increasing the clock frequency. From
this moment forward, the industry has turned in the direction of parallelism; rather
than trying to develop faster monolithic processors, manufacturers started putting
multiple processors on a single integrated circuit. In particular they concentrate on
two different concepts for the design of subsequent microprocessors: the multi-core,
where 2 or more processing units are integrated in the same chip, and the many-thread
processor, focus on optimizing the execution throughput of a huge number of threads.
It was a very important change for software developers: simply sequential program
will only run on one of the processor cores, which will not become significantly faster
from generation to generation. Rather, applications that will benefit an increase in
performance will be those that will adopt a parallel programming model.
Graphics processing units (GPUs) are an example of a multi-threaded processor.
They were originally developed for graphics/video processing and displays, where
millions of pixels have to be displayed on screen simultaneously. The fact that they
required special programming skills, related exclusively to the world of graphics, had
discouraged most programmers interested in their computational power for general

1

Introduction

purposes. In 2007, NVIDIA introduced the CUDA programming model and toolkit to
allow developers to harness the power of GPUs to dramatically speed-up computing
applications. The ratio between peak floating-point computation throughput of multi-
threaded GPUs and multi-core CPUs has remained roughly constant in recent years
and around a factor 10. Such a gap potentially allows a computation to be concluded
earlier using the GPUs and therefore translates into energy savings. Electricity savings,
together with development of CUDA and other programming models, are the main
reasons that have pushed computer centers to invest more in GPU acceleration.
For all the above reasons, knowing how to develop applications that are able to
exploit the potential of GPUs has become essential, especially now that they are
such a popular accelerator technology in supercomputing. It is also the reason
that prompted the following thesis work to develop a GPU version of the solver
implemented by A.Chiarini, M.Quadrio and F.Auteri presented in [1]. It is a co-
located finite difference solver for the incompressible Navier-Stokes equations based
on a new direction-splitting method proposed for the first time by Guermond and
Minev [2]. The main feature is to use the direction-splitting technique, similar to
ADI, on the pressure step; the Laplacian operator in the Poisson equation is replaced
with a more general operator. The advantage of this technique is that the algorithm
requires only the solution of 1D tridiagonal linear systems, improving code efficiency.
The solver has been parallelized using the Schur-complement method and already
achieves high performance on thousands of processors.
The use of GPUs should further increase the performances respect to the CPU version
and should provide excellent performances in large-scale grids that would be difficult
to reach, unless a large number of CPUs are used.
The thesis is organized as follow:

• Chapter 1 contains a general description of parallel computation technology
used to develop the solver. It describes the architecture of a GPU, detailing
the differences from CPU. The CUDA programming model is presented. The
material is adapted from these books: [3], [4], [5], [6];

• Chapter 2 contains an overview of the numerical methods underlying the solver.
Specifically, the algorithm and the parallel implementation at the base of the
CPU version, following [1];

• Chapter 3 is the heart of the work and contains a description of the software
code. The main parts of the program are discussed with an explanation of the
choices that were made during development to extract the best performance
from GPUs;

• Chapter 4 contains an overview of the results and performances of the code
compared with the CPU version. A 3D driven cavity test case is simulated and
the obtained solution compared with the CPU-version solution. The results of
the code scalability tests performed at Cineca on supercomputer Marconi100
are also presented;

2

Chapter 1

Parallel Computing

Parallel computing is a computation method that consists in performing many calcu-
lations or many processes simultaneously, based mainly on the concept of divide et
impera. A computational task is divided into many smaller independent sub-tasks
that run simultaneously on multiple processors.
There are two widely used approaches to partition the work to be done between
multiple processors: task-parallelism and data-parallelism. Data-parallelism occurs
when we can simultaneously perform calculations around small pieces of different data;
what we want to do is divide the data among the various cores. Task-parallelism occurs
when there are many tasks or functions that can be performed independently; its focus
is therefore to distribute the various tasks among the cores. While data-parallelism
consists in executing the same instruction simultaneously for different components of
the data, task-parallelism executes different processes simultaneously on the same or
different data.
Parallelism was exploited at the hardware level through the development of paral-
lel computer architectures. The Flynn’s taxonomy is frequently used in order to
classify the different possible architectures. It classifies a system in terms of the
number of concurrent instructions (or controls) and data streams available in the
architecture. A classic Von Neumann system is of the Single Instruction, Single Data
(SISD) type since it executes a single instruction at a time and fetch or store one
data at a time. Single Instruction, Multiple Data (SIMD) describes, on the other
hand, systems that have multiple processing units capable of executing the same
instruction on different elements of the data simultaneously. It is therefore a class
of parallel computers suitable for exploiting data-parallelism but limited to a single
instruction stream. Machines that support multiple simultaneous instruction streams
operating on multiple data streams are classified as Multiple Instruction, Multiple Data
(MIMD) architectures. They are systems based on a collection of fully asynchronous
and independent processing units or cores, each of which has its control unit and its
arithmetic logic unit.
There are mainly 2 types of MIMD systems: shared-memory systems and distributed-
memory systems. A shared-memory system consists of a set of processors connected
to a memory system through an interconnection network. They share the same
physical memory, therefore they implicitly communicate with each other by access-

3

Chapter 1. Parallel Computing

ing shared data-structures. On the contrary, in a distributed-memory system each
processor is coupled with its own memory. An interconnection between the various
processor-memory pairs of the system is required, which is generally developed by
sending messages, i.e. explicitly communicating, or by using special direct access to
the memory of another processor.
Hardware parallel technologies, which are not directly under the programmer’s control,
have also been developed: such as instruction-level parallelism (ILP) and thread-level
parallelism (TLP). Both for this reason can be seen as extensions of the basic von
Neumann model. The ILP attempts to improve processor performance by having
multiple functional units that simultaneously execute instructions. Pipelining is a
way to perform ILP and consists of dividing the instruction flow into stages each
performed by different functional units in parallel. The TLP, on the other hand,
provides parallelism through the simultaneous execution of different threads. It is a
coarser-grained parallelism with respect to the ILP because it is logically structured
on threads, which are real processes with their own instructions and data. Hardware
multithreading is a possible strategy for exploiting TLP. It consists in quickly switching
threads that are waiting for a time-consuming operation, with threads that are ready
for execution.
The GPU is an architecture that supports various types of parallelism that have been
presented previously: instruction-level parallelism, multi-threading, Single Instruction
Multiple Data (SIMD) and Multiple Instruction Multiple Data (MIMD).

1.1 Architecture of a modern GPU
NVIDIA has summarized the execution model of a general purpose GPU with the
expression Single Instruction Multiple Thread (SIMT). There is a subtle important
difference between SIMD and SIMT. SIMD is typically characterized by a scalar
thread executing the same operation in parallel across many data elements. In a
SIMT architecture, rather than a single thread issuing vector instructions applied to
data vectors, multiple threads issue common instructions to arbitrary data. The big
advantage over SIMD is that each thread can access its own registers, can load and
store from divergent addresses, and can follow divergent control paths.
Fig.(1.1) shows a high level view of the architecture of a typical CUDA-capable GPU.

Figure 1.1. Architecture of a CUDA-capable GPU. [4]

4

1.2. Heterogeneous Computing

It is structured in an array of highly threaded streaming multiprocessors (SMs)
designed to support the execution of multiple threads simultaneously. Each SM
contains: thousand of registers that can be partitioned among threads of execution,
several caches, warp schedulers that can quickly switch context between threads, and
floating-point execution cores. Each GPU currently comes with gigabytes DRAM,
referred to as Global Memory in Fig.(1.1). For computing, global memories function as
very high-bandwidth off-chip memories, characterized by longer latency than typical
system memory. The communication with the CPU (host) is performed via the PCIe
bus. Through PCIe, an application can transfer data from the system memory to the
global memory. Peak bandwidth guaranteed by PCIe is generally much lower than that
of global memory (PCIe Gen2 or Gen4 supports 8-16 GB/s in each direction). Newer
architectures also support NVLink, which is a CPU-GPU or GPU-GPU interconnect
that guarantees higher bandwidth than PCIe (40GB/s per channel).

1.1.1 Volta GPU architecture

The main feature of the Volta architecture is the new concept of Streaming Multipro-
cessor (SM) developed to guarantee an improvement in performance by simplifying
programmability. Tesla V100 contains 80 SMs, each divided into 4 processing blocks
consisting of: 16 FP32 Cores, 8 FP64 Cores, 16 INT32 Cores, two mixed precision
Tensor Cores for matrix arithmetic, a new L0 cache, one warp scheduler, one dispatch
unit and 64 KB register file.
Each SM features 128KB of L1 data cache combined with shared memory. Merging
L1 and shared memory together allows L1 cache operations to benefit from shared
memory performance. Shared memory provides high bandwidth, low latency, no cache
misses but must be explicitly controlled by the programmer. By combining L1 with
shared memory, Volta architecture aims to reduce the gap between applications that
explicitly use shared memory and applications that access data in device memory
directly. The amount of cache dedicated to shared memory can be set at runtime and
range of available capacities goes from 0 to 96 KB for SM. There is also a 6144 KB
unified L2 cache for data, instructions, and constant memory.
Compared to the GPUs based on GDDR5 as global memory, the V 100 thanks to
HBM2 memory has a much higher bandwidth. It provides 900 GB/s of peak memory
bandwidth and reduces the gap between actual and theoretical performance compared
to what experienced on Pascal architecture. These are some of the main features of
the Volta, it is recommended viewing [7] and [8] for a complete discussion.

1.2 Heterogeneous Computing
Homogeneous computing uses multiple processors of the same architecture to execute
a program. On the contrary, heterogeneous computing makes use of different processor
architectures to run an application, taking advantage of the architecture that performs
best depending on the task.
The GPU is a device that is placed side by side with the CPU and which is not
suitable for working independently. It essentially performs a co-processor function in a
heterogeneous environment, accelerating the pieces of code that are compute-intensive.

5

Chapter 1. Parallel Computing

To understand this usage difference between many-threaded GPUs and multi-core
CPUs, it is necessary to compare the two different design philosophies. As shown

Figure 1.2. CPUs and GPUs different architectures. [4]

schematically in Fig.(1.2), the CPU is equipped with a large cache memory and a
sophisticated logic control unit unlike the GPU. The cache reduces the long latency,
due to memory accesses, by saving data that is accessed frequently. The latter directs
instructions inside a processor arriving from a program. Neither the control logic unit
nor the cache memory contribute to peak calculation throughput. The CPU is in fact
designed following a latency-oriented vision. Both components are also present in the
GPU, as we can see from Fig.(1.2), but in a reduced way, leaving the chip area to
the arithmetic logic units. This is an example of throughput-oriented design, because
it acts to maximize the throughput rather than investing in latency. The hardware
takes advantage of the large number of threads to find work to do, even when some
are waiting because of long latency memory accesses.
Due to these differences it is clear that both microprocessors will perform well in
different situations and neither of them will replace the other in the near future.
While the CPU is great for control-intensive tasks, the GPU is great for data-parallel
computation-intensive tasks. Nowadays, many of the HPC clusters have multiple
hosts and devices in each node. The possibility to take advantage of this was a reason
that brought NVIDIA to develop CUDA.

1.3 CUDA
CUDA (acronym for Computer Unified Device Architecture) is a general purpose par-
allel computing platform developed by NVIDIA to allow programmers to exploit the
computing power of CUDA-enables graphics processing unit (GPU). The CUDA plat-
form is accessible through CUDA-accelerated libraries (such as cuBLAS, cuSOLVER,
cuFFT,...), compiler directives (such as OpenACC) and extension to most utilized
industry-standard programming languages (such as C, C ++, Fortran).
CUDA provides an application programming interface model (API) which consists of
both a low level API (CUDA driver API) and a higher level API (CUDA Runtime
API). An API is a computing interface that allows the programmer to perform func-
tions without knowing exactly the underlying hardware implementation. While the

6

1.3. CUDA

CUDA driver API allows for more extensive control of the GPU but requires more
programming effort. The runtime API has been implemented on top of the driver
API and each of its functions is divided into many basic operations performed by the
driver API.

1.3.1 CUDA Thread Organization

Within CUDA programming model, the core element is the kernel, i.e. the portion of
code that runs exclusively on the GPU. When a kernel is called, a grid of threads is
launched, each running the same kernel. A good application typically runs 5000 to
12000 threads simultaneously on the GPU.
To exploit such an extensive execution activity, the CUDA programming model
provides an organizational structure of the threads. They rely on coordinates to
distinguish themselves and identify the appropriate portion of the data to be processed.
As shown in Fig.(1.3), threads are organized in a 2-level hierarchy: a grid consisting
of blocks, and blocks consisting of threads. Threads belonging to the same block have
the same blockIdx value. While each thread in the block has its own thread index,

Figure 1.3. Threads hierarchy; 2D and 3D blocks grid. [4]

which is saved in the value of the threadIdx variable. When a thread executes in a
kernel function, we can use blockIdx and threadIdx to get the thread coordinates
and use them to exploit data parallelism. On the other hand, it is not possible to
make assumptions about the order of execution of the blocks. Each block operate on
a different part of the data and is executed in arbitrary order.
The size of the grid and the number of threads for each block are parameters that
can be changed through the execution configuration parameters, as indicated in the
following kernel call:

kernel_name ⋘ grid, block, [sharedSize], [stream]⋙ (args)

where:

7

Chapter 1. Parallel Computing

• grid: data structure that specifies the number of blocks in each dimension;

• block: data structure that specifies the dimension and size of each block, i.e.
the number of threads in each dimension;

• sharedSize: optional argument that specifies the number of bytes of shared
memory dynamically allocated per block in addition to the statically allocated
memory;

• stream: optional argument that specifies the stream (if missing the default
value is 0). A stream is simply a sequence of operations that are performed in
order on the device. Operations in different streams can be interleaved and in
some case overlapped, property useful for improving performances.

A block is also divided into warps generally consisting of 32 threads. A multiprocessor
streaming is designed to execute all threads in a warp according to the SIMT model.
In general, each multiprocessor streaming is overloaded with a higher number of warps
than its streaming processors. By assigning a large number of warps, the hardware
will more easily find a warp that is not waiting due to latency. This ability to tolerate
long-latency operations is the main reason why GPUs have not dedicated chip areas
to cache memories and branch prediction mechanism like the CPU does. This area
was rather used to have more floating-point execution resources.

1.3.2 CUDA Memory Organization

Although the multitude of threads is able to hide latency, it is still possible to run
into a congestion situation in the access path to the global memory. Programs whose
execution is limited by memory access throughput are called memory-bound programs.
CUDA architecture provides a number of resources and methods to get around this
problem. CUDA-capable devices are designed with a memory hierarchy of progressively
lower-latency but lower-capacity memories to optimise performance, as indicated in
the Fig.(1.4). This is combined with greater exposure of the programmer to memory
control by the CUDA programming model. Even if each GPU generation presents
some peculiarities on the memory hierarchy, this paragraph is intended to provide
general information.
Through the declaration of the variables we can use keywords (device, shared, constant,
etc.) that allow us to decide in which memory the data will reside. Furthermore, the
declaration to a given memory gives the variable a lifetime and a scope. The Scope
identifies the range of threads that can access the variable: a single threads, a block,
a grid of threads. Lifetime indicates the execution portion of the program in which
the variable is usable (a kernel, the entire program, etc.).
Let’s look more specifically at the various types of memory that exist in the GPU:

• Global Memory, technically device random access memory (DRAM). it’s a
high-bandwidth, long latency off-chip memory. It is the largest memory in the
GPU. It can be read and written by both hosts and devices. It is accessible
from all threads that are launched on the device for the entire duration of the
application (or at least until a variable is deallocated);

• Constant Memory, used to save data which does not change over the life of

8

1.3. CUDA

Figure 1.4. CUDA schematic memory view.

the program. It resides in device memory, but is cached in a read-only cache
optimized to broadcast the results of read request to threads that all reference
the same memory location;

• Texture Memory, it allows us to access global memory in a read-only fashion
through the texture cache. Textures turn out to be very advantageous when
sequential threads access strided data. The texture cache is optimized for 2D
and 3D data locality;

• Shared Memory, unlike global memory, is on-chip. This means that it is a
memory characterized by a higher bandwidth and lower latency than global
memory. It is the memory that is mainly used when the global memory access
patterns are inefficient. Each SM has a limited amount of shared memory which
is split between blocks. Its lifetime and scope is the block. It is arranged as
interleaved banks and generally optimized for 32-bit access. If more than one
thread references the same bank, a bank conflict occurs, and the hardware
manages the accesses sequentially;

• Registers, is a small on-chip memory that is divided between threads when
the kernel is launched. It is the most plentiful and efficient memory of the entire
device, it is used to hold data that is exclusive to each threads (such as the
threadIdx and blockIdx indexes);

• Local Memory, is the memory used to contain the register spills, i.e. variables
that need to be saved when registers reach storage limit. It is an off-chip memory
with characteristics similar to those of global memory.

9

Chapter 2

Numerical Methods

The code considered in the following work is a finite difference solver for the in-
compressible Navier-Stokes based on a new fractional step method proposed by
Guermond and Minev. In the literature, fractional step methods are often known
as projection methods, and can be classified into 3 classes: the Pressure-Correction,
the Velocity-Correction, and the Consistent Splitting methods. The chapter begins
with an overview of the pressure-correction methods underlying the proposed new
algorithm, following [9]. Next, the key elements of the solver will be covered, in
accordance with [1]: the time discretization adopted, the fractional step algorithm, the
formulation of the non-linear term, the Schur’s complement method for parallelization.

2.1 Pressure-Correction methods
One of the major problems for numerical simulations of incompressible flows is
that velocity and pressure are coupled by the incompressibility constraint. The
characteristic of projection methods is to separate the incompressibility constraint
from the momentum equation. This splitting operation is a consequence of the
following theorem:

Theorem 2.1.1 (Helmholtz decomposition) Let Ω ∈Rd simply connected, then
any functions ũ ∈ [L2(Ω)]d can be decomposed as ũ = u + ∇φ, with φ ∈ H1(Ω) and
u ∈H = {v ∈ [L2(Ω)]d ∶ ∇ ⋅ v}

Therefore, the total cost per time step is that of solving one vector-valued advection-
diffusion equation for ũ, and one scalar-valued Poisson equation with homogeneous
Neumann boudary condition for φ, in order to project ũ into the space of solenoidal
velocities.
Since the nonlinear term in the Navier–Stokes equations does not affect the convergence
rate of the splitting error, we shall mainly be concerned with the time-dependent
Stokes equations, while the discussion of the non-linear term will be carried out later.
On a finite time interval [0,T] and in a cubic domain, Ω ⊂R3, the equations are:

11

Chapter 2. Numerical Methods

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t +∇p − ν∇2u = f , inΩ × (0, T]
∇ ⋅ u = 0 , inΩ × (0, T]
u∣t=0 = u0 , inΩ

u∣∂Ω = 0 , in ∂Ω × (0, T]

(2.1)

where f is a smooth source term and u0 ∈H is an initial solenoidal velocity field with
zero normal trace at the boundary Ω.

2.1.1 Chorin-Themam method

The simplest pressure-correction scheme has originally been proposed by Chorin and
Temam, in 1960 [10], [11]. Choosing Implicit Euler for the time-discretization, the
algorithm is as follow: let ∆t > 0 be a time-step and set tn = n∆t for 0 ≤ n ≤ T

∆t ,
compute (ũn+1,un+1, pn+1)

⎧⎪⎪⎨⎪⎪⎩

1
∆t(ũn+1 − un) − ν∇2ũn+1 = fn+1

ũn+1∣∂Ω = 0
(2.2)

⎧⎪⎪⎨⎪⎪⎩

1
∆t(un+1 − ũn+1) +∇pn+1 = 0

∇ ⋅ un+1 = 0, un+1 ⋅ n∣∂Ω = 0
(2.3)

At the generic time-step tn+1, the first sub-step accounts for viscous effects, while the
second sub-step can be written as a Poisson problem and accounts for incompressibility
constraint. Taking the divergence of (2.2), and using ∇ ⋅ un+1 = 0 leads to:

−∇2pn+1 = ∇ ⋅ (1

∆t
(un+1 − ũn+1)) = − 1

∆t
∇ ⋅ ũn+1 (2.4)

Therefore we can rewrite the second sub-step as follows:

⎧⎪⎪⎨⎪⎪⎩

−∇2pn+1 = − 1
∆t∇ ⋅ ũn+1

∂p
∂n = 0

(2.5)

un+1 = ũn+1 −∆t∇pn+1 (2.6)

The second sub-step is usually referred to as the projection step, because it is a
realization of the identity un+1 = PHũn+1, with H = {v ∈ [L2(Ω)]3 ∶ ∇ ⋅ v} and
PH ∶ [H1(Ω)]3 →H.

2.1.2 Standard Incremental Pressure-Correction

In Chorin-Temam method, a term concerning the pressure gradient is missing. Goda
[12] was the first to observe an increase in accuracy adding an old value of the pressure
gradient in (2.2), say ∇pn, and modifying the correction sub-step accordingly. The
idea was popularized by Van Kan who proposed a second-order incremental pressure-
correction scheme in [13]. Using the Backward Difference Formula of second-order
(BDF2) to approximate time-derivative, leads to the following algorithm:

12

2.1. Pressure-Correction methods

⎧⎪⎪⎨⎪⎪⎩

1
2∆t(3ũn+1 − 4un + un−1) − ν∇2ũn+1 +∇pn = fn+1

ũn+1∣∂Ω = 0
(2.7)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

3
2∆t(un+1 − ũn+1) +∇(pn+1 − pn) = 0

∇ ⋅ un+1 = 0

ũn+1 ⋅ n∣∂Ω = 0

(2.8)

Through the same procedure performed for the Chorin-Temam method

⎧⎪⎪⎨⎪⎪⎩

−∇2(pn+1 − pn) = − 3
2∆t∇ ⋅ ũn+1

∂(pn+1−pn)
∂n = 0

(2.9)

the second sub-step is still a projection step since it is equivalent to un+1 = PHũn+1.
From (2.9) it is possible to observe that ∇(pn+1−pn) ⋅n∣∂Ω, which implies ∇pn+1 ⋅n∣∂Ω =
∇pn ⋅n∣∂Ω = . . . = ∇p0 ⋅n∣∂Ω, is an artificial Neumann boundary condition that introduce
a numerical boundary layer limiting the accuracy of the scheme.

2.1.3 Pressure-Correction, Rotational Form

The problem pointed out previously was overcome by the algorithm proposed by
Timmermans, Minev and Van De Vosse in [14]. To describe the method we consider
the Stokes problem discretized in time using the implicit BDF2:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

3un+1−4un+un−1
2∆t +∇pn+1 − ν∇2un+1 = fn+1

∇ ⋅ un+1 = 0

un+1∣∂Ω = 0

(2.10)

While retaining the viscous step unchanged

⎧⎪⎪⎨⎪⎪⎩

3ũn+1−4un+un−1
2∆t +∇pn − ν∇2ũn+1 = fn+1

ũn+1∣∂Ω = 0
(2.11)

the second substep was replaced by the difference between 2.10 and 2.11:

3

2∆t
(un+1 − ũn+1) +∇pn+1 −∇pn − ν∇2un+1 + ν∇2ũn+1 = 0 (2.12)

Making use of the following vector identities:

∇2v = ∇(∇ ⋅ v) −∇ × (∇× v)

∇ ⋅ (∇× v) = 0

the second sub-step can be replaced with:

⎧⎪⎪⎨⎪⎪⎩

1
∆t(un+1 − ũn+1) +∇φn+1 = 0

∇ ⋅ un+1 = 0, un+1 ⋅ n∣∂Ω = 0
(2.13)

13

Chapter 2. Numerical Methods

pointing φn+1 = pn+1 − pn + ν∇ ⋅ ũn+1. The second sub-problem can be transformed into
the usual Poisson problem, this time in φn+1. To understand why the modified scheme
performs better we had to observe from (2.10) that:

(∇pn+1 − fn+1 + ν∇×∇ × un+1) ⋅ n∣∂Ω =

= (∇pn+1 −∇pn +∇(ν∇ ⋅ ũn+1) ⋅ n∣∂Ω = ∂φn+1

∂n
∣
∂Ω

= 0

is a consistent pressure boundary condition. The splitting error now manifests itself
only in the form of an inexact tangential boundary condition on the velocity.
The algorithm generalize easily to a large class of time-marching algorithm. For
instance, it is possible to use the q-th order backward difference formula (BFDq) to
approximate ∂tu.

Likewise, we can denote p∗,n+1 =
r

∑
j=0
γjp

n−j the r-th order extrapolation for pn+1.

In particular:

p∗,n+1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if r = 0

pn if r = 1

2pn − pn−1 if r = 2

(2.14)

2.1.4 Direction-splitting, fractional step method

The different strategies illustrated above require the solution of a Poisson problem
equipped with Neumann boundary conditions, which turns out to have a high cost
for large size problems and large Reynolds numbers. Quite recently, Guermond and
Minev [2][15] proposed a new method to reduce the computational complexity, that
departs from the projection paradigm. The new key idea consists of replacing the stan-
dard Poisson problem for the pressure correction by a succession of one-dimensional
second-order boundary value problems in each spatial direction. Moreover, the
direction-splitting technique was also applied to the momentum equation, further
reducing the overall computational complexity of the method.
Let’s still consider the same Stokes problem. It has been proved that the incre-
mental pressure-correction algorithms are discrete realizations of the following O(ε2)
perturbation of (2.1):

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂uε
∂t +∇pε − 1

Re∇2uε = f , uε∣∂Ω×(0,T) = 0, uε∣t=0 = u0,

−∆t∇2φε +∇ ⋅ uε = 0 , ∂φε
∂n

∣
∂Ω×(0,T) = 0,

∆t∂pε∂t = φε − χ
Re∇ ⋅ uε , pε∣t=0 = p0,

(2.15)

where ε ∶= ∆t is the perturbation parameter and χ ∈ [0,1] is a user-dependent
parameter (actually χ = 0 correspond to the standard form of the projection method,
while χ = 1 correspond to the rotational form).
The analysis of (2.15) reveals that the same convergence properties for velocity and
pressure can be obtained generalizing the Laplacian operator with an operator A, as
follows:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂uε
∂t +∇pε − 1

Re∇2uε = f , uε∣∂Ω×(0,T) = 0, uε∣t=0 = u0,

Aφε = − 1
∆t∇ ⋅ un+1 , φε(t) ∈D(A),

∆t∂pε∂t = φε − χ
Re∇ ⋅ uε , pε∣t=0 = p0,

(2.16)

14

2.2. Algorithm

To ensure convergence, it is necessary that the domain D(A) and the bilinear form
induced by A, a(p, q) ∶= ∫Ω qAp dx, satisfy the following assumptions:

a symmetric , and ∥∇q∥2
L2 ≤ a(q, q) , ∀q ∈D(A) (2.17)

Many choices are possible for the operator A (using A = −∇2 recovers the previous
projection scheme). The new method developed by Guermond and Minev uses
A ∶= (1 − ∂xx)(1 − ∂yy)(1 − ∂zz). It is interesting to note that operator A breaks the
L2-orthogonality, therefore we are no longer, actually, in the projection paradigm, but
uε still converges to the exact solution of (2.15). The advantage of using A is that
solving Aφ = f , ∀f ∈ L2(Ω) becomes easier.

2.2 Algorithm
The program was developed to solve the time dependent, dimensionless incompressible
Navier-Stokes equations, on a finite time interval [0, T] and in a cubic domain
Ω = (0, Lx) × (0, Ly) × (0, Lz):

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t + (u ⋅ ∇)u − 1

Re∇2u +∇p = f , inΩ × (0, T],
∇ ⋅ u = 0 , inΩ × (0, T],
u∣t=0 = u0 , inΩ

u∣∂Ω = g , in ∂Ω × (0, T]

(2.18)

where g contains the boundary data.
Let the Crank–Nicolson time scheme be used for advancing the solution in time, with
the leap-frog strategy for the pressure. As a result, the semi-discrete expression of the
generalized pressure-correction scheme reads:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

un+1−un
∆t − 1

2Re∇2(un+1 + un) = fn+1/2 −∇p∗,n+1/2 − nl(u∗,n+1/2)
Aφn+1/2 = − 1

∆t∇ ⋅ un+1

pn+1/2 = pn−1/2 + φn+1/2 − χ
2Re∇ ⋅ (un+1 + un)

(2.19)

the superscripts n and n + 1 indicate two successive time-steps for velocity, n + 1/2
the intermediate time-step that is used for pressure and for the right-hand side. nl
denote the nonlinear term, covered in the next section. Another formulation of the
algorithm was also used, using a more efficient time-advancement scheme instead
of Crank-Nicolson, characterized by a larger CFL stability margin. Specifically, the
RK-RAI3 scheme has been implemented; it is a partially implicit method, where the
viscous terms are treated with a second order Crank-Nicolson, while a third order
Runge-Kutta scheme is employed for the convective terms [1].
To advance in time (2.19) the following algorithm was used:

1. Pressure predictor
The first step of the algorithm consists in computing the pressure predictor
p∗,n+1/2, as reported in (2.14):

p∗,n+1/2 = p∗,n−1/2 + φn−1/2 , n > 0 (2.20)

The algorithm is initialized by setting p∗,1/2 = p∗,−1/2 = p0.

15

Chapter 2. Numerical Methods

2. Velocity update
In the second step, the velocity field is updated solving the momentum equation.
As mentioned above, the proposed algorithm uses a direction splitting approach,
following [10], also for the momentum equation. This leads to the solution of
multiple one-dimensional linear systems:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ξn+1−un
∆t = 1

Re∇2un + fn+1/2 −∇p∗,n+1/2 − nl(u∗,n+1/2)
ηn+1−ξn+1

∆t − 1
2Re∂xx(ηn+1 − un) = 0

ζn+1−ηn+1
∆t − 1

2Re∂yy(ζn+1 − un) = 0
un+1−ζn+1

∆t − 1
2Re∂zz(un+1 − un) = 0

(2.21)

This formulation can be manipulated to make the computation of un+1 easier:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(ηn+1 − un) − ∆t
2Re∂xx(ηn+1 − un) = ∆tfn+1/2−

∆t∇p∗,n+1/2 −∆tnl(u∗,n+1/2)
(ζn+1 − un) − 1

2Re∂yy(ζn+1 − un) = (ηn+1 − un)
(un+1 − un) − 1

2Re∂zz(un+1 − un) = (ζn+1 − un)

(2.22)

3. Penalty step
Step characterized by the calculation of φn+1, exploiting the definition of splitting
operator A ∶= (1−∂xx)(1−∂yy)(1−∂zz). The operator A make easier to compute
the equation Aφn+1/2 = − 1

∆t∇ ⋅ un+1, because it leads to the solution of three
one-dimensional problems: find ψ , ϕ , and φ such that:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ψ − ∂xxψ = − 1
∆t∇ ⋅ un+1 , ∂xψ∣x=0,1 = 0

ϕ − ∂yyϕ = ψ , ∂yϕ∣y=0,1 = 0

φ − ∂zzφ = ϕ , ∂zφ∣z=0,1 = 0

(2.23)

4. Pressure update
The last sub-step of the algorithm consists of updating the pressure as follows:

pn+1/2 = pn−1/2 + φn+1/2 − χν∇ ⋅ (1

2
(ũn+1 + un)) (2.24)

The present algorithm has been implemented using central finite differences for the
first and second order derivatives.

2.2.1 Non-linear Term

Referring to the equation (2.19), the term nl synthesize (u ⋅ ∇)u while
u∗,n+1/2 = (3un −un−1)/2 is a second-order extrapolation of velocity. Overall, the term
we need to discretize is:

3

2
(un ⋅ ∇)un − 1

2
(un−1 ⋅ ∇)un−1

therefore it is necessary to keep the non-linear term calculated at the previous time-step.
The formulation of the non-linear term has been chosen to ensure energy conservation.

16

2.3. Schur Complement Method

Not respecting energy conservation can lead to explosive instabilities, especially at
high Re. It is possible to describe different forms of the non-linear term that coincide
in the continuum but are different in the discrete. These formulations are essentially
different due to a term multiplied by the divergence of velocity. In our case velocity
is only an approximation of the divergence-free speed (2.16), therefore the different
forms of the non-linear term are no longer equivalent and in general do not respect the
conservation of energy. Following what is reported in [16] the conservative formulation
of the non-linear term turns out to be:

(u ⋅ ∇)ul∣xi,yj ,zk ≈
1

4∆x
[ul(xi+1, yj, zk)(u(xi+1, yj, zk) + u(xi, yj, zk)) − ul(xi−1, yj, zk)(u(xi−1, yj, zk) + u(xi, yj, zk))]+

1

4∆y
[ul(xi, yj+1, zk)(v(xi, yj+1, zk) + v(xi, yj, zk)) − ul(xi, yj−1, zk)(v(xi, yj−1, zk) + v(xi, yj, zk))]+

1

4∆z
[ul(xi, yj, zk+1)(w(xi, yj, zk+1) +w(xi, yj, zk)) − ul(xi, yj, zk−1)(w(xi, yj, zk−1) +w(xi, yj, zk))]

(2.25)

2.3 Schur Complement Method
The Schur Complement (or Dual Schur Decomposition) is a direct parallel method,
belonging to the category of Non-overlapping Subdomain methods. It is particularly
suitable for parallel computing because each processor has actually to solve twice its
subdomain plus an interface problem, keeping global communication to a minimum.
A general approach has been maintained in this paragraph; actual software implemen-
tation will be treated in the next chapter.
The linear equation system to be solved is denoted as: Au = f .
After a proper domain decomposition the unknowns in vector u are partitioned
into subsets, one subset per processor corresponding to the inner domain, plus one
containing all the interface unknowns, labeled s :

u = [u0,u1, ...,uP−1,us]t

Treating the interface separately removes any coupling between variables belonging to
different subsets:

if i ∈ up1 and j ∈ up0 then Ai,j = 0

Let N̂p be the number of inner unknowns of subset p and Ns the number of unknowns
of the interface s, while Np refers to the total number of unknowns. According to the
new ordination, the system can be expressed in terms of block matrices as:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0,0 0 ... A0,s

0 A1,1 ... A1,s

⋮ ⋮
0 ... AP−1,P−1 A0,s

As,0 As,1 ... As,s

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u0

u1

⋮
uP−1

us

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f0
f1
⋮

fP−1

fs

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.26)

1. A0,0, ...,AP−1,P−1 are sparse N̂p × N̂p matrices (for example tridiagonal matrices)
expressing inner unknowns coupling;

17

Chapter 2. Numerical Methods

2. A0,s, ...,AP−1,s are sparse N̂p × Ns matrices expressing the coupling of inner
unknowns of processor p with the interface unknowns;

3. As,0, ...,As,P−1 are sparse Ns × N̂p matrices expressing the coupling of interface
unknowns with inner unknowns of processor;

4. As,s is an Ns ×Ns matrix expressing interface unknowns coupling;

Block Gaussian elimination is used to transform the last block equation of system
(2.26) from

[As,0,As,1, ...,As,s] ⋅ [u0,u1, ...,uP−1,us]t = fs

to
[0,0, ...,0, Ãs,s] ⋅ [u0,u1, ...,uP−1,us]t = f̃s

to obtain:
Ãs,sus = f̃s (2.27)

where
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ãs,s =As,s −
P−1

∑
p=0

As,pA
−1
p,pAp,s

f̃s = fs −
P−1

∑
p=0

As,pA
−1
p,pfp

(2.28)

with Ãs,s known as Schur Complement of the block matrix (2.26).
Once us is computed from (2.27), each of the up could be determined solving:

Ap,pup +Ap,sus = fs (2.29)

equation obtained for the generic processor p from (2.26). The first problem in solving
(2.27) concerns the term A−1

p,p, required by both f̃s and Ãs,s. It is not possible to obtain
the inverse explicitly and efficiently except for very small problems. Furthermore,
each processor p has only the matrices related to its subdomain; communication at
this point is required.
Let Ãp

s,s =As,pA−1
p,pAp,s the contribution from processor p to Ãs,s. This term can be

evaluated by any processor without explicitly compute the inverse, through column
by column approach. For column c from 1 to Ns, solve the auxiliary equations:

Ap,p t = [Ap,s]c ; [Ap
s,s]c =As,pt (2.30)

Note that a lot of effort can be saved as many of the [Ap,s]c are null.
When all the contributions have been calculated, communication is required so that
each processor can determine Ãs,s. Since the procedure depends only on A, is necessary
to perform it only once at the beginning of the algorithm, like an LU decomposition
procedure.
The same approach is used for f̃s. In this case only one system needs to be solved;
there are no more Ns systems (as many as the columns of As,p). Given f̃ps =As,pA−1

p,pfp
each processor evaluates its contribution as:

Ap,p t = fp ; f̃ps =As,pt (2.31)

18

2.3. Schur Complement Method

2.3.1 Parallel Implementation

The parallel implementation is based on a Cartesian block decomposition of the domain
Fig.(2.1a), and use the Message Passing Interface (MPI) library for communication
between blocks. The procedure is divided into 2 stages: Preprocessing, related to

X

Y

Z

(a) (b)

Figure 2.1. (a) Domain partitioning for parallel implementation (b) 2 blocks decomposition
in z direction (x − z plane view); blue diamonds and red star denote grid points;
grey circle denote shared interface grid points.

the assembly of the Schur Complement, and Solution, related to the evaluation of u.
Once spatial discretization is applied, each one-dimensional linear problem reduces
to a tridiagonal linear system. Since matrices involved in the calculation of the
Schur complement don’t vary in time, they can be factored once at the beginning of

the algorithm and used to compute Ãs,s =As,s −
P−1

∑
p=0

As,pA
−1
p,pAp,s on each processor

(Preprocessing stage). The contribution from processor p to Ãs,s is computed locally
through (2.30) and then distributed with MPI.
During the Solution stage, at each iteration we had to compute the contribution to
the right-hand sides of Ãs,sus = f̃s. As pointed out in (2.31), this step requires the
solution of a linear system equivalent to that for the internal unknowns. Then all
the contributions are assembled via MPI_Allreduce. At this point each processor
can solve the linear system (2.27) for the interface unknowns, feasible approach due
to the fact that Ns ≪ N̂p, and then (2.29) for the internal unknowns. In our case,
the tridiagonal systems (2.27) and (2.29) are solved by Thomas’ algorithm which is
equivalent to a banded LU decomposition without pivoting when the coefficients are
saved in the forward step.
Overall, the algorithm requires the internal linear system to be solved twice, first
to calculate the right hand side contribution and second to solve for up. This
strategy allows us to minimize the communication between processes within the time
advancement, however introducing an overwork for each processor that it is useful to
highlight.
For simplicity, we consider a domain decomposed into 2 blocks in the z direction, as
indicated in Fig.(2.1b). For each time step the following linear systems, both for the

19

Chapter 2. Numerical Methods

momentum and for the pressure step, have to be solved:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Axψ = f , b.c.

Ayϕ = ψ , b.c.

Azφ = ϕ , b.c.

(2.32)

The right-hand side f cannot be fully computed at the interface in either of the two
processes. The stencil needed for f requires data located between the 2 processors.
As long as we want to keep communication to a minimum, i.e. only when assembling
the forcing contribution of the Schur Complement equation, we exploit the linearity
of the equation and split the right-hand side at the interface points between the 2
processors. In detail, it is written:

fi = fi,1 + fi,2 (2.33)

where fi,1 and fi,2 denote the contribution to fi evaluated with the portion of the
stencil available on the two processors, respectively. Only thing to be careful is not to
consider the contribution of the shared interface 2 times. Therefore, at the interface
points the 2 processors compute:

⎧⎪⎪⎨⎪⎪⎩

Axψi,1 = fi,1 , b.c.∣1 ; Axψi,2 = fi,2 , b.c.∣2 ;

Ayϕi,1 = ψi,1 , b.c.∣1 ; Ayϕi,2 = ψi,2 , b.c.∣2 ;
(2.34)

Finally, when the z direction is considered, the Schur complement is assembled from
different processors and then used. Therefore, the shared interface unknown results
in:

φi = A−1
z (ϕi,1 + ϕi,2) = A−1

z A
−1
y A

−1
x (fi,1 + fi,2) = A−1

z A
−1
y A

−1
x fi (2.35)

Overall the tridiagonal systems are solved twice at the interface points and the
communication is limited to the assembly of the Schur’s equation right-hand side.

20

Chapter 3

Software Code

The development of the code was done using CUDA Fortran, a small set of extensions to
Fortran programming language that allows us to take advantage of the NVIDIA CUDA
computing architecture. It includes a Fortran 2003 compiler (nvfortran) and toolchain
for programming NVIDIA GPUs using Fortran. It is contained in the NVIDIA HPC
Software Development Kit (SDK), a comprehensive suite of tools for the development
of HPC applications. HPC-SDK includes compilers with GPU acceleration support
in C, C ++ and Fortran languages (nvcc, nvfortran, ...), performance profiling and
debugging tools (Nsight Systems, Nsight Compute, cuda-gdb, nvrpof, ...), a suite
of GPU-accelerated math libraries (cuBLAS, cuSOLVER, cuFFT, ...) and highly
optimized multi-GPU and multi-node communication libraries (NCCL, ...).

The structure of a program written in CUDA Fortran reflects the coexistence of a
host (CPU) and one or more devices (GPUs). In general any program which uses
GPUs for computation performs the following key steps [17]:

1. Initialize and select the GPU to run on;

2. Allocate memory spaces on the GPU and move data from host to device;

3. Invoke kernels to execute computations on data stored on GPU memory;

4. Gather data back from GPU and deallocate memory spaces (generally implicitly
performed when host program exits);

3.1 Program Overview
The work was done, initially, following the Open Source solver AFiD-GPU as a
reference [18]. In particular, these are the key concepts at the root of the code:

• It has been tried to stay as faithful as possible to the CPU version from which we
started. To achieve this, the GPU implementation made extensive use of the pre-
processor and all GPU specific directives were placed within the USE_CUDA
macro. So with the same .f90 source file it is possible to create a CPU object file
but also a GPU object file by adding the flags -cuda -Mpreprocess -DUSE_CUDA;

21

Chapter 3. Software Code

• All the data needed for the computation are in double precision and resides in
the GPU, i.e. each GPU has the data in global memory to carry out the entire
time-loop. There is no explicitly data transfer between GPU and CPU within
the time loop. Obviously, data transfer between CPU and GPU is possible when
communication between the various nodes of the cluster has to be done, even if
the NVIDIA NCCL library for inter-GPU communication was used;

• The possibility to choose between different boundary conditions was preserved,
despite having considerably complicated some parts of the code. This certainly
weighed on performance but allows us to obtain a more usable code;

• Regarding the multi-GPU implementation, simply one device was assigned to
each MPI process. An attempt was made to take advantage of the topology-aware
NCCL library to develop a scalable application;

3.1.1 Program Organization

The files of the entire solver are grouped into the following categories:

• Main file
main.f90: contains the declaration and initialization of the host and device
physical variables of the problem. Contains the time-advancing scheme and the
post processing activities.

• Definition and initialization of data structures
types.f90: module containing declaration of parameters and data structures
shared between various program units; init.f90: module initializing data struc-
tures containing information about domain decomposition and solvers, starting
from input files;

• Computation of the RHS
buildRHS.f90: module containing the CPU subroutines relating to the dis-
cretization of the various right hand side terms present in (2.22) and their
assembly routines (for both CPU and GPU);
RHSkernels.f90:module containing kernels relating to the computation of the
right hand side terms;

• Solvers
solver.f90: module containing tridiagonal system solvers for different boundary
conditions (CPU version). It also contains routines that preform the direction-
splitting procedure, for both CPU and GPU;
SchurSolver.f90: module containing the CPU subroutines responsible for the
execution of Schur Complement method;
SolverKernels.f90 and SchurKernels.f90: these are two modules contain-
ing kernels relating respectively to tridiagonal solvers and Schur Complement
algorithms;

• Assign device
mpiDeviceUtil.f90: module used to ensure that each MPI process is mapped
to a unique device;

22

3.1. Program Overview

3.1.2 CUF kernel

CUDA Fortran allows automatic kernel generation and invocation from a region of
host code containing one or more tightly nested loops. Such kernel code is referred to
as a CUF kernel, or kernel loop directives. The general form of the kernel directive is:

!$ cuf kernel do [(n)] ⋘ grid, block, [optional stream] ⋙

where grid, block and stream have the same meaning reported in (1.3.1). The compiler
maps the launch configuration specified onto the outermost n loops, starting from
loop n and working backwards. Using ⋘ ∗,∗⋙ leaves to the compiler the choice on
how to launch the grid and the block. The launch of CUF kernels is asynchronous
or non-blocking as well as that of kernels, i.e. once they are launched the control
immediately returns to the host. The CUDA function cudaDeviceSynchronize() can
be used to block the host until the previously issued operations on device have been
completed.
Extensive use has been made of CUF kernel directives to parallelize simple operations,
such as setting boundary conditions for velocity and pressure, and to execute expres-
sions. The computationally intensive parts, such as the calculation of the RHS or the
solution of tridiagonal systems, have instead been coded manually.
One of the area where CUF kernels are very beneficial is in performing reductions.
Writing efficient reductions in CUDA is not an easy task. The use of CUF kernels
allows us to do this automatically as we can see from the following portion of the
CFL calculation code (from main.f90):

1 SUBROUTINE ComputeCFLmax_GPU(N,x1 ,x2 ,x3,u,cfl)
2
3 IMPLICIT NONE
4 integer , dimension (:), device , intent(in) :: N
5 REAL(KIND =8), DIMENSION (0:,0:,0: ,:), device , INTENT(IN) :: u
6 REAL(KIND =8), DIMENSION(-overlap :), device , INTENT(IN) :: x1 ,x2,x3
7
8 REAL(KIND =8) :: cfl , qcf
9

10 REAL(KIND =8) :: dx ,dy ,dz
11 INTEGER :: i,j,k,ierr
12
13 cfl =0.0
14
15 !$cuf kernel do(3) <<<*,*>>>
16 DO k = 0, N(3) + 1
17 DO j = 0, N(2) + 1
18 DO i = 0, N(1) + 1
19 dz=x3(k+1)-x3(k)
20 dy=x2(j+1)-x2(j)
21 dx=x1(i+1)-x1(i)
22
23 qcf = ABS(u(i,j,k,1))/dx + &
24 ABS(u(i,j,k,2))/dy + &
25 ABS(u(i,j,k,3))/dz
26
27 cfl=MAX(cfl , qcf)
28
29 END DO
30 END DO
31 END DO
32
33 CALL MPI_ALLREDUCE(MPI_IN_PLACE ,cfl ,1,MPI_REAL8 ,MPI_MAX ,MPI_COMM_WORLD ,ierr)
34 cfl=cfl*grids%DeltaT
35

23

Chapter 3. Software Code

36 END SUBROUTINE ComputeCFLmax_GPU

Listing 3.1. CFL reduction computation performed exploiting CUF kernel directive

Once the compiler realizes that the 3 nested do loops have to be parallelized, it
automatically determines that cflm requires a reduction. The value of cflm is calculated
by each thread and must be compared with that of all the others to determine the
maximum in the entire domain. The operation is performed behind the scenes by the
compiler resulting in a much lower implementation effort.

3.1.3 Data Transposition

The data transposition kernel is widely used to improve the performance of various
algorithms within the time loop. It is a simple example of memory-bound operation
therefore it is suitable for presenting some basic memories utilization that are generally
done when programming for CUDA architectures.
First thing to consider is how thread indices are mapped to array elements for this
kernel. An abstract representation of the array elements in space was used, as a
reference, as shown in Fig.(3.1). The coordinate system (x, y, z), for which origin
is in the lower right corner, maps to the x, y and z components of our predefined
variables threadIdx, blockIdx and blockDim. Therefore blockIdx%z will be used to
change face along z, while each block of threads will transpose a 2D data tile on the face.

Figure 3.1. Matrix Transposition. A shared memory tile (TileDimX,TileDimY) is used to
achieve full coalescing of global memory reads and writes. A warp of threads
reads contiguous data from a portion of idata and loads it into a shared memory
row. The same warp reads a column from shared memory tile and writes it to a
partial row of odata

The threads are launched in blocks of (32 × 8 × 1), while the tile dimensions are set to
(32 × 32), through parameters TileDimX and TileDimY. Using a thread block with
fewer threads than elements in a tile means that each thread are going to transpose
several matrix elements, four in our case.
The kernel code corresponding to Fig.(3.1) is:

24

3.1. Program Overview

1 attributes(global) subroutine transposeKernel(N1 ,N2,idata ,odata)
2 implicit none
3 integer , value :: N1 ,N2
4 real(kind =8), dimension (0:N1+1,0:N2+1,0: Nz_c +1), device , intent(in) :: idata
5 real(kind =8), dimension (0:N2+1,0:N1+1,0: Nz_c +1), device , intent(out) ::

odata
6 real(kind =8), shared , dimension(tileDimX+1,tileDimY) :: tile
7
8 integer :: i,j,k, is,js, str
9

10 i = (threadIdx%x + (blockIdx%x-1) * tileDimX)-1
11 j = (threadIdx%y + (blockIdx%y-1) * tileDimY)-1
12 k = blockIdx%z-1
13 is = threadIdx%x
14 js = threadIdx%y
15
16 do str = 0,tileDimY -1,blockDim%y
17 if(i<=N1+1 .and. j+str <=N2+1) then
18 tile(is ,js + str) = idata(i,j + str ,k)
19 end if
20 end do
21
22 call syncthreads ()
23
24 i = (threadIdx%x + (blockIdx%y-1) * tileDimY)-1
25 j = (threadIdx%y + (blockIdx%x-1) * tileDimX)-1
26
27 do str = 0,tileDimY -1,blockDim%y
28 if(i<=N2+1 .and. j+str <=N1+1) then
29 odata(i ,j + str ,k) = tile(js+str ,is)
30 end if
31 end do
32
33 end subroutine transposeKernel3D

Listing 3.2. Matrix Transposition kernel

One of the most important factor of CUDA kernel performance is the accessing pattern
in global memory by threads. As pointed out in Chapter 1, threads within a block are
grouped into warps of 32 threads. In the architecture developed by NVIDIA, Single
Instruction Multiple Threads (SIMT), each instruction on the device is issued to a
warp of threads, and execution of instructions is performed by each thread in a warp
in lockstep. The grouping of threads in warps is not only relevant for computation but
also for accesses in global memory. When all threads in a warp execute a load/store
instruction, the hardware detects whether they access consecutive global memory
locations. In this case, the hardware combines, or coalesces, all these accesses into a
consolidated access to consecutive DRAM locations. Such coalesced access allows the
DRAMs to deliver data as a burst. Since in Fortran the first index in multidimensional
variable varies the quickest, contiguous elements in memory are along the x direction,
as shown in Fig.(3.1). On line 18 a warp reads contiguous data from the input variable
idata and loads it into rows of the shared memory tile. Then, after recalculating the
array indices a column on the shared memory tile is written to contiguous addresses in
odata. Shared memory is used because there is no access pattern restrictions, therefore
reading a "column" of data does not affect performance. The only performance issue
with shared memory is bank conlflicts. Shared memory is divided into equally sized
memory modules (banks) to achieve higher bandwidth. Each memory load/store
spanning n distinct memory banks can be serviced simultaneously. The Volta GPU
has 32 banks, each 4 bytes wide. Bank conflicts arise when multiple threads within a
warp access different 4-bytes in the same bank. The hardware splits this requests into

25

Chapter 3. Software Code

as many separate serialized conflict-free requests, decreasing the effective bandwidth.
The only exception is when threads need to access the same 4-bytes word, in that
case the access is treated like a broadcast. For a shared memory tile of (32 × 32), all
elements in a data column belong to the same memory bank, resulting in the worst
case scenario: 32 serialized accesses. To avoid this problem, in line 6, the shared
memory variable is declared as a tile of size (32 + 1 × 32), this technique is known
as padding. It simply adds a dummy column to the tile so that threads can access
different banks.
Syncthreads() is a block-local barrier necessary to avoid race conditions. It is used
to block execution until loading is completed by all threads. In this way, we avoid
the illegal use of data that has not yet been loaded into shared memory (note that
each thread also uses data loaded by others). Therefore, after recalculating the array
indices on line 24 and 25, a warp reads a column on the shared memory tile and loads
to contiguous addresses in odata.

3.1.4 Assign Device

There are various ways to use MPI in conjunction with CUDA Fortran in terms of
how the devices are mapped to MPI ranks. In this work a simple approach was used
in which each MPI rank is associated with a single GPU. Using this configuration we
can still exploit multiple GPUs per node, simply using multiple MPI ranks per node
through the --ntasks-per-node instruction. To ensure that each MPI rank has a single
device, the mpiDeviceUtil module, obtained from [3]; in particular the AssignDevice
subroutine:

1 subroutine assignDevice(dev)
2 use mpi
3 use cudafor
4 implicit none
5 integer :: dev
6 character (len=MPI_MAX_PROCESSOR_NAME), allocatable :: hosts (:)
7 character (len=MPI_MAX_PROCESSOR_NAME) :: hostname
8 integer :: namelength , color , i, j, ierr
9 integer :: nProcs , myrank , newComm , newRank

10
11 call MPI_COMM_SIZE(MPI_COMM_WORLD , nProcs , ierr)
12 call MPI_COMM_RANK(MPI_COMM_WORLD , myrank , ierr)
13
14 ! allocate array of hostnames
15 allocate(hosts (0:nProcs -1))
16
17 ! Every process collects the hostname of all the nodes (compreso MPI_BCAST)
18 call MPI_GET_PROCESSOR_NAME(hostname , namelength , ierr)
19 hosts(myrank)=hostname (1: namelength)
20
21 do i=0,nProcs -1
22 call MPI_BCAST(hosts(i),MPI_MAX_PROCESSOR_NAME ,MPI_CHARACTER ,i, &
23 MPI_COMM_WORLD ,ierr)
24 end do
25
26 ! sort the list of names
27 call quicksort(hosts ,nProcs ,MPI_MAX_PROCESSOR_NAME ,strcmp)
28
29 ! assign the same color to the same node
30 color =0
31 do i=0,nProcs -1
32 if (i > 0) then
33 if (lne(hosts(i-1),hosts(i))) color=color+1
34 end if

26

3.2. Kernels

35 if (leq(hostname ,hosts(i))) exit
36 end do
37
38 call MPI_COMM_SPLIT(MPI_COMM_WORLD ,color ,0,newComm ,ierr)
39 call MPI_COMM_RANK(newComm , newRank , ierr)
40
41 dev = newRank
42 ierr = cudaSetDevice(dev)
43 deallocate(hosts)
44
45 end subroutine assignDevice

Listing 3.3. AssignDevice subroutine

Several MPI routines are exploited with the aim of compiling a list of host-names used
by each ranks to select a unique device. Specifically, MPI_GET_PROCESSOR_NAME
routine allow us to get the name of the host in which the function was called. Each
node has a name, therefore processes that are started on the same node own the same
name. Once MPI_BCAST is concluded each rank will have a complete list of all
hostnames. Through the C function quicksort(), called using the comparator strcmp,
all the names in the list are sorted. The iso_c_binding module enables Fortran
programs containing properly written interfaces to call directly into the C library
functions. This module provides a standard way for dealing with inter-language
data types, named constants and procedures. In some cases, NVIDIA has written
small wrappers around the existing C library function, to make the Fortran call
more user-friendly. Finally a color is associated to each node and through it a new
communicator with MPI_COMM_SPLIT. Each new communicator will contain only
MPI ranks of the associated node and with MPI_COMM_RANK we can get the
new rank. The new rank will be used as an argument to cudaSetDevice() to select
the device to associate with this host process.

3.2 Kernels

3.2.1 Tridiagonal Solvers

The developing of the Tridiagonal Solvers was the starting point of the following thesis
work. The grid of threads is mapped on a face of the domain block. Each face of threads
has the task of solving the systems resulting from the banded LU decomposition
without pivoting forward and backward. While for the y and z directions, a warp
of threads accesses data in global memory that is contiguous, in the x direction a
warp accesses data that is strided in memory. When solving in the x direction, a
warp of threads, respect to our reference system, is arranged along the y axis and
therefore reads/writes data in discontinuous memory locations. This results in a loss
of performance due to the fact that accesses are no longer performed in a coalesced
way. Therefore, before running the kernel we perform a transposition of the velocity
vector using kernel of subsection (3.1.3).

3.2.2 Laplacian Kernel

Most of the implementations tested for the Laplacian have been useful in the devel-
opment of the other kernels and for this reason they will be analyzed deeply in this

27

Chapter 3. Software Code

subsection.
As shown in Fig.(3.2a), the domain was ideally divided into various regions charac-

x

Y

Z

(a) Rear faces removed for clarity

Neumann

stencil X

Stencil Y

"Base"

Stencil Z

"Base"

ComputeLap_FaceY

ComputeLap_FaceZ

Face x=1

(b)

Figure 3.2. (a) Abstract subdivision of the domain into "internal" points, "external" faces
and intersection boundary points. (b) Laplacian computation at x = 1. Blu
square represent points that compute X derivative with Neumann condition;
Violet : "base" Y derivative; Green: "base" Z derivative; Grey : stencil computed
later in ComputeLap_FaceY or ComputeLap_FaceZ.

terized in general by a different computational stencil. The points that belong to the
domain marked with color blue can be defined as "internal" ; they are all characterized
by the same stencil ("base") which derives from discretization of the second derivative
in the 3 spatial directions according to centered finite differences. In the "external"
points, which are located in one or more faces at the boundary (up to 3 for the edges),
the stencil is suitably modified to take into account the different BCs.
Keeping in mind the subdivision of the points the computation has been divided into
the following kernels:

1 attributes(global) subroutine ComputeLap_Base(D2x , D2y , D2z , var , u, Lap)
2 implicit none
3 real(kind =8), dimension (0: Nx_c+1,dim), device , intent(in) :: D2x
4 real(kind =8), dimension (0: Ny_c+1,dim), device , intent(in) :: D2y
5 real(kind =8), dimension (0: Nz_c+1,dim), device , intent(in) :: D2z
6 integer , value :: var
7 real(Kind =8), dimension (0: Nx_c +1,0: Ny_c +1,0: Nz_c+1,dim), device , intent(in) :: u
8 real(kind =8), dimension (0: Nx_c +1,0: Ny_c +1,0: Nz_c+1,dim), device , intent(inout)

:: Lap
9 real(kind =8), shared :: tile(TileDimX , 0: TileDimY+1, -1:1)

10 ...
11
12 attributes(global) subroutine ComputeLap_FaceXT(D2x , D2ox , D2y , D2z , var , u, Lap)
13 ...
14
15 attributes(global) subroutine ComputeLap_FaceY(D2x , D2y , D2oy , D2z , var , u, Lap)
16 ...
17
18 attributes(global) subroutine ComputeLap_FaceZ(D2x , D2y , D2z , D2oz , var , u, Lap)
19 ...

Listing 3.4. Kernels Laplacian computation

ComputeLap_Base compute the Laplacian at the internal points. The first 3 arguments
D2x, D2y, D2z are the arrays containing the coefficients that discretize the second

28

3.2. Kernels

derivative respectively in the 3 directions. var indicates the component of the velocity
vector u, while Lap is the variable in which the computation result for each point will
be stored. The variable declaration was reported to highlight that was preferred an
explicit declaration respect to the assumed shape declaration of the arrays. Using the
assumed shape involves a cudaMemCopy of the array descriptor from host to device
which causes an overhead in the kernel launch and increases register pressure.
An order-k in space stencil refers to a stencil that requires k input elements in each
dimension, not counting the element at the intersection. Alternatively, one could refer
to the 3D order-k stencil as a (3k + 1)-point stencil. For this kernel each GPU thread
is mapped to a point (i, j, k) in the computational domain and is assigned to the
computation of a 3D order-2 stencil:

Lapi,j,k ≈Di−1 ui−1,j,k +Di ui,j,k +Di+1 ui+1,j,k+
Dj−1 ui,j−1,k +Dj ui,j,k +Dj+1 ui,j+1,k+

Dk−1 ui,j,k−1 +Dk ui,j,k +Dk+1 ui,j,k+1

(3.1)

Although there is the possibility for each warp to access contiguous data in memory,
each data is accessed multiple times by different threads. Reading directly from global
memory results in an algorithm penalized by global memory bandwidth due to data
access redundancy [19]. Specifically, redundancy is the ratio between the number of
elements accessed and the number of elements processed. A naive approach where
only global memory is used requires a refetch of (3k + 1)-input elements to compute
each output value, leading in our case to a read redundancy of 7. Since shared memory
latency is lower than that of global memory it is convenient to perform a single reading
from global memory at the beginning of the kernel and store data in shared memory.
The size of shared memory tile is related to the block configuration execution parameter.
We need also to add overlap elements to be able to calculate the stencil completely
at the tile boundary. The overlap elements are loaded 2 times, once by the block
that calculates the Laplacian at those points, and once by the neighbouring block.
The choice of block execution parameters is a trade-off between the size of the shared
memory tile, which affects occupancy, and the number of overlap elements, which
affects read redundancy.
After some experimentation the best execution configuration was found in (32,4,1)
for the following shared memory utilization:

1 if(i<Nx_c .and. j<Ny_c) then
2
3 tile(is ,js ,0) = u(i,j,k,var)
4 tile(is ,js ,-1) = u(i,j,k-1,var)
5 tile(is ,js ,1) = u(i,j,k+1,var)
6
7 if(js==1) tile(is ,js -1,0) = u(i,j-1,k,var)
8
9 if(js== blockDim%y .or. j==Ny_c -1) tile(is ,js+1,0) = u(i,j+1,k,var)

10
11 ...
12
13 end if

Listing 3.5. ComputeLap_Base: shared memory load

First we check that the thread corresponds to an internal point, threads that are
outside the indicated portion are inactive. Then each thread loads the corresponding

29

Chapter 3. Software Code

point data into shared memory. Points that are on the tile boundary, on the other
hand, must also load the data immediately outside because it is necessary for the
stencil. This procedure is carried out in y and z direction, while in x is convenient
to exploit the coalesced global memory accesses. Complicating control flow to load
overlap elements in the x direction was not beneficial for such a small stencil.
This strategy is compared in Table (3.1) with a kernel that completely loads data into
shared memory. The results were measured with the NVIDIA Nsight-Compute tool.

Compute_Lap_Base Complete input array +
halos in shared memory

Exec. Time 374.75 µs 476.58 µs
L1/Tex Throughput 11724.654 Gb/s 7828.61 Gb/s
Data requested L1 1,468 Gb 0.996 Gb

Table 3.1. Data collected with Nsight-Compute for different
Laplacian strategy tested on V100

We can see that implementation that takes more advantage of the L1 cache achieves
better results. The reason is that Volta architecture has significantly narrowed
the differences in performance between shared memory utilization and implicit cache
utilization for small stencils, i.e. where data reuse is low. It is even slightly inconvenient
to use shared memory in these situations, not just for execution time but also for
implementation effort. The mixed configuration chosen, however, performed better
than the simple use of implicit cache, and for this reason it was preferred.

ComputeLap_FaceXT, ComputeLap_FaceY, ComputeLap_FaceZ are the kernels
responsible for computing Laplacian in the external points located at the boundaries.
To simplify the explanation, let’s take the x direction as a reference and the first
velocity component u; the same approach has to be extended to other directions.
Threads are ideally mapped on a 2D boundary face; in particular each thread has to
compute output values for different faces:

• x = 0, is characterized by a reduced one-dimensional stencil, with coefficients
different from zero only for periodic boundary conditions:

∂2u

∂x2
∣x=0 ≈D0 u0,j,k +D1 u1,j,k

• x = 1, is characterized by an extended stencil, in x direction, that takes into
account the Neumann boundary conditions possibility:

∂2u

∂x2
∣x=1 ≈D0 u0,j,k +D1 u1,j,k +D2 u2,j,k +Dox u3,j,k

Points that are at the intersections with other faces on the boundary in direction
y and z need to be treated carefully. Following Fig.(3.2b) and Listing(3.6),
accurately extended for y and z directions, allows to maintain the same order of
operations performed on the CPU version. In this way the results of the two
algorithms, if compared with each other, will be identical. Otherwise, due to the

30

3.2. Kernels

floating-point arithmetic rounding errors, we would have obtained still correct
but slightly different results.

• at faces x = Nx and x = Nx + 1 we follow, respectively, the strategies in x = 1 and
x = 0, with the addition of a complete 3D stencil in x = Nx + 1.

Mapping threads on domain faces results in strided global memory load/write respect
to the x direction, like reported in Section (3.2.1). Therefore the transposition of the
velocity vector is needed. Moreover it was utilized a shared memory tile to write in a
coalesced manner on a temporary variable and then transpose data back on Lap. The
code snippet for face x = 1 is shown as a reference (face x = 1 is responsible also for
x = 0):

1 if(j<=Ny_c+1 .and. k<=Nz_c +1) then
2
3 if(i==1) then
4 tile(js ,1,ks) = D2x(1,1) * u(j,0,k,var) + D2x(1,2) * u(j,1,k,var) +

D2x(1,3) * u(j,2,k,var) + D2ox (1) * u(j,3,k,var)
5
6 tile(js ,0,ks) = D2x(0,2) * u(j,0,k,var) + D2x(0,3)* u(j,1,k,var)
7
8 if(j.ne.1 .and. j<Ny_c) then
9 tile(js ,1,ks) = tile(js ,1,ks) + D2y(j,1) * u(j-1,1,k,var) +

D2y(j,2) * u(j,1,k,var) + D2y(j,3)* u(j+1,1,k,var)
10
11 if(k.ne.1 .and. k<Nz_c) tile(js ,1,ks) = tile(js ,1,ks) + D2z(k,1) *

u(j,1,k-1,var) + D2z(k,2) * u(j,1,k,var) + D2z(k,3) * u(j,1,k+1,var)
12 end if
13 end if
14
15 ...

Listing 3.6. ComputeLap_FaceXT : Laplacian computation at faces x=1 and x=0

The high cost of velocity 3D-transposition is amortized by the fact that it is also
used by other kernels, like NLT computation. For this reason it is calculated once
and for all at the beginning of the subroutine that computes right-hand side. The
same strategy presented has been adapted and used for computation of the NLT and
Divergence, while a different procedure will be illustrated for the Gradient.

Performance overview

Table (3.2) shows a comparison between Compute_Lap_Base and a single kernel
doing the entire computation. The data are obtained using Nsight-Compute for a grid
of 2563. Using a single kernel to fully execute the algorithm resulted to an increase
in branch diverging and in the use of registers. From the results we can see that
register pressure considerably reduces occupancy. This generally translates into a

Exec. Time[µs] Registers/Thread Achieved Occ.[%]

Compute_Lap_Base 0.374 ms 40 69.09
"All-in" kernel 0.803 ms 64 47.24

Table 3.2. Data collected with Nsight-Compute for different
Laplacian strategy tested on V100

31

Chapter 3. Software Code

reduced ability of the GPU to hide latency of stalled warps and therefore in a loss of
performance. For this reason we decided to separate the internal part from the faces,
to better use the resources made available by the GPU in the computationally more
intensive part. This strategy is also possible because the overhead associated with
launching kernels is very low. Overhead that can be further decreased by the fact that
host can queue up multiple device kernel launches so that they execute back to back.
A strategy similar to that explained in Section (3.2.1) was also tested and the results
are represented overall in Fig.(3.3) as the grid size varies. It consists of a much

120 140 160 180 200 220 240 260 280 300 320

Grid Size

0

1

2

3

4

5

6

T
e

la
p

s
e

d
 [
m

s
]

"Allin" Kernel

Base+Faces

3 directions

Figure 3.3. Execution time for different Laplacian implementation strategies
performed on V100 as the grid increases

simpler approach than the proposed solution as the threads are mapped into one
of the 3 possible faces of the domain and calculate Laplacian along the direction
associated with the face. Much of the loss in performance is due to the fact that
the kernel responsible for computation along the x direction requires transposition of
data twice to make coalescing possible, once for reading u and once for writing Lap.
Measurements for this work were taken using CUDA Events. The CUDA Events API
provides calls that create and destroy events, record events (via a GPU timestamp),
and convert timestamp differences into a floating-point value in units of milliseconds.
The cudaEventRecord() function is used to place 2 events at the start and end of the
GPU computation we want to measure. The device will record a timestamp every time
it reaches an event in its stream. Finally, using cudaEventElapsedTime() function we
can obtain the time elapsed between the two events.

3.2.3 Gradient Kernel

In the following section the differences between Gradient and previous computation will
be explained. It should be emphasized that the algorithm uses as input a scalar variable
(p) utilized to compute first derivative, discretized by centered finite differences, in
the 3 spatial directions (Grad). The treatment of the boundary conditions for each
component of Grad is represented in Fig.(3.4). Gray parts represent points where first

32

3.2. Kernels

Figure 3.4. Abstract domain decomposition for the computation of Grad components. Gray
parts represent points that have a modified stencil. Dotted lines indicate

boundary faces characterized by a mixed stencil. There are no clear subdivision
between internal points and boundary faces.

derivative stencil needs to be modified, to take into account Neumann or Periodic
conditions. Compared to the Laplacian computation, it is evident that there is
no longer a clear subdivision into internal and external points. Calculating the 3
components of Grad with a "Compute_Base-like" kernel requires threads mapped
on the entire computational domain and then a more elaborate control flow to treat
boundary faces (3 Grad components are computed in one kernel). So it goes against the
idea of using a strategy like the one presented in the previous paragraph. Furthermore,
there are no other algorithms that require the transpose of p and therefore it is
not convenient to compute it specifically for the FaceX kernel. Another way is to
use a kernel for each of the 3 spatial derivatives (referred in this paragraph with "3
derivatives kernels"). This strategy is penalized by the fact that we cannot effectively

120 140 160 180 200 220 240 260 280 300 320

Grid Size

0

0.5

1

1.5

2

2.5

T
e
la

p
s
e
d
 [
m

s
]

Base+Faces kernel

"All-in" kernel

3 derivatives kernel

Figure 3.5. Execution time for different Gradient implementation strategies
performed on V100 as the grid increases

use shared memory, as we would load the same data 3 times. Utilizing only global
memory is not a problem for the Volta V 100 for such a small stencil but it could be

33

Chapter 3. Software Code

for other clusters based on not so modern architectures. These 2 strategies have been
compared together with the computation of the entire algorithm in a single kernel.
The results are shown in Fig.(3.5). Overall, the "All-in" solution performed better
and therefore was preferred respect to the others.
Despite this, the results obtained are quite close to each other. The reason is that,
for all solutions, the warps are mainly stalled waiting for a global memory operation.
This condition is reported in Nsight-Compute with the metrics Stall Long Scoreboard,
indicating cycles spent on average by each kernel waiting for a scoreboard dependency
on a L1Tex operation. Although the "All-in" kernel presents the best result for this

Compute_Base_Grad "All-in" kernel 3 deriv. kernels

Stall Long Scoreboard 28.09 14.50 43.61
Table 3.3. Stall Long Scoreboard metrics collected by Nsight-Compute for different

Gradient implementation tested on V100

parameter, it can not achieve a better performance because the occupancy for this
solution is lower, reducing the ability to hide latencies. The kernels that make use of
the cache implicitly (indicated with "3 deriv. kernels" in the table) reach an occupancy
that is close to 100% while for the solution adopted the Achieved Occupancy is barely
more than 50%.

3.3 Multi-GPU communication
Communication between GPUs was carried out using the NVIDIA Collective Com-
munications Library (NCCL) [20]. Within NCCL we can find a series of optimized
multi-GPU communication primitives that allow us to exploit technologies such as
NVLink high-speed interconnects within a node and NVIDIA Mellanox Network
between different nodes. The advantage of using NCCL is that communications that
generally require a combination of multiple operations (for example the AllReduce
requires to perform a CUDA memory copy and the actual reduction), are imple-
mented in a single kernel that handles both, improving performances and reducing
synchronization time. The need to optimize the application for other clusters is also
minimized, because the communication functions are topology-aware and support a
variety of interconnect technologies.
CUDA library NCCL is accessible in Fortran through the pre-built interface module
nccl provided by NVIDIA, which uses the iso_c_binding to call directly into the
C library function. It is necessary to provide the following compiler options to use
NCCL [21]: −cudalib=nccl which adds the library to the link line, and −−gpu=cc70
which compiles for compute capability 7.0.
Resuming Section (2.3.1), assembling each processor’s contribution to the right-hand
side of the Schur Complement equation requires communication. Since the computa-
tion is maintained entirely on the GPUs, it is necessary to create sub-communicators
between the CUDA devices as indicated in the Fig.(3.6). This process splitting was
done using MPI for the CPU version of the solver. Without going into implementation
details, for each block, a color was assigned for each direction (color means an integer

34

3.3. Multi-GPU communication

identifier) and MPI_COMM_SPLIT was used to create the sub-communicators be-
tween processes of the same color. To create the sub-communicators between devices

Figure 3.6. Example of sub-communicators between CUDA devices on a domain
decomposed by 3 blocks in each dimension

starting from the MPI ones, the ncclGetUniqueId and ncclCommInitRank functions
were used as indicated in the following fragment:

1 ! Generate the NCCL GPU 1D communicators
2 DO i = 1, dim
3
4 if(bloc%my1Drank(i)==0) then
5 res = ncclGetUniqueId(bloc%id(i))
6 if(res .ne. ncclSuccess) write (*,*) ncclGetErrorString(res)
7 end if
8
9 sizeID = sizeof(bloc%id(i))

10 CALL MPI_BCAST(bloc%id(i),sizeID ,MPI_BYTE ,0,bloc%my1Dcomm(i),ierr)
11
12 res = ncclCommInitRank(bloc%my1DcommGPU(i),bloc%my1Dsize(i),bloc%id(i),bloc%

my1Drank(i))
13 if(res .ne. ncclSuccess) write (*,*) ncclGetErrorString(res)
14
15 res = ncclCommUserRank(bloc%my1DcommGPU(i),bloc%my1DrankGPU(i))
16 if(res .ne. ncclSuccess) write (*,*) ncclGetErrorString(res)
17
18 res = ncclCommCount(bloc%my1DcommGPU(i),bloc%my1DsizeGPU(i))
19 if(res .ne. ncclSuccess) write (*,*) ncclGetErrorString(res)
20
21 END DO

Listing 3.7. NCCL, creating GPU 1D sub-communicators

The data structure bloc contains object, rank and size of the MPI sub-communicators
in the entries bloc%my1Dcomm(dim), bloc%my1Drank(dim) and bloc%my1Dsize(dim)
respectively. With ncclGetUniqueId we can create an identification ID that we are
going to distribute with MPI_BCAST to the devices we want to include in a new
communicator (each process is linked to a single device). The ID will be used by
ncclCommInitRank to create the new nccl communicator object, equivalent to the
MPI sub-communicator in size and component rank. This procedure is done once
and for all at the beginning of the time loop. Once the sub-communicators have been
created correctly, we can use the AllReduce operation within the Schur solvers by:

35

Chapter 3. Software Code

1 res = ncclAllReduce(xint , xint , nproc*Ny*Nz , ncclFloat64 , ncclSum , my1Dcomm , stream)
2 if(res .ne. ncclSuccess) write (*,*) ncclGetErrorString(res)
3
4 istat = cudaStreamSynchronize(stream)

Listing 3.8. NCCL, Utilization of the collective communication primitive AllReduce

Entering xint for both Sendbuff and Recvbuff arguments allows to perform an in-place
operation in which the result of the ncclSum is saved in the variable passed as input.
cudaStreamSynchronize(stream) blocks the execution of the host until all previous
operations on the device associated with the given stream have been completed.
Synchronization needed because the NCCL call returns when the operation has been
effectively enqueued to the given stream, or returns an error. The collective operation
is then executed asynchronously on the CUDA device. Synchronization ensures that
at least for the process under consideration the reduction has been completed.

36

Chapter 4

Results and Performances

The purpose of this section is to show the porting results and performances compared
to the CPU version of the code. To demonstrate the validity of the results, the well
known cavity problem is used, compared with the one previously validated in [1].
Obviously this is not the only validation work that has been done, each kernel has
been tested to produce the same results as the original CPU code. This approach
is generally applicable and ensures that the two versions of the code give the same
results, at least up to machine accuracy. Regarding performances, a comparison
between scalability properties (strong and weak) of the two versions is presented.
The CPU scaling results were made available by Dr. Alessandro Chiarini, previously
measured on the Galileo supercomputer at CINECA and presented in [1].

4.1 3D Cavity Flow
This test problem consist in solving the 3D lid-driven cavity problem, following [1],
in the domain Ω = (0,1) × (0,1) × (−1,1) at Re = Vwh

ν , where Vw is the driven lid
velocity, h is the length of the cavity edge in x and y directions, ν the cinematic
viscosity. Face at x = 1 slides upward with imposed velocity u = (0,1,0), while
Homogeneous Dirichlet boundary conditions are imposed on the other walls. A grid
consisting of (200 × 200 × 400) intervals, in the 3 directions respectively, has been
used. Simulation has been performed up to t = 8, with a time-step ∆t = 3 ⋅ 10−4,
utilizing the Crank-Nicolson time scheme. The resulting CFL was slightly less than
0.4, satisfying the stability margin of this scheme. Let Nx the number of grid points
in the x direction, then the coordinates of the grid points are defined as:

Cx = 1 + (2

Lx
) 1

2

Xi =
i − 1

Nx − 1
Lx, i = 1, ...,Nx

xi =
⎧⎪⎪⎨⎪⎪⎩

CxX
3
2
i (1 +X

1
2
i)−1 if Xi ≤ Lx

2

Lx −Cx(Lx −Xi)
3
2 (1 + (Lx −Xi)

1
2)−1 otherwise

(4.1)

to properly resolve boundary layers without excessively stretching grid cells.
Fig.(4.1) is a colour plot of the magnitude of the velocity vector in the z = 0 plane at

37

Chapter 4. Results and Performances

Figure 4.1. 3D driven cavity computed with Tesla V100 GPUs: velocity magnitude at z = 0,
time t = 8, Re = 1000.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Y

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

u

GPU

CPU

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Y

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

u

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

v

GPU

CPU

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

v

(d)

Figure 4.2. (a) First component of the velocity vector along the segment {x = 0.5, y ∈ [0, 1]}
in the z = 0 plane. (b)(d) Velocity errors between GPU and CPU computations
along the same segments. (c) Second component of the velocity vector along the
segment {y = 0.5, x ∈ [0,1]} in the z = 0 plane.

38

4.2. Performance comparison

t = 8. The figure portraits qualitatively the same solution reported in [1].
Fig.(4.2) shows the u and v velocity components along the vertical and horizontal
lines in the plane z = 0 passing through the point (0.5, 0.5, 0) at time t = 8. Fig.(4.2b)
and Fig.(4.2d) shows that velocity errors between GPU and CPU versions of the
solver are zero. This is due to the fact that implementation effort has been spent on
preserving the order of operations. Such a result is also possible because no math
library functions were needed for this problem (e.g. sin, cos, etc.). For many of the
simpler math functions there are known methods to achieve correctly rounded results
for all possible arguments, however this comes at significant cost to execution speed.
Since math libraries have to serve the needs of a large and diverse set of cases and
applications, targeting correctly rounded results regardless of performance is rarely
the chosen choice. Therefore, there are different implementation between GPU and
regular CPU math library functions, leading both to correct results within the double
precision accuracy.

4.2 Performance comparison
Scalability, or scaling, is the ability of hardware and software to produce greater
computational power when the amount of available resources increases. Applications
can generally be divided into strong scaling and weak scaling applications. In the
case of strong scaling, problem size is kept fixed and the number of cores/GPUs
to execute the program is increased. An application scales ideally when it present
linear behaviour between speedup and increasing number of cores/GPUs. Clearly, as
resources increase, the distributed workload decreases, but the cost of communication
and synchronization between different processes increases.
When we perform a weak scaling study, on the other hand, we are carrying out a
complementary work to that done for strong scaling. The size of the problem is not
fixed and is increased relative to the increase of resources. In this case we ideally want
the runtime to remain constant, as the work per core (or per GPU) has remained the
same.

4.2.1 Problem Definition

The following manufactured solution of the Navier-Stokes equation was used to perform
the scalability tests:

u = sin(x) cos(t + y) sin, v = cos(x) sin(t + y) sin(z),

w = 2 cos(x) cos(t + y) cos(z), p = 3

Re
cos(x) cos(t + y) cos(z)

(4.2)

39

Chapter 4. Results and Performances

The body force f that closes the momentum equation for this manufactured solution
reads:

fx =
sin(x)
Re

[1

2
(Re cos(x)(1 + 2 cos(2(t + y)) + cos(2z)))

− 3 cos(t + y)(cos(z) − sin(z)) −Re sin(t + y) sin(z)],

fy =
1

4Re
[Re cos2(x)(3 + cos(2z)) sin(2(t + y)) − 2Re sin2(x) sin(2(t + y)) sin2(z)+

4 cos(x)(−3 cos(z) sin(t + y) + (Re cos(t + y) + 3 sin(t + y)) sin(z))],

fz =
1

Re
[cos(x)(−2Re cos(z) sin(t + y) + cos(t + y)(6 cos(z) − 3 sin(z)))

− 1

2
(Re cos2(x)(3 + cos(2(t + y))) sin(2z)) −Re cos2(t + y) sin2(x) sin(2z)],

(4.3)
The problem is solved in a cubic domain for Re = 1. We impose Dirichlet boundary
conditions for the velocity, calculated using the exact boundary solution. The initial
condition is also set by the exact solution to t = 0

4.2.2 Scalability Results

The CPU version have been run on the GALILEO supercomputer at CINECA.
It consists of 1022 36-core computing nodes connected through an Intel OmniPath
(100Gb/s) high-performance network. Each node contains two 18-cores Intel Xeon E5−
2697 v4 (Broadwell) at 2.30 GHz. The GPU version were performed on MARCONI100
supercomputer at CINECA. It consists of 980 nodes connected with a Mellanox
Infiniband EDR network arranged into an architecture called DragonFly++. Each

10
0

10
1

10
2

10
3

CPUs/GPUs

10
1

10
2

10
3

W
a
llc

lo
c
k
 T

im
e
 [
m

s
]

400
3
 (Haswell)

384
3
 (V100)

768
3
 (V100)

Figure 4.3. Wallclock Time per time-step for different fixed grids, measured for both CPU
and GPU versions of the code.

node consists in 2 IMB POWER9 AC922 sockets, each of them with 16 cores and
2 16Gb NVIDIA Volta V100 GPUs (for a total of 32 cores and 4 GPUs per node).

40

4.2. Performance comparison

GPUs are connected with the NVLink (NV3) within a socket. M100 is currently
number 9 in the Top500 List of the fastest supercomputer in the world, reaching a
Theoretical Peak Performance per node of 32 TFlops. Fig.(4.3) shows the wall-clock
time per time-step for both CPU and GPU versions of the code on different fixed grids.
The measurements were carried out using CUDA Events. Only the time loop was
measured, without initial procedure and post-processing part of the code. Usually the
influence of these parts on the total execution time is very low; time loop is usually
performed thousands of times in such application. Compared to the CPU code, the
strong scalability no longer has an ideal behavior. In particular, it has been noticed
that increasing the number of devices when grids point per block are about 1003,
slightly reduces the time spent in computation (already very low) but introduces an
increasing overhead in communication (probably due to GPU-CPU data transfers and
synchronizations). In order to test the simulation at an higher number of GPUs was
therefore used a grid of 7683 points.
If we focus on Table (4.1), already a simulation performed on 8 GPUs reached
an execution time comparable to that of 1024 CPUs, a result that highlights the
acceleration obtainable by exploiting the GPUs.
Fig.(4.4) shows the weak scaling test. The number of points per GPUs was set at 2563

Cores/GPUs Galileo Marconi100 Marconi100
Haswell V100 V100

4003 3843 7683

2 - 133.14 ms -
4 - 73.86 ms -
8 - 26.81 ms -
16 2354.4 ms 15.71 ms 185.71 ms
32 1019.9 ms 10.75 ms 82.43 ms
64 576.6 ms 8.08 ms 36.79 ms
128 292.5 ms 7.68 ms 26.16 ms
256 183.3 ms - 21.14 ms
512 54.9 ms - -
1024 24.3 ms - -

Table 4.1. Wall-clock time per time step on various grid and hardware.

because it was considered more balanced between computation and communication
respect to the 1003 used for the CPUs version. Figure shows the execution time per
grid points multiplied by 106. Even the GPU version of the code has good weak
scalability, at least up to 256 GPUs then Fig.(4.4) hints the beginning of performances
degradation. However, this degradation is mitigated due to the fact that we need
less MPI processes to deliver excellent performance on large-scale grid respect to
CPU-version.

41

Chapter 4. Results and Performances

10
1

10
2

10
3

CPUs/GPUs

10
-2

10
-1

10
0

T
im

e
[s

]
p
e
r

1
0

6
 p

o
in

ts

100
3
 (Haswell)

256
3
 (V100)

Figure 4.4. Weak Scalability: time spent for computing 106 points, plotted against the
number of Cores/GPUs used.

42

Conclusions and Future
Developments

In this work a finite difference solver for the incompressible Navier-Stokes equations
has been developed, based on the code made available by Chiarini-Quadrio-Auteri,
that exploits the computational power of modern GPU architectures. The work was
motivated by the growing trend in recent years of using GPUs and accelerators in
high performance computing. Although the starting solver was already proved to be
efficient, it has been shown that an excellent performance, for a grid of similar size, can
be obtained with a smaller number of GPUs than the CPU version. And it is possible
to move to larger-scale grids reaching performance that would hardly be possible on
the CPU, except with a very large number of cores. Currently, the CPU version is
ready to be used in combination with the immersed boundary technique, for example
to study moving boundaries or complex fluid-structure interaction problems. The
GPU version requires passing to the host to perform interpolation of the immersed
boundary as a GPU porting has not been yet developed. The next step will be to
efficiently integrate the immersed boundary technique into the GPU solver and test it
on a medium-scale preliminary problem. The goal will be to simulate the BARC test
case by for the first time provides the body with finite aspect ratio. The simulation
will be carried out in the unstable laminar regime, as a starting point, to then use the
code on future larger applications. It should be emphasized that the code presented
at the moment is mostly GPU-centric, the GPU has all the variables in memory to
perform the time advancement and the CPU cores are mainly idle. We are not fully
exploiting the potential provided by heterogeneous computing. The CPU cores can
provide a boost both from the performance point of view but above all from the
memory point of view (exploiting asynchronous data transfer).

43

Bibliography

[1] A. Chiarini, M. Quadrio, and F. Auteri. “A direction-splitting Navier–Stokes
solver on co-located grids”. In: Journal of Computational Phisics (2021).

[2] J. Guermond and P. Minev. “A new class of massively parallel direction spliting
for the incompressible Navier–Stokes equations”. In: Comput. Methods Appl.
Mech. Eng. 200 (2011), pp. 2083–2093.

[3] Gregory Ruetsch and Massimiliano Fatica. CUDA Fortran for Scientists and En-
gineers, Best Practices for Efficient CUDA Fortran Programming. San Francisco,
CA: Morgan Kaufmann, 2013.

[4] D. B. Kirk and W. W. Hwu. Programming Massively Parallel Processors: A
Hands-on Approach. 3rd ed. San Francisco, CA: Morgan Kaufmann, 2016.

[5] Peter S. Pacheco. An introduction to Parallel Programming. San Francisco, CA:
Morgan Kaufmann, 2011.

[6] Jaegeun Han and Bharatkumar Sharma. Learn CUDA Programming. Birming-
ham, UK: Packt Publishing Ltd., September 2019.

[7] NVIDIA Corporation. NVIDIA Tesla V100 GPU architecture. The world’s most
advanced data center GPU. August, 2017.

[8] Z. Jia et al. “Dissecting the NVIDIA Volta GPU Architecture via Microbench-
marking”. In: (April 18th, 2018).

[9] J.L. Guermond, P.D. Minev, and Jie Shen. “An overview of projection methods
for incompressible flows”. In: Comput. Methods Appl. Mech. Engrg. 195 (2006),
pp. 6011–6054.

[10] A.J. Chorin. “Numerical solution of the Navier–Stokes equations”. In: Math.
Comput. 22.2 (1968), pp. 745–762.

[11] R. Temam. “Sur l’approximation de la solution des equations de navier-stokes
par la method des pas fractionnaires”. In: Arch. Ration. Mech. Anal. 33 (1969),
pp. 377–385.

[12] K. Goda. “A multistep technique with implicit difference schemes for calculating
two- or three-dimensional cavity flows”. In: J. Comput. Phys. 30 (1979), pp. 76–
95.

[13] J. van Kan. “A second-order accurate pressure-correction scheme for viscous
incompressible flow”. In: SIAM J. Sci. Stat. Comput. 7.3 (1986), pp. 870–891.

[14] L.J.P. Timmermans, Minev. P.D., and F.N. Van De Vosse. “An approximate
projection scheme for incompressible flow using spectral elements”. In: Int. J.
Numer. Methods Fluids 22 (1996), pp. 673–688.

45

Bibliography

[15] J. Guermond and P. Minev. “A new class of fractional step techniques for the
incompressible Navier–Stokes equations using direction splitting”. In: Compt.
Rend. Acad. Sci., Mathematique 348 (2010), pp. 581–585.

[16] S. Faure. “Stability of a colocated finite volume scheme for the navier–stokes
equations”. In: Numer. Methods Partial Differential Eq. 21 (2005), pp. 242–271.

[17] NVIDIA CUDA Fortran Programming Guide. url: https://docs.nvidia.
com/hpc-sdk/compilers/cuda-fortran-prog-guide/index.html.

[18] X. Zhu et al. “AFiD-GPU: A versatile Navier–Stokes solver for wall-bounded
turbulent flows on GPU clusters”. In: Comp. Phys. Comm. 299 (2018), pp. 199–
210.

[19] P. Micikevicius. 3D Finite Difference Computation on GPUs using CUDA.
NVIDIA San Tomas Expressway, Santa Clara, CA 95050.

[20] NVIDIA Collective Communication Library (NCCL) Documentation. url:
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.
html.

[21] NVIDIA CUDA Fortran Interfaces. url: https://docs.nvidia.com/hpc-
sdk/compilers/fortran-cuda-interfaces/index.html.

46

https://docs.nvidia.com/hpc-sdk/compilers/cuda-fortran-prog-guide/index.html
https://docs.nvidia.com/hpc-sdk/compilers/cuda-fortran-prog-guide/index.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html
https://docs.nvidia.com/hpc-sdk/compilers/fortran-cuda-interfaces/index.html
https://docs.nvidia.com/hpc-sdk/compilers/fortran-cuda-interfaces/index.html

	Sommario
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Parallel Computing
	Architecture of a modern GPU
	Volta GPU architecture

	Heterogeneous Computing
	CUDA
	CUDA Thread Organization
	CUDA Memory Organization

	Numerical Methods
	Pressure-Correction methods
	Chorin-Themam method
	Standard Incremental Pressure-Correction
	Pressure-Correction, Rotational Form
	Direction-splitting, fractional step method

	Algorithm
	Non-linear Term

	Schur Complement Method
	Parallel Implementation

	Software Code
	Program Overview
	Program Organization
	CUF kernel
	Data Transposition
	Assign Device

	Kernels
	Tridiagonal Solvers
	Laplacian Kernel
	Gradient Kernel

	Multi-GPU communication

	Results and Performances
	3D Cavity Flow
	Performance comparison
	Problem Definition
	Scalability Results

	Conclusions

