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1. Introduction

CNC milling machines are widely used in nowa-
days manufacturing industries due to their ca-
pability of cutting di�erent materials with high
accuracy. However, unintended undulation with
high surface roughness can often be found in the
machined surfaces which requires aggressive �n-
ishing and therefore deteriorates the dimensional
accuracy. To maintain certain process quality,
the machining parameters should be appropri-
ately chosen at priori, yet current approaches
mostly rely on a trial and error strategy with
many attempts in the neighbour of the tool's
machining tables. In this work, we implemented
an on-site monitoring system to a 5-axis CNC
machine including built-in optical microscopes
and convolution neural network (CNN) archi-
tectures to directly inspect the surface qual-
ity. Multi-objective Bayesian optimization was
adopted to �nd the proper feed and speed for
a trochoidal slotting operation at �xed depths
of cut and with few attempts. We can also
change the machining parameters after a single
pass when the machining results were not as ex-
pected; testing the model's performance as an
online optimiser directly connected to the moni-
toring system. The on-machine vision system, if

further improved, can be extended to industrial-
scale CNC machines toward realization of au-
tonomous and automated systems even in the
small to medium companies' reality.

2. Surface Roughness predic-

tion

In this work the Arithmetical mean height of the
assessed surface, Sa was chosen as the metric to
evaluate the �nal quality of the machined sur-
faces. This expresses more information than Ra

because it considered along two dimensions in-
stead of a single one [1].

Sa =
1

A

∫ ∫
A
|z(x, y)|dxdy [µm] (1)

Such metric can be easily measured using opti-
cal machines that based their estimations on the
re�ection of a scattered light projected on the
surface of the sample. However, this method re-
quire time and the use of a machine outside from
the CNC environment forcing the operators to
move the machined pieces from one station to
another increasing the overall production time.
Moreover, this measurement can only be per-
formed once the operation is over and there is no
possibility of controlling the machining process

1



Executive summary Filippo Danilo Michelacci

while it is cutting. This a�ects the production
yield because corrections are hard to make on
already cut pieces.

2.1. Training of the models

To predict the surface roughness, various Con-
volutional Neural Network (CNN) architectures
were trained to �nd the most suitable one. The
ResNet50 and Xception models were selected,
as they had been used in other related stud-
ies [2]. To train the models, a dataset of 4886
samples was created by machining billets of alu-
minium 6061 (Figure 1) with di�erent combina-
tions of machining parameters and tool diame-
ters to achieve a wide range of surface rough-
nesses.

ϕ Parameter Min Max

1.5 mm

ap [mm] 0.1 0.5
ae [mm] 0.2 1.2
n [rpm] 20000 25000
Vf [mm

min ] 50 550

3 mm

ap [mm] 0.1 0.6
ae [mm] 0.2 1.4
n [rpm] 20000 25000
Vf [mm

min ] 50 550

4 mm

ap [mm] 0.1 2
ae [mm] 0.2 0.8
n [rpm] 16000 16000
Vf [mm

min ] 50 550

Table 1: Machining parameter ranges divided
by tool diameter and relative to the aluminium
billets. Please notice that the choice of one pa-
rameter in�uences the range of the others due
to the limited power of the machine.

Before selecting the parameters, an estimation
of the power was made to prevent damage to
the machine. The Computer-Aided Manufactur-
ing (CAM) software Autodesk Fusion 360 au-
tomatically generated four di�erent machining
strategies based on the depth and position of
each sample. This increased the variability of
the dataset and the adaptability of the trained
models. For each machined billet, pictures of
each sample were taken and linked to their cor-
responding Sa values. Each picture was then
augmented to increase the dataset size six-fold.
Three di�erent loss functions were used to train
the models, and the dataset was split so that
80% was used for training, 10% for validation,

and 10% for testing. The training process was
stopped after 100 epochs, and the learning rate
was reduced as the epoch number increased to
improve performance and reduce over�tting.

Figure 1: Two machined aluminium billets. The
four di�erent adopted machining strategies can
be noted on the surface. Each machined rectan-
gle represents a sample.

2.2. Testing of the models

The selection of the best model was conducted
with great care, considering both the perfor-
mance on the training and test datasets in or-
der to avoid the selection of an over�tted model.
Validation and testing errors were meticulously
analyzed to locate the potential start of over�t-
ting and to evaluate the training process (Figure
2).

Figure 2: Evolution of test errors (this was plot-
ted for each trained model). Each epoch group
considers the model after 8 epochs of training.

Various metrics were employed to assess the
aforementioned processes, and ultimately, the
correlation between the predicted values and the
ground truth was plotted to evaluate the accu-
racy evolution in each epoch. The �nal out-
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Model CompleteDataset TestDataset

Architecture Loss MSE MAE MAPE R2 MSE MAE MAPE R2

Xception MSE 0.015 0.038 0.036 0.97 0.062 0.102 0.097 0.854
Xception MAPE 0.049 0.057 0.038 0.912 0.138 0.143 0.114 0.717
Xception Huber 0.016 0.042 0.037 0.969 0.063 0.102 0.096 0.854
ResNet50 MSE 0.022 0.044 0.038 0.956 0.072 0.109 0.1 0.827
ResNet50 MAPE 0.069 0.12 0.089 0.872 0.107 0.164 0.145 0.77

Table 2: Best models errors and metric calculated using the complete dataset and the test one.

comes of the training and testing processes are
presented in Table 2.
Following the identi�cation of the best model,
its accuracy was tested on a new dataset con-
sisting of 52 previously unseen samples to val-
idate the model's architecture and to verify its
adaptability to novel surfaces. Two conditions
were examined to test the accuracy: a natural
environment, employing only ambient light, and
a controlled environment in which the LED light
of the camera was turned on and regulated to full
brightness, resulting in the clearest images. To
improve the accuracy and stability of the predic-
tions, the �nal estimation was computed as the
mean of all those made by the model on the base
image and all its enhancements. This approach
helped to reduce the impact of noise or varia-
tions that may exist in a single prediction and
provide more reliable results. The use of multi-
ple predictions and their averaging is a common
practice in machine learning and can enhance
the robustness of the models, particularly in sce-
narios where there are multiple sources of vari-
ability or uncertainty. It can be observed from
Figure 3 that the average error of the model was
acceptable for a normal milling process without
any stringent requirements. However, the exis-
tence of at least one signi�cant outlier greater
than 1µm may pose a challenge for implement-
ing such a monitoring system in a real machining
environment.

3. Machining parameters opti-

mization

The choice of the best combination of machin-
ing parameters represents a challenge for any
type of optimizer as the objective functions con-
�ict with each another. In this case, two were
chosen: maximizing the Material Removal Rate
and minimizing the Sa . There cannot be found

Figure 3: Analysis of the AE between the es-
timations performed over the new 52 machine
samples.

a unique solution to such problems but only a
family of feasible ones that form the so-called
Pareto Front. Only the feed rate and the rpm
were chosen to be optimised while the depths
of cut were �xed as changing them leads to the
need for the generation of new machining paths
and G-Codes. The input parameter space is rep-
resented in Table 3.

Parameter Minimum Maximum

ap [mm] 0.6 0.6
ae [mm] 0.6 0.6
n [rpm] 11500 13500
Vf [mm

min ] 500 950

Table 3: Corners of the hyper-space of the inputs
of the process.

3.1. Setting the optimizer

In order to build a Gaussian Regression Process
(GPR) a kernel must be chosen. This repre-
sents a crucial element as it holds the relation-
ship between di�erent input points and deter-
mines the behaviour of the regression function
that is �tted on the input data points. In this
application, the Matern 5/2 kernel was chosen
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as it was used in other related studies and is
more sensitive to a change in the input data
compared to the simpler and basic Exponential
kernel which also means that possesses more
hyper-parameters. Such GPR must be �tted
and built on the available data points chosen as
input. In this work, seven points were used in-
cluding the corners of the hyper-rectangle (Fig-
ure 4). The hyper-parameters of the model were
found using the maximum likelihood estimate
approach which aims to maximize the posterior
likelihood probability of such parameters to be-
long to the model with the chosen inputs and
outputs. Regarding the latter, these were gener-
ated by combining the two objective functions
in a weighted sum that allowed to transition
from a Multi-Objective Optimization problem to
a Single-Objective one.

fj(xi) = wj · y1,i + (1− wj) · y2,i,

where y1,i = −MRRi

60
, y2,i = Sai

(2)

(3)

The weights wj used in Equation 2 were chosen
to be 0, 0.05, 0.1, and 0.2. The MRR was di-
vided by 60 (minutes to seconds) and made neg-
ative as the aim of the optimizer was to minimize
the objective function. By changing the values
of the weights the optimizer can be focused on
�nding parameters that prioritise productivity
over quality, as the value of the weight is in-
creased, or vice-versa, on guaranteeing a better
surface �nishing to the detriment of the MRR.
This allows the optimiser to move its choice close
to the theoretical Pareto Front of this Multi-
Optimization problem.

Figure 4: Picture (a) represents the suggested
points by the optimiser after the �rst iteration
is completed. Picture (b) represents the outputs
associated with each input data point and the
newly machined ones.

3.2. Optimization procedure

In Bayesian optimization (BO), the initial step
is to generate objective functions. In this study,
four objective functions were created, each cor-
responding to a di�erent weight. Afterwards,
Gaussian processes (GPs) were �tted to each of
these objective functions, using the input data
points to generate the models. Finally, the ac-
quisition function was run over the model to sug-
gest the best combination of parameters to min-
imize the objective function. This acquisition
function makes its decision based on a trade-
o� between exploitation and exploration. Ex-
ploitation involves searching for better combi-
nations of parameters in the vicinity of known
ones, while exploration aims to search for unex-
plored regions of the hyper-space that may o�er
a better solution. The "Expected Improvement"
function was used, as it strikes a good balance
between these two goals and is commonly used
in the literature on BO (see [3], [4]). Once a new
combination of parameters was suggested a new
sample was created and a new data point was
added to the input space and the optimization
process was run again to obtain a new sugges-
tion. In this speci�c case, each iteration sug-
gested four new points because, as mentioned
before, four di�erent objection functions were
optimised, one at a time. The optimization loop
was stopped after the optimizer could not pro-
vide any more useful points as, after a single
iteration, it was suggesting some already known
points.

3.3. Optimization results

The optimizer was capable of �nding four di�er-
ent unused combinations of parameters that can
be noticed in Figure 4 marked by the red dots.
In Figure 5 one of the four optimization results
is represented. The 'Posterior Mean' plot shows
how the mean of the GPR is distributed in the
parameter space and the red dots represent the
input data points. The same can be said for the
'Posterior sd.' while the 'Acquisition function'
represents how the acquisition function is look-
ing for the point to suggest. As it can be noticed
its focus was around the area with high sd but
not exactly centred on the maximum point as its
exploitation part is focusing it on a more known
area.
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Figure 5: wMRR = 0 and wSa = 1. Posterior mean, Posterior standard deviation and Acquisition
function of the di�erent models created using di�erent weights. They are named "Posterior" because
computed after the GPR model was �tted on the available data points and the BO process was
concluded. The red points present on the �rst two heat maps represent the data points used to t the
model. The one on the last picture to the right instead, represents the newly suggested one from the
BO process.

4. Automated system

Finally, the monitoring system and the previ-
ously found optimised combinations of parame-
ters were joined to improve the 5-axis CNC ma-
chine (Pocket NC V2-50 by PentaMachine) to
nearly an autonomous one. The machine was
capable of machining a slot, estimating its bot-
tom Sa using the USB Camera (Bysameyee USB
Digital Microscope) mounted next to the spin-
dle and, if the estimated roughness was below
the imposed threshold, changing the feed rate
and rpm of the G-Code of the next machining
operation in order to achieve the desired surface
�nish. Such a choice was based on the previ-
ously found parameters using the BO process.
The process can be broken down into these main
points:

1. Initial G-Code modi�cation
2. G-Code uploading on the interface
3. Machining operation
4. Machined surface's picture acquisition
5. Optimisation
6. G-Code modi�cation
7. G-Code uploading on the interface
8. Second machining operation

The G-Code of each machining operation was
modi�ed such that the machine could be paused
during the surface roughness estimation and
home the tool once the prediction was done. The
latter was performed at the end of the machin-
ing operation before the tool was positioned at

the reference (home) position. This operation
required another modi�cation of G-Code to po-
sition the camera in the centre of the machined
area. All the modi�cations of the G-Codes were
performed by a Python script that was able to
read the ISO Code, identify the machined area
based on paths' coordinates and insert the line
of codes to position the camera and stop the ma-
chine. Another script was developed to modify
the next G-Code with the newly chosen param-
eters and to control the machine interface which
was a web page. In detail, the code had to be
able to home the machine once the estimation of
the Sa was completed, change the new G-Code,
upload it and make the machine start with the
new machining operation. To communicate with
the web page the Selenium package was used as
it o�ered various useful functions.

5. Bibliography
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6. Conclusions

In this work the feasibility of creating an e�ec-
tive but simple monitoring system was inves-
tigated along with the possibility of exploring
the bene�ts of Bayesian Optimization applied in
a machining environment. The �nal assembled
system was successful in autonomously modify-
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ing its cutting conditions once the surface �n-
ish of the previously machined area was not as
desired. Convolutional Neural Networks proved
to be e�ective tools to perform feature-free es-
timations with a fast computational time and
low memory use. Even if easy to implement be-
cause of the vast amount of open-source libraries
developed by skilled researchers, their biggest
disadvantage relies upon the need for a dataset
to be properly trained. The creation of such
resources consumed nearly half of the time re-
quired to create this work and also needed an
extensive amount of tools and materials. Such
challenges might be overcome by implementing
shared repositories in a near future. The best-
trained network tested over 52 new samples re-
ported an Mean Absolute Error lower than 0.4
µm with a Standard Deviation lover than 0.35
µm. Further improvements to the monitoring
system will aim to reduce the number of out-
liers and increase the adaptability of the models.
Bayesian Optimization proved to be an e�ective
tool when the amount of data available is scarce
and when the input-to-output relationship is not
known and must be considered as a black box.
Only seven starting points were needed to �nd
four new combinations of machining parameters
and, even if the tool wear was not taken into
consideration, two among the four newly sug-
gested points resulted in producing a lower Sa
possessing a higher MRR compared to points
with lower feed rates. In future developments,
this optimizer could be used even with di�er-
ent materials as it only requires a low amount
of samples to operate and can easily adapt to
di�erent machining conditions and operations.
In addition, tool wear should also be considered
even if this upgrade would change the optimizer
from a static one to a time dependent one, in-
creasing the complexity of the system and the
monitoring system which will have to be able to
identify also the tool's worn area.
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