
Data-driven, class-based kinetic modeling
of oxymethylene ethers combustion

Tesi di Laurea Magistrale in
Chemical Engineering - Ingegneria Chimica

Author: Amedeo Puri

Student ID: 97515
Advisor: Prof. Alessandro Stagni
Co-advisors: PhD. Timoteo Dinelli, PhD. Alessandro Pegurri
Academic Year: 2021-22





i

Publications and conferences

Conferences

• Amedeo Puri, Timoteo Dinelli, Alessandro Pegurri and Alessandro Stagni. Data-
driven, class-based optimization methodology for the kinetic modeling of oxymethy-
lene ethers (OME1−4) combustion. In 11th European Combustion Meeting, Rouen,
France, 26-28 April 2023.

• Amedeo Puri, Luna Pratali Maffei, Timoteo Dinelli, Alessandro Pegurri and Alessan-
dro Stagni. Data-driven, class-based optimization methodology for the kinetic mod-
eling of oxymethylene ethers (OME1−4) combustion. In 16th International Confer-
ence on Engines & Vehicles for Sustainable Transport, Capri, Naples, Italy, 10-14
September 2023.





iii

Abstract

Due to the vast array of variables present in combustion experiments, such as operat-
ing conditions and equipment type, a kinetic model needs to be capable of predicting
combustion process changes across diverse environments. Literature provides numerous
mechanisms containing thousands of reactions and species; however, due to the large
number of reactions, the kinetic constants cannot be measured experimentally or calcu-
lated with high-level theories. Therefore, kinetic constants are typically assigned through
reaction classes or rate rules, which classify reactions into specific groups based on com-
mon features or functional dependencies, assigning reference values for kinetic constants
and propagating them throughout the class. This method ensures kinetic consistency in
the mechanism obtained. Although literature provides numerous examples of parameter
optimization to improve agreement with experimental data, the systematic perturbation
of parameters for individual reactions without considering their overall interaction is not
reasonable. This approach may perform well mathematically, but it can disrupt the con-
sistency between kinetically similar reactions.

In this work, a reaction-class-based optimization is performed, where reaction-class kinetic
constants are calibrated instead of perturbing each parameter differently. This guarantees
obtaining a more consistent yet physically sound model. The methodology presented has
been applied, as a case study, to the optimization of the OME1-4 model, selecting as
the optimization targets seven different classes of reaction identified through a sensitivity
analysis carried out over the range of interest. After the optimization, a validation of the
kinetic mechanism is performed over a wide range of experimental conditions in order to
evaluate the mechanism’s performance by considering a variety of properties, including
Ignition Delay Times in Shock Tubes, speciations in Jet Stirred and Plug Flow Reactors,
and Laminar Flame Speeds. This comprehensive validation ensures that the optimized
mechanism is accurate and predictive over a range of conditions, and can be used with
confidence for further analysis and simulations.

At the end of the study, the final kinetic mechanism was compared with both the detailed
and the lumped mechanisms, highlighting that the new mechanism generally outperforms
the old ones while maintaining physical consistency. The obtained results pave the way



iv | Abstract

for a broader field of research, where not only the optimization but also the generation of
kinetic mechanisms for heavier OMEs could be explored.

Keywords: Optimization, Reaction classes, e-fuel, kinetic-modeling
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Sommario

In virtù dell’ampia gamma di variabili presenti negli esperimenti di combustione, come
le condizioni operative e il tipo di attrezzatura, un modello cinetico deve essere in grado
di prevedere i cambiamenti del processo di combustione in diversi ambienti. La letter-
atura scientifica offre numerosi meccanismi che includono migliaia di reazioni e specie
chimiche; tuttavia, a causa del grande numero di reazioni coinvolte, le costanti cinetiche
non possono essere misurate sperimentalmente o calcolate con teorie avanzate. Pertanto,
di solito, le costanti cinetiche vengono assegnate tramite classi di reazioni o rate-rules.
Le reazioni sono quindi raggruppate in classi specifiche in base a caratteristiche comuni o
dipendenze funzionali rispetto ai reagenti o ai prodotti, assegnando valori di riferimento
per le costanti cinetiche e propagandoli all’interno della classe. Tale metodo garantisce,
altresì, la coerenza cinetica del meccanismo ottenuto. Sebbene la letteratura scientifica
fornisca numerosi esempi di ottimizzazione dei parametri per migliorare la corrispondenza
con i dati sperimentali, la perturbazione sistematica degli stessi per singole reazioni senza
considerare la loro interazione complessiva non è ragionevole. Tale approccio, infatti,
potrebbe funzionare bene dal punto di vista matematico, ma non preserverebbe la co-
erenza tra reazioni cineticamente simili.

In questo lavoro, si è svolta un’ottimizzazione basata sulla classificazione delle reazioni,
in cui sono state calibrate le costanti cinetiche delle classi di reazioni anziché perturbare
ciascun parametro separatamente. L’uso di questa metodologia ha permesso di arrivare
ad un modello più coerente e fisicamente corretto. L’approccio proposto è stato applicato
come case-study all’ottimizzazione del modello OME1-4, selezionando come obiettivi di
ottimizzazione sette diverse classi di reazioni identificate attraverso un’analisi di sensitività
condotta nell’intervallo di interesse. Dopo l’ottimizzazione, si è eseguita una validazione
del meccanismo cinetico su una vasta gamma di condizioni sperimentali per valutare le sue
prestazioni considerando una varietà di proprietà, tra cui i Tempi di Ignizione in Shock
Tubes, speciazioni in reattori Jet Stirred e Plug Flow e Velocità di Fiamma Laminare.
Questa validazione completa assicura che il meccanismo cinetico ottimizzato sia accurato
e predittivo in una vasta gamma di condizioni.

Il meccanismo cinetico così ottimizzato è stato quindi confrontato con il dettagliato e il



lumped, evidenziando un generale miglioramento garantendo però una consistenza fisica.
I risultati ottenuti aprono la strada ad un nuovo campo di ricerca, in cui sarà possibile
applicare questa procedura non solo per ottimizzare meccanismi ma anche generarne di
nuovi per OME più pesanti.

Parole chiave: Ottimizzazione, Classi di reazioni, e-fuel, Modellazione cinetica
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1| Introduction

The climate has always played a key role in the development of the human race, but it
could also be the cause of its end. The increasing number of catastrophic phenomena that
are happening during these years demands a solution. After the COP XXVI in Glasgow
in October 2021, Nations agreed on the need to focus on renewable energy and stop using
fossil fuels, so that by 2050 the rise in temperature will reach a maximum of 1.5 degrees
with respect to the 1850-1900. The COP XXVII was intended to be a forum for recon-
firming the proposals from the previous year, but the invasion of Ukraine by the Russian
Federation completely shifted the focus of the event. The Prime Ministers and their for-
eign ministers had to find a solution to the cost of the gas and electricity, which since the
beginning of the war is continuously rising due to the european sanctions towards Russia
[36]. Even if the average annual GHG emissions the rate of growth between 2010 and 2019
(1.3% per year) was lower than that between 2000 and 2009 (2.1% per year) [1], still the
last 30 years are the most critical ones. Historical cumulative net CO2 emissions from 1850
to 2019 were 2400±240 GtCO2. Of these, more than half (58%) occurred between 1850
and 1989 [1400±195 GtCO2], and about 42% between 1990 and 2019 [1000±90 GtCO2]
[1]. According to the new 2023 report by IPCC (Intergovernmental Panel on Climate
Change) there are very few possibilities to not overcome the 1.5◦C limit global warming,
at the actual time Global GHG emissions in 2030 associated with the implementation of
Nationally Determined Contributions (NDCs) announced prior to COPXXVI would make
it harder to limit warming below 2◦C if no additional commitments are made or actions
taken. The actual NDCs would be similar to or only slightly below 2019 emission levels
and higher than those associated with modelled mitigation pathways that limit warming
to 1.5◦C [1] (Fig.1.1a).The assessment in [1] indicates that there is a high likelihood that
the global temperature will surpass the 1.5◦C threshold in the 21st century, thereby ren-
dering the SSP1-1.9 scenario almost unattainable. Immediate action needs to be taken to
mitigate the situation.

There are several risks associated with exceeding the 1.5◦C global warming limit. In most
regions of Africa, Asia, North America and Europe, heavy precipitation and flooding



2 1| Introduction

(a) Global GHG emissions [1]. (b) Temperature for SSP-based scenarios over the
21st century [1].

Figure 1.1: GHGs emissions and Temperature projection [1].

events are expected to intensify and occur more frequently. If the increase of tempera-
ture reaches 2◦C or higher, these changes are projected to expand to more regions and
become even more significant. Additionally, more frequent and severe agricultural and
ecological droughts are expected in Europe, Africa, Australasia, and North, Central and
South America. Other anticipated regional changes include an increase in the intensity
of tropical cyclones and/or extratropical storms, as well as increases in aridity and fire
weather, as shown in Figure 1.2. It is important to note that the transportation sector
is the second largest emitter of greenhouse gases, as shown in Figure 1.3. The emis-
sions from this sector contribute to the global warming phenomenon, which is caused
by greenhouse gases such as carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O),
hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulphur hexafluoride (SF6), and
natrium trifluoride (NF3), as outlined in a report by the EEA [2]. These gases have the
ability to absorb energy and slow the rate at which energy escapes to space, thus warming
the Earth. Different greenhouse gases have varying effects on global warming due to their
radiative efficiency and lifetime in the atmosphere.

To tackle this issue, the EU has recently approved a package of laws called fit for 55, which
aims to reduce climate-damaging emissions by 55% by 2030 compared to 1990 levels and
achieve climate neutrality by 2050 [37]. The package includes a specific section for the
transportation sector, which mandates that all new cars entering the market from 2035
should be zero-emission vehicles.

According to this, electric vehicles seem to be the natural choice but as far as fossil fuels are
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Figure 1.2: Projected changes of annual maximum daily temperature, annual mean total
column soil moisture CMIPand annual maximum daily precipitation at global warming
levels of 1.5◦C, 2◦C, 3◦C, and 4◦C relative to 1850–1900 [1].

Figure 1.3: GHG emissions per sector [2].

used to produce the electricity needed, instead of nuclear energy or renewable energy, the
problem is only shifted. According to the IEA, the current sources of electrical energy are
presented in Figure 1.4. From 2010 to 2019, there have been sustained decreases in the unit
costs of solar energy (by 85%), wind energy (by 55%), and lithium-ion batteries (by 85%),
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and large increases in their deployment. Electricity from PV and wind is now cheaper than
electricity from fossil sources in many regions, electric vehicles are increasingly competitive
with internal combustion engines, and large-scale battery storage on electricity grids is
increasingly viable[1][36]. However, in addition to the issues related to the disposal of
lithium batteries and the high cost of the raw materials required to produce them, which
have been exacerbated by the current market crisis, another pressing problem is that the
existing electric grid is unable to meet the increasing demand. Therefore, short-term
solutions involving the use of e-fuels appear to be the most viable option.
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Figure 1.4: Share of energy production by source, Europe 2000-2021 [3].

E-fuels, where "e" stands for electro, are a type of fuel that stands out from the broader
family of fuels due to their unique manufacturing process. E-fuels are produced using
carbon dioxide (CO2) and hydrogen (H2) as raw materials, which are combined through
the process of hydrogenation. Hydrogen is typically obtained through the electrolysis of
water, while carbon dioxide can be sourced through direct air capture or from a point
source[4] (Fig. 1.5). E-fuels have a major advantage in that they can be utilized in engines
designed for fossil fuels and transported via pipelines built for traditional gasoline and
other fuels. However, their primary drawback is their high cost in comparison to fossil
fuels, owing to the cost of producing hydrogen via electrolysis, which ranges from 2.5-
10 US dollars per kilogram of hydrogen (H2) [36]. Although hydrogen can be produced
through steam methane reforming at a relatively low cost of 1-2 US dollars per kilogram
of hydrogen (H2) [36], using this method would defeat the purpose of using e-fuels since
it still relies on traditional fuels. Despite this, many projects are utilizing this technology,
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Figure 1.5: Overview of the production process of a generic e-fuel [4].

and according to the IEA annual report [36], global electrolysis capacity could reach 134-
240 GW by 2030. In recent years, the production of hydrogen via electrolysis has gained
popularity due to the availability of a wide range of machinery that can produce this
compound, such as SOEC, PEM or Alkaline [38–40]. The key factor in the entire process
is the method by which the electric energy is produced, as highlighted in Figure 1.4.
Thanks to current policies, the so-called "green-hydrogen" is experiencing a boost. As
shown in Figure 1.6, it is expected that the EU will play a key role as manufacturer of
hydrogen.

Figure 1.6: Electrolyser manufacturing capacity by region and type to 2030 [5].

The "Unsp" reportd in Fig. 1.6 in year includes manufacturing facilities for which the
start year is unknown; while the "Unsp" in region includes manufacturing facilities for
which the geographical location is unknown [5].

1.1. Oxymethylene Ethers (OMEs)

OMEs are organic compounds that contain a CH2O group in their structure, with a
methylene group (i.e. CH3) at the ends. Generally, their structure can be summarized as
CH3O[CH2O]nCH3. The number of times this group appears in the molecule determines
its nomenclature, for instance, the simplest one is DiMethyl Ether (DME), which is known
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as OME0. The next one is DiMethoxy Methane (DMM), referred to as OME1, and other
OMEs are named based on the number of [CH2O] groups present in the molecule, as
shown in Fig.1.7.

Figure 1.7: OME from 0 to 5, grey C, white H, red O [6].

The interest shown by the scientific community towards this family of compounds is due
to the high oxygen content and the absence of carbon-to-carbon bonds, both factors lead
to practically soot-free combustion because it inhibits the formation of soot precursors
such as acetylene (C2H2) in the combustion process, as pointed out by Sun et al.[41].
Another critical point, which increases the interest in these compounds, is their good
auto-ignition characteristics for compression-ignition engine applications. There are many
studies [23, 35, 42] which show promising results when the OMEs are used as diesel fuel
substitutes or additives, in particulate for OME3-6 due to the higher flash point and higher
kinematic viscosity.

1.1.1. Properties

When it comes to OMEs, their ability to reduce soot formation during combustion is a
crucial factor. This is because OMEs contain activated methylene groups next to oxygen
atoms (–O–CH2–) in their chemical structure, which lead to the formation of hydroper-
oxides (OME-QOOH) in the early stages of combustion. These hydroperoxides then de-
compose into OH-radicals, which subsequently degrade soot precursors through oxidative
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processes [43] (see also the Jacobs et al. [44]). As a result, OMEs are able to significantly
reduce soot formation during combustion in diesel engines [8].

DMM and DME are limited as fuels due to their physical properties. DMM has a high
boiling point and low volatility, which makes it difficult to mix with diesel fuel and leads to
poor combustion performance. DME, on the other hand, has a low boiling point and high
vapor pressure, which can cause problems with fuel storage and handling. Additionally,
its low viscosity can affect the fuel injection system in diesel engines, making it challenging
to use DMM and DME as fuels without significant modifications to the engine and fuel
systems. However, the addition of DME to diesel fuel, starting with the simplest OME,
has been shown to increase vapor pressure and lower viscosity, according to [45]. Although
this can lead to a reduction of solubility at lower temperatures [45], engine modifications
can be made to accommodate the increase in vapor pressure and changes in injection
behavior resulting from the lower viscosity [46]. Due to similar reasons, DMM is also not
used.

Despite these limitations, many authors have pointed out that OMEs starting from 2 have
enormous potential, with their higher viscosity and lower flash points making them easy
to add to diesel fuel and use in common diesel engines, as shown in Table 1.1.

Properties OME1 OME2 OME3 OME4 OME5 OME3−5 Fossil Fuel

Density at 15◦C (g/cm3) 0.859 0.978 1.031 1.074 1.106 1.057 0.835
Oxygen (wt%) 42.1 45.2 47 48.1 48.9 48 ≃0
Cetane number 24 64 71 82.5 95 80 54
Flash point (◦C) -32 12 51 84 112 62 >55
Boiling point (◦C) 42 105 156 202 242 140-318 200-360
Melting point (◦C) - -70 -4.3 -10 18 -18 ≃-9
Vapor pressure at 25◦C (mbar) 485 238 40 7 1.3 - ≃10
Kin. viscosity at 40◦C (mm2/s) 0.37 - - - - 1.2 2-4.5
Lubricity (µm) 759 - 53.4 465 437 386 <460
lower heating value (MJ/I) 20.15 20.19 20.3 20.4 20.45 21 35.6
hvap at 15◦C rel. to heating value (%) 1.54 1.34 1.24 1.17 1.11 ≃1.2 0.8

Table 1.1: Fuel properties of OMEn and fossil diesel complying to the EN590 Norm. [35].

The mix of column 7 is the commercially available OME mixture, it is as follows: 0.1 wt%
OME1, 0.2 wt% OME2, 45 wt% OME3, 25 wt% OME4, 17 wt% OME5, 7 wt% OME6, 3
wt% OME7, 1 wt% OME8 [35].
As it is possible to notice from the table 1.1, the cetane number of OME2-5 is between 64
and 95, higher than the one of the common diesel, which is only 54. This is also another
reason why OMEs are so attractive as alternative fuels. Another important property is
the flash point, due to safety reasons. While for OME1-2 this value is way too low, the
OMEn>3 show a flash point higher than the one of diesel. The problem related to the
OMEs is with the longer ones because they could precipitate at low temperatures and
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could clog filters or other parts of the fuel system.

1.1.2. Synthesis

The synthesis of the OMEs (from 1 to n) is based on methanol as raw material, the process
chain can be seen in Fig.1.8. As it is possible to notice from Fig.1.8, to produce OMEs
two intermediates must be produced, both starting from formaldehyde (CH2O), mainly
produced via the Silver process (Oxidative dehydrogenation of methanol) [47].

1. Trioxane process (Anhydrous process): trimerization of formaldehyde, usually cat-
alyzed by H2SO4 [48] (preferred method)

2. Methyal (DMM) process (Aqueous process): heterogeneously catalyzed reactive dis-
tillation [49]

Figure 1.8: Synthesis pathways for OME[7].

The mechanism of production of the OMEs (Fig. 1.9) through the anhydrous process,
once the two intermediates are produced, consists of 3 steps:

1. trioxane is converted to formaldehyde over an acidic catalyst -

2. Formaldehyde, the monomer of OMEs, oligomers and reacts with DMM to OME2

3. OME2 reacts with formaldehyde to give OMEn+1

Figure 1.9: Reaction scheme of the POMDME formation [8].
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Once the reaction is carried out, there is a train distillation through which the mixture of
interest, typically OME3-4 is carried out, while the others are recycled back to the reactor.
As pointed out by Hackbarth et al. [7], the advantages of this strategy are a high OME
selectivity, low amounts of by-products and a comparatively simple product separation,
usually by distillation.

In recent years, a promising approach has emerged that involves the direct synthesis of
OMEs from methanol and formaldehyde (the second process summarized in Figure 1.8).
However, this method has its drawbacks, such as the formation of by-products, partic-
ularly hemiacetals due to incomplete acetalization, as well as water from acetalization
reactions, which need to be separated from the reaction mixtures [7]. Compared to the
Trioxane process, the OME yields are significantly lower, and the OME1-5 content in the
product mixtures is typically around 35% (compared to 70% in the anhydrous process).
Nonetheless, recent progress has been made to overcome these challenges. For example,
Schmitz et al. [50] have designed a new process that includes a significantly improved
distillation procedure, while Oestreich et al. [51, 52] have proposed an extraction method
for the work-up of aqueous OME mixtures.

The problem related to both of these processes is methanol. As widely known, methanol
is produced through the hydrogenation of CO [47]. Nowadays the H2 needed for the
process is mainly produced via SMR due to economic and efficiency reasons (see Figure
1.6). This means that the production of the OME through the process presented in Fig.
1.8 is not environmentally feasible until the production of CH3OH is carried out in a
zero-emission way. Recently a very promising route of production of methanol has gained
attention: the direct hydrogenation of CO2 [47]. This process, based on an In2O3/ZrO2

much more selective than the common CZA catalyst (Cu Zn Al2O3, Copper, Zinc and
Alumina respectively), has shown promising results thanks to the demonstrative plant
based in Iceland. The plant uses the CO2 emitted by a nearby geothermal power plant.
The carbon dioxide is then purified to make it suitable for downstream methanol synthesis
and compressed. The hydrogen needed is produced via electrolysis of water and added to
carbon dioxide into the reactor. The last step is the purification of methanol from water
through distillation. The production of methanol is about 4000 tons per year, using a
total of 5500 tons per year of CO2 [53].

The other and more interesting, from an environmental point of view, route to produce
OMEs is based on the reaction of green H2, hydrogen produced via electrolysis powered
by renewable energy, and CO2. From Fig. 1.10 it is possible to notice the two routes
suggested by Deutz et al.[9] both starting from methanol, which is produced from CO2

combined via catalytic reduction with hydrogen.
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1. First route (Scheme 1, Fug. 1.10): DMM is produced via a condensation reaction
from methanol and formaldehyde (FA) [9, 54, 55]. However, since the production of
formaldehyde first involves an oxidative step, the overall route is redox-inefficient.

2. Second route (Scheme 2, Fig. 1.10): Deutz et al. consider a purely reductive
approach to produce DMM which was recently demonstrated based on the direct
transformation of methanol with CO2/H2 to catalytically generate the central CH2-
unit of the OME molecule [9, 56, 57].

Figure 1.10: Two main possible pathways of DMM synthesis from CO2 and renewable H2

[9].

1.2. Reaction classes

Studying the combustion mechanism of OMEs is crucial in developing more efficient com-
bustion techniques that aim to reduce environmental impact, diversify energy sources, and
utilize them wisely. As Lu et al. [10] state, the development of kinetic mechanisms that
can describe the oxidation and pyrolysis of various fuels is essential in achieving this goal.
Combustion is a complex process that involves a wide range of chemical reactions and a
large number of species (Fig. 1.11). To accurately model and predict the combustion pro-
cess, it is necessary to use a kinetic mechanism, which is a set of variables that describe the
chemical reactions and their kinetics. The model includes the Arrhenius rate parameters
for each reaction, which describe the formation and consumption of each chemical species
in the combustion process. Because combustion experiments can be performed under a
wide range of conditions, a kinetic model needs to be able to predict the combustion
process reasonably well across the entire operating space. The rate constants can be de-
termined experimentally, computed with quantum chemistry tools, or estimated based on
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Figure 1.11: Size of some detailed mechanisms for hydrogen, ammonia, natural gas and
low-hydrocarbons available in literature. Adapted from Lu and Law [10], courtesy of
Andrea Bertolino [11].

analogies with similar compounds for which kinetic subsets already exist [58, 59]. During
the last decade, the determination of the rate constants for the kinetic mechanism was
characterized by the massive employment of even more sophisticated theoretical methods
(e.g. ab initio transition state theory-based master equation, AI-TST-ME [60]). This was
justified by the improved theoretical methods and algorithms currently available, and by
the capability of measuring rate constants for elementary steps in a more accurate way,
thus providing an immediate validation target for the theoretical results [60–63].

However, adopting the ”best” rate constant parameters may not result in better model
performance, particularly when considering a broad spectrum of experimental targets
[59, 64]. This is due to multiple reasons, not least the fact that in the majority of
the models, the rate parameters were estimated by means of analogy rules and semi-
empirical correlation for the estimation of the thermodynamics and transport properties
moreover every rate constant is affected by uncertainty [64, 65]. Therefore, due to the
intrinsic hierarchical nature of detailed mechanisms and due to the way they are developed,
introducing a single accurate rate parameter or a new one for an entire reaction class,
might strongly perturb the equilibrium and the consistency between different modules.

In the development process of a kinetic mechanism, the determination of the kinetic
constants is followed by the tune of these rate parameters by means of comparison against
experimental or computational data. Typically, performing a sensitivity analysis on rate
parameters allows choosing the important rate constants which are needed to be tuned
[66]. The tuning of the rate constant can be performed manually or automatically through
an optimization procedure by minimizing or maximizing an objective function. Then an
adapted set of rate constants is reached after the iterative optimization procedure and a
good agreement between model prediction and experimental data can be obtained.



12 1| Introduction

Recently, several frameworks were developed to automate the tuning process of the rate
parameters [15, 67–69]. However, all of them perturb each parameter independently not
considering the underlying consistency between the reaction classes. In literature there
are several examples of parameters optimization [67–70] with the purpose of obtaining
a better agreement with the experimental data, however parameters for each reaction
are systematically perturbed not paying attention to their overall interaction. Therefore,
reactions are often grouped into classes based on their common features or functional
dependencies, and a reference value for the kinetic constant is assigned to the entire
class [58]. This method is called reaction class optimization, and it is used to ensure the
kinetic consistency of the mechanism. The goal of this method is to preserve the physical
consistency of the mechanism by treating in the same way kinetically similar reactions
equally, while also addressing the optimization challenges that arise during the process.
An attempt towards reaction class-based optimization has been made by Cai et al. [71],
where they optimized the rate-rules of n-heptane combustion kinetic mechanism.

In this work, a reaction-class-based optimization is presented, where the reaction class ki-
netic constants are calibrated instead of perturbing each parameter differently. This allows
obtaining a consistent yet physically sound model. The overall optimization process has
been implemented as an extended capability of OptiSMOKE++ [15], a code suite for model-
ing reactive flows through detailed kinetics, for the first time. The methodology presented
has been applied, as a case study, to the optimization of the OME1-4 model, selecting as
the optimization targets different classes of reaction identified through a sensitivity anal-
ysis carried out with OpenSMOKE++ [72] and post-processed with PySMOKEPostProcessor.
The case study is the kinetic combustion mechanism of oxymethylene ethers (OMEs).
The ultimate purpose of the present work is to present a new way to optimize a kinetic
mechanism taking into account of the physical consistency that the reactions belonging
to different classes must ensure. After the optimization, a validation over a wide range of
experimental conditions has been automatically performed exploiting SciExpeM [73] as a
framework.

1.3. Aim and structure of the thesis

This work is organized as follows: Chapter 2 presents the methodology adopted in this
work, with a focus on the tools most commonly used in the optimization of kinetic mech-
anisms. Chapter 3 details the tools used in the study. It starts with the description of
how OptiSMOKE++ works, then the identification of the most selective reaction through
the use of pySMOKEPostProcessor, followed by the test case on two kinetic mechanisms
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exploiting a first approach to class-based optimization: the substitution method. After
highlighting the critical points of this first method and the need for more accuracy, the
calculation of scaling factors based on the detailed mechanism was computed. Finally,
the methodology involves optimizing the lumped mechanism using OptiSMOKE++ applying
reaction classes with the proper scaling factor is presented, highlighting the optimization
targets. Chapter 4 presents the results obtained with this new approach processed within
OpenSMOKE++ and the comparisons with other experiments through the use of SciExpeM.
Finally, Chapter 5 discusses the conclusion and future work, including possible applica-
tions of this mechanism.
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The purpose of this chapter is to provide an overview of the theoretical concepts underlying
the methods employed in this thesis for kinetic modeling, optimization, scaling factor
determination, uncertainty factor and sensitivity analysis.

2.1. Kinetic Modeling

The kinetic mechanism, describing the oxidation and pyrolysis of DMM and higher OMEs
was built up following the principles of hierarchy and modularity starting from the CRECK

kinetic framework [58, 74, 75]. For the past 20 years, the CRECK modelling group at
Politecnico di Milano has been creating a kinetic mechanism for the oxidation and py-
rolysis of various fuels, ranging from hydrogen and methane to complex ones like diesel
and jet fuels. The objective of this universal model is to assist in designing effective
combustion devices by precisely describing the production of harmful substances such as
Nitrogen Oxides (NOx), Polycyclic Aromatic Hydrocarbons (PAH), and soot. The group
has implemented two simplifying concepts, Hierarchy and Modularity, as constructing a
complex mechanism all at once is not feasible because of the huge quantities of information
needed. Regardless of the oxidized fuel, the same set of small molecules will be generated
eventually. Therefore, when examining the combustion of a new molecule, the model can
be quickly modified and updated by assessing only the set of reactions specific to the new
molecule. The subgroup of reactions at a higher hierarchical level will remain unchanged
(see Figure 2.1). The modules referred to H2/O2 and C1-C2 had been adopted according
to Metcalfe et al. [77] and subsequently improved from the work of Bagheri et al. [74].
The module referred to C3 has been added from the work of Burke et al. [78]. Then the
DME oxidation pathways for low and high temperature was obtained from Burke et al.
[79] and improved by Stagni et al. [12], in order to have a better prediction of interme-
diate species such as formic (HOCHO) and carbonic (HOCOOH) acid. Furthermore the
H-abstraction reactions by H, HO2, and CH3 were updated accordingly to the work of
Cavallotti et al. [80] (see Fig. 2.2).
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(a) Hierarchical approach for the species contained
in the mechanism [76].

(b) Modular approach when inserting the mecha-
nism of a new set inside the general mechanism.

Figure 2.1: Hierarchical and Modular approaches used in the mechanism developed by
the Creck modeling group at the Politecnico of Milano

The DMM sub-mechanism was integrated from the work of Jacobs et al. [44] with minor
modifications. Then higher OMEs (s = 2-4) were taken from the sub-mechanism proposed
by Cai et al. [23], which was generated, adopting a reaction class-based methodology with
the principle of hierarchy in order to obtain an automatic generation process for the reac-
tions and their kinetic parameters. The model of Cai was built upon taking as a reference
the model of Jacobs. The detailed model, so obtained, consists of 282 species and 2657
reactions (see Fig. 2.3).

Then the detailed model underwent an automatic lumping procedure. The primary objec-
tive of the chemical lumping technique is to minimize the number of species and reactions
in a model while maintaining a high level of precision. To achieve this, various species are
combined into single pseudospecies with averaged thermodynamic and transport charac-
teristics. As a result, the rates of reactions must be adjusted accordingly to account for
the merging of reactants and products. The final lumped model consists of 176 species
and 2486 reactions. The resulting mechanism is the one that underwent the numerical
optimization by reaction classes explained in the next sections.
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Figure 2.2: DME low-, medium- and high-temperature oxidation pathways. Red arrows
highlight routes added to improve the original model [12].

Figure 2.3: The core C1-C3 mechanism was supplemented with sub-mechanisms involving
DME, DMM, and OMEs in order to form the OME kinetic mechanism structure.
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2.2. Gradient-based and gradient-free algorithms

Optimization is the process of finding the best solution to a problem by adjusting the
values of the parameters within a set of constraints. There are two main methods for
optimization: gradient-based and gradient-free methods. Gradient-based optimization
methods rely on the gradient of the error function with respect to the parameters [81–83].
The gradient is a vector that points in the direction of the steepest increase in the error
function. The most popular gradient-based optimization method is the gradient descent
(GD) algorithm, which updates the parameter vector x at each iteration according to
Eq.2.1 [84, 85].

x(k + 1) = x(k)− α · ∇E(x(k)) (2.1)

where α is the step size or learning rate. This kind of algorithm is widely used not only
for its simplicity of application but also for its potential. Because of these main reasons,
it is commonly used to minimize a wide range of different error functions.

Gradient-free optimization methods are a class of optimization techniques that do not
rely on computing the gradient of the error function. The reason for their name is that
they can update the parameters without relying on gradient information, as stated in [86].

Some popular gradient-free optimization methods include:

• Random search: It is a simple method that generates random samples from the
parameter space and evaluates the error function at each sample. The method can
be used to find a global minimum of the error function, but it is generally less
efficient than gradient-based methods [87].

• Simulated Annealing: It is a more sophisticated gradient-free method that is inspired
by the annealing process in metallurgy. The method starts with a high "tempera-
ture" and gradually decreases it over time. At high temperatures, the algorithm is
allowed to make large random changes to the parameters, but as the temperature
decreases, the changes become smaller and the algorithm becomes more likely to
find a good local minimum [88].

• Evolutionary Algorithms (EAs): are a family of optimization algorithms that are
inspired by the process of natural evolution. They are used to find the best solution
(or a near-optimal solution) to a given optimization problem. They are particularly
useful when the problem is complex and has many local optima or when the problem
is non-linear or non-differentiable [89]. EAs typically work by generating a popu-
lation of potential solutions and iteratively evolving this population over time by
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applying genetic operators such as crossover (recombination), mutation and selec-
tion. The solutions that are better suited to the problem are more likely to survive
and reproduce, while the less suitable solutions are less likely to survive. This pro-
cess continues until a satisfactory solution is found or a stopping criterion is met.
Examples of evolutionary algorithms include: Genetic Algorithm (GA), Differential
Evolution (DE), Particle Swarm Optimization (PSO) and Evolutionary Strategy
(ES) [90, 91].

When dealing with highly non-convex error functions or when the gradient is challenging
to compute or not computable, gradient-free methods can be advantageous. Although
they may not be as efficient as gradient-based methods, they have the ability to locate
global minima and are capable of handling situations where the gradient is unavailable or
difficult to compute.

Each optimization method, whether it be gradient-based or gradient-free, has its own
strengths and limitations. Gradient-based methods are often faster and more efficient,
but they can become trapped in local minima. On the other hand, gradient-free methods
may be slower but can locate global minima in certain scenarios.

The selection of an optimization method should be based on the specific problem at
hand and the characteristics of the error function. If the error function has numerous
local minima, a gradient-free method may be the better option. Conversely, if the error
function is well-behaved and smooth, a gradient-based approach may be more appropriate.

The high non-linearity of the objective function makes it challenging to employ gradient-
based algorithms in optimizing a kinetic scheme because of the high non-linearity of each
kinetic constant. In this regard, Elliott et al. [69] conducted an extensive investigation
into the use of Evolutionary/Genetic Algorithms (EA/GA) for optimization problems
involving intricate kinetics. The study found that EA/GA are highly suitable for exploring
objective-function spaces with high dimensionality [70]. Based on these findings, GA was
chosen as the preferred method for conducting the optimization.

2.2.1. Genetic Algorithms

In the present work, a Genetic Algorithm (GA) is used as gradient-free method with
an initial population (S ) of 100 solutions. GA is an optimization technique inspired by
natural selection and Darwin’s theory of evolution. Similar to biological evolution, GA
aims to find the optimal solution to a problem by starting with a population of initial
solutions and using the principles of natural selection, crossover, and mutation. The GA
process begins with the creation of a random population of solutions, called generation
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0. Each solution is represented as a chromosome, which contains a string of genes that
encode the parameters of the problem to be solved. For example, if one is trying to find
the optimal solution to a mathematical function, the genes can represent the values of the
variables of the function (in this case the kinetic parameters of a rate constant: A, beta
and E/R, see Fig. 2.4).

Figure 2.4: Graphical representation of a DNA string in a genetic algorithm applied to
chemical kinetics, courtesy of Bertolino A. [11].

GA proceeds through a series of iterative stages. In each iteration, the fitness value of each
solution in the population is calculated, which is the measure of how well each solution
fits the problem. Two random solutions are selected for reproduction in the genetic
algorithm. This is accomplished through the application of the crossover technique, where
two DNA strings swap their parameters according to a probability called the crossover
rate (pc). The resulting offspring are then inserted into the new population, and they
may mutate according to a probability called the mutation rate (pm). After these stages
are complete, the resulting population size is twice that of the initial one (2S ), so a
replacement procedure occurs. During this final stage, some of the lower-performing
solutions from the previous generation are replaced with the new ones generated in the
previous stages. To ensure a balance between global and local search, the replacement
procedure selects S/2 strings with the highest fitness values from the final population,
and the remaining S/2 from the top 3S/2 strings [11]. The values of pc = 0.65 and pm =
0.5 were selected according to Elliot et al. [69]. The process of selection, crossover, and
mutation is repeated for a certain number of generations until a satisfactory solution is
found or the maximum number of generations is reached, see Figure 2.5.
As pointed out by Elliot et al., one significant advantage of this algorithm is its ability
to explore a population of points rather than a single point, which enhances its potential
for optimization.

• A population-based approach enables GA to explore a larger solution space and
consider a wider range of potential solutions. This makes it more likely that GA
will find a global optimum rather than getting stuck in a local optimum.
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Figure 2.5: Graphical representation of an example generation in Genetic Algorithms,
courtesy of Bertolino A. [11].

• GA is less sensitive to initial conditions than gradient-free algorithms that rely on
starting from a single point. With GA, the quality of the initial population is less
critical since the population will evolve and adapt over time through the use of
selection, crossover, and mutation operations.

• The population-based approach of GA allows it to concurrently explore multiple
regions of the search space. This enables GA to take advantage of parallel computing
resources to further enhance its optimization performance.

2.3. Objective function: the curve matching index

2.3.1. L2-norm

In every optimization problem, the optimal solution is determined based on the objective
function (Obj), which is a measure of how closely the current evaluation (Ysim) matches
the experimental targets (Yexp). Several options are available in evaluating this function,
one of the most commonly used is the L2-norm, also known as the Least Squares (LS)
method. In this method, the residual between the experimental data (Yexp) and the
simulated value (Ysim) is squared for each data point (j) in each data set (i) and then
summed to give the objective function. This function is then minimized to find the
optimal solution. The L2-norm is popular because has the desirable property of giving
more weight to larger errors, which helps to identify and correct significant discrepancies
that is why in the formula the deviation standard is used[15]:

Obj =
N∑
i

1

Ni

Ni∑
j

(
Y exp
ij − Y sim

ij

σij

)2

(2.2)
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In the above equation, each parameter corresponds to:

• N: total number of data sets;

• Ni: number of data points in data set i ;

•
1

Ni

: weights the Obj based on the number of data points in each data set

There are two limitations when comparing simulation results with experimental data
using the L2-norm function, which calculates the sum of squared deviations between the
prediction of the model and the experimental data.

1. Although this approach yields significant results and is reliable, robust, and simple,
its limitation lies in its inability to consider the shape of the curves, as assessed by
Bernardi et al. [13].

2. This method can only be used to compare and rank different models if there is a
consistent population of models available for comparison. When dealing with novel
fuels for which no suitable model exists in literature, the comparison between the
model and experiments must be made in absolute terms rather than relative terms,
as pointed out by Pelucchi et al. [76].

2.3.2. CurveMatching Index

A first step toward the solution to both limitations was introduced by Bernardi et al.[13],
where the Curve Matching framework was first presented. In this scenario, a multi-index
technique has been suggested, which depends on the functional examination of model and
experimental values, rather than a distance measure for each point. B-spline interpolation
is used to obtain a functional estimation of both the model and experimental values (and
their derivatives), and the second derivatives are smoothed by implementing a roughness
penalty. A generalized cross-validation approach is applied to the first derivative of the
function to assign it the appropriate weight, resulting in a reasonable approximation of
both data points and first derivatives [76, 92].

The core of the Curve Matching approach relies on a multifaceted analysis of the dissimi-
larity between the corresponding functional sets of models and experiments, respectively.
To this purpose, four indices, or dissimilarity measures, are evaluated. They were chosen
with the purpose of providing a multifaceted, and objective evaluation of the dissimilarity
between the two functions. The indices were selected in such a way as to cover the range
[0,1], with 0 meaning maximum dissimilarity, and 1 perfect similarity. Let f and g be two
curves and f’ and g’ their first derivatives (obtaining by interpolating smoothed splines),
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respectively the functional estimation of the experimental data and model evaluation [93].
Let D be the intersection of the domains of the two functions and let 2.3 be the norm of
a curve h in the L2-space. [70, 76]

||h|| =
√∫

D

h(x)2dx (2.3)

The dissimilarity indices introduced here are defined as:

d0L2(f, g) =
1

1 +
||f − g||

|D|

∈ (0, 1) (2.4)

d1L2(f, g) =
1

1 +
||f ′ − g′||

|D|

∈ (0, 1) (2.5)

d0p(f, g) = 1− 1

2

∣∣∣∣∣∣∣∣ f||f || − g

||g||

∣∣∣∣∣∣∣∣ ∈ (0, 1) (2.6)

d1p(f, g) = 1− 1

2

∣∣∣∣∣∣∣∣ f ′

||f ′|| −
g′

||g′||

∣∣∣∣∣∣∣∣ ∈ (0, 1) (2.7)

Individually, d0L2 depends on the area enclosed by f and g, while d1L2 evaluates the same
quantity between their respective derivatives. Hence, the first generalizes a classical L2-
norm, while the second extends it. The graphical representation of how the CM works
is presented in Figure 2.6. On the other side, the Pearson dissimilarity measures d0p
and d1p indicate perfect matching if f and g and their derivatives, only differ by vertical
translation [11]. These last indicators are obtained from the Pearson similarities reported
in Equations 2.8 and 2.9.

ρ0p(f, g) =
⟨f, g⟩

||f ||||g|| (2.8)

ρ1p(f, g) =
⟨f ′, g′⟩

||f ′||||g′|| (2.9)

Where the quantity ⟨f, g⟩ and ⟨f ′, g′⟩ are evaluated through Eq. 2.10.

⟨f, g⟩ =
∫
D

f(x)g(x)dx (2.10)

As ρp indicates the cosine of the angle formed by the two functions, it serves as a mea-
sure of the correlation between them, reflecting how similar their shapes are [13]. These
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similarities are related with d0p and d1p through the Eq. 2.11.

dp =

√
1− ρp

2
(2.11)

The CM index is a function of the indexes presented in the equations above 2.4, 2.5, 2.6

Figure 2.6: Graphical representation of how the splines of f and g and their derivatives are
compared in the CM framework. The top figures show the functional estimation of f and g
with respect to the data provided (left), and their derivatives (right). The bottom figures
present a comparison between an optimization carried out with the CM and the L2-norm
with respect to the experimental data (left) and their derivatives (right). Courtesy of
Bertolino A. [11].

and 2.7. Thus the Score of the CurveMatching will be computed as reported in Equation
2.12 and the global objective function assumes the form reported in Equation 2.13.

CMi =
d0i,L2

+ d1i,L2
+ d0i,Pe + d1i,Pe

4
∈ (0, 1) (2.12)
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Obj =
1

N

N∑
i

(1− CMi) (2.13)

The CM procedure is explained in Fig.2.7.

Figure 2.7: Schematic of the CM framework [13].

Bootstrapping and experimental error

As such, the functional curve representing experimental data does not include any infor-
mation about the experimental uncertainty of the measures. In order to account for the
uncertainty in the evaluation of the CM index 2.12, a bootstrapping procedure [94] on
the experimental data is carried out. Considering each experimental data point and the
related uncertainty, a sufficiently high set of values is randomly generated, assuming that
they are normally distributed with an average corresponding to the data point, and a
standard deviation equal to the experimental uncertainty. Figure 2.8 displays an exam-
ple of the application of the bootstrap procedure for laminar flame speed data, where 7
Gaussian distributions (i.e. one for each data point) were sampled 10 times to generate as
many bootstrap variations. A set of 50 bootstrap variations (Nb=50) for each data point
was adopted after verifying the substantial independence of the final output on a further
broadening of the set [11].
Taking into account of this procedure the new objective function becomes as described in
Eq. 2.14.

Obj =
1

N

N∑
i

(
1− 1

Nb

Nb∑
j

CMi,j

)
(2.14)
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Figure 2.8: Example of bootstrap procedure with 10 variations [11]. Experimental data
from [14].

Where Nb in Equation 2.13 is the number of bootstrap variations.

2.4. Scaling factor

The optimization of kinetic mechanisms for combustion models can be a challenging task
due to the large number of reactions involved. However, it is well-known that reactions
belonging to a specific class often share a common reference parameter. This observation
has led to the development of a strategy that optimizes only the three Arrhenius param-
eters for the reference kinetic and then scales the reaction rate of other reactions in the
same class accordingly. This approach leverages the shared characteristics of reactions
within a class and allows for more efficient optimization of combustion mechanisms. In
order to optimize the reference kinetic parameters the following rules were applied:

fA
scaling =

ln(Aopt)

ln(Aref )
(2.15)
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fβ
scaling = βopt − βref (2.16)

f
E
R
scaling =

(
E

R

)
opt

−
(
E

R

)
ref

(2.17)

The equations above reflect the idea that if there is a relationship between the reference
kinetic parameter and the parameter of a reaction belonging to a class of reactions by
a factor of two then, once the reference kinetic parameter is optimized, this proportion
must remain constant, and this must be valid for all the three Arrhenius parameters.

2.5. Uncertainty factor

When optimizing kinetic parameters for chemical reaction mechanisms, it is important to
ensure that the optimized parameters stay within their prescribed uncertainty bounds,
so an uncertainty factor (fr) is assigned to each parameter in the form described in Eq.
2.18.

fr =
kmax − k0
ln(10)

=
k0 − kmax

ln(10)
(2.18)

Where:

• k0: is the rate constant of the nominal mechanism;

• kmax: is the upper limit of the evaluation (computed as kmax = k0·10f );

• kmin: is the lower limit of the evaluation (computed as kmin = k0·10−f ).

A penalty function can be implemented to increase the objective function value for param-
eter combinations that violate the uncertainty limits of the rate constants. This ensures
that the optimizer finds the optimal combination of parameters that satisfies the con-
straints. However, penalty functions should not be used with gradient-based optimization
approaches, as these algorithms depend on the slope of the objective function, which is
disrupted by the penalty function. Non-gradient-based global optimizers are more suit-
able for constrained optimization problems such as kinetic mechanism optimization when
combined with a penalty function.

In the present Thesis, an uncertainty factor f = 0.5 was assumed as a conservative choice.
Using a 0.5 uncertainty factor practically means that the corresponding maximum varia-
tion of the optimized rate constant with respect to its original value is of about a factor 3.
In Fig. 2.9 is shown an example of an optimized rate constant. The kopt falls inside the
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uncertainty region for the whole temperature range, respecting the limits imposed by kmin

and kmax. As it is possible to notice the optimized rate constant falls into the admitted
region bounded by kmax and kmin.
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Figure 2.9: Rate coefficient for reaction R2144 of the kinetic mechanism described in 2.1,
k0 is the nominal rate constant, kopt is the optimized one and region is the domain whose
upper limit is kmax and the lower one kmin.

2.6. Sensitivity analysis

Enhancing the accuracy of a model is a crucial task. However, when dealing with large
models containing hundreds or thousands of parameters, considering all of them simul-
taneously can be computationally challenging, even with advanced and efficient tools.
Sensitivity analysis provides a means of identifying the relative importance of parameters
and enables researchers to focus their efforts on those parameters that have the most
significant influence on predictions.
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2.6.1. Local Sensitivity Analysis

Reacting gas mixtures are typically simulated using ideal reactors such as perfectly stirred,
batch, and plug flow reactors, as well as laminar flames. The behavior of a reacting mix-
ture can be described by a system of coupled, first-order Ordinary Differential Equations
(ODE), which can be written as follows:

dy

dξ
= f(y, ξ,p)

y(ψ0) = y0

(2.19)

The vector of unknowns, denoted by y in Equation 2.19, includes variables such as tem-
perature, pressure, and species concentration. The independent variable, denoted by ξ,
represents either time or spatial coordinate, and f(y, ξ, p) is a non-linear function of both
the unknowns and kinetic model parameters, p. To calculate the first-order sensitivity
coefficients for the ith unknown and the jth parameter, Equation 2.20 is used.

s1ij =
∂yi
∂pj

(2.20)
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The upcoming chapter outlines the tools employed in this study. Initially, the chapter
presents the toolbox OptiSMOKE++ and DAKOTA. Then the sensitivity analysis technique
used to identify the crucial reactions in the mechanism and create classes is elaborated.
Two test cases are presented, utilizing the substitution method once a reference specie is
identified. The chapter emphasizes the most critical aspect of this tool and describes the
necessity of scaling factors for each class and how they are calculated. Finally the input
method to OptiSMOKE++ is presented with the optimization targets used in this work.

3.1. Data driven optimization

The tool used in this work to apply the reaction classes optimization is OptiSMOKE++[15].
This software is a toolbox developed by A. Bertolino and M. Furst which applies heuris-
tic optimization processes to obtain uncertain kinetic parameters. The software utilizes
Data-Driven Optimization, a technique that employs data to facilitate the optimization
of a process. In this method, information is obtained from the system or process be-
ing optimized and is utilized to make informed decisions about adjusting parameters or
settings to enhance performance. This method proves to be particularly beneficial when
handling extensive and reliable experimental data sets, such as the database created in
SciExpeM. In order to work in the chemical region to avoid disturbances by mass transfer,
this toolbox can only operate with ideal reactors, such as Batch reactors (adopted to
simulate Shock Tubes, STs), Rapid Compression Machines (RCMs), Jet Stirred Reactors
(JSRs) and Plug Flow Reactors (PFRs). The entire toolbox is written in C++ because the
numerical simulations are performed in OpenSMOKE++ [72], entirely developed in C++ too,
while the DAKOTA (Design Analysis Kit for Optimization and Terascale Application) [95]
toolkit, written in C++ too, handles the optimization. Dakota is a powerful and flexible
open-source software package that is designed to perform optimization, uncertainty quan-
tification and model calibration in a wide range of applications. Some of the key features
of Dakota include:

• Support for both gradient-based and gradient-free optimization algorithms, allowing
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users to choose the best method for their specific problem.

• An extensible architecture that allows users to easily couple Dakota with their own
models and simulation codes, which can be written in any programming language.

• The ability to handle large-scale optimization problems by leveraging parallel and
distributed computing resources.

• Support for a wide range of optimization techniques, including local and global
optimization methods, and methods for handling nonlinear and nonconvex problems.

• The ability to perform uncertainty quantification and sensitivity analysis, which
allows users to understand the effects of input uncertainty on the output of their
models.

• it is written in C++ so there is direct and fast communication between DAKOTA and
OpenSMOKE++.

The selection of DAKOTA as the toolkit for handling optimization within the OptiSMOKE++

suite was influenced by all of these features. Inside the original toolbox proposed by Furst
et al., all the parameters of the selected rate constants are expressed according to the
modified Arrhenius expression where the logarithmic form is adopted (Equation 3.1).

ln(k) = ln(A) + βln(T )− Ea

R

1

T
(3.1)

In order to reduce the computational cost, OpenSMOKE++ uses the rate constant expressed
in Eq. 3.2.

k = exp

(
ln(A) + βln(T )− Ea

R

1

T

)
(3.2)

The parameters undergoing the optimization are: the pre-exponential factor A, the tem-
perature exponent β and the activation energy Ea. They are considered as continuous
random variables, usually assumed to be uniformly or normally distributed. Furthermore,
during the optimization, they are subjected to non-linear constraints derived from Eq.2.18
(see Section 2.5). In case the parameters proposed by Dakota violate these boundaries,
a penalty function is automatically applied and the procedure starts again. Figure 3.1
illustrates the general workflow of the OptiSMOKE++ framework. Upon reading the input
file, the code modifies the kinetic scheme parameters and verifies that they all fall within
the specified uncertainty bounds, subject to a non-linear constraint of kmin ≤ k ≤ kmax.
In case any of the parameters are outside the limits, a penalty function is applied, and
simulations are skipped to save computational resources. Otherwise, OpenSMOKE++ con-
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ducts the simulations and computes the objective function based on the results obtained.
At this stage, DAKOTA proposes a new set of parameters based on the objective function
value, and the process repeats until one or more of the stopping criteria are met.

Figure 3.1: OptiSMOKE++ schematic workflow [15]



34 3| Workflow

3.2. Identification of the classes

In order to properly select the reactions which are more important in the kinetic scheme a
sensitivity analysis is performed. The sensitivity analysis can be performed either globally
or locally, depending on the choice of the user, and can be carried out on a specific species
of interest at a specified time. As it will be better explained in detail in Section 3.6.1, the
optimization target of this thesis are Ignition Delay Times of OME1-4 so a local sensitivity
analysis can be more suitable for this work. To determine the most significant times at
which to perform sensitivity analysis, two reference times are chosen: one at which only
1% of the species has been converted, and another at which 99% has been converted. The
time interval between these two reference times is then divided into n segments, where
n is a user-defined value (n = 3 for this work). The local sensitivity analysis has been
performed following the steps below for a given temperature:

1. Calculate the natural logarithmic difference between the times at a certain T.

2. Divide the logarithmic difference by the natural logarithm of the n value to obtain
∆t.

3. Create a vector with points spaced ∆t apart. The first point in the vector corre-
sponds to the time at which the DMM is 99%, while the last point corresponds to
the time at which the DMM is 1% (Fig. 3.3).

4. Perform a sensitivity analysis for each time in the vector. Normalize the sensitivity
coefficients relative to the maximum absolute value, and save the coefficients and
their indexes in a .csv file.

5. Copy all the .csv files in a single file.

6. To avoid duplication of indexes, only include the highest absolute value of each
index in the summary .csv file (Fig. 3.3).

The resulting .csv file contains the most sensitive reactions for the cases analyzed and
are finally plotted using PySMOKEPostProcessor as in Figure 3.2.

The complete list of the sensitivity analysis carried out for DMM ϕ = 1, P = 10 atm, T
= 600-1300 K can be found in appendix B. The kinetic mechanism used in this workflow
is the one described in Section 2.1, the lumped one. The sensitivity analysis is done by
calculating sensitivity coefficients using the OpenSMOKE++ framework, which requires the
kinetic mechanism and a sensitivities file containing sensitivity coefficients and reaction
indices in .XML format [72]. In this framework a first order sensitivity analysis is carried
out according to the equation 2.20 reported in Section 2.6. In this case, the y is the molar
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Figure 3.2: Example of times chosen for the local sensitivity analysis for DMM ϕ = 1, P
= 10 atm, T = 600 K (i.e., Case 0).

fraction of the target specie (i.e., DMM) while p is the kinetic constant of one of the n
reactions taken for the sensitivity. According to the these results, it is possible to identify
several important reactions but only the ones that involve the starting compound (i.e.,
DMM) at this stage can be taken into account avoiding the radicals. This choice has been
made in order to work with species that are not lumped. According to this procedure,
the reactions with the higher sensitivity coefficients are summarized in Tab. 3.1 and they
are all the H-abstractions of the mechanism involving the starting species.

Reaction Class Summary
H-abstraction by OH OH +OMEn → H2O +OMEn −R
H-abstraction by H H +OMEn → H2 +OMEn −R
H-abstraction by O O +OMEn → OH +OMEn −R
H-abstraction by HO2 HO2 +OMEn → H2O2 +OMEn −R
H-abstraction by O2 O2 +OMEn → HO2 +OMEn −R
H-abstraction by CH3 CH3 +OMEn → CH4 +OMEn −R
H-abstraction by CH3O2 CH3O2 +OMEn → CH3O2H +OMEn −R

Table 3.1: Summary of the reaction classes identified.
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R2124: CH3O2+DMM=>CH3O2H+DMM-R  (-1.0000)
R2146: OH+DMM=>H2O+DMM-R  (-1.0000)
R2160: DMM-RO2=>DMM-QOOH  (-1.0000)
R2214: O2+DMM-QOOH=>DMM-O2QOOH  (-1.0000)
R2114(inf): DMM(+M)=>CH3+CH3OH+HCO(+M)  (-1.0000)
R2144: CH3+DMM=>CH4+DMM-R  (-0.9850)

R2161: DMM-QOOH=>DMM-RO2  (0.8839)
R2122: HO2+DMM=>H2O2+DMM-R  (-0.7484)
R2224: DMM-OQOOH=>OH+DMM-ketRO  (-0.6548)
R2115(inf): DMM(+M)=CH2O+CH3OCH3(+M)  (-0.4982)
R2112(inf): DMM(+M)=CH3+CH3OCH2O(+M)  (-0.4776)

R2213: DMM-QOOH=>OH+CH2O+CH3OCHO  (0.4325)
R2112: DMM(+M)=CH3+CH3OCH2O(+M)  (-0.3666)
R2113(inf): DMM(+M)=CH3O+CH3OCH2(+M)  (-0.3016)
R2118: O2+DMM=>HO2+DMM-R  (-0.2811)
R2142: H+DMM=>H2+DMM-R  (-0.2492)
R2152: O2+DMM-R=>DMM-RO2  (-0.2487)

R2148: DMM-R=>CH2O+CH3OCH2  (0.2292)
R2153: DMM-RO2=>O2+DMM-R  (0.2210)

R2126: CH3O+DMM=>CH3OH+DMM-R  (-0.1223)
R2218: DMM-O2QOOH=>DMM-R2OOH  (-0.1170)

R2167: 2DMM-RO2=>O2+2DMM-RO  (0.1001)

Summary Sensitivity local Analysis

Figure 3.3: Summary of the local sensitivity analysis for DMM ϕ = 1, P = 10 atm T =
600-1300 K.

3.3. Substitution

The first approach followed after the identification of the classes has been to identify a
reference specie and then substitute the kinetic parameters optimized for it in the other
compounds. To verify the consistency of the approach, the initial trial involved testing
the mechanism developed by Pelucchi et al. [96] on the combustion of linear alcohols,
followed by using the mechanism outlined in Section 2.1. The limitations of this approach
are highlighted, indicating that some refinements may be necessary in several cases.

3.3.1. Test case 1: Alcohol mechanism

The kinetic mechanism of oxidation of Butanol, Pentanol, and Hexanol was chosen as the
most suitable case study since previous research has shown that linear alcohols exhibit
intriguing characteristics. Specifically, for the aforementioned compounds, the kinetic con-
stant parameters are nearly identical due to their molecular structure. Pelucchi et al. [96]
developed the kinetic mechanism that was optimized by class, and it was later validated.
Several deviations between model results and experimental data can be observed in the
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work of Pelucchi et al. [96]. For this reason, the opportunity of optimizing the mecha-
nism to increase confidence in its prediction emerged. For this purpose, the OptiSMOKE++

toolbox was used applying the class-based optimization. The reaction classes identified
for this optimization are summarized in Table 3.2, the choice was based on the sensitivity
analysis performed on the mechanism. Whereas the experimental targets are JSR mole
fraction measurements of different species related to n-butanol, n-pentanol and n-hexanol
oxidation taken at different equivalence ratios (0.5, 1.0 and 2.0) and pressures (1 and 10
atm).

Reaction Class Summary
H-abstraction by HO2 HO2 + CnH2n+1OH → H2O2 + CnH2n+1OH −R
H-abstraction by CH3 CH3 + CnH2n+1OH → CH4 + CnH2n+1OHOH −R
H-abstraction by OH OH + CnH2n+1OH → H2O + CnH2n+1OH −R
H-abstraction by H H + CnH2n+1OH → H2 + CnH2n+1OH −R
Beta-scission 1 CnH2n−1OH → H + Cn−1H2n−1CHO
Beta-scission 2 CnH2n−1OH → CH3OCHO + Cn−2Hn+1

Dehydration CnH2n+1OH → H2O + CnH2n

O2 addition to α O2 + CnH2n+1OH −R → HO2 + Cn−1H2n−1CHO

Table 3.2: Summary of the reaction classes used for the alcohols optimization.

The validation data required depends on the focus of the investigation. This includes
experimental data from various sources, such as Rosado Reyes et al. [16], Vasu et al. [20],
Yujing et al. [17], McGillen et al. [19], and Pang et al. [18], for the kinetic constants, and
the molar fraction provided by Jankowska et al. [21]. According to Pelucchi et al. [96]
the uncertainty factor has been chosen to be 0.5. Buthanol was utilized as the reference
component for each test, with only its kinetic parameters optimized while those of Pen-
tanol and Hexanol were directly substituted. As observed in figures 3.4, 3.5, 3.6, and 3.7,
optimization yields better agreement with experimental data despite the imperfections of
the initial mechanism. As mentioned before, The mechanism developed by Pelucchi et al.
[96] exhibits a strong correlation with the experimental data, as evidenced by figure 3.4a,
which shows that the CM index improves from 0.907 to 0.912 after approximately 800
iterations of optimization (for further details on how the CM works see Section 2.3.2).

The substitution method is demonstrated to be a reliable technique in all the cases de-
picted in Fig. 3.4, Fig. 3.5, Fig. 3.6 and Fig. 3.7 as it exhibits excellent consistency with
the experimental data.
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(a) 1 - CMscore with the number of iterations.
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(c) Total rate constant of H-atom abstraction re-
action by OH.

Figure 3.4: Number of Iterations of the optimization procedure (Fig. 3.4a). The total rate
constant of dehydration reaction from n-butanol [16] (Fig. 3.4b)) and Total rate constant
of H-atom abstraction reaction by OH on n-butanol [17–20](Fig. 3.4c) both with the
nominal and the optimized models.
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(a) Concentration profile of butanal (C3H7CHO)
at P = 10 bar and ϕ = 2.

(b) Concentration profile of butanal (C3H7CHO)
at P = 10 bar and ϕ = 0.5.

(c) Concentration profile of butanal (C3H7CHO)
at P = 1 bar and ϕ = 0.25.

Figure 3.5: Mole fraction of Butanal (C3H7CHO) measured in a JSR by Jankowska et al.
et al.[21] for ϕ = 2 (Fig. 3.5b), ϕ = 0.5 (Fig. 3.5b) and ϕ = 0.25 (Fig. 3.5c) and model
predictions.
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(a) Concentration profile of butanal (C4H9CHO)
at P = 10 bar and ϕ = 1.

(b) Concentration profile of butanal (C4H9CHO)
at P = 10 bar and ϕ = 0.5.

Figure 3.6: Mole fraction of Pentanal (C3H7CHO) measured in a JSR by Jankowska et
al. et al.[21] for ϕ = 1 (Fig. 3.6a) and ϕ = 0.5 (Fig. 3.6b) and model predictions.

(a) Concentration profile of n-hexanol (ESAN1OH)
at P = 1 bar and ϕ = 0.5.

(b) Concentration profile of n-hexanal (ALDC6) P =
10 bar and ϕ = 2.

Figure 3.7: Mole fraction of n-hexanol (ESAN1OH) measured in a JSR by Jankowska et
al. et al.[21] for ϕ = 0.5 (Fig. 3.7a) and Mole fraction of n-hexanal (ALDC6) measured
in a JSR ϕ = 0.5 (Fig. 3.7b) and model predictions.
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3.3.2. Test case 2: OME1-4

The same substitution procedure has been applied to the kinetic mechanism described
in Section 2.1. The classes used for this test sample are the ones summarized in table
3.1. The kinetic constants for OME2-4 are the same as the DMM, which is the reference
specie. The optimization of the mechanism has been applied for almost 1500 iterations,
Fig. 3.8. For this test case, the optimization targets are the IDTs from the article of
Jacobs et al. [22] and the ones of Gillispie [24] for DMM and IDTs from Cai et al.[23]
for OME2-4. The findings are summarized in Figures 3.9, 3.10, and 3.11. Due to the
focus on demonstrating the potential of the method rather than its performance, only
a limited number of validation results are provided in this test case. The optimization
procedure generally demonstrates good agreement with the experimental data and the
detailed mechanism. However, accuracy is insufficient in most cases. Figure 3.9 highlights
some issues with the approach. To improve the level of accuracy between the model and
the validation experiments, additional steps must be taken. The fundamental problem
with hydrogen abstraction during combustion is that the longer the hydrocarbon chains,
the greater the possibility that hydrogen abstraction can occur at different positions,
leading to a mixture of products with different structures. The insufficient accuracy
between the model and experimental data is due to the fact that this approach does
not consider the various possibilities that each species can have based on its molecular
structure.

Figure 3.8: 1 - CMscore with the number of iterations.
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(a) DMM IDT at ϕ = 1 and P = 40 bar. DMM is
diluted in air.

(b) OME2 IDTs at ϕ = 1 and P = 10 bar.

(c) OME4 IDTs at ϕ = 1 and P=10 bar [23]. (d) OME4 IDTs at ϕ = 1 and P=20 bar [23].

Figure 3.9: DMM IDT measured in a ST by Jacobs et al. [22] 3.9a and OME2-4 IDT
measured by Cai et al. [23] 3.9b , 3.9c, 3.9d at ϕ = 1 and model predictions.
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(a) DMM IDT at ϕ = 2 and P = 9 bar. DMM and
O2 are diluted in 99% Ar.

(b) OME3 IDT at ϕ = 2 and P = 20 bar.

Figure 3.10: DMM IDT measured in a ST by Gillespie[24] 3.10a and OME3 IDT measured
by Cai et al. [23] 3.10b at ϕ = 0.5 and model predictions.

(a) DMM IDT at ϕ = 0.5 and P = 1 bar. DMM and
O2 are diluted in 99% Ar.

(b) OME2 IDT at ϕ = 0.5 and P = 20 bar.

(c) OME3 IDT at ϕ = 0.5 and P = 20 bar.

Figure 3.11: DMM IDT measured in a ST by Gillespie[24] 3.11a and OME2-3 IDT mea-
sured by Cai et al. [23] 3.11b, 3.11c at ϕ = 2 and model predictions.
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3.4. Kinetic Analysis

In the detailed mechanism, the H abstraction by OH produces different radicals according
to the molecular structure of the reactant: the positions are directly related to the number
of carbon atoms. This Section provides a concise and detailed examination of DMM,
OME2, OME3, and OME4, aiming to emphasize the importance of this information and
the underlying causes of the substitution inadequacy of the method. The focus of this
investigation is solely on the H-abstraction by OH, as all H-abstractions operate similarly.

3.4.1. DMM

The H abstraction by OH can happen in two different positions for the DMM, Fig. 3.12a
and it produces two different radicals according to the reactions 3.3 and 3.4.

OH +DMM => H2O +DMM −RX1 (3.3)

OH +DMM => H2O +DMM −RX3 (3.4)

Based on the information presented in Figure 3.12b, the radical-producing reaction with
a higher kinetic constant is the one that generates RX1, suggesting that RX1 is more
likely to be formed compared to RX3.

(a) Positions where the H-abstraction is likely to
occur for DMM [22].
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(b) Plot of the kinetic constant for DMM-RX1 and
DMM-RX3.

Figure 3.12: Kinetic study for DMM.
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3.4.2. OME2

OME2 has a symmetrical structure so two positions are available: the ones at the ends
and the ones at the centers (Fig. 3.13). Two radicals are formed according to the reactions
3.5, 3.6.

OH +OME2 => H2O +OME2 −RX1 (3.5)

OH +OME2 => H2O +OME2 −RX3 (3.6)

As in the case of the DMM, for OME2 too the radical with the higher kinetic constant,
hence the one likely to be produced, is the OME2-RX3, as reported in Fig. 3.13b.

(a) Positions where the H-abstraction is likely
to occur for OME2.
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(b) Plot of the kinetic constant for OME2-RX1
and OME2-RX3.

Figure 3.13: Kinetic study for OME2.

3.4.3. OME3

For the OME3, three positions are available (Fig. 3.14) in which the H-abstraction by
OH is likely to happen:

1. the C atom in the center

2. the two C atoms in the ends

3. the two C in β positions

The 3 radicals are formed according to the reactions listed above (reactions 3.7,3.8,3.9).

OH +OME3 => H2O +OME3 −RX1 (3.7)
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OH +OME3 => H2O +OME3 −RX3 (3.8)

OH +OME3 => H2O +OME3 −RX5 (3.9)

For OME3, the radical that is more likely to be produced is the OME3-RX1, as it is
possible to notice from Fig.3.14b.

(a) Positions where the H-abstraction is likely to
occur for OME3.
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(b) Plot of the kinetic constant for OME3-RX1,
OME3-RX3 and OME3-RX5.

Figure 3.14: Kinetic study for OME3.

3.4.4. OME4

The OME4 shows the same positions as OME3 but in the central position the possibility
in which is likely to happen the H-abstraction is double with respect to the one of the
OME3 (Fig.3.15). The reactions involved in the formation of the three radicals are listed
below (reactions 3.10,3.11,3.12).

OH +OME4 => H2O +OME4 −RX1 (3.10)

OH +OME4 => H2O +OME4 −RX3 (3.11)

OH +OME4 => H2O +OME4 −RX5 (3.12)

It is worth noting that RX3 and RX5 exhibit the same kinetic constant, which can be
attributed to the fact that both radicals involve an H-abstraction from a methylene group.
The bond energy of a C-H bond in a methylene group (C bonded to two H atoms) is around
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(a) Positions where the H-abstraction is likely to
occur for OME4.
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(b) Plot of the kinetic constant for OME4-RX1,
OME4-RX3 and OME4-RX5.

Figure 3.15: Kinetic study for OME4.

435 kJ/mol, while the bond energy of a C-H bond in a methyl group (C bonded to three
H atoms) is around 415 kJ/mol. This means that the bond between the carbon atom
at the center of the chain (forming RX3 and RX5) and the neighboring hydrogen has a
higher bond energy compared to the bond between the carbon atom at the end of the
chain (forming RX1) and the neighboring hydrogen. As a result, the radical RX1 is more
likely to be formed during the reaction due to the lower energy required to break the C-H
bond.

3.4.5. Conclusions

The results of the OME1-4 test sample discussed in Section 3.3.2 and the short kinetic
study highlight the potential advantages of employing scaling factors to optimize chemical
reactions. Scaling factors, which account for chain length and are derived from the detailed
mechanism, can improve the accuracy of predicting reaction rates and product yields, as
will be explained in Chapter 4.

However, it is worth noting that the calculation of scaling factors can be computationally
intensive, especially for reactions involving radicals as reactants. Advanced techniques
such as quantum mechanics or molecular dynamics simulations may be required for such
cases.

Despite these challenges, the potential benefits of incorporating scaling factors in the op-
timization process make it a worthwhile investment. It can lead to a better understanding
and prediction of the underlying chemistry behind the oxidation of these compounds.
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3.5. Evaluation of the scaling factors

To properly evaluate the scaling factors per each of the three constants a kinetic study
has been performed for each of the classes identified in the sensitivity analysis (see Section
3.4) and summarized in Tab.3.1. The methodology exploits for these calculations consists
of several steps:

1. Identification of all the radicals formed in the detailed mechanism (as shown per
each specie in the reactions reported in Section 3.4).

2. Calculation of the kinetic constant of each radical in the range 500-2000 K.

3. Identification of the so-called ktot per each temperature simply summoning up the
kinetic constant of each radical (i.e., horizontal lumping).

4. Extrapolation of the new kinetic parameters of the ktot simply interpolating the ktot

obtained per each temperature in the range 500-2000 K.

Following the procedure assessed in Section 2.4, it was possible to find per each class a
ktot per each specie and then evaluate the scaling factor of the mechanism. In the tables
3.3, 3.4, 3.5 the scaling factor for the classes chosen are reported for each of the three
variables.
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Reaction Class OME2 OME3 OME4

H-abstraction by OH 0.35 0.60 0.96
H-abstraction by H 1.11 3.24 6.52
H-abstraction by O 1.28 1.62 1.96
H-abstraction by HO2 12.9 26.2 42.1
H-abstraction by O2 163.0 294.0 432.0
H-abstraction by CH3 25.6 65.1 117.0
H-abstraction by CH3O2 0.57 0.67 0.82

Table 3.3: Summary of the scaling factor for A of each reaction class used within the
optimization.

Reaction Class OME2 OME3 OME4

H-abstraction by OH 0.12 0.06 0.01
H-abstraction by H -0.13 -0.23 -0.29
H-abstraction by O 0.04 0.05 0.06
H-abstraction by HO2 -0.11 -0.16 -0.19
H-abstraction by O2 -0.43 -0.45 -0.46
H-abstraction by CH3 -0.18 -0.26 -0.30
H-abstraction by CH3O2 0.13 0.11 0.09

Table 3.4: Summary of the scaling factor for beta of each reaction class used within the
optimization.

Reaction Class OME2 OME3 OME4

H-abstraction by OH -142.6 -71.6 -12.7
H-abstraction by H 74.7 147.0 195.0
H-abstraction by O -92.4 -130.0 -151.0
H-abstraction by HO2 -37.0 -36.0 -30.0
H-abstraction by O2 408.0 436.0 450.0
H-abstraction by CH3 146.0 216.0 257.0
H-abstraction by CH3O2 349.0 225.0 145.0

Table 3.5: Summary of the scaling factor for E/R of each reaction class used within the
optimization.
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3.6. Numerical Optimization

The optimization procedure is divided into different steps:

1. identification of the optimization target: this step involves identifying the specific
goal that the optimization procedure aims to achieve.

2. Simulation of the cases: once the optimization target has been identified, the next
step is to select the cases that will be used for optimization.

3. Creation of the .txt file: after the cases have been selected, the next step is to create
a .txt file that contains the necessary information for the optimization process.

4. Starting of the optimization: once the .txt file has been created, the optimiza-
tion process can begin. This typically involves running the optimization algorithm
that iteratively searches the parameter space to find the optimal solution. During
the optimization process, the algorithm evaluates each case using the information
provided in the .txt file.

5. Construction of the final mechanism: once the objective function reaches a plateau
the procedure can be stopped and OptiSMOKE++ merges the optimized reactions with
the starting mechanism

3.6.1. Optimization Target

The whole database of experimental results for OME1–4 is reported in Chapter 3, and
consists of 56 datasets divided into:

• IDTs in Batch Reactors;

• speciations in JSRs and PFRs;

• LFSs in premixed laminar flames.

A selection process was performed to divide the datasets into optimization and validation
targets. Among the DMM experiments, IDTs, taken from Jacobs et al. [22] and Gillespie
[24], are the selected optimization targets, covering a wide range of temperatures (T ≃
700–1800 K), pressure (P = 1 - 40 bar) and composition (ϕ = 0.5 - 2). OME2–4 sub-
mechanisms were optimized on all the IDT experiments by Cai et al. ([23]), performed
at T ≃ 600–1100 K, P = 10–20 bar and ϕ = 0.5–2. Figure 3.16 summarizes all the
data points from 9 datasets chosen as optimization targets, represented in a temperature,
pressure and equivalence ratio space. The whole range of experimental conditions was
largely covered for the optimizations.
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(a) DMM Optimization database.
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(b) OME2 Optimization database.
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(c) OME3 Optimization database.
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(d) OME4 Optimization database.

Figure 3.16: Experimental data on OME1-4 adopted as optimization targets, in terms of
Temperature, Pressure and Equivalence ratio.
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3.6.2. Reaction classes input

In order to submit to OptiSMOKE++ the class organization, a function has been inserted
inside the environment of the toolbox able to read the reactions that belong to a specific
class and all the parameters (i.e., uncertainties, scaling factors, etc ...). As it is possible to
notice from the above list, some very interesting features have been added to OptiSMOKE++.
The .txt file allows to deeply customize our optimization, meaning that we can select
the parameter to be optimized for each reaction belonging to the class and also to not
optimize the reaction itself. It also allows running a specific case of optimization: the
substitution.
The .txt file structure is reported in Alg.3.1.

Algorithm 3.1 OptiSMOKE++ Reaction Classes Input
1: Name of the class
2: List of reactions belonging to the class
3: Uncertainty factors
4: Target of optimization
5: Scaling factor for lnA
6: 1 or 0 to select the reaction to optimize for lnA
7: Scaling factor of beta
8: 1 or 0 to select the reaction to optimize for beta
9: Scaling factor of E/R

10: 1 or 0 to select the reaction to optimize for E/R
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In this chapter, the results obtained from the optimization per class are presented for the
four species and validated against a wide range of experimental values. For each species,
the results are divided according to the fuel and the simulation type. In all the subsections
the results are organized in plots where the detailed, the lumped and the optimized model
are plotted within the experimental results obtained by different authors. All simulations
are carried out with OpenSMOKE++[72]. IDTs measure in STs have been simulated in Batch
Reactors, using the same definition adopted in the corresponding paper. The match
between such amount of experiments and models is validation. Typically, this evaluation
is done manually, where experimental data and model outcomes are graphed together, and
it is left to the discretion of the scientist to determine if the model is acceptable based
on the degree of agreement observed. This traditional approach has been employed since
the inception of science, but it is subjective and relies on the expertise of the scientist
and the specific experiments being conducted. As a result, the same comparison can be
deemed acceptable by some, excellent by others, and inadequate by others [76]. So that
at the end of each section, a summary table comparing the CM index of each simulation
is given in order to try to quantify how "well" or not the new proposed model behaves
with respect to the lumped and detailed one.
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4.1. DMM

The DMM experimental database is extensive, encompassing a variety of operational
parameters, and depicted in Figure 4.1. It comprises 30 datasets, which include IDTs in
STs [22, 24–26], LFSs [24], specieations in PFRs by Marrodan et al. [27] and in JSRs by
Vermeire et al. [28]. Out of these 3 experimental datasets were identified as optimization
targets (as reported in Section 3.6.1), while the remaining 27 were used for performance
validation. Further validations are available in Appendix ??.

Figure 4.1: Database of experimental values for DMM.
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4.1.1. Ignition Delay Times
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(b) IDTs of DMM/O2 at P = 1bar and ϕ = 0.5−2.
The mixture is diluted in 99% Ar.
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(c) IDTs of DMM/O2 at P = 3.5bar and ϕ = 0.5−
2. The mixture is diluted in 99% Ar.
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(d) IDTs of DMM/O2 at P = 9bar and ϕ = 0.5−2.
The mixture is diluted in 99% Ar.

Figure 4.2: IDTs of DMM measured in a ST by Jacobs et al. [22] 4.2a and Gillespie [24]
Fig. 4.2b, Fig. 4.2c and Fig. 4.2d, compared with the detailed mechanism (solid line),
the lumped one (dashed line) and the optimized too (dotted line).

IDTs experiments at medium and high temperature combustion (T ≃ 750 - 1800 K) were
gathered by Gillespie [24] across a range of equivalence ratios (ϕ = 0.5 - 2) and pressures
(P ≃ 1 - 9 bar). Meanwhile, Jacobs et al. [22] conducted experiments at ϕ = 1, lower
temperatures (T ≃ 700 - 1200 K), and higher pressures (P = 20 - 40 bar).

Figure 4.2a clearly shows that the optimized model outperforms both the Detailed and
Lumped models at medium-low temperatures. This outcome was expected because in a
combustion process the higher the temperature the lower is the structure of the molecules
that are crucially involved. Even if the experimental values at P = 40bar was not used
as optimization target, this trend is confirmed in the case of lower pressure (i.e., P = 20
bar) too.
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Additionally, to demonstrate the effectiveness of the presented procedure, Figure 4.2b,
Figure 4.2c, and Figure 4.2c display three different DMM datasets measured at distinct
equivalence ratios. Despite using only P = 1 bar at ϕ = 0.5 and P = 9 bar at ϕ = 2 as
optimization targets, the model still reasonably reproduces the trends and exhibits good
performance with some exceptions.

Based on low-pressure results of Gillespie (Figures 4.2b and 4.2c), it seems that high-
temperature reactivity is overestimated, particularly for rich conditions. This phenomenon
is observed in all three mechanisms, as the lumping process and the optimization one
primarily affect low-temperature kinetics. Similarly, the NTC (Negative Temperature
Coefficient) region at P = 9 bar (Figure 4.2d) shows excessive reactivity, but the error is
amplified in the lumped mechanism and not recovered by the optimized process. Figure
4.2c is noteworthy because, despite not utilizing any of the experimental data as targets
for optimization, the optimized model exhibits excellent agreement with the experimental
data.
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(a) IDTs of DMM/O2 at P = 2atm and ϕ = 0.5–2.
The mixture is diluted in about 95% Ar.
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Figure 4.3: DMM IDTs measured in a ST by Hu et al. [25] Fig. 4.3a and Herzler et
al. [26] Fig. 4.3b, compared with the detailed mechanism (solid line), the lumped one
(dashed line) and the optimized too (dotted line).

The results of the ST experiments conducted by Hu et al. [25] and Herzler et al. [26] are
depicted in Figure 4.3. Hu et al. conducted their experiments at a temperature range of
approximately 1100-1400 K and a pressure of 2 atm, while Herzler et al. conducted theirs
at a temperature range of approximately 600-1400 K and a pressure of 30 bar. Both sets
of experiments investigated the effects of different fuel-to-air ratios (ϕ = 0.5, ϕ = 1 and
ϕ = 2).

As stated previously, Figure 4.3a indicates that the optimization process does not have
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a deep impact at high-temperature reactivity, and accurate predictions of the original
model are maintained in the other two. The NTC behavior in Figure 4.3b is enhanced
in the lumped chemistry, and recovers after optimization, still the high- and medium-
temperature range is not perfectly matched especially in lean conditions (ϕ = 0.5). Al-
though neither dataset was used as the optimization target, both were employed solely for
validation purposes and it is worth noting that the experimental data show remarkable
consistency with the results obtained.

4.1.2. Laminar Flame Speeds

Among the all datasets presented in Figure 4.1, Gillespie [24] has only conducted LFS
measurements for DMM at P = 1 atm, at three distinct temperatures (298 K, 328 K, and
358 K), covering a range of equivalence ratios from ϕ = 0.6 to 1.8.

The detailed mechanism yields results that are in agreement with the experiments, with
only a minor overestimation that increases with temperature and occurs at the maximum
velocity (i.e., ϕ ≃ 1.2). Since DMM LFS is solely governed by C1-C3 reactions, the
lumping process does not affect the behavior of the model and the optimization partially
recovers the error introduced by this operation.
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Figure 4.4: DMM LFSs measured by Gillespie [24], compared with the detailed mech-
anism (solid line), the lumped one (dashed line) and the optimized too (dotted line).
Experiments are carried out at atmospheric pressure and T = 298–358 K. DMM is di-
luted in Air.
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4.1.3. Plug Flow Reactors

Figures 4.5, 4.6, and 4.7 display the species concentration data obtained from Marrodan
et al. [27] in a PFR under varying conditions of λ (i.e., fuel-air ratio, λ = 0.7/1/20). The
experiments were conducted over a wide range of pressures (20-60 bar) and temperatures
(400-1100 K).

The three mechanisms provided satisfactory representations of the DMM mole fraction
but overestimated its reactivity at lower temperatures, particularly at high pressures and
λ values. CO and CO2 showed some inconsistencies, particularly at T > 700 K, indi-
cating incomplete combustion in the models. The lumping process caused modifications
in the simulation results, leading to poor accuracy in intermediate combustion species
like CH3OCHO, CH2O and CH4. Even if these datasets were not employed as optimiza-
tion targets, the good agreement of the obtained results confirms the consistency of this
approach.

The final mechanism also led to performance improvements for CH4 too, describing. But
for other species, like for CH3OCHO and CH2O, the poor agreement of the lumped model
is only partially recovered, in both cases the production and the subsequent destruction
are way too anticipated with decreasing both the λ and the pressure.
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Figure 4.5: Marrodan et al. [27] experiments on DMM combustion in a PFR, measuring
species mole fractions and comparing to model predictions. The experiments were carried
out under conditions of λ = 0.7 and P = 20-60 bar, with DMM and O2 diluted in N2.
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Figure 4.6: Marrodan et al. [27] experiments on DMM combustion in a PFR, measuring
species mole fractions and comparing to model predictions. The experiments were carried
out under conditions of λ = 1 and P = 20-60 bar, with DMM and O2 diluted in N2.

400 600 800 1000

Temperature [K]

0

2

4

6

8

D
M

M
m

ol
ar

fr
ac

ti
on

[-
]

×10−4

Detailed

Lumped

Optimized

Marrodán, 2021, P = 20bar

Marrodán, 2021, P = 40bar

Marrodán, 2021, P = 60bar

400 600 800 1000

Temperature [K]

0

2

4

6

C
H

2O
m

ol
ar

fr
ac

ti
on

[-
]

×10−4

Detailed

Lumped

Optimized

Marrodán, 2021, P = 20bar

Marrodán, 2021, P = 40bar

Marrodán, 2021, P = 60bar

400 600 800 1000

Temperature [K]

0.0

0.5

1.0

1.5

2.0

2.5

C
O

2
m

ol
ar

fr
ac

ti
on

[-
]

×10−3

Detailed

Lumped

Optimized

Marrodán, 2021, P = 20bar

Marrodán, 2021, P = 40bar

Marrodán, 2021, P = 60bar

400 600 800 1000

Temperature [K]

0.0

0.5

1.0

1.5

C
O

m
ol

ar
fr

ac
ti

on
[-

]

×10−3

Detailed

Lumped

Optimized

Marrodán, 2021, P = 20bar

Marrodán, 2021, P = 40bar

Marrodán, 2021, P = 60bar

400 600 800 1000

Temperature [K]

0.0

0.5

1.0

1.5

2.0

2.5

C
H

3O
C

H
O

m
ol

ar
fr

ac
ti

on
[-

]

×10−4

Detailed

Lumped

Optimized

Marrodán, 2021, P = 20bar

Marrodán, 2021, P = 40bar

Marrodán, 2021, P = 60bar

Figure 4.7: Marrodan et al. [27] experiments on DMM combustion in a PFR, measuring
species mole fractions and comparing to model predictions. Experiments were carried out
under conditions of λ = 20 and P = 20-60 bar, with DMM and O2 diluted in N2.
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4.1.4. Jet Stirred Reactors

Figure 4.8 displays the concentrations of various species measured by Vermeire et al. [28]
and their corresponding simulations. The JSR reactor was operated at near atmospheric
pressure and temperatures ranging from 600 to 1100 K, with equivalence ratios ranging
from 0.5 to 2. Simulations for equivalence ratio of 1 were only carried out for temperatures
below 1000 K, as no steady-state solution could be found for higher temperatures [97].

The models accurately reproduced the mole fractions of O2, CO, and CO2, while CH4,
C2H4, and C2H6 exhibited minor errors, especially in the lumped model, which were
corrected by the optimized one. The predictions for DMM were also quite accurate,
and the optimized model improved the predictions for DMM with increasing equivalence
ratio. The optimized model also improved the profiles of CH2O and CH3OCHO, which
were better than those of the lumped model but still not very accurate.

500 600 700 800 900 1000 1100

Temperature [K]

0.0

0.2

0.4

0.6

0.8

1.0

D
M

M
m

ol
ar

fr
ac

ti
on

[-
]

×10−2

Detailed

Lumped

Optimized

Vermeire, 2021, φ = 0.25

Vermeire, 2021, φ = 1

Vermeire, 2021, φ = 2

500 600 700 800 900 1000 1100

Temperature [K]

0

1

2

3

4

C
H

2O
m

ol
ar

fr
ac

ti
on

[-
]

×10−3

Detailed

Lumped

Optimized

Vermeire, 2021, φ = 0.25

Vermeire, 2021, φ = 1

Vermeire, 2021, φ = 2

500 600 700 800 900 1000 1100

Temperature [K]

0.0

0.5

1.0

1.5

2.0

C
H

3O
C

H
O

m
ol

ar
fr

ac
ti

on
[-

]

×10−3

Detailed

Lumped

Optimized

Vermeire, 2021, φ = 0.25

Vermeire, 2021, φ = 1

Vermeire, 2021, φ = 2

500 600 700 800 900 1000 1100

Temperature [K]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

O
2

m
ol

ar
fr

ac
ti

on
[-

]

×10−1

Detailed

Lumped

Optimized

Vermeire, 2021, φ = 0.25

Vermeire, 2021, φ = 1

Vermeire, 2021, φ = 2

500 600 700 800 900 1000 1100

Temperature [K]

0.0

0.5

1.0

1.5

2.0

C
O

m
ol

ar
fr

ac
ti

on
[-

]

×10−2

Detailed

Lumped

Optimized

Vermeire, 2021, φ = 0.25

Vermeire, 2021, φ = 1

Vermeire, 2021, φ = 2

500 600 700 800 900 1000 1100

Temperature [K]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
O

2
m

ol
ar

fr
ac

ti
on

[-
]

×10−2

Detailed

Lumped

Optimized

Vermeire, 2021, φ = 0.25

Vermeire, 2021, φ = 1

Vermeire, 2021, φ = 2

500 600 700 800 900 1000 1100

Temperature [K]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
H

4
m

ol
ar

fr
ac

ti
on

[-
]

×10−3

Detailed

Lumped

Optimized

Vermeire, 2021, φ = 0.25

Vermeire, 2021, φ = 1

Vermeire, 2021, φ = 2

500 600 700 800 900 1000 1100

Temperature [K]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
2H

4
m

ol
ar

fr
ac

ti
on

[-
]

×10−4

Detailed

Lumped

Optimized

Vermeire, 2021, φ = 0.25

Vermeire, 2021, φ = 1

Vermeire, 2021, φ = 2

500 600 700 800 900 1000 1100

Temperature [K]

0.0

0.5

1.0

1.5

2.0

C
2H

6
m

ol
ar

fr
ac

ti
on

[-
]

×10−4

Detailed

Lumped

Optimized

Vermeire, 2021, φ = 0.25

Vermeire, 2021, φ = 1

Vermeire, 2021, φ = 2

Figure 4.8: Vermeire et al. [28] experiments on DMM combustion in a JSR, measuring
species mole fractions and comparing to model predictions. Experiments were carried out
at ϕ = 0.5–2 and P = 1.07 bar. DMM is diluted in 99% O2 and Air.
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4.1.5. Conclusions
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Figure 4.9: Heatmap of the CM score obtained per each simulation of IDTs and LFSs.

Figure 4.9 displays a heatmap that summarizes the CM scores of IDTs and LFSs of
DMM according to the author and mechanism for the purpose of facilitating performance
comparisons.

High indices of LFSs indicate a close match between detailed kinetics and experimental
results, and neither the lumping nor optimization procedures significantly impacted the
predictions since controlling reactions remained unchanged.

The IDTs that the detailed mechanism forecasted are highly similar to the results obtained
in the experiments conducted by Gillespie, Herzler et al., and Hu et al., especially at
medium to high pressures. However, it is important to point out that the accuracy of the
detailed and lumped mechanisms is lower for the simulations conducted at low pressures
by Gillespie, specifically at P = 3.5 bar. Nonetheless, the optimized mechanism has
managed to recover most of the accuracy in these low-pressure simulations.

The optimization approach used proved successful in maintaining the consistency of the
model, as demonstrated by the higher performance of nearly all optimized mechanism
indices compared to those of the other two mechanisms.
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4.2. OME2

The experimental dataset for OME2 is composed of 15 sets of data, depicted in Figure
4.10. These datasets comprise ignition delay times (IDTs) measured in shock tubes [23]
and laminar flames [29–31]. Due to the lack of availability in literature of speciation data
for this species, these type of experiments are not employed in this validation. Out of these
15 datasets, only two of them (as listed in Section 3.6.1) were utilized as optimization
targets, while the other 13 were used for final validation purposes.

Figure 4.10: Database of experimental values for OME2.
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4.2.1. Ignition Delay Times
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(a) IDTs of OME2/Air at P = 10− 20bar and ϕ =
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Figure 4.11: IDTs of OME2 measured in a ST by Cai et al. [23] diluted in Air, compared
with the detailed mechanism (solid line), the lumped one (dashed line) and the optimized
too (dotted line).

The IDTs of OME2 were obtained in a ST by Cai et al. [23], with a range of operating
conditions including temperatures of approximately 650-1100 K, equivalence ratios of 0.5-
2, and pressures of 10-20 bar. The figure depicting the experimental results and model
predictions can be found in Figure 4.11.

The detailed mechanism overestimated IDTs for the majority of the relevant operating
conditions. This was especially true at ϕ = 1 and P = 20 bar, and it did not exhibit a
significant negative temperature coefficient (NTC) effect that was seen in the experimental
data. By contrast, the lumping procedure generally accelerated the kinetics and resulted
in a more pronounced NTC effect, leading to improved model accuracy. The optimized
solution tends to better replicate the detailed model at lower temperatures and the lumped
model at higher temperatures in both scenarios. However, the optimization sometimes
resulted in worse predictions, particularly for ϕ = 1. Although the detailed model already
performed well at ϕ = 2 and P = 20 bar, the lumped mechanism was found to be too
fast.
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Figure 4.12 presents a sensitivity analysis conducted at ϕ = 1, P = 20bar, and T = 900K

and at three different times, according to the methodology presented in Section 3.2. The
initial and ultimate times refer to the point at which only 1% of OME2 has undergone
conversion and the point at which almost all of the OME2 has reacted, with a conversion
of χ = 0.99. The analysis verifies that the reactions utilized in the optimization are the
most sensitive ones, thereby validating the approach and the favorable outcomes achieved.
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Figure 4.12: Sensitivity analysis conducted at ϕ = 1, P = 20bar, and T = 900K

Figure 4.12 illustrates that the reactions of interest are significant both at lower and higher
times, as the radical species formed in the beginning (such as CH3 and CH3O2) contribute
to the combustion propagation, while the lighter species (H and OH) play a crucial role
in the later stages.

The sensitivity analysis indicates that the most sensitive reaction is theH−abstraction by
HO2, which produces the radical H2O2 that subsequently decomposes into 2 OH radicals.
The latter reaction displays a high sensitivity coefficient at later time when the first one
becomes crucial and the species H2O2 is produced.
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4.2.2. Laminar Flame Speeds
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(a) LFSs of OME2/Air at P = 1− 10bar and T =
393K.
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Figure 4.13: LFSs of OME2 measured by Fritsche et al [29] (Figure 4.13a) and Ngugi et
al. [30] (Figure 4.13b) diluted in air, compared with the detailed mechanism (solid line),
the lumped one (dashed line) and the optimized too (dotted line).

Eckart et al. [31], Fritsche et al. [29], and Ngugi et al. [30] collected the Laminar Flame
Speed of OME2 under various operating conditions, including temperatures ranging from
383 K to 473 K, equivalence ratios of 0.6 to 2, and pressures of 1 to 10 bar.

Figure 4.13 displays a comparison of the LFSs measured by Fritsche et al. and Ngugi
et al. with the simulation results from the three mechanisms investigated. The detailed
model consistently under-predicts the LFSs by up to 20 cm/s across all cases from ϕ =
0.6 to 1.2, except for the dataset at T = 393 K and P = 10 bar by Fritsche et al. Fig.
4.13a, where it is quite accurate. The lumped mechanism shows a significant acceleration,
resulting in an improvement of all predictions except for the 10 bar dataset, which is now
overestimated.

The optimized mechanism mirrors the performance of the lumped model, maintaining
its good accuracy. Unfortunately, the 10 bar dataset in Figure 4.13a still exhibits poor
predictions without any improvement. This is inevitable since any improvement would
have conflicted with the accurate reproduction of all other LFSs, as also demonstrated
by the datasets from Eckart et al. in Figure 4.14 investigated at constant temperature.
Furthermore, in these experiments, the detailed model demonstrates a tendency to un-
derestimate each dataset to a greater degree as the temperature increases. While the
lumped model endeavors to bridge this disparity, the optimization process falls short due
to insufficient data, especially at T = 388 K and T = 401 K. It should also be noted that
none of the LFS datasets were used as an optimization target.
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Figure 4.14: OME2 LFSs measured by Eckart et al. [31] diluted in air, compared with
the detailed mechanism (solid line), the lumped one (dashed line) and the optimized too
(dotted line). The operative conditions are: P = 1 bar T = 383–401 K.
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Figure 4.15: Heatmap of the CM score obtained per each simulation of IDTs and LFSs.

The heat map presented in Figure 4.15 displays all the CM scores that evaluate the
performance of the OME2 simulations. The Figure is organized according to the author
and mechanism for the purpose of facilitating performance comparisons. The IDTs and
LFSs scores provide quantitative confirmation of the qualitative observations seen in the
plots.

The lumped model generally reproduces IDTs more accurately, and therefore, optimization
is not necessary. However, the lumped reactivity increase negatively affects the ϕ = 2
and P = 20 bar case, which is deeply recovered by the final mechanism outperforming the
detailed model too.

The detailed model is less accurate than the lumped one in predicting LFSs too. Op-
timization leads to minor improvements also because neither of these experimental data
were used as optimization targets. The datasets at P = 10 bar and T = 393 K, collected
by Fritsche et al. [29], confirm previous findings that both the lumped mechanism and the
optimized one tend to overestimate experimental data. Regarding the dataset of Eckart
et al., the optimized mechanism shows a higher level of conformity to the experimental
data compared to the two models.
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4.3. OME3

The collection of experimental data for OME3 consists of 9 datasets, as illustrated in
Figure 4.16. These datasets comprise IDTs measured in STs [23] and LFSs [29, 32], while
no speciation information is available in the literature yet. Out of the 9 datasets, 2
were selected as optimization targets, whereas the remaining 7 were utilized for model
validation. Further information can be found in Section 3.6.1.

Figure 4.16: Database of experimental values for OME3.
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(a) IDTs of OME3/Air at P = 10− 20bar and ϕ =
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Figure 4.17: IDTs of OME3/Air measured in a ST by Cai et al. [23] diluted in air,
compared with the detailed mechanism (solid line), the lumped one (dashed line) and the
optimized too (dotted line).

IDTs results in STs for OME3 were obtained by Cai et al. [23] at T = 700–1100K, ϕ =0.5–2
and P = 20bar, and are presented in Figure 4.17 alongside the models’ predictions.

Unlike OME2, the detailed model demonstrates reasonable agreement with the experimen-
tal data for the relevant conditions. Therefore, the acceleration of the lumping procedure
has resulted in a decline in the mechanism’s performance. However, this enhancement of
the NTC effect of the lumped model improved the agreement between the model and data
for the simulation conducted at ϕ = 2 bar and P = 20 bar. The optimization process has
significantly impacted the IDTs of OME3, reducing its reactivity at low temperatures and
bringing the optimized mechanism closer to the original detailed one. This can be ob-
served in Figure 4.17b, where the optimized model closely reproduces the detailed model
with high accuracy.
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Figure 4.18: Sensitivity analysis performed at ϕ = 1, P = 10bar and T = 950K.

Figure 4.18 presents a sensitivity analysis conducted at ϕ = 1, P = 10bar, and T = 950K.
The analysis verifies that the reactions utilized in the optimization are the most sensitive
ones, thereby validating the approach and the favorable outcomes achieved.

As for OME2, the most sensitive reaction is the H − abstraction by HO2 due to the fact
that it produces H2O2 which reacts forming 2 OH radicals. The sensitivity coefficient is
higher for the reaction H2O2 → 2OH due to the higher temperature chosen at which the
sensitivity analysis was performed.
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(a) LFSs of OME3/Air at P = 1atm and T =
408K.
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Figure 4.19: LFSs of OME3 measured by Sun et al. [32] (Figure 4.19a) and Fritsche et
al. [29] (Figure 4.19b) diluited in air, compared with the detailed mechanism (solid line),
the lumped one (dashed line) and the optimized too (dotted line).

Figure 4.19 displays the LFS measurements carried out by Sun et al. [32] and Fritsche
et al. [29], as well as the simulation outcomes of the models. The studies focused on the
following set of conditions: T = 408-438 K, ϕ = 0.7-1.6, and P = 1-10 bar.

The dataset from Sun et al. is reasonably well predicted by the detailed mechanism,
with an overestimation of less than 5 cm/s only for rich conditions. However, both the
lumped and optimized models show a slight worsening in performance compared to the
detailed mechanism at higher ϕ (i.e., rich conditions), enhances the error introduced by
the detailed model. On the other hand, for all pressures, the datasets by Fritsche et al.
are under-predicted, with only the dataset at P = 3 bar showing good agreement. It is
worth noting, however, that the limited availability of data for higher pressures reduces
the reliability of the evaluation.
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Figure 4.20: Heatmap of the CM score obtained per each simulation of IDTs and LFSs.

The performance of OME3 models was quantitatively determined using CM indices, and
the results were presented in Figure 4.20 as a heat map.

The IDTs were found to slightly deteriorate with increasing kinetics acceleration due to
lumping, except for the simulation at ϕ = 2 and P = 20 bar. However, the final optimized
model was able to recover most of the original accuracy.

In contrast, the CM indices of LFSs could not be evaluated for the datasets of Fritsche et
al. at P = 5-10 bar due to the presence of single data points, and the ones that could be
evaluated showed poor performance due to the small number of data entries. The scores
for the experiments conducted by Sun et al. were able to accurately reflect the good
behavior of the models in reproducing the data.
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4.4. OME4

Figure 4.21 illustrates the five datasets included in the OME4 experimental database,
which comprise IDTs in STs [23] and LFSs [33]. Unfortunately, as in the case of OME2

and OME3, speciation informations of PFR and JSR are not yet available. Due to the
limited quantity of data, both datasets of IDTs were used as optimization targets.

Figure 4.21: Database of experimental values for OME3.
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Figure 4.22: IDTs of OME4 measured in a ST by Cai et al. [23], compared with the
detailed mechanism (solid line), the lumped one (dashed line) and the optimized too
(dotted line). OME4 is diluted in air.

The sole available IDTs for OME4 were obtained in a ST by Cai et al. [23] at T =
750–1050K, ϕ = 1, and P = 10–20 bar.

The detailed mechanism accurately replicates the experimental data. However, similarly
to OME3, the lumped model is too rapid by a factor of approximately 2 and exhibits
a noticeable NTC behavior. The optimized kinetics address these issues and precisely
model the experimental data closing the gap between the model and experimental data.
However, at higher temperatures and P = 10 bar, the optimized mechanism experiences
some losses in accuracy, but it corrects the larger overestimation of the detailed model
thus resulting in a better agreement.
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Figure 4.23: Sensitivity analysis conducted at P = 10bar, T = 100K, and ϕ = 1.

In the same ST reactor, sensitivity analyses were conducted at three different characteristic
times, as described in Section 3.2. Figure 4.23 indicates that the reactions used in the
optimization are highly significant, as confirmed by the local sensitivity analysis carried
out under the conditions of P = 20bar, T = 870K, and ϕ = 1.

The H-abstractions are crucial in this case as they are part of the reactions that regu-
late the progression of the process. Therefore, optimizing these reactions is a valid choice.
However, during the initial stages, it becomes evident that the oxidation of OME4 QOOH
is not as critical as for OME2 and OME3. This is due to the minimal production of
OME4 O2QOOH at high temperatures, which is rapidly destroyed. The situation is re-
versed below about 1000 K. The reaction involving OME4 O2QOOH drives the oxidation,
making it highly sensitive. It is worth noting that at such high temperature, the sensi-
tivity coefficient of the reaction H2O2 → 2OH is higher than the one observed for OME2

and OME3.



76 4| Validation and results

4.4.2. Laminar Flame Speeds
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Figure 4.24: LFSs of OME4 measured by Richter et al.[33] compared with the detailed
mechanism (solid line), the lumped one (dashed line) and the optimized too (dotted line).
OME4 is diluted in air. Experiments are carried out at P = 1–6 bar and T = 473 K.

Richter et al. [33] have quantified the LFS measurements of OME4 and presented them
in Figure 4.24. The desired operating conditions are T = 473K, ϕ = 0.7–2, and P = 1–6
bar.

The detailed model and the nearly identical lumped model both underestimate the flame
velocity by about 15 cm/s, particularly near the maximum value at ϕ ≃ 1.2. Despite the
optimized model, it appears unable to bridge this discrepancy with the experimental data
because the reactions utilized in the optimization do not consider the C1-C3 reactions,
which are crucial for these kinds of experiments.
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Figure 4.25: Heatmap of the CM score obtained per each simulation of IDTs and LFSs.

In Figure 4.25, the CM scores for the OME4 datasets are summarized.

The lumping process was applied to improve LFSs predictions by increasing fuel burning
velocity, but this negatively affected IDTs performance due to higher reactivity.

The poor agreement of the lumped model with the experimental results is completely
recovered by the optimized model, which outperformed the initial detailed model in all
cases, indicating that the selection of reactions to optimize and experimental targets was
appropriate. However, the score of the lumped mechanism for IDTs at ϕ = 1 and P = 20
bar is notably low, which can be partly attributed to the smaller amount of data available
for these conditions, leading to a negative influence on curve comparison. Although the
lumped model exhibited similar qualitative behaviors in both conditions, the smaller
domain of experimental data at P = 20 bar caused a deterioration in the index.
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In the field of combustion, it is common to use models to simulate experiments to save
time and resources. The importance of detailed kinetics has been recognized and can be
implemented in heavy simulations for small fuels, but becomes limited when dealing with
more complex molecules. This is due to the large number of species that must be described
and the resulting increase in the number of transport equations to be solved. As a result,
detailed models of heavy molecules cannot be used in demanding tasks such as CFD
applications without becoming computationally unsustainable. Therefore, the search for
reduced mechanisms plays a key role in chemical kinetics to find a good trade-off between
accuracy and model size.

OMEs are a type of innovative fuel that is gaining attention due to their ability to reduce
soot and NOx as a diesel additive. It can be blended with diesel without significantly
altering its combustion, making it suitable for use in current engines with minimal mod-
ifications [23, 35, 42]. However, the available mechanisms describing OMEs are detailed
and suffer from the aforementioned limitations. Hence, a reduced model is necessary to
expedite CFD studies on combustion in engines.

It is important to ensure that the reduced model reflects the key features of the detailed
model and preserves the physical consistency of the chemistry of the process being simu-
lated. This is because the reduced model is used as a substitute for the detailed model and
any inaccuracies in the reduced model can affect the accuracy of the simulation results.
Therefore, an optimization process is required to recover the performance of the detailed
model while ensuring that the reduced model remains physically consistent.

5.1. Results

In this work, a data-driven, class-based optimization methodology was applied to calibrate
the reaction rate of different classes of reaction. The presented method resulted in a
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kinetic mechanism that is consistent with the underlying chemistry, while also achieving
good agreement with experimental data, including data points that were not included in
the optimization process.

The methodology largely reduces the number of parameters to be considered and therefore
it is applicable even in the case where a large number of important reactions are present.
The methodology allows the discovery and calibration of parameters that are difficult to
obtain with computational chemistry tools or experimental measurements, or which have
not been studied yet. The new kinetic model is finally validated among wide experimental
data, including IDTs from ST reactor, speciation in JSR and PFR, and laminar flames
measurement.

Figure 5.1 presents the average CM index for the three models compared in this study,
providing an objective evaluation of their agreement with experimental data. The CM
index ranges from 0 to 1, with 1 indicating perfect agreement and 0 indicating maxi-
mum disagreement. According to the results, the new optimized approach demonstrates
superior performance compared to the other models for all fuels, particularly for DMM
and OME2, where it even outperforms the detailed model. For OME3 and OME4, the
optimized approach achieves the same level of performance as the detailed model. These
outcomes confirm the success of the procedure in achieving a higher level of consistency
while maintaining accuracy.
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Figure 5.1: Summary of the average CM index for the three models examined per fuel.
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5.2. Future work

The results obtained in this work show several interesting applications of this feature now
fully implemented in OptiSMOKE++. First of all, it guarantees a more physical consistency
between the lumped kinetic model and the detailed one. The results of the optimization
itself are in many cases better than the local optimization of different reactions. Of course,
there is still room for several improvements so, to conclude, a list of the possible future
works it is discussed in this final part.

5.2.1. Selection of the classes

In the context of chemical kinetics, the detailed mechanism can be quite complex and chal-
lenging to work with due to the large number of species and reactions involved. Therefore,
it can be helpful to divide the mechanism into classes based on similarities in chemical
structure or reaction pathways. This allows for a more systematic and organized approach
to analyzing the mechanism and mapping its behavior. By performing a sensitivity anal-
ysis, one can identify the most important classes and refine the selection to achieve better
accuracy and computational efficiency. This can lead to a more efficient and accurate
model for studying chemical kinetics and related processes. In Appendix B, there is a
comprehensive list of the most sensitive reactions along with their corresponding sensitiv-
ity coefficients at the condition described in Chapter 3. In Figure 5.2 it is possible to the
reactions with a sensitivity coefficient until |0.65|.

5.2.2. Kinetic mechanism

Once the classes have been identified, a lumped kinetic mechanism can be constructed
based on these classes. This involves combining the reactions and species in each class
into a single entity, reducing the total number of species and reactions in the mechanism.
The lumped mechanism can then be used to simulate the chemical system of interest,
while also providing insights into the key reaction pathways and species that drive the
overall behavior.

The development of a lumped kinetic mechanism involves some level of simplification, as
the individual reactions and species within each class are combined into a single entity.
However, this simplification can greatly reduce the computational cost of simulating the
chemical system, making it more feasible to perform complex simulations such as those
involved in computational fluid dynamics (CFD) studies.

The idea is to use this class-based approach to develop a kinetic scheme for higher OME
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R2001: CH3OCH2=CH3+CH2O  (1.0000)
R2124: CH3O2+DMM=>CH3O2H+DMM-R  (-1.0000)
R2146: OH+DMM=>H2O+DMM-R  (-1.0000)
R2160: DMM-RO2=>DMM-QOOH  (-1.0000)
R2214: O2+DMM-QOOH=>DMM-O2QOOH  (-1.0000)
R2114(inf): DMM(+M)=>CH3+CH3OH+HCO(+M)  (-1.0000)
R9: H2O2(+M)=2OH(+M)  (-0.9977)

R154(inf): 2CH3(+M)=C2H6(+M)  (0.9963)
R2144: CH3+DMM=>CH4+DMM-R  (-0.9850)
R2008: O2+DME-QOOH=DME-OOQOOH  (-0.9547)

R2161: DMM-QOOH=>DMM-RO2  (0.8839)
R37: HO2+CH3=O2+CH4  (0.8754)

R125: HO2+CH2O=H2O2+HCO  (-0.8731)
R75: HO2+CH3=OH+CH3O  (-0.8710)

R124: OH+CH2O=H2O+HCO  (0.7956)
R2122: HO2+DMM=>H2O2+DMM-R  (-0.7484)
R2002: O2+CH3OCH2=DME-OO  (-0.6737)
R2224: DMM-OQOOH=>OH+DMM-ketRO  (-0.6548)

Summary Sensitivity local Analysis

Figure 5.2: Sensitivity reactions for DMM at P = 10atm, T = 600− 1300K and ϕ = 1.

too, in order to have a scheme valid for a mixture that can be used in a diesel engine.

5.2.3. Scaling factor

The crucial factor in creating a reduced kinetic mechanism is determining the appropriate
scaling factor, which plays an important role in constructing a new kinetic scheme. To
achieve this, the reference species must be thoroughly evaluated, using techniques such
as experimental data, quantum chemical calculations, or ab initio calculations. Once this
evaluation is completed for the identified classes, the scaling factor can be determined for
the species of interest. By following this procedure, a balance can be achieved between
accuracy and computational cost, enabling simulations of intricate chemical systems.
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A| Species dictionary

Pseudospecies Isomers
CHEMIKIN name name
DMM Dimetoxymethane (OME1)
DMM-R DMM alkyl radical
DMM-RO2 DMM peroxy radical
DMM-ROOH DMM hydroperoxide
DMM-RO DMM alkoxy radical
DMM-ket DMM ketone
DMM-ketR DMM ketone radical
DMM-cycleth DMM cyclic ether
DMM-QOOH DMM hydroperoxy-alkyl radical
DMM-O2QOOH DMM hydroperoxy-alkyl-peroxy radical
DMM-OQOOH DMM keto-hydroperoxide
CH3OCOOH DME carboxylic acid
DMM-R2OOH DMM dihydroperoxyl-alkyl radical
DMM-ketRO DMM keto-alkoxy radical
DMM-cyclethOOH DMM hydroperoxy cyclic ether
CH2OCHO DME ketone radical
OME2 Oxymethilene ether 2
OME2-R OME2 alkyl radical
OME2-RO2 OME2 peroxy radical
OME2-RO OME2 alkoxy radical
OME2-QOOH OME2 hydroperoxy-alkyl radical
OME2-ROOH OME2 hydroperoxide
OME2-cycleth OME2 cyclic ether
OME2-O2QOOH OME2 hydroperoxy-alkyl-peroxy radical
OME2-OQOOH OME2 keto-hydroperoxide
CH3OCH2OCOO DMM keto-alkoxy radical



94 A| Species dictionary

Pseudospecies Isomers
CHEMIKIN name name
OME3 Oxymethilene ether 3
OME3-R OME3 alkyl radical
OME3-RO2 OME3 peroxy radical
OME3-RO OME3 alkoxy radicals
OME3-QOOH OME3 hydroperoxy-alkyl radical
OME3-ROOH OME3 hydroperoxide
OME3-O2QOOH OME3 hydroperoxy-alkyl-peroxy radical
OME3-OQOOH OME3 keto-hydroperoxide
OME2-ketRO OME2 keto-alkoxy radical
CH3OCH2OCH2OCHO OME2 ketone
OME2-ketR OME2 ketone radical
OME4 Oxymethilene ether 4
OME4-R OME4 alkyl radical
OME4-RO2 OME4 peroxy radical
OME4-RO OME4 alkoxy radical
OME4-QOOH OME4 hydroperoxy-alkyl radical
OME4-ROOH OME4 hydroperoxide
OME4-cycleth OME4 cyclic ether
OME4-O2QOOH OME4 hydroperoxy-alkyl-peroxy radical
OME4-OQOOH OME4 keto-hydroperoxide
OME3-ketRO OME3 keto-alkoxy radical
OME3-ketR OME3 ketone radical
C4H9O4CHO OME3 ketone



B| Summary of the sensitivity

analysis

The results obtained with the local sensitivity analysis for the DMM P = 10 atm and
equivalence ratio equal to 1 between T of 600-1300K are summarized in Tables below.

Sensitivity Coefficient Index Reaction
1.0000 R2001 CH3OCH2=CH3+CH2O
-1.0000 R2124 CH3O2+DMM=>CH3O2H+DMM-R
-1.0000 R2146 OH+DMM=>H2O+DMM-R
-1.0000 R2160 DMM-RO2=>DMM-QOOH
-1.0000 R2214 O2+DMM-QOOH=>DMM-O2QOOH
-1.0000 R2114(inf) DMM(+M)=>CH3+CH3OH+HCO(+M)
-0.9977 R9 H2O2(+M)=2OH(+M)
0.9963 R154(inf) 2CH3(+M)=C2H6(+M)
-0.9850 R2144 CH3+DMM=>CH4+DMM-R
-0.9547 R2008 O2+DME-QOOH=DME-OOQOOH
0.8839 R2161 DMM-QOOH=>DMM-RO2
0.8754 R37 HO2+CH3=O2+CH4
-0.8731 R125 HO2+CH2O=H2O2+HCO
-0.8710 R75 HO2+CH3=OH+CH3O
0.7956 R124 OH+CH2O=H2O+HCO
-0.7484 R2122 HO2+DMM=>H2O2+DMM-R
-0.6737 R2002 O2+CH3OCH2=DME-OO
-0.6548 R2224 DMM-OQOOH=>OH+DMM-ketRO
-0.4982 R2115(inf) DMM(+M)=CH2O+CH3OCH3(+M)
-0.4932 R126 CH3+CH2O=CH4+HCO
-0.4776 R2112(inf) DMM(+M)=CH3+CH3OCH2O(+M)
0.4325 R2213 DMM-QOOH=>OH+CH2O+CH3OCHO
0.4307 R2007 DME-QOOH=>OH+2CH2O

Table B.1: Sensitivity coefficient until |0.40|
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Sensitivity Coefficient Index Reaction name
0.3965 R20 2HO2=O2+H2O2
-0.3666 R2112 DMM(+M)=CH3+CH3OCH2O(+M)
0.3220 R131 O2+HCO=HO2+CO
-0.3016 R2113(inf) DMM(+M)=CH3O+CH3OCH2(+M)
0.2854 R2006 DME-OO=>OH+2CH2O
-0.2811 R2118 O2+DMM=>HO2+DMM-R
0.2688 R22 H+O2(+M)=HO2(+M)
0.2580 R21 2HO2=O2+H2O2
-0.2543 R85 CH3O2H=OH+CH3O
-0.2492 R2142 H+DMM=>H2+DMM-R
-0.2490 R2022 O2+HCO=O2CHO
-0.2487 R2152 O2+DMM-R=>DMM-RO2
0.2292 R2148 DMM-R=>CH2O+CH3OCH2
-0.2240 R5 H+O2=O+OH
-0.2237 R2005 DME-OO=DME-QOOH
0.2210 R2153 DMM-RO2=>O2+DMM-R
0.2114 R114 O2+CH3O=HO2+CH2O
-0.1870 R2004 O2+CH3OCH2=>OH+2CH2O
0.1766 R130 HCO+M=H+CO+M
-0.1723 R2010 DME-OOQOOH=OH+DME-OQOOH
-0.1689 R68 O2+CH3=OH+CH2O
-0.1633 R81 CH3+CH3O2=2CH3O
-0.1625 R2027 HOCH2OCO=CO+HOCH2O
0.1618 R2026 HOCH2OCO=CO2+CH2OH
0.1498 R78 OH+CH3O2=O2+CH3OH
-0.1346 R9(inf) H2O2(+M)=2OH(+M)
-0.1280 R141 CH3O(+M)=H+CH2O(+M)
-0.1223 R2126 CH3O+DMM=>CH3OH+DMM-R
-0.1195 R2011 DME-OQOOH=OH+OCH2OCHO
-0.1170 R2218 DMM-O2QOOH=>DMM-R2OOH
0.1084 R154 2CH3(+M)=C2H6(+M)
0.1001 R2167 2DMM-RO2=>O2+2DMM-RO
0.0993 R2216 DMM-O2QOOH=>OH+DMM-OQOOH
0.0970 R18 OH+HO2=O2+H2O
-0.0931 R129 CH3O2+CH2O=CH3O2H+HCO
0.0871 R1639 OH+CH3OCHO=>H2O+CH2O+HCO
0.0849 R2209 DMM-QOOH=>OH+DMM-cycleth
-0.0807 R2220 DMM-R2OOH=>OH+CH2O+DME-OQOOH
-0.0790 R2114 DMM(+M)=>CH3+CH3OH+HCO(+M)
0.0783 R2163 HO2+DMM-RO2=>O2+DMM-ROOH
0.0782 R2219 DMM-R2OOH=>DMM-O2QOOH

Table B.2: Sensitivity coefficient until |0.075|
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C| Supplementary Material

In this appendix, additional validation is presented to confirm the consistency of the
results obtained.

C.1. DMM
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(a) LFS of DMM/Air at 1, 3 and 5 bar and 298 K.
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Figure C.1: LFS measured by Shrestha et al. [34], compared with the detailed mechanism
(solid line), the lumped one (dashed line) and the optimized too (dotted line). DMM is
diluted in Air.
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D| Optimized Reactions

In the table D.1 are presented the values of the lumped and optimized mechanisms.

Lumped Optimized
Class Species A β Eatt/R A β Eatt/R
H-abstraction by OH OME1 8.52·102 3.21 -1860.85 4.58·102 3.17 -1866.21

OME2 2.91·102 3.33 -2002.62 1.58·102 3.29 -2149.56
OME3 5.20·102 3.27 -1926.05 2.76·102 3.23 -2008.48
OME4 8.22·102 3.22 -1870.32 4.40·102 3.18 -1891.45

H-abstraction by H OME1 1.30·106 2.44 4826.49 4.11·106 2.38 4570.93
OME2 1.57·106 2.31 4915.92 4.56·106 2.25 4719.35
OME3 4.55·106 2.2 4986.44 1.33·107 2.15 4863.01
OME4 8.26·106 2.15 5010.74 2.68·107 2.09 4858.39

H-abstraction by O OME1 3.31·106 2.36 2893.49 1.30·106 2.38 2887.88
OME2 4.34·106 2.39 2877.00 1.71·106 2.41 2871.39
OME3 5.38·106 2.40 2864.70 2.12·106 2.42 2859.09
OME4 6.48·106 2.41 2857.18 2.55·107 2.43 2851.57

H-abstraction by HO2 OME1 3.69·101 3.48 11740.74 2.91·101 3.43 11826.06
OME2 4.79·102 3.38 11702.84 3.78·102 3.33 11788.16
OME3 9.69·102 3.33 11704.44 7.64·102 3.28 11789.76
OME4 1.57·103 3.29 11710.13 1.24·103 3.24 11795.45

H-abstraction by O2 OME1 3.40·105 2.50 39872.39 3.11·105 2.50 40558.68
OME2 5.35·107 2.08 40249.38 4.90·107 2.08 40935.67
OME3 9.72·107 2.06 40277.11 8.91·107 2.06 40963.40
OME4 1.43·108 2.04 40292.61 1.31·108 2.04 40978.90

H-abstraction by CH3 OME1 6.27·100 3.57 7579.45 1.58·101 3.55 8048.29
OME2 1.66·102 3.39 7733.01 4.18·102 3.37 8201.85
OME3 4.13·102 3.31 7800.83 1.04·103 3.29 8269.67
OME4 7.34·102 3.27 7840.14 1.85·103 3.25 8308.98

H-abstraction by CH3O2 OME1 2.93·101 3.49 11740.47 6.53·101 3.05 7741.46
OME2 1.67·101 3.61 12089.53 5.28·101 3.54 11802.51
OME3 1.96·101 3.60 11964.50 6.19·101 3.53 11677.48
OME4 2.44·101 3.58 11886.55 7.71·101 3.51 11599.53

Table D.1: Kinetic constant parameters for the 7 classes identified, for the nominal mech-
anism and the optimized one.
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E| K check

In Figures E.1, E.2, E.3 and E.4 the check for the optimized reactions is presented per
each specie.
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E.1. DMM

The evaluation conducted for each reaction involved in the optimization of DMM can be
observed in Figure E.1. The temperature range taken into account spans from 500 K to
2000 K.
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Figure E.1: Comparison between lumped (in blue, straight line) and optimized mechanism
(in orange, dotted line) for considered reactions during optimization dor DMM.
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E.2. OME2

The evaluation conducted for each reaction involved in the optimization of OME2 can be
observed in Figure E.2. The temperature range taken into account spans from 500 K to
2000 K.
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Figure E.2: Comparison between lumped (in blue, straight line) and optimized mechanism
(in orange, dotted line) for considered reactions during optimization for OME2.
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E.3. OME3

The evaluation conducted for each reaction involved in the optimization of OME3 can be
observed in Figure E.3. The temperature range taken into account spans from 500 K to
2000 K.
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Figure E.3: Comparison between lumped (in blue, straight line) and optimized mechanism
(in orange, dotted line) for considered reactions during optimization for OME3.
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E.4. OME4

The evaluation conducted for each reaction involved in the optimization of OME4 can be
observed in Figure E.4. The temperature range taken into account spans from 500 K to
2000 K.
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Figure E.4: Comparison between lumped (in blue, straight line) and optimized mechanism
(in orange, dotted line) for considered reactions during optimization for OME4.
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