
Executive Summary of the Thesis

A Study of Evasive Behaviors in Commercial Packers

Laurea Magistrale in Computer Science Engineering - Ingegneria Informatica

Author: Giorgio Coccia

Advisor: Polino Mario

Co-advisor: Carminati Michele, Zanero Stefano

Academic year: 2021-2022

1. Abstract
The goal of this research is to show that
packers give a new layer of protection
against dynamic analysis to the original
file, in addition to compression and obfus-
cation. This research is based on the mea-
surement of a program that was packed
with 20 different packers. The instrumen-
tation tool utilized can identify 45+ dis-
tinct strategies, allowing anti-debugging
and anti-virtual machine methods to be
detected. The study will not only show
that there is a correlation between anti-
debugging and packers, but it will also
offer proof of the tactics used by each
packer.

2. Introduction
The Cyber Defense and topic related to the Cy-
ber Security have never been crucial as it is in
these days. The Russian war against Ukraine
[1] highlighted the importance of being Cyber
protected for companies, nations, and for a sin-
gle human. Every day we can hear of a group
of hackers leaking information, dropping down
and owning organizations, or declaring war on
the heads of the society[2]. In these settings,
discovering and repressing malicious attacks can

be decisive for the protection of your system and
information. Malware and virus are constantly
looking for unknown methods to avoid antivirus.
In the race between the malicious programs and
defensive tools, a relevant spot is detected by
packers. A packer [12] [4] is a tool that guaran-
tees obfuscation and compression to a program.
This means that it protects the content of the
file, making it difficult to read, and shrink it,
making it smaller and portable.
Despite the original benign intent of the packers,
they became a valuable resource for the virus.
The obfuscation feature is exploited to hide the
malicious content of a program from antivirus,
while the compression helped in spreading small
and effective trojans. While obfuscation and
polymorphism are great features against static
analysis, this research is gonna focus on the pos-
sibility that packers are moving towards a new
state of protection, adding features that pro-
tect also the file from dynamic analysis. We are
gonna detect the evasive behaviors of a packed
file, which means anti virtual machine technolo-
gies, anti-debugging techniques, or for example
different ways to slow down the analysis. The
innovative aspect is that this research exploits
a new way of analyzing the sample, the instru-
mentation [6]. While using a debugger would
take time to discover and reverse the whole code,

1

Executive summary Giorgio Coccia

the instrumentation makes it possible to detect
when a specific function is executed and apply
routines that may avoid the technique and col-
lect all the logs in the meanwhile. [11][9].

3. Implementation
The frameworks used for this research were tools
used to analyze malware in previous papers.
Starting from the original version, they were up-
dated with features that suited better the scope
of this research, the packers. The framework is
composed of Brioscia, a Client- Server structure
written in python that permits to detonate of
malware in a safe environment, collecting and
parsing the results. The most relevant changes
were done in the parser, a piece of code built
from scratch that permitted distinct new tech-
niques while producing an excel to summarize
the results for each packer. The newly added
technique are indicators that may evidence the
presence of a debugger and are shown in the
Table 1. The first part of the table is dedicated
to driver names that may be opened by the
packed sample for anti-debugging purposes [3].
Following, there is nkvwovuotd.exe which
is the name of the packed executable. The
first reason for this is that certain techniques
attempt to open the file to see if it has al-
ready been opened by another application that
may be examining it, returning an exception.
The second reason is because the registry
key "HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Image File Execution
Options\filename" where it may be stored
the NtGlobalFlag value (a flag that is set to
1 while debugging a program). Then there’s
the cng library, which is used to encrypt files,
and computer name fields, which may be
examined in the program to check the names
of virtual machines. The last one is Session
Manager , which is part of the path "HKLM\
System\CurrentControlSet\Control\
Session Manager" another way to check the
presence of the NTFlag [10].

The last changes applied are methods to obtain
better results, like ignoring multiple calls of the
same function, or ignoring the logs which are
equal to the log data of the starting program.
In this way, it is feasible to study only logs that

Blacklist

"EXTREM","FILEM","FILEVXG"
"ICEEXT","NDBGMSG.VXD","NTICE"
"REGSYS,"REGVXG","RING0"
"SICE","SIWVID","TRW"
"SPCOMMAND","SYSER","SYSERBOOT"
"SYSERDBGMSG","SYSERLANGUAGE"
"nkvwovuotd.exe","cng", "computername"
"activecomputername", "Session Manager"

Table 1: Table containg the blacklist used during
the parsing procedure.

are generated by a line of code inserted by the
packer. The second tool utilized is the Intel Pin
tool Brioscia, already used in the papers [11][9].
This is an instrumentation tool written in CPP
and contains an advanced pool of 45+ tech-
niques and various useful features against anti-
analysis techniques. The tool itself needed an
update to the last SDK of Visual Studio, but the
most relevant changes were introduced by new
techniques that were found in papers and anti-
debugging articles [10][5]. In particular, some of
the new hooks added were implemented to verify
evasive techniques based on the processes man-
agement. These types of techniques are based
on studying the father of the running process.
When a debugger starts a program, it becomes
the father of the process: if the father of the
sample is Explorer.exe, it is an expected be-
haviour because generated by double-clicking in
the system files. While, if the father is a de-
bugger or some other process, the packed file
could decide to terminate the program because
there is a high probability of being debugged.
The hooks needed to discover this techniques
are calls like the function Process32Next() or
Create32SnapshotTool(), both of them pro-
viding information about a process. Another
technique added which is specific to mew11, it’s
a technique that exploits the memory permis-
sion management. Some parts of the memory
of the process are labeled as Read_only and a
debugger can’t add any interrupt. One of these
parts of memory is the headers, and one of the
techniques is implemented by moving the code
in the headers part, preventing the debugger to
add any kind of line of code (Figure 1).
Following there is the hooked function Block-

2

Executive summary Giorgio Coccia

Algorithm 1 Piece of code added to check jmp
in the headers section. I is the single instruction
line while C is the set of all instructions executed
in the code.
1: Instruction
2: for I − In− C do
3: if I.operand == jmp then
4: if 0x400000 < I.memoryLocation <

0x401000 then
5: Jmp Headers Found
6: end if
7: end if
8: end for

Input(). This function is used for blocking ev-
ery input of the keyboard and the mouse. It
becomes difficult to debug the application in
this way since it is impossible to type on the
keyboard or pick tools in the Debugger GUI.
It is implemented simply by hooking the func-
tion and printing the result. Another func-
tion added is GetVersion(), this function is
used to ensure that the descriptor table layout
matches the operating system platform, discov-
ering if a system is being emulated. The hook
to OpenProcess() has been used for multi-
ple purposes, first to check when the program
is looking for the information of a specific pro-
cess, second for checking if the program tried
to open csrss.exe. When a process is being de-
bugged it acquires full control of the process
CSRSS.EXE, which is a system process. If a
different program tries to open the same pro-
cess it will cause an error, and demonstrate that
the file is probably being debugged. The last
technique added is a check on the Guard Page
exception code. This technique regards the EX-
CEPTION_GUARD_PAGE (0x80000001) [10]
and it is expressly used to check if the program
is running under the control of OllyDB debug-
ger. This technique consists in registering an
exception handler for the guard page exception,
allocating a writable/readable memory, and in-
serting a C3 instruction (RET) on it. After do-
ing this, it is needed to change the protection
of the allocated memory to Page Guard. When
this function is called, it will raise an exception
and if it doesn’t trigger the handler, it means
that it has been intercepted by a debugger. De-
bugActiveProcessStop() is the last function
added. This method is an alternative to De-

bugActiveProcess in that it can start a frash
clone of a debugged process. The issue is that
a process can only be debugged by one debug-
ger at a time; if it has already been debugged,
an error will occur. The function DebugActive-
ProcessStop() uses the identical procedure, but
instead of launching a process, it tries to stop
one that is already being debugged.

4. Results
The major goal of this study is to show that
at least half of the packers chosen to use one
evasive technique or more. Because some of the
functions involved may be employed for different
purposes, we split the outcomes into certain and
uncertain techniques during our research. De-
spite this categorization, we found that the main
goal was met, with 12 out of 20 packers using at
least one technique, regardless of whether or not
included uncertain techniques. The results ob-
tained are parsed in categories (Table 2), each
focusing on a different component of the run-
ning program in order to detect a debugger The
anti-debugging category is a set of functions and
methods that are recognized to be used for anti-
debugging purposes and are planned for check-
ing the debugger presence. Same story for anti
virtual machine category, but reference to the
capability of discovering a virtual machine. File
and Registry categories contain both anti-VM
and anti-debugging techniques, with the differ-
ence that the methods are applied by looking
into registries or file descriptors. The last ones
are stalling and timing, where the difference is
that the evasive behavior can be found by wait-
ing or measuring the execution time of instruc-
tions. In particular, timing consists in using
functions that measure the time of execution of
a portion of code and compare it with the tim-
ing obtained without a debugger. When a pro-
gram is being debugged the execution time is de-
layed because it adds routing e new instructions.
Stalling is referencing the attempt of delaying
and enlarging the timing of the execution, for es-
caping the execution under a sandbox, and slow-
ing down the analysis of a debugger. A sandbox
is a virtual machine used to automatically an-
alyze and run a program for a limited amount
of time. As it can be seen, in each category we
have multiple hits and a big variety of different
evasive techniques.

3

Executive summary Giorgio Coccia

Packers implementing Anti Dynamic Analysis

Alternate mpress2 pecompact obsidium enigmap rlp vmp telock pelock pcguard
ANTIDEBUG 0 0 0 1 2 0 7 2 3 3
ANTIVM 0 0 0 1 2 0 0 0 2 1
FILE 0 0 0 2 0 0 0 0 6 2
REGISTRY 0 0 0 0 2 0 0 0 2 7
STALL/TIME 0 0 0 1 4 0 1 0 2 4
RESULT ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓

kkrunchy upx exe32 enigmav yp themida1 mew11 asprot petite aspack
ANTIDEBUG 0 0 1 0 5 8 1 1 0 0
ANTIVM 0 0 0 0 2 2 0 1 0 0
FILE 0 0 0 0 2 0 0 0 0 0
REGISTRY 0 0 0 1 0 7 2 0 0 0
STALL/TIME 0 0 0 1 0 5 0 2 0 0
RESULT ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗

Table 2: This table collects for each packer the number
of certain techniques divided by category, and output if
they implements at least one technique.
✓ Indicates if the packer exploits at least one technique,
✗ if not.

In the table 2 we can see the number of tech-
niques implemented for each category. We can
evidence that the packers not involving eva-
sion are Upx, Mpress, Aspack, Pecompact,
Rlp, kkrunchy, petite, AlternateExe, most
of them are programs that derive from Upx, one
of the oldest and most used compression packer.
We demonstrated that Upx can be debugged
without finding any problem in the complete
version of the thesis. Because of this, the result
may propagate in the other packers that used
upx as a starting point and updated only the
obfuscation routines, without adding any anti-
debugging method. Because of a large number
of functions and methods, it is impossible to de-
scribe every result in this paper as it is done in
the original thesis, but we can provide the list of
techniques seen at least one time in the research
(Tab. 3) and the logs of at least one category
(Tab 4).
In the Anti debugging functions (4) we can find
relevant results, like 7 occurrences of IsDebug-
gerPresent or CheckRemoteDebuggerPresent, a
unique result proofing the anti-debugging inten-
tions without any doubts. But this technique
is just the beginning, following to it some well
known and recognizable techniques for check-
ing debugging flags (NtQueryInformationPro-
cess [7], NtGetContextThread) or functions ex-
ploiting exceptions (CloseHandles(),Interrupts).
A special mention goes to FindWindow, used
in this case by Themida and Yoda’s protec-
tor to check the presence of Procmon [8] and
the shell process.

Section Technique

Antidebug GetWindowThreadProcessId G#
Instruction: 0xf1 - IceBP
Instruction: INT 1
Instruction: INT 3
Instruction: POPF/D - TRAP FLAG SET
IsDebuggerPresent
JMP HEADERS technique
Memory-R: PEB->IS_DEBUGGED
Memory-R: PEB->NTGLOBALFLAG
NtClose(INVALID_HANDLE)
NtGetContextThread(CONTEXT_DEBUG_REGISTERS)
NtQueryInformationProcess(0x07)
NtQueryInformationProcess(0x1e)
NtQuerySystemInformation(0x23)
NtSetInformationThread(0x11)
Process32Next G#
SetUnhandledExceptionFilter #
SuspendThread G#
BlockInput

Antivm GetVersion G#
GetAdaptersInfo G#
GetComputerNameA G#
GetComputerNameW G#
GetCursorPosition
GetDiskFreeSpace G#
GlobalMemoryStatusEx
CPUID(eax=0x00000001) #
IN(0x564d5868, 0x00005658),Instruction: IN(0x68584d56, 0x77875856)
Instruction: SLDT,Instruction: SLDT
NtQuerySystemInformation(PHYSICAL_MEMORY_INFO) #
NtQuerySystemInformation(Process:vbox)
NtQuerySystemInformation(SYSTEM_PROCESS_INFORMATION)

File NtCreateFile(\\??\\global\\procmondebuglogger)
NtCreateFile(\\??\\ntice),
NtCreateFile(\\??\\sice)
NtCreateFile(\\??\\siwvidstart),
NtCreateFile(\\??\\spcommand)
NtCreateFile(\\??\\syser),
NtCreateFile(\\??\\syserboot)
NtCreateFile(\\??\\syserdbgmsg)
NtCreateFile(\\??\\global\\procmondebuglogger)

Registry NtOpenKey/Ex(\\registry\machine\hardware\acpi\dsdt\vbox)
NtOpenKey/Ex(\\registry\??\currentversion\image file execution options\ProgramName.exe)
NtOpenKey/Ex(\\registry\machine\software\wine\wine\config)
NtOpenKey/Ex(\\registry\??\control\computername\activecomputername)
NtQueryValueKey(\registry\??\system, videobiosversion)
NtQueryValueKey(\\registry\??\centralprocessor\0, identifier) sz = intel64 family 6) G#
NtQueryValueKey(\registry\??\activecomputername, computername) sz = msedgewin10)
NtQueryValueKey(\\registry\??\system, systembiosversion) = vbox - 1)
NtQueryValueKey(\\registry\??\system, videobiosversion) = oracle vm virtualbox bios)
NtQueryValueKey(\\registry\??\0000, driverdesc) = virtualbox graphics adapter (wddm)
NtQueryValueKey(\\registry\??\disk\enum, 0) = ide\\diskvbox_harddisk)

Stalling NtDelayExecution()
SetTimer()
Sleep/SleepEx()
waitForSingleObject/Ex()

Timing GetLocalTime G#
GetTickCount G#
GetTickCount64 #
Instruction: RDTSC/D
QueryPerformanceCounter #
timeGetTime G#

Table 3: Collection of all the techniques found divided
by categories.
#False Positive, G#Uncertain Technique, Certain tech-
nique.

function/packers Alter mpress pecomp obsid enigpr rlp vmp telock pelock pcguard
CheckRemoteDebuggerPresent, ✓

FindWindow(classname: filemonclass, procmon, regmonclass),
FindWindow(windowname: null, classname: shell_traywnd),
GetWindowThreadProcessId, ✓ ✓ ✓ ✓

Instruction: 0xf1 - IceBP, ✓

Instruction: INT 1, ✓

Instruction: INT 3,
Instruction: POPF/D - TRAP FLAG SET, ✓ ✓

IsDebuggerPresent, ✓ ✓ ✓

JMP HEADERS technique,
Memory-R: PEB->IS_DEBUGGED, ✓ ✓

Memory-R: PEB->NTGLOBALFLAG,
NtClose(INVALID_HANDLE), ✓

NtGetContextThread(CONTEXT_DEBUG_REGISTERS), ✓

NtQueryInformationProcess(0x07), ✓

NtQueryInformationProcess(0x1e), ✓

NtQuerySystemInformation(0x23), ✓ ✓

NtSetInformationThread(0x11), ✓ ✓

Process32Next,
SetUnhandledExceptionFilter, ✓ ✓ ✓ ✓

SuspendThread,
BlockInput

function/packers kkrun upx exe32 enigvm yp them mew11 asprot petite aspack
CheckRemoteDebuggerPresent, ✓

FindWindow(classname: filemonclass, procmon, regmonclass), ✓

FindWindow(windowname: null, classname: shell_traywnd), ✓

GetWindowThreadProcessId, ✓ ✓

Instruction: 0xf1 - IceBP,
Instruction: INT 1,
Instruction: INT 3, ✓

Instruction: POPF/D - TRAP FLAG SET,
IsDebuggerPresent, ✓ ✓ ✓ ✓

JMP HEADERS technique, ✓

Memory-R: PEB->IS_DEBUGGED,
Memory-R: PEB->NTGLOBALFLAG, ✓

NtClose(INVALID_HANDLE),
NtGetContextThread(CONTEXT_DEBUG_REGISTERS), ✓

NtQueryInformationProcess(0x07), ✓ ✓

NtQueryInformationProcess(0x1e), ✓

NtQuerySystemInformation(0x23),
NtSetInformationThread(0x11), ✓

Process32Next, ✓

SetUnhandledExceptionFilter, ✓ ✓ ✓ ✓ ✓ ✓ ✓

SuspendThread, ✓

BlockInput ✓

Table 4: Anti debugging logs’ results.

4

Executive summary Giorgio Coccia

->Process32Next(notepad.exe,10108)
->Process32Next(SearchFilterHost.exe,6416)
->Process32Next(pin.exe,6388)
->Process32Next(pin.exe,1608)
->Process32Next(hello_yp.exe,1168)
->Process32Next(svchost.exe,10084)
->Process32Next(svchost.exe,8860)
->Process32Next(SearchProtocolHost.exe,11536)
->Process32Next(SearchProtocolHost.exe,11536)
->CreateToolHelp32Snapshot(-1018964676, 4515593)
->CreateToolHelp32Snapshot(4, 1608)
->OpenProcess(1608)
->Launched an exception with code 0xc0000005

Figure 1: Logs evidencing how yoda’s protector
is enumerating processes to find the descriptor
of the current father’s process.

5. False positives and Impor-
tant findings

During our investigation, we came across some
intriguing techniques in the logs that either con-
firmed the findings of the previous publications
or revealed new techniques for specific packers.
Yoda’s Protector provides one of the most in-
teresting outcomes. Beginning with the control
of the parent process, this packer adds many
strategies to the original code. We saw in the
logs that the application listed all the processes
until pin.exe, which is the father of the pro-
cesses while performing instrumentation, and
then terminated the execution with an exception
(Fig. 1). The method is made up of the func-
tions Create32Snapshot() and Process32Next(),
and it has been defeated by interrupting the list-
ing procedure. The function Process32Next(), in
particular, allows a process to have the next el-
ement of a snapshot. If we constrict the method
to return false when it is called the first time,
the program can’t’ read all the list of processes
and continued the execution. After this step
we encountered new techniques like IsDebug-
gerPresent and BlockInput, demonstrating quite
clearly how the packer is interested in adding a
debugging protection.

The second interesting case is mew11, the only
packer implementing the jmp headers technique.
This type of technique has been described before

and it is probably a singular technique imple-
mented only by this packer. In the logs we found
more than one jmp to the headers, especially at
the beginning of the code, demonstrating that
the intention was to prevent the debugger from
analyzing the code at the beginning of its execu-
tion. The third relevant result is the anti virtual
machine techniques found in several packers.
These types of techniques look for indicators of a
virtualized environment in multiple areas. The
first and most important are the processes: we
found that Themida,Yoda’s protector and
Pelock are looking for virtual box instances in-
side the processes. In the logs we found Nt-
QuerySystemInformation() asking for informa-
tion about virtual box processes like Virtu-
alBox.exe,VirtualBoxVm and many others.
We tried to run Themida while Procmon was
running, and as well as in the previous case we
found in the logs a call to NtQuerySystemIn-
formation() asking for information about proc-
mon64 processes. These may be used as a scan
of processes for finding several apps used for the
analysis. As for processes, some of the indica-
tors are also searched in the file used, in partic-
ular, Pelock returned a large number of calls
to the function NtQueryAttributeFile(), asking
for the attributes of the file in input. This func-
tion is used to check the presence of two files
used for the execution of the virtual box, VBox-
Hook.dll and VBoxOGL.dll. The last sources
where we can look for the presence of a vir-
tual environment are the quantity of memory
of the environment, the network adapter, the
name of the machine, or the hardware config-
uration. All of these cases are shown in our re-
sults in the thesis, but the most interesting one
is a check performed by Themida. We found
in the logs of this packers two calls for the In
instruction (IN(0x564d5868, 0x00005658) and
IN(0x68584d56, 0x77875856)). The In instruc-
tion copies the values of the I/O port specified
inside a register, but some of the values of VBox
and VMWare are by default known. In this case,
Themida checks for the big-endian and little-
endian Magic Numbers of VMWare. The last
interesting finding reported is that the pack-
ers Enigma Protector, Pelock, PCGuard,
Enigma Virtual Machine, Themida, and
AsProtect are the only ones implementing a
stalling technique. Despite using functions that

5

Executive summary Giorgio Coccia

are used for waiting during the execution of their
samples, they demonstrated a stalling intent in
repeating that function thousands of times. The
final purpose was to slow the debugger or waste
time finishing the timer of a sandbox.

6. Conclusion
The goal of this study was to find answers to
three questions that are discussed in the next
part:
RQ1. Are anti-debugging tactics being used by
packers?
We found that 12 of the 20 packers utilized
at least one anti-dynamic analysis approach.
This is a gratifying finding that proves that
anti-debugging occurs in more than half of a
randomly chosen data set of packers. We should
point out that packers are designed for obfus-
cation and compression, not anti-debugging.
Finding such a big number of results might
indicate that they are now also used for security
purposes.
RQ2. Is there a correlation between a set of
anti-debugging methods and packers?
During our research, we saw some trends in the
categories, but more importantly, we discovered
that the most often used anti-debugging strate-
gies (such as IsDebuggerPresent) are basic and
old. On the other side, we may show that there
is no particular pattern, but that they strive to
use a wide range of techniques that are either
well-known or unique to each packer.
RQ3. In our dataset of packers, which tech-
niques are exploited?
We added a chapter that broke down all of the
techniques used by each packer, classifying them
and comparing the results among the packers.
The findings can be utilized as a foundation for
further research as well as more confirmation of
packer defenses and protection.
We provided a pool of newly discovered tech-
niques that both verified previous results while
also introducing new strategies for each packer.

7. Future works
We proposed different researches that could
be linked using the same environment and
approach. The first idea is to perform the same
research using packed malware instead of files

obfuscated with public packers.The motivation
is that viruses usually implement a private and
modified version of the public packers and could
be interesting to compare how far are from
our results or if we can recognize the original
packers looking at the logs.

Future research can be used to identify
new approaches for the research’s most inter-
esting example. Tools like Themida, Enigma,
and Obsidium are quite complex and may
conceal further techniques and routines. It may
be used in conjunction with Instrumentation
and Debugging to understand all parts of the
program and how it operates.

Another possibility is to look at the pack-
ers themselves, rather than the packed file.
During our research, we used our instrumen-
tation tool to monitor the packers as they
compressed the file. We discovered useful
information and outcomes throughout our
investigation. The study of packer software is
motivated by the possibility that it will aid
in the troubleshooting of a packer. We can
exactly know which procedures are done during
compression and develop better unpackers if we
are able to debug a packer.

References
[1] Ansa. Ansa - massacro nel cuore di europa.

[2] Ansa. Ansa - russi rimuovete putin.

[3] Peter Ferrie. The "ultimate" anti-
debugging reference. 04 2011.

[4] Francesco Mecca Martina Lindorfer Stefano
Ortolani Davide Balzarotti Giovanni Vigna
Hojjat Aghakhani, Fabio Gritti, Santa
Barbara Universita degli Studi di Torino
‘ TU Wien Lastline Inc. Eurecom ho-
jjat, degrigis, vigna, chris@cs.ucsb.edu
francesco.mecca402@edu.unito.it mlin-
dorfer@iseclab.org ortolani@lastline.com
Christopher Kruegel University of Cali-
fornia, and davide.balzarotti@eurecom.fr.
When malware is packin’ heat; limits of
machine learning classifiers based on static
analysis features. 02 2020.

[5] Mi-Jung Choi Jong-Wouk Kim1, Ji-
won Bang2. Defeating anti-debugging tech-

6

Executive summary Giorgio Coccia

niques for malware analysis using a debug-
ger. 11 2020.

[6] The linux programming interface. dnspy.

[7] Check Point Software Technologies LTD.
Anti debugging tricks, 2020.

[8] Microsoft. Sysinternals.

[9] Mario Polino Michele Carminati-Andrea
Continella Stefano Zanero Nicola, Galloro.
A systematical and longitudinal study of
evasive behaviors in windows malware. 12
2021.

[10] Microsoft Corporation Peter Ferrie, Se-
nior Anti-Virus Researcher. Anti-unpacker
tricks. 04 2011.

[11] Mario Polino, Andrea Continella, Se-
bastiano Mariani, Stefano D’Alessio,
Lorenzo Fontana, Fabio Gritti, and Ste-
fano Zanero. Measuring and defeating
anti-instrumentation-equipped malware. In
DIMVA, 2017.

[12] Xabier Ugarte-Pedrero, Davide Balzarotti,
Igor Santos, and Pablo G. Bringas. Sok:
Deep packer inspection: A longitudinal
study of the complexity of run-time pack-
ers. In 2015 IEEE Symposium on Security
and Privacy, pages 659–673, 2015.

7

	Abstract
	Introduction
	Implementation
	Results
	False positives and Important findings
	Conclusion
	Future works

