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Estratto

Sin dalla scoperta del grafene, nel 2004, l'interesse per i materiali bidimensionali ha
mostrato un'incredibile crescita. L'investigazione di materiali atomicamente sottili portò
alla realizzazione di singoli strati atomici di dicalcogenuri di metalli di transizione (TMD),
semiconduttori a band gap diretta con notevoli proprietà optoelettroniche. Tutti questi
materiali esistono nella forma di fogli 2D a causa della loro struttura atomica: forti
legami covalenti nel piano e deboli forze di van der Waals tra piani paralleli, infatti,
rendono possibile la separazione e la strati�cazione di fogli di materiali di�erenti dando
forma alle cosiddette etero strutture di van der Waals.

Questo elaborato contiene i risultati del progetto di ricerca svolto ai Quantum Pho-
tonics Laboratories della Heriot Watt University nel Regno Unito, incentrato sulla carat-
terizzazione sperimentale degli eccitoni nei materiali bidimensionaliWSe2 eMoSe2 e rel-
ative etero strutture, usando tecniche spettroscopiche sia a temperatura ambiente, che a
pochi Kelvin. In particolare, due tecniche spettroscopiche sono state usate: ellissometria
a temperatura ambiente in una atmosfera inerte, e spettroscopia di luce bianca confocale
a temperature criogeniche. I risultati sperimentali, così come i vantaggi di ognuna di
queste tecniche, sono presentati in questo scritto. Sia l'ellissometria che la spettroscopia
di luce bianca ci permettono di osservare la manifestazione di marcate transizioni ecci-
toniche in questi sistemi bidimensionali; tuttavia solo la spettroscopia di luce bianca ci
ha dato accesso agli stati eccitati degli eccitoni a causa della riduzione del contributo
energetico dei fononi.

Introdotta la struttura elettronica e le proprietà ottiche dei TMD atomicamente sot-
tili, nel primo capitolo si pone particolare attenzione alle proprietà uniche proprie dei
materiali bidimensionali come la formazione di eccitoni fortemente legati, principalmente
dovuta al debole schermo dielettrico di materiali atomicamente sottili. Nel secondo
capitolo, vengono presentate le tecniche sperimentali utilizzate assieme al formalismo
matematico usato per descrivere la propagazione della luce in una struttura strati�cata.
I risultati sperimentali e la discussione di questi sono l'argomento del capitolo 3. Dif-
ferenti campioni di singoli strati di TMD sono stati sottoposti a misurazioni, mostrando
che sia la energia che la larghezza di riga delle transizioni eccitoniche in questi mate-
riali bidimensionali dipendono fortemente dalla composizione dielettrica dei materiali
circostanti.

In�ne, è stato investigato l'e�etto di un forte campo magnetico esterno, applicato
perpendicolarmente al campione, usando dei magneti superconduttori incorporati nel
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criostato e un setup per luce polarizzata circolarmente. Questi risultati aprono le porte
ad innumerevoli possibili applicazioni per l'ingegnerizzazione delle proprietà ottiche dei
materiali bidimensionali. Da ultimo, l'appendice contiene una breve descrizione dei cod-
ici di programmazione usati per l'analisi dei dati e il calcolo numerico.

Milano, Giugno 2020



Abstract

Since the discovery of graphene in 2004 the interest for 2D materials has experienced
an extremely fast growth. The investigation of thin materials brought the realization of
monolayer transition metal dichalcogenides: direct band semiconductors with remark-
able optoelectronic properties. All these materials exist in the shape of 2D nanosheets
due to the nature of their atomic structure: strong in-plane covalent bonding and weak
out-of-plane van der Waals forces make feasible the isolation and stacking of sheets of
di�erent materials forming the so-called van der Waals heterostructures. This report con-
tains the results of a research project developed in the Quantum Photonics Laboratory of
Heriot Watt university (UK) and focuses on the experimental characterisation of excitons
in WSe2 and MoSe2 monolayers and related heterostructures by optical spectroscopy
techniques at both room and cryogenic temperatures. In particular, two di�erent optical
spectroscopy techniques have been used: ellipsometric imaging characterisation at room
temperature in an inert environment, and broadband confocal di�erential re�ectivity at
cryogenic temperatures. The experimental results, as well as the advantages of each one
of these techniques, are discussed in this report. Both ellipsometric imaging and broad-
band di�erential re�ectivity allow us to observe the manifestation of strong excitonic
transitions in these 2D systems, although only di�erential re�ectivity measurements at
cryogenic temperatures give access to higher exciton excited states due to the reduction
of the phononic contributions.

This report starts with an introduction to the electronic band structure and optical
properties of atomically thin TMDs. Particular attention has been given to the unique
properties exhibited by the 2D materials such as the formation of strongly bounded ex-
citons mainly due to the weak and highly non-local dielectric function of atomically thin
crystals. In the second chapter, the experimental techniques employed in our investi-
gation have been presented along with the mathematical formalism commonly used to
describe the optical properties of layered structures. The experimental results and the
discussion can be found in chapter 3. Di�erent samples of monolayer TMDs have been
measured. Our results show that both the energy and the linewidth of the excitonic tran-
sitions in these 2D materials are strongly dependent on the local dielectric environment
of the 2D excitons.

Moreover, the e�ects of a strong out of plane magnetic �eld on the sample have been
investigated using superconducting magnets embedded in the cryostat and a setup for
circularly polarized light. These results open the door to a number of possible applica-
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tions to engineer the optical properties of 2D van der Waals semiconductors. At last, the
appendix contains a brief description of the codes used for data analysis and numerical
�tting.

Milan, June 2020



Contents

1 Properties and applications of thin TMDs 3

1.1 Optical properties of TMDs . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Electronic band structure of TMDs . . . . . . . . . . . . . . . . . 4

1.1.2 Magnetic e�ects on the band structure . . . . . . . . . . . . . . . 9

1.2 Excitons in TMDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 Excitons in bulk semiconductors . . . . . . . . . . . . . . . . . . . 13

1.2.2 Excitons in 2D semiconductors . . . . . . . . . . . . . . . . . . . 17

1.2.3 Dielectric screening and environment . . . . . . . . . . . . . . . . 18

1.2.4 The non-locally screened potential . . . . . . . . . . . . . . . . . . 21

1.3 Applications of excitons in TMDs and tunability . . . . . . . . . . . . . . 24

1.3.1 Electrical tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3.2 Magnetic tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3.3 Mechanical tuning . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3.4 Photonic devices based on 2D excitons . . . . . . . . . . . . . . . 26

2 Experimental techniques 29

2.1 Ellipsometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.1 Transfer matrix method . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.2 Ellipsometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1.3 Dielectric function using ellipsometry . . . . . . . . . . . . . . . . 38

2.2 Confocal microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.1 Confocal microscope . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.2 Broadband di�erential re�ectivity . . . . . . . . . . . . . . . . . . 42

2.3 Experimental setup for magnetic �eld measurements . . . . . . . . . . . . 44

2.3.1 Circularly polarized light . . . . . . . . . . . . . . . . . . . . . . . 44

3 Discussion 47

3.1 Experimental results using ellipsometry . . . . . . . . . . . . . . . . . . . 48

3.1.1 Exciton energies and dielectric function . . . . . . . . . . . . . . . 50

3.2 Experimental results using broadband re�ectivity . . . . . . . . . . . . . 56

3.2.1 Exciton energies and transition linewidth . . . . . . . . . . . . . . 57

3.3 Magnetic �eld e�ects on excitons . . . . . . . . . . . . . . . . . . . . . . 67

ix



x CONTENTS

4 Conclusions 73

5 Appendix 75
5.1 Appendix A: Matlab code to simulate the ellipsometric parameters . . . 75
5.2 Appendix B: Mathematica code to extract the linewidth . . . . . . . . . 77
5.3 Appendix C: Quantum Photonics Laboratories facilities . . . . . . . . . . 79



List of Figures

1.1 Representation of a layer stack made of 2D materials. . . . . . . . . . . . 4

1.2 Electronic band structure of bulk WSe2, its monolayer, as well as multy-
layers calculated ab initio. . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Absorption coe�cients for MoSe2 and WSe2 measured at low tempera-
ture on �akes of di�erent thickness. . . . . . . . . . . . . . . . . . . . . . 8

1.4 Diagrams of the conduction and valence bands at the K and K' valleys of
the monolayer transition-metal dichalcogenides. . . . . . . . . . . . . . . 11

1.5 Weak �eld Zeeman splitting for the Hydrogen atom ground state and
Moire excitons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Excitation energy of an electron hole pair in a bulk semiconductor as a
function of the translational wave vector k. . . . . . . . . . . . . . . . . . 15

1.7 Dielectric function and absorption spectrum of GaAs at cryogenic tem-
peratures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.8 Optical absorption of an ideal 2D semiconductor. . . . . . . . . . . . . . 18

1.9 Real-space representation of electrons and holes bound into excitons for
the three-dimensional bulk and a quasi-two-dimensional monolayer. . . . 19

1.10 Representation of electron-hole pairs forming 1s and 2s excitonic states in
a nonuniform dielectric environment. . . . . . . . . . . . . . . . . . . . . 20

1.11 Di�erent kind of tuning of excitons in TMDs. . . . . . . . . . . . . . . . 25

1.12 Some devices using excitons in thin semiconductors. . . . . . . . . . . . . 27

2.1 Working principle of ellipsometric techniques. . . . . . . . . . . . . . . . 30

2.2 Scheme of a layer stack used during the derivation of the transfer matrix
method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Elliptically polarized light and the projected polarization ellipse. . . . . . 34

2.4 A scheme of the most common con�guration for an ellipsometer adopted
by the Accurion EP4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 A typical heterostructure that can be characterized using ellipsometry and
related measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Illustration of the Accurion EP4 ellipsometer. . . . . . . . . . . . . . . . 37

2.7 Real and imaginary part of the refractive index calculated within the
classical Lorentz oscillator model. . . . . . . . . . . . . . . . . . . . . . . 39

xi



xii LIST OF FIGURES

2.8 Scheme of a confocal microscope and intensity distribution of a focused
beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.9 Detailed scheme and picture of a confocal microscope used for experiments
at cryogenic temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.10 Example of a WL spatial map obtained with the setup described in this
chapter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.11 Experimental setup for the production of circularly polarized light. . . . 45

3.1 Optical microscope images of the samples analyzed using ellipsometry. . . 48

3.2 Optical microscope images of the encapsulated monolayers analyzed using
ellipsometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Psi and Delta angles obtained measuring a WSe2 monolayer with ellip-
sometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Experimental dispersion of the WSe2 monolayer on SiO2 substrate. . . . 51

3.5 Representation of the resonance energies for excitons experimentally de-
termined at room temperature. . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 In�uence of the dielectric environment on the position of the excitonic
peaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.7 Description and topography of the sample investigated with the confocal
microscope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.8 Plot of the experimental di�erential re�ectivity ∆R/R ofWSe2 monolayer
encapsulated in 30nm hBN at 4K. . . . . . . . . . . . . . . . . . . . . . . 58

3.9 Plot of the experimental di�erential re�ectivity ∆R/R ofWSe2 monolayer
encapsulated in 30nm hBN at 4K using polarized light. . . . . . . . . . . 59

3.10 Results of the numerical �t on the experimental di�erential re�ectivity for
the encapsulated WSe2 monolayer. . . . . . . . . . . . . . . . . . . . . . 59

3.11 Numerical �t of the experimental excitonic transitions to the mathematical
model of the 2D Hydrogenic energy ladder. . . . . . . . . . . . . . . . . . 61

3.12 Schematic representation of electron-hole pairs forming 1s and 2s excitonic
states in a non-uniform dielectric environment. . . . . . . . . . . . . . . . 62

3.13 This �gure shows the evolution of excitonic transitions of WSe2 and
MoSe2 in the heterostructure. . . . . . . . . . . . . . . . . . . . . . . . . 63

3.14 Evolution of the 1s and 2s states of A exciton in WSe2 monolayer in
di�erent dielectric environments. . . . . . . . . . . . . . . . . . . . . . . . 64

3.15 Comparison between the di�erential re�ectivity of the two bilayer-monolayer
regions is shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.16 E�ects of strong magnetic �eld (7T) applied to the heterostructure. . . . 67

3.17 Magnetic e�ects on exciton resonances in WSe2 monolayer. . . . . . . . . 68

3.18 Illustration of the e�ects of magnetic �eld (up to 7T) on the excitons in
TMDs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.19 Comparison of the 2s exciton state as a function of the applied magnetic
�eld when the thin TMDs is located in di�erent environments. . . . . . . 71

5.1 Schematic of the structure simulated in the code: 100 nm SiO2 on Si
substrate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



LIST OF FIGURES xiii

5.2 Result of a numerical �t on the excitonic absorption peaks ofWSe2 mono-
layer encapsulated in hBN . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Clean room facility of the department of Physics at Heriot Watt University
(UK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4 Lab dedicated to quantum optics and spintronics in solid-state materials
at HWU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80



xiv LIST OF FIGURES



List of Tables

1.1 Amplitude of the spin-splitting at the K points of the Brillouin zone of
TMDs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Out-of-plane dielectric constant for di�erent number of layers and for dif-
ferent materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 E�ective masses of excitons and particles in the conduction and valence
bands of some TMDs monolayers. . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Exciton peaks resonance energies for WSe2 monolayer on SiO2 at 300 K . 52
3.2 Exciton peaks resonance energies for MoSe2 monolayer on SiO2 at 300 K. 52
3.3 Exciton peaks resonance energies for WSe2 monolayer encapsulated in

hBN at 300 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4 Results (En,exp) of the numerical �t for the excited A exciton states of

WSe2 monolayer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.5 Results of the numerical �t of the experimental excitons energies in WSe2. 60
3.6 Table reporting the experimental energies (in eV ) of the excitonic transi-

tions of WSe2 and MoSe2 in the Moire heterostructure. . . . . . . . . . 66

1



2 LIST OF TABLES



Chapter 1
Properties and applications of thin TMDs

Since the discovery of graphene in 2004 a new class of material became a growing
subject of studies. 2D materials are atomically thin layers that possess di�erent physical
properties with respect to the bulk form and can be used in a completely new monolayer
design. In particular, the possibility of stacking a wide variety of 2D layers on upon the
other without any lattice-matching constrains, creating a so called �Van der Waals� het-
erostructure, allows to engineer its properties and to create speci�c micro sized devices.
These stable novel materials look promising in electronics and photonic applications. In
this report the excitons of two representative transition metal dichalcogenides will be
investigated using di�erent techniques with the aim of unraveling the e�ects of the local
dielectric environment on the 2D excitons in these materials.

The �rst chapter is used to present the optical properties of the atomically thin
TMD with particular attention to excitons. In this way it will be possible to have both a
theoretical background, for a better understanding of the results, and a comprehension
of the motivation and the relevance of investigating 2D materials.
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4 CHAPTER 1. PROPERTIES AND APPLICATIONS OF THIN TMDS

1.1 Optical properties of TMDs

One kind of 2D materials are transition metal dichalcogenides (TMDs). Those have
been widely studied in the last 10 years due to the relevance of their unique properties for
optical and optoelectronic applications making them possible candidates to be used in the
silicon industry. TMDs are in the formMX2 where M is a metal (e.g. Mo, W) and X is a
dichalcogenide i.e. an element from group 16 of the periodic table of elements (as Se, Te,
S) [1] . These materials in the bulk form are made by covalently bounded monoatomic
layers held together by weak Van der Waals forces. This makes possible the isolation of
a single (or few) atomic layer using mechanical exfoliation or their synthesis by chemical
vapor deposition[2]. One particular optical property of 2D materials is the change of the
electronic band structure: when passing from bulk to monolayer it is possible to obtain
a direct band gap. The reduction of interlayer interaction indeed produces a lowering of
the valance band energy resulting in a indirect to direct bandgap transition. This gives
an improvement in the light absorption and in the photoluminescence intensity making
these materials ideal for optical applications.

Figure 1.1: a) Representation of a laye rstack made of 2D materials. The possibility
to have extremely thin layers with reduced lattice mismatch, allows the engineering of
material properties in the so-called van der Waals heterostructures. b) Side and top view
of the hexagonal lattice structure of a transition metal dichalcogenide. Each monolayer
contains an heavy metal (M) and a chalcogene atom (X). From [3] and [4].

1.1.1 Electronic band structure of TMDs

In this section the electronic band structure and the fundamental interband (i.e.
within the conduction and valence bands) transitions will be presented. As previously
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mentioned, the TMDs in the form of monolayer change their bandgap becoming direct
semiconductors at the K point of the �rst Brillouin zone of the hexagonal crystal struc-
ture, shown in �gure 1.1. This is due to the lack of any interlayer interactions in the
TMDs monolayer [5] and can be seen in �gure 1.2 a). This band structure is similar to
the one of graphene where the bandgap is originated by the lack of sublattice symmetry
1 [6]. Using the tight binding method (TBM) it is possible to write the combination of
atomic orbitals used at the K point to calculate energy around Ef . Electrons from d
orbitals of metal have been combined with electrons from p orbitals in the chalcogenide.
Only one projection of the angular momentum has been considered because lacks inver-
sion symmetry, however the system still has time reversal symmetry and that is why in
the K' points the sign is changed. The atomic orbitals used are

VBMax (K point) α | ψM2,−2 > +β1/
√

2
(
| ψX1

1,−1 > + | ψX1
1,−1 >

)
CBMin (K point) α | ψM2,0 > +β1/

√
2
(
| ψX1

1,1 > + | ψX1
1,1 >

)
VBMax (K' point) α | ψM2,2 > +β1/

√
2
(
| ψX1

1,1 > + | ψX1
1,1 >

)
CBMin (K' point) α | ψM2,0 > +β1/

√
2
(
| ψX1

1,−1 > + | ψX1
1,−1 >

) (1.1)

Figure 1.2: a)Electronic band structure of bulk WSe2, its monolayer, as well as multy-
layers calculated ab initio. The top of the valence band is highlighted in blue while the
bottom of the conduction band is in red. The arrow indicates the smallest value of the
band gap (direct in the case of monolayer). The Fermi level is set at 0 eV. b) Diagram of
subbands in the conduction and valence bands at the K+, K− points of the Brillouin zone
in monolayer MoX2 and WX2. The blue (red) curves indicate the spin-up (spin-down)
subbands. The wavy lines show the A and B transitions associated with the σ+ and σ−

polarizations, respectively. From [7] and [6].

where α and β are coe�cients that can be found with the normalization condition on

1This is due to the presence of alternating M and X-enes in the lattice hexagons.
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the electronic wavefunction [8]. Spin-orbit interaction is then applied to heavy transition
metals giving the result shown in �gure 1.2 b).

Spin-orbit coupling is a pure quantum e�ect of a particle with spin moving in a poten-
tial. This applies to electrons inside the atoms and can be understood in a semi-classical
description of the electron describing an orbit around the nucleus. Let us consider a
Hydrogen atom. It is known that has an intrinsic magnetic dipole moment related to its
spin. Moreover, the positive charge of the nucleus is moving in the reference frame of
the electron and sets up a magnetic �eld B. This can be calculated[9] by the Biot-Savart
Law 2

B =
e

4πε0mc2r3
L (1.2)

Where L is the electron orbital angular momentum that points in the same direction of
B. A magnetic dipole moment in a magnetic �eld feels a torque and the Hamiltonian of
this interaction is

H = −µ ·B. (1.3)

The electron magnetic moment turns out to be

µe = − e

m
S (1.4)

and putting all together the spin orbit interaction Hamiltonian is

H ′so =

(
e2

8πε0

)
1

m2c2r3
S · L. (1.5)

Using perturbation theory one can calculate the energy levels of the Hydrogen atom
including the spin orbit contribution. Due to equation (1.5) the energy ladder will
depends on the total angular momentum J = L+S and therefore, degeneracy for energy
levels with same quantum number n is now lifted. Only in case l = 0 the spin orbit
correction is zero, this is the case of atomic orbitals with orbital angular momentum
equal to zero.

- MoS2 MoSe2 WS2 WSe2

∆so,cb[meV ] 3 20 - 22 -29 - -32 -36- -37
∆so,vb[meV ] 138-150 180-202 379-429 400-510

Table 1.1: Amplitude of the spin-splitting at the K points of the Brillouin zone in the
conduction ∆so,cb and valence ∆so,vb bands in monolayer S-TMDs deduced from theoretical
predictions and experimental results. From [10] and [11].

2This is true if we consider the movement of a charged particle as a continuous current loop: B = µ0I
2r

where I is the e�ective current.
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The splitting is larger at the valence band maxima since these molecular orbitals are
made by atomic orbitals with large angular momentum. Table 1.1 contains the amplitude
of the spin orbit splitting in some TMDs. Going back to the band structure of TMDs,
one can note that K and K' valleys are related to di�erent states, but their energy is the
same due to time reversal symmetry. No inversion center leads to a new degree of freedom
of carriers associated with the K -valley index (the so called valleytronics). It is possible
to distinguish between these two states only if a magnetic �eld or circular polarized light
are applied: the latter allows to selectively excite the electronic population of the two
valleys. In the valence band, electrons have a magnetic moment di�erent from zero,
and breaking of symmetry (both inversion and time reversal) lead to magnetic moments
oriented in di�erent direction. This causes the valley dependent optical selection rules.

The large spin orbit splitting for the valence band ∆so,vb is responsible for the two
main interband transition called A and B transitions at a �rst approximation, see �gure
(1.2 b)). The smaller splitting for the conduction band due to the d2,0 orbital of the
transition metals makes possible to describe further transitions considering second order
e�ects. These are due to the contribution coming from both the transition metal and the
X-enes (chalcogen atoms) p orbitals3. The �rst and second order e�ects have di�erent
sign contribution, that means that two di�erent possibilities are likely to happen. The
�rst one has optically active ground state transition since the spin is aligned in the
upper VB and lower CB sub bands. Such material is called optically bright monolayer.
The second scenario is the case of antiparallel spin in the upper VB and lower CB [6].
According to their band structure MoSe2 is expected to be bright and WSe2, WS2 are
darkish. In the same way, one can distinguish exciton whose recombination gives rise
to emission of light from the one whose transition is not dipole allowed[12]. Optically
bright excitons are bounded pair of electron and hole in two electronic states with same
spin orientation. This is due to the fact that, in an optical transition, the spin of the
initial and �nal state must be conserved4. If, on the other hand, the electron hole pair
is formed between two levels with opposite spin, the exciton is called dark.

It is worth to mention that the direct-bandgap nature of the TDMs explains the
pronounced absorption band edge visible in absorbance/re�ectance experiments that
sums to the A and B transitions cited above. Nevertheless, a complete description of the
optical properties of TDMs requires the consideration of excitonic e�ects.

3Since the interaction goes like Z4 where Z is the atomic number and requires a non-null angular
momentum, the contribution from the X atom will be in general weaker.

4This comes from the selection rules for electric dipole transitions. Other transition are allowed but
they take place at far lower rate than the transition that are allowed according to the electric dipole
approximation.
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Figure 1.3: Absorption coe�cients for a) MoSe2 and b) WSe2 measured at low tempera-
ture on �akes of di�erent thickness. It is possible to notice both the excitonic absorption
peaks and the absorption band edge. From [13].

In �gure (1.3) is possible to see the absorption coe�cient spectra of two di�erent
materials: MoSe2 and WSe2, respectively. The absorption coe�cient is the fraction of
shined light onto the sample that is neither transmitted nor re�ected and its determina-
tion is of great relevance in optoelectronics since describes the interaction of thin TMDs
with light. The absorption coe�cient α from the Lambert Beer law 5 is indeed related
to the refractive index n = n1 + in2 of the material via the plane wave expression

E(x, t) = Re
[
E0e

i(kx−ωt)] = e−2πn2x/λ0Re
[
E0e

i(n1x−ωt)
]

(1.6)

With an exponential decay as predicted by the Lambert Beer law. Where the atten-
uation coe�cient becomes

α =
4πn2

λ0

(1.7)

When one talks about 2D materials on in�nite substrate, the absorbance is usually
experimentally determined using the di�erential re�ectivity. For a layered system such
as TMDs materials, when thickness is t << λ the absorbance can be written as [14]

A = 1/4(n2
s − 1)

∆R

R
(1.8)

Where ns is the substrate refractive index and ∆R
R

is the re�ectance contrast of the
TMDs with respect to the substrate. In particular for excitons peaks determination just

5The Lambert Beer law expresses the attenuation in intensity of the radiation passing through a
material as I(x) = I(0)e−αx where I(x) is the intensity of the radiation at a depth x in the material.
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∆R
R

is necessary since it is proportional to the absorption of light in the material. All
monolayers of molybdenum and tungsten dichalcogenides display very strong absorption
at excitation peaks up to 10% for a single layer[1]. This is due to the light-matter
interactions of the material and to the presence of band edge excitons. The energy
separation between the A and B exciton states in WSe2 is about 0.4eV[1], and is larger
compared to the other TMDs due to the strong spin orbit coupling of tungsten.

As it will be explained in more details in chapter 2, the dielectric function can be
modeled and experimentally determined by the absorption coe�cient using Kramers-
Kronig constrained analysis of the re�ectance spectra of the monolayer on a transparent
substrate. In particular a common way to model the imaginary part of the dielectric
function of monolayer TMDs is to use a superposition of Lorentzian oscillators[15].

1.1.2 Magnetic e�ects on the band structure

In this section, the e�ects of magnetic �eld on electronic energy levels will be in-
troduced with particular attention to the modi�cation of band structure and electronic
population of thin TMDs. Indeed magnetic �eld can be used to tune the band structure
of these monolayers allowing the investigation of novel physics and the use of 2D materials
in a wide range of possible application. One of the most known phenomena concerning
magnetic �elds in solid state physics is the Zeeman e�ect. It has been experimentally
observed as a shift in the energy levels when an atom is placed in a uniform magnetic
�eld. If one considers, for sake of simplicity, a single electron system, the perturbative
Hamiltonian is

H ′Z = −(µl + µs) ·Bext (1.9)

where µs and µl are , respectively, the magnetic dipole moment associated with electron
spin and orbital motion. Therefore

H ′Z =
e

2m
(L + 2S) ·Bext. (1.10)

Let us now consider the case of a weak external magnetic �eld 6, i.e. Bext << Bint. In
this case the Zeeman e�ect can be treated as a small perturbation. Using perturbation
theory the Zeeman correction to energy is

EZ =
e

2m
Bext· < L + 2S > (1.11)

where, by considering the time average of S one can simplify [9] this expression using
the Lande g-factor gJ

EZ = µBgJBextmj (1.12)

where µB is the Bohr magneton andmj is the azimuthal eigenvalue for the orbital angular
momentum, since Bext has been chosen to be on the arbitrary de�ned z-axis. This means
that the degeneracy for the quantum number mj can be broken by an applied magnetic
�eld and the energy shift is linear with Bext. Since mj = −j,−(j − 1), . . . j − 1, j,
j = l + s, this phenomenon is often called Zeeman splitting since energy levels are

6The strong and weak �eld can be quantitatively characterized by means ofBint = e
4πε0mc2r3

L ' 12T .
Using r = a (hydrogen ground state radius) and L = ~
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originated symmetrically with respect to a single spectral line. This e�ect is due to the
symmetry breaking of the magnetic �eld. A magnetic �eld strongly modi�es the excitons
properties, this can be experimentally seen by applying a strong out of plane magnetic
�eld to the sample7. Since the Zeeman shift is an odd function of the B �eld, the
di�erence in energy at opposite intensities, corresponds to the Zeeman splitting energy.
Considering the band structure of TMDs, the two valleys at K and −K points of the �rst
Brillouin zone are normally degenerate. When an out of plane magnetic �eld is applied,
the valley degeneracy is lifted due to the opposite spin and orbital con�guration of the
two time reversal-valleys[16]. Therefore the bandgap at one valley is enlarged while at
the other one it is reduced. This di�erence is the Zeeman valley splitting energy that
can be expressed as

∆EZ = gµBB (1.13)

where g is the e�ective g-factor and µb = 5.78810−5eV/T . One expects that the major
contribution comes from the d-type orbitals of the valence band, having opposite az-
imuthal quantum numbers mj = ±2 in the two valleys. Therefore they contribute to an
e�ective g-factor of -4 in the Zeeman splitting[17]. This can be observed in �gure (1.4).

The second magnetic e�ect we are considering is the diamagnetic shift, an increase in
energy of both spin-split levels with magnetic �eld. In the case of a weak applied magnetic
�eld, the energy increases quadratically with the applied �eld. This contribution can be
calculated with perturbation theory. To describe it [18], one can consider the e�ect of a
constant magnetic �eld perpendicular to the 2D material using the Hamiltonian

H =
1

2µ
(p + eA)2 + V =

1

2µ
(p2 + 2ep ·A + e2A2) + V (1.14)

where A = 1/2B×r and p ·A = 1
2
B · (r×p) = 1

2
B ·L. Excitons are s-like states with

L = 0 so the term p ·A is zero. The hamiltonian for the diamagnetic term is therefore

HDM =
e2

8µ
r2B2 (1.15)

The diamagnetic shift of an exciton can be expressed, using perturbation theory, as
[19]

∆EDM =
e2

8µ
< r2 > B2 = σB2 (1.16)

Where µ = (m−1
e +m−1

h )−1 is the exciton's reduced mass and < r2 > is the expectation
value on the envelope wave function of the radial coordinate of the exciton and its root
mean square radius is r =

√
< r2 > =

√
8σµ/e.

7This is due to the fact that in 2D materials, the current circulation from the orbitals can only be
within the plane.



1.1. OPTICAL PROPERTIES OF TMDS 11

Figure 1.4: a)Diagrams of the conduction and valence bands at the K and K' valleys of the
monolayer transition-metal dichalcogenides, showing the A and B exciton transitions, the
associated optical selection rules and the spin orbit coupling of energy levels. b) Diagrams
depict the relative shifts of the conduction and valence bands in the K valley. By time-
reversal symmetry, the shifts depicted here for B<0 in the K valley are equivalent to
those in the K' valley (σ− transitions) when B>0. From [19]

A large high-ling exciton is expected therefore to have a larger diamagnetic shift.
The TMDs are particularly suitable for optical observation of the Zeeman splitting. The
hexagonal nature of these material and the broken inversion symmetry allow the valley
polarization of the electron population at the points K and -K. This is due to the fact
that the spin orbit coupling splits the bands with opposite spin con�guration as can be
seen in �gure 1.4. The optical selection rules allow to selectively excite electrons in the
two valleys separately using, respectively, σ+ and σ− circularly polarized light obtaining
the Zeeman splitting as Eσ+ −Eσ− = gµBB. Both the theoretical and the experimental
behavior of a material in a constant magnetic �eld can be seen in �gure (1.5).



12 CHAPTER 1. PROPERTIES AND APPLICATIONS OF THIN TMDS

Figure 1.5: a) Weak �eld Zeeman splitting for the Hydrogen atom ground state, from
[9].b) Zeeman splitting of the polarization-resolved PL of excitons in Moire superlattice,
from [20].



1.2. EXCITONS IN TMDS 13

1.2 Excitons in TMDs

Excitons are hydrogen-like bounded states of an electron-hole pair in a material due to
Coulomb interaction. They usually have origin in semiconductors when optically excited,
are often characterized by a spectrally narrow linewidth and can e�ciently emit light
when recombination occurs. This electron hole pair can be described as an hydrogenic
atom possessing discrete energy levels, internal �ne structure and excitation energies
lower than the energy gap; this feature allows in principle the realization of electronic
and optical devices at the nanoscale. Nevertheless, excitons are often di�cult to be
used in bulk semiconductors due to the low binding energy8 (usually 1 − 10meV ) due
to high dielectric screening and small quasi-particle mass [5]. On the other hand, in 2D
semiconductors, as for example monolayers TMDs, the reduced dielectric screening makes
excitonic states bounded at room temperature with a binding energy up to hundreds of
meV. The photoluminescence and absorption spectrum of these materials is therefore
dictated by excitons.

In this paragraph a theoretical description along with some experimental considera-
tion are presented. At �rst excitons will be described when located in bulk materials:
later a description in case of TMDs monolayers is reported in order to compare the two
cases. In the last part eventually the dielectric screening and its in�uence on the ex-
citon binding energy will be discussed. The importance of this e�ect is crucial in the
investigation and understanding of how the dielectric environment in�uences excitons in
a monolayer when stacked in a van der Waals heterostructure.

1.2.1 Excitons in bulk semiconductors

In order to describe bulk excitons9, let us consider a semiconductor with isotropic
and parabolic dispersion relation at k = 0 such as

εc(k) = εc(0) +
~2k2

2me

(1.17)

εv(k) = εc(0)− εg +
~2k2

2mk

(1.18)

Where εg is the band gap energy and me,h e�ective mass of electrons and holes, respec-
tively. One can write the energy for one-electron excitation as:

εc(k)− εv(k −K) = εg(K) +
~2(k − me

M
K)2

2µ
= E(k,K) (1.19)

Where εg(K) = eg + ~2K2

2M
, M = me + mh and µ is the reduced mass. The wavevectors

K and k − me

M
K represent the motion of electron in the conduction band and hole in

the valence band, respectively, both for relative and translational motion. In the excited
state there should be an attractive Coulomb potential and repulsive exchange interaction

8The binding energy of an exciton in a bulk semiconductor such as Si or GaAs are negligible with
respect to thermal �uctuation at room temperature ' 25meV .

9The following derivation is taken from the book �Excitonic processes in solids� [21].
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between the electron hole pair. If their distance r = |re − rh| is large compared to the
lattice constant the material can be treated as medium with dielectric constant ε and
the potential goes like 1/r. The Schrodinger equation for the relative motion of the e-h
is

(
− ~2

2µ
∇2
r −

e2

εr

)
ψλ(r) = ελψλ(r) (1.20)

This is the equation of the hydrogen atom type and has a discrete set of eigenvalues

εnlm = −Eb
ex
n2 (n = 1, 2, . . . ) (1.21)

plus a continuum spectrum of unbounded states. Hence, bound excitons lead to discrete
absorption peaks below the band gap. Moreover, it is possible to obtain the values for
the electron hole binding energy and the e�ective Bohr radius in the 1s state using the
values of the H atom

Eb
ex = Ry =

µe4

2ε2~2
=

e2

2εaB
=

1

ε2

(
µ

m0

)
RH , (1.22)

aB =
ε~2

µe2
= ε

(
m0

µ

)
aH , (1.23)

where m0 is the mass of one electron and aB is the e�ective Bohr radius. The excitation
energy is therefore given by

Eλ,K = eg(K) + ελ (1.24)

The discrete state λ = (n, l,m) represent the bound pair of electron and hole which
is called an exciton. In particular this situation is realized in small bandgap (large ε)
semiconductors and these excitons are called Wannier-Mott excitons.
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Figure 1.6: a) Excitation energy of an electron hole pair in a bulk semiconductor as a
function of the translational wave vector k. The conduction band (orange) and the valence
band (lite blue) are highlighted. The quantity Ry corresponds to the binding energy of the
1s state of the exciton. b) Simpli�ed diagram of a free electron hole pair generated upon
optical excitation that is attracted by Coulomb force. The arrows indicate the hydrogenic
"Bohr" radius.

As it is possible to see in �gure (1.6 a)) the electron hole pair possesses a series of
discrete energetic levels. The highlighted quantity Ry corresponds to the binding energy
Eb
ex i.e. the energy released upon exciton formation or the energy required for exciton

breakup. Note that the exciton is free to move through the crystal and it is not bounded
to a speci�c atom.

We now want to determine the optical absorption spectra that, as previously stated, is
dictated by the excitons themselves. The response of a material to an incoming radiation
is described by the complex dielectric function ε(ω, q) = ε1(ω, q) + iε2(ω, q). This can be
calculated10 by means of the time dependent perturbation theory and using the Kramers-
Kronig relations. The result is an hydrogenic series of discrete lines and a continuum
spectrum. The spectral density of the discrete lines reaches the step value for n → ∞.
This is the low energy edge of the continuum.

10For the sake of simplicity in this paragraph is presented just the result and its physical importance.
The complete derivation of the optical absorption spectra can be found in di�erent books as, for example,
[21].



16 CHAPTER 1. PROPERTIES AND APPLICATIONS OF THIN TMDS

Figure 1.7: a) Imaginary part of the dielectric function of rare gas solids, the sharp peaks
represent the excitonic peaks. b) Absorption spectrum of GaAs at cryogenic tempera-
tures. Here it is possible to notice how exciton binding energies changes depending on
the material. As an example in Ne, a large gap insulator, the exciton binding energy is
about 4 eV while in GaAs is few meV. From G. Zimmerer, in Excited-State Spectroscopy
in Solids, Proc. Intern. School of Physics �Enrico Fermi�, edited by U. M. Grassano
and N. Terzi (North-Holland, Amsterdam, 1987) and R. G. Ulbrich and C. Weisbuch,
unpublished; C. Weisbuch, Thesis, Université Paris VII, 1977.

What has just been described can be visualized in �gure (1.7) where the imaginary
part of the susceptibility and the absorbance spectra are presented. In the picture is
possible to distinguish both the sharp excitonic peaks and the continuum occurring in
the presence of the optical bandgap of the material.

The Wannier-Mott excitons have been described. Nevertheless, for strong values of
the Coulomb attraction between the electron and hole pair, one obtains a Frenkel exciton.
This happens in insulators where the dielectric constant is small [21].
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1.2.2 Excitons in 2D semiconductors

Now the case of 2D material will be considered11. The change of dimensionality bring
with himself a change in the e�ective Hamiltonian with respect to the hydrogenic series
used in the 3D case. This is because now the screened interaction in the Hamiltonian
itself is not simply 1/εr. Anyway, by means of an e�ective dielectric constant in case of
2D materials it is possible to recover a 2D Hydrogenic model as stated in [23]. To obtain
the 2D excitons model we assume our system as composed by an electron hole pair in a
thin quantum well 12. This situation is characterized by the Hamiltonian (using radial
coordinates):

Heh = he(ze) + hh(zh) + Eg −
d2

dr2
− 1

r

d

dr
− 1

r2

d2

dθ
− 2√

r2 + (ze − zh)2
(1.25)

Where hh(zh) = −m−1
h d2/dz2

h + Vh(zh) is the Hamiltonian for hole or electron in the
quantum well. Due to the strong con�nement, if we consider a very thin quantum well
the following approximation is valid

2√
r2 + (ze − zh)2

' 2

r
(1.26)

As a consequence the exciton wave function can be factorized as the product Ψexc(re, rh) =
φe(ze)φh(zh)Ψ(r). The �rst three terms are the eigenstate of he(ze) and hh(zh) and Ψ(r)
describes the in-plane relative motion. The in-plane motion is giving a purely 2D Wan-
nier equation given by(

Ẽg −
d2

dr2
− 1

r

d

dr
− 1

r2

d2

dθ

)
Ψ(r) = EΨ(r) (1.27)

Where Ẽg = Eg + Ee
1 + Eh

1 is the e�ective energy gap that considers the lowest energy
levels for the z direction where the particles are frozen. The mathematical solution is
similar to the one for 3D excitons. The s-type states (l = 0) can be written as

Ψn(r) =
1√

π(n+ 1/2)3/2Ln(2r/(n+ 1/2))e−r/(n+1/2)
(1.28)

En = Eg −
R∗y(

n+ 1
2

)2 (1.29)

With n = 0, 1, 2. . . and Lmn associated Laguerre polynomial. The direct manifestation
of the increased electron hole overlap induced by con�nement can be seen in the in the
energy of the lowest exciton that is now (for n = 0) equal to 4R∗y instead of R∗y. The
continuum states too are similar to the one found in case of 3D (bulk) excitons. It is
possible, analogously to what has been done in the previous subsection, to calculate the
optical susceptibility and therefore the optical absorption for a 2D semiconductor using

11The derivation of this model for excitons in 2D materials is taken from [22]
12It is assumed that light is polarized along the quantum well plane so that the motion perpendicular

to the plane (z direction) is not excited.
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the so called 2D Elliot formula[22]. The states that can be accessed experimentally are
the s states that, in spite of p states with angular momentum di�erent from zero, are
predicted to be dipole allowed. An ideal absorption spectra of a 2D material can be seen
in �gure ( 1.8): here it is clear how excitons lead to a reorganization of the spectra. First
of all, huge excitonic resonances appear below the bandgap at energies given by (1.29)
but also the continuum part of the spectrum is changed: �the Coulomb interaction leads
to the enhancement of the continuum absorption in the energy range� [24].

Figure 1.8: Here is illustrated the optical absorption of an ideal 2D semiconductor.
Coulomb interaction increases the continuum level above the free particle bandgap. The
inset shows the atom-like energy level scheme of the exciton states where the ground state
(n = 1) is denoted by EB. From [24]

This result gives us a mathematical expression for the energy levels of excitonic series
in the shape of Rydberg series similar to 3D case. Nevertheless, in this model the
environment of the thin material is not taken into account the 2D layer is considered to
be an isolated free-standing layer. As one can imagine, in real applications monolayer
TMDs are often embedded in a van der Waals heterostructure and the approximation of
an uniform environment is no longer valid. The nonlocal nature of the e�ective dielectric
screening, leads indeed to deviation from the model described above as experimentally
observed in monolayers WS2 in [25] and MoSe2 in [26].

1.2.3 Dielectric screening and environment

An expression for the dielectric constant of a 2D material is di�cult to be found.
While in a bulk material the macroscopic dielectric constant is de�ned as the limit ε(k, ω)
as k → 0, for a 2D material this de�nition cannot be used since ε2D(k = 0, ω) = 1[23].
That means a more elaborate treatment is required. As is stated above, excitonic prop-
erties in 2D materials di�er from the ones in the bulk. It was both theoretically and
experimentally con�rmed that the reduced screening characteristic of 2D TMDs has two
implications: an increased bandgap in the monolayer (see �gure 1.9 b)) and a larger exci-
ton binding energy. This can be visualized by means of �gure (1.9 a)) where the electric
�eld lines of the electron hole dipole are extending outside the sample. This produces
a strong Coulomb interaction (image charge e�ect) so that the screening is determined
by the surrounding environment for the extent of few nm. The interaction between the
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electron hole pair is therefore in�uenced by the dielectric environment and this can be
measured by the distance between the charges (Bohr radius): the manifestation of that
can be seen both in changes in the bandgap and in the excitonic peak position.

Figure 1.9: a) Real-space representation of electrons and holes bound into excitons for the
three-dimensional bulk and a quasi-two-dimensional monolayer. The di�erent dielectric
environment are indicated by the two di�erent constants ε3D and ε2D. b) In�uence of
the dimensionality on the electronic and excitonic properties presented by the optical
absorption. The transition from 3D to 2D is expected to lead to an increase of the band
gap and the binding energy of excitons. c) Demonstration of the in�uence of the dielectric
environment on the optical properties of a thin �lm. Here the bandgap has been spatially
modulated by the presence of a graphene sheet on top of the heterostructure. From [25]
and [27].

The complexity of the situation described above is relevant but looks at the same time
promising. A good understanding and description of the e�ect of the environment on
the optical and electronic properties of monolayer TMDs might be useful in the so called
�Coulomb engineering� of bandgap and excitonic processes. Indeed, both the optical
bandgap and the exciton binding energies are expected to be tunable by local changes in
the dielectric environment. The experimental work described in [27] shows the possibility
of tuning the electronic bandgap and the exciton binding energy in monolayers of WS2

and WSe2 by hundreds of meV by using di�erent heterostructures made by graphene
and hBN. In �gure (1.9) c), taken from [27], it is possible to visualize how a spatially
dependent bandgap can be created leading to the �rst step in the creation of novel lateral
junctions with a resolution down to the nanoscale.

As we have already stated, the 2D excitons transition energies are predicted at

Eex = Eg −
µe4

2~2ε2(n− 1/2)2
(1.30)

where n = 1, 2, 3. . . , µ = (m−1
e + m−1

h )−1 is the exciton reduced mass. Nevertheless,
in [25] an agreement of the experimental data with this Rydberg series is obtained only
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for the states n = 3− 5 while the 1s and 2s deviates from this model. This deviation in
the scaling can be observed in �gure (1.10 a)) .

Figure 1.10: a) Representation of electron-hole pairs forming 1s and 2s excitonic states
in a nonuniform dielectric environment. b) Experimentally and theoretically obtained
transition energies for the excited exciton states as a function of the quantum number
n. For comparison, the �t of the n = 3, 4, 5 data to the 2D hydrogen model for Wannier
excitons is shown. In the inset are shown the corresponding e�ective dielectric constants.
c) Screened 2D interaction, eq. (1.31), used in the model Hamiltonian (black lines) is
compared to the 2D hydrogen interaction scaling as 1/r (red lines) (semilogaritmic plot
in the inset). The corresponding energy levels and radial wave functions up to n = 3 are
plotted too. From [25].

As can be seen in this �gure, the �eld lines of the electron hole dipole for excited
state (with larger Bohr radius) extend for a larger portion in the surrounding medium
and therefore are less screened. This explains the agreement of the hydrogenic 2D model
for higher excited states that can be seen in �gure (1.10 b)) by comparing the red line
with the experimental points. One way to quantitatively account for this behavior is to
modify the e�ective mass Hamiltonian presented in equation (1.20) using a nonlocally
screened electron hole interaction described by the potential 13

Veh(r) = − e2

8ε0r0

[
H0

(
kr

r0

)
− Y0

(
kr

r0

)]
(1.31)

where H0 and Y0 are the Struve and Bessel functions, r is the electron-hole distance,
r0 is an e�ective screening length of monolayer and k is the e�ective static dielectric
constant of the heterostructure. This describes the interaction of two charges in a 2D
dielectric resulting in a 1/r coulomb interaction at large distances and a weaker log(r)
interaction at short separation. The e�ectiveness of this description can be observed in
�gure (1.10 c)) by looking at the black solid line.

13For a complete description of screening in 2D materials see Dielectric screening in two-dimensional
insulators: Implications for excitonic and impurity states in graphene. P. Cudazzo et al. PHYSICAL
REVIEW B 84, 085406 (2011).
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This paragraph has presented and introduction to the phenomenon of non-uniform
dielectric screening e�ects on excitonic properties of thin TMDs. Here the strength of
the Coulomb forces is particularly large and is thus not only of fundamental importance,
but also allows the tunability of electronic bandgap and excitons binding energy. The
possibility of engineering the properties on these materials requires a good understanding
of the relationship among the electron-hole pair, the monolayer and the surrounding ma-
terial. Di�erent corrections to the 2D hydrogen model can be included for this purpose.

1.2.4 The non-locally screened potential

As stated above, the simplest and most common model for excitonic interaction is
the hydrogen model that uses the e�ective Hamiltonian

H = −~2∇2
r

2µ
+ Veh(r) (1.32)

where the Veh(r) = − e2

εr
is a locally screened attractive electron hole potential, ε is

the dielectric constant of the 2D material. This gives the result of equation 1.30 for the
energy ladder, physically corrected description for a monolayer suspended in a medium
with ε = 1. Nevertheless, in a physically consistent system, the screening experienced by
the Rydberg states is expected to be dependent on the quantum number n [25]. This is
why the nonuniform screening of the environment is usually taken into account using as
interaction potential, the Keldysh potential [18].

- MoS2 MoSe2 WS2 WSe2 hBN

1L 6.4 7.4 6.3 7.5 3.29
2L 6.8 7.8 6.5 7.7 3.44
Bulk 7.2 8.3 6.6 7.8 3.76

Table 1.2: Out-of-plane dielectric constant for di�erent number of layers and for di�erent
materials. The values reported correspond to the static dielectric constant, which includes
both the electronic and the ionic response. From [28].

Let us consider a van der Waals heterostructure, made for example by a monolayer
(two-dimensional) semiconductor embedded in a 3D medium, for example hBN with
lower dielectric constant14. In this system, even if the electrons and holes are con�ned in
the plane, the electric �eld lines between them extends in the surrounding medium. The
portion of electric �eld outside the monolayer increases with the increasing separation
between the charges leading to a weaker total screening. This nonlocal screening indicates
a deviation from the previously considered Coulomb's law. In this context, the interaction
between charges can be approximated by [29]

Veh(r) = − e2

8ε0r0

[
H0

(
kr

r0

)
− Y0

(
kr

r0

)]
(1.33)

14The values of the dielectric constant are presented in table 1.2 and taken form [28].
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which is the Keldysh potential, already presented in equation 1.31. Where, usually,
k and r0 are free parameters. This e�ective potential will be used in this report, for the
data analysis of the absorption of 2D TMDs using di�erential re�ectivity.

- MoS2 MoSe2 WS2 WSe2

µ(m0) 0.25 0.27 0.16 0.17
mk
c (m0) 0.51 0.64 0.31 0.39

mk
v(m0) 0.58 0.71 0.42 0.51

Table 1.3: E�ective masses of excitons and particles in the conduction (c) and valence
(v) bands of some TMDs monolayers. The e�ective masses are considered at the K point
of the �rst Brillouin zone and are expressed in units of the free electron mass m0. These
results have been obtained using DFT calculations. From [30] and [31].

We consider the band structure of the monolayers TMDs, it can be assumed parabolic
around the K(-K) points of the �rst Brillouin zone and the e�ective masses can be
calculated by density functional theory (DFT) and are reported in table 1.3. Using the
quasi-2D potential in equation 1.33, the Hamiltonian for the electron hole relative motion
can be written as

H = −~2∇2
r

2µ
− e2

8ε0r0

[
H0

(
kr

r0

)
− Y0

(
kr

r0

)]
(1.34)

The eigenvalues for this problem of the low lying s-states can be expressed in the
exponential form[18]

fn(r) = Cne
−αnr (1.35)

where αn = αgn, Cn = 2αn/
√

2π, n = 0, ..N − 1 and the problem can be solved
using variational procedure to �nd α and g and orthogonalized using the Gram-Schmid
method. After the diagonalization, lowest lying eigenstates can be found and compared
with the exact values of 1.30 and with the experimental results obtained for the excitonic
peaks.

The necessity of the described approach, and the employment of the Keldysh po-
tential, can be justi�ed by the non-hydrogenic physics of the low lying excitons states
as reported for WS2 monolayer in [25]. One possibility to verify this is to use in the
2D Hydrogenic model an e�ective dielectric constant that accounts for the environment
being in particular n-dependent, where n is the quantum number. From equation 1.30
one can invert the relation to determine the dielectric constant εn required to reproduce
the experimental binding energy of the nth exciton

εn =

[
2~2E

(n)
b,exp

(n− 1/2)2

µe4

]−1/2

. (1.36)

Two possibilities can manifest themselves. If the function εn results to be a constant,
the 2D hydrogenic model, that assumes a locally screened electron-hole interaction, can
be assumed as valid. On the other hand, if εn shows a dependence on the quantum
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number n, one can conclude that, due to the increase of the exciton radius with n, the
screening in non-uniform. If the dielectric constant decreases with n, a correspondent
decrease in the screening of the electron-hole interaction can be inferred and this can
justify a deviation from the 2D hydrogenic model.



24 CHAPTER 1. PROPERTIES AND APPLICATIONS OF THIN TMDS

1.3 Applications of excitons in TMDs and tunability

Excitons in 2D semiconductor have several technological applications in optoelectron-
ics and photonics. Di�erent photonic devices based on excitons in thin TMDs have been
realized [5] in the last years. This was possible due to the ability to control the desired
parameters, a fundamental requirement for all kind of devices. One has indeed di�erent
ways to manipulate the excitonic emission in a 2D semiconductor due to the reduced
dimensionality. As will be described in this section, excitons result to be tunable using
an external magnetic or electric �eld or applying strain to the TMDs. The dependence
of the optical properties with respect to the environment, is a remarkable feature of these
novel materials.

1.3.1 Electrical tuning

The �rst possibility that one has to tune excitons is the application of a bias to the
2D material. This can be done using �eld e�ect to dope electrostatically the carriers in
the semiconductor. In [32] the application of a voltage to a MoS2 monolayer transistor
has been observed to change the absorption spectra of the TMDs (�gure 1.11 a)). The
peaks that can be observed in this picture correspond to the A and B excitons and their
intensity changes if the electron population is changing itself.

Further studies[33] have demonstrated how a bias can continuously tune the exciton
binding energy of a monolayer WS2. In this paper, by injecting a free carrier density of
8 × 1012cm−2 a decrease in the exciton binding energy of 100meV was observed. The
ionization of exciton might be possible at higher carrier densities.

All these experimental observations are caused by the increased many-body screening
of the Coulomb interaction, dependent on the carrier density. This e�ect is particularly
strong and remarkable in 2D materials due to the enhanced Coulomb interaction and
strong con�nement. The electric �eld indeed was not found to signi�cantly modulate
the dielectric function of the thin TMDs, thus the excitons dependence on the carrier
density can lead to optoelectronic application in the 2D limit.

1.3.2 Magnetic tuning

As previously stated in this report, monolayer TMDs have energetically degenerate
excitons in the valleys K,K ′, accessed with circular dichroism. A further degree of
freedom to control exciton energies is given by the application of a magnetic �eld using
the Zeeman e�ect for spintronic applications.

The Zeeman shift, due to spin magnetic moment, does not a�ect optical resonances15

but a signi�cant contribution comes from the atomic orbital. The conduction band,
composed by electrons on d2

z orbitals with m = 0, do not change under magnetic �eld.
The valence band on the other hand, made by electrons in d orbital with m = −2 and
p orbitals with m = −1 16, shifts[34]. This therefore causes an excitonic shift of around
' 0.1meV/T as is shown using polarization resolved magneto PL in �gure 1.11 b). In

15 In optical transitions indeed spin is conserved [5].
16This is valid for the K valley, opposite sign for K'.
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the experimental results of chapter 3 of this report, the linear shift of neutral exciton in
WSe2 andMoSe2 is reported in presence of strong magnetic �eld. This shows the lifting
of the valley degeneracy and the tunability of excitons under external magnetic �eld.

Figure 1.11: a) Monolayer MoS2 absorption spectra at di�erent back-gate voltages in
a �eld e�ect transistor device. The global absorption with signi�cant A exciton and B
exciton shows amplitude variation, peak shift, and linewidth change under di�erent gate
bias voltages. From [32]. b) Valley exciton PL with a magnetic �eld applied. K and -K
valley energy degeneracy lifts in the presence of a magnetic �eld, the two spin populations
can be accessed with circularly polarized light (blue and red curves respectively). From
[34]. c) PL spectra of a representative monolayer device as it is strained from 0 to 1.8%.
d)Evolution of the position of the A peak of the PL spectrum with strain. Inset in c)
contains schematic representations of the band structure for monolayer MoS2 devices
that are progressively strained from 0% (black) to 5% (maroon) and 8% (red). From
[35].

1.3.3 Mechanical tuning

Among others, 2D materials possess the distinctive advantage of mechanical �exibil-
ity. If a mechanical strain is applied to a crystal, the lattice structure is expected to
change as well. In TMDs the electronic band structure is linked to the lattice constant
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which is expected eventually to change under applied strain. That means, also inter-band
optical transitions are expected to change. In the work of [35] it is demonstrated that
the electronic structure of MoS2 monolayer can be modi�ed under axial tensile strain.
This results in a modi�cation of the exciton photoluminescence spectrum as can be seen
in �gure 1.11 c). The tunability of the direct band-gap transition is of 70meV per %
strain and has a linear response of peak position vs. strain.

An interesting fact is that the response to strain is di�erent for particle with di�erent
e�ective masses. This leads to the transformation of the band structure that changes
from direct to indirect as can be seen by the inset of �gure 1.11 c). This causes a drop
in the photoluminescence intensity. To summarize, the change in the lattice constant,
modi�es multiple aspects as the band structure, phonon spectrum and excitons exchange
interaction [5]: the complexity of this phenomena is still under investigation of great
interest.

1.3.4 Photonic devices based on 2D excitons

As a conclusion for this �rst chapter, some devices exploiting 2D excitons will be
introduced. This done to draw the framework where the fundamental research of this
report is embedded in and to present future perspectives and possible application of
excitons in science and technology.

It is known that 2D materials are suitable for optoelectronic and photonic applica-
tions due to their e�cient light-matter interaction. First of all, as described above, the
2D nature of TMDs make excitons tunable and controllable using di�erent parameters.
The possibility of realizing van der Waals heterostructures allows the fabrication of an
in�nite number of devices whose properties can be engineered by means of monolayer
environment. Moreover, many TMDs semiconductors have direct bandgap resulting in
strong absorption/emission of light.

The �rst device reviewed is an Excitonic light emitting diode (LED), where light
emission is due to the recombination of electrons and holes injected in a p-n junction.
These light sources have a wide range of utilization especially for their e�ciency and fast
switching. That is why a straightforward application of direct bandgap 2D materials is
the development of bright and ultra-thin LEDs.

In the work of [36] MoSe2 has been embedded in a device with metal contacts for
doping (carrier injection) and multiple electrical gates. The scheme of this device can
be seen in �gure (1.12 a)) along with the exciton dominant electroluminescence (EL)
in the junction. The monolayer can be tuned using gates in order to make one side
p-doped and one side n-doped. The e�cient injection of electrons and holes is provided
by the in-plane junction. It is also possible, in this case, to tune the emission using the
injection current bias. This is an example of a fully 2D LED. Moreover, the control of the
valley polarization in TMDs using light, can be exploited by the fabrication of a chiral
LED emitting σ+ circularly polarized light under forward bias and σ− in the reverse.
Electrical generation of valley carriers can be used for manipulation and detection of
valley polarization in the development of valleytronics.

Another interesting result obtained in the realization of exciton-based devices is the
integration of the TMD with a photonic crystal cavity. This naturally arises by the
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Figure 1.12: a) Schematic of a monolayer WSe2 LED based on p-n junction. Two
back gates can separately tune the doping level at the two regions. Under a source drain
voltage the carriers recombine producing electroluminescence. b) Photocurrent of the LED
mainly generated in the junction. Excitons can be enhanced using Purcell e�ect, this is
done using a photonic crystal as the one displayed in c). If the polarization condition in
the cavity is respected, an enhancement in the photon emission can be seen d).From [36]
and [37].

atomic thickness of 2D semiconductors that allows embedding in photonic structures
like the one shown in �gure (1.12). When a photon emitter is coupled to a cavity, in
weak coupling regime, the so-called Purcell e�ect 17 in�uences the exciton decay rate
increasing the emission consequently[38]. In particular are a�ected the PL intensity and
the valley polarization [5].

In the work of [37] a photonic crystal cavity was designed with a resonance matching
the 1s exciton resonance in MoS2 exfoliated and transfer onto the cavity. An enhance-
ment in this case of almost 5 times with respect to the sample has been observed in
the PL emission. The Purcell factor of the cavity was deduced to be over 70. It is also
possible to fabricate electrical contacts and gates on 2D photonic crystals. This allows
to electrically manipulate the coupling between the cavity and the exciton emitter in the

17The Purcell factor is the enhancement of a quantum system's spontaneous emission rate caused by

its environment. It can be written as Fp = 2
4π2

(
λ
n

)3 (Q
V

)
, where n is the refractive index, Q and V are

the cavity quality factor and mode volume.
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2D TMD.
To conclude, excitons in 2D materials o�er the opportunity to explore a novel physics

and allow diverse photonic application of TMDs. First of all, con�nement enhances
coulomb e�ects and reduces the screening, this is why excitons have such strong e�ects
in 2D limit. Their binding energy is therefore hundreds of meV allowing their investiga-
tion even at room temperature. The possibility of having tunable parameters, inspires
the development of functional optoelectronic and photonic devices such as LEDs, and
lasers based on 2D semiconductor. At last, the assembly of 2D van der Waals het-
erostructures opens the gates to the exploration of exciton physics and application by
means of dielectric engineering of the environment.



Chapter 2
Experimental techniques

In this section the experimental techniques used in this research project, will be
introduced and described. I will not just present the working principle, the potential
application and advantages of each technique but I will also explain why and how I have
used them for the research project itself. The techniques employed in this work were
two: imaging spectroscopic ellipsometry and confocal microscopy. Imaging spectroscopic
ellipsometry is a technique that exploits polarized light to obtain information about the
sample such as thickness and dielectric function. It is used in thin �lm analysis due to its
ability to e�ectively characterize a van der Waals heterostructure. Confocal microscopy,
known for its improved resolution with respect with a standard microscope, allows the
reduction of the focal volume in the sample. The setup has been adapted to perform
broadband re�ectivity: in this way one can investigate optical properties of the sam-
ple with good spatial and spectral resolution (the latter imposed by the spectrometer).
Moreover the setup of the confocal microscope allows us to perform a measurement at
temperature around 4 K by placing the sample in a cryostat. By lowering the tempera-
ture of the sample, one expects to reduce phonos (that can dissociate the electron-hole
pair) and to obtain a sharper linewidth of the excitonic transitions. The cryostat used,
Attocube Attodry, is equipped with superconducting magnets to investigate the e�ects
of magnetic �elds on the 2D heterostructure.

29
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2.1 Ellipsometry

Spectroscopic Ellipsometry is an experimental technique to measure with high sensi-
tivity the thickness of a thin �lm and its complex refractive index. The typical thickness
resolution that can be achieved, depending on the wavelength used and the homogeneity
of the material, ranges from 0.1 nm to 100 µm. For layers of few nm thick the resolution
is better than 0.01 nm [39]. The sensitivity that one can achieve when measuring the
refractive index is in the order of 5 ∗ 10−5: one of the best resolutions in the analysis
of thin �lms. Limitations are present in the number of layers in a layer stack that can
be individually characterized. Depending on the contrast of the stacked materials, a
measurement of 10 layers is doable. The measurement can be repeated for an arbitrary
range of wavelengths in order to obtain a photon energy dependence of the property to
be analyzed e.g. the refractive index n(λ). This is called spectroscopic ellipsometry.

The main advantages of this technique are related to the optical method used during
the experiment. The visible light shined on the sample is non-invasive and non-damaging,
the intensity is low indeed and one can directly measure the refractive index even of a
sample inside a transparent environment. In an ellipsometer, the transverse electro
magnetic (TEM) mode of the light is generated and polarized in a known state. After
being shined on the sample it is re�ected and, in general, will have a di�erent polarization
state and di�erent spectral intensity: the `ellipse' i.e. the state of polarization is measured
in a �xed point and analyzed. Here a scheme of a generic ellipsometer is drawn but will
be described into detail later in chapter 2.1.2. Before doing so it is important to present
the formalism used when dealing with optical properties of a multilayer structure such
as the van der Waals heterostructure investigated in this research project, the so-called
transfer matrix method.

Figure 2.1: Working principle of ellipsometric techniques. The Polarization State Gen-
erator (PSG) and Polarization State Analyzer (PSA) may consist of a polarizer or a
combination of a polarizer and retarder.

2.1.1 Transfer matrix method

The transfer matrix method is a really �exible formalism that can be used to simulate
the re�ection, transmission and absorption of a planar layered structure making it widely
used in the optical characterization of thin �lms. The derivation presented here is based
on the boundary conditions imposed by Maxwell's equations at the interface of two
materials with di�erent refractive index. A similar derivation can be found in [40]. The
layers are supposed to be homogeneous and isotropic with a �lm thickness of the order of
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the wavelength of light. Moreover, we consider TE electromagnetic waves i.e. with the
electric �eld tangent to the layer interface (s-polarization) but an analogue derivation
can be performed in the case of TM waves1.

Figure 2.2: a) Example of a layer stack whose optical properties (transmission, re�ec-
tion. . . ) can be investigated using the transfer matrix method; b) scheme used during the
derivation of the transfer matrix, the wavevector of the forward and backward propagating
rays are depicted. This is the case of a TE electromagnetic wave. Note how the symbol ′

(prime) indicates a wavevector or a �eld propagating in the negative x direction.

From �gure (2.2 b) ) consider the �rst dielectric interface and assume light incident
from left, the incidence plane is placed at x = 0 and the same wavelength on the two
sides is maintained. By considering the complex representation of a wave, the electric
�eld can be written as2

E =

{
(E1e

−ik1·r + E ′1e
−ik′1·r)eiωt, if x <0

(E2e
−ik2·r + E ′2e

−ik′2·r)eiωt, if x >0
(2.1)

By using the Stokes's theorem into Maxwell's equations involving the curl, and diver-
gence theorem in those involving the divergence, one can derive the boundary conditions
for the �elds in media with no free charges. The result is that the tangential components
of the E,H �elds are continuous across the interface. At x = 0 for the electric �eld

E1se
−ik1zsinθ1 + E ′1se

−ik′1zsinθ′1 = E2se
−ik2zsinθ2 + E ′2se

−ik2zsinθ′2 (2.2)

Where ki = ω/(c/ni), due to the law of re�ection θ1 = θ′1, θ1 = θ′1 and due to Snell's
law sinθ1

sinθ2
= n2

n1
. So the E boundary condition becomes:

E1s + E ′1s = E2s + E ′2s (2.3)

1The ellipsometry analysis depends on both the s- and p-polarization, and the transfer matrix method
applies to both the polarization cases.

2The symbol ′ (prime) indicates a wavevector or a �eld propagating in the negative x direction.
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Proceeding in the same way for H and using the relation |E| =
√
µ/ε|H| the H

boundary condition becomes:

n1(E1s − E ′1s)cosθ1 = n2(E2s − E ′2s)cosθ2 (2.4)

Writing (2.3) and (2.4) in a matrix form, the result is:

D(1)

(
E1s

E ′1s

)
= D(2)

(
E2s

E ′2s

)
(2.5)

Where D(i) =

(
1 1

nicosθi −nicosθi

)
. The quantity Si→j = D(i)−1D(j) is de�ned

and is the transfer matrix at the boundary of a dielectric i.e. relates the forward and
backward propagating electric �eld on one side and the other of the interface. At this
point, it is possible to see the use of the transfer matrix at a boundary between two
dielectrics. By taking into account the case of light impinging on the interface from the
left only, E ′2s = 0. The re�ection coe�cient is:

rs =

(
E ′1s
E1s

)
x=0

=
S1→2|21

S1→2|11

(2.6)

The transmission coe�cient instead is

ts =

(
E2s

E1s

)
x=0

=
1

S1→2|11

(2.7)

Therefore amplitudes are related by the so-called Fresnel coe�cients:

rs =
n1cosθ1 − n2cosθ2

n1cosθ1 + n2cosθ2

(2.8)

ts =
2n1cosθ1

n1cosθ1 + n2cosθ2

(2.9)

An analogous derivation can be done for TM waves (or p-polarization) where the
magnetic �eld is polarized transverse to boundary giving the result:

rp =
n1cosθ2 − n2cosθ1

n1cosθ2 + n2cosθ1

(2.10)

tp =
2n1cosθ2

n1cosθ1 + n2cosθ1

(2.11)

We know how to get relationships between �elds at either side of each interface:
after crossing a boundary, the light travels the medium and is subject to a phase shift.
Considering the �elds at x = 0+ and x = d− the following relation is valid(

E2s(0
+)

E ′2s(0
+)

)
=

(
eik2cosθ2d 0

0 e−ik2cosθ2d

)(
E2s(d

−)

E ′2s(d
−)

)
(2.12)

So in general the matrix relating the electric component of the �eld before and after

the propagation in a layer is G(d)i =

(
eiφi 0
0 e−iφi

)
where φi = 2π/λnidicosθi is the

phase change in a snapshot of the �eld at 0 to the �eld at d, at a constant value of z.
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Now the traveling of the light in a layered structure is just a repetition of interfaces
and slab of materials, therefore, by considering the case in �gure (ref02 a)) the transfer
matrix can be obtained by a multiplications of the matrices of refraction/re�ection and
propagation of all the layers composing the structure from left to right (according to the
direction of the incoming light). The result is:(

E2s(0
+)

E ′2s(0
+)

)
= S0→1G1S1→2G2...GnSn→0

(
E2s(d

−)

E ′2s(d
−)

)
(2.13)

Where n is the number of layers composing the structure and 0 refers to air. We call
T0→n = S0→1G1S1→2G2. . . .GnSn→0. Therefore, the propagation of light, even through
a complex structure made by di�erent materials, can be described by a simple matrix
called `transfer matrix' in the form

T0→n =
A(ω) B(ω)
C(ω) D(ω)

. (2.14)

Equations (2.6) and (2.7) can be used again on the transfer matrix T to obtain the
re�ection and transmission coe�cients in amplitude. To extend this to the case of power,
it is su�cient to consider the obliqueness factors which are di�erent for TE and TM
polarization.

The result is, for s-polarization:

Rs = |rs|2 (2.15)

Ts = Re

(
nncosθn
n0cosθ0

)
|ts|2 (2.16)

And for p-polarization:

Rp = |rp|2 (2.17)

Tp = Re

(
n∗ncosθn
n∗0cosθ0

)
|ts|2 (2.18)

2.1.2 Ellipsometry

In this section the working principle and the experimental setup of an ellipsometer
will be described. The most general state of polarization of (monochromatic) light is
elliptical; in this case a vector �eld at a �xed point in space draws in time an ellipse
perpendicular to the propagation vector. When the light interacts with a sample, in
general, it changes its polarization state. Therefore, if the initial polarization state of
the light is known, by measuring the outcoming light it is possible to retrieve information
about the shined object. The probability of the sample to change the polarization state
of a monochromatic radiation can be described by two parameters (�gure 2.3) as stated
in [41]. These are called ellipsometric angles Ψ and ∆.
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Figure 2.3: Elliptically polarized light and the projected polarization ellipse. Here a and
b are, respectively, the semi-major and semi-minor axes of the ellipse and Ψ and Θ are
the angles that a forms with the x and y axes. Finally, ∆ is the relative phase di�erence
between the p and s component of the light. Mathematically the polarization state is
de�ned by the parameter tanΨei∆. Taken from [41]

In order to obtain physical quantities about a planar multilayer sample, one needs
to relate the polarization change with the intrinsic sample properties e.g. thickness
and dielectric function. The light re�ected by an object in the simple case of an abrupt
surface of each layer or in�nitely thick medium can be quanti�ed by the Fresnel equations
presented in the previous section. The re�ection coe�cients rs (2.8) and rp (2.10) for
polarizations parallel and perpendicular to the plane of incidence de�ne the ellipsometric
angles according to the complex ratio:

rp
rs

= tanΨei∆ (2.19)

The ellipsometer photodetector measures both the ratio of the re�ectivity and the
relative phase change of the p- and s-components Rp/Rs = tanΨ and ∆ = δp − δs
allowing to estimate the ellipsometric angles. It is worth to mention that, even if the
studied sample is a complex optical system with various layers of di�erent materials,
e.g. a van der Waals heterostructure, multiple re�ections and phase shifts are simulated
using the transfer matrix formalism.

To perform this measurement, an ellipsometer uses a monochromatic light source, a
Polarization State Generator (PSG), an objective, a Polarization State Analyzer (PSA)
in the path between the sample and a photodetector. The PSG changes the polarization
state of the incident beam, while the PSA analyses the polarization of the re�ected beam.
The photodetector is used to image the sample. Di�erent con�gurations of PSG and PSA
can be implemented; in the common case presented in �gure 2.4 the PSG is made by a
linear polarizer and a retarder (λ/4 wave plate) while the PSA is composed by a single
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linear polarizer. A linear polarizer is a simple device commonly used in optics; it is
able to suppress the optical component of the electric �eld that oscillates perpendicular
to its polarization axis while the component parallel to its axis is free to pass. Note
that, since we have two linear polarizers in this con�guration, if their polarization axes
are at 90◦ one with respect to the other, the transmitted light is suppressed (with a
reduction of 10−6). Retarders instead are used to introduce a phase delay between the
two perpendicular components of the incident electric �eld. The one used here is a
"quarter wave plate�. It has a faster and slower axis leading to a phase shift of 90◦ in
the components of the electric �eld along these axes. Note that using a linear polarizer
and a retarder it is possible to obtain any elliptically polarized state. By considering the
con�guration mentioned just above, the measurement of the ellipsometric angles Ψ, ∆
is done by rotating the angles of polarization optics placed in the beam path.

Figure 2.4: A scheme of the most common con�guration for an ellipsometer (PSG - PSA)
adopted by the Accurion EP4 used in our measurements. By following the light path one
can see a polarizer, a compensator, the sample, a second polarizer and the photodetector.
This con�guration is used in nulling ellipsometry.From accurion.com/ellipsometry.

The ellipsometer used in the experiments presented in this report is the �Accurion
EP4� from Accurion GmbH. This state-of-the-art instrument bases the measurement on
the principle of nulling ellipsometry, i.e. �nding the right-angle settings for Polarizer,
Compensator and Analyzer in order to minimize the intensity on the photodetector. This
is equivalent to �nding a minimum on the signal on the photodetector. This minimum can
be found because a properly elliptically polarized beam (generated by the pair Polarizer
and Retarder), when re�ected by the sample, becomes linearly polarized. Using the
Analyzer it is possible to know the polarization direction of the re�ected beam, indeed
using a second polarizer at 90◦ from the polarization axis the light beam is (almost)
extinguished.

The procedure described above is iterative, and is performed until the minimum of
intensity is found with the accuracy desired before the measurement. First the light
passes through the PC couple and the P, C angles are changed in such a way that the
re�ected light is linearly polarized. Then a photodetector is used behind the analyzer
A to detect this as a minimum of the signal. The main advantage of this method
is the fact that one is measuring angles instead of light �ux on a photodiode so non
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idealities from the lamp and non-linearities of the detector are avoided leading to a
more accurate measurement [42]. Up to now, a monochromatic excitation power has
been considered. By repeating the previous measurement for di�erent wavelengths, it is
possible to determine the spectral dependence of the ellipsometric angles delta and psi
(the so called spectroscopic ellipsometry).

After the ellipsometer provides the ellipsometric angles spectra, one needs to relate
them to the physical quantities to be measured i.e. the characteristics of the sample.
Suppose to have a sample composed by a substrate, a layer of known material and
thickness and a second layer on top made by a material whose dielectric function needs
to be investigated �gure (2.5 a)) . The measured ∆ and Ψ values will depend on the
layer thickness d and of its refractive index n, as previously discussed in Section 2.1.1.
Therefore a particular structure will produce a speci�c curve of the ellipsometric angles
and vice versa, a particular curve is the �ngerprint of the sample the light was re�ected
from. In general (except for trivial cases) it is di�cult to analytically calculate the
refractive index or the thickness from the ellipsometric angles just because the functional
form is too complicated. That is why one has to develop an optical model. This is a
mathematical expression of Ψ, ∆ as a function of the parameters.

Figure 2.5: a) A typical heterostructure that can be characterized using ellipsometry.
In this case the layer to be analyzed is the upper one, while the other parameters are
known. b) Ellipsometric angles for WSe2 monolayer on SiO2 substrate as a function of
the photon energy of the impinging light. The experimental data are taken at an angle
of incidence of 50◦.

By �tting the calculated Ψ(n, d), ∆(n, d) to the experimental ∆ and Ψ it is possible
to estimate the physical quantities of the layer. The accuracy of the results partly relies
on the accuracy of the rest of parameters considered in the theoretical model. In our case
n0, d2, n2 and ns. That is why the optical model is the most critical point in ellipsom-
etry. In principle, since the ellipsometer gives two measurable real quantities, only two
parameters can be retrieved about the sample. To increase the number of independently
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measurable quantities one can repeat the measurement at di�erent wavelengths (spec-
troscopic ellipsometry) or at di�erent angles of incidence. Nevertheless, �nding a value
for multiple parameters requires a long computational time and a powerful numerical
computation as well as experimental obstacles. The importance of an accurate model
might cause some limitations in the determination of more complicated properties as the
exciton binding energy and their environmental shift. This will be more deeply discussed
later.

To conclude this section, I present the content of the appendix A of this publication. A
simple Matlab code has been written to simulate the ellipsometric parameters generated
by a slab of silicon on silicon dioxide substrate for di�erent angles of incidence. This
can be perhaps useful to understand the working principle of ellipsometry and how the
thickness and refractive index of the material in�uence the values of Ψ and ∆.

Experimental setup: Accurion EP4

The experiments described in chapter 3 were performed using the �Ellipsometer EP4�
from Accurion GmbH. The machine is shown in the �gure (2.6) and is located in the clean
room of the nanofabrication facility of Heriot Watt University. The setup is composed by
the ellipsometer, by a light source, and by the computer to control the measurement and
to analyze the data. This ellipsometer was used to perform spectroscopic ellipsometry
inside an inert atmosphere kept in a glovebox. The light source is a collimated white light
followed by a monochromator i.e. a di�raction grating able to provide a monochromatic
radiation to be shined on the sample. The most powerful part of this instrument is
indeed the software both for experiment setup and for data analysis. One can select a
region of interest on the sample imaged on the microscope but is also possible to perform
a so called �∆,Ψ map� that means measuring the ellipsometric angles for an area of 100
by 100 µm on the sample. This allows with only one measurement to have an image of
the surface of the sample itself and to characterize and investigate di�erent regions of
the sample. This is useful especially with complex TMDs heterostructures.

Figure 2.6: a) The Accurion EP4 ellipsometer ;b) �ow chart of ellipsometric measure-
ment and data analysis. From accurion.com

The analysis of data is done using the software �EP4 Model� by Accurion. As was
described before, the working principle of this ellipsometer is based on the numerical �t
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between experimental ellipsometric angles and the mathematical model (see appendix A).
A list of dispersion of di�erent materials can be imported and the layer stack composing
the sample is built. The number of parameters used in the optical model of the unknown
material can be decided: the thicknesses and the oscillators strength, damping and
resonance frequency of Lorentz oscillators are the most widely used. The parameter to
be �t can be arbitrary chosen so that is possible to perform a numerical minimization
problem for one unknown at the time.

To conclude, ellipsometry is a non-invasive, and fast technique to characterize thin
layers, even in case of a complex heterostructure. Nevertheless, as it will be explained in
more details in chapter 3, an accurate model for the dielectric function of a material in
presence of di�erent environments is di�cult to be realized. Moreover the number of free
parameters is usually large and it is di�cult to estimate the error on the measurement.

2.1.3 Dielectric function using ellipsometry

Ellipsometry allows to determine the thickness and/or the dielectric function of a
single �lm or a complex multilayer stack. In the second case, knowledge of the disper-
sion model of the materials composing the stack is fundamental to reduce the number of
unknowns. Moreover, in the framework of the investigation of 2D excitons, the measure-
ment and determination of the model is the �rst step in the determination of the exciton
binding energies as will be illustrated in the following sections along with the experi-
mental results. The dispersion model should be physically signi�cant, able to reproduce
mathematically the dielectric function line shape (real and imaginary part) and �nally
should possess a reasonably small number of parameters. The numerical �t between
experimental data and mathematical model should be indeed not too expensive in terms
of computational resources. A possible approach to describe the dielectric properties
of an inorganic material can be derived classically by considering the polarization of a
material when irradiated in the UV and visible range. In the Fourier representation a
material is described by

D(ω) = ε0E(ω) + P (ω) = ε̃(ω)E(ω) (2.20)

and the refractive index is related to the dielectric function

ñ =
√
ε1 + iε2 (2.21)

The dielectric function physically describes the polarizability of the material and is a
complex tensor whose imaginary part is proportional to the energy absorbed from the
radiation.

In the visible and UV range the polarization involves mainly excitations of electrons
(excitons) that generates an electric dipole, i.e. a dipole moment, while in the IR exci-
tations can be associated to phonons, vibrations of ions in the lattice. Using a classical
model, one can describe the motion of a negative and positive charge as a mechani-
cal harmonic oscillator with the motional equations. Electrons are seen as ensemble of
uncoupled harmonic oscillators due to localization of charges.
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Figure 2.7: a) Real and imaginary part of the refractive index calculated within the
classical Lorentz oscillator model for a single resonance. b) Comparison of the dielectric
function of monolayer TMDC crystals with that of the corresponding bulk material. From
[15].

The time dependent dipole moment is translated into an expression for the dielectric
function of one single oscillator using the Lorentz oscillator model [15]:

ε(ω) = 1 +
f

ω2
0 − ω2 − iγω

(2.22)

Here ω0 is the oscillator resonance frequency, γ is the damping factor due to the
energy dissipation occurring in scattering processes. f is the oscillator strength and is
proportional to the density of oscillators (atoms). Both organic and inorganic materials
have of course more than one oscillator, caused by di�erent phonon and exciton excita-
tions. The correct dielectric function indeed can be written as a sum of oscillators with
di�erent resonance frequencies[15]:

ε(ω) = 1 +
∑
i

fi
ω2
i − ω2 − iγiω

. (2.23)

Alternative dispersion relations can be found in literature and can be derived by
classical electrodynamics, quantum mechanics or empirical considerations. Moreover the
real and imaginary part of the dielectric function are related by the Kramer-Koenig
relations. Therefore, once one of the two is known, the other one can be analytically
obtained.
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2.2 Confocal microscopy

It is known that the spectroscopy of micro and nano objects requires high spatial
resolution and often low temperature conditions. Indeed, as it will be described in
chapter 3, excited exciton states in the 2D semiconductors studied in this report present
binding energies of the order of the thermal energy at room temperature ' 25meV .
Therefore, a spectral determination of these features is hopeless if the couple electron
hole is thermally dissociated. On the other hand, an experiment performed at cryogenic
temperature (of the order of liquid He temperature, i.e. 4K) would in principle allow
the investigation of excitons excited states. The cost is the utilization of a di�erent
technique with a more complex apparatus: re�ectivity of a broadband light source using
a confocal microscope at cryogenic temperatures. In this section the principles of a
confocal microscope, the experimental setup used and the broadband light re�ectivity
experiment will be presented.

2.2.1 Confocal microscope

The confocal microscope has the advantage of having a reduced focal volume in
the sample therefore producing a better contrast imaging. The main di�erence with a
standard optical microscope is the presence of a �pinhole� that allows the collection of
light re�ected by the sample from the focused point only: the core of an optical �ber can
be used to collect the light. As it is possible to see in �gure (2.8 a)), the light coming
from optical planes di�erent from the object plane, are �ltered out by the pinhole.

15cm

Figure 2.8: a) Scheme of a confocal microscope: it is possible to visualize how the pinhole
rejects the light coming from the vertical planes out of focus. b) Intensity distribution of
a focused beam as a function of the radial coordinate (black) the Airy circle and the axial
coordinate (blue).

The name of this technique is originated by the fact that the pinhole is "confocal"



2.2. CONFOCAL MICROSCOPY 41

with the focal plane in the sample: this gets rid of light coming from all depths in the
sample avoiding poor depth discrimination and low contrast. The image is formed by
moving the beam across the sample: this object plane scanning consist of a spatial map
of detector intensity vs. scan position.

As it is possible to see in �gure (2.8) the optical system of a confocal microscope is
rather simple and is composed by a collimation lens and an objective lens in an in�nite
conjugate design. To brie�y analyze the improvements to the resolution for a confocal
microscope one can consider the scalar theory that does not consider the polarization
of light. At the focal plane, identi�ed at z = 0 for a focused beam propagating in
the z direction, the point spread function (i.e. the intensity distribution resulting from
illumination with a plane wave) can be expressed in the radial (r) and axial (z) directions
respectively by [43]

I(0, r) =

[
2J1(2π/λNAr)

2π/λNAr

]2

I0 (2.24)

and

I(z, 0) = sinc
(
2π/λNA2z/4

)
I0, (2.25)

that indicates the distribution of intensity. Here, I0 is the maximum intensity, NA
is the numerical aperture of the objective, J1 is the Bessel function of �rst order. The
FWHM of these two functions is calculated as

Γr = 0.52
λ

NA
, (2.26)

Γz = 1.77
λ

NA2
. (2.27)

The e�ect of a confocal microscope is to reduce the axial and radial spot size of a factor
1.4 comparing to wide �eld microscopy. Therefore 2.26 and 2.27 become

Γr = 0.52
λ

NA
√

2
, (2.28)

Γz = 1.77
λ

NA2
√

2
. (2.29)

In this way the resolution is improved using objectives with high numerical aperture.
This rather simple setup should now be adapted to excite the sample at a temperature

of 4K. In [44], the authors describe the design and performance of a �ber-based confocal
microscope for cryogenic operation.

A desirable setup would provide precise and reliable sample scan and focus without
occurring into drift even after many days of operation so that re-alignment is not re-
quired even after temperature changes or applied magnetic �elds. The relative position
of the sample and lenses has to be �xed and are therefore placed in a monolithic unit
("microscope stick") together with the nano-positioners for x, y and z directions. In
this way the sample is placed in the focal plane of the two-lens microscope. The posi-
tioning system is made by three independent piezo-electric motors capable of working
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at cryogenic temperatures. Moreover, titanium is used as nonmagnetic material for the
realization of the microscope head that will be inserted into the cryostat. For operation
at cryogenic conditions, the stick has to be placed into a non-magnetic stainless-steel
tube where vacuum is created. Some exchange gas is later pumped inside to provide
thermal exchange between the sample and the Helium bath in the cryostat itself. In this
way the microscope is robust against gradient of temperature and magnetic �elds and
capable of scanning the sample with nanometer precision in the three directions over a
range of approximately 5 millimeters.

2.2.2 Broadband di�erential re�ectivity

A confocal microscope can be used for di�erent purposes: form photoluminescence to
high contrast microscopy of semiconductor structures and optical sectioning of transpar-
ent samples e.g. cells in biology. In the frame of the project described in this work, the
confocal microscope was used to measure the re�ected light from a van der Waals het-
erostructure in order to investigate the spatial and spectral position of excitonic emission
peaks of these 2D materials.

Figure 2.9: Detailed scheme a) and picture b)of a confocal microscope used for experi-
ments at cryogenic temperature. The drawing is based on the experimental setup used
in the Quantum Photonics Lab at the Department of Physics of Heriot Watt University
(UK).

In �gure (2.10) the scheme of the setup used for cryogenic measurements is shown.
The lower part is immersed in the cryostat. The sample is mounted over piezo electric
motors: these will move in the plane to provide a spatial image of the sample. The
objective lens collects the light coming from the sample and focuses the excitation beam.
The upper part is the microscope head and it is placed outside the cryostat. On the top
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a collection �ber acts as a confocal pinhole while on the beam path three beam splitters
allows part of the traveling light (up or downward) to follow di�erent directions. In
particular, a laser and a photodetector are used to align the optics and optimize the
collection from the sample, while a CCD camera is used to image the sample. In our
case (WL re�ectivity) the sample was excited by the broadband white light produced by
a tungsten halogen lamp from Newport. The WL travels to the sample and is re�ected
in the direction of the collection �ber going to the spectrometer. With this con�guration
it is possible to analyze the re�ectance spectrum from a spatial region of the sample.
What we are interested in is the di�erential re�ectivity of the sample with respect to
a reference point; usually the substrate i.e. a region with absence of spectral features
typical of excitonic peaks. The di�erential re�ectivity is de�ned as

∆R(λ, x, y) =
R(λ, x, y)−R0(λ, x0, y0)

R0(λ, x0, y0)
(2.30)

Where R0(λ) is the re�ectivity spectrum of the reference point x = x0, y = y0. The
spectral dependence of the re�ected light is measured by the spectrometer and expressed
in arbitrary units, usually counts of the detector. The presence of sudden changes in the
di�erential re�ectivity spectrum indicates the spectral position of 2D excitons, while the
information on the position on the sample comes from the spatial coordinates provided
in the spectral map.

Figure 2.10: a) Example of a WL spatial map obtained with the setup described above.
The color scale is based on the integration of the spectrum over a speci�c interval. b)
Di�erential re�ectivity spectrum of a point on the sample to the left. The features are
WSe2 excitonic peaks of the excited states of the A exciton.
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2.3 Experimental setup for magnetic �eld measure-

ments

As was mentioned in chapter 1, transition metal dichalcogenides are materials suitable
for the so-called valley polarization. If time reversal symmetry is broken and a magnetic
�eld is applied, the excitons in theK,K ′ valleys are no more degenerate in energy and it is
possible to control further the electronic population in these particular points of the �rst
Brillouin zone. Moreover, single spin population can be accessed by circularly polarized
light. This is because the particular band structure of TMDs, where bands are splitted
with opposite spins at the K,K ′ points, allows photo excitation to selectively energize
electrons in one of the two valleys using circularly polarized light. In this section the
experimental setup utilized during the broadband spectroscopy of excitons in presence
of magnetic �eld will be described.

The experiment has been performed using the confocal microscope described in the
previous section, the sample were mounted in a 4K temperature exchange gas inside the
cryogen free cryostat (Attocube AttoDRY100). The top-loading, closed-circuit cryostat
itself is in the bore of superconducting magnets capable of generating static magnetic
�elds up to 7T . The superconducting magnets have the shape of a cylinder surrounding
the sample, the latter is placed perpendicularly to the central axis of the cylinder itself.
In this way, the magnetic �eld is pointing out of the plane of the 2D heterostructure,
this is the so-called Faraday con�guration, �gure (2.11 b)). This is required because also
the magnetic moment of excitons (con�ned in the plane of the 2D material) points out
of the plane3. The application of a strong magnetic �eld is required since the g factor
of Zeeman shifted excitons induces small variation in the spectral position of the peak,
in the order of 0.1meV/T . It is also possible to reverse the direction of the magnetic
�eld. The measurement will consist therefore, in the swipe of magnetic �eld applied to
the sample and the recording of the broadband re�ected light spectrum as a function of
Bext. Access to both σ+ and σ− circularly polarized transitions is achieved by reversing
the direction of the magnetic �eld or changing the angle of the λ/4 wave plate. This
corresponds, respectively, to the interband optical transitions in the K and K ′ valley of
the TMD.

2.3.1 Circularly polarized light

Circular polarization of electromagnetic wave is a polarization state in which the
magnitude of the electric �eld is constant, but its direction rotates at a constant rate in
time. Depending on the direction of the rotation with respect to the wave propagation,
circular polarization is called left or right. The experimental setup to generate this
polarization state, is presented in this paragraph.

3This can be seen by the expression of the Zeeman e�ect EZ = −µ ·Bext
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Figure 2.11: a) Experimental setup for the production of circularly polarized light. The
collection arm of the confocal microscope has, between the pinhole (left) and the sample
(right), a linear polarizer and a λ/4 plate whose fast axis can be rotated by an angle θ with
respect to the linear polarizer. b) Scheme of the Faraday con�guration for the application
of a magnetic �eld perpendicular to the plane of the sample. c) Table containing the
values of the angle θ of the plate that produces left or right circularly polarized light. d)
Representation of right hand circularly polarized light, the arrow indicates the direction
of the electric �eld component of the wave. From newport.com

The broadband unpolarized light is re�ected back by the sample and travels in the
collection arm shown in �gure (2.11 a)). To turn linearly polarized light into circularly
polarized light one can use a quarter wave plate, an optical component made by bire-
fringent material. The light will travel in this case with two di�erent refractive indices
on the fast and slow axis depending on the orientation of the birefringent crystal. To do
this e�ectively, one needs to orient the polarization axis at 45◦ to the fast axis as shown
in �gure (2.11 d)). This is the case of right hand circularly polarized light (RHCP), to
obtain polarization in the other direction by rotating the λ/4 wave plate by 90◦. As it
is possible to see from �gure (2.11 a)), the λ/4 plate and the linear polarizer are placed
in the collection arm of the confocal microscope.

The table in �gure �gure (2.11 c)) instead contains the angles, with respect to the
linear polarizer axis, that the plate should have to produce a left hand, right hand or
linearly polarized light. These were experimentally determined placing the birefringent
plate between two linear polarizers and by measuring the intensity passing through the
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optical setup on a photodiode 4.

4Further information can be found on the website www.newport.com/n/polarization.



Chapter 3
Discussion

The aim of the following section is to present the experimental results obtained from
our experiments. As mentioned in section 2 the adopted techniques are two: ellipsometry
and broadband light re�ectivity at low temperature. Therefore the data obtained using
the two methods will be individually discussed and later compared. This can either
increase the con�dence on the obtained experimental results and underline di�erent
advantages and limitation of ellipsometry and confocal microscopy. The reason why
the project evolved to white light re�ectivity is the change from room to cryogenic
temperature; liquid He at ' 4K. To correctly investigate the in�uence of environment
on excitons, a physical model for the excitons binding energy is necessary. This requires
the excited states n = 3, 4, 5. . . to be experimentally accessed. As it will be discussed
below, a room temperature technique as ellipsometry does not allow this. To reduce
thermal excitation we therefore decided to perform the experiment in a cryostat.

To further explore the A-exciton Rydberg states, a strong out of plane magnetic �eld
has been applied on the sample. The results obtained using circularly polarized light are
reported in the last section of this chapter.

47
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3.1 Experimental results using ellipsometry

The investigation of the optical properties of thin TMDs carried out in this report
is focused on two di�erent 2D materials: WSe2 and MoSe2. In particular, the �rst
technique used to characterize the sample has been Ellipsometry using the Accurion
EP4 described in the previous section. The �rst application of this technique is the
measurement of thicknesses of thin materials but we are interested in the experimental
dispersion of these material i.e. their complex dielectric function ε(ω) = ε1(ω) + iε2(ω)
and its mathematical model. The change of dimensionality (from 3D to 2D) predicts
notable new properties regarding bandgap and excitons: for this reason, the investigation
focuses on monolayers of TMDs.

Figure 3.1: Optical microscope images (magn. 50x) of the samples analyzed using el-
lipsometry. a) The mechanically exfoliated monolayer of the TMD WSe2 is indicated
by the arrow and has been transferred on SiO2. In the inset it is possible to visualize
the scheme of the (simple) layer stack. b) Monolayer of MoSe2 obtained via mechanical
exfoliation. The substrate is again SiO2.

We started with the simplest layer stack: a monolayer on Si substrate. In this
way the e�ect of the environment on the optical properties is minimized. In �gure
(3.1) is possible to see the �akes at the optical microscope (magni�cation 50x). The
monolayers of WSe2 and MoSe2 have been obtained using mechanical exfoliation in
an Ar atmosphere. The transfer from the tape to the substrate has been made using
transparent Polydimethylsiloxane (PDMS). The substrate is made by Si, that can be
treated as in�nite thick medium, and SiO2 whose thickness has been measured using
ellipsometry resulting equal to 82.0(1)nm in the WSe2 sample and 82.5(1)nm in the
MoSe2 sample. The thickness of the monolayers can be measured, e.g. with atomic
force microscope (AFM), and its value is available in literature: we have used the value of
0.65nm that can be assumed constant for all the TMDs monolayers since their crystalline
structure is identical [45]. Moreover, the dimension of the �akes is approximately 8 by
20µm for WSe2 monolayer and 40 by 10µm for MoSe2 .

To investigate how the dielectric environment a�ects the excitons in our samples,
the monolayer of WSe2 has been encapsulated in hexagonal boron nitride (hBN). Op-
tical microscopy images of the two samples fabricated in the cleanroom facilities and
characterized with ellipsometry are shown in �gure (3.2).
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Figure 3.2: Optical microscope images (magn. 50x) of the encapsulated monolayers
analyzed using ellipsometry. Here the WSe2 monolayer has been encapsulated in hBN
after exfoliation. The layer stack is placed upon thick gold: in the inset it is possible to
visualize the sample scheme. a) sample "A01" and b) sample "A02" (image obtained
with dark �eld �lter), the monolayers are indicated by the dashed orange lines.

Since the sample was fabricated to allow the application of an electric �eld, the layer
stack is composed as follows: the substrate is now an evaporated gold contact electrode
with thickness of ' 90nm 1 and upon it the WSe2 monolayer is encapsulated between
two layer of hBN. For the sample �A01�, �g. (3.2 a)), the thickness of the bottom hBN
is 50.1(1)nm while the upper one is 12.1(1)nm thick2. The sample �A02� instead, �g.
(3.2 b)), has hBN thicknesses of 60(1)nm and 11.0(1)nm.

In literature the dielectric function of thin TMDs is usually modelled as a sum of
Lorentzian oscillators plus a constant term according to equation (2.23) here reported
for reference:

ε(ω) = 1 +
∑
i

fi
ω2
i − ω2 − iγiω

, (3.1)

and it is usually experimentally accessed using white light re�ectivity [15]. The approach
followed in this project is exploiting the powerful �tting program provided by the ellip-
someter Accurion EP4. Using the expression (3.1) the parameters in our mathematical
expression are: the real and imaginary part n and k of the complex dielectric function,
and then the strength, damping and resonance energy of each oscillator. These will give
us the frequency dependence in the expression ε(ω).The parameters of a �nite number of
oscillators (usually 5 or 6), determine the shape of the dielectric function and therefore
the change in the polarization state of the light re�ected by the sample and detected by
the ellipsometer. A correspondence between the experimental Ψ and ∆ angles and the
excitonic peaks intensity position and width can be obtained minimizing the di�erence
of the calculated and experimental ellipsometric curves. The next section contains the
experimental results obtained from the sample mentioned above.

1Due to the large thickness of this metal, this layer can be treated as in�nite and therefore the SiO2

below it can be neglected. This is justi�ed by the fact that the Ψ and ∆ angles do not change by varying
the SiO2 thickness in the model.

2These number have been obtained by the measurement using ellipsometry.
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3.1.1 Exciton energies and dielectric function

The function ε(ω) can be in principle accessed using ellipsometry exploiting the nu-
merical �t of the measured ellipsometric angles Ψ and ∆. This requires a mathematical
modelling of the dispersion of a material. We use the sum of Lorentzian oscillators to
represent the excitonic absorption peaks and a constant term. Since the used mathemat-
ical expression is complex, the result will be a refractive index with a real (associated
to the propagation) and an imaginary part (associated to the absorption). The ellipso-
metric angles were obtained experimentally for a wavelength range λ = 400 − 800nm
corresponding to, approximately, 1.4 − 3eV using nulling ellipsometry. After that, the
data analysis consists in the building of the sample layer stack and of the Lorentzian
parameters that form the WSe2 refractive index. The parameters are then �tted and a
result for the oscillators strength, damping and resonance energy is provided with the
related standard error. To visualize the result obtained by the �t, it is possible to plot
both the experimental Ψ and ∆ angles and the one expected by the just-found model.
In �gure (3.3) it is possible to see this result in the case of our sample of WSe2. As
one can see the �tted model follows the experimental data and allows us to identify the
features (indicated by the blue arrows) introduced by the excitons 3.

Figure 3.3: Psi and Delta angles obtained measuring a WSe2 monolayer with ellip-
sometry. The solid line represent the �tted model while the vertical bars represent the
di�erence between experimental values and the �t itself. The arrows are indicating the
features corresponding to the exciton resonances.

The Accurion software provides a calculation for the ellipsometric angles using its
estimation of the WSe2 dielectric function. In chapter 2 it is shown how to obtain the
dielectric function starting from the mathematical model of Lorentzian oscillators. The
result for WSe2 is shown in �gure (3.4 a)) where the experimental refractive index of
the monolayer is plotted as a function of the incoming photon energy. Note how the

3As one can expect indeed, the transfer matrix determines the ellipsometric angles, and it is modi�ed
by the dispersion of the materials composing the stack.
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imaginary part, corresponding to the optical absorption of a material, present a series
of peaks: this is what one expects at the energy corresponding to the creation of the
bounded electron-hole pair (exciton). In �gure (3.4 b)) instead the real part of a single
Lorentzian is displayed together with the total imaginary part of the refractive index
arising from the sum of equation (3.1). The peak located at low energy is the strongest
and corresponds to the 1s state of the A exciton.

Figure 3.4: Experimental dispersion of the WSe2 monolayer on SiO2 substrate. a) Real
(blue) and imaginary part (red) of the refractive index n(ω) of WSe2. This result has
been obtained �tting the experimental data to the mathematical model. In b) it is possible
to see how the sum of Lorentzian, centered at exciton resonance frequency, gives the �nal
result.

While the oscillators damping and strength determine how strong and sharp is an ab-
sorption peak, the resonance frequency, ω0 indicates where the peak is spectrally located.
This is, in this report, the most signi�cant parameter since it allows us to investigate the
excitonic properties of the material and to characterize them. The simplest and most
common physical model for a 2D intralayer exciton is the Rydberg model described in
chapter 1. The reduced dimensionality of the system predicts a series of spectral lines
according to equation (1.29), here reported for sake of clarity:

En = Eg −
R∗y(

n− 1
2

)2 . (3.2)

In table 3.1 the characterization of the excitons in WSe2 on SiO2 substrate is pre-
sented.

The experimental values of the energies have been obtained by the �t and the standard
error is reported along with the mean value. Two di�erent series of energy have been
identi�ed with the name A and B and for each of them only two experimental points
have been accessed for n = 1, 2. If n increases indeed, the exciton is located closer to the
gap energy Eg and therefore the binding energy Eb de�ned as Eb = Eg − En becomes
smaller. It is possible to see for n = 2 the Eb is comparable with the thermal excitation
kbT ' 25meV at room temperature. Therefore further excited states might be thermally
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Exciton n En(eV ) Eg(eV ) Ry∗(eV ) Eb(eV )

A 1 1.669(1) 1.850 0.045 0.181
2 1.83(1) 1.850 0.045 0.020

B 1 2.086(5) 2.473 0.097 0.387
2 2.43(1) 2.473 0.097 0.043

Table 3.1: Exciton peaks resonance energies for WSe2 monolayer on SiO2 at 300 K
obtained by �tting the ellipsometric angles with the Lorentz model. The gap energy, re-
duced Rydberg constant and exciton binding energy have been calculated using the Rydberg
model for intralayer excitons using equation (1.29).

separated and not accessible using this optical analysis. All these quantities have been
obtained by equation (3.2) . It is important to remind that, in low dimensional systems
as for example a monolayer TMDs, the exciton binding energy is predicted to be 4 times
larger than the 3D (bulk) case making it easier to identify excitonic peaks in the optical
spectrum.

The same analysis applies to the second material characterized: MoSe2 monolayer
on SiO2 whose optical microscope image is shown in �gure (3.1 b)). In table (3.2) the
experimental values for the MoSe2 excitons resonance energies are reported along with
the standard error arise from the numerical �t. It is possible to see that the 1s state of
the A exciton is at lower energy with respect to the WSe2 ML, this results in a larger
binding energy for this state. The result of the �tting in this case is slightly worser
than the previous material with an error on the second decimal (tens of meV ) for the
resonance energies. The 2D Rydberg model for excitons has been used also in this case
to calculate Eb, Eg and R

∗
y.

Exciton n En(eV ) Eg(eV ) Ry∗(eV ) Eb(eV )

A 1 1.56(1) 1.83 0.067 0.267
2 1.79(1) 1.827 0.067 0.030

B 1 1.79(1) 2.138 0.085 0.341
2 2.10(5) 2.138 0.085 0.038

Table 3.2: Exciton peaks resonance energies for MoSe2 monolayer on SiO2 at 300 K
obtained by �tting the ellipsometric angles with the Lorentz model. The gap energy, re-
duced Rydberg constant and exciton binding energy have been calculated using the Rydberg
model for intralayer excitons using equation (1.29).

For sake of completeness our experimental data will be compared with the one present
in literature in order to understand the reliability of the method followed in this report.
The excitons in thin TMDs can be investigated with di�erent techniques. In the work
of [46] the exciton binding energy of WSe2 is determined to be 0.37eV and the reso-
nance energy of the A exciton (1s and 2s) are 1.65eV and 1.83eV . The B exciton is
instead at 2.08eV . These peaks, A and B, correspond to the lowest energy exciton states
originated from transitions from the two highest energy spin-orbit split valence bands to
the conduction band around the K point in the Brillouin zone. Also the experimental
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results in [47] agree with the data contained in table 3.1 . For what concerns theMoSe2

[26] reports an experimental energy for the A exciton of 1.55eV . Nevertheless for the
calculation of the exciton binding energy, the authors do not use the pure 2D Rydberg
hydrogenic model, but use instead the calculated electronic bandgap. In this case the
binding energy is simply calculated by performing the di�erence between the electronic
bandgap and the excitonic peak. This results in a larger binding energy than the one
reported in table 3.2.

To illustrate the 2D exciton model it is possible to plot the numerical values in tables
3.1 and 3.2. Figure (3.5) helps to visualize the Rydberg series of the excitonic energies
of monolayer WSe2 a) and MoSe2 b). The circles represent the experimental points
(energies) as a function of the integer n. The solid lines are the line shape of equation
(3.2): there is one line for the A and for the B excitons respectively. The dashed
line is the gap energy Eg and corresponds to the limit for n → ∞ of equation (3.2).
Moreover, the di�erence in energy between the experimental point and the corresponding
gap energy is the binding energy of the exciton. Only two experimental points have
been found using ellipsometry. Nevertheless the large energy separation between the
A and B 1s excitons, especially in WSe2

4, opens the window for the observation of the
excited states. Unfortunately, the excited states above the 2s cannot be clearly identi�ed
with ellipsometry at room temperature: this is probably due to the weakness of these
transitions compared to the ground state ones and to the thermal excitations in the
dielectric, that might dissociate the e-h couple.

Figure 3.5: Representation of the resonance energies for excitons experimentally de-
termined at room temperature. a) Rydberg series of the A and B excitons in WSe2

monolayer: the energy is plotted as a function of the "quantum number" n = 1, 2, 3... b)
Excitons in MoSe2 monolayer. The solid lines represent the line shape of (1.29) while
the dashed line corresponds to the excitonic bandgap i.e. the energy that separate the
electron hole pair.

As previously mentioned, a third layer stack has been measured. The samples �A01�

4This is due to the strong spin orbit coupling in monolayer WSe2: more details can be found in
chapter 1 of this report.
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and �A02�, shown in �gure (3.2), have the monolayer ofWSe2 encapsulated in hBN. The
di�erent dielectric environment in which the monolayer is embedded is expected to a�ect
the exciton binding energy as predicted in [27]. In particular, for distances exceeding
nanometers the screening is determined by the surrounding material: therefore, with
respect to the case of monolayer on bare SiO2, the hBN is expected to both red-shift the
excitonic resonances of the thin TMD and to reduce its bandgap. Moreover, the excited
states (n > 1) are expected to have a larger shift due to larger Bohr radius. The new
layer stack has been used for a numerical �t similar to the previous case. The dielectric
function of the encapsulatedWSe2 has been found to be di�erent from the previous case
and the excitonic resonances are reported in table 3.3.

As expected, the binding energy of the A excitons is reduced by ' 20meV for the 1s
and the excitonic resonances are red shifted by ∆A,1 = 30meV and ∆A,2 = 40meV .

Due to the increased complexity of the layer stack, the numerical �t did not allow
us to investigate the excited states of the B exciton when the ML was encapsulated.
This can be seen in �gure (3.6 b)) where the real and imaginary parts of the calculated
refractive indices n(ω) have been plotted in the case of WSe2 on bare substrate (red
lines) and encapsulated in hBN (blue lines).

Figure 3.6: Here the in�uence of the dielectric environment on the position of the ex-
citonic peaks is demonstrated. The exciton energy is red-shifted when the monolayer is
encapsulated in hBN due to the larger screening and the exciton binding energy Eb is
reduced. In a) is possible to see the di�erence in energy for the A exciton (n=1,2) and
B exciton (n=1). In b) and c) the refractive index of the WSe2 monolayer is compared
in the two cases: when encapsulated (red) and when deposited on SiO2.
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After presenting our experimental data and analyzing them in the frame of the simple
2D Rydberg model, it is worth to introduce in the description of our physical system
the in�uence of the surrounding environment in a quantitative and physically signi�cant
way. In chapter 1 it has been pointed out the experimental observation of a deviation
from the Rydberg energy ladder of the 1s and 2s exciton states in TMDs. This is due
to the dielectric inhomogeneity of these 2D structures when deposited on a substrate or
incapsulated in a di�erent material. The charged particles composing excitons experience
a coulomb interaction with a non-uniform environment: for large e-h distance (excited
states) the electrostatic interaction scales with the dielectric constant of the surrounding
medium while at short distances the in plane screening weaken this force [48].

Exciton n En(eV ) Eg(eV ) Ry∗(eV ) Eb(eV )

A 1 1.64(1) 1.811 0.041 0.163
2 1.79(1) 1.811 0.041 0.018

B 1/2 1.91(5) - - -

Table 3.3: Exciton peaks resonance energies for WSe2 monolayer encapsulated in hBN
at 300 k obtained by �tting the ellipsometric angles with the Lorentz model. The gap
energy, reduced Rydberg constant and exciton binding energy have been calculated using
the Rydberg model for intralayer excitons using equation (1.29).

To accurately investigate the excitonic properties of TMDs in Van der Waals het-
erostructures one needs to access experimentally the higher excited states n = 3, 4. . . .
To do so, a di�erent technique has been employed: the results obtained with white light
re�ectivity at low temperature are presented in the following section.
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3.2 Experimental results using broadband re�ectivity

As explained in the previous section, to thoroughly characterize the excitonic tran-
sitions of TMDs, we want to perform experiments at low temperature. This will help
us getting sharper transition linewidth and minimize phononic e�ects (thermal excita-
tions in the material): in this way the weakly bounded (Eb ' 20meV ) excited states of
excitons will not be found to be thermally dissociated.

Figure 3.7: Description and topography of the sample investigated with the confocal mi-
croscope. a) Optical microscope image of the vdW heterostructure (top view). The solid
lines traced indicate a speci�c component of the layer stack: red TMD heterostructure,
blue top hBN and black/purple graphene. b) 3D surface plot obtained using re�ected light
from the sample: the topography is extremely clear and it is possible to individuate the
region of interest in the structure. c) Side view of the layer stack: the colours correspond
to di�erent materials. The size is not scaled for clarity and better visualization of the
layer stack composition.

The technique used is broadband re�ectivity. The principle and implementation of
this technique has been described in chapter 2 but here the key features will be reported
for clarity. The sample is placed in a cryostat and a power stabilized quartz light source
is wave-guided and shined onto the sample. A confocal microscope collects the re�ected
light from the sample giving us a spatial resolution of half micron5. A spectrum of the

5In general, the spatial resolution depends on the core of the collection �ber and on the wavelength
of the radiation. Since we are working in the visible range, and estimation can be calculated by λ/2.
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re�ected light is collected for every spatial point giving rise to a 2D map. A nice way
to image the sample is to plot the intensity integrated at a speci�c wavelength range as
a function of the x and y position on the sample. This gives rise to a 3D surface that
allows us to image the sample with a good resolution providing its topography: this can
be seen in �gure (3.7 b)). Moreover, the location and linewidth of excitonic transition can
be identi�ed by peaks in the di�erential re�ectivity spectrum, obtained using equation
(2.30).

The sample characterized with this technique is an heterostructure with two di�erent
thin TMDs (MoSe2 and WSe2) whose layer stack and topography are rather complex.
Figure (3.7) shows a sketch of the regions of particular interest on this van der Waals
heterostructure. The heterostructure made by MoSe2 and WSe2 is encapsulated in
hBN and o�ers di�erent regions for optical characterization: WSe2 monolayer (size of
8 by 8µm), 1ML WSe2/1MLMoSe2 (size of 5 by 4µm), 2ML WSe2/1MLMoSe2 (size
of 5 by 5µm) and 2ML WSe2/1MLMoSe2 (size of 5 by 5µm). The hBN thickness has
been estimated by optical contrast and found to be around 30µm for both the top and
the bottom layer6.

Magnetic e�ects are expected to be observable in excitons due to the interaction of
electrons with the external magnetic �eld. The experimental setup allows to apply a
strong magnetic �eld (up to 7 T) perpendicularly to the sample: the excitons transition
energies are expected to shift in these conditions for the manifestation of the Zeeman
splitting and the diamagnetic shift. These information can be accessed using again dif-
ferential broadband re�ectivity of polarized light. The experimental results are reported
in the second part of this chapter.

3.2.1 Exciton energies and transition linewidth

The sample described above has been investigated and the experimental results are
hereby reported. The measurement performed by the spectrometer consists of a map of
spectra of the re�ected light for each region of the sample. An excitonic transition causes
a peak at a wavelength corresponding to the transition energy, to make every feature
clearer, one can choose two di�erent points on the sample and perform the di�erential
re�ectivity ∆R/R.

The reference point should be chosen in such a way that the re�ected light will not
contain information about the excitonic transitions of interest: equation (2.30) shows
indeed the spectral di�erences between the two selected regions.

Once the region of interest and the reference have been selected, one can plot the
di�erential re�ectivity spectrum as shown in �gure (3.8). To analyze the e�ect of the
dielectric environment on the transition energies of excitons, one should start from the
region of the sample where the WSe2 monolayer is surrounded by bare hBN. The mea-
surement using unpolarized light (3.7) allows to identify spectrally the excited states of
WSe2 monolayer encapsulated in hBN up to the 4s state. That means that with respect
to room temperature measurements, the weakly bounded 3s and 4s state can be now

For details see chapter 2.
6 Some layers of graphene have been added to apply biases to the structure and investigate the e�ects

of doping and static electric �eld.
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located.

To obtain a reduction of the noise in the di�erential re�ectivity spectrum, it is possible
to exploit polarized light. By exciting the sample with circularly polarized light (σ+

or σ−) one can select the electronic population involved in the light absorption thus
increasing the signal to noise ratio. The improvement of the suggested method on the
∆R/R spectrum is relevant. This can be seen in �gure 3.9 where the detected di�erential
re�ected light is displayed both in case of, respectively in blue and orange, σ+ and σ−

circularly polarized light. Surprisingly, new peaks can be recognized, and we identify
these two new transitions with the excited 5s and 6s excitonic states ofWSe2 monolayer.

Figure 3.8: a) Plot of the experimental di�erential re�ectivity ∆R/R of WSe2 mono-
layer encapsulated in 30nm hBN at 4K. In b) the spectral region circled is zoomed in to
individuate the excited states of the A exciton. It is remarkable how this technique allows
to clearly identify the exciton resonances. The reference has been chosen in a region of
the sample without the monolayer.

A number of resonance peaks can be identi�ed, and their spectral position can be
obtained by numerical �t of the experimental data. To do so, we have used a code in
Wolfram Mathematica that simulates the layer stack using the transfer matrix method
to calculate the di�erential re�ectivity. This programming language was chosen due
to its powerful analytical computation. Instead of a numerical evaluation, the code
creates analytical expressions for the transfer matrices and the refractive indices of the
materials: the numerical evaluation is made only after the numerical �t. The model used
for the excitonic resonances is again the Lorentz oscillator (3.1)7. Figure (3.10) shows
the experimental data and the plot of the analytic function calculated by the numerical
�t.

7Further information about the code utilized for the numerical �t of the resonance peaks can be
found in Appendix B, at the end of the report.
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Figure 3.9: Plot of the experimental di�erential re�ectivity ∆R/R of WSe2 monolayer
encapsulated in 30nm hBN at 4K using polarized light (blue the RHCP and orange the
LHCP). The higher excited states of the A exciton have been magni�ed by ten times for
clarity. The result obtained with polarized light, if compared with the one in �gure 3.8,
shows a strong noise reduction that allows the 5s and 6s to be identi�ed using broadband
di�erential re�ectivity. This is, probably, a manifestation of the selection on the electron
population using σ+ or σ− light.

Figure 3.10: Results of the numerical �t on the experimental di�erential re�ectivity for
the encapsulated WSe2 monolayer. a) �t of the 1s state of the A exciton series and b)
�t of the 2s state of the A exciton.

We have performed the calculation for each peak in the spectrum and the results,
both for the transition energy and linewidth, are summarized in table 3.4. A recent
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article, [49], has reported a similar investigation on the excited states of A exciton in
WSe2: the results presented below, agree with the ones present in literature.

Exciton n En,exp(eV ) En(eV ) FWHM(meV )

A 1 1.7240(5) 1.712 5(1)
2 1.8575(5) 1.843 5(1)
3 1.8783(5) 1.864 6(1)
4 1.893(1) 1.873 7(1)
5 1.903(1) - 8(2)
6 1.911(1) - 8(2)

Table 3.4: Here the results (En,exp) of the numerical �t for the excited A exciton states of
WSe2 monolayer are reported. Our results includes the linewidth of the optical transition
observed. The values have been compared with recent literature (En) in [8].

If one compares the transition energies with the results of ellipsometric measurements
at room temperature (table 3.3), as expected, can observe a blue-shift in the resonance
positions. Moreover, the transitions in the samples where the monolayer is encapsulated
have a sharper linewidth. The encapsulation indeed is protecting the thin TMDs avoiding
contaminations on the monolayer surface, maintaining its quality.

This new technique allowed us to investigate the excited states of the A exciton in
WSe2 monolayer accessing states that were not visible using room-temperature ellip-
sometry. The experimental points can be plotted as a function of the integer n in the
frame of the 2D hydrogenic model. By �tting the experimental data with the functional
form of equation (1.29), one can obtain an estimation for the gap energy 1.916eV and
the reduced Rydberg constant 0.0441eV : the result is displayed in �gure (3.11).

This numerical �t with the Hydrogenic series allows one to calculate the binding
energies of the using the quasiparticle bandgap, the binding energy of the nth exciton
state is therefore 8

En
b =

µe4

2~2ε2(n− 1/2)2
, (3.3)

Where ε is the e�ective dielectric constant and µ is the exciton reduced e�ective mass.

Eg(eV ) Ry∗(eV ) E1s
b (meV ) E2s

b (meV ) E3s
b (meV ) E4s

b (meV )

1ML in hBN 1.916 0.044 192 63 37 23

Table 3.5: Results of the numerical �t of the experimental excitons energies in WSe2

encapsulated in hBN using the functional form 1.30.

Nevertheless, the energies in our experiment are in contrast with this dependence on
n. In particular the scaling with the quantum number is much weaker and a simple �t
to equation 1.30 is not possible. This result has been previously observed in the case
of MoS2 monolayer in [25] where the n = 1, 2 states are observed to deviate from the

8For details of the Hydrogenic Rydberg model for electron hole interaction in excitons, one can refer
to chapter 1 of this manuscript.
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hydrogenic model while the n = 3, 4, .. possess a reasonably hydrogenic scaling. For this
reason, we used these data points to obtain the quasi particle bandgap Eg. The result
of the numerical �t can be seen in �gure (3.11 a)) where the experimental points for
n = 1, 2 are signi�cantly deviating by the 2D Hydrogenic model (red line).

Figure 3.11: a) Results of the numerical �t on the experimental excitons energies (n =
3, 4, 5, 6) for the encapsulated WSe2 monolayer. The �tting function is 1.29 where Eg
and R∗y were free parameters. The used function is not able to follow the behavior of
all the experimental points, this is due to the non-uniform environment of the TMDs
monolayer. This result agrees with [25].b) Plot of the interaction potential between the
electron hole pair forming the exciton. The spatial extent of the coulomb potential is
compared to the nonlocal interaction of equation 1.33. c) Experimental ratio ε2

µ
and

e�ective dielectric constant calculated using equation 1.36: its dependence on n shows
the e�ects of the non-uniform environment.

To give a justi�cation of this approach and to provide insight into the physics of
the non-hydrogenic Hamiltonian, one can use an e�ective dielectric constant in the 2D
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Hydrogenic model. Using table 1.3 a suitable e�ective mass µ = 0.17m0 for the exciton
can be used, as can be calculated by density functional theory at the K and K' points
of the Brillouin zone. The experimental e�ective dielectric constant, calculated using
equation (1.36) is displayed in �gure 3.11 c). The equation used is reported hereby for

clarity from chapter 1 being εn =
[
2~2E

(n)
b,exp

(n−1/2)2

µe4

]−1/2

.

The plot of εn shows a strong decrease in this e�ective dielectric constant with the
quantum number n. Since the inter particle distance is larger in higher lying excitons
states, one can infer that the correct physical model for the electron hole interaction is
more screened at short range (where the dielectric constant is bigger) but only screened
weakly at long distances. In particular, for the n = 1, 2 states the dielectric constant
is similar to the one of the monolayer WSe2, around 7.5, while for the excitonic states
up to 6s, the value of εn is almost constant and close to the dielectric constant of the
surrounding medium, bulk hBN whose ε = 3.5. The fact that the e�ective dielectric
constant is unchanged for states n = 3, 4, 5, 6, justi�es the empirical use of the 2D
Hydrogenic model, that involves a simple coulomb interaction between the particles, for
these states only. This is also con�rmed by the experimentally calculated ratio ε2

µ
, that

decreases for n > 1, 2.

Figure 3.12: Schematic representation of electron-hole pairs forming 1s and 2s excitonic
states in a non-uniform dielectric environment. Note how the spatial extent of the electric
�eld lines in the surrounding medium increases with the inter particle separation.

This deviation from equation (1.29) can be understood by recalling the non-uniform
dielectric environment perceived by the electric �eld created by the electron-hole pair
forming the exciton. The electric �eld permeates both in the thin monolayer (with
larger screening) and in the surrounding medium and its spatial extension is a func-
tion of the distance between the particles. That means when the separation between
charges increases, a larger portion of the electric �eld is lying in the hBN with lower
dielectric constant and the resulting screening is reduced. This phenomenon is known as
anti-screening [49] and is responsible for the non-Hydrogenic behavior of excitons in 2D
semiconductors. This result is extremely remarkable and is fundamental to describe ex-
citons in van der Waals heterostructures, where the optical properties can be engineered
using the dielectric environment the monolayer is embedded in.

A quantitative description of the nonuniform environment, can be obtained using a
nonlocal potential in the Schrodinger equation instead of the simple Coulomb interaction
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considered until now. In chapter 1 the modi�ed electron hole potential

Veh(r) = − e2

8ε0r0

[
H0

(
kr

r0

)
− Y0

(
kr

r0

)]
(3.4)

has already been introduced in (1.33) to describe the electrostatic interaction in a 2D
monolayer. Here the most physically signi�cant parameter is r0, the screening length.
The di�erence between the two potential nominated above can be seen in �gure 3.11
b). At short inter particle distance (r < r0), the nonlocal potential goes like log(r):
weaker scaling with respect to the 1/r coulomb interaction (red curve). For distances
larger than the crossover length the two potential have the same functional behavior.
The latter is the case of higher lying excitons, where the hydrogenic model is valid. The
modi�ed potential is a direct manifestation of the strong dielectric mismatch between
the WSe2 and the surrounding hBN, responsible for the displaced spectral position of
n = 1, 2 states.

After the analysis of excitonic series inWSe2 monolayer, it is worth to investigate the
e�ect of di�erent dielectric environment on the gap energy and the excitonic resonances.
At the light of the consideration done above on the electron hole electric �eld extent, the
excitonic resonances are expected to be tunable by means of stacking of thin layers in van
der Waals heterostructures with dielectric mismatch among the components. Moreover,
the excited states are expected to be more a�ected by dielectric engineering due to the
large interparticle separation.

Figure 3.13: This �gure shows the evolution of excitonic transitions of WSe2 and MoSe2

in the heterostructure. a) Di�erential re�ectivity spectra of three di�erent regions of the
sample, whose location is shown aside. Excitons (blue arrows) in monolayer MoSe2 and
WSe2 do not change considerably their spectral location, but a quenching (reduction) in
the absorption and a broadening of the transitions can be seen in both cases when passing
from the monolayer/bilayer region to the monolayer/monolayer one. b) Spatial map
of the re�ected light spectrum from our sample obtained with confocal microscope. The
regions highlighted contains monolayers/biayers of TMDs and the colored circles indicate
the locations whose spectrum is displayed on the left.
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The sample measured is suitable for this kind of investigation since it possesses spatial
regions where mono-bilayers of WSe2 and MoSe2 are stacked together. The di�erential
re�ectivity spectrum can be taken for the entire sample and can be used to create a
spatial map that allows high resolution imaging of the sample and the identi�cation of
the regions of interest within the layer stack. By looking at �gure 3.13 b) one can see
the mono/bi layer regions contoured by dashed lines.

At �rst, we want to compare the di�erential re�ectivity spectra of three regions: re-
spectively from the top, 1ML WSe2/2LMoSe2, 1ML WSe2/1LMoSe2 and 2ML WSe2/
1LMoSe2. The energy transitions of A exciton, 1s state are presented in �gure (3.13
a)) for comparison. From these data emerges that the spectral position of the transition
of WSe2 or MoSe2 is not signi�cantly changing if a monolayer of a di�erent TMDs is
stacked onto them with respect to the bilayer case. This can be justi�ed by two argu-
mentations. First of all, the state individuated is the ground exciton state and therefore
is almost entirely screened by the TMDs it belongs to, secondly, the change in thickness
of the stacked material is not changing signi�cantly from mono to bilayer. What is sur-
prisingly remarkable is the quenching in the absorption at the transition energies when
the two monolayers of WSe2 and MoSe2 are packed together (blue region/ curve).

Figure 3.14: This �gure shows the evolution of the 1s and 2s states of A exciton in WSe2

monolayer. In a) the di�erential re�ectivity spectra at T = 4K of di�erent regions
are displayed. From top to bottom: monolayer WSe2 in hBN (red), heterostructure
monolayer WSe2 bilayer MoSe2 (yellow) and monolayer monolayer heterostructure. It
is possible to notice how the 1s transition is quenched in the heteroregion and how the
presence of a TMDs in the neighborhood red-shifts the transition resonances of 1s and 2s
states. b) Spatial map of the re�ected light spectrum obtained with confocal microscope.
Colors indicate corresponding regions analyzed on the left.

This quenching in the exciton absorption/emission strength has been observed as well
when passing from the WSe2 isolated to the heterostructure. Nevertheless, signi�cant
e�ects of the dielectric environment have been in this case found, and are displayed
in �gure (3.14 a)). Let us now focus on the 1s and 2s states of A exciton in WSe2

monolayer, regions marked in �gure (3.14 b)). If embedded in heterostructure, the



3.2. EXPERIMENTAL RESULTS USING BROADBAND REFLECTIVITY 65

excitonic energies red shift by 20meV and the transitions are quenched. This is why
we were not able to experimentally access the higher excited states of A exciton as
the 2s is faintly visible. The shift in the resonance energies can be explained in terms
of the dielectric screening provided by the high dielectric constant material piled on
the absorbing TMD. As expected, since the MoSe2 is less than couple of nanometers
thick, the 1s state with smaller charge separation is a�ected stronger than the 2s whose
shift is around 10meV . In the second case indeed the screening is dominated by the
encapsulating material, hBN. To summarize, the strength of the Coulomb interaction is
reduced by the addition of TMDs layers on top of WSe2, leading to a decrease in both
the exciton binding energy and the bandgap[27]. This agrees with what we found using
ellipsometry at room temperature.

Figure 3.15: In this �gure a comparison between the two bilayer-monolayer regions is
shown. a) Di�erential re�ectivity spectra of, respectively, heteroregion bilayer WSe2

monolayer MoSe2 (blue) and the region monolayer WSe2 bilayer MoSe2 (red). The
excitonic resonances indicated with the blue arrows corresponds to the lower state of A
exciton of the two TMDs. Surprisingly, the resonance of WSe2 results blue-shifted when
passing from mono to bilayer while the resonance of MoSe2 is red shifted. b) Spatial
map of the re�ected light spectrum obtained with confocal microscope. Colors indicate
corresponding regions analyzed on the left.

Another interesting aspect of the excitons in 2D materials is the dependence of the
transitions on the thickness of these thin semiconductors. In �gure 3.15 the two mono-
layer/bilayer regions are compared using again the di�erential re�ectivity spectrum at
cryogenic temperatures. In particular, the 1s states of MoSe2 and WSe2 are spectrally
compared in the case of monolayer and bilayer material. The in�uence of the material
thickness manifests itself with a variation in the spectral position of the excitonic tran-
sitions. The ground state of A exciton in MoSe2 experiences a red shift when passing
from monolayer to bilayer ∆E ' 12meV while, surprisingly, in the case of WSe2 the 1s
states blue shifts by roughly the same amount. A justi�cation to this can be found in
the presence of strain in the heterostructure. Non uniformity of strain can be seen in the
presence of folds and wrinkle in the center of the heteroregion. In both cases the bilayer
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peak is broader. This behavior is bizarre since the strong similarity of the band struc-
ture of TMDs monolayers suggest common features and conduct. Other studies, [25] and
[49], suggest a small change in the transition energy of exciton ground state (typical for
quasi-one-dimensional systems) due to the increase of both the exciton binding energy
and quasiparticle bandgap, opposite in sign 9.

TMDs - 1MLWSe2 1ML/1ML 1ML/2ML 2ML/1ML

WSe2 A exc. 1s 1.724(1) 1.704(1) 1.702(1) 1.726(2)

A exc. 2s 1.853(1) 1.839(1) 1.831(1) 1.834(1)

MoSe2 intra. #1 - 1.620(1) 1.607(1) 1.644(2)

intra. #2 - 1.650(1) - -

Table 3.6: Table reporting the experimental energies (in eV ) of the excitonic transitions
of WSe2 and MoSe2 in the Moire heterostructure. The data have been accessed using
di�erential re�ectivity from a broadband source at cryogenic temperature (T = 4K) and
by �tting the data numerically by means of the Mathematica code described in the ap-
pendix. Columns refer to regions in the sample where the environment is di�erent. The
underlined values refer to an exciton belonging to a bilayer TMD while other values refer
to monolayers. The exciton labeled with intra #1 (intralayer) is supposed to be the 1s
excitonic transition.

The results are summarized in table 3.6. Again the Wolfram Mathematica code de-
scribed in the appendix was used to determine the spectral position of excitons exploiting
a numerical �t of the dielectric function of TMDs modeled using a series of Lorentzian.

In this section the excitons of two TMDs, WSe2 and MoSe2, have been thoroughly
investigated. Broadband di�erential re�ectivity at low temperature allowed to identify
excited excitonic states of WSe2 monolayer up to the quantum number n = 6. This
allowed to understand and show the nonlocal screening caused by the environment that
manifest himself with a deviation of the low ling excitonic states. By adopting a nonlocal
screened potential in the form of 1.33 it is possible to understand the e�ect of a di�erent
dielectric constant in the proximity of the monolayer. The possibility of stacking 2D
materials in van der Waals heterostructures allows one to engineer the resonance energies
of excitons in thin semiconductors. This, together with the large binding energy (around
190meV ) of intraexciton states with high thermal stability, results in a purely excitonic
emission and absorption spectra of TMDs. This o�ers both possibilities for fundamental
studies in many body physics and for realization of novel optoelectronic devices.

9This phenomenon is known as bandgap renormalization.
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3.3 Magnetic �eld e�ects on excitons

After a �rst analysis of excitonic behavior of TMDs in di�erent dielectric environ-
ments, to further explore the A exciton Rydberg states one can apply a strong out of
plane magnetic �eld to the sample. This o�ers a new degree of freedom for tuning of
these quasi-particle optical transition, not only for fundamental investigation but also
for implementation of excitons in novel devices. In our experiment a magnetic �eld from
B = −7T to +7T has been applied while the sample was shined with broadband circu-
larly polarized light. The re�ected light from a single point on the sample was collected
by a spectrometer both on the sample and on the substrate, in order to compute the
di�erential re�ectivity. The application of a magnetic �eld signi�cantly shifts the spec-
tral position of the excitonic transitions in WSe2 and MoSe2 monolayers. The high
order states shift more than the low-lying states. Figure (3.16 a)) shows the A exciton
Rydberg states in monolayer WSe2 under magnetic �eld at the temperature of 4K, as
the di�erential re�ectivity is plotted as a function of Bext.

Figure 3.16: E�ects of strong magnetic �eld (7T) applied to the heterostructure. The 1s
and 2s states of WSe2 bilayer shift their transition energy showing a Zeeman splitting
and diamagnetic e�ect. a) Transition energy of WSe2 in the 2L/1L region as a function
of the applied magnetic �eld (right handed circularly polarized light) and b) peak positions
obtained using Wolfram Mathematica. The circles indicate the experimental points while
the solid lines indicate the numerical �t of the magnetic �eld dependence. Zeeman shift
is observed in both the 1s and 2s states while the diamagnetic e�ect is signi�cant only in
the 2s state. This is due to the spatial extent of excitons.

By looking at the �gure, it is clear how the 2s state experiences a much larger shift if
compared to the 1s state. The magnitude of the magnetic e�ects can be quantitatively
measured performing again a numerical �t of the transition peaks. In �gure (3.16 b))
the peak shift can be clearly observed when the excitonic peak position is plotted as a
function of Bext. It has been already stated how di�erent states of the Rydberg series
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evolve di�erently under the e�ect of magnetic �eld. This is due to the combination of
two di�erent magnetic e�ects on the electronic band structure of thin TMDs, the Zeeman
shift and the diamagnetic e�ect. As thoroughly described in chapter 1, the Zeeman shift
is an odd function of the B �eld, and one calls Zeeman splitting the di�erence between
energies at opposite magnetic �elds. On the other hand the diamagnetic shift is an even
function of B �eld and its magnitude is the average at opposite magnetic �elds.

The two time-reversal valleys (K and K' ) in monolayer TMDs have opposite spin and
orbit con�guration. The presence of an external magnetic �eld enlarges (or respectively,
diminishes) the band gap at the two valleys so that the resulting di�erence between the
two optical transitions is proportional to the applied Bext. We recall here the expression
for the splitting being ∆EZM = gµBB, where g is the e�ective g factor. If then one
considers the diamagnetic shift, in the weak 10 �eld limit, one can express it for an
exciton as ∆EDM = e2

8µ
< ψ|r2|ψ > B2, where the term containing r2 is the expectation

value of the radial coordinate over the exciton envelope wave function ψ. Two important
di�erences between the two expressions can be highlighted: �rst the dependence on the
B �eld is quadratic and not linear, and secondly a larger exciton size produces a much
larger diamagnetic shift.

Figure 3.17: Magnetic e�ects on exciton resonances in WSe2 monolayer. Here the
di�erential re�ectivity spectrum of the thin TMDs is plotted for di�erent magnetic �eld
applied out of plane. The measurement has been performed with right circularly polarized
light. It is possible to see how the diamagnetic shift prevails for states higher than the
2s. For example, the 3s state have the peaks of strong magnetic �eld, at higher energy
with respect to the red peak (B = 0), expected for even function with respect to B.

Both these di�erences have been experimentally observed in our measurements. As
can be seen in �gure (3.16), it is now clear why the 1s state shows a linear shift (with

10This means the Landau-level spacing is much smaller than the exciton binding energy, this corre-
sponds to B ' 15T . For details see chapter 1.
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negative slope since this measurement refers to right handed circularly polarized light)
while the 2s presents a superposition of linear and quadratic shift. This is due to the
di�erent spatial extent of the exciton envelope wavefunction which increases with the
quantum number n. Indeed the root mean square radius of the electron-hole couple in
WSe2 is for the ground state r1s = 1.68nm while for the 2s r2s = 6.66nm [49].

We have observed the shift of resonances for all the excited states individuated in the
previous section. A comparison between the peaks for di�erent Bext is shown in �gure
(3.17) in case on n = 1, 2, 3 for WSe2 monolayer again.

Figure 3.18: Figure illustrating the e�ects of magnetic �eld (up to 7T) on the excitons
in TMDs. a) Zeeman shift of the ground state A exciton of MoSe2 monolayer. The
two valleys can be accessed with circularly polarized light and the left and right handed
polarization states are reported, respectively, in red and blue. The g-factor of the exciton
can be extracted by a linear �t of the data (solid line) and its theoretical value is predicted
to be 4. b) Zeeman shift of WSe2 monolayer A exciton (ground state). The calculated
g-factors are close to the value predicted by the theory. The di�erence of the energy levels
is called Zeeman splitting. c) and d) peaks corresponding to the excitonic transition of the
TMDs: in the presence of strong magnetic �eld the Zeeman splitting remove the valley
degeneracy that can be accessed with σ+ and σ− polarized light.



70 CHAPTER 3. DISCUSSION

Figure 3.18 shows the analysis for the 1s state of MoSe2 and WSe2 monolayers. In
both cases, the major contribution of to the Zeeman splitting has been argued to come
from the d atomic orbitals in the valence band whose azimuthal quantum number is
m = 2 and −2. This means the expected contribution to this linear magnetic e�ect in
the valleys is proportional to a g factor of -4. An experimental value for this e�ective
Lande factor can be found with a numerical �t of the excitonic peaks. By observing the
shift for one polarization state (σ+ or σ−) one can notice the linearity of E1s(B) meaning
the Zeeman e�ect dominates on the diamagnetic shift and therefore the �tting function
has been chosen to be a straight line. The data follow well the solid lines having a slope
close to the predicted value of 4. This correspond to a very tiny shift of ' 0.23meV/T ,
nevertheless, the two transition at B = 7T are distinguishable since a Zeeman splitting
of ∼ 4meV occurs between the two spin population i.e. the two valleys, accessed with
di�erent polarization states.

Unfortunately, a magnetic �eld of 7T applied to our sample was not enough to produce
a signi�cant shift above the resolution of our measurements for high lying Rydberg states.
Stronger magnets might probably allow to observe and also �t the magnetic e�ects for
excited states with n = 4, 5, 6. Nevertheless, our experiment con�rmed the possibility
to access di�erent electronic population with opposite spin using circularly polarized
light. This has important consequences in spintronic application and spin investigation.
The experiment also shows the time reversal symmetry breaking and the modi�cation
of the electronic bandgap that a magnetic �eld produces on monolayers TMDs. These
results provide key-information for optical and optoelectronics application of these 2D
semiconductors.

So far, the e�ects of the dielectric environment and of the magnetic �eld on the
excitons in 2D materials have been separately investigated. However these two e�ects
are not far apart but, by contributing to modi�cations to the electronic bandgap, they
in�uence each other. A manifestation of the correlation between diamagnetic e�ect and
dielectric environment in the optical properties of TMDs emerges from our measurements
and was recently observed in [50]. The �gure (3.19) is particularly interesting and
compares the magnetic e�ect of an out of plane magnetic �eld in di�erent spatial regions
of the sample. Figure (3.19 a)) shows the evolution of the 2s state of A exciton of WSe2

monolayer encapsulated in hBN while �gures (3.19 b,c,d)) show the same transition
when next to it is stacked MoSe2 with higher dielectric constant11. The unexpected
di�erence between the two groups of �gures is glaring. Indeed a much more pronounced
diamagnetic shift is notable when close to the absorbing material the local dielectric
constant is increased.

The physics behind this experimental observation can be explained starting from the
expression for the diamagnetic shift in equation (1.16)

∆EDM =
e2

8µ
< ψ|r2|ψ > B2. (3.5)

11With respect to the hBN. The values of the dielectric constant of the materials composing the
sample are reported in table 1.2.
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Figure 3.19: Comparison of the 2s exciton state as a function of the applied magnetic �eld
when the thin TMDs is located in di�erent environments: a) WSe2 monolayer in hBN,
b) WSe2 bilayer upon MoSe2 monolayer, c) WSe2 monolayer close to MoSe2 mono-
layer and d) WSe2 monolayer next to MoSe2 bilayer. It is remarkable how enhanced
the diamagnetic shift is in the heterostructure if compared to the hBN environment. The
systematic increase of the diamagnetic shift from a) to b) reveals the corresponding in-
crease of the exciton radius (and simultaneous decrease in exciton binding energy) as the
average dielectric constant of the material surrounding the WSe2 �ake is increased.

The key term is the spatial extent of the electron hole wavefunction. In particular
the physical size of the exciton (and also the exciton binding energy) is in�uenced by the
surrounding dielectric environment. This is shown by a small diamagnetic shift of the A
exciton resonance. Following �gure (3.19) from left to right, respectively, as the dielectric
screening around the WSe2 monolayer is increased, the diamagnetic shift is enhanced
consequently. The term < ψ|r2|ψ > in (1.16) relate the spatial extent of the exciton to
its diamagnetic shift, therefore the size of the exciton can be retrieved entirely by this
measurement in presence of magnetic �eld. The shrinkage of the exciton is therefore due
to the reduction of dielectric screening by the surrounding environment.

This result shows once again how the dielectric environment can be used to engineer
the optical properties of thin TMDs[51]. Also, in the other way around, the non-local
dielectric screening discussed above allows diamagnetic shift measurements to be used to
quantify the in�uence of the surrounding environment on the exciton binding energy[50].
This is a peculiarity of 2D materials where the e�ective dielectric constant seen by a
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bound electron hole pair (exciton) depends strongly by their separation12.

12See �gure (3.12) to visualize the changes in the electric �eld extent of excitons.
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Conclusions

In this report, the optical properties of thin TMDs have been investigated. In par-
ticular the aspect on which we focused on are the excitonic transition, responsible for
sharp peak observed in the absorption spectrum of these materials. The band struc-
ture of transition metal dichalcogenides has a direct bandgap that experiences spin-orbit
splitting at the top of the valence band: transitions to valence band from these two levels
are optically active (allowed by dipole selection rules) and therefore an electron can be
excited in the conduction band upon the absorption of incoming radiation. The electron
- hole pair can be modeled using the Hamiltonian similar to the one of the hydrogen
atom, and the solution of this problem gives rise to a series of bounded states that are
called excitons. Excitons are particularly interesting in 2D materials since the lower
dimensionality makes the quasi particle to be strongly bounded if compared to the case
of bulk material. This makes their investigation feasible, even at room temperature.

The �rst technique used was ellipsometry in the visible range. The measurements
performed in glovebox (Ar atmosphere to avoid contamination of the samples) at room
temperature use the light re�ected from the sample to obtain information about its
optical properties. At �rst, the refractive index of both WSe2 and MoSe2 was modeled
as a sum of Lorentzian oscillators and �tted to the experimental ellipsometric angles.
This gave us an estimation for the position of energy transitions as well as their linewidth.
For these two monolayers, exfoliated and transferred on SiO2, the �rst two excited states
of the A and B excitons have been found and their spectral position matches the values
reported in literature. The WSe2 monolayer was then encapsulated and, as one expects,
the position of the excitons resonances is blue shifted. This can be explained by means
of the non-uniform dielectric environment that the charges experience.

Even if ellipsometry is a technique that allows fast measurements, it does not allow us
to detect higher excited states mainly for two reasons: the binding energy of s = 3, 4, 5
states is lower than the thermal excitations kbT , and the oscillator strength of these
transitions is weaker if compared to other states and does not produce signi�cant features
in the ellipsometric angles Ψ and ∆. For this reason we have continued our investigation
using confocal microscopy at low temperature (4K). In this case the shined light over
the sample is a broad band quartz source, di�erences in the re�ected light from the
monolayer and from the substrate can highlight sharp peaks that can be associated to
the excitonic transitions in the thin TDMs. We were able to experimentally determine
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the spectral location of excited states of the A exciton for n = 1, 2, 3, 4, 5, 6 and this
allowed us to obtain a more accurate determination of the excitonic binding energies and
optical bandgap for WSe2 encapsulated in hBN. The physical model utilized is the 2D
Rydberg model described in chapter 2 whose expression for the energy ladder is

En = Eg −
R∗y(

n− 1
2

)2 (4.1)

The remarkable result emerging from our experiments is that the low lying Rydberg
states deviate signi�cantly from the Hydrogenic model, respected instead for higher
excited states. This is a direct manifestation of the non uniform dielectric environment
that can be described by a nonlocal correction to the electron-hole Coulomb interaction.
Also, di�erent areas in the sample shown in chapter 3.2 were investigated and signi�can
e�ects of the dielectric environment has been noted.

By applying a strong out of plane magnetic �eld, the electronic band structure of
2D TMDs can be modi�ed. Combination of Zeeman splitting and diamagnetic shift
in the energy levels of the K and K' valleys manifest itself in the (altered) excitonic
transitions. In our experiments we were able to show linear and quadratic e�ects of
excitonic states in WSe2 and MoSe2 monolayers as a function of the applied �eld Bext.
Also, a more sophisticated and relevant result was the correlation between the electron
hole quasi particle (exciton) size and the dielectric environment of the monolayer. This
was demonstrated by the increment of the diamagnetic e�ect on excitons when a material
with higher dielectric constant was stacked in the proximity of WSe2.

A further development to this report might be the investigation of the in�uence of
di�erent dielectric environment on the optical properties in a systematic way. That
means the fabrication of samples with a large variety of TDMs monolayers embedded
in dielectric of di�erent nature and di�erent thickness. This can be implemented using
a di�erent, e�ective, Hamiltonian for the electron hole pair that considers the dielectric
constant of the material surrounding the monolayer as non uniform. An example can be
seen in [48]. Moreover, the mathematical model for the dielectric function itself, used in
this report 2.23

ε(ω) = 1 +
∑
i

fi
ω2
i − ω2 − iγiω

. (4.2)

in spite of its simplicity, does not take into account the absorption continuum for
energies above the band gap. A more physically consistent model can therefore be used
as for example proposed in [52]. In this way, a proper understanding of this complex,
multi-body physics might allow the engineering of semiconductor nanostructures for
optoelectronic application in quantum optics, light detection and semiconductor physics.
At last, the possibility of applying a stronger magnetic �eld to the sample might allow
one to investigate magnetic e�ects on high order excitonic states of TMDs.
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Appendix

5.1 Appendix A: Matlab code to simulate the ellipso-

metric parameters

In this section, I will introduce the Matlab code transfer−matrix−example.m. The
aim of this code is to simulate the ellipsometric angles for a simple physical system that
corresponds to the substrate where the exfoliated �akes are transferred and are optically
analyzed. The layer stack is composed by SiO2 slab 100 nm thick on a Si substrate of
�in�nite� thickness (Figure 5.1 a)). The code uses the experimental dispersion data of
the two materials nSi(λ), nSiO2(λ) to calculate the transfer matrix of the structure with
the formalism in chapter 2.1. In our case the light is shined on the sample and is detected
after being re�ected back. The angle of incidence (50, 55, 60◦ in this case) is known and
can be adjusted in order to get di�erent plots of Ψ and ∆. From the transfer matrix,
one can directly infer the re�ection coe�cients for di�erent polarization directions and
therefore the ellipsometric angles as a function of the incoming wavelength.

Along with the calculated values, the experimental values of Ψ and ∆, measured on
the same structures are plotted in the same �gure. In this way one can visualize the
agreement of the experiment with the calculated model. An example of the output of the
code is shown in �gure (5.1 b)). The attached �les consist of the code, the two dispersion
and the Matlab �gure that results from the simulation.
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Figure 5.1: a) Schematic of the structure simulated in the code: 100 nm SiO2 on Si
substrate. b) Result of the simulation performed by Matlab. The Ψ and ∆ parameters are
plotted for di�erent angle of incidence (θ = 50, 55 and 60◦) as a function of the radiation
wavelength. In solid line the calculated values, dots represent instead the experimental
data.

This code is useful not only to have a preview of the ellipsometric angles of a speci�c
structure, to be compared with the experimental data of a measurement, but also to
better understand ellipsometry. In particular how to relate physical quantities such as
thickness and refractive index of a layer to the ellipsometric measurements.
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5.2 Appendix B: Mathematica code to extract the linewidth

This Section is dedicated to present the code HeterostructureRe�ectivity.nb used in
the data analysis for this project. This code has the purpose of computing a numerical
model for the light re�ected by a multi-layer structure in order to obtain the parameters
of the excitonic peaks of the material to be investigated. This is done using a numerical
�t of the experimental re�ectivity spectrum obtained using a broadband light source.

It is known that the absorption of a layered structure can be calculated using the
transfer matrix formalism 1. The code written in the computational language ofWolfram
Mathematica is simulating the layered structure our sample is made of and is calculating
the Fresnel coe�cients and the propagation and transmission matrices for each di�erent
material. The dispersions of SiO2, hBN and Si are imported using the values from
literature. The dielectric function of the monolayer has to be obtained instead using a
numerical �t of the experimental data. We have decided to model the dispersion of the
TMDs according to

n(E) =

√
(n+ ik)2 +

Ap
(Ep)2 − E2 − iγE

(5.1)

where n, k are the constant (i.e. independent on photon energy) part of the refractive
index, Ap is the oscillator strength, Ep is the resonance frequency and γ is the linewidth
(FWHM) of the transition. The refractive index is a complex function of the incom-
ing photon energy and considers only one Lorentz oscillator. This approximation for
the dielectric function is valid if we assume that a peak in the broadband re�ectivity
spectrum, that corresponds to an excitonic transition, is su�ciently isolated and does
not overlap with other resonances. If we �t one transition at the time, the approach
described produces physically consistent results.

Figure 5.2: Result of a numerical �t on the excitonic absorption peaks ofWSe2 monolayer
encapsulated in hBN . a) and b) are, respectively, the 1s and 2s states of the A exciton.

The numerical �t is performed by the function NMinimize that tries to �nd a global

1A detailed explanation of this method is presented in chapter 2 along with its mathematical deriva-
tion.
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minimum to the di�erence between the calculated and the experimental di�erential re-
�ectivity squared: this gives an estimation for the parameters listed above between the
constrains imposed. A result of one �t is presented in �gure 5.4.
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5.3 Appendix C: Quantum Photonics Laboratories fa-

cilities

The research project described in the previous chapters was developed at the Quan-
tum photonics Laboratories of the Physics department at Heriot Watt University (UK).
In this section, the laboratories facilities will be presented and brie�y described.

The �rst part of the project took part in the clean room which is fully equipped
with modern nanofabrication and characterization setup. This is where the EPSRC
Two-Dimensional Photonics Fabrication facility is located. Electron beam evaporators
and electron beam lithography instruments are located in the spacious laboratory. My
experiments with ellipsometry were conducted in a homemade setup for 2D materials
fabrication (all-dry) in an inert environment and an imaging ellipsometer enabling char-
acterization of 2D materials and thin �lms.

Figure 5.3: Clean room facility of the department of Physics at Heriot Watt University
(UK). In this photo is displayed the glovebox used during the �rst part of this experimental
thesis. It is equipped for 2D fabrication and ellipsometric characterization of thin �lms
in an inert environment.

In the second part, the characterization of 2D heterostructures with broadband re�ec-
tivity, we operated in the labs dedicated to quantum optics and spintronics in solid-state
materials. The labs are �tted with state-of-the-art equipment, meticulously selected for
low-light experiments.



80 CHAPTER 5. APPENDIX

Figure 5.4: Lab dedicated to quantum optics and spintronics in solid-state materials at
HWU. In this photograph it is possible to see on the right the cryostat with the confocal
microscope head and an insulating table (center) where spectrometer, lasers and detectors
are located. This lab is designed for experiments in low light conditions.

In particular, one can �nd high grade tunable lasers, state of the art detectors and
spectrometers (using liquid nitrogen cooled cameras) and �nally Attocube Atttodry
cryostats. These helium-free cryostats for confocal microscopy and solid-state physics,
are equipped with superconducting magnets and XYZ piezo motors and scanners to allow
for all the freedom needed to explore the sample. It is also located there a broadband
Tungsten-halogen light source (ThorLabs), used for our di�erential re�ectivity measure-
ments, which is stabilized in color temperature and output power.

More information can be found on the website of the Quantum Photonics Laboratories
at https : //qpl.eps.hw.ac.uk/.
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