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1. Introduction
Thanks to the technological development in the
electric propulsion, the space sector is exploit-
ing the use of low-thrust systems to an ever-
widening range of mission types. In fact, they
are increasingly being chosen as propulsion so-
lutions for both interplanetary and planetary
transfers. The main characteristics of such en-
gines are a high specific impulse, and a low level
of thrust that they can deliver. Consequently,
the time of flight associated to a low-thrust tra-
jectory is considerably longer than the chemical
thrusters counterpart.
In this context, it is no longer possible to con-
sider approximations such as impulsive manoeu-
vres to model the dynamics, and the latter re-
quires a formulation that includes continuous
thrust. The consequence from a numerical op-
timisation point of view is a significant increase
in the variables involved, and the design of such
trajectories turns into the solution of a highly
non-linear large-scale optimal control problem.
For this purpose, several optimisation algo-
rithms exist, generally divided into two macro-
families: direct and indirect methods. One ap-
proach that is relevant in this context is Differen-
tial Dynamic Programming (DDP), which com-

bines the advantages of both families (in short,
accuracy on one hand, robustness on the other)
with a limited computational cost. Indeed, given
a number N of nodes to discretise a trajectory,
direct methods typically have a computational
cost proportional to N3, whereas the one asso-
ciated to DDP is proportional to N . Despite
its potential, most of the times this method has
been used for orbital trajectory design, the prob-
lem has been formulated as a function of classi-
cal Cartesian coordinates as state variables; in
fact its application by exploiting different sets of
variables has found little use in this field.
The aim of this thesis work is to adapt this state-
of-the-art optimisation method, called Hybrid
Differential Dynamic Programming (HDDP) [2],
to a new set of variables often used in celestial
mechanics, namely orbital elements. This set
has the typical feature to evolve more smoothly
and regularly rather than Cartesian coordinates.
Thanks to this property, the coupling between
orbital elements and DDP can prove particularly
useful in speeding up the convergence and ensur-
ing the success of the method even when dealing
with problems particularly sensitive to variables’
oscillation, as it is the case of a low-thrust multi-
revolution transfer.
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Some practically relevant test cases in the con-
text of low-thrust trajectory design are used to
validate the aforementioned hypotheses.

2. Mathematical background
2.1. Optimal control problem
A dynamical system, can be described in two
alternative forms, expressed by the two systems
of equations:

ẋk = fk(xk,uk,w; tk) (1)

xk+1 = Fk(xk,uk,w) (2)

where xk = [x1, ..., xn]
T is a vector of n vari-

ables that represents the state vector, uk =
[u1, ..., um]T is a m-dimensional vector repre-
senting the control input, and w = [w1, ..., wp]

T

is the vector of "static" controls, i.e. time-
independent parameters that can affect the
problem.
Solving an optimal control problem, given a dy-
namical system, consists in finding the control
law u(tk) such that the objective function J is
minimised:

J :=
N∑
j=0

Lk(xk,uk) + ϕ(xN+1) (3)

where ϕ is a function that depends only by
the final state, whereas L is a merit function
depending on all the remaining stages and re-
spective controls of the trajectory. The general
non linear optimal control problem can include
some constraints that shall be respected: stage-
constraints g, which limits the trajectory in a
prescribed region, and final state constraints ψ,
which represents the desired final state of the
path.

2.2. Differential dynamic program-
ming

Differential dynamic programming is a modern
way to face a large-size optimal control problem.
It consists of an iterative method that produces
consecutive trajectories associated with a gradu-
ally improved value of an objective function J to
be minimized, until a local minimum is reached.
The method is composed by two main phases: a
backward recursion and a forward propagation.
In the backward recursion necessary optimality

conditions are solved to select an optimal con-
trol law starting from a first guess policy and
its trajectory, in order to minimise the objec-
tive function. In the forward propagation the
optimal control law is used to compute the new
improved trajectory and the new values for the
cost function and constraints’ violation.

2.2.1. Backward sweep

This process is based on Bellman’s optimality
principle [3], the process is based on bellman’s
optimality principle, which is formulated math-
ematically in the recursive Hamilton-Jacobi-
Bellman equation:

Jk(xk) := Lk(xk,uk) + J∗
k+1(xk+1) (4)

where Jk is defined as the cost-to-go function,
a variable that represent the cost value of the
trajectory starting from node k to the final one;
Jk+1 is the optimal value of the cost-to-go func-
tion associated to the optimal path that goes
from node k + 1 to the final one; Lk is a the
stage cost function.
The DDP optimisation technique is based on the
quadratic expansions of all the variables in Eq.
4 starting from a reference control law and its
associated trajectory. The quadratic expansion
overcomes the well-known problem in dynamic
programming denoted as "curse of dimensional-
ity" that is the impossibility to apply Bellman’s
principle due to the fast increase in the num-
ber of variables and functions to be stored to
solve the problem. The optimal control varia-
tion minimising the second-order approximation
is obtained considering the first order derivative

d
d(δuk)

Jk = 0, which in the unconstrained case
has the form:

δuk = Ak +Bkδxk (5)

The minimisation of the cost-to-go function at
each stages provides the coefficientsAk, Bk that
must stores for each time instant in the back-
ward regression. The optimal control variation
in Eq. 5 is replaced in Eq. 4 to retrieve the
optimal cost function at stage k and its partial
derivatives. Furthermore, during this process
also some constant terms appear in the formu-
lation, which represents the expected reduction
ER of the cost-to-go function Jk due to the con-
trol variation. At this point the process moves
to the next step and repeat itself up to the initial
point of the trajectory.
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2.2.2. Forward propagation

Once the coefficients of the feedback control pol-
icy variation are retrieved for all the stages N
and the final value of the expected reduction
ER0 is computed, the first phase shall be consid-
ered completed and the propagation can start.
Basically it consists in a forward process where,
at each stage k, the new control law and the
next point in the trajectory are defined. This is
done following these recursive formulas, impos-
ing that δx0 = 0, δu0 = A0.{

uk = ūk + ϵAk +Bk(xk − x̄k)

xk+1 = F (xk,uk)
(6)

where ϵ is a parameter which is initially set equal
to 1, and then progressively decreased if needed.
At this point it is required to check whether the
trajectory just calculated is "close enough" to
the previous one, to be sure that the second-
order expansion approximation is not violated.
At the end of the forward propagation the val-
ues of Jnew and J are compared to check if the
variation of the cost-function is similar to the
value of the expected reduction ER0 computed
on the whole reference trajectory. If this is not
the case, the parameter ϵ is halved and the pro-
cess is repeated in order to generate a solution
closer to the reference one. Otherwise, the new
control law and the new trajectory are set as the
reference ones and another backward regression
can start.

2.3. Hybrid differential dynamic pro-
gramming

Hybrid differential dynamic programming repre-
sents the state-of-the art for DDP. It consists in
the inclusion of some robust mathematical tech-
niques to overcome some limitations associated
to the DDP algorithm such as:
• the inclusion of constraints in the formula-

tion
• correction of the Hessian Juu,k in case it is

not positive definitive which is a second or-
der necessary condition for the minimisa-
tion process

2.3.1. Trust region

Trust region is a robust mathematical technique
that fulfils a dual purpose in the algorithm. The
first consists of replacing the classical line search

method during the forward propagation with a
technique that is recognised in the literature as
being more numerically stable. The second con-
sists in introducing an efficient method capa-
ble of guaranteeing the positive definite condi-
tion of the Hessian. The trust region method
is able to define both the optimal control law
coefficient and satisfy the state constraints asso-
ciated to the maximum magnitude that the con-
stant term Ak can have. In this way the control
variation at each step is restricted in a certain
region around the reference one, enhancing nu-
merical stability during the backward sweep and
granting that the hessian remain positive defi-
nite. Operatively, the method consists in solv-
ing the following subproblem, called trust region
quadratic subproblem TRQP(Ju,k, Juu,k,∆), at
each time step k:

min
δuk

(Ju,kδuk +
1

2
δuT

k Juu,kδuk)

s.to ||Dδuk|| ≤ ∆

(7)

where ∆ is the current trust region radius andD
is a positive definite scaling matrix. The solution
to this subproblem consists in an iterative pro-
cedure that produces an adequate shift of Juu,k,
in order to obtain a solution that respects the
magnitude constraint. The solution provide the
shifted Hessian J̃uu,k that is used to compute the
coefficients of the feedback control variation pol-
icy. Indeed, given the general form of the control
variation, which includes the presence of static
parameters and final state constraints:

δuk = Ak +Bkδxk +Ckδw +Dkδλ (8)

the final coefficients are retrieved in this way:
Ak = −J̃−1

uu,kJu,k

Bk = −J̃−1
uu,kJux,k

Ck = −J̃−1
uu,kJuw,k

Dk = −J̃−1
uu,kJuλ,k

(9)

2.3.2. Constraint handling

HDDP manages both stage constraints and final
state constraints, but in two different ways.
Stage constraints are treated during the back-
ward regression using the range-space active set
method, which assesses whether a constraint is
active at the current stage k and if so, linearises
the latter and modifies the coefficients obtained
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from the Eq. 9 in order to ensure its fulfilment.
Final state constraints instead, are taken into
account thanks to an augmented lagrangian ap-
proach, which reformulates the problem includ-
ing some weights related to the violation of the
constraints inside the objective function. This
does not grant its exact fulfilment, but ensures
that at each iteration, as the original cost func-
tion is minimised, the violation of the constraint
itself is also gradually reduced. Operatively, it
consists in modifying ϕ in the following way:

ϕ̃ = ϕ+ λTψ + σ||ψ||2 (10)

where now λ are variables which are modified
at each iteration at the end of the backward
process, in order to maximize J , solving the
TRQP(−Jλ,−Jλλ,∆). In this way the variation
δλ can be computed and, consequently, also the
control law. In HDDP, a variation of the penalty
parameter σ is also implemented in the event of
an increase in the final constraints violation.

2.3.3. STM approach

An other important aspect introduced by the
HDDP is the use of STMs for the evaluation
of the optimal cost function partial derivatives.
Before its introduction, the derivatives that ap-
pears in the formulation are related to the dis-
crete transition function F which, for complex
dynamical system expressed by means of differ-
ential system f , is difficult to retrieve analyti-
cally. This implies complex procedures to ap-
proximate the discrete transition function and
compute the derivatives, introducing several ap-
proximations. The STM approach, allows to
compute the derivatives directly by the knowl-
edge of f without pass necessarily by F . This
can be done, providing the analytical form of the
STMs, whenever possible, or by integrating the
system of equation:{

Φ̇1
k = fXΦ1

k

Φ̇2
k = fX •Φ2

k +Φ1T
k • fXX •Φ1

k

(11)

subjected to the initial condition Φ1
k(tk) =

In+m+p and Φ2
k(tk) = 0n+m+p.

3. HDDP with orbital elements
The algorithm presented up to this point is now
being used to study problems formulated as a

function of orbital elements. The structure of
the optimiser remains the same, however, atten-
tion must be paid to certain aspects due to the
intrinsic nature of the new set of variables, as
also mentioned in [1].
• This set is defined by variables that have

very different orders of magnitude (the
semi-major axis is typically much larger
than the other elements). This causes the
matrices involved to be ill-conditioned and
scaling becomes of paramount importance
for the method to be successful.

• The second is represented by the choice of
the elements exploited.
The classical Keplerian orbital element has
a strong physical meaning, representing di-
mension, shape and orientation in space of
the current orbit, but are affected by sev-
eral singularity conditions. In cases when
e = 0, e = 1 and i = 0, which are often
situations of interest for practical applica-
tions, the system dynamics diverges, caus-
ing the failure of the method. Every time
the path approaches these singularity con-
ditions, even without reaching them, the
behaviour of the optimiser worsens, slowing
down and sometimes completely preventing
convergence.
Modified equinoctial elements on the other
hand, does not present any singularity and
in general and generally behave more regu-
larly than the previous set, but their evolu-
tion is not easy to interpret as they have no
physical meaning.

Once the critical points of these new variables
have been presented, however, the advantages
shall also be underlined. Firstly, as already men-
tioned, the time evolution of these elements is
more regular than the Cartesian coordinates,
which greatly facilitates the optimiser’s task.
Secondly, the dynamics of such elements are typ-
ically reported in a reference system [t̂, n̂, ĥ],
which may also be more convenient for defining
an initial control law that is more intuitive and
closer to the final desired target.

4. Test cases
In this thesis four test cases are investigated in
order to proof different aspects of the presented
trajectory design methodology.
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4.1. Direct transfer
The first case involves the use of classical Ke-
plerian elements as variables and deals with a
continuous thrust transfer without complete rev-
olutions in the planetary domain. This test case
is used to evaluate the robustness of the method,
considering the significant difference between
initial guess and final target orbit. Once the first
optimal solution has been found, the specific im-
pulse was then modified through a continuation
scheme to make the propulsive solution viable.
Finally, for sake of completeness, a sensitivity
analysis was then done by varying the time of
flight. This last analysis proved useful in order
to evaluate the behavior of the optimiser as we
approach a singularity situation.

Figure 1: Comparison initial guess and optimal
path

4.2. Earth-Mars rendezvous
This test can be found in several other papers
dealing with trajectory optimisation and has
also been treated here as a comparison param-
eter with the previous literature. Stage con-
straints on the maximum deliverable thrust are
also introduced, differently from the previous
case, in order to highlight how effectively these
constraints are handled by the method. Modi-
fied equinoctial elements are used as set of vari-
ables to avoid singularities. The results obtained
from this case study suggests a significant im-
provement in the convergence speed if the new
variables are used.

Figure 2: Comparison between initial guess and
optimal solution

4.3. Multi-revolution transfer
This study case is particularly relevant for multi-
revolution applications. Indeed, this kind of
transfer is challenging to deal with Cartesian co-
ordinates because of the great sensitivity of the
state variables. An approach exploiting orbital
elements can open the door to the possibility
of effectively optimising even trajectories with a
large number of revolutions.
This test case considers a 45 revolutions trans-
fer from an inclined eccentric orbit to a GEO.
To fully evaluate performances in such a case
study, multiple dynamics were written as a func-
tion of different independent variables exploiting
the Sundman transform. This operation allows
to review the way the discretization of the orbit
occurs and make it more homogeneous than the
one obtained in case of time is used as indepen-
dent variable.
It is important to emphasise that this transfor-
mation can be used if and only if the state vari-
ables are expressed in terms of orbital elements.
For this reason, there is an additional advantage
of using such variables in the multi-revolution
case.
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Independent Variable
t E θ

Final Mass [kg] 659.516 652.274 655.441
TOF [days] 18.4 23.3 23.5
Nrev [-] 45 45 45

Final θ [deg] 246.04 80.37 38.67
J∗ [N·s] 0.889246 0.889269 0.846263
Niter [-] 78 36 42

Table 1: Most relevant data associated with the
3 different optimal solutions

4.4. OneWeb case
To conclude, it has been decided to apply the
method presented to a real low-thrust mission
with large number of revolutions currently under
development. The real application selected con-
sider the orbit raising strategy of the OneWeb
satellite’s constellation, that pass from an ini-
tial almost circular orbit at a mean altitude of
592 km above the Earth’s surface, to a circu-
lar one located at 1200 km altitude. Given the
specifics of the equipped engine, for this work a
transfer of 400 revolutions has been selected as
a primary choice.
The method converges in a small number of iter-
ations, producing a feasible optimal trajectory.
This is an important result that highlights the
potential of the method because of the impos-
sibility to achieve an optimal solution by using
classical Cartesian coordinates.

Figure 3: Representation of the optimal solu-
tion, the initial and final target orbits

5. Conclusions
As mentioned in the introduction, the focus of
this thesis is on the coupling between HDDP
method and orbital elements as state represen-
tation of the dynamics. The purpose behind this
study was to assess the improvements and limi-
tations imposed by such a coupling, and in par-
ticular to evaluate the possible extension of the
optimisation method to a class of problems that
are extremely sensitive to variables’ oscillation
and at the same time which are considered to
be an hot topic nowadays, the multi-revolution
low thrust transfers.
As confirmed by numerical results, an increase
in convergence speed and the possibility of deal-
ing with problems with a very large number of
revolutions involved has been verified for such a
combination.
More investigations are required to limit the
computational effort related to the STMs cal-
culation in order to speed up the algorithm, the
efficient introduction of perturbations into the
dynamics equations, and the possibility of deal-
ing with multiphase dynamics, which were not
explored in detail in this study.
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