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1. Introduction

In-�ight icing is one of the major threats posed
to air-borne vehicles. Ice accreting on
aerodynamic surfaces can deteriorate
aerodynamic performance, and if it detaches
(because of the deployment of an Ice
Protection System or because of aerodynamic
forces) it can cause considerable damage to aft
components such as the �rst stages of a
compressor or the tail empennage. Computing
ice shapes requires the knowledge of the
droplet trajectories impinging on aerodynamic
surfaces. These are then used to obtain the
amount of water being caught, measured using
the collection e�ciency β. Droplet trajectories
can be obtained by tracking each droplet
individually (Euler-Lagrange) or following a
mixed �uid approach (Euler-Euler). Currently,
most of the research e�ort is aimed at
obtaining a better understanding of the
behavior of Appendix O droplets (median
volumetric diameter, or MVD , greater than
40µm) due to their inherently faster ice
accretion rate. In this work an Euler-Euler
approach will be used to track droplets in a 2D
or 3D unstructured mesh in order to compute
the collection e�ciency due to the free-stream
cloud. The equations being considered are the

Berthon et al. [3] relaxed pressureless gas
dynamics conservation laws, solved using a
Godunov �nite volume solver with MUSCL.
The collection e�ciency is then corrected to
account for mass loss due to droplet splashing
and rebounding using the model presented by
Wright [8]. Following this, the removed mass is
re-injected using an Euler-Lagrange approach
in order to compute the re-impingement
collection e�ciency. This approach has been
followed for two main reasons: �rstly, in an
Euler-Euler approach, re-injecting droplets
would require that each airfoil surface mesh
element be converted one by one from an outlet
of droplets to an inlet of re-injected droplets, as
done by Bilodeau et al. [4]. This is extremely
expensive, and according to Bilodeau et al. it
causes a 500% to 900% increase in
computational cost even when employing grid
restriction techniques. Secondly, the
heterogeneous nature of the re-injected droplets
is more suited for individual tracking rather
than for a mixed �uid approach. This
heterogeneousness is further increased by
considering poly-dispersity (multi-bin).
The multi-bin Eulerian solver with Lagrangian
re-injection developed in this work has been
tested against experiments from Papadakis et
al. [6, 7], namely a 2D NACA 23012, a 2D
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three-element airfoil and a 3D horizontal swept
tail in a wind tunnel. A simple bin restart
strategy has been used to mitigate the inherent
computational cost increase of a multi-bin
simulation and its e�ects have been evaluated,
together with the cost of the Lagrangian
re-injection step.

2. Theory

To compute the Euler-Euler droplet
trajectories, the carrier �uid �eld is obtained
by solving the Euler equations, whereas the
particles equations are computed from the
solution of the relaxed PGD system of Berthon
et al. [3] (Eq. (1)). Both set of equations are
discretized using the �nite volume method with
a standard edge-based structure on a dual grid
with control volumes constructed using a
median-dual vertex-based scheme in SU2 [5].
Convective �uxes are discretized using a
limited second order MUSCL with the
Venkatakrishnan slope limiter. For the Euler
equations, the approximate Riemann solver of
Roe is employed, whereas for the particle
tracking system the exact Riemann problem is
solved at each edge to compute the �uxes.
Source terms are approximated at each node
using a piecewise-constant reconstruction
within each control volume. Gradients are
obtained via a weighted least-squares approach.
A time-marching approach is used to drive the
systems to steady state using an implicit Euler
scheme.
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Lagrangian re-injection is performed using an
in-house solver called PoliDrop through the
Discrete Parcel Method (DPM), therefore
tracking parcels that contain a set of identical
droplets instead of each physical droplet. The
Lagrangian trajectories are obtained
integrating Eq. (2), and more can be found in
Bellosta et al. [2].
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The complete computational procedure is
recapped in a �ow-chart in Fig. (1).

Flow

Simulation

for each bin

compute collection efficiency

compute splashed droplets' data

SU2 (eulerian): PoliDrop (lagrangian):

Free-stream droplet

Simulation

compute re-impingement

collection efficiency

Re-injected droplet

Simulation

Figure 1: Computational scheme �ow chart

Given the steady nature of the computations,
all splashing variables are expressed as �uxes of
mass per unit time on a surface element. The
model used is the one presented by Wright [8]
and in Eq. (3) only "�ux" modi�ed quantities
are reported, since all other quantities are
identical to the model.





Splash = KL,n − 200 > 0 splashing occurs
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(
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LWC i|up,i|

)
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˙LWC s = ˙LWC i · 0.7 (1− sin θi)×
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1− e−0.0092026·Splash

]
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mass fluxsplashed water on face

masssingle splashed droplet
=

=
˙LWC s

ρp

3π

4

(
2

dp,s

)3

· area

(3)

To avoid numerical issues due to �oating point
computations parcels are not re-injected
exactly at the surface but with a small
displacement from the wall as shown in Fig.
(2a). To increase the smoothness of the
lagrangian re-impingement collection e�ciency,
instead of re-injecting one parcel per surface
mesh element these can be split up and spaced
by the user as in Fig. (2b) (with the
consequent increase in computational cost due
to the need of tracking more parcels).
The �nal collection e�ciency (β = βfree-stream −
βsplash + βre-impingement) is composed as Eq. (4).
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Incom
ing droplets

(Eulerian) Reinjected droplets

(Lagrangian)

(a)

(b)

Figure 2: Lagrangian reinjection arti�cial wall
displacement and spacing

β =

Nbins∑

j=1

βj
s +

ṁ

area · LWC∞U∞
(4)

Lastly, to reduce the computational cost of
running a multi-bin simulation, each bin after
the �rst is restarted from the previous bin's
converged solution, in an e�ort to reduce the
amount of inner iterations needed to achieve
convergence.

3. Results

The solver developed has been tested against
experimental data by Papadakis et al. [6, 7] on
2D single and three element airfoils, and a 3D
horizontal tail in a wind tunnel with various
MVD values. Results show that considering
both poly-dispersity and re-injection yields the
best results on aft surfaces in multi-element
con�gurations such as in Fig. (3). The
collection e�ciency peak on the main body in
Fig. (3c) increases by 12% while on the �ap in
Fig. (3d) the peak increases by 50%, matching
experimental data. Also, the overall solution
quality of the �ap's collection e�ciency is
increased, locally by up to 100%. This has
been a di�cult experimental measure to match
until now, as seen from the results shown by
many di�erent researchers at the 2021 AIAA's
1st Icing Prediction Workshop [1] .
Looking at the results for the 3D horizontal
swept tail in a wind tunnel [6], the
re-impingement correction is small (in the order
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Figure 3: Collection e�ciency forMVD = 92µm
using 27 bins - Three element airfoil [6]
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of 4%) as expected given it's a single element
geometry, but not zero due to the �ow's three
dimensionality. The multi-bin simulation in
Fig. (4b) is in better agreement with the
experiments compared to the MVD simulation
in Fig. (4a), with a smoother re-impingement
correction due to the heterogeneous nature of
the splashed droplet set being re-injected when
considering poly-dispersity against not
considering it. The complete map of the
collection e�ciency for the 27bin simulation
with re-impingement is reported in Fig. (5).
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Figure 4: Collection e�ciency at z = 0.914m
from wind tunnel �oor for MVD = 92µm - 3D
horizontal tail [6]

The bin restart strategy applied to the 3D
horizontal swept tail shows that it is possible to
obtain a computational cost decrease of up to
65% in Fig. (6) since, starting from a better
initial guess, the Euler-Euler solver is able to
achieve convergence with a higher CFL
number. It is best appreciated looking at the
residual across bins and inner iterations in Fig.

(7), where a 6 bin simulation (CFL = 1) with
no bin restart takes more time to converge than
a 27 bin simulation (CFL = 2) with bin restart.
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Figure 6: Computational time with and without
bin restart - i7 9750h 6c @2.5GHz - 3D
horizontal tail [6]

4. Conclusions

Considering both poly-dispersity and
re-injecting droplets allows for much greater
accuracy when computing the collection
e�ciency in multi-element con�gurations, with
an up to 100% increase in local collection
e�ciency accuracy on the �ap of a three
element airfoil in SLD conditions. Employing a
bin restart strategy allows for up to 65% less
computational time in multi-bin Euler-Euler
simulations. Given the computational cost
increase reported by Bilodeau et al. [4] when
using an Eulerian re-injection procedure, the
Lagrangian re-injection proved to be the best
compromise, with a cost increase in the most
demanding 3D - 27 bin simulation of 32% when
using bin restart and of 8% when not using bin
restart. All of the results highlight the
necessity of tracking re-injected droplets in
complex 3D geometries (e.g. a complete
aircraft). Given the modest computational cost
increase of re-injecting droplets in a Lagrangian
framework (compared to an Eulerian one), the
solution procedure presented in this work
seems to promise a substantial uplift in
solution quality with a acceptable cost penalty.
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Figure 5: Collection e�ciency map for MVD = 92µm using 27 bins - 3D horizontal tail [6]
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Abstract
In-flight icing is one of the major threats to air travel safety. It occurs when super
cooled droplets freeze upon impact with the airplane’s surfaces. To study this
phenomena, droplets are tracked within the airflow in order to compute the amount of
mass caught by the surfaces. Once this is done, ice accretion is computed. This thesis
aims at providing a state of the art three dimensional Euler-Euler 2nd order finite
volume tracking tool for polydispersed droplets, with the capability of also tracking
splashing and rebounding droplets in a Lagrangian manner. The numerical tools and
theory used to implement a 2nd order Godunov solver are presented. A multibin
approach is described in order to simulate polydispersed droplets impinging on solid
surfaces. A splashing model is presented and a Lagrangian reinjection and reimpigement
step is added to track splashed droplets. All of the above are implemented within SU2
(an open source CFD solver) and PoliDrop (Politecnico di Milano’s in-house Lagrangian
particle tracker). The tools presented are then tested in 2D and 3D against experiments,
Lagrangian simulations and industry leading softwares with great agreement.
Furthermore, enabling the Lagrangian reimpingement step yields a substantial increase
in solution quality for multi-element configurations, and a small increase for three
dimensional ones in SLD conditions. Finally, a simple bin restart strategy allows for a
computational cost decrease of up to 65%, decreasing the amount of iterations required
to achieve convergence.

Keywords: in-flight ice accretion, eulerian droplet tracking, lagrangian re-injection,
polydispersity





Sommario
La formazione di ghiaccio in volo è uno dei principali pericoli posti alla sicurezza del
trasporto aereo. Accade quando gocce sottoraffreddate congelano all’impatto con le
superifici del velivolo. Per studiare questo fenomeno le traiettorie delle gocce vengono
calcolate in modo da ottenere la massa di acqua catturata dalle superfici.
Successivamente, viene effettuato il calcolo dell’accrescimento di ghiaccio. Questa tesi ha
l’obbiettivo di fornire un solutore Euler-Euler ai volumi finiti del 2o ordine per il
tracciamento di gocce polidisperse, con la capacità di tracciare in modo Lagrangiano le
gocce schizzate e rimbalzate sulle superfici. Verranno presentati gli strumenti teorici e
numerici usati per implementare un solutore di Godunov del 2o ordine. Verrà descritto
un approccio multibin per simulare gocce polidisperse che impattano sulle superfici. Un
modello di splash verrà presentato insieme ad una strategia per reiniettare le particelle
in modo Lagrangiano. Tutto questo verrà poi implementato in SU2 (un solver CFD
open source) e PoliDrop (il solutore Lagrangiano in-house del Politecnico di Milano). I
tool presentati verranno poi confrontati con esperimenti, simulazioni Lagrangiane e
software leader dell’industria sia in 2D che 3D, con ottimo accordo. Usando la
reiniezione Lagrangiana si ha inoltre un aumento significativo della qualità dei risultati
nel caso di configurazioni multi elemento ed uno più modesto per casi tridimensionali in
condizioni SLD. Infine, una semplice strategia di inizializzazione del multibin permette
di ottenere fino a 65% di risparmio in tempo computazionale, diminuendo il numero di
iterazioni necessarie ad ottenere la convergenza.

Parole chiave: accrescimento di ghiaccio, tracciamento gocce euleriano, reiniezione
lagrangiana, polidispersità
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1

1| Introduction

1.1. In Flight Icing
One of the biggest threats to aircraft safety is posed by in-flight ice accretion. This
phenomena occurs when flying through clouds at a low enough temperature, such that
droplets impinging on the surfaces (particularly on stagnation points) freeze and ice
starts accumulating.

If the ice forms on aerodynamic surfaces, over a sufficiently long time span the shape of
these elements will inevitably be changed with severe consequences for aerodynamic
performance.

Furthermore, if these ice formations break (naturally or because of the deployment of an
Ice Protection System), depending on their position they could hit with considerable
inertia the first stages of the engine compressor or aft surfaces (e.g. the tail empennage).

Therefore, understanding where and how ice accretion occurs is fundamental considering
that safety is arguably the most important prerogative of air travel.

Because of a series of ideal conditions, clouds can contain so called Supercooled Large
Droplets (SLD). These are, as the name suggests, large droplets of water that are still
small enough to remain stable in liquid state well below 0◦C. Any perturbation to their
equilibrium (e.g. an airplane hitting them at 650 km/h) will cause them to instantly
freeze, forming ice.

In-flight icing is known to occur with two main "types" of ice (1.1):

1. Rime, (very low temperature and cloud water content): air is trapped into the ice
giving it its characteristic opaque white color and brittle texture

2. Glaze, (low temperature and higher cloud water content): water spreads on the
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surface forming a film and subsequently freezes with a higher ice density and more
transparent appearance

Figure 1.1: Rime ice (a) and Glaze ice (b) from [3]

1.1.1. Important Quantities

A few important notions for in-flight icing that will be used throughout this thesis are
defined here. This is by no means a complete list of all concepts and variables used in
in-flight icing.

Liquid Water Content (LWC)
Liquid Water Content (LWC ) is the measure of how much mass of liquid water is present
in a given volume of air. It’s measured in [g/m3] and varies depending on the cloud type.
It can go from 0.001 g/m3 in Cirri to 3 g/m3 in Cumulonimbi.

Median Volumetric Diameter (MVD)
The Median Volumetric Diameter (MVD) is a measure of how big the droplets in a cloud
are (on average). It’s an "experimental" property, in the sense that it’s meant to be used
to characterize a set of real droplets. It’s defined as the droplet diameter such that, given
a volume of water Vdroplets in an air-droplets sample, half the volume of water will be
composed of droplets with dp > MVD and the other half with dp < MVD.

Volume Fraction (α)
The Volume Fraction (α) is defined as the ratio of volume occupied by the dispersed phase
to the volume occupied by the whole mixture (in this case volumedroplets/volumeair+droplets).
This definition is only valid if the volume of measurement considered is big enough to
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mantain a stationary average.

Collection Efficiency (β)
The Collection Efficiency (β) is defined as the fraction of water that’s caught by the
surface with respect to the concentration of water in the freestream. It can go from 0 (no
water is caught by the surface) to 1 (all the incoming water is caught by the surface).

1.1.2. Current State of the Art

Given the developmental nature of this work, building upon past theses and work done
in the PoliMIce research group, this section (1.1.2) is a recap of the introduction
presented by Bellosta in his thesis [6]. For a more thorough and general discussion the
reader is refferred to his work.

Since the goal of this thesis is to implement, improve and validate an Eulerian
alternative to the Lagrangian droplet tracking step (presented in [6]) that is being
currently used in the PoliMIce ice accretion software, an overview on the state of the art
theory, assumptions and tools will be provided in this section.

The consensus in the research and industrial landscape is to classify the droplet field
around the aircraft as a particle laden flow. This is a class of flows where a dispersed
phase composed of particles of any nature (in this case droplets) is present inside a so
called carrier phase (in this case air).

The carrier phase is assumed to be continuum. This can be translated in a condition
(1.1) on the particle Knudsen number Knp. The condition simply states that the mean
free path of the carrier’s molecules is much smaller the than the dispersed particle’s
diameter dp.

Knp = µf

dpcfρf

<< 1 (1.1)

For sea level P and T (and therefore speed of sound cf , viscosity µf and density ρf ) this
condition is satisfied since Knp ≃ 10−3.
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Another important thing to consider is the coupling between carrier and dispersed
phase. Given a set of mass, momentum and energy conservation laws, coupling between
these two phases can occur in one way or both, through any of the aforementioned
balance equations.

This can occur through phase change (e.g. water droplets evaporating), force exchanges
(e.g. aerodynamic forces exchanged between a droplet and the air) or heat transfer (e.g.
cold fuel droplets in a hot combustion chamber).

In line with the work from industrial and research entities, the following assumptions
regarding phase coupling have been made when developing this thesis in the context of
in-flight icing:

1. water content of a cloud (at most ∼ 3 g/m3) is assumed low, such that momentum
is one way coupled (air → droplets) only through the drag force exerted by the
difference in velocity U − up between airflow and droplets

2. water content of a cloud (at most∼ 3 g/m3) is assumed low, such that the backwards
heat transfer (air ← droplets) can be considered negligible

3. droplets are assumed to be at thermal equilibrium with the air they are in at the
freestream, and also after the aircraft has flown through them. This is because
the speed at which the aircraft flies is high enough for the thermal changes to be
negligible (unless droplets impinge in which case they are stuck on the surface)

The Stokes number of a particle can be defined St = tp/τflow as the ratio between the
relaxation time of a particle and a characteristic flow time, with the relaxation time for
Stokesian particles tp = ρpd2

p

18µf
being defined as the response time to a step change in the

carrier flow velocity U .

If St >> 1 the particles take a long time to adapt in changes in their surrounding flow
while if St << 1 particles follow every minute change of the smallest flow scale.

The one way momentum coupling assumption that has just been introduced could be
disturbed if St << 1 and the smallest scales of turbulence (Kolmogorov scales) where
considered in it’s complete description (e.g. a Direct Numerical Simulation). This would
mean particles could follow every variation in even the smallest scales. Fortunately
Elgobashi [11] found that for heavy particles (such as water droplets in air) these effects
are negligible.
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This is true in aeronautical applications, unless the behavior of small droplets inside the
boundary layer or wake is of particular interest.

Having arrived at the conclusion that simulating droplets in air for in-flight icing
purposes consists in considering a one way coupled (air → droplets) particle laden flow,
now the two main simulation frameworks being used in the industrial and research
landscape will be highligthed.

Lagrangian Description
The most direct way of simulating droplets is to track every and each one of them
singularly. This is what is done in the Euler-Lagrange framework (Eulerian flow,
Lagrangian particles) of which PoliDrop [6] is an example. PoliDrop will be one of the
two main software tools (together with SU2) used to develop this thesis.

In the Lagrangian framework, particles are not considered as a continuum and the solver
only needs to solve the momentum conservation (1.2).

mp
dup

dt
= F p (1.2)

The forcing term F p is comprised of different contributions:

1. Gravity: F G
p = −ρfgVolp

2. Drag: F D
p = 1

2ρfπ

(
dp

2

)2

CD(Rep) | U − up |
(
U − up

)
3. Neglected contributions from pressure gradient, virtual mass, stress gradient, lift

and basset history forcing terms. These are assumed to be small because of the
physics at play in in-flight icing conditions, see [6]

Equation (1.2), combined with the trivial velocity-position differential relation creates the
system of ODEs (1.3).


dup

dt
= F p

(
xp, up, y

)
dxp

dt
= up

(1.3)

This can be integrated in time to obtain the particles’ trajectories.
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In the Lagrangian framework, the collection efficiency is computed as the ratio of the
curvilinear distance between two (or more in 3D) impinging droplets and the distance
between them at the freestream (Figure (1.2)). Assuming the cloud has equally spaced
droplets of equal diameter (or alternatively constant LWC in the cloud) at the freestream
a simplification can be done, and on the i − th surface element the collection efficiency
becomes βi = mi

AiLWC ∞
.

Figure 1.2: Collection efficiency geometrical definition in 3D

Eulerian Description
This thesis develops and expands (with a Lagrangian reinjection step) a new Euler-Euler
solver based on the pressureless gas dynamics equations (2.2) in order to compute
droplet trajectories in steady conditions. This solver is meant to be an alternative to
PoliDrop in the PoliMIce in-flight icing software.

Droplets are now assumed as a continuum, therefore the LWC cannot be too small or
this assumption would fail when taking the limits of variables in space to define local
quantities (e.g. the volume fraction α).

Averages of the dispersed phase’s properties are taken in mesh elements (therefore in
space volume).

The size L of the averaging sample volume must be much bigger than the average
distance between particles for this average to become stationary. But, at the same time,
L must be much smaller than the characteristic length of the case at hand (e.g. the
chord of an airfoil) to obtain a smooth enough solution in space.

Varaksin [26] found an expression for the ratio of the sampling volume’s cube side L to
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particle diameter dp as a function of the volume fraction α. Fixing a number of particles
Np = 100 one can plot the function in Figure (1.3).

L

dp

= 3

√
Np

6
Np

α
(1.4)
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Figure 1.3: Varaksin [26] dependency of volume fraction to particle diameter with NP =
100

This shows how having a higher value of the volume fraction α allows for the possibility
of taking the limit in space (L→ 0) and therefore leads to being able to define the local
variables needed to create an Eulerian description of the dispersed phase without using
elements that are too big for the solution to be smooth in space.

Considering negligible mass and energy transfer in in-flight icing conditions, as discussed
in (1.1.2), the dispersed phase can be described as a second fluid, completely mixed into
the carrier phase but not in equilibrium with it. This is called the separated fluid
approach and it allows for the evaluation of the droplet behavior, since the main forcing
contribution acting on droplets is the drag force generated by the slip velocity U − up.

For a comprehensive derivation and description of Eulerian conservation laws for many
different particle laden flows the reader is highly encouraged to read [10].

The collection efficiency in the Eulerian framework is much easier to compute, as it’s
simply found with (1.5) so the knowledge of the distance between droplets at the
freestream is not required.
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β = αup · n̂ (1.5)

1.1.3. PoliMIce

PoliMIce is an ice accretion simulation framework developed at the department of
Aerospace Science and Technology of Politecnico di Milano. It takes advantage of open
source CFD tools (such as SU2) to compute the air flow and uses this data, combined
with in house software (such as PoliDrop) to evaluate ice accretion in a multi step
fashion.

The solution procedure is as follows:

1. the clean mesh is generated

2. the flow field is computed in a CFD solver

3. the droplet trajectories are computed with PoliDrop in a Lagrangian approach

4. the ice accretion parameters are computed

5. ice accretion is computed and the mesh in morphed to take this into account

6. repeat from step 2.

PoliMIce can simulate both rime and glaze ice accretion by solving [14] a modified
Messinger model for aircraft icing [22].

Ice accumulates perpendicularly to the surface and the solution is iterated over a set
exposure time by morphing the mesh to account for the variation in geometry caused by
the ice (hence the multi step approach).
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Initial geometry
(clean) Aerodynamic solver

Domain and 
mesh

Flow field
CFD

Droplets
PoliDrop

Flight & 
cloud data
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parameters

Ice accretion
calculation

Geometry
update

Data saving

CFD-PoliMIce
interface

PoliMIce

Figure 1.4: PoliMIce ice accretion multi-step computational procedure

The data required by PoliMIce from the droplet trajectories to compute the ice
accretion step is simply the collection efficiency on the surfaces.

This is where the work presented throughout this thesis will be concentrated on:
providing the fastest and most accurate way of computing the collection efficiency β on
the aerodynamic surfaces using an Euler-Euler approach, while also adding a
Lagrangian reinjection step to account for splashed & rebound droplets.

1.2. Thesis Goal & Structure
The goal of this thesis is to provide a complete, state of the art Euler-Euler particle
tracking tool for in-flight icing purposes with the following features:

1. three dimensional, unstructured mesh

2. 2nd order accuracy

3. poly-dispersity through automatic or user defined droplet size distribution (for
collection efficiency computation)

4. Lagrangian tracking of splashed droplets

The overall structure of the contents is, as follows:

1. the theoretical tools required to implement an Euler-Euler finite volume exact



10 1| Introduction

Riemann solver with MUSCL in SU2 will be provided (2.1)

2. the equations used to model the dispersed phase will be analyzed and a relaxation
model will be added in an effort to obtain a strictly hyperbolic system of conservation
laws (2.2)

3. an automatic multibin implementation will be outlined for test cases where bin data
is not provided or available (2.3)

4. a state of the art splashing and rebound model will be presented together with a
strategy to simulate the splashed droplets in a separate Lagrangian framework (2.4)

After being theoretically outlined, all of the above features will be implemented within
SU2 and PoliDrop and the resulting tool-set will be validated against experimental
collection efficiency data (3) for both 2D and 3D cases.

An additional Appendix (F) on a completely new Baer-Nunziato [4] multi-dimensional
unstructured solver called PoliPhase is added with some preliminary results. The work
on this solver has been started after the core of this thesis had been completed, and is
just a starting reference for future work.
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2| Theory Overview

2.1. Numerical Tools & Approach
SU2 has been chosen as the environment to develop and implement the Euler-Euler
droplet tracking (from now on reffered to as Eulerian) given it is open source and it has
easily expandable code.

A small note on notation:

Primitive variables p =
[
α, up, π

]

Conservative variables q =
[
α, αup, απ

]

Cell averages (overline) p , q

Finite Volume elements and their shared interface Ci , Cj , ∂Ci,j

Volume and surface integration elements dΩ , dΣ

Eigenvalues and eigenvectors λi , r

Fluid velocity and droplet velocity U = [U, V, W ] , up =
[
up, vp, wp

]

2.1.1. CFD Solution Procedure

CFD simulations are performed using the Finite Volume method, with PDEs being cast
in differential form as in (2.1).

∂q

∂t
+∇ · F conv(q)−∇ · F visc(q) = S(q) (2.1)
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Where q is the vector of conservative variables, F conv(q) and F visc(q) the vectors of
convective and viscous fluxes and S(q) the vector of source terms.

This is then solved in terms of the residual R(q) as written in (2.2).

R(q) = ∂

∂t

∫
Ω

qdΩ +
∮

∂Ω

[
F conv(q)− F visc(q)

]
· n̂dΣ −

∫
Ω

S(q)dΩ = 0 (2.2)

If an implicit scheme is being used, the solution is then obtained through the
Newton-Raphson method (2.3) until the convergence criteria set on the root mean
square of the residual R(q) has been achieved.

To this end the computation of the jacobian JNR = ∂Ri

∂qj

is required.


qk+1 = qk + ∆qk

JNR∆qk = −R(qk)

(2.3)

This same approach, together with the many tools used by the already existing solvers,
will be employed in this work to implement a pressureless gas dynamics (2.2) solver within
SU2.

2.1.2. Finite Volume Method

The equations presented in (2.1.1) still need to be spatially discretized and this is where
the finite volume method comes into play.

The domain is subdivided into mesh elements, namely cells and nodes. Then, the
discrete solution can be stored in two ways:

1. Nodes (node centered FVM)

2. Cells (cell centered FVM)
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SU2 uses the first approach, storing the solution in the nodes of the mesh and constructing
the finite volumes around them as shown in Figure (2.1)

Figure 2.1: Node centered 2D finite volume (in red) sketch

The problem is solved for the average value within these control volumes. The fluxes are
evaluated at the interfaces of all neighbouring finite volumes.

Equation (2.2) therefore becomes, in it’s discretized form, equation (2.4).

Ri(t) =| Ci | ·
qn+1

i
− qn

i

∆t
+

∑
j∈∂Ci

F i,j · νi,j + F (qBC) · νi,j −
∫

Ci

S(t)dΩ = 0 (2.4)

Where:



νi,j =
∫

∂Ci,j

n̂idΣ

q
i
(t) =

∫
Ci

q(t)dΩ

| Ci |=
∫

Ci

1 · dΩ

(2.5)

2.1.3. Godunov Method

To obtain a result, the discretized equation (2.4) needs to be evaluate control volume by
control volume to construct the jacobian and residual and solve the Newton-Raphson
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iteration (2.3).

There are multiple possibilities when deciding how to evaluate the fluxes F i,j.

Having assumed that the values inside a finite volume are constant, what happens at
interfaces between elements is of great importance.

Figure 2.2: 1D Riemann problem sketch at node interfaces

Unfortunately q(t) is undefined at the interface ∂Ci,j between the elements Ci and Cj.
In the case of hyperbolic conservation laws (eigenvalues λi ∈ R ∀i) with piecewise
constant initial data (such as this case as depicted in Figure (2.2)) this problem is called
the Riemann Problem.

If a simple analytic solution q̃(t + dt) of this problem is available at a time t + dt at the
interface ∂Ci,j, the fluxes can be evaluated using this value. This is the way fluxes are
evaluated in Riemann solvers.

If the exact Riemann problem is solved exactly, then the method is called a Exact
Riemann solver.

If, to reduce computational cost, the Riemann problem is approximated and then solved
exactly, the method is called an Approximate Riemann solver.

In this work the equations modeling the droplets will be solved by implementing a exact
Riemann Solver, therefore an exact solution of the Riemann problem will be required.
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Figure 2.3: 1D Riemann problem solution sketch at interfaces

Figure (2.3) shows an example of a Riemann problem solution. It is composed of three
waves, across which q changes. These waves travel in time, but the solution in each "slice"
of the domain remains constant unless a wave passes through it at a certain time. This
means that at t = t + dt the value of q̃ can be easily found as long as the "slice" in which
the interface ∂Ci,j lies is known, and the value of q is known inside each slice.
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MUSCL Reconstruction

Figure 2.4: 2D MUSCL reconstruction sketch. pi,j are the cell averages of the primitive
variables while pMUSCL,i,j are the linear approximations obtained using the cell gradients
∇pi,j

A MUSCL reconstruction has been implemented to (ideally) obtain a second order
method (i.e. the error goes down as e ∝ K · h2 with h being the mesh size) and therefore
be able to obtain mesh convergence with a significantly smaller mesh (and the obvious
computational cost decrease associated with it). Actual second order spatial convergence
cannot be exactly achieved with complex geometries (such as the ones found in the
in-flight icing world), but a faster mesh convergence can be achieved nonetheless.

The primitive variable p are reconstructed at control volume interfaces using their
gradients inside the cells as (2.6).

pMUSCL = p +∇p · r (2.6)

r is evaluated at the cell interface for both cells Ci and Cj obtaining the left and right
interpolated interface values that will then be used to construct the Riemann problem
that needs to be solved in the exact Riemann solver.

The gradient is computed within SU2, using the already available tools, with the
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possibility to choose between Green-Gauss or Weighted-Least-Squares techniques.

Multidimensional Approach
The Eulerian solver developed in this work must work in multidimensional unstructured
grids. This means the exact Riemann solver must solve the multidimensional Riemann
problem on interfaces between elements.

It is important to note that the only equation and variables that change when moving to
multidimensional problem are momentum conservation and velocity. It can also be
proven that the eigenvalue given by the normal velocity up · n̂ has multiplicity equal to
the number of dimension (akin to what happens in the Euler equations for inviscid
flows). This is at the core of the multidimensional approach used in this work:

1. the 1D exact Riemann solver is outlined by solving the Riemann problem
analytically in Appendix (A)

2. the multidimensional problem is solved by projecting the velocity on the interface
normal direction, and then solving the resulting 1D problem. The solution is then
casted back into multidimensional form using the normal vector n̂

2.2. Pressureless Gas Dynamics
Droplet trajectories can be computed using a Lagrangian approach, therefore tracking
each and every parcel by integrating in time (1.3) as shown in (1.1.2). This approach is
preferred when the LWC is low, both in terms of computational power and fidelity in
representing the physics of the problem.

When the LWC is higher, the Euler-Euler approach becomes a viable (if not
preferrable) alternative. Droplets are not longer tracked one by one but are treated as a
continuum. This allows for the exploitation of many decades of acquired knowledge in
the field of Finite Volume methods for fluid simulations.

The Pressureless Gas Dynamics conservation laws (2.2.1) are used to model the one way
coupled particle laden flow. This choice can be easily explained considering that
droplet-droplet collisions can be neglected given their dispersed nature.

Removing pressure from the Euler equations allows for the description of shadow zones
(of great importance in particle laden flows) but also introduces a sizable set of
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drawbacks which will be discussed in (2.2.2).

To remove some of the possible numerical issues, the equations are solved in non
dimensional form, since otherwise o (α) << o

(
| up |

)
.

2.2.1. Conservation Laws

The Pressureless Gas Dyamics conservation laws upon which this work is based are (2.7)
from [18].


∂α

∂t
+∇ ·

(
αup

)
= 0

∂αup

∂t
+∇ ·

(
αup ⊗ up

)
= αCDRed

24K

(
U − up

)
+

���������α

Fr2

(
1− ρf

ρp

)
g

(2.7)

1. The gravitational momentum source term is neglected.

2. K is the inertia parameter, K =
ρpd2

pU∞

18µf

= tpU∞ where tp is the particle relaxation
time. If tp is small particle trajectories mostly follow the flow’s streamlines, if it’s
large their inertia is too large and they behave in a "ballistic" manner.

3. CD is the droplet’s drag coefficient.

As it will be discussed in (2.2.4), the Riemann problem’s solution will be constructed
using the assumption of equilibrium on left and right states (therefore inside mesh
elements). This will translate in the removal of the additional pressure equation in (2.7).

The only source of (one way) coupling between flow and particles is the drag momentum
source term SD = αCDRed

24K

(
U − up

)
. The drag coefficient is modeled by first assuming

it to be a sphere, using Morrison’s approximation [21] and Clift’s et. al. approximation
[9] as (2.8).

Csphere
D (Red) =


Csphere

D,Morrison Red < 106

Csphere
D,Clift et. al. Red > 106

(2.8)

Where the two drag coefficients are (2.9).
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Csphere
D,Morrison = 24

Red

+ 2.6
Red

5

1 +
(

Red

5

)1.52 + 0.411

(
Red

2.63·105

)−7.94

1 +
(

Red

2.63·105

)−8 + Re0.8
d

4.61 · 105

Csphere
D,Clift et. al. = 0.19− 80000

Red

+ δ

(2.9)

To be able to account for the eccentricity brought in by the deformation in the Supercool
Large Droplet (SLD) regime, the Weber breakup number [16] is introduced in (2.10).

Web = dp | up |2
ρf

σp

(2.10)

This is then used to compute the eccentricity f as [16] (2.11).

f =
[

1
1 + 0.07

√
Web

]6

(2.11)

The eccentricity is finally used to linearly interpolate the CD between the sphere’s drag
coefficient Csphere

D and the disk’s drag coefficient Cdisk
D as in (2.12).

CD (Red) =


(1− f)Csphere

D + fCdisk
D Web ≤ 12

Cdisk
D Web > 12

(2.12)

Where the disk’s drag coefficient is taken from Clift et. al. [9] in (2.13). After Web >

12 the droplet should breakup, but in this work this will not be considered, hence the
assumption of CD = Cdisk

D beyond Web > 12.

Cdisk
D =



64
πRed

(
1 + Red

2π

)
Red ≤ 0.01

64
πRed

(
1 + 10−0.883+0.906 log10(Red)−0.025(log10(Re)2)

Red ∈ (0.01, 1.5]

64
2π

(
1 + 0.138Re0.792

d

)
Red ∈ (1.5, 133]

1.17 Red > 133

(2.13)
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A Note on δ Shocks & Vacuum States
The pressureless gas dynamics equations have been studied extensively in fields such as
relativistic Euler equations and astrophysics modeling of large scale universal structure
[2].

It is well documented that the Riemann solution can contain δ shocks and vacuum
states [29]:

1. δ shocks are discontinuities with a overimposed Dirac’s delta on α. They are
therefore singular solutions with little physical meaning, but they are important to
construct a solution of the PGD’s Riemann problem

2. vacuum states are solutions with α = 0, therefore in this work this state corresponds
to the absence of droplets

Capturing vacuum states is very important in simulating droplets since it is evident how
a body flying through a cloud does indeed create a shadow zone where there are no
droplets. The vacuum will not be retrieved exactly since a relaxation model is employed
(2.2.2) for numerical purposes.

If no characteristics (characteristics are parallel to up) enter the airfoil in what should
have been a shadow zone (α = 0) then the solution will be considered satisfying for
in-flight icing purposes since no non-physical collection efficiency will be computed.

On the other hand, δ shocks bear no physical meaning in the context of droplet
impingement. As the pseudo pressure tends to zero, the three waves arising from the
initial discontinuity tend to coalesce into a single δ shock [29].

delta shock

vacuum

Figure 2.5: δ shock and vacuum zone sketch
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2.2.2. Relaxation

Having removed pressure from the Euler equations in (2.7) is a major source of
numerical troubles, one of which is that the problem is no longer strictly hyperbolic.

To this end a numerical relaxation method proposed and developed by Berthon et. al.
[7] is employed. The relaxation model will be thoroughly described in this section since
it’s of vital importance to implement a exact Riemann solver for this problem.

The relaxed PGD equations are (2.14)



∂α

∂t
+∇ ·

(
αup

)
= 0

∂αup

∂t
+∇ ·

(
αup ⊗ up + πI

)
= αCDRed

24K

(
U − up

)
∂απ

∂t
+∇ ·

(
απup + c2up

)
= −λαπ

(2.14)

Where c is the relaxation constant. The addition of a pseudo pressure π allows for the
retrieval of a strictly hyperbolic problem and this will be proved in (2.2.4). The relaxation
constant c is computed following Berthon’s et. al. [7] work as (2.15)

c =


max

[
0, max

(
αi, αj

) (
ui

p − uj
p

)]
if ui

p ≥ uj
p

min
[
ε,

1
2 min

(
αi, αj

) (
C + ui

p − uj
p

)]
if ui

p < uj
p

(2.15)

Where C > max(0, uj
p − ui

p) and ε > 0.

2.2.3. Boundary Conditions

The solution procedure is, for all intents and purposes, identical to the one described in
(2.1.1) with the need to specify the equations being solved (therefore convective fluxes,
source terms and conservative variables) and the boundary conditions being enforced.
Since the conservations equations have been already discussed in (2.2), and the solution
procedure in (2.1.1), only the wall boundary conditions still need to be defined.
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In in-flight icing, the collection efficiency β of aerodynamic surfaces is of paramount
importance when simulating ice accretion. Being the collection efficiency a measure of
how much air impinges on a solid surface, it’s easy to understand the need to properly
define the boundary condition at the wall.

Bourgault et. al. explored in [8] the boundary conditions required to obtain stability
and unicity when simulating the pressureless gas dynamics conservation laws.

Noting that characteristics have the same direction as particle velocity up, three
different types of boundaries can be defined:

1. Inflow boundaries, where characteristics are coming into the domain

2. Outflow boundaries, where characteristics are going out of the domain

3. Slip boundaries, where characteristics are parallel to the boundary

inflow

outflow outflow

slip

Figure 2.6: Types of boundaries for PGD

At inflow boundaries, boundary conditions on α∞ and up must be defined and enforced.
This means all variables have to be be prescribed.

At ouflow and slip boundaries, no boundary condition must be applied according to [8]
et al. Having changed the character of the problem through the relaxation, boundary
conditions must be enforced here too.

The numerical approach used to apply the boundary condition is the one described by
Guardone et. al. [15] which uses the eigenvalues of the jacobian to discriminate between
boundary conditions (in characteristic variables) that must be enforced and those that
must not be enforced.

The convective fluxes at a boundary control volume are evaluated at using the value
qBC computed using (2.16).
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qBC = qdomain + R SN
{

L
[
qext − qdomain

]}
(2.16)

Where:

1. qext is the vector of far-field values of the boundary conservative variables

2. qdomain is the vector of conservative variables in the boundary control volume

3. L is the matrix where the i − th row corresponds to the i − th left eigenvector of
the jacobian (evaluated in qdomain)

4. R is the matrix where the j− th column corresponds to the j− th right eigenvector
of the jacobian (evaluated in qdomain)

5. L and R are adimensionalized as RL = I

6. SN {x} is an operator defined as (2.17)

y = SN {x} → yi =


xi if λi < 0

0 if λi > 0
(2.17)

This approach allows for the automatic enforcement of boundary conditions in a
hyperbolic non linear system of conservation laws, making use of the characteristic
variables v = Lq.

In the multidimensional (3D) case at hand, the eigenvalues are (2.20), the right
eigenvector column matrix is (2.21), the left eigenvector row matrix is (2.22), with n̂

being the normal pointing outwards of the boundary face (control volume → exterior).

Also, for ease of notation, the projected velocity is renamed un̂
p =

(
up · n̂

)
.

All of these are computed by projecting the convective fluxes along n̂ and computing

the projected jacobian J n̂ = ∂F n̂
i

∂qj

remembering it will be evaluated in the domain
control volume, where πdomain = 0.
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F n̂ =



αup · n̂

αup ⊗ αup + απI

α
· n̂

απ · αup + c2 · αup

α
· n̂


(2.18)

J n̂ =



0 nx ny nz 0

−un̂
p up −

πnx

α
un̂

p + upnx upny upnz
nx

α

−un̂
p vp −

πny

α
vpnx un̂

p + vpny vpnz
ny

α

−un̂
p wp −

πnz

α
wpnx wpny un̂

p + wpnz
nz

α

−un̂
p

[
π + c2

α

] (
π + c2

α

)
nx

(
π + c2

α

)
ny

(
π + c2

α

)
nz un̂

p



(2.19)

λ =

un̂

p −
c

α
, un̂

p , un̂
p , un̂

p , un̂
p + c

α

 (2.20)

R =



α

c2
nx

un̂
p

ny

un̂
p

nz

un̂
p

α

c2

αup − cnx

c2 1 0 0 αup + cnx

c2

αvp − cny

c2 0 1 0 αvp + cny

c2

αwp − cnz

c2 0 0 1 αwp + cnz

c2

1 0 0 0 1



(2.21)
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L =



un̂
p c

2 −cnx

2 −cny

2 −cnz

2
1
2

un̂
p nx n2

z + n2
y −nxny −nxnz −αup

c2

un̂
p ny −nxny 1− n2

y −nynz −αvp
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un̂
p nz −nxnz −nynz 1− n2

z −
αwp
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−
un̂

p c

2
cnx

2
cny

2
cnz

2
1
2



(2.22)

Far Field Boundaries
In the case of far field boundaries, qext = qext is the vector of user defined freestream
conservative variables, and the method previously described automatically enforces the
required boundary condition (inflow or outflow).

Euler Wall Boundaries
In the case of solid boundaries, a mixed no penetration-outflow condition is employed.
This allows for the computation of the collection efficiency, by allowing mass to "escape"
the domain from the walls when the droplets impinge on them.

To implement this, qext needs to be properly defined.

1. up · n̂ > 0 therefore the droplet is going out of the domain, qext = qdomain

2. up · n̂ < 0 therefore the droplet is entering from a wall (unphysical), the velocity is
reflected to enforce a no penetration condition (2.23)

qext =



αdomain

up −
(
2up · n̂

)
n̂

πdomain


(2.23)
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2.2.4. 1D Riemann Problem Solution

The solution to this 1D Riemann problem is exactly the same as the one found in Berthon
et. al. [7]. The derivation was missing therefore it has been performed from scratch step
by step in Appendix (A), using [19] as reference on the procedure. The final solution is
(2.24)

pL p∗L p∗R pR

αL 2αLc

2c− αL
(
uL

p − uR
p

) 2αRc

2c− αR
(
uL

p − uR
p

) αR

uL
p

uL
p + uR

p

2
uL

p + uR
p

2 uR
p

0 c
uL

p − uR
p

2 c
uL

p − uR
p

2 0

(2.24)

It’s important to note that (2.24) is a valid solution to the Riemann problem under the

assumption that c > max
(

0, αL uL − uR

2 , αR uL − uR

2

)
.

The knowledge of the exact solution of the Riemann problem allows for a
straightforward implementation of an exact Riemann solver.

2.3. Multibin (Polydispersity)
The classical approach is to define a Mean Volumetric Diameter MVD and assume the
cloud is homogeneous, therefore all droplets have the same diameter.

In reality, clouds are heterogeneous, being composed of many droplets of many
diameters. This means that taking into account the droplet size distribution will yield a
more accurate representation of the actual droplet field. From now on, considering a
polydispersed droplet field will be referred to as running a multibin simulation. This is
done by sampling the droplet diameter distribution into bins. Each bin has its own
water content percentage and droplet diameter.

In an Eulerian solver this translates in the computation of one droplet field for each
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value of the diameter dp, with the obvious increase in computational cost.

The droplet size distribution will be referred to as bin distribution from now on, with
the i− th bin being characterized by its diameter di

p and its LWC fraction LWC i

LWC tot .

di
p

LWC i

LWC tot

Bin 1 1µm 10%
Bin 2 4µm 12%
Bin 3 10µm 15%
Bin 4 14µm 30%
Bin 5 21µm 13%
Bin 6 28µm 11%
Bin 7 37µm 9%

Table 2.1: Example of a bin distribution

2.3.1. Collection Efficiency

This work is deeply rooted in in-flight icing, where the only parameter required from the
droplet field is the collection efficiency β on the body of the aircraft.

In Lagrangian solvers, the computation of collection efficiency does not change whether
the droplets are mono or polydispersed since only the mass collected at the surface
matter and each droplet carries all the information required to compute it.

In the Eulerian solver the collection efficiencies obtained for each i− th simulation of the
i− th bin needs to be combined to obtain the total collection efficiency βtot using (2.25).

βtot =
Nbins∑
i=1

 LWC i

LWC tot · β
i

 (2.25)
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2.3.2. Langmuir D Bin Distribution

Usually experimental reports on in-flight icing tests provide a bin distribution that best
represents that experimental setup. This is great when validating a new ice accretion
tool since it provides a way to minimize the uncertainty in the inputs and verify that
numerical results agree with the physics.

Airplanes on the other hand fly in many different conditions, through clouds of varying
LWC , MVD and bin distribution. This means that in order to run a multibin simulation
in a test case that is not replicating an experiment (e.g. a new three element airfoil
setup during the conceptual design phase) the bin distribution needs to be generated
automatically from a given MVD.

Unfortunately studies on the distribution of dp and LWC in clouds are not many, with
[17] being the notable exception. Langmuir in 1946 published a report [17]
commissioned by the Army Air Forces and General Electric on water droplet trajectories
and it contains various experimental measurements of droplet sizes in clouds. There is
an overall consensus on the fact that the "Langmuir D" distribution contained in this
work is the most accurate depiction of actual clouds’ droplet size distribution.

The distribution is given as LWC percentage and size ratio di
p

MVD in only 7 bins, limiting
its direct usage possibilities. A continuous version of Langmuir D is found in [20]. The
analytic version (and/or the approach used to obtain it) is unknown, therefore it has
been sampled in a large number of points to obtain a sizable dataset from which to
create a polynomial approximation.

The use of a single polynomial fit presented in Figure (2.7a) for the whole distribution is
not acceptable since, no matter the order of the polynomial, at di

p

MVD ≃ 0 and di
p

MVD ≃ 3
the cumulative LWC is not monotone.

Monotonicty of LWC cumulative is fundamental to avoid negative values of LWC i when
computing it using (2.26).

To overcome the monotonicity problem two different polynomial fits have been
performed for the data using di

p

MVD = 0.9 as the switching point from the first and second
polynomial. The fit has been performed with a slight overlap to obtain a smooth
approximation about the switching point.
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(a) Single polynomial fit of Langmuir D
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Figure 2.7: Single vs double polynomial fit of Langmuir D

The final approximation therefore is used as follows:

1. Left polynomial fit (red in (2.7b)) if di
p

MVD ∈ (0.0, 0.9]

2. Right polynomial fit (blue in (2.7b)) if di
p

MVD ∈ (0.9, 3.0]

This allows for multibin simulations even without prior knowledge of the size
distribution of droplets in the case being considered.

If a series of di
p has been chosen such that di+1

p > di
p ∀i, a bin’s LWC i can be computed

as (2.26) from the cumulative LWC curve.

LWC i = LWC cumulative(di−1
p )− LWC cumulative(di

p) i = 1, ..., Nbins (2.26)

2.3.3. Computational Cost Mitigation

To mitigate the computational cost of a multibin simulation, each bin after the first is
restarted from the converged solution of the previous bin. This can decrease
computational cost significantly in high bin number simulations since each bin is very
close in droplet diameter (and therefore behavior) to its previous one.

In three dimensional simulations this will prove essential, as Figure (3.28) will show in
the final part of this work.
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2.4. Lagrangian Reinjection & Reimpingement
Not all droplets striking the surface stick to it. Bai and Gosman [5] found that there are
four principal ways a droplet may interact with a wall:

1. stick, low up · n̂, droplet maintains its shape

2. spread, high up · n̂, droplet forms a film on the surface

3. rebound, medium up · n̂, the complete droplet bounces off the surface

4. splash, very high up · n̂, part of the droplet spreads and part is reinjected in the
air as many smaller droplets

In this work, a model to correct the collection efficiency for splashing and rebound
effects is implemented. The model that will be use is the one found in LEWICE and
described by Wright in [27].

This model will be used to correct the collection efficiency, by removing the mass that
rebounds or splashes. The mass that has been removed will then be reinjected using
PoliDrop (a Lagrangian solver) and tracked to compute how much of it reimpinges on
aft surfaces. The mixed Eulerian-Lagrangian approach is dictated by the impossibility
of considering boundaries both as inlets (of splashed/rebounded droplets) and outlets
(impinging and reimpinging droplets) in the Eulerian framework.

The splashing model [27] has been obtained by taking the collection efficiency results of
many experimental results, and then tuning the parameters in such a way that it
matched the largest amount possible of cases.

Denoting (·)i all incoming properties and (·)s all properties after splashing, the model
requires the computation at the surface of many different parameters:
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Droplet Ohnesorge number: Oh = µp√
ρpσpdp

Droplet Reynolds number: Rep = ρpupdp

µp

Mundo splashing parameter: K = Oh ·Re
5
4
p

LEWICE splashing parameter: KL = K0.859
(

ρ

LWC

)0.125

Normal LEWICE splashing parameter: KL,n = KL(
sin(θi)

)1.25

(2.27)

Where θi is the incoming droplet angle measured from the surface tangent (in degrees)
towards the velocity as shown in Figure (2.8)

Figure 2.8: Splashing velocity components sketch
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According to the model, splashing occurs if the splashing discriminator Sdisc (2.28) is
greater than 0.

Sdisc = KL,n − 200 > 0 splashing occurs

Sdisc = KL,n − 200 ≤ 0 splashing does not occur

(2.28)

After splashing, the model also yields the properties of splashed droplets (2.29). These
are needed to start a simulation of the droplets being reinjected into the domain. Given
the steady nature of the simulations considered in this work, one must reason in terms of
water flux on surfaces and not mass. Note that ˙LWC = LWCup · n̂.

Liquid Water Content Flux:
˙LWC s = ˙LWC i · 0.7 (1− sin θi)×

×
[
1− e−0.0092026·Sdisc

]

Droplet Diameter: dp,s = dp,i · 8.72e0.0281K 0.05 ≤ dp,s

dp,i

≤ 1

Normal Velocity:
[
up,s · n̂

]
=
[
up,i · n̂

]
(0.3− 0.002θi)

Tangential Velocity:
[
up,s · t̂

]
=
[
up,i · t̂

]
(1.075− 0.0025θi)

Collection Efficiency: βcorr = β

(
1− LWC s | up,s |

LWC i | up,i |

)

(2.29)

Its worth pointing out that βcorr is the collection efficiency corrected for the removal of
splashed droplets. These can later impinge on aft surfaces, and this is where the
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Lagrangian step of this work comes in, by tracking these so called secondary droplets
individually and adding the collection efficiency.

In the Eulerian framework the area of the surface mesh element is also required to
obtain the number per unit time ṅs of droplets that have been generated by splashing.

The number of droplets per unit second can be computed from ˙LWC s simply as (2.30),
where area is the wall surface element’s area. In the case of a 2D simulation the area is
assumed as area = length · 1 [m].

ṅs = mass fluxsplashed water on face

masssingle splashed droplet
=

˙LWC s

ρp

3π

4

(
2

dp,s

)3

· area (2.30)

Finally, the droplets are reinjected in PoliDrop in the position of the node where the
splashing occured. To avoid numerical issues due to floating point computations the
splashed droplets are not placed exactly at the node, but they are displaced by a small
ε << 1 in the normal direction to the surface as shown in Figure (2.9).

Figure 2.9: Small artificial displacement of splashed droplets from wall

Therefore all information needed by PoliDrop to start a Lagrangian simulation of splashed
droplets are available.
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Velocity up,s

Number of Droplets per unit time ṅs

Diameter of Droplets dp,s

Position of Reinjection [xs, ys, zs]

Table 2.2: Initial conditions required by PoliDrop to start splashed simulation

Finally, when the Lagrangian simulation of the splashed droplets is run, the additional
collection efficiency gets computed as (2.31) where ṁi is actually now not the mass caught
by the surface element, but the mass per unit time caught by the surface element.

βtot = βcorr + ṁi

AiLWC ∞U∞
(2.31)

Another feature implemented is the spacing of the Lagrangian parcels tangentially to
the face. Instead of injecting one parcel per surface mesh element, the user has the
possibility of splitting the droplets in more parcels (with an increase in computational
cost and solution smoothness) as will be seen in (3.5.1). An example of no spacing and a
10 element subdivision spacing is in (2.10).
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Figure 2.10: Reimpingement spacing example. In red no spacing (1 parcel per surface
mesh element), in blue 10 element subdivision spacing (10 parcels per surface mesh
element)

As Figure (2.10) shows, the spacing is not done on the whole surfacial element, but it
only covers a fraction of it.
This fraction Fspacing = Lspacing

Lface

≤ 1 is also a user modifiable parameter. This is where
an adaptive technique, or a smarter spacing would help increase the robustness of this
Lagrangian reimpingement step.

2.5. Complete Solution Procedure &
Implementation Strategy

SU2 has one main way of running a simulation, shown in Figure (2.11).

Read 
config file

Read flow
restart

Run flow 
simulation

output results

CFD 
config.cfgFiles: Mesh

mesh.su2
Flow

solution.dat

SU2:

Figure 2.11: SU2 base computational procedure scheme
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This approach is used to solve one (or more) set of conservation equations concurrently.

In an effort aimed at reducing the computational cost that would be added by solving
all conservation equations (flow and droplets) simultaneously, the approach that will be
used in this work is:

1. Compute the (Eulerian) flow solution (once)

2. Compute the (Eulerian) droplets’ flow field (for each bin if multibin)

Compute the collection efficiency β (for each bin if multibin)

Compute and write the splashed droplets’ data (for each bin if multibin)

3. Compute the (Lagrangian) droplets’ trajectory from splashed data

Compute the reimpinged collection efficiency βreimpinge

This split in the solution procedure between air flow and droplet field is only possible
because the motion of droplets through air is assumed to have negligible effects on the
air flow itself (one way coupling flow → droplets) as discussed in (1.1.2).

To be able to use SU2 as the "home" of this solution procedure, the base SU2 framework
(Figure (2.11)) needed to be expanded to run consecutive simulations of different types,
while retaining the old one in memory (the flow velocity U appears in the momentum
drag source term of the PGD equations in (2.7)).

Finally, a routine has been implemented in PoliDrop to load the data in
splashed_data.dat and run the simulation, together with the required modifications to
compute the collection efficiency in terms of mass fluxes.

The file is structured as a comma separated value file, with the structure shown in
Table(2.3).
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xs[m] ys[m] zs[m] us[m/s] vs[m/s] ws[m/s] dp,s[m] ns[−]

-0.263567 -0.0382377 0 30.5969 -11.0613 0 4.6193e-06 46

-0.258612 -0.0389092 0 31.9818 -11.212 0 4.6193e-06 60

-0.253654 -0.0395755 0 33.2008 -11.2786 0 4.6193e-06 73

-0.248689 -0.040229 0 34.3232 -11.2379 0 4.6193e-06 87

-0.243717 -0.0408604 0 35.3548 -11.1075 0 4.6193e-06 100

-0.238741 -0.0414657 0 36.2769 -10.9248 0 4.6193e-06 112

-0.233763 -0.0420447 0 37.0796 -10.7226 0 4.6193e-06 124

-0.228783 -0.0426002 0 37.7697 -10.5191 0 4.6193e-06 135

. . . . . . . .

. . . . . . . .

Table 2.3: Example of splashed_data.dat file

A complete description of the simulation procedure, with all the files being shared between
SU2 and PoliDrop, is present in Figure (2.12).
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Read 
config file

Read flow
restart

Run flow 
simulation

Run droplet 
simulation

output results

for each bin

compute 

Read droplet
restart

compute
splashed

droplets' data

output results

Multibin
postprocess

combine
splashed

droplets' data

if multibin:

compute 

Initialize from
splashed data

CFD & PT 
config.cfgFiles:

Read 
config file

Mesh
mesh.su2PoliDrop

config.cfg

Flow
solution.dat

Droplet
solution.dat

Splashed data
splashed.dat

Run splashed
droplets simulation

Collection 
efficiency

compute 

SU2 (eulerian):

PoliDrop (lagrangian):
Figure 2.12: Complete computational procedure scheme
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3.1. MUSCL Validation
In the first part of this results section, the MUSCL reconstruction will be assessed to
ensure mesh convergence is indeed achieved with coarser meshes (i.e. faster spatial
convergence).

This will be done by simulating the well known experiments conducted by Papadakis et.
al. in 2004 [24], where the collection efficiency for various MVD’s has been measured
experimentally. All important values needed to run these simulations are in Table (3.1).

Airfoil NACA23012

chord = 0.914 m

AoA = 2.5◦

Cloud & Droplets LWC = 0.5 g/m3

MVD = 20, 52, 111, 154, 236 µm

µp = 0.0011208 Pa/s

ρp = 1000 kg/m3

σp = 0.074 N/m

Airflow EULER

M∞ = 0.22937

P∞ = 94802.914 Pa

T∞ = 288.705 K

Table 3.1: Experimental setup data - NACA 23012 Papadakis et. al. [24]

To do so three meshes have been generated with Gmsh [13] (Table (3.2) and Figure (3.1)),
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where the coarse and fine ones are used to check how the collection efficiency changes by
doubling the elements. Meanwhile the reference mesh is over refined on purpose and is
used as a second check.

Mesh name Number of nodes

coarse 3842

fine 6381

reference 191621

Table 3.2: Mesh names for mesh convergence assessment

(a) coarse (b) fine

(c) reference

Figure 3.1: Meshes NACA 23012

The flow-field used for all droplet simulations (both Eulerian and lagrangian) is depicted
in Figure (3.2).
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Figure 3.2: Euler flow-field for Papadakis et. al. [24] NACA23012 simulations

3.1.1. Mesh Convergence

The collection efficiency results for the coarse, fine and reference meshes are reported
here, and compared to the experimental results for MVD = 20µm in Figure (3.3) and
MVD = 154µm in Figure (3.4).

It’s easy to see that for MVD = 20µm in Figure (3.3) the MUSCL reconstruction is
indeed providing faster mesh convergence, with the coarse mesh already yielding usable
results (3.3b) while the fine mesh is still a small way away from converging when only
using cell averages (3.3a).
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Figure 3.3: Mesh convergence analysis for MVD = 20µm collection efficiency - NACA
23012 [24] - Cell Averages vs MUSCL

When looking at higher values of MVD such as MVD = 154µm in Figure (3.4) a coarse
mesh with no MUSCL reconstruction is already able to produce a mesh converged result.
This is due to the ballistic behavior of droplets, with almost straight trajectory and little
to no dependence on the airflow.
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(a) Godunov mesh convergence
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(b) Godunov+MUSCL mesh convergence

Figure 3.4: Mesh convergence analysis for MVD = 154µm collection efficiency - NACA
23012 [24] - Cell Averages vs MUSCL

3.1.2. Vacuum Approximation

Another important feature to check when looking at the behavior of higher order
methods is the sharpness with which they capture a discontinuity. The main
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discontinuity occurring in pressure-less gas dynamics is the appearance of shadow zones,
in this case when the airfoil shields a portion of the domain from incoming droplets.
This would mean, in a ideal world, α = 0 and a sharp step between the two areas.

The volume fraction α has been plotted across a vertical section both on the pressure
and the suction side of the airfoil. The line sources of these plots are show in Figure
(3.5) for both MVD = 20µm and MVD = 154µm. In Figure (3.6) the left hand side of
the plots corresponds to the pressure (lower) side of the airfoil and the right hand side
corresponds to the suction (upper) side of the airfoil.

(a) MVD = 20µm (b) MVD = 154µm

Figure 3.5: Line plot position for Figure (3.6) - NACA 23012 [24] - Coloring α

The resulting α profiles in Figures (3.6a) for MVD = 20µm and (3.6b) for
MVD = 154µm show sharper discontinuities with coarser meshes when using the
MUSCL reconstruction.
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Figure 3.6: Vacuum zone discontinuity for MVD = 20µm and MVD = 154µm - NACA
23012 [24] - Cell Averages vs MUSCL

Having validated that the MUSCL reconstruction allows for a faster mesh convergence,
all results from here on out will be obtained using it.

3.2. Eulerian - Lagrangian Comparison
In this section, the Eulerian solver will be tested against PoliDrop to evaluate how the
Euler-Euler approach stacks up against the Euler-Lagrange one.

The same test cases by Papadakis et. al. [24] have been run using the same exact mesh
(fine from (3.2)) and same exact flow field solution. This way the most apples to apples
comparison can be achieved also when comparing computational costs. PoliDrop
simulations have been run using an adaptive cloud technique that minimizes the number
of droplets needed to obtain converged results.
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(d) MVD = 154µm

-0.2 -0.1 0 0.1 0.2 0.3 0.4

s/c [-]

0

0.2

0.4

0.6

0.8

1

 [
-]

MVD

PoliDrop (lagrangian)

Papadakis et. al.

(e) MVD = 236µm

Figure 3.7: Collection efficiency - NACA 23012 [24] - MVD vs PoliDrop (Lagrangian)

The agreement between Lagrangian simulations, Eulerian simulations and experiments
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is high. There is no way to determine which approach is best in these test cases since
they are all within margin of error of the experiments.

Surely an uncertainty quantification study would yield precious insight in quantifying
how much space for improvement is actually available when it comes to matching the
collection efficiency data of Papadakis et. al. [24].

3.3. Multibin
In this section multibin simulations will be presented and compared to experimental
data, MVD simulations and the Lagrangian solver PoliDrop. Also, the Langmuir D bin
distribution will be compared to the experimental one in order to verify if the behavior
indeed improves (compared to MVD simulations) by using the multibin approach even
with an artificial bin distribution.

The experimental 10 bin distribution given by Papadakis et. al. [24] is reported in (3.3).

LWC i [
%
]

di
p [µm]

5.0 3.850397 6.693706 11.05374 13.88450 16.25037

10.0 9.390637 16.88090 27.48959 44.44510 63.65823

20.0 13.80175 25.44875 56.48542 90.28305 135.4827

30.0 19.60797 59.17969 111.1060 154.1635 298.5197

10.0 30.73474 192.7506 212.7639 284.4519 645.4684

3.0 35.19787 216.5703 235.0038 343.7168 715.8689

1.0 38.32569 224.9867 257.7010 380.2672 747.3936

0.5 40.66701 229.0087 279.5447 400.9252 763.2455

0.5 44.36619 253.9279 312.5901 425.0601 1046.767

MVD 20µm 52µm 111µm 154µm 236µm

Table 3.3: Experimental 10 bin distribution - Papadakis et. al. [24]

Note: experimental results will be presented with discrete markers and not curves. The
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10 bin (experimental) bin distribution mentioned across the following figures and results
is not an experimental result but a numerical result obtained using the experimental
bin distribution.

The flow-field is the same exact one (Figure (3.2)) used prior.

In Figure (3.8) the MVD simulations are compared to the multibin simulations (using
the experimental 10 bin distribution) and the experimental results for all MVD values.
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Figure 3.8: Collection efficiency - NACA 23012 [24] - MVD vs 10 bin (experimental)

When the MVD is small, impingement limits are slightly extended for multibin
simulations, with a lower peak. For higher MVD values the difference between MVD
and multibin simulations decreases, as the droplet behavior becomes more and more
ballistic (straight trajectories).
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Figure 3.9: Collection efficiency - NACA 23012 [24] - PoliDrop (Lagrangian) vs 10 bin
(experimental)

When compared to the Lagrangian solver in Figure (3.9), the multibin simulations yield
significantly smoother results for lower MVD values. This is especially true at the
impingement limits where PoliDrop goes to β = 0 sharply while the Eulerian multibin
simulations are much closer to the smooth behavior of experimental data.
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Figure 3.10: Multibin collection efficiency - NACA 23012 [24] - 10 bin (Langmuir D) vs
10 bin (experimental)
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Since the experimental distribution is not always available it is useful to test the
experimental 10 bin distribution simulations against the automatically computed
Langmuir D bin distribution. For this purpose the feature has been enabled with
exactly 10 bins in order to have an apples to apples comparison. The results are found
in Figure (3.10) with the only notable difference being the slightly higher β peak and
overall wider collection efficiency. This means that using a non exact bin distribution is
still better than just using the MVD.

3.3.1. Computational Time

As discussed in (3.3) using a multibin approach yields better results than using the
MVD. This comes at a computational cost that is linear with the number of bins since
each droplet bin needs to be computed independently. The cost is slightly higher for
small MVD values, as smaller droplet diameters cause some trouble in the convergence
of the solver. Given the comparable results obtained from Eulerian and Lagrangian
MVD simulations seen in Figure (3.7), the Eulerian solver has an advantage that grows
as droplet size grows. The growth in computational cost for Lagrangian simulations is
due to the requirement for more droplets in order to obtain a smooth collection
efficiency. The adaptation technique employed in PoliDrop takes care of this
automatically. If this adaptation needed to be performed manually, the total
computational cost (human + machine) would be much bigger. This highlights both the
usefulness of the cloud adaptation technique used in PoliDrop, and the set it and forget
it nature of the Eulerian solver.

It should be noted that it doesn’t matter how the bins have been computed or how
they’ve been constructed, the computational time will be comparable.

All simulations have been performed on an i7 9750h 6c @2.5GHz using open MPI [12]
for parallelization (for both PoliDrop and the Eulerian solver).
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Figure 3.11: Computational time - NACA 23012 [24] - MVD vs 10 bin vs PoliDrop
(Lagrangian) - i7 9750h 6c @2.5GHz

3.4. Three Element Airfoil
A case of high importance in the in-flight icing field is that of multi element airfoils.
This is because having more than one surface when tracking particles in an Eulerian
fashion can prove tricky.

To test the Eulerian solver in this scenario, the cases 121 & 122 from the 2021 AIAA
first in-flight icing workshop [1] have been simulated using:

1. MVD

2. multibin 6 bin Langmuir D distribution

3. multibin 27 bin experimental distribution provided by the AIAA [1]

The experimental setup is in (3.4) while the computational mesh can be seen in Figure
(3.12).
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Airfoil Three Element Airfoil

chord = 0.914 m

δslat = 30◦

AoA = 4◦

δflap = 30◦

Cloud & Droplets LWC = 0.5 g/m3

MVD = 21 µm (Case 121)

MVD = 92 µm (Case 122)

µp = 0.0011208 Pa/s

ρp = 1000 kg/m3

σp = 0.074 N/m

Airflow EULER

M∞ = 0.233628

P∞ = 95630 Pa

T∞ = 278 K

Table 3.4: Experimental setup data - three element airfoil AIAA case 121 & case 122 [1]

(a) Close up
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(b) Farfield

Figure 3.12: Meshes - three element airfoil AIAA case 121 & case 122 [1]

The flow-field computed and used for all the following droplet simulations, both Eulerian
and Lagrangian, is depicted as reference in Figure (3.13).

Figure 3.13: Euler flow-field - three element airfoil AIAA case 121 & case 122 [1]

In Figure (3.14) the three Eulerian simulations results (MVD, 6 bin Langmuir D and
27 bin experimental) are compared with experimental data from [23] for all three lifting
surfaces. It’s easy to see that, as before, the multibin approach yields the best results.
What’s more important is that using a 27 bin exact distribution is not necessarily better
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than computing an approximate 6 bin distribution, if reimpingment is not considered.
Once the Lagrangian reimpingement is enabled the 27 bin results become by far the more
accurate when compared to the experiments.
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Figure 3.14: Collection efficiency with and without reimpingement - three element airfoil
AIAA case 121 (MVD = 21µm) [1] - MVD vs 6 bin (Langmuir D) vs 27 bin (experimental)

The slat collection efficiency is badly predicted. This is the case also for PoliDrop in
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Figure (3.15a) and many of the participants at the AIAA 1st Icing Prediction Workshop
[1]. The reason is not clear, one possibility is that of a bad angle of attack measurement
in the setup of the experiments.
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Figure 3.15: Collection efficiency with reimpingement - three element airfoil AIAA case
121 (MVD = 21µm) [1] - 27 bin (experimental) vs PoliDrop (Lagrangian)

Comparing the 27 bin distribution Eulerian simulations against a Lagrangian PoliDrop



3| Results & Code Validation 57

simulation in Figure (3.15) shows how much closer to the experimental results the
simulations get by considering both polydispersity and reimpingement. This is most
visible on the flap in Figure (3.15c), where the peak grows by ∼ 30% and matches
almost perfectly the experimental data. The same is true for the rest of the flap’s
results. In (3.5) the Lagrangian reimpingement step will be examined more in depth.

3.5. Lagrangian Reimpingement
The final step of the Eulerian solver is the Lagrangian tracking of the splashed droplet.
This step is extremely dependent on the use of multibin and is important in the SLD
regime. This is because a bin distribution yields a much more heterogeneous set of
splashed droplets as can be seen in (??).

When only using the MVD, droplets are splashed in fewer positions and each splashing
position (one per surface mesh element where splashing occurs) only has one set of dp,s,
up,s and ns. This means the overall behavior will be "monochromatic".

On the other hand, using 27 bins yields an extremely diversified distribution of splashed
droplets with many different droplet diameters. These droplets are also spread out
across the whole surface of the airfoil with a much more realistic representation of
physical splashing, which is not localized but happens almost everywhere due to
polydispersity.

3.5.1. Mass Conservation & Spacing Validation

As a first validation step of the Lagrangian reimpingement, the droplets have been
reinjected directly into the airfoil, at the exact location where they splashed. What one
would expect is that the reimpingement collection efficiency is exactly the difference
between the uncorrected β and the splashing corrected β. This is also a good way to
ensure the spacing of the droplets (Figure (2.10)) increases the quality of the collection
efficiency.
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(a) Reimpingement with different spacings
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Figure 3.16: Comparison of different Lagrangian reinjection spacings and comparison of
splashing collection efficiency correction with reinjected collection efficiency

The slight difference in Figure (3.16) is given by rounding errors in the computation
of integer numbers of droplets, therefore mass is (roughly) conserved. It is self evident
that reinjecting more than one parcel yields significantly better results. This does not
necessarily mean that spacing removes all oscillations in β: sometimes results will be
oscillatory due to the formation of actual physical "trains" of droplets that reimpinge in
similar locations, and not due to the "sparsity" of Lagrangian parcels.

3.5.2. Three Element Airfoil SLD

To validate the Lagrangian reimpingement step, Case 122 (Table (3.4)) of the 2021 AIAA
Icing Workshop [1] has been used. This is an identical case to the case 121, but with a
larger droplet size (MVD = 92µm against MVD = 21µm) therefore the reimpingement is
expected to be larger.

The more heterogeneous nature of the splashed droplets in a multibin simulation is evident
when looking at the Lagrangian trajectories of the reimpinging droplets in Figure (3.17).
This diversity is better captured when using a multibin approach since every bin being
simulated generates its own splashed droplet set for each surface element.



3| Results & Code Validation 59

(a) MVD

(b) multibin 6 bin (Langmuir D)

Figure 3.17: Reinjected droplets trajectories - three element airfoil AIAA case 122
(MVD = 92µm) [1] - MVD vs 6 bin (Langmuir D)

Figure (3.18) highlights the nature of the reimpingement correction, almost solely
localized within the flap’s pressure side. This correction allows for a greater accuracy in
the collection efficiency results on the flap, almost matching the experimental data. The
"oscillatory" behavior in the 6 bin results is due to the formation of "trains" of splashed
droplets that follow similar trajectories and reimpinge in similar locations. The most
diverse set of splashed droplets in the 27 bin simulation allows for a much smoother
reimpingement correction in Figure (3.18b) and (3.18c).

The same case has been run with the experimental 27 bin distribution in Figure (3.18),
and the collection efficiency prediction quality for the flap suffers. But, if Lagrangian
reimpingement is also considered, then the results of the 27 bin simulations are the best
obtained so far.
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Figure 3.18: Collection efficiency three element airfoil AIAA case 122 (MVD = 92µm)
[1] - complete contribution decomposition (compute impinging, remove splashed, add
reimpinged) - 27 bin (experimental) vs 6 bin (Langmuir D)

The biggest variable in the Lagrangian reimpingement step is the splashing model.
There is no physically universal splashing model that can be used without care. The
Wright and Potapczuk model [27] employed in this work has been created following a
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"trial and error" approach, searching for coefficients that minimized the difference
between the computed and experimental collection efficiency.

This means it can misbehave when not being used on cases that are extremely similar to
the ones against which it was tested, with the risk of actually degrading the quality of
the results. When evaluating in-flight icing collection efficiency cases, this model yields
great results.

Another possible source of "non robustness" of this step is that the number of splashing
droplets is directly linked to the number of mesh elements at the surface (1 droplet set
per mesh element, per bin). Therefore, the surface mesh has to be fine enough for the
reimpingement collection efficiency to be smooth, and this is a trial and error procedure.
Sometimes the spacing technique described in (2.4) helps. A possible solution could be
found in the adaptation technique used in PoliDrop. This would need to be re-adapted
to the heterogeneous nature of the splashed droplet set.

A final comparison to LEWICE collection efficiency results from Wright’s presentation
[28] at AIAA’s 1st Icing Prediction Workshop [1] is present here in Figure (3.19). A
general increase in solution quality can be seen across all three surfaces, in particular
the flap where the bulk of the reimpingement contribution is found.
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Figure 3.19: Collection efficiency - three element airfoil AIAA case 122 (MVD = 92µm)
[1] - 27 bin (experimental) with reimpingement vs LEWICE 27 bin experimental [28]

3.5.3. Computational Time

The complex geometry of the three element airfoil case causes the pressure-less gas
dynamics exact Riemann solver to struggle with convergence. This means the
computational time is no longer a definite advantage of the Eulerian solver since the
Lagrangian solver is basically non dependent on the geometry at hand.
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Figure 3.20: Computational time - three element airfoil AIAA case 121 (MVD = 21µm)
[1] - Eulerian (with and without reimpingement) vs PoliDrop (Lagrangian) - i7 9750h 6c
@2.5GHz

The Lagrangian reimpingement step has a semi-fixed cost. This, combined with the
increased diversity in the splashed droplet set, means that the Lagrangian reimpingement
step becomes more viable as the number of bins increases.

Different convective flux discretizations could yield better convergence behavior than the
exact Riemann solver employed in this work, and this is one important way this solver
could be developed in future work.

3.6. Swept Tail 3D
For the sake of completeness, two 3D test cases have been run: the case 111 and case
112 from AIAA’s first Icing Prediction Workshop [1]. These are three dimensional
simulations of a swept horizontal tail (NACA 64A008) [23] in a wind tunnel. The details
are found in Table (3.5).
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Airfoil NACA 64A008

Mean Aerodynamic Chord = 0.95631 m

AoA = 6◦

Cloud & Droplets LWC = 0.5 g/m3

MVD = 21 µm (Case 111)

MVD = 92 µm (Case 112)

µp = 0.0011208 Pa/s

ρp = 1000 kg/m3

σp = 0.074 N/m

Airflow EULER

M∞ = 0.23

P∞ = 83025 Pa

T∞ = 280 K

Table 3.5: Experimental setup data - case 111 & 112 [23] AIAA 1st Icing Prediction
Workshop [1]

The unstructured mesh made with GMSH [13] is composed of 1749838 tetrahedra and
361409 nodes. The simulations have been run on a consumer laptop CPU i7 9750h 6c
@3.5GHz with 16GB of RAM.

(a) Collection efficiency
measurement location (in
red) at z = 0.9144m from
the wind tunnel floor

(b) - x-normal domain view
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(c) - y-normal domain view

Figure 3.21: Geometry, domain and collection efficiency measurement location - case 111
& 112 [23] AIAA 1st Icing Prediction Workshop [1]

The mesh, and vacuum zone resolution can be appreciated in Figure (3.22). More
visualizations are available in appendix (E).

Figure 3.22: Mesh and α slice of case 112 (MVD = 92µm) [23] AIAA 1st Icing Prediction
Workshop [1]

To check the mesh and airflow solution quality the pressure coefficient is compared to
experimental data [23] at z = 1.0922m from the wind tunnel floor. There’s great
agreement with experiments as shown in Figure (3.23).
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Figure 3.23: Pressure coefficient at z = 1.0922m from wind tunnel floor - case 111 & 112
[23] AIAA 1st Icing Prediction Workshop [1]

The collection efficiency results are compared between an MVD simulation and a 6 bin
automatically computed Langmuir D droplet size distribution. Additionally some results
have been taken from NASA’s presentation [28] at the AIAA 1st Icing Prediciton
Workshop [1], for both LEWICE and GlennICE from Wright [28] to compare with
different software suites in Figure (3.24).

0 0.05 0.1 0.15 0.2

s/c [-]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 [
-]

MVD

6 Bin (Langmuir D)

Experiments Papadakis et. al. 2002

(a) MVD vs 6 Bin

0 0.05 0.1 0.15 0.2

s/c [-]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 [
-]

6 Bin (Langmuir D)

LEWICE   - Wright 2021

GlennICE - Wright 2021

Experiments Papadakis et. al. 2002

(b) 6 Bin vs LEWICE vs GlennICE

Figure 3.24: Collection efficiency at z = 0.9144m from wind tunnel floor - case 111
(MVD = 21µm) [23] - MVD vs 6 bin (Langmuir D) vs LEWICE 27 bin experimental [28]
vs GlennICE 27 bin experimental [28]

The agreement between all the results is within measurement uncertainty in the low
MVD case 111. The multibin simulation has a smoother behavior at s/c ≃ 0 compared
to the sharp MVD results, and is overall closer to experiments than the MVD results.
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The peak is almost in exact agreement between all simulations and other softwares
shown in (3.24).

When comparing the SLD case 112 (with MVD = 92µm) in Figure (3.25) things don’t
change significantly. LEWICE and the Eulerian solver are in good agreement, while
GlennICE achieves greater accuracy close to the peak, while over predicting far from it.
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Figure 3.25: Collection efficiency at z = 0.9144m from wind tunnel floor - case 112
(MVD = 92µm) [23] - MVD vs 27 bin (experimental) vs LEWICE 27 bin experimental
[28] vs GlennICE 27 bin experimental [28]

In this single element case, the Lagrangian reimpingement step has been run, with sparse
particles reimpinging after being reinjected. The need for a three dimensional spacing
approach, or an adaptation technique is required in order to achieve better results in
three dimensional simulations. This is even more evident looking at how many droplets
are lost in the wake in Figure (3.27), but still need to be tracked one by one even when
they are not an icing threat anymore. The computational resources spent tracking these
would be better spent adding more parcels where droplets reimpinge on the airfoil.
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(b) 6 Bin (Langmuir D)
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Figure 3.26: Reimpingement collection efficiency at z = 0.9144m from wind tunnel - floor
case 112 (MVD = 92µm) [23] - MVD vs 6 bin (Langmuir D) vs 27 bin (experimental)

The reimpingement contribution gets smoother when increasing the number of bins. In
this single element geometry, the three dimensionality of the flow generates some
reimpingement (in 2D none occurs), but it’s a small correction. In the 27 bin simulation,
the maximum percentage increase in the collection efficiency due to reimpingement is
3.5%, while in the MVD simulation it would probably be best not to include it. The
location and total amount of water mass in the reimpingement contribution is roughly
the same for all 3 simulations, indicating that a sort of "smoothing" postprocessing of
this contribution could yield good results also in the MVD simulation.
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(a) t = 0.00s (b) t = 0.01s

(c) t = 0.02s (d) t = 0.03s

Figure 3.27: Splashed droplets reinjection - case 112 (MVD = 92µm) [23] - 6 bin
(Langmuir D)

3.6.1. Computational Time & Convergence

The Eulerian solver proved acceptably stable, since all bins converged using a CFL number
equal to 2, in spite of the large difference in the droplet field behavior across different
droplet sizes. All bins converged in around 200 iterations to a RMS residual of α of 10−7,
with most of its variation being confined in the wake, while the residual is much lower
around the airfoil and in the incoming flow. The computational times on 16GB of RAM
and a consumer laptop CPU i7 9750h 6c @3.5GHz are in Table (3.6) for the Eulerian
solver and in Table (3.7) for the Lagrangian reimpingement step.
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MVD 6 Bin (Langmuir D) 27 Bin (experimental)

Case 111, 21µm 15 minutes 32 minutes -

Case 112, 92µm 11 minutes 23 minutes 76 minutes

Table 3.6: Computational times Eulerian solver in 3D - case 111 (MVD = 21µm) & 112
(MVD = 92µm) [23] - MVD vs 6 bin vs 27 bin - i7 9750h 6c @3.5GHz

MVD 6 Bin (Langmuir D) 27 Bin (experimental)

Computational Time 3 minutes 9 minutes 25 minutes

Number of Parcels 6.3 · 104 2.7 · 105 1.2 · 106

Table 3.7: Computational times of Lagrangian reimpingement and number of reinjected
droplets with varying number of bins in 3D - case 112 (MVD = 92µm) [23] - MVD vs 6
bin vs 27 bin - i7 9750h 6c @3.5GHz
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Figure 3.28: Computational times and number of reinjected droplets with varying number
of bins - case 112 (MVD = 92µm) [23] - i7 9750h 6c @3.5GHz

Figure (3.28) shows how using the multibin restarting technique discussed in (2.3.3) has
a profound impact on the computational cost of high bin number simulations. The
linearity of the computational cost with the number of bins (e.g.
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tcomp(Nbins) = Nbins · tcomp(1bin)) does not hold anymore, as Figure (3.28a) shows best.
The computational time of the Eulerian solver alone is cut down by 65% with respect to
running each bin singularly.

This happens for two main reasons:

1. starting from a better initial guess allows for convergence with higher CFL numbers
(in this case 2 instead of 1).

2. even if the CFL number is identical, all bins after the first have to iterate less to
achieve convergence since they start from a solution that is already close to the
exact one. This becomes more and more true as subsequent bins become closer in
droplet diameter.

It is very clear in Figure (3.29), where a 6 bin simulation without bin restart (Figure
(3.29b)) ends up taking more time than a 27 bin one with bin restart (Figure (3.29a)).
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Figure 3.29: Convergence behavior of multibin simulations with and without bin restart
- Root Mean Square residual α - case 112 (MVD = 92µm) [23]
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4| Conclusions
The goal of this work has been to develop and complete a three dimensional,
Euler-Euler droplet tracking solver with MUSCL and a Lagrangian reimpingement step
for in-flight icing purposes. To this end, the Pressureless Gas Dynamics conservation
laws and their character has been discussed, and then, in a effort to retrieve strict
hyperbolicity, a relaxation strategy has been chosen from the literature. The final set of
conservation laws has been spatially discretized using a node centered finite volume
approach and the convective fluxes have been evaluated through an exact Riemann
solver, employing also a MUSCL reconstruction.

A splashing & rebounding model has been used to account for the mass loss in the
collection efficiency at solid boundaries, but also, a Lagrangian reimpingement step has
been implemented in an effort to better capture the physics of droplet-wall interactions.
This Lagrangian reimpingement step consists in the Lagrangian tracking of splashing &
rebounding droplets that may reimpinge on aft surfaces.

Furthermore a multibin approach has been outlined to further increase the fidelity of the
collection efficiency results since clouds are intrinsically heterogeneous and droplets are
polydispersed. Since the cloud droplet size distribution is not known a priori, an
automatic bin distribution strategy has been developed.

All of the above have been tested in 2D and 3D, comparing the results against various
cases from the literature where experiments were available. The results have also been
compared to an in-house Lagrangian solver (PoliDrop).

The findings indicate that the Euler-Euler approach is more robust, always yielding
usable results, while the Euler-Lagrange approach requires some throwaway runs to
setup correctly. When comparing single droplet size simulations, Euler-Euler and
Euler-Lagrange results are very comparable.
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The Lagrangian reimpingement step yields an increase in solution quality in multi
element and three dimensional cases in SLD conditions. When being used in conjuction
with a multibin approach the results improve further, given the more diverse set of
splashed droplets being generated. The simple multibin restart implementation
highlighted in (2.3.3) proved effective, yielding up to 65% less computational time.

This solver still needs to be plugged into the PoliMIce loop, in order to test the resulting
ice shapes since that is the final objective of in-flight icing simulations.

4.1. Future Work
1. The set of splashed droplets being reinjected is, in number, dependent on the mesh,

therefore an adaptation technique similar to the one used in PoliDrop should be
investigated in order to obtain a more robust solver.

2. Different convective models should be investigated in an effort to achieve better
convergence behavior when complex geometries cause discontinuities to interact
with other flow features (such as in multi element configurations)

3. A more refined spacing technique than the one shown in (2.4) should be employed
when reinjecting droplets

4. Development of a smoothing postprocess for the reimpingement contribution in low
bin simulations could be looked into

5. Integrating the Eulerian solver into the PoliMIce loop and compare ice shapes with
Lagrangian simulations and industry results
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A| Pressureless Gas Dynamics
1D Riemann Problem
Solution

Considering the homogeneous problem rewritten in terms of the vector of conservative
variables q and the vector of convective fluxes F conv one obtains (A.1).

∂

∂t



α

αup

απ


+∇ ·



αup

αup ⊗ αup + απI

α

απ · αup + c2 · αup

α


=



0

0

0


(A.1)

Or, in a more compact form, (A.2).

∂

∂t
q +∇ · F conv

(
q
)

= 0 (A.2)

To obtain the exact Riemann solver that will be later implemented in SU2, the Jacobian
is computed in (A.3) assuming a one dimensional problem (up = upî + 0ĵ + 0k̂)
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The corresponding eigenvalues λi and eigenvectors ri are (A.4).

λ1 = αup − c
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αup + c

απ + c2



(A.4)

As long as c > 0 all eigenvalues are distinct and the eigenvectors span the space of J.
This means a solution to the Riemann problem can be constructed and the intermediate
states can be computed analytically.

It can be easily verified that for c > 0 the eigenvalues are increasingly ordered
(λ1 < λ2 < λ3) therefore the solution is always comprised of the three contact
discontinuity waves as sketched in (A.1).

The procedure followed to obtain the Riemann solution can be found in more detail in
[19].
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Figure A.1: Riemann problem wave diagram in one variable

Defining R =
[
r1, |r2, |r3

]
the Riemann problem can be solved by considering a change

in variables.


γ = R−1qL

cons

β = R−1qR
cons

(A.5)

This decomposition of the Riemann problem allows the straightforward solution of each
intermediate state since the jump across each wave can be computed as (A.6).

qi = qL +
j<i∑
j=1

rj ·
(
βj − γj

)


i = 1 Left state

...

i = 4 Right state

(A.6)

Now the solution in all intermediate states
[
qL | q∗L | q∗R | qR

]
is known as function of

left and right states qL =
[
αL, αLuL

p , 0
]

and qR =
[
αR, αRuR

p , 0
]
.

Given the non linearity of the conservation laws, these are still functions of the solution
in the intermediate states itself, as can be seen in the admittedly difficult to read
equation (A.7), where q inside each intermediate state has been written in color.

Note the usage of the equilibrium assumption on the pseudo pressure πL = πR = 0
inside the control volumes that’s been discussed prior. This does not mean that the
additional pseudo-pressure relaxation equation has been neglected, since its presence is
important and contributes to the intermediate states of the Riemann’s problem’s
solution in a major way. Also, π ̸= 0 in the intermediate states of the Riemann
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problem’s solution in general.

qL =



α

αup

απ


=



αL

αLuL
p

0



q∗L =



α

αup

απ


= 1

2c2



αLαπ − αRαπ + 2αLc2 − αLαupc+
+αRαupc + αcαLuL

p − αcαRuR
p ,

1
α

(
αLαπαup − αRαπαup − αLαπc+
+αRαπc + αLαupc2 − αLαup

2c−
+αRαupc2 + αRαup

2c + ααLuL
p c2+

+ααRuR
p c2 + ααLuL

p αupc− ααRuR
p αupc

)
,

1
α

(
c2 + απ

) (
αLαπ − αRαπ − αLαupc+

+αRαupc + ααLuL
p c− ααRuR

p c
)
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q∗R =



α

αup

απ


= 1

2c2



αRαπ − αLαπ + 2αRc2 − αLαupc+
+αRαupc + αcαLuL

p − αcαRuR
p ,

1
α

(
αRαπαup − αLαπαup − αLαπc+
+αRαπc− αLαupc2 − αLαup

2c+
+αRαupc2 + αRαup

2c + ααLuL
p c2+

+ααRuR
p c2 + ααLuL

p αupc− ααRuR
p αupc

)
,

− 1
α

(
c2 + απ

) (
αLαπ − αRαπ + αLαupc−

+αRαupc− ααLuL
p c + ααRuR

p c
)



qR =



α

αup

απ


=



αR

αRuR
p

0



(A.7)

To remove this dependency and obtain a completely solved Riemann problem the
constancy of Riemann invariants ϕ across each wave is exploited.

These are defined as ϕj
i such that they are constant across the j − th wave and their

gradient taken with respect to q is orthogonal to the j − th eigenvector rj as (A.8).

∇qϕj
i · rj = 0 i = 1, 2 (A.8)

The resulting Riemann invariants are (A.9).
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ϕ1
1 = up −

c

α
ϕ1

2 = π + cup across the 1st wave

ϕ2
1 = up ϕ2

2 = π across the 2nd wave

ϕ3
1 = up + c

α
ϕ3

2 = π − cup across the 3rd wave

(A.9)

Exploiting their continuity across each wave and substituting in (A.7) the final solution
can be obtained and is presented in primitive variables for pi =

[
α, up, π

]
for ease of

notation.

pL p∗L p∗R pR

αL 2αLc

2c− αL
(
uL

p − uR
p

) 2αRc

2c− αR
(
uL

p − uR
p

) αR

uL
p

uL
p + uR

p

2
uL

p + uR
p

2 uR
p

0 c
uL

p − uR
p

2 c
uL

p − uR
p

2 0

(A.10)

It’s important to note that (A.10) is a valid solution to the Riemann problem under the

assumption that c > max
(

0, αL uL − uR

2 , αR uL − uR

2

)
.

The knowledge of the exact solution of the Riemann problem allows for a
straightforward implementation of a exact Riemann solver.
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B| Configuration File Samples
To run the eulerian droplet tracking step the SU2 configuration file has been expanded
with more options. In the following a couple of samples are reported.

B.1. Main - SU2
Required in it’s entirety to run a droplet tracking simulation. Must be added in the CFD
configuration file.

% --------------------- PARTICLE TRACKING ----------------------%
% -------------------------- GENERAL ---------------------------%
% Enable droplet tracking [YES, NO]
TRACK_PARTICLES= YES

% Restart or not from solution file of previous PT simulation.
% If multibin, each bin from the second will restart from
% the previous bin’s solution [YES, NO]
RESTART_PT= YES

% Correct collection efficiency and output splashed data
% for the lagrangian reimpingement step [YES, NO]
SPLASH_PARTICLES= YES

% Subdivide each splashed parcel into more equispaced parcels
% for the lagrangian reimpingement step (optional)
N_SPACING_SPLASH= 3

% If subdividing the splashed parcels, the fraction of mesh face
% being covered with parcels ( >0, <=1 ) (only in 2D) (optional)
FRACTION_SPACING_SPLASH= 0.5
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% -------------------------- NUMERICS --------------------------%
% Convective fluxes discretization (GODUNOV)
CONV_NUM_METHOD_PT= GODUNOV

% MUSCL reconstruction for 2nd order [YES, NO]
MUSCL_PT= YES

% Limiter for 2nd order reconstruction
SLOPE_LIMITER_PT= VENKATAKRISHNAN_WANG

% Pseudo time stepping method
% [EULER_EXPLICIT, EULER_IMPLICIT]
TIME_DISCRE_PT= EULER_IMPLICIT

% Pseudo time stepping CFL number
CFL_NUMBER_PT= 1

% Residual to be achieved for convergence
CONV_RESIDUAL_MINVAL_PT= -7

% Berthon relaxation coefficients (optional)
RELAXATION_C_PT= 1E6
RELAXATION_EPS_PT= 1

% -------------------- SPLASHING PARAMETERS --------------------%
% [N/m]
DROPLET_SURFACE_TENSION= 0.074

% [kg/m3]
DROPLET_DENSITY= 1000

% [Pa/s]
DROPLET_DYNAMIC_VISCOSITY= 0.0011208
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% [kg/m3]
LWC= 0.0005

% MVD of droplets [m]
MVD_PT= 0.000021

% -------------------------- OUTPUT ---------------------------%
SOLUTION_FILENAME_PT= solution_PT.dat
RESTART_FILENAME_PT= restart_PT.dat
VOLUME_FILENAME_PT= vtu_PT
SURFACE_FILENAME_PT= surface_PT

B.2. Multibin - Experimental Distribution - SU2
To be added to run a multibin simulation with known bin distribution.

% ------------------------- MULTIBIN --------------------------%
% Enable multibin
PT_MULTIBIN= YES

% Diameter of droplets in each bin [m]
MULTIBIN_DIAMETER= (1E-06 , 2E-06 , 3E-06 , 4E-06)

% Percentage of LWC in each bin [%]
MULTIBIN_PERCENTAGE= (25 , 50 , 20 , 5 )

% Specify a different CFL number for each bin (optional)
MULTIBIN_CFL= (1 , 0.5 , 0.25 , 0.1 )

B.3. Multibin - Langmuir D - SU2
To be added to run a multibin simulation with unknown bin distribution.
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% ------------------------- MULTIBIN --------------------------%
% Enable multibin
PT_MULTIBIN= YES

% Number of bins (<60)
N_BINS= 6

% Specify a different CFL number for each bin (optional)
MULTIBIN_CFL= (1, 1, 1, 0.7, 0.6, 0.5)

B.4. Reimpingement - PoliDrop
To be added in PoliDrop’s configuration file to run the Lagrangian reimpingement step.

% ---------------------- REIMPINGEMENT ------------------------%
% File where splashed data is stored
splashingFile= ../CFD/splashed/splashed_data.dat

% LWC of freestream incoming cloud [kg/m3]
splashingFreestreamLWC= 0.0005

% Number of droplets below which parcel is ignored
% Use only if strictly necessary
splashingThresholdN= 1
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C| Flow Euler Equations
All the results presented in this work have been obtained solving the compressible Euler
equations for the air flow using the many state of the art tools already available within
SU2. Since they have been extensively used throughout the whole thesis, a small
mention to the theory of these equations is warranted.

These are an inviscid (and non thermally conductive) approximation of the more
complicated Navier-Stokes equations. Furthermore, the equation of state for ideal gases
and an expression for the internal energy E are added as shown in (C.1).



∂ρ

∂t
+∇ · (ρU) = 0

∂ρU

∂t
+∇ · (ρU ⊗U + PI) = 0

∂ρE

∂t
+∇ · (ρEU + PU) = 0

+


P = ρRT

P = (γ − 1)ρ
[
E − 1

2U ·U
]

(C.1)

Being an inviscid approximation of Navier-Stokes, fluid particles should not "stick" to
solid boundaries. This is why the wall boundary condition employed is a "no
penetration" boundary condition rather than a "no slip" one used in RANS simulations
for example.

The two boundary conditions can be easily expressed analytically:

1. No penetration BC: U · n̂ = 0

2. No slip BC: U = 0

A drawback of using a no penetration BC is that boundary layers are completely absent.
This can cause slight differences in the trajectories of small droplets when close to the
body.
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D| Droplet Trajectories

(a) MVD = 20µm (b) MVD = 52µm

(c) MVD = 111µm (d) MVD = 154µm

236
(e) MVD = 236µm

Figure D.1: Droplet trajectories integrated from velocity field NACA 23012 [24]
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(a) MVD = 21µm

Figure D.2: Droplet trajectories integrated from velocity field three element airfoil case
121 AIAA 1st Icing Prediction Workshop [1]
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E| Case 111 & 112 Postprocess &
Visualization

(a)
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(b)

(c) α = 0.8 contour
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(d) particle trajectories (forward time integrated)

(e) particle trajectories (forward time integrated)

Figure E.1: Mesh and visualization (streamlines, isosurfaces, collection efficiency) of case
112 [23] AIAA 1st Icing Prediction Workshop [1]
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F| PoliPhase - A New
Unstructured Baer-Nunziato
Solver

After the work presented in the core of this thesis, the development of a new separate
Baer-Nunziato [4] solver has been started and it is here outlined. The conservation laws
Eq. (F.1) being solved are the multi-dimensional version of the adimensionalized pressure
formulation of the Baer-Nunziato CLAWs presented by Re et al. [25]. Note that, to
remove one equation for α, one may remember that αNphases

= 1−∑Nphases−1
j=1 αj.



∂αi

∂t
+uI · ∇αi = 0 for i = 1, ..., Nphases − 1

∂αiρi

∂t
+∇ · (αiρiui) = 0

∂αiρiui

∂t
+∇ ·

(
αiρiui ⊗ ui + αiPiI

)
− PI∇αi = 0

M2
r

[
αi

∂Pi

∂t
+ αiui · ∇Pi + αiρic

2
i∇ · ui − ρic

2
I,i (uI − ui) · ∇αi

]
+

+κi

[
αi∇ · ui − (uI − ui) · ∇αi

]
= 0

(F.1)

Where (·)i indicates the i-th phase, and the interface velocity and pressure are (F.2).

uI =
∑

i αiρiui∑
i αiρi

PI =
∑

i

αiPi (F.2)

The thermodynamics are contained in the variables (F.3), and they are general, therefore
any equation of state can be implemented as long as one can write e = e(P, ρ).

χ =
(

∂P

∂ρ

)
e

κ =
(

∂P

∂e

)
ρ

c2
I = χ + κ

PI + e

ρ
c2 = χ + κ

P + e

ρ
(F.3)
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As a starting point, the Stiffened Gas equation of state has been used due to its easy
expression and possibility of describing both liquid and gas phases. P∞ is called the
minimal pressure and q0 the heat of formation; if q0 = P∞ = 0 the polytropic ideal gas
law is retrieved. Inverting e(P, ρ) one gets P (e, ρ) (F.4).

P (e, ρ) = (γ − 1) [e− ρq0]− γP∞ (F.4)

Therefore, for the Stiffened Gas EOS, (F.5).

e = P + γP∞

(γ − 1) + ρq0 χ = − (γ − 1) q0 κ = (γ − 1) T = P + P∞

ρcv (γ − 1) (F.5)

The dimensional variables (with a tilde (̃·)) and their adimensinal counterpart (without a
tilde) are in (F.6). The reference values ρr , Ur and Pr are user inputs and the reference

Mach number is M2
r = ρrU

2
r

Pr

P = P̃ − Pr

ρrU2
r

u = ũ

Ur

ρ = ρ̃

ρr

e = ẽ

ρrU2
r

χ = χ̃

U2
r

κ = κ̃

c2
I = c̃2

I

U2
r

− 1
M2

r

κ

ρ
c2 = c̃2

U2
r

− 1
M2

r

κ

ρ

(F.6)

An important note on thermodynamic quantities: all of the thermodynamic quantities
are computed in dimensional form and only at the end (so before going into the residuals
in the solver) c2 , c2

I and κ are adimensionalized. Therefore first all dimensional quantities
are computed as (F.7).
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e = P + γP∞

(γ − 1) + ρq0

χ = − (γ − 1) q0

κ = (γ − 1)

c2
I = χ + κ

PI + e

ρ

c2 = χ + κ
P + e

ρ

(F.7)

And then only the ones needed in the equations directly (κ, c2 and c2
I) are adimensionalized

(F.8).



κ̃ = κ

c̃2 = c2

U2
r

− 1
M2

r

κ̃

ρ̃

c̃2
I = c2

I

U2
r

− 1
M2

r

κ̃

ρ̃

(F.8)

The code in PoliPhase has been purpose built to allow for an easy implementation of
different thermodynamic models down the line.

F.1. Numerics
The convective terms are discretized using Rusanov fluxes while non conservative terms
are treated as sources, except for the one in the volume fraction equation which has been
formulated in an effort to preserve homogeneity, that means that if α is homogeneous
at t = t0, it should remain so ∀t ≥ t0. This is the reason ui

I has been used for the
residual in control volume i. To do so, a slight modification to the edge based upwind
residual computation procedure in SU2 was required since the residual was originally
re-used between nodes i-j and j-i by just changing the sign.

The pressure gradient term in the pressure equation Eq. (F.9), is split into a convective
flux and a source term.

ui · ∇Pi = ∇ · (Piui)− Pi∇ · ui (F.9)

Highlighting in color each term and their respective discretization in (F.10).
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∂αi

∂t
+uI · ∇αi = 0

∂αiρi

∂t
+∇ · (αiρiui) = 0

∂αiρiui

∂t
+∇ ·

(
αiρiui ⊗ ui + αiPiI

)
−PI∇αi = 0

M2
r

αi

(
∂Pi

∂t
+ ∇ · (Piui)

)
− αiPi∇ · ui + αiρic

2
i∇ · ui+

− ρic
2
I,i (uI − ui) · ∇αi

]
+ κi

[
αi∇ · ui − (uI − ui) · ∇αi

]
= 0

(F.10)

F.1.1. Convective Terms

The upwind contribution to the discrete residual computed between control volumes (·)i

and (·)j are here presented. Note that for ease of notation n̂ = Ai,jn̂ already contains
the adimensional edge area for the integration across the interface. This area is
adimensionalized as Ai,j = Ãi,j/L2

r.

Volume fraction:

+1
2 (uI · n̂)i

[
αi + αj

]
−1

2 | uI · n̂ |i
[
αj − αi

]
Mass:

+1
2
[
αρui · n̂ + αρuj · n̂

]
−1

2 maxk∈i,j | uk · n̂ |
[
αρj − αρi

]
Momentum x:

+1
2
[
αρuui · n̂ + αρuuj · n̂

]
−1

2 maxk∈i,j | uk · n̂ |
[
αρuj − αρui

]
+

+1
2
[
αP i + αP j

]
nx

Momentum y:

+1
2
[
αρvui · n̂ + αρvuj · n̂

]
−1

2 maxk∈i,j | uk · n̂ |
[
αρvj − αρvi

]
+

+1
2
[
αP i + αP j

]
ny

Momentum z:

+1
2
[
αρwui · n̂ + αρwuj · n̂

]
−1

2 maxk∈i,j | uk · n̂ |
[
αρwj − αρwi

]
+

+1
2
[
αP i + αP j

]
nz

Pressure:

+M2
r αi

{
1
2
[
Pui · n̂ + Puj · n̂

]
−1

2 maxk∈i,j | uk · n̂ |
[
P j − P i

]}
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F.1.2. Source Terms

The source term contribution to the discrete residual in control volume (·)i.

Volume fraction:
+0

Mass:
+0

Momentum x:

− | Ci | P i
I

∂αi

∂x
Momentum y:

− | Ci | P i
I

∂αi

∂y
Momentum z:

− | Ci | P i
I

∂αi

∂z
Pressure:

+ | Ci | αi

[
M2

r

(
ρc2 − P

)
+ κ

]i

∇ · ui+

− | Ci |
(
M2

r ρc2
I + κ

)i
(uI − u)i · ∇αi

F.1.3. Dual Time Stepping Source Terms

The dual time stepping source term contribution to the discrete residual in control
volume (·)i.
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1st order time stepping 2nd order time stepping
Volume Fraction:

αn+1 − αn

∆t
| Ci | 4αn+1 − 3αn + αn−1

2∆t
| Ci |

Mass:
αρn+1 − αρn

∆t
| Ci | 4αρn+1 − 3αρn + αρn−1

2∆t
| Ci |

Momentum x:
αρun+1 − αρun

∆t
| Ci | 4αρun+1 − 3αρun + αρun−1

2∆t
| Ci |

Momentum y:
αρvn+1 − αρvn

∆t
| Ci | 4αρvn+1 − 3αρvn + αρvn−1

2∆t
| Ci |

Momentum z:
αρwn+1 − αρwn

∆t
| Ci | 4αρwn+1 − 3αρwn + αρwn−1

2∆t
| Ci |

Pressure:

αn+1M2
r

P n+1 − P n

∆t
| Ci | αn+1M2

r

4P n+1 − 3P n + P n−1

2∆t
| Ci |

It should be noted that the 2nd order time stepping has been implemented but not tested.
All derivatives and gradients are computed by SU2 using either a weighted least square or
Green-Gauss approach. The physical time step ∆t is either user defined or computed using
the CFL, same as the inner time step (F.11). Both are adimensionalized as t = t̃ ·Ur/Lr.

δt = CFL· | Ci |
maxphases

(
| u | +c

)
Ai,j

(F.11)

Up to now, only far-field (F.12) and Euler wall (F.13) boundary conditions have been
implemented as for each phase (·)i and each pair of node (·)i (domain) and (·)j (ghost
cell).


[α, ρ, u, v, w, P ]ji = [α, ρ, u, v, w, P ]BC,i if ui · n̂ > 0 (inflow)

[α, ρ, u, v, w, P ]ji = [α, ρ, u, v, w, P ]ii if ui · n̂ < 0 (outflow)
(F.12)



α

ρ

u

v

w

P



j

i

=



α

ρ

u− 2unx

v − 2vny

w − 2wnz

P



i

i

(F.13)
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F.2. Results

F.2.1. Advection Test

A simple water bubble in air test has been run to validate the code in these first phases.
This test consists of a bubble of water inside an air carrier fluid at pressure and velocity
equilibrium (Pair = PH2O and uair = uH2O). The expected result is that of conserved
equilibrium, with the bubble being rigidly transported within the carrier fluid.

The test has been run on a regular quadrilateral (but unstructured) mesh and a
triangular unstructured mesh with similar mesh size with the following numerical
settings.

Numerics 1st order time stepping

∆t = 10−6 s

CFLinner(| u |) = 0.05

Meshes nx = 250 quadrilateral

h = 0.004 m triangular

I.C. Bubble αair = 0.1 αH2O = 0.9

ρair = 1 kg/m3 ρH2O = 1000 kg/m3

Pair = 106 Pa PH2O = 106 Pa

uair =
[
100 0

]
m/s uH2O =

[
100 0

]
m/s

I.C. Free-Stream αair = 0.9 αH2O = 0.1

ρair = 1 kg/m3 ρH2O = 1000 kg/m3

Pair = 106 Pa PH2O = 106 Pa

uair =
[
100 0

]
m/s uH2O =

[
100 0

]
m/s

Thermodynamics γair = 1.4 γH2O = 4.4

cv,air = 717.60 J/kgK cv,H2O = 4178 J/kgK

q∞,air = 0 J/kg q∞,H2O = 0 J/kg

P∞,air = 0 Pa P∞,H2O = 6 · 108 Pa

Table F.1: Numerical setup for bubble advection test
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(a) Quadrilateral mesh (b) Triangular mesh

Figure F.1: Mesh details for bubble advection test

(a) Initial conditions and final solution for quadrilateral
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(b) Comparison triangular and quadrilateral

Figure F.2: Volume fraction field for bubble advection test

As Figure (F.3) shows, rigid transport of the bubble occurs at the correct speed (100 m/s)
and results compare well to the 1D results shown by Re et al. [25] in their nx = 1600
results. There is more dissipation, as expected given the much coarser mesh used for
computational cost reasons. Pressure and velocity remain constant.

0 0.2 0.4 0.6 0.8 1

x [m]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
o
lu

m
e
 F

ra
c
ti
o
n
 H

2
O

 [
-]

PoliPhase  2D (quadrilateral) PoliPhase 2D (triangular) B.Re et al. 2017 Exact Solution at t = 3msInitial Conditions t = 0ms

0 0.2 0.4 0.6 0.8 1

x [m]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
o
lu

m
e
 F

ra
c
ti
o
n
 H

2
O

 [
-]

Figure F.3: PoliMIce ice accretion multi-step computational procedure

F.2.2. No Mixing Shock Tube Test

Another test performed is that of a 2m long shock tube of a 50/50 water/air mixture
initially at rest (u = 0 m/s) with a pressure jump at x = 0 m. The whole tube is initially
at T = 270 K and the simulation evolves for 0.16 ms and the initial densities are retrieved
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from the Stiffened Gas EOS. The simulation is 1D in nature but is performed on a 2D
mesh.

Numerics 1st order time stepping

∆t = 10−6 s

CFLinner(| u | +c) = 20

Mesh nx = 1000 quadrilateral

I.C. Left αair = 0.5 αH2O = 0.5

ρair = 129 kg/m3 ρH2O = 159 kg/m3

Pair = 107 Pa PH2O = 107 Pa

uair =
[
0 0

]
m/s uH2O =

[
0 0

]
m/s

I.C. Right αair = 0.5 αH2O = 0.5

ρair = 64.5 kg/m3 ρH2O = 157.7 kg/m3

Pair = 5 · 106 Pa PH2O = 5 · 106 Pa

uair =
[
0 0

]
m/s uH2O =

[
0 0

]
m/s

Thermodynamics γair = 1.4 γH2O = 4.4

cv,air = 717.60 J/kgK cv,H2O = 4178 J/kgK

q∞,air = 0 J/kg q∞,H2O = 0 J/kg

P∞,air = 0 Pa P∞,H2O = 6 · 108 Pa

Table F.2: Numerical setup for no mixing shock tube test

The analytical solution is obtained by assuming each phase is governed by the Euler
equations as independent gasses. Results are also compared to Re et al. [25] 1D results
with 2000 elements (compared to 1000 for PoliPhase) and ∆t = 3.1 · 10−7 s (compared to
∆t = 10−6 s for PoliPhase).
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Figure F.4: Results at t = 0.16ms for no mixing shock tube test
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In Figure (F.4) results for PoliPhase show good agreement despite the coarser mesh, the
bigger timestep and an overall less refined spatial and time discretization compare to Re
et al. [25]. The contact discontinuity, shock and rarefaction waves are well tracked, with
the second two being relatively smeared in the liquid phase. There are some oscillations
in the air’s pressure and velocity, this is something that needs to be looked into when
developing better discretizations.

In Figure (F.5) the final density fields are reported in the domain for reference.

Figure F.5: Density fields at t = 0.16ms for air and water in no mixing shock tube test

The volume fraction remains constant confirming that the discretization of the non
conservative term in the α equation preserves homogeneity even with sharp
discontinuities.

F.2.3. Further Work

This solver is still in its infancy and will certainly require extensive development to reach
state of the art. Work that needs to be done includes, but is not limited to:

1. Implementation of different thermodynamic models

2. Development of a hybrid conservative/non conservative solver for varying Mach
number

3. Rhie & Chow interpolation or grid staggering for low Mach checkerboarding

4. Better discretization of the convective fluxes

5. Better discretization of the non conservative terms
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